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Abstract

The success of binary decision diagram (BDD) based algorithms for synthesis and/or verification
depend on the availability of a high performance package to manipulate very large BDDs. State-of-
the-art BDD packages, based on the conventional depth-first technique, limit the size of the BDDs due
to a disorderly memory access patterns that results in unacceptably high elapsed time when the BDD
size exceeds the main memory capacity. We present a high performance BDD package that enables
manipulation of very large BDDs by using an iterative breadth-first technique directed towards localizing
the memory accesses to exploit the memory system hierarchy. The new memory-oriented performance
features of this package are 1) an architecture independent customized memory management scheme, 2)
the ability to issue multiple independent BDD operations (superscalarity), and 3) the ability to perform
multiple BDD operations even when the operands of some BDD operations are the result of some other
operations yet to be completed (pipelining). A comprehensive set of BDD manipulation algorithms are
implemented using the above techniques. Unlike the breadth-first algorithms presented in the literature,
the new package is faster than the state-of-the-art BDD package by a factor of upto 1.5, even for the
BDD sizes that fit within the main memory. For BDD sizes that do not fit within the main memory, a
performance improvement of more than a factor of 1000 can be achieved.
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1 Introduction

The manipulation of very large binary decision diagrams! (BDDs) [1, 5] is the key to success for BDD-based
algorithms for simulation [6], synthesis [8, 15], and verification [3, 7, 11] of integrated circuits and systems.
Conventional BDD algorithms are based on a recursive formulation that leads to a depth-first traversal of the
directed acyclic graphs representing the operand BDDs. A typical recursive depth-first BDD algorithm is
shown in Figure 1. The depth-first traversal visits the nodes of the operand BDDs on a path-by-path basis.

df_op(op,F,G)
if (terminal case(op, F, G)) return result;
else if (computed table has entry(op, F, G)) return result;
else
let = be the top variable of F, G,
T = df.op (op, Fz, Gz);
E =df_op (op, Fzr, Gz);
if (T equals E) return T;
result = find or add in the unique table (z, T, E);
insert in the computed table ((op, F, G) , result);
endif
return result;

Figure 1: Depth-First BDD Manipulation Algorithm

The large in-degree of a typical BDD node makes it is impossible to assign contiguous memory locations for
the BDD nodes along a path. Therefore, the recursive depth-first traversal leads to an extremely disorderly
memory access pattem.

In a typical computer system, the memory is organized hierarchically with smaller, faster, and more
expensive (per byte) memory closer to the processor [9]. A simplified memory hierarchy consists of
processor registers, several levels of on- and off-chip caches (SRAM), main memory (DRAM), and a hard
disk. The important characteristics of each memory system component are given in Table 1. When the
BDD size exceeds the capacity of a given level in the memory system, the disorderly pattern of the depth-
first algorithms translates to a severe performance penalty. When the BDD size exceeds the cache size, a
slowdown by a factor of 2-10 may be observed due to a high cache miss rate. When the BDD size measured
in the number of memory pages exceeds the number of translation look-aside buffer (TLB) entries, a further
slowdown may be observed. However, the most dramatic degradation in performance is observed when
the BDD size exceeds the main memory size; the depth-first algorithms thrash the virtual memory leading
to unacceptably high elapsed time even though the amount of CPU time spent doing useful work is low.
Therefore, the depth-first algorithms place a severe limit on the size of the BDD that can be effectively
manipulated on a given computer system.

To a first approximation, the performance of BDD manipulation algorithms is dominated by the perfor-

!For BDD related terminology, please refer to [4].



Level Registers Cache Main Memory  Disk Storage
Typical Size < IKB < 512KB < 512MB > 1GB
Access time (in ns) 10 20 100 20,000,000
Bandwidth (in MB/sec) 800 200 133 4
Managed by Compiler = Hardware Operating System OS/User
Backed by Cache  Main memory Disk Tape

Table 1: Typical Levels in Memory Hierarchy

mance and capacity of each level in the memory system hierarchy. Hence, the design of high performance
BDD algorithms require a careful consideration of memory related issues. We present a new BDD pack-
age that enables manipulation of very large BDDs by directing the iterative breadth-first technique towards
localizing the memory accesses to exploit the memory system hierarchy. Our novel contributions are:

e data structures and memory management techniques to preserve the locality of reference,
e atechnique to perform multiple, independent BDD operations simultaneously (superscalarity), and

e atechnique to perform multiple BDD operations even when the operands of some BDD operations are
the result of some other BDD operations yet to be completed (pipelining).

Superscalarity and pipelining are targeted towards deriving higher performance from the memory system
hierarchy by exploiting the locality of reference in the memory access pattern across several BDD operations.
To our knowledge, this is the first complete BDD package incorporating a comprehensive set of BDD
algorithms designed around obtaining higher performance by targeting the memory system hierarchy. We
achieve high performance on large BDDs without sacrificing performance on small and medium sized BDDs.
In fact, our performance exceeds that of a state-of-the-art depth-first package even for many BDDs that fit
within the main memory.

The rest of the paper is organized as follows. In Section 2, we discuss the key features of the breadth-first
manipulation algorithm and describe the related work based on this algorithm. In Section 3, we present the
concepts of performing BDD operations in a superscalar and pipelined manner and discuss how it leads to
better memory access patterns. Section 4 briefly describes how superscalarity and pipelining are exploited
to obtain efficient algorithms for common BDD operations. In Section 5, we present some implementation
details, in which we discuss our BDD node data structure and customized memory management. Experimental
results demonstrating the effectiveness of our technique are presented in Section 6. Finally we conclude and
outline the direction of future work in Section 7.

