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1 Introduction

The study of exterior differential systems may be viewed as a formulation of mechanics which
unites the mathematics ofgeometry and algebra. While such unification isa powerful tool, the
mathematical preliminaries can be rather daunting; considerable independent development of
the algebraic and geometric concepts is necessary before these ideas can be linked. From a
physical standpoint the mathematical development can be motivated through an example in
mechanics.

Consider trajectorygeneration, or path planning, for purely kinematic systems with
n degrees offreedom. In such a system ourstate space is simply the configuration space, which
we can denote as (xi,x2,... ,£„). In the absence of constraints, each degree of freedom is in
dependent, so that if we assume we can control the velocities (ii,x2, •••,£*), then trajectory
generation is trivial. If, however, we impose kinematic constraints on the system's veloci
ties or states and assume our controls influence only the remaining unconstrained directions
of motion, the problem becomes significantly more interesting. Exactly how these imposed
constraints influence trajectory generation depends upon the nature of the constraint.

The simplest form of constraint to impose on a system is that of the holonomic, or
integrable, constraint which may be written as a function of the state variables and possibly
time. For a system consisting of n states, xi.. .x„, such a constraint may always be put in
the general form,

f{xux2,...,xn,t) = 0

Alternatively, the constraint may be expressed in differential, or Pfaffian, form,

aidxi 4- a2dx2 + ... + andxn + atdt = 0

where each of the a; and at are functions ofthestates and time. Thefirst expression is clearly
the stronger of the two representations, since it implies the existence of an integrating factor
to turn the differential Pfaffian form into an exact differential. More precisely, a holonomic
constraint confines the motion to an integral manifold of the original system. Each holonomic
constraint, therefore, reduces the dimension of the configuration space.

Asimple example ofa holonomic constraint isthat ofthespherical pendulum, a body
in3-space constrained to lie a fixed distance from theorigin. Themathematical representation
of such a constraint is therefore

x2 + y2 + z2 - R2 = 0

or in the Pfaffian form

2xdx + 2ydy + 2zdz = 0

Physically, the manifold on which the motion can be described is the sphere of radius R, so
the configuration space has been reduced to two dimensions.

Constraints that may be written in Pfaffian form but do not possess an integrating
factor, are called nonholonomic constraints and are of particular interest. Physically, these
constraints represent functional dependences on the velocities of the system (as opposed to the
states) and include the familiar case of a body which rolls without slipping. As an example,
consider a vertical disk rolling in a horizontal plane. Assuming a unit radius, the constraint



of rolling without slipping requires that the velocity of the center of the disk, v, be related in
magnitude to the angular velocity,

v = <j>

and in direction to the angle 0,

x = v sin 0

y = v cos 0

Substituting for u, this results in two equations of constraint in terms of the state variables,

dx —sin 0d(f> = 0

dy —cos 0d<j> = 0

From a physical standpoint, the constraint does not restrict the configuration space; hence,
the entire configuration space of this system is reachable.

Returning to the issue of path planning, it should be intuitively clear that non
holonomic constraints represent special difficulties. Holonomic constraints may simply be
eliminated by proper choice of coordinates and path planning performed on the resulting
unconstrained, reduced-order system. General solutions for nonholonomic systems are not
available; however, solutions for certain classes of these systems may be constructed. The
mathematics of exterior differential systems provides a useful tool for characterizing several
of these classes and developing their solutions.

Intuitively, the central concept of the exterior differential systems approach is most
easily understood in relation to the more familiar approach of vector fields. Returning to the
example of the rolling disc, consider the equations of motion in state-space form. Assuming
that we can control the angular velocity (u\ = <j> = v) and the yaw rate (u2 = 0), the disk
becomes a drift-free two-input control system,

X ' sin0 " * 0 *

y

4>
=

cos0

1
Ui +

0

0

0 0 . 1 .

u2

Each input is associated with a vector field defining at each point the direction of the velocity
or tangent vector. Pointwise, by proper choice of our control inputs, we may choose this
tangent vector to lie anywhere in the two-dimensional subspace spanned by these vector fields.
Taking the collection of these subspaces over all points in the configuration space, we form a
distribution, fully characterizing the possible tangent vectors at all points. The path planning
question can then be formulated as choosing at each point a velocity vector in the distribution
such that the resultant motion takes the system from the initial to the final state.

Alternatively, we may directly consider the constraints as opposed to forming the
control system dual to those constraints. In this manner, our system is described pointwise
by linear, real-valued functions with tangent vectors as arguments. Taking the collection of
the functions over the configuration space, we can define a co-distribution analogously to the
distribution discussed above. The path planning problem then becomes finding a trajectory



from the initial point to the final point such that the tangent vector at each point satisfies the
constraints of the co-distribution.

The distinction between the two approaches may seem slight. After all, consider
ing drift-free systems of this form, a dual control system may be constructed for every set
of constraints in Pfaffian form by assuming that we have control over unconstrained direc
tions. Hence, this formulation introduces no new physics. The difference, however, is that
by dealing with the constraints instead of the vector fields, we may transform the problem
from one of geometry to one of algebra. In so doing, we arrive at normal forms for certain
classes of problems. In terms of the path planning problem, these forms provide coordinate
transformations which parameterize the integral manifolds of the system and allow us to treat
the nonholonomic problem in a manner akin to holonomic constraints.

These notes begin by developing the mathematical preliminaries needed in the study
of exterior differential systems. Section 2 begins with a brief discussion of the mathematical
notion of duality and dual spaces to vectorspaces. Next, wedevelop the language of tensors, or
multilinear real-valued functions defined on a vector space. In particular, we define the class
of alternating tensors and a mathematical operation on the alternating tensors, the wedge
product. This allows us to form an algebra on the space of alternating tensors for a given
vector space. A discussion of algebraic structures (in particular, algebraic ideals) and their
geometrical interpretations concludes the section.

Section 3 provides an introduction to the differential geometric concepts needed
in the development of exterior differential systems. After a brief discussion of manifolds
and tangent spaces, we present the central concept of differential forms which are simply
alternating tensors defined on the tangent tangent space of a manifold. Following this, we
present the exterior derivative for differential forms and discuss its properties. With the
language of manifolds and forms at our disposal, we then provide a mathematical introduction
to the concepts of constraints, distributions, co-distributions and integral manifolds.

Section 4 uses these preliminaries to develop exterior differential systems. We be
gin by discussing the problem of finding integral manifolds and motivate certain coordinate
changes which are of an algebraic, rather than geometric, nature. Such transformations de
note alternative representations of the system which are equivalent in the algebraic sense of
ideals. From there, certain classes of systems are defined and solved in terms of normal forms.
The use of these normal forms is illustrated for examples of nonholonomic path planning and
feedback linearization.

2 Multilinear Algebra

2.1 The Dual Space of a Vector Space

Many of the ideas underlying the theory of multilinear algebra involve duality and the notion
of the dual space to a vector space. Therefore we will begin by briefly reviewing these concepts.

Definition 1 Let (V,R) denote a vector space over R. The dual space associated with (V, R)
is defined as the set of all linear mappings f : V —> R. The dual space of V is denoted as V"
and the elements of V* are called covectors.



We will always deal with finite-dimensional vector spaces defined over R. V* can be made
into a vector space in the following way:

Theorem 1 Iffor all a,fi € V" and c 6 R, we define

(a + 0)(v) = a(v) + (3(v)
(ca)(v) = c-a(v)

then V* is a vector space over R with dim(V*) = dim(V). Furthermore, if we pick a set
of basis vectors {vi,...,vn} for V, then the set of linear functions <j>x' : V —• R, 1 < i < n,
defined by:

{ 1 if 1= J

form a basis ofV* called the dual basis.

Proof: See Munkres [1] page 220. •

Example: Let V = Rn with the standard basis ei,...,en and let </>1,...,<^n be the dual
basis. If

n

i=i

then evaluating each function in the dual basis at x gives

n n

Pi*) = 4>%(±lXJej) = H2XJ<f>i(ej) = Xi
i=i i=i

Since the functions <j>1,..., <f>n form a basis for V, a general covector in (Rn)* is of the form

/ = a1<£1 + ... + an0n

Evaluating this covector at x gives

f(x) = a1x1 + ... + Qnxn

If we think of a vector as a column matrix and a covector as a row matrix, then

x\

f{x) = [a!...an]

O

The dual space construction is useful because it allows us to define a notion of "perpendicular"
subspaces.



Definition 2 Given asubspace WCV its annihilator is the subspace WL CV* defined by

W1 := {a € V* \a(v) = 0Vv € W}

Given a subspace X C V*, its annihilator is the subspace X1 C V defined by

X1 := {v € V | a(v) = 0 Va € X}

Given a linear mapping between any two vector spaces F : Vi -> V2 we can define an induced
linear mapping between their dual spaces.

Definition 3 Given a linear mapping F : Vi -> V2, its dual map is the linear mapping
F* : V2* -> V{ defined by

(F*(a))(v) = a(F(v)), Vo6 V2% v € Vi

Since V" is a vector space, it also has a dual space which we denote Vmm. There
exists a "natural" identification i : V —> V** which is defined for all v € V and a € V by

(*(u))(a) = a(v)

For all finite-dimensional vector spaces, this fact allows us to treat V and V*" as essentially
the same object. For example, we could have defined the annihilator as

W1 := {a 6 V* | a(v) = 0Vv € WC V).

Using this definition, the annihilator of a subspace W C V" is defined as a subspace of V".
However, we can use the natural identification to map this subspace back to V in which case
we recover our original definition.

2.2 Tensors

Let Vi,..., Vk be a collection of real vector spaces. Afunction / : V1 x,. xV* -> Ris said
to be linear in the ith variable if the function T:V{-+R defined with fixed Vj ? v{ as

?» = f(vu..., Vi-Uvi, vi+1, ...,«*)

is linear. Afunction is called multilinear if it is linear in each variable
Amultilinear function T: Vk - Ris said to be a covariant t.ensnrnf n^ Uor

& £™?$ ThC S6t f^T" °n V" den°ted £*(V). For it =1we have,
covecL ' SPaCC eref°re' ^ ^ think °f C°Variant tensors as talked



SiSirst;a muitiii-'^^ZZ^«XUXi,.. .„. are a
• multilinear by the properties of the determinant. O

As mthe case of V. each C*(V) can be made into avector space
Theorem 2 Iffor S, T6£*(,/) and cgRwe ^

(^)(«'i,...,nt.) = c•!>,,... ,n.)
then the set of all k-tensors on V, tf(n fa , rea/^^
Proof: See Munkres [1] page 220. D

of basis deter*^ ""^*"*** tW0 l™« « •** if they agree on any set
Theorem 3 Ld (H,...,^ be a basis for V Let f a • l/* -> R / / *
fa- a.\-n(n x e , -ug ' l -> R 6e k-tensors on V. If
then V=' " '*'"' *J /07> eUe71/ //?/e (multi-^ex) / =ft,...,u) €{1,2,..., n}*.

Proof: See Munkres [1] page 221. •
Theorem 3allows us to construct abasis for the space Ck(V).

Theorem4 Let ax an be abasis for V. Letl =(iu...,ik) e {1,2 n}k. Then tin re
is a unique tensorfi on Vsuch that for every k-tuple J={ju...Jk) e {1,2,...,n}*

*« *>-{??#
07? d tfte collection of all the $ forms a basis for Ck(V).

Proof: Uniqueness follows from Theorem 3. To construct the functions <p;, we start with a
basis for V, 0*' : V -* R, defined by

<t>x(aj) = Sij.

We then define each (f)1 as

(j>I = ^{v1)-^(v2)'...'<f>ik{vk)

and claim that these (p1 form a basis for Ck(V). To show this, we select an arbitrary A'-tensor
/ € C (V), and define the scalars

o-i ••= /(o^v-^ij-

8



Next, we define a Ar-tensor

j

where

J€{l,...,n}*.
Then by Theorem 3, / = g. •

Since there are nk distinct Ar-tuples from the set {l,...,n} the space Ck(V) has
dimension nk.

Example: Let V = Rn with the standard basis eu... ,en,and let ^,...,^n be the dual
basis. If

then evaluating each function in the dual basis at x gives

*'"(*) = *'(£*&) = X>;*'"(«i) = *.•
i=i i=i

Likewise, if / = (z'i,...,u) then evaluating the basis vectors for Ck(V) at (an, ,3?^) gives

= X{1i • . . . • Xjkk.

Since the tensors 01,. ..,0" form a basis for V*, evaluating a general 1-tensor / £ (Rn)" at
x £ Rn gives

/(*) = OJjXi + ... + anxn.

Likewise, evaluating a general 2-tensor at (x,y) € R2 gives

n

t',j=l

and evaluating a general A:-tensor at (x-i , x/.) € R* gives

^(a;i,x2,...,a:ib) = £ aH,~.,ikxii --xik

o

2.2.1 Tensor Products

We now introduce a product operation into the set of all tensors on V and outline its basic
properties.

