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Abstract

The success of binary decision diagram (BDD) based algorithms for synthesis and/or verification
depend on the availability of a high performance package to manipulate very large BDDs. State-of-
the-art BDD packages, based on the conventionaldepth-first technique, limit the size of the BDDs due
to a disorderly memory access patterns that results in unacceptably high elapsed time when the BDD
size exceeds the main memory capacity. We present a high performance BDD package that -enables
manipulation of very large BDDsby usingan iterative breadth-first techniquedirected towards localizing
the memory accesses to exploit the memory system hierarchy. The new memory-oriented performance
features of this package are 1) an architecture independent customized memory management scheme, 2)
the ability to issue multiple independentBDD operations (superscalarity), and 3) the ability to perform
multiple BDD operations even when the operands of some BDD operations are the resultof some other
operations yet to be completed (pipelining). A comprehensive set of BDD manipulation algorithms are
implemented using the abovetechniques. Unlike the breadth-first algorithms presented in the literature,
the new package is faster than the state-of-the-art BDD package by a factor of upto 1.5, even for the
BDD sizes that fit withinthe main memory. For BDD sizes thatdo not fit within the mainmemory, a
performance improvement of more than a factorof 1000 can be achieved.
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1 Introduction

Themanipulationofvery large binary decision diagrams1 (BDDs) [1,5] isthekeytosuccess for BDD-based
algorithms for simulation [6], synthesis [8,15], and verification[3,7,11] of integratedcircuits and systems.
Conventional BDD algorithms arebased on a recursive formulationthat leads to a depth-first traversal ofthe
directed acyclic graphs representing the operand BDDs. A typical recursive depth-first BDD algorithm is
shown in Figure 1. The depth-firsttraversal visits the nodes of the operand BDDs on a path-by-path basis.

dLopfap.F.G)
if (terminal case(op, F, G)) returnresult;
else if (computed tablehasentry(op, Ft G)) returnresult;
else

let x be the top variableof F, G;
T = dfjop(op,Fx,Gr);
E - dfjop (op, FX't Gx>)\
if (T equals E) returnT;
result = find or add in the unique table (x, T, E);
insert in the computedtable((op, Ft G), result);

endif

return result;

Figure 1: Depth-FirstBDD ManipulationAlgorithm

The large in-degree ofatypical BDDnodemakesit is impossibleto assign contiguous memorylocations for
the BDDnodesalong a path. Therefore, the recursive depth-first traversal leads to anextremelydisorderly
memory access pattern.

In a typical computer system, the memory is organized hierarchically with smaller, faster, and more
expensive (per byte) memory closer to the processor [9]. A simplified memory hierarchy consists of
processor registers, several levels of on- and off-chip caches (SRAM), main memory (DRAM), and ahard
disk. The important characteristics of each memory system component are given in Table 1. When the
BDD sizeexceeds the capacity of a given level in thememory system, the disorderly pattern of thedepth-
first algorithms translates to a severe performance penalty. When theBDD size exceeds the cache size, a
slowdown by a factor of 2-10 maybeobserved due to ahigh cache missrate. WhentheBDD sizemeasured
in thenumber of memorypages exceeds thenumber of translation look-aside buffer(TLB) entries, a further
slowdown may be observed. However, the most dramatic degradation in performance is observed when
the BDD size exceeds the main memory size; the depth-first algorithms thrash the virtual memory leading
to unacceptably high elapsed time even though the amount of CPU time spent doing useful work is low.
Therefore, the depth-first algorithms place a severe limit on the size of the BDD that can be effectively
manipulated on a given computer system.

To a first approximation, the performance of BDD manipulation algorithms is dominated by the perfor-

1For BDDrelated terminology, please refer to [4].



Level Registers Cache Main Memory Disk Storage

Typical Size <1KB < 512KB < 512MB >1GB

Access time (in ns) 10 20 100 20,000,000

Bandwidth (in MB/sec) 800 200 133 4

Managed by Compiler Hardware Operating System OS/User

Backed by Cache Main memory Disk Tape

Table 1: Typical Levels in Memory Hierarchy

mance and capacity of each level in the memory system hierarchy. Hence, the design of high performance
BDD algorithms require a careful consideration of memory related issues. We present a new BDD pack
agethat enables manipulation of very large BDDs by directing the iterative breadth-first techniquetowards
localizing the memory accesses to exploit the memory system hierarchy. Our novel contributions are:

• data structures and memory management techniques to preserve the locality of reference,

• a technique to perform multiple, independent BDD operations simultaneously (superscalarity), and

• atechnique to performmultiple BDD operations even when the operandsof some BDD operationsare
the result of some other BDD operations yet to be completed (pipelining).

Superscalarity and pipelining are targeted towards deriving higher performance from the memory system
hierarchyby exploiting the locality ofreference in the memory access patternacrossseveralBDD operations.
To our knowledge, this is the first complete BDD package incorporating a comprehensive set of BDD
algorithmsdesigned around obtaining higher performance by targeting the memory system hierarchy. We
achievehigh performanceon largeBDDs without sacrificingperformanceon small andmedium sized BDDs.
In fact, our performance exceeds that of a state-of-the-art depth-first package even for many BDDs that fit
within the main memory.

The rest ofthe paperis organized as follows. In Section 2, we discuss the key features ofthe breadth-first
manipulation algorithm and describe the related work based on this algorithm. In Section 3, we present the
concepts of performing BDD operations in a superscalar and pipelined manner and discuss how it leads to
better memory access patterns. Section 4 briefly describes how superscalarity and pipelining are exploited
to obtain efficient algorithms for common BDD operations. In Section 5, we present some implementation
details, in which we discuss our BDD node datastructureandcustomized memory management Experimental
results demonstrating the effectiveness ofour technique are presented in Section 6. Finally we conclude and
outline the direction of future work in Section 7.