2 Breadth-First Technique for BDD Manipulation

Originally proposed by Ochi et al. [12, 13], the iterative breadth-first technique for BDD manipulation
attempts to fix the disorderly memory access behavior of the recursive depth-first technique. Unlike the
depth-first algorithm that traverses the operand BDDs on a path-by-path basis, the iterative breadth-first



algorithm traverses the operand BDDs on a level-by-level basis, where each level comresponds to the index
of a BDD variable. The BDD nodes corresponding to a level are allocated from the same memory segment
so that temporal locality in accessing the BDD nodes for a specific level translates into spatial locality.

The basic iterative breadth-first technique consists of two phases: a top-down (from root node to leaves)
APPLY phase followed by a bottom-up REDUCE phase. The algorithm for a two operand boolean operation
is shown in Figures 2, 3, and 4. During the APPLY phase, the outstanding REQUESTS are processed on

bf_op(op, F, G)
if terminal case (op, F', G) return result;
min_index = minimum variable index of (F, G)
create a REQUEST (F, G) and insert in REQUEST QUBUE[min.index];
/* Top down APPLY phase */
for (index = min_index; index < num_vars; index++) bf_apply(op, index);
/* Bottom up REDUCE phase */
for (index = num_vars; index > min_index; index- -) bf_reduce(index);
return REQUEST or the node to which it is forwarded;

Figure 2: Breadth-First BDD manipulation algorithm

bf_apply(op, index)
z is variable with index “index™;
/* process each request queue */
while (REQUEST QUEUE[index] not empty)
REQUEST (F, G) = unprocessed request from REQUEST QUEUE[index];
/* process REQUEST by determining its THEN and ELSE */
if (NOT terminal case ((op, Fz, Gz), result))
next_index = minimum variable index of (F, G;)
result = find or add (F, G;) in REQUEST QUEUE[next.index]
REQUEST — THEN = result;
if(NOT terminal case ((op, Fzs, Gz), result))
next.index = minimum variable index of (F,+, Gz/)
result = find or add (F., G) in REQUEST QUEUE[next_index]
REQUEST — ELSE = result;

Figure 3: Breadth-First BDD manipulation algorithm - APPLY

a level-by-level basis. The processing of a REQUEST R = (op, F,, G), in general, results in issuing two
new REQUESTs which represent the THEN and the ELSE cofactors of the result (F op G). Since certain
isomorphism checks cannot be performed, the result BDD obtained at the end of APPLY phase has redundant
nodes. The REDUCE phase traverses the result BDD from the leaves to the root on a level-by-level basis
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bf_reduce(index)
z is variable with index “index”;
[* process each request queue */
while (REQUEST QUEUE[index] not empty)
/* process each request */
REQUEST (F, G) = unprocessed REQUEST from REQUEST QUEUE[index];
if (REQUEST—THEN is forwarded to ) REQUEST— THEN = T';
if (REQUEST—ELSE is forwarded to F) REQUEST— ELSE = E;
if (REQUEST—THEN equals REQUEST—ELSE) forward REQUEST to REQUEST — THEN ;
else if (BDD node with (REQUEST— THEN , REQUEST — ELSE ) found in UNIQUE TABLE[index])
forward REQUEST to that BDD node;
else
insert REQUEST to the UNIQUE TABLE[index] with key (REQUEST THEN , REQUEST ELSE )

Figure 4: Breadth-First BDD manipulation algorithm - REDUCE

eliminating the redundant nodes.

The APPLY phase of the algorithm needs to determine the indices of cofactor nodes in order to determine
which bucket of REQUEST QUEUE the new REQUESTs should be placed (see underlined in Figure 3) and indices
of operand BDDs constituting the REQUEST. In order to preserve the locality of references, it is important
to determine the variable index of a BDD node without actually fetching it from memory. In particular, the
routine bf-apply called with index i should access nodes only at index ¢. Ochi et al. [13] use Quasi-Reduced
BDDs (QRBDD:) to solve this problem. Essentially, pad nodes are introduced along each path of the BDD
so that consecutive nodes along a path differ in their indices by exactly one. This solution also localizes
memory accesses to check for duplicate requests during the APPLY phase and redundant nodes during the
REDUCE phase. However, it is observed that the QRBDD is several times larger than the corresponding
BDD [2], which makes this approach impractical for manipulating very large BDDs. Ashar er al. [2] use a
BLOCK-INDEX table to determine the variable index from a BDD pointer by performing an associative lookup.
Since this solution employs BDDs (as opposed to QRBDDSs), an attempt is made to preserve the locality of
reference during the check for duplicate requests and check for redundant nodes by sorted accesses to nodes
based on their variable indices. The limitation of this approach is that it has a significant overhead (about
a factor of 2.65) as compared to a depth-first based algorithm for manipulating BDDs which fit within the
main memory [2].

Our approach to handling variable index determination problem differs from the works of Ashar et al.
and Ochi et al. in the following aspects:

1. A new BDD node data structure is introduced to determine the variable index while preserving the
locality of accesses. We represent a BDD using {variable index, BDD node pointer} tuple. Therefore
a BDD node contains pointers to THEN and ELSE cofactors as well as their variable indices. Hence we
do not need to fetch the cofactors to determine their indices. The BDD node data structure and related
implementation details are discussed in Section 5.1.



2. Optimized processing of REQUEST QUEUES for each level by eliminating the sorted processing of
REQUESTs during APPLY and REDUCE phases as proposed by Ashar et al. Empirically, we have
observed that this change does not affect the performance of our algorithm for manipulating very large
BDDs.

3. Use of a customized memory manager to allocate BDD nodes which are quad-word aligned. The
quad-word alignment improves the cache performance by mapping a BDD node to a single cache line.

Since we eliminate the overheads associated with the previous breadth-first approaches, the new algorithms
are faster than corresponding recursive algorithms on many examples for which the BDDs fit in the main
memory.