Definition 4 Let f e Ck(V) and g € Cl(V). The tensor product f ®g of f and g is a tensor
in Ck+l(V) and is defined by

(f ® 9)(vi,. ••,vk+i) := f(vu •••, wife) •g(vk+u.. •, t?fc+f)



Theorem 5 Let /,#,/* be tensors on V and c € R. Then we have,

1. Associativity f <&(g (&h) = (/ ® g)®h

2. Homogeneity cf ® g = c(f 0 g) = / ®cg

3. Distributivity (f-rg)®h = f(&h-\-g®h

4- Given a basis ai,..., an for V, the basis tensors satisfy <f>! = <j>n <g) <f>t2<8>,..., <8><f>lk

Proof: See Munkres [1] page 224. •
We can also define the tensor product of two subspaces U, W C V' as

U <g) W := span{x e C2(V) \x = u®w, u € U, w € W}.

Therefore, from Theorem 4 we can conclude that

Vm <g> V = C2(V).

More generally we have

y®...0V>®y- = £*(v)
fc—times

2.3 Alternating Tensors

In this section we introduce the concept of an alternating tensor. In order to do this, we need
to know some facts about permutations.

2.3.1 Permutations

Definition 5 A permutation of the set of integers {1,2,...,Ar} is a one-to-one function a
mapping this set onto itself

Theorem 6 The set of all permutations a is a group under function composition called the
symmetric group on {1,..., k] and is denoted by Sk.

Proof: The composition of permutations is also a permutation. Composition is associative.
The identity function acts as the unit permutation and the inverses of permutations exist
since permutations are one-to-one, onto functions. Thus all group axioms are satisfied. •

Permutations simply reshuffle the elements of a finite set. As a result, the number
of permutations in Sk is A:!.

Definition 6 Given 1 < i < k, a permutation e, is called elementary if given some i €
{1,2,..., &} we have

e.(i) = j for j ^m+1

e,-(t) = i-rl
et-(i' + l) = i

10



An elementary permutation leaves the set intact except for consecutive elements i and i + 1
which are switched. The space Sk can be constructed from the elementary permutations.

Theorem 7 Every permutation a € Sk can be written as the composition of elementary
permutations.

Proof: See Munkres [1] page 227. •

Definition 7 Let a 6 Sk. Consider the set ofall pairs of integers i,j from the set {1,..., A:}
for which i < j and a(i) > er(j). Each such pair is called an inversion in a. The sign of cr is
defined to be the number —1 if the number of inversions is odd and -fl if it is even. We call
o~ an odd or even permutation respectively. The sign of a is denoted by sgn(a).

The following theorem helps us calculate the sign of permutations.

Theorem 8 Let ct,t € Sk. Then

1. If a equals the composite of m elementary permutations then sgn(a) = (—l)m

2. sgn(cro r) = sgn(cr) •sgn(T)

3. sgn(a~l) = sgn(a)

4- If p 7^ q, and if t is the permutation that exchanges p and q and leaves all other integers
fixed, then sgn(r) = —1

Proof: See Munkres [1] page 228. •

2.3.2 Alternating Tensors

We are now ready to define alternating tensors.

Definition 8 Let f be an arbitrary k-tensor on V. If c is a permutation of {1,..., A*}, we
define fa by the equation

fa(vu ...,vk) = /(tV(i),.. .,*>„(*)) (1)

Since f is linear in each of its variables, so is fa. The tensor f is said to be symmetric if
f = fe for each elementary permutation e, and it is said to be alternating if f = —fe for
every elementary permutation e.

In other words, / is symmetric if for all i

f{vu..., v^ v,-+i,...,vk) = f(vu..., u,-+i, V,-,...,Vk) (2)

and alternating if

/(ui,...,t>,-,v.-+i,...,vjfc) = -/(ui,...,v,-+i,ut-,...,u*) (3)

11



We will denote the set of all alternating A;-tensors on V by Ak(V*). The reason for this
notation will be apparent when we introduce the wedge product in the next section.

One can check that the sum of two alternating tensors as well as a scalar multiple
of it is alternating. Therefore, Ak(V*) is a linear subspace of the space Ck(V) of all A>tensors
on V.

In the special case of Cl(V), elementary permutations cannot be performed and
therefore every 1-tensor is vacuously alternating. Therefore Al{V*) = Cl(V) = V*. Further
more, for completeness, we define A°(V*) = R.

Examples: Elementary tensors are not alternating but the following linear combination

/ = </,' 0 p - (fP 0 fi

is alternating. To see this, let V —Rn and let <f>' be the usual dual basis. Then

f(x,y) = Xiyj-Xjyi = det

and it is easily seen that f(x,y) = -f(y,x). Similarly, the function

Xi yi

xj Vj

g(x,y,z) = det
X{ yi ?i

xj yj zj

. Xk yk *k .

is an alternating 3-tensor. O
We are interested in obtaining a basis for the linear space Ak(V~). We start with

the following lemma.

Lemma 1 Let f be a k-tensor on V and a,r € Sk. Then

1. The transformation f —> fa is a linear transformation from £k(V*) to Ck(V"). It has
the property that for all a,r € Sk

(ry = roT

2. The tensorf is alternating if and only if fa —sgn(cr) • / for all a € Sk>

3. If f is alternating and if vp = vq with p ^ q then f(vu... ,Vk) = 0.

Proof: The linearity property is obvious since (af + bg)° = af° + bga. Now

(fff )>!,..., v*) = />r(i),...,t>r(*))
= fa(wi,...,wk) Wi = Vr{i)
= /(wtyi),. •-,«>*(*))
= /(ur(a(l)),.--,VT(<T(Jt)))
= r°>i,...,^)

12



Let a be an arbitrary permutation. We can therefore write it as

<r = o"i o a2 o ... o am

where each crt- is an elementary permutation. Then

= ((...(r-).-.rr
= (-i)m-/
= sgn(a)-f

Now suppose vp = i>g and p ^ q. Let r be a permutation that exchanges p and 9. Since
vp = i>9,

/T(vi,...,ufc) = /(i>i,...,t;jb)

but since r is an alternating tensor

fT(vu...,vk) = -f{vu...,vk)

since sgn(T) = —1. Therefore /(vi,..., v*) = O.D
As a result of the Lemma 1 we get that if A: > n, the space A*(V*) is trivial since

one of the basis elements must appear in the A:-tuple more than once. Hence for A: > n,
A*(V") = 0. We have also seen that for k = 1 we have A^V) = Cl(V) = V* and therefore
one can use the dual basis as a basis for AJ(V*). We are therefore left with the case where
1 < A: < n. The key argument here is that in order to specify an alternating tensor we simply
need to define it on an ascending A;-tuple of basis elements since, by using the Lemma 1, every
other combination can be obtained by permuting the A;-tuple.

Theorem 9 Let a\,a2,. ..,an be a basisfor V. If f,g are alternating k-tensors on V and if

/(ai,a2,...,an) = g(aua2,... ,an)

for every ascending k-tuple of integers {1,2,..., n] then f = g.

Proof: See Munkres [1] page 231. •

Theorem 10 Let ai,...,a„ be a basis for V. Let I = (z'i,...,u) € {1,2, ...,n}fc be an
ascending k-tuple. There is a unique alternating k-tensor if/ onV such that for every ascending
k-tuple J = (ji,...,j*) € {1,2,. ..,n}*

/// . f 0 ifl±

The tensors ip1 form a basis for Ak(Vm). The tensors t/'7 also satisfy the formula

<r€Sk

13



Proof: In Munkres [1] pages 232-33.
The tensors tp1 are called elementary alternating A;-tensors on V corresponding to

the basis ai,... ,an for V. Therefore every alternating k-tensor / may be uniquely expressed
by

J

where J indicates that summation extends over all ascending A:-tuples.
The dimension of A1(V*) is simply n since one can use the standard basis for V". If

A: > 1, then we need to find the number of possible ascending A:-tuples from the set {1,2,...,n}.
But if we choose k elements from a set of n elements, there is only one way to put them in
ascending order. Therefore the number of ascending A>tuples and the dimension of Ak(V*) is

' n \ n\^K^))m^k^——

2.3.3 The Wedge Product

Just as we defined the tensor product operation in the set of all tensors on a vector space V\
we can define an analogous product operation, the wedge product, in the space of alternating
tensors. The tensor product alone does not suffice, since even if / 6 A*(V*) and g € A'( V")
are alternating, their tensor product f ®g € Ck+l(V) need not be alternating. We therefore
construct an alternating operator taking /c-tensors to alternating Ar-tensors.

Theorem 11 For any tensor f € Ck{V), define Alt: Ck{V) -* Ak(Vm) by:

Ali(f) = TF £ sgn(a)r.
K' <resk

Then Alt(f) € Ak{Vm) and if f £ Ak(Vm) then Alt(f) = f.

Proof: The fact that Alt(f) e Ak(V*) is a consequence of Lemma 1, parts (1) and (2).
Simply expanding the summation for / € Ak(Vm) yields that Alt(f) = /. D

Example: Let f(x,y) be any 2-tensor. By using the alternating operator we obtain,

AK(/)=j(/(*,y)-/(»,*))
which is clearly alternating. Similarly for any 3-tensor g(x,y,z) we have

Alt(g)= Q(g(x,y,z) +g{y,z,x) +g(z,x,y)-g(y,x,z)-g(z,y,x)-g{x,z,y))

which can be easily checked to be alternating. O

Definition 9 Given f G Ak(V*) and g G A^V*), we define the wedge or exterior product,
f Ag € Ak+l(V) by

fAg=(-^^Alt(f®g).

14



Therefore given two tensors, the wedge product first obtains their tensor product,
then uses thealternating operator in order toobtain an alternating tensor and then normalizes
it. The are two reasons for the somewhat complicated normalization constant. The first
reason is so that if / is alternating then Alt(f) = f. The second reason is that we want
the wedge product to be associative. The normalizing coefficient ensures both properties.
Since alternating tensors of order zero are elements of R, we define the wedge product of an
alternating 0-tensor and any alternating A:-tensor by the usual multiplication. The following
theorem lists some important properties of the wedge product.

Theorem 12 Let f £ Ak{V*),g e Al(V*) and h € Am(V*). Then

1. Associativity f A (g Ah) = (/ Ag) Ah

2. Homogeneity cf Ag = c(f Ag) = / Aeg

3. Distributivity (f-\-g)Ah —fAh-\-gAh
hA(f + g) = hAf-{-hAg

4- Skew-commutativity 1, g A/ = (—l)klf Ag

Proof: Properties (2), (3) and (4) follow directly from the definitions of the alternating op
erator and the tensor product. Associativity, property (1), requires a few more manipulations
(see Spivak [2] pages 80-81). D

Example: Let f(x) € A1^/*) and g(y,z) € A2(V). Then

(2-f 1)' 1
fAg = 2!1! ^y^®9(y,z)-rf(y)®g(z,x)-r

+ f(z) ®9{x,y)-f{y)® g(x, z)-f(z)®g(y,x)- f(x) <S> g(z, y))

We can also check that

/a/ =^yjxp5?(/(^) ®/(*) - /(*) ®/(*)) =0
which can also been seen from the skew commutativity of exterior multiplication. O

We can now formulate a basis for Ak(V*) more elegantly in terms of the dual basis
for V.

Theorem 13 Given a basisai,..., an for vector space V, let 01,..., <f>n denote its dual basis
and ij)1 the corresponding elementary alternating tensors. Then if I = (ii,...,ijt) is any
ascending k-tuple of integers,

if)1 = <!>** A<f>i2 A...A(f>ik.

^Iso called anti-commutativity
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Proof: May be deduced from the construction of the elementary alternating tensors in The
orem 10. •

By Theorems 13, any alternating A>tensor / € Ak(V*) may be expressed in terms
of the dual basis <f>ly..., <f>n as:

/ = £<*i, ;fc<^A<pA...A<P (4)
J

for all ascending A;-tuples J = (ji,.. .,jjt) and some scalars, djlt,„ijk. If we require the coeffi
cients to be skew-symmetric,

"«'i.-.t'M'i+i «'* = "~"t1,...,t|+i,i|,...,ifci V / G {1,..., A: —1}

then we can extend this summation over all A:-tuples.

f = T\ £ *,....,.**,,,A^A...A^* (5)
*" ii «fc=l

The definition of the wedge product is interesting but it is the properties of the
wedge product which make it a powerful tool. As a result, one does not really work with the
definition of the wedge product but with its properties.

The wedge product provides a nice way to check whether a set of 1-tensors is linearly
independent.

Theorem 14 If uj1 ,... ,uk are 1-tensors over V then

u;1 Aw2 A ... Auk = 0

if and only e/o;1,... ,u>k are linearly dependent.

Proof: Suppose that w1,... ,uk are linearly independent, and pick afc+1,...,an to complete
a basis for V*. From Theorem 13 we know that

(J- A J2 A ... A uk

is a basis element for Ak(Vm). Therefore, it must be nonzero.
If w1,... ,u>k are linearly dependent, then at least one of the them can be written

as a linear combination of the rest. Without loss of generality, assume that ujk is linearly
dependent. We then have

fc-i

uk = J^ c-u/'
i=i

From this we get that

*-i

u;1 AJ1 A... Auk = ul Aw2 A... Aa;*-1 A(]Tau?) = 0
t'=i

by the skew-commutativity of the wedge product. •
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This result allows us to give a geometric interpretation to a nonzero A;-form

ul AJ1 A ... Auk / 0

by associating it with the subspace

W :=span{u>\...,u)k} CV*.