2 Breadth-First Technique for BDD Manipulation

Originally proposed by Ochi et al [12, 13], the iterative breadth-first technique for BDD manipulation
attempts to fix the disorderly memory access behavior of the recursive depth-first technique. Unlike the
depth-first algorithm that traverses the operand BDDs on a path-by-path basis, the iterative breadth-first



algorithm traverses the operand BDDs on a level-by-level basis,where each level corresponds to the index
of a BDD variable. The BDD nodes corresponding to a level are allocated from the same memory segment
so that temporal locality in accessingthe BDD nodes for a specificlevel translates into spatiallocality.

The basic iterativebreadth-first technique consists of two phases: a top-down (from root node to leaves)
Apply phase followed by a bottom-up Reduce phase. The algorithm for a two operandboolean operation
is shown in Figures 2, 3, and 4. During the Apply phase, the outstanding Requests are processed on

bf.op(op, F, G)
if terminal case (op, F, G) returnresult;
minJndex = minimum variable index of (F, G)
create a Request (F, G) and insert in Request QuEUE[minindex];
/* Top down Apply phase */
for (index = minJndex; index < num.vars; index++) bf_apply(op, index);
/* Bottom up Reduce phase */
for (index = num.vars; index > minJndex; index- -) bf_reduce(index);
return REQUEST or the node to which it is forwarded;

Figure 2: Breadth-First BDD manipulation algorithm

bf_apply(op,index)
x is variable with index "index";
/* process each request queue */
while (Request QuEUE[index] not empty)

Request (F, G) = unprocessed request fromRequest QuEUE[index];
I* processRequest by determining its Then and Else */
if (NOT terminal case ((op, Fx, Gx), result))

next-index = minimum variable index of (Fg, Gx)
result = find or add (Fx, Gx) in Request QUEUE[nexUndex]

Request -* Then = result;
if(NOT terminal case ((op, Fx/, Gxt)> result))

next-index = minimum variable index of (FX'% Gxi)
result = find or add (Frs Gx>) in Request QuEUE[nextJndex]

Request -* Else = result;

Figure 3: Breadth-First BDD manipulation algorithm - APPLY

a level-by-level basis. The processing of a Request R = (op, F, G), in general, results in issuing two
new Requests which represent the Then and the Else cofactors of the result (F op G). Since certain
isomorphismchecks cannotbe performed, the resultBDD obtained at the end of Apply phasehasredundant
nodes. The Reduce phase traverses the result BDD from the leaves to the root on a level-by-level basis



bf.reduce(index)
x is variable with index "index";

I* process each requestqueue */
while (Request QuEUE[index] not empty)

I* processeach request */
Request (F, G) = unprocessed Request fromRequest QuEUE[index];
if (Request-)Then is forwarded to T) Request-* Then = T;
if (Request->Else is forwarded to E) Request-* Else = E;
if (Request-^Then equalsRequest-+Else) forward Request to Request -> Then ;
else if (BDDnodewith (Request-* Then , Request ->• Else ) found in Unique TABLE[index])

forward Request to that BDD node;
else

insertRequest to the Unique TABLE[index] with key (Request Then , Request Else )

Figure 4: Breadth-First BDD manipulation algorithm - Reduce

eliminating the redundant nodes.
The Apply phase ofthe algorithm needsto determine the indices ofcofactor nodesin order to determine

which bucketofRequest Queue the new Requests shouldbe placed(seeunderlinedin Figure3) andindices
of operand BDDs constituting the Request. In order to preserve the locality of references, it is important
to determine the variable index of a BDD node without actually fetching it from memory. In particular, the
routine bfjipply called with index i should access nodes only atindext. Ochiet al [13] use Quasi-Reduced
BDDs (QRBDDs) to solve this problem. Essentially, padnodes are introduced alongeach pathof the BDD
so that consecutive nodes along a path differ in their indices by exactly one. This solution also localizes
memory accesses to check for duplicate requests during the Apply phase and redundant nodesduring the
Reduce phase. However, it is observed that the QRBDD is several times larger than the corresponding
BDD [2], which makes this approach impractical formanipulating very large BDDs. Ashar et al [2] use a
Block-Index tableto determinethe variableindex froma BDD pointerby performinganassociativelookup.
Since this solution employs BDDs (as opposed to QRBDDs), anattempt is madeto preserve the localityof
reference during the check for duplicate requests and check for redundant nodesby sorted accesses to nodes
based on their variable indices. The limitation of this approach is that it has a significant overhead (about
a factor of 2.65)as compared to a depth-first based algorithm for manipulating BDDs which fit within the
main memory [2].

Ourapproach to handling variable index determination problem differs from the works of Ashar et al
and Ochi et al in the following aspects:

1. A new BDD node data structure is introduced to determine the variable index while preserving the
locality of accesses. We represent a BDDusing {variable index, BDDnodepointer} tuple. Therefore
a BDD node containspointersto Then andElse cofactors aswell astheirvariable indices. Hence we
do not need to fetch the cofactors to determine their indices. The BDD node data structure and related

implementation details are discussed in Section 5.1.



2. Optimized processing of Request Queues for each level by eliminating the sorted processing of
Requests during Apply and Reduce phases as proposed by Ashar et al. Empirically, we have
observed that this change does not affect the performance of our algorithm for manipulating very large
BDDs.

3. Use of a customized memory manager to allocate BDD nodes which are quad-word aligned. The
quad-word alignment improves the cache performance by mapping a BDD node to a single cache line.