3 Superscalarity and Pipelining

In this section, we propose two new concepts — superscalarity and pipelining — to optimize the memory
performance of the iterative breadth-first BDD algorithms by exploiting locality of reference that exists
among multiple BDD operations. The concepts of superscalarity and pipelining have their roots in the field
of computer architecture in which superscalarity refers to the ability to issue multiple,independent instructions
and pipelining refers to the ability to issue a new instruction even before completion of previously issued
instructions. We shall see how these concepts can be applied in the context of the breadth-first BDD
algorithms to exploit the memory system hierarchy.

To improve the performance of the basic breadth-first algorithm, we take a closerlook at its memory access
pattern assuming that the variable index can be determined without destroying the locality of references.
During the APPLY phase for a specific index, the following types of memory accesses take place:

1. Accesses to UNIQUE TABLE BDD nodes for that index using BDD pointers to obtain their THEN and
ELSE cofactors.

2. Accesses to each of the REQUEST for that index.

3. Associative lookups in appropriate REQUEST QUEUEs to check for duplicate REQUESTS.
During the REDUCE phase for a specific level, the following types of memory accesses take place:

1. Accesses to THEN and ELSE BDD nodes to check for redundancy.

2. Associative lookups in the UNIQUE TABLE for that index to determine if another node with the same
attributes already exists.

For a very large BDD that exceeds the main memory capacity, the number of page faults is dominated
by the memory accesses to a large UNIQUE TABLE. The reason for this is that the UNIQUE TABLE pages are
accessed on a level-by-level basis during the APPLY and the REDUCE phase and the UNIQUE TABLE nodes
within each level are accessed randomly. Superscalarity and pipelining attempt to amortize the cost of page
faults for accessing UNIQUE TABLE pages for a specific level among several BDD operations.



3.1 Superscalarity

The concept of superscalarity in the context of breadth-first BDD algorithms refers to the ability to issue
multiple, independent BDD operations simuitaneously. Two BDD operations are said to be independent if
their operands are reduced ordered BDDs, i.e. the nodes for the operand BDDs are in the UNIQUE TABLE.
Performing multiple, independent BDD operations concurrently during the same APPLY and REDUCE phase
amortizes the cost of page faults for accessing the UNIQUE TABLE entries. By issuing several independent
operations simultaneously, the number of REQUEST nodes in the REQUEST QUEUE increases. However, the
number of page faults for accessing UNIQUE TABLE nodes for a specific index does not increase proportion-
ately; it increases at a lesser rate. Empirically, we observe a significant performance enhancement in the
BDD algorithms by exploiting superscalarity.

Another major advantage of superscalarity is complete inter-operation caching of intermediate BDD
results. A breadth-first algorithm for a single BDD operation provides complete caching of intermediate
results during the operation by virtue of the REQUEST QUEUE. Howeyver, it is not possible to have inter-
operation caching in the breadth-first algorithm without expending additional memory resources to store the
cached results and additional computing resource to manage the complex caching scheme since the contents
of a REQUEST node are destroyed after it is processed in the APPLY phase and correct result is unavailable until
the REQUEST is processed in the REDUCE phase. Superscalarity provides complete inter-operation caching
for the set of independent BDD operations that are issued simultaneously, thereby enhancing the performance
of the breadth-first algorithm even further.

3.2 Pipelining

The concept of pipelining in the context of breadth-first BDD algorithms refers to the ability to issue multiple,
dependent BDD operations simultaneously. A BDD operation op; is said to be dependent on another BDD
operation op; if the result BDD of op; is an operand of op;. The pipelining algorithm issues several dependent
operations simultaneously using unprocessed requests to represent operands for the dependent operations.
The result BDDs for these requests are obtained by a single APPLY and REDUCE phase that amortizes the cost
of page faults for accessing the UNIQUE TABLE entries.

We make the following three observations that allow us to process a set of dependent requests in a
single APPLY and REDUCE phase. The first observation is related to the nature of the breadth-first iterative
algorithm. There is a one-to-one correspondence between requests processed and the nodes in the unreduced
BDD created during the APPLY phase. In fact, a processed request with THEN and ELSE pointers pointing to
newly issued requests corresponds to the BDD node in the unreduced BDD obtained at the end of the APPLY
phase. The second observation is related to manipulating unreduced BDDs, If b;,¢ = 1, ..., n are unreduced
BDDs, then result BDD b obtained by performing a boolean operation with operands b; is an unreduced
BDD. The important point here is that operand BDDs for a boolean operation can be unreduced. The third
observation is related to processing of requests in the APPLY phase of the breadth-first algorithm. In general,
while processing a REQUEST, two new requests are issued. Each of the new request corresponds to cofactors
of the operands that constitute the request. This implies that we need THEN and ELSE pointers only for the
operand with the minimum index. From these observations, we state the following theorem without proof.

Theorem 3.1 Correctness of pipelining: Given REQUEST R; = (op1, F1, G1) and REQUEST R; = (op,,
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E, G2) and REQUEST R = (op, Ry, Rz), the breadth-first algorithm with modified APPLY and REDUCE
phases, which process the REQUESTS in level-by-level order while maintaining the partial order implied by
the dependence of REQUESTS for that index, correctly computes the reduced BDDs corresponding to the
REQUESTS R;, R3, and R.

The concept of pipelining improves the performance of the breadth-first algorithm by amortizing the cost
of page faults across dependent BDD operations. However, pipelining results in operations on unreduced
BDDs. Hence, there is an increase in the size of the working memory required and corresponding increase
in the amount of computation. If the increase in the working memory is large, the number of page faults will
increase.

Pipelining will improve the amount of caching, since the intermediate BDDs in the dependent operation
can use the cached result of all operations on which the current REQUEST depends directly or indirectly.
However, it introduces the penalty of performing associative lookups in several REQUEST QUEUEs, which
offsets the potential gain due to improved caching.