An obvious question which arises is what happens if we select a different basis for W.

Theorem 15 Given a subspace W C V" and two sets ofl-tensors which span W,

W = spanlu1,... ,u>k] = span{a1,.. .,ak]

there exists a nonzero scalar c G R such that

c •w1 Aus2 A... Au>* = a1 Aa2 A... Aak ^ 0

Proof: Each a' can be written as a linear combination of the u>{

Therefore, the product

k

i=i

a1 Aa2 A... Aak = (£ a^u3) A... A(£ akjJ)

Multiplying this out gives

n

a1Ao2A...Aoi= YI bii ,....«•* ^ Au;'2 A... AJk.
«'i.-,t'fc=i

Finally, using Theorem 14, and the skew commutativity of the wedge product we get

C'U,Aw2A,..Aw,i = Q1AQ2A...AQ^0.D

Therefore, the A>fold wedge product of all sets of linearly independent 1-tensors
which spans a subspace of W C V* differ by only a scalar constant. We can therefore define
an equivalence class of basis sets for W

Definition 10 Let f = x1 A ... A xk. We define an equivalence class

[x1... xk] := {tt GAk(V) | 7T =c•f, for some nonzero cGR}

called the Grassmann coordinate of £.

The set ofall such equivalence classes can be put in one-to-one correspondence with
the set of all A;-dimensional subspaces of V*. This set of subspaces is called the Grassmann
manifold of A:-planes in V* and is denoted as G(V*,k).

17



Definition 11 A k-tensor £ GAk(V*) is decomposable if there exist x1,x2,...,xk GA^V)
such that £ = x1 A x2 A ... A xp

In order for an alternating A:-tensor £ to be decomposable, it must be expressible as
a monomial

£ = a1 Aa2 A... Aak

with respect to some set of basis vectors

This is not always possible. To see this consider the following example.

Example: Let £ = <f>1 A<f>2 + cf>2 A <f>4 G A2((R4)*). If £ is decomposable, then we must have
£ A £ = 0. The reason for this is that if £ can be expressed as

£ = a1 Aa2 A ... Aak

then it follows that

£ A£ = a1 Aa2 A... Aak Aa1 Aa2 A... Aak = 0

In our case we have

£ A£ = 2<f>1 A(f>2 A <f>z A <f>4 ^ 0

Therefore £ is not decomposable. Notice that this is a necessary but not sufficient condition
and, in particular, it does not apply to odd alternating tensors. O

If an alternating A>tensor £ is not decomposable, it may still be possible to factor
out a 1-tensor from every term in the summation which defines it.

Example: Let £ = <f>1 A <f>2 A <f>5 + <f)3 A <f>4 A <f>5 G A3((R5)*). From the previous example,
we know that this form is not decomposable, but the 1-tensor <f>5 can clearly be factored from
every term

£ = (01 A <j>2 + <f>3 A<j>4) A<f>s = iA<f>5

Definition 12 Let £ G Ak(V*). We define a subspace L$ C V*

Li := {u; GV* | £= £ Au> for some £ GAk'l(Vm)}

called the divisor space o/£. Any u> G L$ is called a divisor of £.

Theorem 16 A 1-tensor to G V* is a divisor of£ G Ak(V*) if and only if

cjA£ = 0

18
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Proof: Pick a basis <j>\ <f>2,..., <f>n for V such that u = <f>1. With respect to this basis, £ can
be written as

n

£=£^,..,jfc^ A<pA...A<P (6)

for all ascending fc-tuples J = (ji,...Jk) and some scalars, dh jk. If a; is a divisor of £,
then it must be contained in each nonzero term of this summation. Therefore u> A£ must be
identically 0.

If lj A£ = 0, then every nonzero term of £ must contain uj. Otherwise, we would
have for ji,...,jk ^ 1

uj A ft1 A ... A <f>jk = (f)1 A<f>31 A ... A <f)jk

which is a basis element of Ak+1(V*) and therefore nonzero. This contradicts the assumption
u;A£ = 0. D

If we select a basis <f>1, <^2,..., <f>n for V* such that

span{<f>l,<f>2,...,<f>1} = L4

then, £ can be written as
£ = £ A <f>1 A ... A <f>1

where £ GAk~l(V) is not decomposable and involves only the one forms <£'+1,..., <f>n.

2.3.4 The Interior Product

A second useful operation on tensors in called the interior product.

Definition 13 The interior product is a linear mapping -> : V x Ck(V) —*• £fc_1(V) which
operates on a a vector v GV and a tensor T GCk(V) and produces a tensor (v^T) G£k~l(V)
define by

{v-iT)(vu...,vk-i) := T{v,vi,...,vk-i)

The interior product has the following basic properties.

Theorem 17 Let a,6,c,c? be real numbers and v,w G V,g,h G £'(V), r G AS(V*), and
f G Am(V""). Then we have

1. Bilinearity {aV +hw^9 = a(v^)-r K^g)
v-*(cg + dh) = c(v->g) + d(v-*h)

2. v^(f A r) = (v->f) + (-l)m/ A {v^g)

Proof: See Yang [3] page 12. •
The next result illustrates a useful property of the interior product.

Theorem 18 Let ai,...,an be a basis for V. Then the value of an alternating k-tensor
u> G Ak(V*) is independent of a basis element Oi if and only if a,—•<*; = 0.
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Proof: Let <£*,..., <f>n be the dual basis to ai,..., an. Then uj can be written with respect
to the dual basis as

uj = J2dj<f>jl A(f)32 A... A<j>jk = J^djifj-1
J J

where the sum is taken oven all ascending A;-tuples J. If a basis element tfjJ does not contain
<£,-, then clearly

a^xfj3 = 0

If a basis element contains 0,-, then

at- ft1 Aft2 A... A<f>ik Jk 0

because a, can always be matched with fa through a permutation which only affects the sign.
Consequently, (aj->uj) = 0 if and only if the coefficients dj of all the terms containing (f>1 are
zero. O

Definition 14 Let uj G Ak{V*). The associated space of uj is defined as

Au := {v G V\v^w = 0}

The dual associated space of uj is defined as A^.

Recall that the divisor space Lu of an alternating A:-tensor uj contains all the 1-
tensors which can be factored from every term of w. The dual associated space A^ contains
all the 1-tensors which are contained in at least one term of uj. Therefore, Lw C A„- The
following result ties these notions together.

Theorem 19 The following statements are equivalent:

1. An alternating k-tensor uj G Ak(V*) is decomposable.

2. The divisor space L^ has dimension k.

3. The dual associated space A^ has dimension k.

4- Luj —A^.

Proof:

(1) ^=> (2). If a; is decomposable, then there exist a set of basis vectors <f>1, <f>2,..., (j>n for V*
such that

uj = <f>1 A... A <f)k

Therefore Lw —span{<f>1, <f>2,..., <f>k] which has dimension A\ Conversely, if Lw has dimension
fc, then k terms can be factored from uj. Since uj is A;-tensor, it must be decomposable.
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(1) «=> (3). Let au..., an be the basis ofV which is dual to <j>1, <f>2,..., <f>n. Since

w = 01 A... A <f>k,

uj is not a function of ak+u..., an. Therefore,

Aw = span{ak+1,...,an}.

This implies that A^ has dimension A:. Conversely, if A^ has dimension Jfc, then A„ has
dimension n - A; which means that uj is an alternating A>tensor which is a function of A:
variables. Therefore, it must have the form

for some linearly independent <f>1, <f>2,..., cf>k in V".

(2)&(3) <S> (4). It is always true that L„ C A%. Therefore if dim(Lu) = dim(Ai) then
Zw = A^. It is also always true that 0 < dim^^) < k and k < dirn(A^) < n. Therefore,
Lw = Af; implies that dim(Lw) = dim(A^) = k. O

2.4 The Pull Back of a Linear Transformation

The pull back of a linear transformation is a generalization of the dual map which we intro
duced in the section on dual spaces.

Let T be a linear map from a vector space V to a vector space W. Furthermore,
let's assume that there exists a multilinear function / on W. Using the above, on can define
a multilinear function on V as follows. First, given any vector v on V, use the map T to get
to W and then apply the multilinear function / to T(v). More formally,

Definition 15 Let T : V —* W be a linear transformation. The dual or pull back
transformation ~ ~

T* : £k(W) -> £k(V)
is defined for all f G £k(W) by

(T-f)(vu...,vl,):=f(T(vl),...,T(vk))

Note that T*f is multilinear since T is a linear transformation. The pull back map
T* also has the following properties

Theorem 20 Let T : V —» W be a linear transformation, and let

T* : £k(W) -> £k(V)

be the dual transformation. Then

1. T" is linear.

2- T-(f®g) = T*f®T*g.

3. IfS-.W^Xis linear, then (S o T)mf = Tm(Smf).
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Proof: See Munkres [1] page 225. •
The following theorem ensures us that the pull back of an alternating tensor is

alternating.

Theorem 21 Let T : V —• W be a linear transformation. If f is an alternating tensor on
W then T*f is an alternating tensor on V, and

T*(fAg) = T*fAT*g

Proof: See Munkres [1] page 234. D

2.5 Contravariant Tensors

Up to this point, all the tensors which we have worked with have been defined as multilinear
functions over the vector space V. If we simply replace V with V* in all our definitions, then
nothing is changed, and we can define an identical set of tensors over V*.

Amultilinear function T : (V*)k —• Ris said to bea contravariant tensor of order A:.
The set of all A>tensors on V* is denoted by £k{V*) or V ® ... ® V. Note that in this notation

k—times

we are implicitly using the natural identification between V** and V. For A; = 1 we have
£k(V*) = V, the vector space itself. For this reason, contravariant tensors are sometimes
called multivectors.

2.6 Exterior Algebra

In section 2.4, we introduced the wedge product and interior product and demonstrated some
of their properties. We now want to look more closely at the algebraic properties these
operations give to the space of all alternating tensors.

2.6.1 Algebras and Ideals

We begin by introducing some algebraic structures which will be used in the development of
the exterior algebra.

Definition 16 An algebra is a vector space V together with a multiplication operation 0 :
V x V —> V which for every scalar a GR and a, 6GV satisfies a(a06) = (aa)©6= a0 (ab).

Definition 17 Given an algebra (V,0), a subspace W C V is called an algebraic ideal2 if
x G W,y G V implies that x 0y,y 0 x GW

Note that if W is an ideal and x,y G W then x + y G W since VK is a subspace.

2For readers with knowledge of algebra, the algebraic ideal is the ideal ofthe algebra thought ofas a ring.
Furthermore since our ring has an identity we can show that any ideal must be a subspace of the algebra
thought of as a vector space.
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Example: The set of all polynomials with real-valued coefficients, R[s], is a vector space
over R with vector addition and scalar multiplication defined by

(P1+P2)(S) = P1(S) + P2{S)

{a •P)(s) = a • P(s)

If we define multiplication by

{Pi • P2)(s) = P.is) • P2(S)

then R[s] is also an algebra.
In R[s], the set of all polynomials with a zero at s = —2 is an algebraic ideal. This

is true because for all Pi(s),P2(s) G R[s] which satisfy

P1(-2) = P2(-2) = 0

we have that

Pi(-2) + P2(-2) = 0, a.P,=0, A(-2).P2(-2) = 0

so this set is a subspace of R[s] which is closed under multiplication. Furthermore for all
P(s),R(s) G R[s] with R(-2) = 0 we have that

P(-2) • R(-2) = 0

which verifies that the set of all polynomials with a root at -2 is an ideal of R[s]. O

Definition 18 Let (V,0) be an algebra. Let the set A := {a,- G V, 1 < i < K) be any finite
collection of linearly independent elements in V. Let S be the set of all ideals containing A

S := {I C V\I is an ideal and A C /}.

The ideal Ia generated by A is defined as

lA=f]I

and is the minimal ideal in S containing A.

If (V,0) is an algebra, and there exists an element e G V such that for all x G
V,x®e = eQx = x then e is called a unity element and is unique. If (V, 0) is an algebra
with a unity element, then the ideal generated by a finite set of elements can be represented
in a simple form.

Theorem 22 Let (V,0) be an algebra, A := {at G V, 1 < i < K) a finite collection of
elements in V, and Ia the ideal generated by A. Then for each x G Ia, there exist vectors
ui,..., vk such that

x = Vi 0 ai + v2 0 a2 + ... + vK 0 aK

Proof: See Hungerford [4] pages 123-124. D
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Example: The polynomial (5+ 2) generates an ideal in R[s] which is equal to the set of all
polynomials with a zero at s = —2. We will denote this set as i_2. In the previous example
we verified that this set is an ideal, and the polynomial (5 + 2) is clearly contained in 7_2.
Therefore, in order to verify that i_2 is the ideal generated by (s + 2) we only need to show
that any other ideal which contains (s + 2) also contains 7_2. Because a real root can always
be factored, J_2 can be written as

/.2 := {P(s) G R[s] I P(s) = R(s)(s + 2) V R(s) G R[s}} (7)

If I is any other ideal containing (5 + 2), then

(VR(s)eR[s])R{s){s + 2)eI

because of the definition of an ideal. Therefore, J_2 C I. Consequently, i_2 must be the ideal
generated by (s + 2).