Since we eliminate the overheads associated with the previous breadth-first approaches, the new algorithms
are faster than corresponding recursive algorithms on many examples for which the BDDs fit in the main
memory.

3 Superscalarity and Pipelining

In this section, we propose two new concepts - superscalarity and pipelining - to optimize the memory
performance of the iterative breadth-first BDD algorithms by exploiting locality of reference that exists
among multiple BDD operations. The concepts of superscalarity and pipelining have their roots in the field
of computer architecture in which superscalarity refers to the ability to issue multiple, independent instructions
and pipelining refers to the ability to issue a new instruction even before completion of previously issued
instructions. We shall see how these concepts can be applied in the context of the breadth-first BDD
algorithms to exploit the memory system hierarchy.

To improve the performance of the basic breadth-first algorithm, we take a closer look at its memory access
pattern assuming that the variable index can be determined without destroying the locality of references.
During the Apply phase for a specific index, the following types of memory accesses take place:

1. Accesses to Unique table BDD nodes for that index using BDD pointers to obtain their Then and
Else cofactors.

2. Accesses to each of the Request for that index.

3. Associative lookups in appropriate Request Queues to check for duplicate Requests.

During the Reduce phase for a specific level, the following types of memory accesses take place:

1. Accesses to Then and Else BDD nodes to check for redundancy.

2. Associative lookups in the Unique table for that index to determine if another node with the same
attributes already exists.

For a very large BDD that exceeds the main memory capacity, the number of page faults is dominated
by the memory accesses to a large Unique table. The reason for this is that the Unique table pages are
accessed on a level-by-level basis during the Apply and the Reduce phase and the Unique table nodes
within each level are accessed randomly. Superscalarity and pipelining attempt to amortize the cost of page
faults for accessing Unique table pages for a specific level among several BDD operations.



3.1 Superscalarity

The concept of superscalarity in the context of breadth-first BDD algorithms refers to the ability to issue
multiple, independent BDD operations simultaneously. Two BDD operations are said to be independent if
their operands are reduced ordered BDDs, i.e. the nodes for the operand BDDs are in the Unique Table.
Performing multiple, independent BDD operations concurrently during the same Apply and Reduce phase
amortizes the cost of page faults for accessing the Unique Table entries. By issuing several independent
operations simultaneously, the number of Request nodes in the Request Queue increases. However, the
number of page faults for accessing Unique Table nodes for a specific index does not increase proportion
ately; it increases at a lesser rate. Empirically, we observe a significant performance enhancement in the
BDD algorithms by exploiting superscalarity.

Another major advantage of superscalarity is complete inter-operation caching of intermediate BDD
results. A breadth-first algorithm for a single BDD operation provides complete caching of intermediate
results during the operation by virtue of the Request Queue. However, it is not possible to have inter-
operation caching in the breadth-first algorithm without expending additional memory resources to store the
cached results and additional computing resource to manage the complex caching scheme since the contents
ofaRequest node are destroyed after it is processed in the Apply phase and correct result is unavailable until
the Request is processed in the Reduce phase. Superscalarity provides complete inter-operation caching
forthe set ofindependent BDD operations that areissued simultaneously, thereby enhancing the performance
of the breadth-first algorithm even further.

3.2 Pipelining

The concept ofpipelining in the context ofbreadth-firstBDD algorithms refers to the ability to issue multiple,
dependent BDD operations simultaneously. A BDD operation op\ is said to be dependent on another BDD
operation opi ifthe result BDD ofopz is anoperand ofop\. The pipelining algorithm issues several dependent
operations simultaneously using unprocessed requests to represent operands for the dependent operations.
The result BDDs for these requests areobtained by a single Apply and Reduce phase that amortizes the cost
of page faults for accessing the Unique table entries.

We make the following three observations that allow us to process a set of dependent requests in a
single Apply and Reduce phase. The first observation is related to the nature of the breadth-first iterative
algorithm. There is a one-to-one correspondence between requests processed and the nodes in the unreduced
BDD created during the Apply phase. In fact, a processed request with Then and Else pointers pointing to
newly issued requests corresponds to the BDD node in the unreduced BDD obtained at the end of the Apply
phase. The second observation is relatedto manipulatingunreduced BDDs. If 6,, i = 1,..., n areunreduced
BDDs, then result BDD 6 obtained by performing a boolean operation with operands 6, is an unreduced
BDD. The important point here is that operand BDDs for a boolean operation can be unreduced. The third
observation is related to processing of requests in the Apply phase of the breadth-first algorithm. In general,
while processing a request, two new requests are issued. Each of the new request corresponds to cofactors
of the operands that constitute the request. This implies that we need Then and Else pointers only for the
operand with the minimum index. From these observations, we state the following theorem without proof.

Theorem 3.1 Correctness of pipelining: Given Request R\ = (op\, F\, G\) and Request Ri = (opi,



F2, G2) and Request jR = (op, R\, R2), the breadth-first algorithm with modified Apply and Reduce
phases, whichprocess the Requests in level-by-level order while maintaining thepartial order implied by
the dependence of Requests for that index, correctly computes the reduced BDDs corresponding to the
Requests R\, R2, and R.

The concept ofpipelining improves the performance ofthe breadth-first algorithm by amortizing the cost
of page faults across dependent BDD operations. However, pipelining results in operations on unreduced
BDDs. Hence, there is an increase in the size of the working memory required and corresponding increase
in the amount ofcomputation. If the increase in the working memory is large, the number ofpage faults will
increase.

Pipelining will improve the amount of caching, since the intermediate BDDs in the dependent operation
can use the cached result of all operations on which the current Request depends directly or indirectly.
However, it introduces the penalty of performing associative lookups in several Request Queues, which
offsets the potential gain due to improved caching.