3.3 Application

Superscalarity and pipelining find their applications whenever a set of dependent and/or independent BDD
operations needs to be performed. In this section we describe two such applications.

Creating Output Bdds of a Circuit: In many logic synthesis and verification applications we need to
compute the BDDs for the outputs of a circuit. Given a network representing a circuit, we try to compute
the function of the outputs in terms of the primary inputs. This requires computing the function of nodes of
network starting from the primary inputs to primary outputs. Pipelining and superscalarity can be employed
to compute the output BDDs in several ways. Our algorithm is as follows:

1. Decompose the given network into two input NAND nodes.

2. Levelize the nodes of the new network.

3. Create the BDD:s for nodes belonging to a particular level concurrently (using superscalarity), or
4. Create the BDDs for nodes belonging to two or more levels using pipelining.

The motivation behind decomposing the network into NAND nodes is to obtain as much superscalarity as
possible. In Section 6 we provide experimental results indicating the effect of superscalarity and pipelining
on creating the output BDDs.

Multiway Operation: Applications of multiway operations arise when we want to perform some BDD
operation on a set of functions. For example, suppose {f; : B® — B,i = 1,-.-,m} represent a set
of m boolean functions over n variables. The BDDs for these functions are denoted as B(f;). Further
suppose we want to compute the BDD B(f) for function f given as f = IIiZ]*f;. We could compute
this product by iteratively taking the product, at each step creating an intermediate result for the function
gk = gk-1 A fi, where g1 = f. In this case we make (m — 1) passes of the APPLY and REDUCE phases
each involving access to UNIQUE TABLEs and REQUEST QUEUEs. Using superscalarity and pipelining we can
improve the performance significantly. Our algorithm is given below:
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1. From the given set of arguments we make a binary tree where leaves represent the BDD arguments
and the intermediate nodes represent the intermediate product BDDs.

2. Create the BDD:s for all the nodes belonging to a particular level using superscalarity.

3. Using pipelining and superscalarity, we can process all the nodes belonging to two or more levels
simultaneously.

In the section 6.4.2 we present the performance comparison of computing MULTIWAY AND iteratively over
computing it employing superscalarity and pipelining.

4 Optimized BDD Algorithms

We have incorporated iterative breadth-first technique, superscalarity, and pipelining into a comprehensive
set of high performance BDD algorithms for boolean operations such as AND, OR, XOR, NAND, NOR, XNOR,
ITE, COFACTOR, RESTRICTION, COMPOSITION, SUBSTITUTION, EXISTENTIAL QUANTIFICATION, UNIVERSAL
QUANTIFICATION, RELATIONAL PRODUCT, and VARIABLE SWAPPING. In the following sections we describe
a few of these algorithms. Each of these new algorithms raises specific issues which must be addressed to
obtain a high performance BDD package. In Section 6.5, we demonstrate the performance of our algorithms.

4.1 Substitute

In this operation a set of variables in the argument BDD is substituted by a set of functions. The conventional
depth-first algorithm for SUBSTITUTION is given in Figure 5. The need to perform an ITE operation on the

df_substitute( F)
if (terminal case(F)) return result;
if (computed table has entry(F)) return result;
let z be the top variable of F;
if (= is to be substituted) g = function substituting
elseg==z
T = df_substitute( Fy);
E =df_substitute( F;/);
return df_ite(g, T, E);

Figure 5: Depth-First Algorithm for Substitution

result of the cofactors makes the SUBSTITUTION operation computationally more complex than other BDD
operations. In the breadth-first implementation of the SUBSTITUTION algorithm, we employ superscalarity to
boost the performance of the operation. In the APPLY phase of the operation, we simply process the cofactors.
In the REDUCE phase however, we collect the ITE REQUESTs for all the nodes belonging to an index and
process them in a superscalar manner. In Figure 6, we outline the algorithm for the REDUCE phase of the
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bf_substitute_reduce(index)
z is variable with index “index™;
if (z is to be substituted) g = function substituting =
elseg==z
/* process each request queue */
while (request_queue[index] not empty)
/* process each request */
REQUEST (F, G) = unprocessed request from REQUEST QUEUE[index];
if(REQUEST THEN is forwarded to T) REQUEST — THEN =T,
if(REQUEST ELSE is forwarded to E) REQUEST — ELSE = E;
if(REQUEST THEN equals REQUEST ELSE ) forward REQUEST to REQUEST THEN ;
else
create an ITE REQUEST (g, T', E)
forward REQUEST to the ITE REQUEST ;
Perform superscalar ITE
Update the forwarding information of REQUESTS

Figure 6. Breadth-First Substitute Operation Algorithm - Reduce

SUBSTITUTION operation. Employing superscalarity on the ITE operations significantly improves the caching
and the page fault behavior.

4.2 Existential Quantification

EXISTENTIAL QUANTIFICATION of a function f with respect to a variable z is given by 3.f = fzr + fz.
* EXISTENTIAL QUANTIFICATION of a function f with respect to a set of variables X = {z1, 23, ...25}, is given
as, 3y f = 37,3z, : - - (3, f)). The conventional depth-first algorithm for EXISTENTIAL QUANTIFICATION
is given in Figure 7. One salient feature of the algorithm for QUANTIFICATION is that only one cofactor
needs to be processed in some cases. As seen in Figure 7, if the top variable of the function is quantified,
then we need not process the negative cofactor if the result of the positive cofactor is the constant 1 (as
underlined in the figure). This feature is distinct from most of the other BDD operation algorithms. However,
this optimization requires traversing the BDD on a path-by-path basis. A straight forward breadth-first
implementation that processes both the cofactors in the APPLY phase will incur the overhead of unnecessary
computations. Hence, it is imperative to adopt a strategy which benefits not only from the regular memory
access due to the level-by-level manipulation of the BDDs, but also minimizes the overhead of unnecessary
computations.