This result also follows directly from Theorem 22, since R[s] has the constant poly
nomial 1 as a unity element. In order to see the importance of the unity element, suppose
that we had taken as our algebra the set 7_3 of all polynomials in R[s] with a root at -3. It is
easy to verify that this is an algebra, and that the set l-z-2 of all polynomials with roots at
-2 and -3 is an ideal. However,

7_3,_2 ± {P(s) G R[s] IP(s) = R(s)(s -{- 2)(s + 3) V R(s) G7-3}

because the set on the right contains only polynomials with roots of order 2 and higher at -3.
O

Example: The two polynomials Pi(s) = (s + 2)(s + 4) and P2(s) = (s + 2)(s + 3) generate
an ideal in R[s]

IpuPi := {P(s) € RW IP(s) = Q(s)P1(s) + R(s)P2(s), R(s),Q(s) G R[s}}.

Although this ideal is generated by two linearly independent vectors, it is equivalent to the
ideal generated by the single vector /^(s) = (5+2). To demonstrate this fact, let P(s) G Ipup7-
Then

P(s) = (Q(s)(s + 3) + R(s)(s + 4))(5 + 2).

which implies that P(s) G I-2.
Now suppose P(s) G I-2 Then

P(s) = Q(s){s + 2)

for some Q(s) G R[s]. From the coprime factorization property of polynomials it can be shown
that there exists polynomials N(s),M(s) G R[s] such that

1 = AT(3)(3 + 3) + M(a)(3 + 4).

Using this identity we get that

P(s) = Q(s) • 1 • (s + 2) = Q(s)N(s){s + 3)(s + 2) + Q{s)M(s)(s + 4)(s + 2).

which implies that P(s) G Ipup^- This example shows that if we are given an arbitrary set of
generators, it may be possible to find a smaller set of generators which will generate the same
ideal. O
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Definition 19 Let (V,0) be an algebra, and I C V an ideal. Two vectors x,y GV are said
t° be equivalent mod I if and only ifx-yel. This equivalence is denoted

x = y mod I

From the definition above we can see that

x = y mod I

if and only if

which simply means that

x —y G I

K

*-y = J20f<OaK
t=i

for some 0k G V. It is customary to abuse notation and denote this as

x = y mod ct\,..., a^-

where the mod operation is implicitly performed over the ideal generated by ol5... ,ctK.

2.6.2 The Exterior Algebra of a Vector Space

Although the space Ak(V") is a vector space with a multiplication operation, namely the
wedge product, the wedge product of two alternating A>tensors is, almost always, not a k-
tensor. Therefore Ak(V*) can not be made into an algebra under the wedge product. If we
consider, however, the direct sum of the space of all alternating 0-tensors, 1-tensors, 2-tensors
etc. we obtain,

A{V) = A°(V*) 0 A\Vm) 0 A2(V~) 0 ... © An(Vm)

where A°(V") = R, A^V") = V. Again the wedge product acts as the multiplication
operator. This is clearly a vector space, and is also closed under exterior multiplication.
It is therefore an algebra, and is called the exterior algebra over V*. In this notation, any
£ G A(V") may be written as

f = & + 6 + ... + £»

where each £p G AP(V*).
Since (A(V*),A) has the unity element 1 G A°(V), Theorem 22 implies that the

ideal generated by a finite set of elements E := {a1 G A( V"), 1 < i < K] can be written as

K

Is = {*e A(Vm)\ 7T = £0«" Aa\Bl GA(Vm)}
t=i

Given an arbitrary set of linearly independent generators S, it may also be possible to generate
7e with a smaller set of generators £'. In the next section we will use these ideas to study
systems of exterior equations.
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2.6.3 Systems of Exterior Equations

In the preceding sections we have developed an algebra of alternating multilinear functions
over a vector space. We are now going to apply these ideas to solving a system of equations
in the form

a1 =0,...,aA' = 0

where each a1 G A(V*) The first thing we need to clarify is exactly what a "solution" to these
equations means.

Definition 20 A system of exterior equations on V is a finite set of linearly independent
equations

a1 =0,...,oA' = 0

where each a% G Ak(V*) for some \ < k < n. A solution to a system of exterior equations is
any subspace W C V such that

a1|Wr=0,...,aAV=0

where a\w means that the arguments of a(i>i,..., vk) satisfy vi,..., vk G W

A system of exterior equations generally does not have a unique solution since any subspace
W\ C W will satisfy a\wx = 0 if a\w = 0.

A central fact concerning systems of exterior equations is given by the following
theorem:

Theorem 23 Given a system of exterior equations

a1 =0,...,aA' = 0 (8)

and the corresponding ideal 1^ generated by the collection of alternating tensors

E:={aV..,a*} (9)

a subspace W solves the system of exterior equations if and only if it also satisfies 7r\\y = 0
for every n G Ia-

Proof: If 7r GIa, then 7r = ££1 0i AoA Furthermore, if W satisfies tt\w = 0 then

K

7r = ^^'Aa,' = 0
t=i

for some set of 0* G A(V*). This equation must hold for every it G Ia- Since the a' are
assumed to be linearly independent, they must all satisfy,

aV = 0,...,aA'k = 0. (10)

Similarly, if equations 10 hold, then w\w = 0 for all x G Ia- d
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This result lets us treat the system of exterior equations, the set of generators, and
the algebraic ideal as essentially equivalent objects. We may sometimes abuse notation and
confuse a system of equations with its corresponding generator set. We may also confuse a
generator set with its corresponding ideal. When it is important to distinguish, we will write
out the system of exterior equations, and will denote the set of generators as £ and the ideal
which they generate as 1%.

Recall that an algebraic ideal was defined in a coordinate free way as a subspace
of the algebra satisfying certain closure properties. Thus the ideal has an intrinsic geometric
meaning, and we can think oftwo sets ofgenerators as representing the same system ofexterior
equations if they generate the same algebraic ideal.

Definition 21 Two sets of generators, £1 and E2, are said to be algebraically equivalent if
and only if they generate the same ideal, i.e. 1^ = 7e2.

We will exploit this notion ofequivalence to represent a system of exterior equations
in a simplified form. In order to do this, we need a few preliminary definitions.

Definition 22 Let E be a system of exterior equations and 1% the ideal which it generates.
The associated space of the ideal 1% is defined as

A(h) := {v G V>-»a G JE Va G h]

The dual associated space or retracting space of the ideal is defined as A(Ix)-L and denoted by
C{h).

Once we have determined C(/s)5 we can find an algebraically equivalent system £'
which is a subset of A(C(I^)).

Theorem 24 Let E be a system of exterior equations and 1% its corresponding algebraic ideal.
Then there exists an algebraically equivalent system E' such that £' C A(C(Iz)).

Proof: Let vi,... ,un be a basis for V, and <f>1,..., <f>n be the dual basis, selected such that
t?r+i,..., vn span A(Ix). Consequently <£*,..., <f>T must span C(Iz). Let a be any generator
in A^V*). With respect to this basis, a can be written as

1=1

Since v->a = 0 for all i; G A(/j;), we must have a, = 0 for i = r+l,...,n. Therefore,

r

t=i

So all the 1-forms in £ are contained in A(C(7e)).
Now suppose that the result is true for all forms of degree < A;. Let a be a A: + 1

form. Consider the form

a' = cv —<f>r+l A (ur+1-ia)
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The second term on the right must be in A(C(h)) because of the induction hypothesis.
Furthermore,

Ur+l-'Of' = Ur+l^Qf - Vr+i-«a - </>r+1 A(Ur+l~,(Ur+l-,Of)) = 0

Therefore, a1 has no terms involving <£r+1.
If we now replace a with a- the ideal generated will be unchanged since

0Aa = 0Ao/ + 0A <f>r+1 A (vT+1->a)

and vr+i~>a G 7.
We can continue this process for ur+2,..., vn to produce an a which is generated by

elements of A(C(7S)). •

Example : Let t>i,..., v6 be a basis for R6, and let 01,..., 06 be the dual basis. Consider
the system of exterior equations

a1 = 01 A03 = 0,

a2 = 01 A04 = 0,

a3 = 01 A02 - 03 A04 = 0,

a4 = 01 A 02 A 05 - 03 A 04 A 06 = 0

The set of generators E is given by

and the ideal 7v is given by

h := {£ € A(V) | f = £>'' Aa', tt*' GA(Vm)}.
t=i

The associated space of 7s is defined by

A{h) := {v GR6 | v-7T G7E V7T G7S}.

Because 7e contains no 1-forms, we can infer that

v-'a1 = 0, v-ya2 = 0, and v->a3 = 0, Vv GA(7e)

Expanding the first equation, we get

v-^a1 = u--(01 A03) = (v-01) A03 + (-1)1*1 A(v-03) = 01(v)03 - 03(v)01 = 0

which implies that 01(v) = 0 and 03(v) = 0. Similarly,

v-.a2 = 01(v)04-04(v)01 =0

v-na3 = 0\v)02 - 02(v)01 - 03(v)04 + 04(v)03 = 0
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implying that 02(v) = 0 and 04(v) = 0. Therefore, we can conclude that

A(h) C span{v5,v6}.

Evaluating the equation v^a4 gives

v^a4 = {v^{01 A02)) A05 + (-l)2^1 A02) A(v-05)

-(i>-(03 A04)) A06 - (-1)2(03 A04) A(v-06)
= 05(v)01 A02 - 06(v)03 A04

= a(0l A03) + b(0l A04) + c(01 A02 - 03 A04)

Equating coefficients, we find that

05(v) = 06(u) = c, VdGA(7e).

Now v must be of the form v = xv5 -f yv&, so we get

0s(xv5 + yv6) = x = c

06(xv5 + yv6) = y = c.

Therefore, A(7s) = sparc{(v5 + ve)}* If we select as a new basis for R6 the vectors

Wi = v^ i = 1,..., 4, w5 = v5 - v6, w6 = v5 + u6

then the new dual basis becomes

. . 05 _ ^6 05 + 06
V = 0' i = 1 4 'v5 = -v6 = •

With respect to this new basis, the retracting space C(7v) is given by

C(7E) = span{71,...,75}

In these coordinates, the generator set becomes

£' = {71 A73, 71 A74, 71 A72 - 7* Al\ 71 A72 A75} C A(C(/E))

O

We conclude this section on exterior algebra with a theorem which will allows us to
find the dimension of the retracting space in the special case where the generators of the ideal
are a collection of 1-tensors together a single alternating 2-tensor.

Theorem 25 Let 7e be an ideal generated by the set

E = {wV..,w',fi}

where u>* G V* and ft G A2(V*). Let r be the smallest integer such that

(ft)r+1 Auj1 A... Aujs = 0

Then the retracting space C(I%) is of dimension 2r + 5.
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Proof: See [5] pages 11-12. •

3 Differential Geometry and Forms

The multihnear algebra presented in the previous section can be applied to the tangent space
of a differentiable manifold. We first review some basic facts from differential geometry. The
reader may wish to consult numerous books on the subject such as [6, 7, 1].

3.1 Differentiable Manifolds

A manifold is simply a space which locally looks like Rn.

Definition 23 A manifold M of dimension n is a metric space3 which is locally homeomor-
phictoRn.

A simple example of a manifold, which is of great interest to us, is Rn itself. Other
examples are the circle S1 and the sphere S2. The circle Sl is locally homeomorphic to R
while the sphere is locally homeomorphic to R2. Therefore the circle is a one dimensional
manifold while the sphere is a two dimensional manifold.

A subset N of manifold M which is itself a manifold is called a submanifold of M.

Any open subset N of a manifold M is clearly a submanifold since if M is locally homeomorphic
to Rn then so is N.

We now wish to perform calculus on manifolds. Since we know how to differentiate
and integrate on Rn, and since manifolds look locally like Rn, the way to differentiate and
integrate on manifolds is to first locally flatten the manifold and then perform the desired
operation on the flattened space which looks like Rn. In order to do the above procedure our
manifold must have, what is called, a differentiable structure.

A coordinate chart on a manifold M is a pair ({/, x) where U is an open set of
M and a; is a homeomorphism of U on an open set of Rn. The function x is also called a
coordinate function and can also writen as (a;1,.. .,xn) where x{ : M —> R. If p G U then
x(p) = (xl(p),... ,xn(p)) is called the set of local coordinates in the chart (U,x).

When doing operations on a manifold, we must ensure that our results are consistent
regardless of the particular chart we use. We must therefore impose some conditions. Two
charts (U,x) and (V,y) with UDV ^ 0, are called C°° compatible if the map

yox-1: x(U n V) C Rn —• y(U nV)cRn

is a C°° function. A C°° atlas on a manifold M is a collection of charts (UQ,xQ) with a GA
which are C°° compatible and such that the open sets Ua cover the manifold M, so M =
Ua€>i Ua. An atlas is called maximal if it is not contained in any other atlas.

Definition 24 A differentiable or smooth manifold is a manifold with a maximal, C°° atlas.