3.3 Application

Superscalarity and pipelining find their applications whenever a set of dependent and/or independent BDD
operations needs to be performed. In this section we describe two such applications.
Creating Output Bdds of a Circuit: In many logic synthesis and verification applications we need to
compute the BDDs for the outputs of a circuit. Given a network representing a circuit, we try to compute
the function of the outputs in terms of the primary inputs. This requires computing the function ofnodes of
network starting from the primary inputs to primary outputs. Pipelining and superscalarity can be employed
to compute the output BDDs in several ways. Our algorithm is as follows:

1. Decompose the given network into two input Nand nodes.

2. Levelize the nodes of the new network.

3. Create the BDDs for nodes belonging to a particular level concurrently (using superscalarity), or

4. Create the BDDs for nodes belonging to two or more levels using pipelining.

The motivation behind decomposing the network into Nand nodes is to obtain as much superscalarity as
possible. In Section 6 we provide experimental results indicating the effect of superscalarity and pipelining
on creating the output BDDs.

Multiway Operation: Applications of multiway operations arise when we want to perform some BDD
operation on a set of functions. For example, suppose {/,- : Bn -» B, i = 1, •••, m} represent a set
of m boolean functions over n variables. The BDDs for these functions are denoted as B(/,). Further
suppose we want to compute the BDD B(f) for function / given as / = ngj1/,-. We could compute
this product by iteratively taking the product, at each step creating an intermediate result for the function
9k = 9k-\ A jf)fc, whereg\ = f\. In this case we make (m - 1) passes of the Apply and Reduce phases
each involving access to Unique Tables and Request Queues. Using superscalarity and pipelining we can
improve the performance significantly. Our algorithm is given below:
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1. From the given set of arguments we make a binary tree where leaves represent the BDD arguments
and the intermediate nodes represent the intermediate productBDDs.

2. Create the BDDs for all the nodes belongingto a particular level using superscalarity.

3. Using pipelining and superscalarity, we can process all the nodes belonging to two or more levels
simultaneously.

In the section 6.4.2 we present the performance comparisonof computing Multtway And iteratively over
computing it employing superscalarity and pipelining.

4 Optimized BDD Algorithms

We have incorporated iterative breadth-first technique, superscalarity, and pipelining into a comprehensive
set ofhigh performance BDD algorithms for boolean operations such as And, Or, XOR,NAND, NOR, XNOR,
ITE, COFACTOR, RESTRICTION, COMPOSITION, SUBSTITUTION, EXISTENTIAL QUANTIHCATION, UNIVERSAL
Quantification, Relational Product, and Variable Swapping. In the following sections we describe
a few of these algorithms. Each of these new algorithms raises specific issues which must be addressed to
obtain a high performance BDD package. In Section 6.5, we demonstrate the performance ofour algorithms.

4.1 Substitute

hi this operation a set ofvariables in the argument BDD is substituted by a set of functions. The conventional
depth-first algorithm for substitution is given in Figure 5. The need to perform an Ite operation on the

df-substitute(F)
if (terminal case(F)) return result;
if (computed table has entry(F)) return result;
let x be the top variable of F;
if (x is to be substituted) g = function substituting x
else g = x
T = df-substitute^);
E - df_substitute(FxO;
return dfite(g, T, E)\

Figure 5: Depth-First Algorithm for Substitution

result of the cofactors makes the substitution operation computationally more complex than other BDD
operations. In the breadth-first implementationof the substitution algorithm,we employ superscalarity to
boost the performanceofthe operation. In the Apply phaseofthe operation, we simply processthe cofactors.
In the Reduce phase however, we collect the Ite Requests for all the nodes belonging to an index and
process them in a superscalarmanner. In Figure 6, we outline the algorithm for the Reduce phase of the



bf-substitute_reduce(index)
x is variable with index "index";
if (x is to be substituted) g = function substituting x
else g = x
/* process each request queue */
while (requesLqueue[index] not empty)

/* process each request */
Request (F,G) = unprocessed request from Request QuEUE[index];
if(REQUEST Then is forwarded to T) Request -• Then = T,
if(REQUEST Else is forwarded to E) Request -• Else = E;
if(REQUEST Then equalsRequest Else ) forward Request toRequest Then ;
else

create an Ite Request (g, T, E)
forward Request to the Ite Request ;

Perform superscalar Ite
Update the forwardinginformationof Requests

Figure 6: Breadth-First SubstituteOperationAlgorithm- Reduce

Substitution operation. Employing superscalarity ontheIte operations significantly improves thecaching
and the page fault behavior.

4.2 Existential Quantification

Existential Quantification of a function / with respect to a variable x is given by 3*/ = fx + fx'>
Existential Quantdficationofafunction / with respect toasetofvariables X = {x\, x2,... xn}t isgiven
as,3xf = 3Xn (3Xn_1 •••(3X1 /)). Theconventional depth-first algorithm forexistential quantification
is given in Figure 7. One salient feature of the algorithm for Quantification is that only one cofactor
needs to be processed in some cases. As seen in Figure 7, if thetopvariable of thefunction is quantified,
then we need not process the negative cofactor if the result of thepositive cofactor is the constant 1 (as
underlined inthefigure). Thisfeature is distinct from mostof theotherBDD operation algorithms. However,
this optimization requires traversing the BDD on a path-by-path basis. A straight forward breadth-first
implementation that processes both thecofactors in the Apply phase will incur theoverhead ofunnecessary
computations. Hence, it is imperative to adopt a strategy which benefits notonly from theregular memory
access dueto thelevel-by-level manipulation of theBDDs, butalso minimizes theoverhead of unnecessary
computations.