We propose a new mixed breadth- and depth-first approach to overcome this problem. In this approach,
we process the REQUESTs differently depending upon whether the corresponding variable index is quantified
or not. For REQUESTs belonging to quantified variables, we process both the cofactors. However, for
REQUESTSs belonging to remaining variables, we do a path-by-path traversal, i.c., we process just one of the
cofactors. In the REDUCE phase, we process the REQUESTSs belonging to the indices which are not quantified
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df exist(F)
if (terminal case(F")) retumn result;
if (computed table has entry(F)) return result;
let z be the top variable of F';
T = df exist(Fy;);
if (z is to be quantified and T'= 1) retumn 1;
E = df_exist(F.+);
if (z is to be quantified) return df_or(T', E);
else result = find or add in the unique table (z, T', E);
return result;

Figure 7. Depth-First Algorithm for Existential Quantification

in the same manner as given in bf_reduce (Figure 4). However for variable indices which are to be quantified,
we process the REQUESTs differently. If the result of the positive cofactor is the tautology then that node
is forwarded to the constant One. Otherwise, we proceed to find the result of the other cofactor and take
the “OR” of the results of the two cofactors. We employ superscalarity in finding the “OR” of the cofactor
results for nodes belonging to a particular level.

RELATIONAL PRODUCT of functions f and g with respect to a set of variables X’ is the QUANTIFICATION
of product of f and g with respect to X'. Due to this similarity, RELATIONAL PRODUCT algorithm works along
the same lines.

5 Implementation Details
5.1 Data Structure

The important issues in designing the BDD node data structure are the following:

Compact Representation The size of a BDD nodes should be as small as possible, because most of the
memory is used by BDD nodes. Further we need to efficiently use the memory so as to fit as many
nodes as possible in a given level of the memory system hierarchy.

Variable Index Determination As mentioned in the section 2, the variable index determination is crucial
to the regular memory accesses. In particular, we should avoid fetching the BDD from memory to
determine its index.

We propose the BDD data structure given in Figure 8. We represent a BDD using {variable index, BDD
node pointer} tuple. Unlike the conventional BDD data structure that stores its variable index in the BDD
node, the new BDD data structure stores the variable indices of its THEN and ELSE BDD nodes. The new
BDD node data structure is very compact: on a 32-bit architecture it only requires 16 bytes, which is the
same as the memory required to represent the conventional BDD node structure. A customized memory
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allocator is used to align the BDD nodes to quad-word boundaries so that a total of 12 bits (last four bits of
THEN, ELSE, and NEXT pointers) can be used to tag important data such as complement flags, marking flags,
and the reference count. The tag bits are assigned so as to minimize the amount of computational overheads.

struct BddNode {
struct Bdd { struct BddNode *next; /* 4 Bytes */
int bddIndex; /* 2 Bytes */|| struct Bdd thenBdd; /* 6 Bytes */
struct BddNode *bddNode; /* 4 Bytes */{| struct Bdd elseBdd; /* 6 Bytes */
} }

Figure 8: BDD and BDD Node Data Structure

5.2 Memory Management

We use a customized memory management to allocate and free BDD nodes in order to ensure locality of
reference. We associate a node manager with each variable index. A BDD node is allocated by the node
manager associated with the index of the node. The node manager maintains a free list of BDD nodes, that
belong to the same index. Memory blocks are allocated to a node manager in such a way that all the BDD
nodes in the free list are aligned on a quad-word boundary. In addition to providing 12 bits as explained
above, the quad-word alignment helps improve the cache performance as it maps a BDD node to a single
cache line.

5.3 Miscellaneous Details

Overloading of REQUEST data structure: A BDD node is obtained from a REQUEST node that is not
redundant. To overload the use of the REQUEST data structure with the BDD node data structure [2], the
REQUEST data structure is limited to 16 bytes. Before the APPLY phase, each REQUEST represents operand
BDDs, each of which requires 6 bytes. Therefore, we allow only two operand operations. Three operand
operations such as ITE(f, g, h) are simulated by using indirect addressing and two request nodes. Hashing
function: Since hash tables are used extensively in the breadth-first BDD manipulation, it is important to
optimize their performance. The analysis of source code revealed that about 15% of the total CPU time is
spent in computing the unsigned remainder when using a prime number hashing function. A power of two
hashing function reduces this time drastically without degrading the hash table access performance.
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6 Experimental Results

The following set of experiments are carried out to demonstrate the performance of our BDD package:

1. Creating output BDDs of circuits: For the purposes of comparing the performance of our package
with a depth-first BDD package we use Long’s package [10]. We compare the time taken to create the
BDD:s for the outputs of circuits. The number of nodes in the BDDs range from a few thousands to
tens of millions.

2. Demonstrating performance improvement due to superscalarity.
3. Demonstrating performance improvement due to pipelining.

4. Performance comparison for various BDD operations: We compare the performance of various BDD
operations in our package with those in Long’s package. We show that even for small and medium
sized examples, our algorithms have competitive performance.

6.1 Experimental Setup

We integrated our package with the synthesis tool SIS [14]. In addition to using standard ISCAS and MCNC
benchmark examples for the set of experiments, we use a series of sub-networks of the MCNC benchmark
C6288 in order to systematically analyze the performance of our algorithms as BDD size increases. These
artificially created examples have the property that the number of BDD nodes needed to represent the BDDs
corresponding to the outputs are roughly multiples of one million. This enabled us to illustrate the gradual
change in various performance metrics with the change in example size. These examples are denoted as
“C6288_iM.blif”’, implying that the total number of BDD nodes in the manager after computing the BDDs
for the outputs of C6288_iM.blif is i millions.