3for readers with knowledge of topology replace metric space with Hausdorff, second countable topological
space
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Now that we have imposed this differential structure on our manifold M we can
perform calculus on M. In particular let / : M —>Rbea map. If (U,x) is a chart on M
then the function

/ = / ox~l :x(U) C Rn —> R
is called the local representative of / in the chart (U,x). We therefore define the map / to
be C°° or smooth if its local representative / is C°° Notice if / is C°° in one chart, then it
must be C°° in every chart since we required our charts to be C°° compatible and our atlas
to be maximal. Therefore our results intrinsic to the manifold and do not depend on the
particular homeomorphism we use. Similarly, if we have a map / : Af —> N, where M,N are
differentiable manifolds, the local representation of / given a chart (U,x) of M and (V,y) of
AT is

f = yof ox'1

which makes sense only if /([/) fl V ^ 0. Again / is a C°° map if / is a C°° map.
Let / : M —• N be a map between two manifolds. The map / is called a

diffeomorphism if both / and f~l are smooth. In this case, manifolds M and Af are called
diffeomorphic.

Example: We have seen that Rn is an example of a trivial but important manifold. The
differentiable structure on Rn consists of the chart (R",z) where i is the identity function on
R" as well as all other charts that are C°° compatible with it.

The sphere, S2 can be given a differentiablestructure as follows. Consider the charts
(Un,Pn) and (Us,ps) where Un is the sphere minus the North pole, Us is the sphere minus
the South pole and Pn^Ps are the stereographic projections of the sphere to the plane from
the North and South poles respectively. One can show that these charts are compatible. We
can then extend our atlas to a maximal one by consider all other charts that are compatible

with {Un,pn),(Us,Ps)- O

3.2 Tangent Spaces

Let p be a point on a manifold M. Let C°°(p) denote the set of all smooth functions in a
neighborhood of p. The set C°°(p) is a vector space over R since the sum of two smooth
functions and the scalar multiple of a smooth function are smooth function themselves.

Definition 25 A tangent vector Xp atp G M is an operator from C°°(p) to R which satisfies
for f,9€ C°°{p) and a-> ° € R , the following properties,

1. LinearityXp(a • f + 6•g) = a •Xp(f) -f 6•Xp(g)

2. Derivation Xp(f •g) = f(p) •Xp(g) + Xp(f) •g{p)

The set of all tangent vectors at p G M is called the tangent space of M at p and is denoted
by TPM.
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The tangent space TPM becomes a vector space over R if for tangent vectors Xp, Yp
and real numbers c\, c2 we define

(Cl •Xp + c2 •Yp)(f) = Cl •Xp(f) + c2 •Yp(f)

for any smooth function / in the neighborhood of p. The collection of all tangent spaces of
the manifold,

TM = U TpM

is called the tangent bundle.

Example: Given the standard differentiable structure on Rn, the standard tangent vectors
of Rn at any point p are

dr1 drn

Thus given any smooth function /(r1,... ,rn) : U —> R where U is a neighborhood of p, we
have

8riU) dr«
for i = 1,... , n. O

Now let M be a manifold and let (U,x) be a chart containing the point p. In this
chart we can associate the following tangent vectors

_d_ _d_
dxl' dxn

defined by
d Jl/or1)

dxiU} dr<
for any smooth function / G C°°(p).

Theorem 26 Let M be an n dimensional manifold and let TPM be the tangent space at
p G M. Then TPM is an n-dimensional vector space and if (U,x) is a local chart around p
then the tangent vectors

_d_ _d_
dar1''"' dxn

form a basis for TPM.

Proof: See Spivak [6] pages. •
From the above theorem we can see that if Xp is a tangent vector at p then

n d

t=i U£

where au... ,an are real numbers. From the above formula we can see that a tangent vector
is an operator which simply takes the directional derivative of function in the direction of
[ai,...,an].
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Now let M and N be smooth manifolds and / : M —• N be a smooth map. Let
pGMand let q= /(p) GAT. We wish to transport tangent vectors from TPM to TqN using
the map /. The natural way to do this is by defining a map /„ : TPM —• TqN by

(MXp))(g) = Xp(g o f)

for smooth functions g in the neighborhood of q. One can easily check that f*(Xp) is a linear
operator and a derivation and thus a tangent vector. The map /. : TPM —> Tf{p)N is called
the push forward map of /.

Proposition 1 The push forward map /. : TPM —> Tj^)N is a linear map.

Proof: Let Xp and Yp be two tangent vectors in TPM. Then

(MXp + Yp))(g) = (Xp + Yp)(gof)
= Xp(gof) + Yp(gof)

= (MXP))(9) + (UYp))(g)

and also for real number c,

(f.(c-X,))(g) = (cA'p)(</°/)
= c-X,(gof)

= c-(f.(X,))(g)

which completes the proof. •

Proposition 2 Let f : M —• N and g : N —• K. Then

(g o /). = g*of.

Proof: See Spivak [6] page 101. •
We now arrive at the important concept of a vector field on a manifold.

Definition 26 Let M be a manifold. A vectorfield on M is a continuous function F which
places at each pointp of M a tangent vector from TPM. Such functions are called sections of
the tangent bundle TM. If F is of class C°° it is called a smooth section ofTM.

Recall that in a coordinate chart (£/,x) of a point p G M a tangent vector is expressed
as

n d

Therefore since a vector field, F, places at each point p a tangent vector F(p) we have that
in the chart (£/, x) the local expression for the vector field F is

We can easily see from the above that the vector field is C°° if and only if the scalar functions
a{:M —• R are C°°.

An integral curve of a vector field is a mapping c : (—e,e) —• M whose tangent at
each point is identically equal to the vector field at that point.
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3.3 Tensor Fields

Since the tangent spaceofmanifold at a point is a vector spacewecan apply all the multilinear
algebra that we presented in the previous section. The dual space of TPM at each p G M is
called the cotangent space of the manifold M at p and is denoted by T*M. The collection of
all cotangent spaces,

T*M := |J T;M
P6M

is called the cotangent bundle. Similarly, we canform the spaces £k(TpM) and Ak(T*M) over
each p G M as well as the bundles

£k{M) := |J £k(TpM)
PGM

Ak(M) := [J Ak(T;M)
p£M

One can construct tensor fields on a manifold M by assigning to each point p of the
manifold a tensor. A k-tensor field on M is a function uj assigning to every p G M a k-tensor,

u{p) G£k(TpM)

Therefore a k-tensor field is a section of £k(M). At each point p G M, uj(p) is a function
mapping k-tuples of tangent vectors of TPM to R. That is

uj(P)(xux2,...,xk)eR

is a multi-linear function of tangent vectors Xu..., Xk GTPM. In particular, if a; is a section
of Ak(M) then uj is called a differential form of order k or k-form on M. In this case, uj(p) is
an alternating k-tensor at each point p G M. The space of all k-forms on a manifold M will
be denoted by $lk(M) and the space ofall forms on M is simply

n(M):=n°(M)©...enn(M)

At each point p G M, let
_d_ _d_
dxl'"'' dxn

be the basis for TPM. Let the 1-forms ft be the dual basis of the basis tangent vectors of
TPM. Therefore,

Recall that the forms
(f,1 = fii <g> ft* 0 ... <g> p*

for multi-index 7 = (t'i,...,u) form a basis for £k(TpM). Similarly, given an ascending
multi-index 7 = (»i,..., u), the k-forms

if)1 = (f>h A<f>i2 A ... A <f>ik
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form a basis for Ak(TpM).
If uj is a k-tensor on M, it can beuniquely written as

"(p) = Ebi(p)<i>I(p)
i

for multi-index 7and scalar functions 6/(p) whereas the k-form a can be written uniquely as

*(p) = X>'W(p)

for ascending multi-index 7 and scalar functions cj. The k-tensor u> and k-form a are of class
C°° iff the functions 6/ and c/ are of class C°° respectively. Given two forms uj GClk(M),0 G
ft'(M), we have,

i

/

u;A0 = X)D&/c:/V>/Ai/>J
/ J

Recall that we have defined A°(TPM) = R. As a result, the space of differential forms of order
0 on M is simply the space of all functions / : M —> R and the wedge product of / G H°(M)
and uj G Q*(M), is defined as

(w A f)(p) = (/ A w)(p) = f(p) •w(p)

3.4 The Exterior Derivative

Recall that a 0-form on a manifold M is a function / : M —> R. The differential df of a 0-form
/ is defined pointwise as the 1-form,

df(v)(X„) = Xp(f)

and is therefore the directional derivative of / in the direction of Xp at p. The operator d is
linear on 0-forms, that is

d(af + bg) = a-df + b-dg

and this follows from the fact that Xp is a linear operator.
Using this operator d, we obtain a new way of expressing the elementary 1-forms

(f>{(p) on TpM. Let x : M —• Rn be the coordinate function in a neighborhood of p. Then
consider the differentials of the coordinate functions

dx'(p){Xp) = X?(x<)

If we evaluate the differentials dx% at the basis tangent vectors of TPM we obtain,

dAv)(j-) =«e
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and therefore the dx*(p) are the dual basis ofTPM and therefore dxx{p) = (f>l(p) since the <f>l(p)
are also the dual basis. Thus the differentials dx{(p) span £1{TPM) and therefore using our
previous results any k-tensor uj can be uniquely writen as

u(p)=Y,bi(p)dxI(p)
I

for multi-index 7 while any k-form can be uniquely writen as

^{p) = YfbI(p)dxI(p)
I

for ascending multi-index 7. Therefore any k-tensor uj can be expressed in the chart (U,x)
containing p as

n

uj(p) =^2bI(p)dx1 ®... <g> dxn
t=i

while the k-form a is expressed as
n

q(p) = X^ ci{p)dxl A... Adxn
t=i

Using this basis now we have that for a 0-form,

At fVjldf =£ 3^*
1=1c/x

We have therefore defined an operator d which takes 0-forms to 1-forms. We now
proceed to inductively define an operator d : Qk(M) —> Qk+1(M). We will do so by proving
that there exists a unique operator d which is compatible with the operator which takes
0-forms to 1-forms while also satisfying some additional properties.

Definition 27 Letuj be a k-form on a manifold M. Its representation in a chart. (U,x) is

uj —y^^ujdx1
I

for ascending multi-index I. The exterior derivative or differential operator, d, is a linear
map taking the k-form uj to the (k-hl)-form du by

du) = Y duji Adxl
i

Notice that the ujj are smooth functions, and thus 0-forms whose differential duji has already
been defined as

j=i *""

and therefore we get that for any k-form

rfw = rr -z-^dxj A dx1
iUdx3

One can see from the definition that this operator is certainly linear. We now show that this
differential operator is a true generalization ofthe operator taking 0-forms to 1-forms, satisfies
some important properties and is the unique operator with those properties.
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Theorem 27 Let Mbe amanifold and let p€M. Then the exterior derivative is the unique
linear operator

d:nk(M)->Slk+1(M)
for k > 0, that satisfies,

1. If f is a 0-form, then df is the 1-form

df(p)(Xp) = Xp(f)

2. Ifu1 Gnk{M),u2 GUl(M) then

d{<J Auj2) = duJ1 Auj2 -r (-1)V Adu?

3. For everyform uj, d(du) = 0

Proof: Property (1) can be easily checkedfrom the definition of the exterior derivative. We
now prove property (2). Because of linearity of the exterior derivative it suffices to consider
the case u?1 = fdx1 and uj2 = gdxJ in some chart {U,x). We have

d{ujl Auj2) = d(fg) Adx1 AdxJ
= gdfAdx1 AdxJ + fdg Adx1 AdxJ
= du1 Au>2 + (-\ffdx1 AdgA dxJ
= duj1 Auj2 + {-l)kuj' Adu2

We now prove property (3). Again it suffices to consider the case uj = fdx1 because
of linearity. Since / is a 0-form,

d(df) =d(J2(DJ)dx') =£,£, DdDjftdx1 Adx'
j=i i=i i=i

= (Di(Djf) - D^Dif^dx' Adxj = 0

where Dif is the standard derivative J-£. Ifuj = fdx1 is a fc-form, then duj —df Adx1, and
since

d(dx!) = d(l Adx1) = d(l) Adx1 = 0

we get
d(duj) = d(df) Adx2 -df Ad{dx!) = 0

We now show that d is the unique linear operator with the above properties. To
show this let's assume that d' is another linear operator with the same properties. We will
show that d = d'.

Consider again a k-form uj = fdx1. Since d' satisfies property (2) we have

d'ifdx1) = d'f Adx1 + / Ad'idx1)
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From the above formula we see that if we can show that d^dx1) = 0 then we will get

d'Udx1) = d'f Adx1 = dtfdx1)

which will complete the proof. We therefore want to show that

d'idx1 A...Adxk) = 0 (11)

But since both d and d' satisfy property (1) we have

dx1 = dxh A ... A dxik = d'xh A ... A d'xik = d'x1

since the coordinate functions xl are 0-forms.

We prove equation (11) by induction. It can be easily checked to hold for k = 0.
Assume that equation (11) holds for k —1. Then define

n = dx2 A ... A dxk

Then

d'idx1) = a"{d'x'1 Ad'xik) = d'id'x'*) An- d'uji, Ad'n = ti
since d! also satisfies property (3) and by the induction hypothesis. •

Now let / : M —• N be a smooth map between two manifolds. We have seen that
the push forward map, /„, is a linear transformation from TPM to T/(p)Af. Therefore given
tensors or forms on Tj(p)N we can use the pull back transformation, /*, in order to define
tensors or forms on TPM. 4 The next theorem shows that the exterior derivative and the pull
back transformation commute.