We propose a new mixed breadth- and depth-first approach to overcome this problem. Inthis approach,
we process theRequests differently depending upon whether thecorresponding variable index isquantified
or not Fbr Requests belonging to quantified variables, we process both the cofaaors. However, for
Requests belonging to remaining variables, wedo a path-by-path traversal, i.e., weprocess justoneof the
cofactors. In theReduce phase, weprocess theRequests belonging to theindices which arenotquantified

10



dfjexist(F)
if (terminal case(F)) returnresult;
if (computedtablehasentry(F)) return result;
let x be the top variable of F;
r = dfjexist(Fx);
if (x is to be quantifiedandT = 1) return 1;
E = df-exisKF**);
if (x is to be quantified) return df_or(T, E);
else result= find or add in the unique table (x, T, E)\
return result;

Figure7: Depth-FirstAlgorithm for Existential Quantification

in the same manner asgiven in bfseduce (Figure 4). However forvariable indices which areto be quantified,
we process the Requests differently. If the resultof the positive cofactor is the tautology then that node
is forwarded to the constant One. Otherwise, we proceed to find the result of the other cofactor and take
the "OR" of the results of the two cofactors. We employ superscalarity in finding the "OR" of the cofactor
results for nodes belonging to a particularlevel.

Relational Product of functions / and g with respect to a set of variables X is the Quantification
ofproduct of / andg with respect to X. Dueto this similarity, Relational Product algorithm works along
the same lines.

5 Implementation Details

5.1 Data Structure

The important issues in designing the BDD node datastructure arethe following:

Compact Representation The size of a BDD nodes should be as small as possible, because most of the
memory is used by BDD nodes. Further we need to efficiently use the memory so as to fit as many
nodes as possible in a given level of the memory system hierarchy.

Variable Index Determination As mentioned in the section 2, the variable index determination is crucial
to the regular memory accesses. In particular, we should avoid fetching the BDD from memory to
determine its index.

We propose the BDD data structure givenin Figure 8. We represent a BDD using {variable index, BDD
node pointer} tuple. Unlike the conventional BDD datastructure that stores its variable index in the BDD
node, the new BDD data structure stores the variable indices of its Then and Else BDD nodes. The new
BDD node data structure is very compact: on a 32-bit architecture it only requires 16 bytes, which is the
same as the memory required to represent the conventional BDD node structure. A customized memory

11



allocatoris used to align the BDD nodes to quad-word boundaries so that a total of 12bits Qastfour bits of
Then, Else, and Next pointers) can be used to tag importantdata such as complementflags, marking flags,
andthe reference count. The tag bits are assigned so as to minimize the amountof computational overheads.

struct Bdd {
int bddlndex; /* 2 Bytes */
structBddNode*bddNode; /*4Bytes*/

}

structBddNode{
struct BddNode '"next;
struct Bdd thenBdd;
struct Bdd elseBdd;

}

Figure 8: BDD and BDD Node Data Structure

I* 4 Bytes*/
/* 6 Bytes*/
/* 6 Bytes*/

5.2 Memory Management

We use a customized memory management to allocate and free BDDnodes in order to ensure locality of
reference. We associate a node manager with each variable index. A BDDnode is allocated by the node
manager associated withthe indexof the node. The nodemanager maintains a free list of BDDnodes, that
belong to the sameindex. Memory blocks are allocated to a nodemanager in sucha waythat all the BDD
nodes in the free list are aligned on a quad-word boundary. In addition to providing 12 bits as explained
above, the quad-word alignment helps improve the cache performance as it maps a BDD nodeto a single
cache line.

5.3 Miscellaneous Details

Overloading of Request data structure: A BDD node is obtained from a Request node that is not
redundant. Tb overload the use of the Request data structure with the BDD node data structure [2], the
Request data structure is limited to 16bytes. Before the Apply phase, each Request represents operand
BDDs, eachof which requires 6 bytes. Therefore, we allow only two operand operations. Three operand
operations such as ITE(f g,h)are simulated byusing indirect addressing and two request nodes. Hashing
function: Since hash tables are used extensively in the breadth-first BDD manipulation, it is important to
optimize theirperformance. The analysis of source code revealed that about 15% of the total CPU timeis
spentin computing the unsigned remainder when usinga prime number hashing function. A powerof two
hashing function reduces this time drastically without degrading the hash tableaccess performance.
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6 Experimental Results

The following set of experiments are carried out to demonstrate the performance of our BDDpackage:

1. Creating output BDDs of circuits: For the purposes of comparing the performance of our package
witha depth-first BDD package weuseLong's package [10]. We compare thetimetakento create the
BDDsfor the outputsof circuits. The numberof nodes in the BDDs range from a few thousands to
tens of millions.

2. Demonstrating performance improvement due to superscalarity.

3. Demonstratingperformance improvementdue to pipelining.

4. Performance comparison for various BDDoperations: We compare the performance of various BDD
operations in our package with those in Long's package. We showthat even for small and medium
sized examples, our algorithms have competitiveperformance.

6.1 Experimental Setup

We integrated our package withthe synthesis toolSIS[14]. Inaddition to usingstandard ISCAS andMCNC
benchmark examples for the set of experiments, we use a series of sub-networks of the MCNCbenchmark
C6288 in order to systematically analyzethe performance of our algorithmsas BDD size increases. These
artificially created exampleshave the propertythat the numberof BDD nodes needed to represent the BDDs
corresponding to the outputs are roughly multiples of onemillion. This enabled us to illustratethe gradual
change in various performance metrics with the change in example size. These examples are denoted as
"C6288iM.blif*, implyingthat the total numberof BDD nodes in the manager after computing the BDDs
for the outputs of C6288 JM.blif is i millions.