For each of the benchmark examples, we create the BDDs for the outputs of the circuit. We use these
output BDDs as argument BDDs in our experiments. For instance, to compare the performance of the
AND operation, we iteratively select random pairs from the output BDDs and compute the AND of the pair.
Similarly, to compare the performance of QUANTIFICATION operation, we select one of the output BDDs
randomly and also randomly select a set of variables to be quantified. Functions and the variables selected
are the same for both the packages.

We use “dfs-ordering” in SIS to order the variables. The number of BDD nodes needed to represent a
particular circuit may be significantly different from those reported in literature (e.g. [2]) due to a different
variable ordering. However, this issue is orthogonal to demonstrating the performance of our package.

All our experiments were performed on a DEC5400 with 128KB processor cache, 64 MB main memory
and 1GB of disk storage.

6.2 Creating Output Bdds For Circuits
6.2.1 Small and medium size examples

From Table 2, we observe that with respect to Long’s BDD package, for most of the examples our package
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CPU Time
Example | # Nodes A| B|AB

C1355 139998 | 15.30 | 13.57 | 1.13
C1908 56842 | 5.57 | 4.27 | 130

C432 193671 | 21.66 | 17.29 | 1.25
C499 109685 | 12.78 | 10.75 | 1.19
C5315 111798 | 10.39 | 11.13 | 0.93
C880 38721 | 338 | 3.02 112
§1423 56178 | 494 | 399|124

s15850 188035 | 19.36 | 33.09 | 0.59
§35932 25557 | 3.13|27.56 | 0.11
s38584 93055 | 10.10 | 30.99 | 0.33

Table 2: Performance comparison for creating output BDDs with Long’s BDD package.

A: Long’s BDD package
B: Our package.

has competitive performance and on some examples we achieve a performance improvement upto a factor
of 1.2. However, for examples s15850, 35932, and s35854 our package performs significantly worse than
Long’s package. Upon analysis we found that these examples share one property which is that all of them
have a large number of primary inputs. This correspondingly results in large number of variable levels. Also
since the relative BDD sizes of these examples are small, the penalty of traversing the REQUEST QUEUE on
level by level basis becomes dominant and results in significant computation time.

6.2.2 Large size examples

In Table 3 we present the performance comparison for creating output BDDs for large examples. We observe
that when the number of BDD nodes becomes too large to fit in the main memory, the number of page faults
and the elapsed time increase drastically for Long’s package. In Figure 9, we show the number of page faults
and the elapsed time as a function of example size. We observe that for Long’s package, an increase in the
BDD size beyond the main memory size results in a sharp increase in the number of page faults and hence
excessive elapsed time. This is in contrast to the page fault behavior of our package which increases linearly
with an increase in the example size.

6.2.3 Very large size examples

Table 4 gives the performance of our package on building very large BDDs for some benchmark examples.
We observe that we have been able to build BDDs with more than 23 million nodes in less than nine hours.
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CPU Time | Elapsed Time # Page Faults

Example #Nodes| A | B A [ B A | B

C6288_1M | 1,001,855 | 112 | 98 127 110 0 0
C62882M | 2,066,878 | 273 | 215 403 306 0 0
C62883M | 3,123,327 | 491 | 347 | 21281 | 1218 | 502059 | 17800
C6288.4M | 4,273,510 | 820 | 490 | 106110 | 2433 | 2661738 | 42509
C62885M | 5,337,005 | to. | 631 - | 4140 -1 80621
C6288.6M | 6,381,496 | —| 804 - | 6295 - | 126977
C6288.7M | 7,489,064 | —| 981 - | 8454 - | 168794
C6288 9M | 9,193,222 - | 1147 - | 10864 - | 213976

Table 3: Performance comparison for creating output BDDs: Long’s BDD package (A) vs. our package (B)

t.o:Process killed after 21.5 hours of elapsed time.

Effect of Example Size on Elapsed Time

Effect of Example Size on Number of Page Faults
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| Example |  #Nodes | Elapsed Time | # Page Faults |

C2670 1.04 x 10° | 4 hrs 4 mins 58 secs 357005
C3540 2.76 x 105 25 mins 26603
C6288_12M | 12.80 x 10° | 6 hrs 39 mins 54 secs 719697
s38417 23.15 x 10° | 8 hrs 49 mins 26 secs 868442

Table 4: Performance metrics for creating output BDDs for some very large examples

6.3 Performance Enhancement Due to Superscalarity

We demonstrate ﬂie power of superscalarity on three different applications: creating output BDDs, ARRAY
AND, and QUANTIFICATION.

6.3.1 Creating output BDDs

We described in the section 3.3 how superscalarity can be exploited for creating output BDDs. In Table 5, we

CPU Elapsed # Page Faults
Example |w/0SS| wSS |w/oSS | wSS | woSS | wSS

C6288.4M | 485.82 | 436.94 | 2214 | 2452 | 53261 | 63272
C6288.5M | 630.37 | 602.50 | 5333 | 4648 | 172205 | 137004
C6288.6M | 81591 | 72499 | 18354 | 7840 | 712868 | 252323
C6288_7TM | 956.89 | 831.30 | 24747 | 10267 | 970192 | 328086

Table 5: Performance improvement using superscalarity for creating output BDDs

show the performance improvement achieved by employing superscalarity. We observe that in all the cases
employing superscalarity results in better performance. Also in all the cases except C6288_4M, we observe
that the number of page faults decreases with the use of superscalarity and we achieve a better performance
by a factor of more than 2.