Theorem 28 Let f : M —> N be a smooth map between manifolds. Ifuj is a k-form on N
then

r(duj) = d(ruj)

Proof: See Spivak [6] pages 295-6. •

3.5 The Exterior Derivative and the Grad, Div, Curl Operators
From a historical standpoint, the language of forms arose from the study of integration on
manifolds. In addition to generalizing certain notions of vector calculus in R3 to higher
dimensions and arbitrary manifolds, forms provided an elegant reformulation ofmany of the
original theorems regarding vector and scalar fields in R3. As a result, considerable physical
insight can be gained in this context by studying the relationships between vector fields and
scalar fields in R3 and differential forms. In the context of exterior differential systems,
however, forms have an inherent physical interpretation as constraints and not as the analog
of some vector or scalar field. The parallels drawn in this section should therefore be viewed
as an alternate application of the mathematics of differential forms.

4to be consistent with our previous notation one must write (/.)* to denote the pull back of/.. However
notation is abused and we simply denote it by /*.
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Given a scalar field, / on R3, there is an obvious trivial transformation to a 0-form
/ Gfi°(R3). Similarly, any vector field in R3 can be expressed as

G(x) = (x;gl(x)e1-hg2(x)e2-{-g3(x)e3)

and a corresponding 1-form

uj = gi(x)dxl + g2(x)dx2 -f g3(x)dx3

may be constructed in a very straightforward manner. Perhaps less obvious is that scalar
fields may also be identified with 3-forms and vector fields with 2-forms.

Theorem 29 The following transformations from vector and scalar fields to forms

T0 : Scalar fields—> ft°(R3)
Tj : Vector fields—• fi^R3)
T2 : Vector fields—> Q2{R3)
T3 : Scalar fields —> Q3(R3)

given by:

To

T,

T2

T3

f — f

(x'i E#,e«) —* 9\dx2 Adx3 + g2dx3 Adx1 + g3dxl Adx4
f —• fdx1 Adx2 Adx3

are vector space isomorphisms.

Proof: See Munkres [1]. •
This may be generalized to Rn, with vector fields isomorphic to 1-forms and (n-1)

forms and scalar fields isomorphic to 0-forms and n-forms.
Drawing from the familiar results of vector calculus, the three primary operations

on vector fields and scalar fields in R3, the gradient, divergence and the curl, may be defined.

Definition 28 Let f(x) be a scalar field on R3 and G(x) = (z;£#(x)e;) a vector field.
The gradient of f, V/ or gradf, is the vector field given by:

V/(x) = (^A/Wei)

The divergence of G, V •G or divG is the scalar field given by:

V-G(x) = ^Ai/iW

The curl of G,V x G or curlG, is the vector field given by:

V x G(x) = (x\ (D2g3 - D3g2)ex + (D3g^ - D^e?. + (Dxg2 - D2g!)e3)
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The gradient and divergence may be formed analogously in Rn by extending the summation
over all n indices; the curl has no real equivalent outside of R3.

With the above transformations, these three operations be translated into the lan
guage of forms.

Theorem 30 The transformationsform the following diagram:

ScalarFields -^ ft°(Rn)
V| id

VectorFields -^> n\Rn)
(Vx)| id

VectorFields -^ Q2{Rn)
(V-) | i d

ScalarFields -^ tt3(Rn)

Equivalently,

df = UVf)

d(T,G) = T2(VxG)
d{T2G) = T3(V-G)

Proof: Follows immediately from the previous theorem and definitions. D
This is a rather remarkable result. The d-operator, combined with the appropriate

transformation to differential forms, supplants allthree operators ofvector calculus. Arguably,
such an approach is far more elegant both notationally and conceptually. Nowhere is this
moreevident then in the derivation of the generalized Stokes' theorem, which, combined with
the discussion above, may be viewed as a single compact representation of Green's theorem,
Stokes' theorem and the divergence theorem. This theorem, however, is a substantial topic in
its own right and the reader is referred to treatments by Munkres [1] or Spivak [2].

3.6 Closed and Exact Forms

The d-operator may be used to define two classes of forms of particular interest.

Definition 29 A k-form uj GQk(M) is said to be closed ifduj = 0.

Definition 30 A k-form uj GSlk(M) with k > 0 is exact if there exists a (k-l)-form 0 such
that uj —d0. A 0-form is exact on any open set if it is constant on that set.

Clearly, exactness is the stronger condition, since for any form 0, d(d0) = 0. Any
exact form must therefore be closed. The converse does not necessarily hold, though further
conditions may be found to ensure this.

The concept of exactness for forms is equivalent to the more familiar concept of
exactness in differential equations. From a physical standpoint, exactness may be used to
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translate certain statements of mechanics into the language of forms. Given a constraint in
Pfaffian form,

aidx1 + a2dx2 + ... + andxn = 0

the question of whether or not this constraint is holonomic may be equivalently posed as
whether or not the 1-form

aidx1 + a2dx2 + ... + andxn

is exact. Similarly, properties of vector fields may be expressed in this notation under the
vector space isomorphisms of Section 3.5. For instance, determining if the vector field

F(x) = (x; f1{x)e1 + f2(x)e2 -f f3(x)e3)

is derivable from a scalar potential (i.e. F = V/) is equivalent to determining if the 1-form

w = fi(x)dxi -{• f2(x)dx2 + f3(x)dx3

is exact.

3.7 The Interior Product

We can define the interior product of a tensor field and a vector field pointwise as the interior
product of a tensor and a tangent vector.

Definition 31 Given a k-form uj G ilk(M) and a vector field X the interior
product or anti-derivation of uj with X is a (k —1) form defined pointwise by,

(X{p)^Uj(p)){vl, . . . , Vk-\) = Uj(p)(X(p),V1, . . . , Ufc_i)

Therefore an antiderivation of a k-form uj simply substitutes the first argument with the given
vector and thus results in a (k-l)-form.

Definition 32 Given a function h : M —• R, the Lie derivative of h along the vector field
X is denoted as Lxh and is defined by

Lxh = X(h) = X-*dh

The Lie derivative is simply the directional derivative of h along X.

Definition 33 Given two vector fields X and Y, their Lie bracket is defined to be the vector
field such that for each h G G°°(p) we have

[X,Y]{h) = X(Y(h)) - Y(X(h)) = X^d(Y-*dh) - Y^d(X^dh)

In particular, if we choose the coordinate functions x\ we get

[x, y](x<) =[x, n =Eg*, -E j^y*
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and we therefore obtain

rv vk„\ — _

dx dx
[X,Y](x) =^X(x)-^:Y(x)

The Lie bracket is skew symmetric

[X,Y\ = -[Y,X]

and also satisfies the Jacobi identity

[X, [Y, Z}] + [Y, [Z, X]} + [Z, [X, Y]} = 0

The following lemma establishes a relation between the exterior derivative and Lie
brackets.

Lemma 2 (Cartan's Magic Formula). Let uj G ft(M) and A', Y smooth vector fields. Then

duj(X,Y) = X(uj(Y)-Y(uj(x))-uj([X,Y])
= X->d(Y->uj) - Y-id(X^uj) - [X, Y]-^uj

Proof: Because of linearity, it is adequate to consider uj = fdg. The left hand side of the
above formula is

du(X,Y) = dfAdg(X,Y)

= df(X)-dg(Y)-df(Y)-dg(X)
= X(f) •Y(g) - Y(f) • X(g)

while the right hand side is

X(w(Y))-Y(w(X))-u([X,Y}) = X(fY(g))-Y(fX(g))-f(XY(g)-YX(g))
= X{f) •Y(g) - Y(f) • X(g)

which completes the proof. D

3.8 Distributions and Codistributions

Recall that a vector field is a map that assigns a tangent vector to each point on the manifold.
In the case of multiple vector fields, one may assign a number of tangent vectors at a point
and look at the subspace of the tangent space spanned by these vectors. This assignment,
which places at each point of the manifold a subspace of the tangent space at that point, is
called a distribution and is denoted by

A(p) = spanihip),..., fd(p)}

or if we drop the dependence on the point p,

A = span{fu...,fd}
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Therefore, at a point p of manifold M, A(p) is the subspace of TPM which is spanned by the
tangent vectors assigned at p by the vector fields fu ..., fd. If the vector fields are smooth,
we call A(p) a smooth distribution. The dimension of the distribution at a point is defined
to be the dimension of the subspace A(p). A vector field / belongs to a distribution A if
f(p) G A(p) for all p.

Since distributions are subspaces one can easily define the sum or intersection of
two distributions as the sum or intersection of the respective subspaces.

A distibution is called involutive if given any two vector fields /] and f2 belonging
to the distribution, their Lie bracket also belongs to the distribution, i.e.

/i,/2€A=^[/1,/2]€A

A distribution A is called integrable if there exists a submanifold N oi M such that
the tangent space of N at x equals A(x). The submanifold N is called the integral manifold
of the distribution A. The following theorem, provides us with a condition under which a
distribution is integrable.

Theorem 31 (Frobenius Theorem for distributions) A distribution A(x) is integrable if and
only if it is involutive.

Proof: See Spivak [2] pages •.
In a construction similar to the one described above, one may assign to each point of

the manifold a number of 1-forms. The span of these 1-forms will be, at each point, a subspace
of the cotangent space T*M. This assignment is called a codistribution and is denoted by

Q(p) = spanfaip),... ,u\f(p)}

or if we drop the dependence on the point p,

0 = span{uji,...,ujd}

where u>i,... ,u^ are the 1-forms which generate this codistribution.
There is a notion of duality between distributions and codistributions which allows

us to construct codistributions from distributions and vice verca.

Given a distribution A, for each p in a neighborhood £/, consider all the 1-forms
which pointwise annihilate all vectors in A(p),

A1^) = span{uj(p) GT;M :uj(p)(f) = 0V/ GA(p)}

Clearly, A±(p) is a subspace of T*M and is therefore a codistribution. We call A1 the
annihilator or dual of A. Conversely, given a codistribution 0, we construct the annihilating
or dual distribution pointwise as

e1(p) = span{v GTPM : uj(p){v) = 0Vw(p) GSl{p)}

If N is an integral manifold of a distribution A and v is a tangent vector in the
distribution A at a point p (and consequently in TPN) then

a(p)(v) = 0
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for any a G A1. Notice that this must be true for integral curves as well. Therefore given a
codistribution

0 = span{uji,. ..,u>s}

an integral curve is a curve c(t) whose tangent c'(t) at each point satisfies,

^Mt)){c'(t)) = 0 u;s(C(i))(c'(*)) = 0

Example Consider the following model of a unicycle

X = U\ cos 0

y = U\ sin 0

0 = u2

which can be written as

' X ' " cos# " "0"

y = sin0 Ml + 0

. 0 . 0 1

The corresponding distribution is

«2 = Mi + f2u2

A(x) = span{
COS0 r o i

sin#
? 0

0 i

while the dual codistribution is

A1 = span{uj}

where uj = sin0dx —cos 0dy -}- Od0, the nonholonomic constraint of rolling without slipping. It
can be easily seen that the 1-form uj annihilates both vector fields /i and f2. The above ex
ample shows that vector fields and distributions describe the allowable motions of the system,
forms and codistributions describe the constraints of the system. O

4 Exterior Differential Systems

4.1 The Exterior Algebra On a Manifold

The space of all forms on a manifold M,

n(M) = n°(M) e... © nn(M)

together with the wedge product is called the exterior algebra on M. An ideal of this algebra
is defined as in Section 2.6 as a subspace 7 such that if a G 7 then a Af3 G 7 for any 0 G ft(M).

Since we are dealing with Q,(M) we are also interested in what happens when we
perform exterior differentiation on elements of the ideal.
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Definition 34 An ideal I C ft(M) is said to be closed with respect to exterior differentiation
if and only if

a G 7 =>da€ I

or more compactly dl C 7. A algebraic ideal which is closed with respect to exterior differen
tiation is called a differential ideal

A finite collection of forms, E := {a1,... ,aK] generates an algebraic ideal

K

h := {w Gft(M) \uj = J2$i AQi for some 0i € tt(M)}.
i=i

We can also talk about the differential ideal generated by E.

Definition 35 Let Sd denote the collection of all differential ideals containing E. The
differential ideal generated by E is defined as

is := n /
iesd

Theorem 32 Let E be a finite collection of forms, and let Xe denote the differential ideal
generated by E. Define the collection

£' = £ U dZ

and denote the algebraic ideal which it generates by &. Then

Je = h'

Proof: By definition, Jg is closed with respect to exterior differentiation, so E' C Je- Con
sequently, 7s' C Xe-

The ideal 7e* is a closed with respect to exterior differentiation and contains E by
construction. Therefore, from the definition of Je we have that Je C 7e*. Q

The associated space and retracting space of an ideal in Q(M) are defined pointwise
as in section 2.6.3. The associated space of Je is called the Cauchy characteristic distribution
and is denoted A(Iz).

4.2 Exterior Differential Systems

In section 2.6.3 we introduced systems of exterior equations on a vector space V and char
acterized their solutions as subspaces of V. We are now ready to define a similar notion
for a collection of differential forms defined on a manifold M. The basic problem will be to
study the integral submanifolds of M which satisfy the constraints represented by the exterior
differential system.