For each of the benchmark examples, we create the BDDs for the outputs of the circuit. We use these
output BDDs as argument BDDs in our experiments. For instance, to compare the performance of the
And operation, we iteratively selectrandom pairs from the outputBDDs and compute the AND of the pair.
Similarly, to compare the performance of Quantification operation, we select one of the output BDDs
randomly and also randomly selecta set of variables to be quantified. Functions and the variables selected
are the same for both the packages.

We use "dfs-ordering" in SIS to order the variables. The number of BDD nodes needed to represent a
particular circuitmay be significantly different from those reported in literature (e.g. [2]) due to a different
variableordering. However, this issue is orthogonal to demonstrating the performanceofour package.

Allour experiments wereperformed on a DEC5400 with 128KB processorcache,64 MB mainmemory
and 1GB ofdisk storage.

6.2 Creating Output Bdds For Circuits

62.1 Small and medium size examples

From Table 2, we observe that with respect to Long's BDD package, for most of the examples our package
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Example # Nodes

CPU Time

A B A/B

C1355 139998 15.30 13.57 1.13

C1908 56842 5.57 4.27 1.30

C432 193671 21.66 17.29 1.25

C499 109685 12.78 10.75 1.19

C5315 111798 10.39 11.13 0.93

C880 38721 3.38 3.02 1.12

S1423 56178 4.94 3.99 1.24

S15850 188035 19.36 33.09 0.59

S35932 25557 3.13 27.56 0.11

S38584 93055 10.10 30.99 0.33

Table 2: Performance comparison for creating output BDDs with Long's BDD package.

A: Long's BDD package
B: Our package.

has competitive performance and on some examples we achieve a performance improvement upto a factor
of 1.2. However, for examples sl5850, s35932, and s35854 our package performs significantly worse than
Long's package. Upon analysis we found that these examples share one property which is that all of them
have a large number of primary inputs. This correspondingly results in large number ofvariable levels. Also
since the relative BDD sizes of these examples are small, the penalty of traversing the Request Queue on
level by level basis becomes dominant and results in significant computation time.

6.2.2 Large size examples

In Table 3 we present the performance comparison for creatingoutput BDDs for largeexamples. We observe
that when the numberof BDD nodes becomes too large to fit in the main memory, the number ofpage faults
and the elapsed time increase drastically for Long's package. In Figure 9, we show the number ofpage faults
and the elapsed time as a function of example size. We observe that for Long's package, an increase in the
BDD size beyond the main memory size results in a sharp increase in the number of page faults and hence
excessive elapsed time. This is in contrastto the page faultbehavior ofour package which increaseslinearly
with an increase in the example size.

623 Very large size examples

Table 4 gives the performance of our package on building very large BDDs for some benchmark examples.
We observe that we have been able to build BDDs with more than 23 million nodes in less than nine hours.
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Example # Nodes

CPU Time Elapsed Time # Page Faults
A B A B A B

C6288-1M 1,001,855 112 98 127 110 0 0

C6288J2M 2,066,878 273 215 403 306 0 0

C62883M 3,123,327 491 347 21281 1218 502059 17800

C6288.4M 4,273,510 820 490 106110 2433 2661738 42509

C6288.5M 5,337,005 t.o. 631 - 4140 - 80621

C6288.6M 6,381,496 — 804 - 6295 - 126977

C6288.7M 7,489,064 — 981 — 8454 - 168794

C6288.9M 9,193,222 - 1147 - 10864 - 213976

Table3: Performancecomparisonfor creating output BDDs: Long's BDD package (A) vs. our package (B)

t.oiProcess killed after 21.5 hours ofelapsed time.
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Figure 9: Variationof Elapse Time and Number ofPage Faults with Example Size
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Example # Nodes Elapsed Time # Page Faults

C2670 1.04 x 10b 4 hrs 4 mins 58 sees 357005

C3540 2.76 x 106 25mins 26603

C6288.12M 12.80 x 106 6 hrs 39 mins 54 sees 719697

S38417 23.15 x 106 8 hrs 49 mins 26 sees 868442

Table 4: Performance metrics for creating output BDDs for some very large examples

6.3 Performance Enhancement Due to Superscalarity

We demonstrate the power of superscalarity on three different applications: creating output BDDs, Array
And, and Quantification.

6.3.1 Creating output BDDs

Wedescribed in the section 3.3 how superscalarity can be exploited for creating output BDDs. In Table 5, we

Example
CPU Elapsed # Page Faults

w/oSS wSS w/oSS wSS w/oSS wSS

C6288.4M

C6288.5M

C6288.6M

C6288.7M

485.82

630.37

815.91

956.89

436.94

602.50

724.99

831.30

2214

5333

18354

24747

2452

4648

7840

10267

53261

172205

712868

970192

63272

137004

252323

328086

Table 5: Performance improvement using superscalarity for creating output BDDs

show the performance improvement achieved by employing superscalarity. We observe that in all the cases
employing superscalarity results in better performance. Also in all the cases except C6288.4M, we observe
that the number of page faults decreases with the use of superscalarity and we achieve a better perfoimance
by a factor of more than 2.