6.3.2 ARRAY AND and QUANTIFICATION

In Table 6, we present the results on how superscalarity affects the performance of ARRAY AND and
QUANTIFICATION. In ARRAY AND we are given an array of operand BDD pairs and we need to compute
the AND of each of the operand pair. These operands were randomly chosen from the set of output BDDs
of the circuit. For the quantification operation, we perform OR operations one at a time during its reduce
phase (see Section 4.2) to illustrate the effect of superscalarity. For small circuits, superscalarity improves
the performance due to inter-operation caching. For large circuits, superscalarity improves the performance
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BDD Operation
Array And Quantify

Example CPU Elapsed # Page Faults CPU Elapsed

w | X w | X w | X Y | Z |[Y]| Z]
C1355 134.03 | 11941 137 | 123 1 013401230 [ 13| 12]
C6288_1M | 411.35 | 403.90 847§ 740 1 O 502 427 S| S
C62882M | 290.55 | 283.41 595 | 581 0 0 18.17 |16.16 | 18 | 17
s1423 35.39 | 18.02 37 18 0 020.63|19.13 |31 | 30
C6288 3M | 682.57 | 655.21 | 21005 | 7178 | 406026 | 109283 | 12.60 | 11.59 | 13 | 12
minmax10 | 810.32 | 679.88 | 19304 | 1619 | 326604 9193 | 66.0| 558 |91 | 81

Table 6: Performance improvement using superscalarity for ARRAY AND and QUANTIFICATION BDD opera-
tions.

W: ARRAY AND performed iteratively.

X: ARRAY AND performed in superscalar manner.

Y: In REDUCE phase of QUANTIFICATION, OR operations performed one be one.

Z: In REDUCE phase of QUANTIFICATION, OR operations performed in superscalar manner.

due to increased locality to the memory access, resulting in less page faults. We observe from Table 6 that
for examples which can fit in the main memory, superscalarity helps with improved CPU time. For large
examples we observe a performance improvement of upto a factor of 10.

6.4 Performance Enhancement Due to Pipelining

We demonstrate the effect of pipelining on two different applications.

6.4.1 Creating output BDDs

We demonstrate the effect of pipelining on the performance of creating BDD for outputs. We have described
in Section 3, how pipelining technique can be exploited. Figure 10, depicts the effect of pipedepth on the
elapsed time and the number of page faults for a series of C6288 sub-examples. The pipedepth refers to
number of levels of dependencies. As pipedepth is increased, we see a decrease in the number of page faults
(hence the decrease in elapsed time). However, the memory overhead increases with increase in pipedepth
since we are working with unreduced BDDs. Hence, after a certain value of pipedepth, the decrease in page
faults due to pipelining is offset by the increase in page faults due to memory overhead. We observe that a
pipedepth of four is optimum in most cases.
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Effect of Pipedepth on Elapsed Time Effect of Pipedepth on Number of Page Faults
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Figure 10: Variation of Elapse Time and Number of Page Faults with Pipedepth in Creating Output BDDs

6.4.2 MULTIWAY AND

As described in Section 3.3, MULTIWAY AND operation computes the conjunction of an array of BDDs. We
compute the result using 1) the approach described in Section 3.3 and 2) the iterative approach (computing
the product by successive AND operations). For a MULTIWAY AND operation with n operands, the depth of
the pipeline is [log, »]. In Table 7, we present results for various values of =, and hence various pipeline
depths.

We observe from Table 7 that for “s1423", the pipelining technique does not improve the performance.
This is due to the fact that output BDDs for “s1423” fit in the main memory and hence pipelining cannot
improve the memory access. However, for “C6288_3M” and “C6288_4M”, we observe performance im-
provement of up to a factor of two. This is attributed to the reduction in the number of page faults when
pipelining is employed.

6.5 Performance Comparison For Various BDD Operations

One of our objectives was to provide a comprehensive set of algorithms for all BDD operations. In the
following subsections we compare the performance of some of our algorithms with those of Long’s package.
We provide the comparison with respect to small and medium sized examples only, since for large examples
Long’s package will have the obvious disadvantage of excessive page faults.
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CPU Time Elapsed Time # Page Faults

Example | #Nodes | n | [logan] | Iterative | Pipelined | Iterative | Pipelined | Iterative | Pipelined
2 1 0.53 0.51 0 0 0 1

$1423 57524 | 4 2 4.17 4,03 4 4 0 0
8 3 6.00 599 7 6 0 0

2 1 0.57 0.58 23 26 603 762

C62883M | 3 x 105 | 4 2| 100.88 97.10 3449 802 83967 12796
8 3 112.68 169.36 8578 2304 | 212484 45537

2 1 0.80 0.63 97 66 2932 2213

C6288.4M | 4 x 10° | 4 2 107.80 102.99 4602 2307 | 113325 53077
: 8 3 121.76 183.34 12808 5540 | 326127 130237

Table 7: Effect of pipelining on the performance of Multiway And

6.5.1 Performance comparison for small size examples

All examples considered in this category have less than 7000 BDD nodes. This implies that with a processor
cache size of 128KB, it is possible that all the nodes can reside in the cache if node addresses are properly
aligned. Since our node data structure is quad word aligned, the node address does not overlap across cache
lines. Hence we can expect a significant cache hit rate during BDD manipulations. Long’s package, however,
does not provide the word alignment and hence it is likely that the BDD node addresses could overlap across
cache lines. We ran experiments to compare the performances of various BDD operations. We observed a
performance ratio of 1.92 across all small sized examples and four BDD operations.

6.5.2 Performance comparison for medium size examples

In Table 8 we provide the performance comparison between packages for medium size examples.

Since the number of nodes are of the order of tens of thousands to hundreds of thousands, the cache
effect seen for the small size examples is not dominant in this case. However, in most of the cases, we
observe a performance improvement over Long’s package. Overall performance ratio over all medium
sized examples and across four BDD operations given in the tables, is about 1.5. The most significant is
the relative performance on SUBSTITUTE. We observe that on many examples, Long’s package could not
finish the SUBSTITUTION in 10,000 CPU seconds whereas our package took just about 1000 CPU seconds to
complete. This substantiates the significant performance enhancement using superscalarity as mentioned in
Section 4.1.