Definition 36 An exterior differential system is a finite collection of equations

a1 =0,...,ar = 0

where each a% G Clk(M) is a smooth k-form. A solution to an exterior differential system is
any submanifold N of M which satisfies ctf(x)\TxN = 0. for all x e N and all i G 1,..., r.
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An exterior differential system can be viewed pointwise as a system of exterior
equations on TPM. In view of this, one might expect that a solution would be defined as
a distribution on the manifold. The trouble with this approach is that most distributions
are not integrable, and we want our solution set to be a collection of integral submanifolds.
Therefore, we will restrict our solution set to integrable distributions.

Theorem 33 Given an exterior differential system

a1=0,...,aA' = 0 (12)

and the corresponding differential ideal2% generated by the collection of forms

E:={<*\...,aA'} (13)

an integral submanifold N of M solves the system of exterior equations if and only if it also
solves the equation 7r = 0 for every x G Ia-

Proof: If an integral submanifold N of M is a solution to E, then for all x G N and all
ie 1,...,7\

g^xJIt^v^O.

Taking the exterior derivative gives

da^x^N^O.

Therefore, the submanifold also satisfies the exterior differential system

a1 =0,...,aA' =0,rfo1 =Q,...,daK =0

From theorem 32 we know that the differential ideal generated by E is equal to the algebraic
ideal generated by the above system. Therefore, from theorem 23 we know that N will also
be a solution for every element of Je.

Conversely, if N solves the equation 7r = 0 for every it G Je then in particular it
must solve E. •

The above theorem allows us to either work with the generators of an ideal or with
the ideal itself. In fact some authors define exterior differential systems as differential ideals
of fi(M).

Because a set of generators E generates both a differential ideal Je and a algebraic
ideal 7e, we can define two different notions of equivalence for exterior differential systems.

Definition 37 Two exterior differential systems, Ei and T,2, are said to be algebraically
equivalent if and only if they generate the same algebraic ideal, i.e. 7ej = 7e2.

Definition 38 Two exterior differential systems, Ei and £2, are said to be equivalent if and
only if they generate the same differential ideal, i.e. Jej = Je2-

Intuitively, we want to think of two exterior differential systems as equivalent if they have
the same solution set. Therefore, we will usually discuss equivalence in terms of this second
definition.
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4.3 Pfaffian Systems

An exterior differential system of the form

a1 = a2 = ... = a* = 0

where the a1 are independent 1-forms on an n-dimensional manifold is calleda Pfaffian system
of codimension n —s. The 1-forms a1,... ,as, generate the algebraic ideal

I ={a\...,<*'}

which means that

I={aen(M):a=^20j Aaj}
i=i

for some 0J G tt(M) or equivalently

7 = {a Gft(M) : a Aa1 A... Aa3 = 0}

The following conditions ensure that the algebraic ideal generated by the 1-forms a* is also a
differential ideal.

Definition 39 A set of linearly independent 1-forms a1,..., as in the neighborhood of a point
is said to satisfy the Frobenius condition if one of the following equivalent conditions hold:

1. da1 is a linear combination o/a1,.. .,as.

2. da{ Aa1 A ... Aa3 = 0 for 1 < i < s.

3. da{ = Ej=i 0j Aai

When da* is a linear combination of a1,... ,as the following expression if frequently used

da1 = 0 mod a1,..., a3 1 < i < s

where the mod operation is implicitly performed over the algebraic ideal generated by the a*.

Example: We will illustrate the above concepts for the unicycle. Recall that the unciycle
can be described by the following codistribution

7 = M

where

uj = sin 0dx —cos 0dy -f Od0

The exterior derivative of u> is

duj = cos 0 d0 A dx + sin 0 d0 A dy

and therefore

duj Auj = —cos2 d0 Adx Ady + sin2 d0 Ady Adx = dx Ady Ad0 =^ 0

and therefore 7 is not a differential ideal since the Frobenius condition does not hold.O
We are now ready for Frobenius Theorem for codistributions.
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Theorem 34 (Frobenius Theorem for codistributions) Let I be an algebraic ideal generated
by the independent 1-forms a1,...,a* such that the Frobenius condition is satisfied. Then in
a neighborhood of x there exist functions h* with 1 < i < s such that

I={a\...,as} = {dh\...,dh3}

Proof: See [5] pages 27-29. •
For more general exterior differential systems we have the following integrability

results.

Theorem 35 If the Cauchy characteristic distribution of I has constant dimension r in a
neighborhood, then it is integrable.

Proof: See [5] page 31. •

Theorem 36 Let 2 be a differential ideal whose retracting space has a constant dimension
n —r. There is a neighborhood in which there are coordinates y1,..., yn such that 2 has a set
of generators which are forms in y1,..., yn~r.

Proof: See [5] page 31-33. •

4.4 Derived flags

If the algebraic ideal generated by a Pfaffian system does not satisfy the Frobenius conditions,
then it is not a differential ideal. However, there may be a piece of the algebraic ideal which
is also a differential ideal.

Let /t°) = {uj1,. . . ,u>s} be the algebraic ideal generated by independent 1-forms
u;1,... ,u;5. We define 7^ as

7<J> = {A G7(°>:<*A = 0 mod 7<°>}C7<°>

The ideal 7^ is called the first derived system. Anatural question is to ask what is the analog
of the first derived system from the distribution point of view. The next theorem answers this
question.

Theorem 37 7/7<°) = A1 then JW = (A + [A, A])1.

Proof: Let 1^ be spanned by 1-forms w1,... ,u>s and let A be the annihilating distribution.
By definition we have that

7<J> = {u; G7<°> : duj = 0 mod 7<°>}

Now let 7/ G 7*1). Therefore dn = 0 mod7^ which means that

s

dn = Y,Bi A(jji
%=\
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for some forms 0J. Now let X be a vector field in A. Since A is the annihilating distribution
of 7<0) then it follows that

n(X) = 0

Likewise for another vector field Y GA we have n(Y) = 0. Now since

dn(X,Y) =J2W Aujj
»=i

we get that

dn(X,Y) = 0

since ujj(X) = ujj(Y) = 0. By using Cartan's magic formula we obtain

dn(X, Y) = Xn(Y) - Yn(X) - i,([X, Y]) = 0

and therefore

V({X,Y}) = 0

which means that n annihilates any vector fields belonging in [A, A] in addition to any vector
fields in A. Therefore n G (A + [A,A])1 and thus

I{l)C(A-r[A,A))L

Conversely, let rj G(A+ [A, A])x and let X,Y be vector fields in (A+ [A, A]). Using Cartan's
magic formula gives

dV(X, Y) = Xn(Y) - Yn(X) - n([X,Y}) = 0

and therefore dn = 0 mod 7<°) which means that n G I(l). Thus (A + [A, A])-1 C 7*1* and
therefore (A+ [A,A])X = JW .D

One may inductivelycontinue this procedureof obtaining derivedsystems and define

7<2> = {A GI{1) :d\ = 0 mod I™} C I{1)

or in general
7<*+1> = {A GI{k) :d\ = 0 mod /<*>} C I{k)

The above procedure results in a nested sequence of codistibutions

j(k) cj(k-i) c _>c/(i) c/(o)

We can also generalize Theorem 37. If we define A0 = (7(°))1, Aj = (I{l))L,
and in general Ajt = (I{k))L, then it is not hard to show that if /<*> = A£ then Hk+l) =
(Ak + [A*,Afc])x. The proof of this fact is similar to the proof of Theorem 37 but uses a more
general form of Cartan's magic formula. Therefore one can show that

Afc+i = A* + [A*,Afc]

and we can therefore see that higher order derived systems of codistributions are associated
with higher order Lie brackets of distributions.
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Therefore to the sequence of decreasing codistributions

j(k) c j(k-i) c _ c /(i) c /(o)

we can associate a sequence of increasing distributions,

At D Ajt_! D ... D Aj D A0

The sequence of decreasing codistributions is called the derived flag of I^ while the increasing
sequence of distributions is called a filtration of A0. If the dimension of each codistribution
is constant then the above construction will terminate in finitely many steps. There will
therefore be a codistribution 7W for some integer N such that 7<N) = I^N+1). This integer N
is called the derived length of 7. In fact, 1^ is always integrable by definition since

Codistribution 7<N> is the largest integrable subsystem in 7. Therefore if 7<N) ^ {0} then
there exist functions h1,..., hr such that {dh1,..., dhr] C 7.

As a result, if a Pfaffian systems contains an integrable subsystem 1^ ^ 0 which
is spanned by the 1-forms dh1,. ..,dhr then the integral curves are constrained to satisfy the
following equations,

dh{ = 0=>hi = kiforl<i<r

and therefore trajectories of the system must lie on the manifold,

M = {x : h{(x) = ki for 1 < i < r]

Therefore if1^ ^ 0 it is not possible to find an integral curve from a configuration x(0) = x0
to another configuration x(l) = x\ unless both configurations satisfy

hi(x0) = hi(x1) for 1<i<r

Example: Consider the following system which is slightly more sophisticated than the uni
cycle. Consider a rolling penny on a plane, with unit radius, which is similar to the unicycle
with the additional requirement that we can specify a desired configuration of Lincoln's head.
Thus in addition to the three configuration variables of the unicycle we also have an angle <f>
describing the orientation of Lincoln's head. The model in this case is,

x = Ifi cos 0

Hi sin 0

u2

-Ui

which can be written as

X ' COS0 " r o l

y

o
=

sin0

0
«i +

0

i

. +. -1 . 0 .
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The annihilating codistribution can be easily checked to be

I = AL = {a\a2}

where

Now

Therefore

a1 = sin 0dx - cos 0dy + QdO + Od<f>
a2 = cos 0dx + sin 0dy + Od0 + \d<f>

da1 = cos 0d0 Adx+ sin 0d0 Ady
da2 = —sin 0d0 Adx-\- cos 0d0 Ady

dot1 Aa1 Aa2 - d0 Adx Ady A d<f>
da2 Aft1 = sin 0cos 0(d0 Adx Ady + d0 Ady Adx) = 0

da2 Act1 A a2 = 0

da1 ^ 0 mod a1,a2
da2 = 0 mod a1,a2

and thus the first derived system is,

/<*> = {a2}

da2 Ao2/0

7<2> = {0}

J<°> = {a\a2}
IM = {a1}
7<2> = {0}

and therefore an integrable subsystem does not exist. Asa result the system is not constrained
to move on some hypersurface, as expected. O

4.5 Pfaffian Systems of Codimension n — 1

We will now restrict to the study of Pfaffian systems of codimension n —1. Pfaff originally
investigated systems consisting of a single equation

a = 0

where a is a 1-form on a manifold M. In some chart (U, x) of a point p GM the equation can
be expressed as

ai(x)dx1 + a2(x)dx2 + ... + an(x)dxn = 0
In order to understand the integral manifolds of this equation we will first try to express a in
a normal form by performing a coordinate transformation.
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Definition 40 Let a G fi^M). The integer r defined by

(da)rAa ^ 0

(da)r+lAa = 0

is called the rank of a.

The following theorem allows us, under a rank condition, to write a in a normal form.

Theorem 38 (Pfaff) Given any a G O1 (M) with constant rank r in a neighborhood of p,
there exists a coordinate chart (U,z) such that a = dz1 + z2dz3 -f ... -f z2rdz2r+l.

Proof: Let J be the differential ideal generated by a. From theorem 25 the retraction space
of J is of dimension 2r + 1. By theorem 36 there is a function /i such that

(da)r Aa A dfi = 0

Now let Ji be the differential ideal generated by {dfi, a, da}. If r = 0 then the result follows
from the Frobenius theorem. If r > 0, the forms dfi and a must be linearly independent.
Applying theorem 25 to Jj, let n be the smallest integer such that

(da)ri+1AaAd/, = 0

Clearly, ri +1 < r. Furthermore, the equality sign must hold because (da)r Aa ^ 0. Applying
theorem 36 to Ji there exists a function f2 such that

(daf1 AaAdf1Adf2 = 0

Repeating this process, we find r functions /i,/2,... ,/r satisfying

da A a A dfx A df2 A ... A dfr = 0

a A rf/i Adf2 A ... AdfT ^ 0

Finally,let 2T be the ideal {dfi,..., d/r, a, da}. Its retraction spaceC(2r) is of dimension r -f1.
There is a function /r+i such that

a A d^ Adf2 A ... A dfr+l = 0

dh Adf2 A ... A#r+1 ^ 0

By modifying a by a factor, we can write

a = dfr+1 + flfjd/i + ... + grdfr.

Because (da)r Aa^O, the functions /i,..., /r+i,^i, •••, <7r are independent. The result then
follows by setting

w1 = fr+1 w2i = 9i w2i-»=fi

for 1 < i < r. •
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Example: Consider the unicycle example described by the codistribution

where

a = sin 0dx —cos 0dy

We can immediately see that

da = cos0d0 Adx-\- sin 0d0 A dy

and that

da A a = d0 A dy A dx ^ 0

(da)2 Aa = 0

Therefore the rank ofa is 1 and by Pfaff's Theorem thereexist coordinates z1, z2, z3 such that

a = dz1 + z2dz3

In this example we trivially obtain,

a = dy + (— tan 0)dx

O

The following theoremis similar to Pfaff's theorem and it simplyexpresses the result
in a more symmetric form.