632 Array And and Quantification

In Table 6, we present the results on how superscalarity affects the performance of Array And and
QUANTincATiON. In Array And we are given an array of operand BDD pairs and we need to compute
the And of each of the operand pair. These operands were randomly chosen from the set of output BDDs
of the circuit. Fbr the quantification operation, we perform OR operations one at a time during its reduce
phase (see Section 4.2) to illustrate the effect of superscalarity. For small circuits, superscalarity improves
the performance due to inter-operation caching. For large circuits, superscalarity improves the performance
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Example

BDD Operation
Array And Quantify

CPU Elapsed # Page Faults CPU Elapsed
W X W X W X Y Z Y Z

C1355 134.03 119.41 137 123 1 0 13.40 12.30 13 12

C6288.1M 411.35 403.90 847 740 1 0 5.02 4.27 5 5

C6288.2M 290.55 283.41 595 581 0 0 18.17 16.16 18 17

S1423 35.39 18.02 37 18 0 0 20.63 19.13 31 30

C6288.3M 682.57 655.21 21005 7178 406026 109283 12.60 11.59 13 12

minmaxlO 810.32 679.88 19304 1619 326604 9193 66.0 55.8 91 81

Table 6: Performance improvement using superscalarity for Array And and Quantification BDD opera
tions.

W: Array And performed iteratively.
X: Array And performed in superscalarmanner.
Y: In Reduce phaseof Quantification, OR operations performedone be one.
Z: In Reduce phase of Quantihcation, OR operationsperformed in superscalarmanner.

due to increased locality to the memory access, resulting in less page faults. We observe from Table 6 that
for examples which can fit in the main memory, superscalarity helps with improved CPU time. Fbr large
examples we observe a performanceimprovement ofupto a factor of 10.

6.4 Performance Enhancement Due to Pipelining

We demonstrate the effect of pipelining on two different applications.

6.4.1 Creating output BDDs

We demonstrate the effect of pipeliningon the performance ofcreating BDD for outputs. We have described
in Section 3, how pipeliningtechniquecan be exploited. Figure 10, depicts the effect of pipedepthon the
elapsed time and the number of page faults for a series of C6288 sub-examples. The pipedepth refers to
numberof levelsofdependencies. As pipedepth is increased, we see a decrease in the numberof pagefaults
(hence the decrease in elapsed time). However, the memory overhead increases with increase in pipedepth
since we areworking with unreduced BDDs. Hence, afteracertainvalue of pipedepth, the decrease in page
faults due to pipelining is offset by the increase in page faults due to memory overhead. We observe that a
pipedepth of four is optimum in most cases.
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Figure 10: Variation of ElapseTime andNumberof PageFaultswithPipedepth in Creating OutputBDDs

6.4.2 Multiway And

As described in Section 3.3, Multiway And operationcomputes the conjunctionof an array of BDDs. We
compute the resultusing 1) the approach described in Section 3.3 and 2) the iterative approach (computing
the product by successive And operations). For a Multtway And operation with n operands, the depthof
the pipeline is flog2 n\. In Table 7, we present results forvarious values of n, and hence various pipeline
depths.

We observe from Table 7 that for "sl423", the pipeliningtechniquedoes not improvethe performance.
This is due to the fact that output BDDs for "sl423" fit in the main memory and hence pipelining cannot
improve the memory access. However, for "C6288-3M" and "C6288.4M", we observe performance im
provement of up to a factor of two. This is attributed to the reduction in the numberof page faults when
pipelining is employed.

6.5 Performance Comparison For Various BDD Operations

One of our objectives was to provide a comprehensive set of algorithms for all BDD operations. In the
following subsections wecompare the performance of someof ouralgorithms withthoseof Long'spackage.
We provide the comparison withrespect to smallandmedium sizedexamples only, sincefor largeexamples
Long's package will have the obvious disadvantageof excessive page faults.
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Example # Nodes n (7002^1
CPU Time Elapsed Time # Page Faults

Iterative Pipelined Iterative Pipelined Iterative Pipelined

S1423 57524

2

4

8

1

2

3

0.53

4.17

6.00

0.51

4.03

5.99

0

4

7

0

4

6

0

0

0

1

0

0

C6288-3M 3xl06
2

4

8

1

2

3

0.57

100.88

112.68

0.58

97.10

169.36

23

3449

8578

26

802

2304

603

83967

212484

762

12796

45537

C6288.4M 4X106
2

4

8

1

2

3

0.80

107.80

121.76

0.63

102.99

183.34

97

4602

12808

66

2307

5540

2932

113325

326127

2213

53077

130237

Table 7: Effect of pipelining on the performanceof Multiway And

6.5.1 Performance comparison for small size examples

All examples considered in this category have less than7000 BDD nodes. This implies that with a processor
cache size of 128KB, it is possiblethat all the nodes can reside in the cacheif node addresses are properly
aligned. Sinceournodedata structure is quad word aligned, the nodeaddress doesnot overlap across cache
lines. Hencewe canexpect a significantcachehit rate duringBDD manipulations. Long's package, however,
doesnot providethe word alignmentandhenceit is likely thatthe BDDnode addresses couldoverlap across
cache lines. We ran experiments to compare the perfoimances of various BDD operations. We observed a
performance ratioof 1.92across all small sized examples and fourBDD operations.

6.5.2 Performance comparison for medium size examples

InTable 8 we providethe performance comparison between packages formedium size examples.
Since the number of nodes are of the order of tens of thousands to hundreds of thousands, the cache

effect seen for the small size examples is not dominant in this case. However, in most of the cases, we
observe a performance improvement over Long's package. Overall performance ratio over all medium
sized examples and across four BDD operations given in the tables, is about 1.5. The most significant is
the relative performance on Substitute. We observe that on many examples, Long's package could not
finish the Substitution in 10,000 CPU seconds whereas our package took just about 1000 CPU seconds to
complete. This substantiates the significant performance enhancement usingsuperscalarity asmentioned in
Section 4.1.