We notice that for QUANTIFICATION operation our package consistently performs worse than Long’s
package by up to a factor of 0.6. Currently we are investigating the possible cause of this performance
bottleneck. It should be mentioned however that for large examples (ones which do not fit the main memory),

1SwapVars(f, z, y) is a function obtained from the function f by replacing variable z by y and vice-versa.
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BDD Operation
bdd_and bdd_substitute

Example — CPU Elapsed CPU Elapsed

A | B |[AB|A|B |AB A | B | AB A | B |AB
C1355 1668 | 1445 | 1.15 | 17} 15| 1.13 t.o. | 1005.32 - - | 14710 -
C1908 780 705|111 | 8 71114 t.o. 62.65 - - 67 -
C432 1823 | 17.77 | 1.03 | 19| 18 | 1.06 | 3144.85 | 258.89 | 12.15 | 4746 476 | 997
C499 155311464 | 1.06 {16 | 15| 1.07 to. | 1002.21 - - | 14749 -
C5315 1201 | 652|184 | 16 71229 091 0.16 | 5.69 1 1 1
C880 903 | 729|124 |10 81125 1.05 1.18 | 0.89 1 1.0 1
51423 225] 248|091 | 2 310.67 | 292.68 88.73 33| 350 97 ] 3.6
Example bdd_exist bdd_swapvars |
C1355 4599 1 63.05|0.72 {47 | 65| 0.72 3042 2378 | 1.28 31 25| 1.24
C1908 13.62 1 2130 | 064 | 14 | 22 | 0.64 9.34 822 | 1.14 9 8112
C432 59.08 [ 99.80 | 0.59 | 60 | 102 | 0.59 33.94 29.67 | 1.14 34 31| 1.10
C499 40.70 | 59.28 | 0.69 | 41 | 60 | 0.68 29.15 2381 | 122 30 24 | 1.25
C5315 3297 13565092 |34 | 37092 4.12 352 | 117 4 4 1
C880 1728 12198 | 079 | 18 | 22 | 0.82 10.65 862 | 124 11 91122
s1423 16.57 | 28.31 1 059 | 17| 29 | 0.59 1.63 234 070 2 310.67

Table 8: Performance comparison on medium size examples for “And”, “Substitute”, “Existential Quantifi-

cation , and “SwapVars” operations: Long’s BDD package (A) vs. our package (B).

t.0.: Time out after 10,000 CPU seconds.
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all our operations consistently perform better than Long’s package.

6.6 Memory Overhead in Breadth First Approach

As noted in Section 1, in the breadth first technique the isomorphism checks cannot be performed in the
APPLY phase. As a result, some temporary BDD nodes are created which are freed during the REDUCE phase.
This results in memory overhead inherent in the BF technique. Furthermore, as discussed in Section 3,
isomorphism check reduces even further. In Table 9, we give the memory overhead involved in computing
“AND” operation on two random BDDs selected from BDDs for the outputs. The memory overhead is
computed as the ratio of extra nodes created during the APPLY phase (E) to the total number of nodes in
the unique table (U). In Table 10, we provide the overhead for the “Multiway-And” operation, for various

Example | # Nodes | E/U for “AND”
apex6 3312 0.0000
i9 12423 0.0000
minmax5 | 4812 0.0009
51196 5537 0.0047
s1238 5687 0.0046
$1494 2028 0.0142
s298 225 0.0103
s344 406 0.0051
$349 406 0.0034
s420 1039 0.0415
s641 2003 0.0025
tlc 310 0.0372
x1 4305 0.0025
cbp.324 | 8234 0.0008
$1423 57254 0.06000
sbc 3008 0.0060
C1355 | 242732 0.0458

Table 9: Memory overhead involved with breadth first manipulation technique in performing “AND” opera-
tion.

values of pipe-depth. We observe the memory overhead incurred increases with increase in pipedepth.

7 Conclusions and Future Work

We have presented new techniques targeting the memory access problem for manipulating very large BDDs.
These include 1) an architecture independent customized memory management and new BDD data structures,
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E /U ratio for various pipe-depths

Example | # Nodes 1 | 2 | 3 | 4 | S
i9 12423 | 0.0000 | 0.0004 | 0.0005 | 0.0011 | 0.0033

minmax5 | 4812 | 0.0006 | 0.0207 | 0.0356 | 0.0450 -
s641 2003 | 0.0100 | 0.0058 | 0.0122 | 0.0177 | 0.0295
cbp.324 | 8234 | 0.0008 | 0.0023 | 0.0040 | 0.0109 | 0.0157
s1423 57254 | 0.0009 | 0.0043 | 0.0664 | 0.0733 | 0.3465
sbc 3008 | 0.0043 | 0.0061 | 0.0106 | 0.0769 | 0.0651
C1355 | 242732 | 0.0465 | 0.0531 | 0.1333 | 0.1743 | 0.3566

Table 10: Memory overhead as a function of pipe-depth in “Multiway And” operation

2) performing multiple BDD operations concurrently (superscalarity), and 3) performing a BDD operation
even when the operand(s) are yet to be computed (pipelining). A complete package consisting of the whole
suite of BDD operations based on these techniques has been built. We demonstrate the performance of our
package by 1) comparing with state-of-the-art BDD package [10], and 2) performing a comprehensive set of
experiments to substantiate the capability of our approach. We show that our package provides competitive
performance on small examples and a performance ratio of more than 1000 on large examples.

The amount of main memory and disk space on a single workstation limits the size of BDDs that can
be manipulated, which seriously impedes the practical use of many interesting formal verification and logic
synthesis algorithms. A network of workstations (NOW) is a computing resource that uses as its building
block, an entire workstation. Using a network of workstations as a large computer system to solve large scale
problems is attractive, since it uses the existing infrastructure. Currently we are in the process of extending the
breadth-first manipulation technique to exploit the memory and computing resources of a NOW efficiently.
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