We notice that for Quantification operation our package consistently performs worse than Long's
package by up to a factor of 0.6. Currently we are investigating the possible cause of this performance
bottleneck. It shouldbe mentioned howeverthat forlarge examples (ones which do not fitthe main memory),

1SwapVars(/, x, y) is a function obtained from the function / by replacing variable x by y and vice-versa.
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Example

BDD Operat ion

bdd.and bdd-substitute

CPU Elapsed CPU Elapsed
A B A/B A B A/B A B A/B A B A/B

C1355 16.68 14.45 1.15 17 15 1.13 t.o. 1005.32 — — 14710 —

C1908 7.80 7.05 1.11 8 7 1.14 to. 62.65 — - 67 —

C432 18.23 17.77 1.03 19 18 1.06 3144.85 258.89 12.15 4746 476 9.97

C499 15.53 14.64 1.06 16 15 1.07 to. 1002.21 — — 14749 —

C5315 12.01 6.52 1.84 16 7 2.29 0.91 0.16 5.69 1 1 1

C880 9.03 7.29 1.24 10 8 1.25 1.05 1.18 0.89 1 1.0 1

S1423 2.25 2.48 0.91 2 3 0.67 292.68 88.73 3.3 350 97 3.6

Example bdd-exist bdd-swapvars i

C1355 45.99 63.05 0.72 47 65 0.72 30.42 23.78 1.28 31 25 1.24

C1908 13.62 21.30 0.64 14 22 0.64 9.34 8.22 1.14 9 8 1.12

C432 59.08 99.80 0.59 60 102 0.59 33.94 29.67 1.14 34 31 1.10

C499 40.70 59.28 0.69 41 60 0.68 29.15 23.81 1.22 30 24 1.25

C5315 32.97 35.65 0.92 34 37 0.92 4.12 3.52 1.17 4 4 1

C880 17.28 21.98 0.79 18 22 0.82 10.65 8.62 1.24 11 9 1.22

S1423 16.57 28.31 0.59 17 29 0.59 1.63 2.34 0.70 2 3 0.67

Table 8: Performance comparison on medium size examples for "And", "Substitute", "Existential Quantifi
cation , and "SwapVars" operations: Long's BDD package (A) vs. our package (B).

to.: Time out after 10,000 CPU seconds.
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all our operations consistently perform better than Long's package.

6.6 Memory Overhead in Breadth First Approach

As noted in Section 1, in the breadth first technique the isomorphism checks cannot be performed in the
Applyphase. Asa result, sometemporary BDDnodesarecreated whichare freed duringthe Reduce phase.
This results in memory overhead inherent in the BF technique. Furthermore, as discussed in Section 3,
isomorphism check reduces evenfurther. In Table 9, wegive thememory overhead involved in computing
"AND" operation on two random BDDs selected from BDDs for the outputs. The memory overhead is
computed as the ratio of extranodes created during the Apply phase (E) to the total number of nodes in
theunique table ((/). In Table 10,weprovide the overhead for the"Multiway-And" operation, forvarious

Example # Nodes £/tffor"AND"
apex6 3312 0.0000

i9 12423 0.0000

minmaxS 4812 0.0009

si 196 5537 0.0047

S1238 5687 0.0046

S1494 2028 0.0142

s298 225 0.0103

s344 406 0.0051

s349 406 0.0034

s420 1039 0.0415

s641 2003 0.0025

tic 310 0.0372

xl 4305 0.0025

cbp.32.4 8234 0.0008

S1423 57254 0.0000

sbc 3008 0.0060

C1355 242732 0.0458

Table 9: Memory overhead involved with breadth first manipulation technique in performing "AND" opera
tion.

values ofpipe-depth. We observe thememory overhead incurred increases withincrease in pipedepth.

7 Conclusions and Future Work

Wehave presented newtechniques targeting thememory access problem for manipulatingverylarge BDDs.
Theseinclude1)anarchitecture independentcustomizedmemorymanagement andnew BDDdata structures,
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Example # Nodes

E/U ratio for various pipe-depths
1 2 3 4 5

i9

minmax5

s641

cbp.32.4
sl423

sbc

C1355

12423

4812

2003

8234

57254

3008

242732

0.0000

0.0006

0.0100

0.0008

0.0009

0.0043

0.0465

0.0004

0.0207

0.0058

0.0023

0.0043

0.0061

0.0531

0.0005

0.0356

0.0122

0.0040

0.0664

0.0106

0.1333

0.0011

0.0450

0.0177

0.0109

0.0733

0.0769

0.1743

0.0033

0.0295

0.0157

0.3465

0.0651

0.3566

Table 10: Memory overhead as a function of pipe-depth in "Multiway And"operation

2) performing multiple BDDoperations concurrently (superscalarity), and 3) performing a BDDoperation
evenwhenthe operand(s) are yet to be computed (pipelining). A completepackageconsistingof the whole
suiteof BDDoperations basedon thesetechniques has beenbuilt. We demonstrate the performance of our
package by 1)comparing withstate-of-the-art BDDpackage [10], and2) performing a comprehensive setof
experiments to substantiate the capability of our approach. We show thatour package provides competitive
performance on small examples and a performance ratioof more than 1000on largeexamples.

The amount of main memory and disk space on a single workstationlimits the size of BDDs that can
be manipulated, which seriously impedes the practical use of many interesting formal verification andlogic
synthesis algorithms. A network of workstations (NOW) is a computing resource that uses as its building
block,anentireworkstation. Usinga networkof workstations as a largecomputersystemto solvelargescale
problems is attractive, sinceit usestheexistinginfrastructure. Currently we areintheprocessofextending the
breadth-first manipulation technique to exploitthe memory and computing resources of a NOWefficiently.
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