Theorem 39 Given any a G ^(M) with constant rank r in a neighborhood U of p, there
exist coordinates z, y1,..., yr, x1,..., xT such that

<x =dz +\J2(yidxi-xidyi)
1 t=i

Proof: The following coordinate transformation

1

2
1 = *4i>v

t=i

z2i = y1' 1 < i < r
2t+i _ _;

reduces the above theorem to Pfaff's Theorem. •

The Pfaffian system a = 0 on a manifold M is said to have the local accessibility
property if every point x GM has a neighborhood U such that every point in U can be joined
to x by an integral curve. The following theorem answers the question of when does this
Pfaffian system have the local accessibility property.

Theorem 40 (Caratheodory) The Pfaffian system,

a = 0

where a has constant rank, has the local accessibility property if and only if

a Ada ^ 0
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Proof: The above condition simply says that the rank of a must be greater than or equal
to 1. If a has zero rank then da Aa = 0 and therefore by Frobenius Theorem we can write

a = dh = 0

for some zero form h. Since dh = 0 the integral curves are of the form h = c for arbitrary
constant c. Therefore we do not have the local accessibility property since we can only join
points p,q G M for which h(p) = h(q).

Conversely, let a have rank r > 1. Then from Theorem 39 we can find coordinates
z,x1,...,xr,y1,...,yr,u1,...,us in some neighborhood U with 2r + 5-f 1 = dirnM such that

Q=dz +\ fl(yidxi ~*W) =o
^ i=i

and therefore

dz =\Yd(xidyi-yidxi)
1 i=i

Given any two points p,q G U we must find integral curves c : [0,1] —> U with c(0) = p and
c(l) = q. Without loss of generality we can assume z(p) = xl(p) = y{(p) = u*(p) —0. Let
z(<l) —^i^'(p) = x\,y*{p) = y\,ut{p) —u\< The form a is independent of the u{ coordinates
and therefore one can choose the curve tu\ to steer the u% coordinates.

In the (xl,yx) plane there are many curves (£'(*), y'(*)) which can join the origin
with the desired point (x\,y[). We are therefore left with steering the z coordinate to z\.
However we have that

dz =l'£(xidyi-yidxi)
2<-i

and therefore
1 /"*r^, •dvi dx\

2J° i^i di dt
We can therefore impose the restriction that the curve (xl(t),yl(t)) be such that z(l) = z\.
The reason why such a curve must exist is that the

**-U&!i-<Z*-\t»>
where Ai is the area enclosed by the curve (xl(t),yl(t)) and the cord joining the origin with
the desired endpoint. Therefore we can geometrically see that we can always generate a curve
(xl(t),yl(t)) linking the desired points while enclosing the desired area prescribed by z\.

Therefore the integral curve c(t) given by

(z(t),x1(t),...,xr(t),y1(t),...,yr(t),tu1(t),...,tu3(t))

has c(0) = p and c(l) = q. Therefore the systems has the local accessibility property. •
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4.6 Pfaffian Systems of Codimension 2

In the previous section we considered Pfaffian systems consisting of a single equation. We
now consider systems of codimension two. We are again interested in performing coordinate
changes so that the generators of these Pfaffian systems are in some normal form.

Theorem 41 (Engel) Let I be a two dimensional codistribution

I = {cc\a2}

offour variables. If the derived flag satisfies

dimlM = 1

diml{2) = 0

then there exist coordinates zl,z2,z3,z4 such that

I={dz4-z3dz1,dz3-z2dz1}

Proof: Choose a basis such that 7<°) = 7 = {a1,a2} 7*1) = {a1} and 7<2> = {0}. Choose a3
and a4 to complete the basis. Since 7^2^ = {0} we have

da1 Aa1 ^ 0

while

(da1)2 A^=0

since it is a 5-form on a 4-dimensional space. Therefore the rank of a1 is 1. By Pfaff's
Theorem, we know that there exists a coordinate change so that

q1 = dz4 - z3dzl

and thus

da1 = -dz3 A dz1 = dz1 A dz3

Now since a1 G 7^ we have
da1 A a1 A a2 = 0

and thus

dz1 A dz3 A a1 A a2 = 0

Therefore a2 is a linear combination of dz1, dz3 and a1 or likewise

a2 = a(x)dz3 + b(x)dzl mod a1

By definition this means that

a2 + X(x)a1 = a(x)dz3 + b(x)dzl
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Now a(x) and b(x) cannot be both zero since a2 ^ 0. If a(x) ^ 0 then we have

a(x) a(x) a(x)

and if we set z2 = —4|i then

_La2 + AMl =^3_^1
a\x) a(x)

and thus

7={a1,a2} ={a\-^ra* +^a1} ={<**< - aW,^3 - z2dz1}
a(x) a(x)

The case b(x) ^ 0 is similar. Q

Example: Consider again the penny rolling on a plane which is described by the codistri
bution,

with

a1 = cos 0dx + sin 0dy —d<f>
a2 = sin 0dx —cos 0dy

In a previous example we have already seen that the derived flag is

7<°> = {a\a2}
I™ = {a1}
I{2) = {0}

and thus satisfies the conditions of Engel's Theorem. After some calculations we obtain

da1 = - sin 0d0 Adx+ cos 0d0 Ady
da1 Aa1 = -dx Ady Ad0 + sin 0d0 Adx Ady - cos 0d0 Ady Ady

and thus the rank of a1 is 1. Following the proof of Pfaff's Theorem weknow that there exists
a function fi such that

da1 Aa1 Adfi = 0

We can easily see that the function fi=0 will satisfy the above equation. Since the rank of
a is 1, we must now search for a function f2 such that

a1 Adfx Adf2 = 0

Letf2 = f2(x,y,0,<f>). Then
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Combining the last two equations and algebraic manipulations result in the following partial
differential equations

_COs4^ +sin0<p = 0
oy ox

d/2 ndfo•41 + zos0-£: = 0
ox o<f>

df2 , . M2
-r--rsin^-^- = 0
dy o<f>

A solution to the above system of equations is

f2(x, y, 0, <f>) = x cos0 + y sin 0 —<f>

which can checked easily. Therefore, following the proof of Pfaff's Theorem we may now
choose zl = fi and z4 = f2 so that

a1 = dz1 - z3dz4

where z3 can be solved from the above equation to be

z3 ——x sin0 + ycos 0

We will now try to transform a2 in this normal form. Following the proof of Engel's Theorem
we have that

a2 = [a(x)dz3 -f b(x)dz1] mod a1

where we must now determine the functions a(x),b(x). Expanding the above equation gives,

sin0dx —cos 0dy = [a(x)(—dx sin0 + x cos 0d0 + dy cos 0 —y sin0d0) -f b(x)d0] mod a1

Simple calculations show that the following choices

a(x) = —1

b(x) = xcosfl —ysinfl

will satisfy the equation. Therefore by Engel's Theorem, if we set

z2 = —x cos 0 + ysin0

we may express a1,a2 in the following normal form

q1 = dz4-z3dzl

a2 = dz3-z2dz1

If we look at the annihilating distribution of our codistribution expressed in these new coor
dinates we obtain

z4 = zzzl

z = z z
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and zl, z2 are free. If we set i1 = U\,z2 —u2 the distribution has the form

z4 = Z3Ui

z3 = Z3Ui
z2 = u2

i1 sr U\

We can now see that the advantage of performing this coordinate transformation is that our
system can be expressed in this simple form. In particular if we set u \ = 1 then the system
has been transformed to a linear system. This allows us to utilize the powerful analysis tools
that exist for linear systems. This method of transforming a system to a linear one through a
coordinate transformation is called feedback linearization. Engel's Theorem therefore states
the conditions under which we can linearize a system of four configuration variables with two
constraints. O

Engel's theorem can be generalized to system with n configuration variables and
n —2 constraints. This powerful theorem was proved by Goursat.

Theorem 42 (Goursat Normal Form) Let I be a Pfaffian system spanned by s 1-forms,

7={a\...,<*«}

on a space of dimension n = 5 + 2. Suppose that there exists an integrable form n with
7T 7^ 0 mod I satisfying the Goursat congruence,

da1 = —a,+1 A 7r mod a1,..., a1 1 < i < s —1
da3 ^ 0 mod I

then there exists a coordinate system zl,z2,.. .,zn such that

I = {dz3 - z2dz\dz4 - z3dz\. ..,dzn- zn~ldz1}

Proof: The Goursat congruences canbereformulated using the derived flag of7. Expanding
the Goursat congruences gives

da1 = —a2 A 7r mod a1

da2 = —a3 Air mod a1,a2

da3~l = —a3 Air mod a1,a2,...,a3
das = —a3 Air mod a1,a2,...,a3

and therefore the derived flag of 7 must be

7<°> = {a\a2,...,a3}
IV = {a\...,a3-*}

/(-U = {a1}
7W = {0}
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From the Goursat congruences we have that

da1 = —a2 A tt mod a1

which means that

da1 = —a2 A n + a1 A n

for some form 77. But then we have that

da1 Aa1 = -a2 Ait Aa1 ^ 0
(da1)2 Aa1 = -a2 Att Aa1 = 0

which means that a1 has rank 1. We can therefore apply Pfaff's Theorem and express a1 as

a1 = dz* - zn~ldzl

Furthermore by Engel's Theorem we can express a2 as

a2 = dzn~l - zn~2dz1 (14)

In these new coordinates we have

da1 A a1 = -dzn~l A dz1 A dzn

Now we have that

tt A(-a2 Att Aa1) = tt A(-dzn~l Adz1 Adzn) = 0

and therefore tt is a linear combination of dz1,dzn~1,dzn and thus

tt = adz1 + bdzn~l + cdzn = adz1 + bzn~2dz1 + czn~ldzA

or equivalently

tt = (a + bzn~2 + czn~l)dzl mod a1,a2 = ifj mod a1,a2

where rf> = a + 6zn"2 + czn~l is nonzero since we have assumed that 7r ^ 0 mod I. From the
Goursat congruences we have that

da2 = —a3 Ait mod a1,a2

while from equation (14) we have

da2 = -dzn~2 A dz1

and thus

-dzn~2 Adz1 = -a3 Att mod a1,a2

which means that

a3 = A(x)cten~2 mod dz1 ,al,a2
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for nonzero function A(a:). Therefore we can rewrite this as

a3 = dzn~2 - TT-rdz1 mod a1,a2
X(x)

and if we set zn~3 = 77-7 we have

a3 = dzn~2 - zn~3dzl moda1,a2

and we can therefore let

a3 = dzn~2 - zn~3dzl

If we inductively continue this procedure using the Goursat congruences we obtain

a4 = dzn~3 - zn~3dzl

a3 = dz3-z2dzl

Now from the Goursat congruences we have that

da8 ^ 0 mod I

and therefore

a1 Aa2 A ... A a3 A da3 ^ 0

If we substitute the a1 in the above expression we obtain

dz1 Adz2 A...A dzn ^ 0

and therefore the functions z1,... ,zn can serve as a local coordinate system. •
The following example illustrates the power of the Goursat's Theorem by applying

it in order to feedback linearize a nonlinear system. A more systematic approach to the this
problem can be found in [8].

Example: Consider the following nonlinear system with s configuration variables and a
single input,

^i = /i(sii •••,**,«)

^2 = f2(xu...,x8,u)

X8 = Js\Xi, . . . , Xs, U)

Equivalently we can look at following Pfaffian system,

I ={dx{ - fi(xl,...,x3,u)dt} \<i<s
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The system is of codimension 2 since we have s constraints and s + 2 variables, namely
a:1,. •-,£*,«,*• Assume that the form tt = dt satisfies the Goursat congruences. Then by
Goursat's Theorem there exists a coordinate transformation such that 7 is generated by

7 = {dz3 - z2dz\dz4 - z3dz\...,dz3- za-ldzl}

The annihilating distribution of the above codistribution is

i1 = 1*1

i2 = u2

i3 = Z2U\

z3 = Z U\

which, if we set U\ — 1, is clearly a linear system. We can therefore use Goursat's Theorem
in order to linearize nonlinear systems satisfying the Goursat congruences. Although this ap
proach holds for single input systems, that is systems of codimension 2, more general versions
of the above theorem can be found in [9, 10]. This approach has had success in the case of
steering cars with n trailers. In [10], this system was successfully converted to Goursat normal
form and then standard techniques such as those described in [11] were utilized in order to
steer the system to a desired configuration. O

5 Conclusion

Exterior differential systems offer a new way of looking at systems of differential equations.
This approach is more algebraic compared to the standard vector field approach which is
more geometric. The main advantage of looking at systems using differential forms instead
of tangent vectors is exactly the algebraic power of exterior systems. As a result, although
certain facts may be less intuitive due to their non-geometric nature they can be easily proved
because of the strong structure of the underlying algebra.
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Abstract

Several techniques that can be used for linearization by state feedback and coordinate
transformation are presented. Both static and dynamic state feedback are considered
and a number of different approaches for each case are outlined. The similarities and
differences between them are highlighted. A list of the problems not addressed by any
of the techniques and may be of interest or form the topic of further research are also
provided.

1 Introduction

Linear systems have so far been the most popular choice among control engineers for system
modeling. One of the main reasons for this is the fact that linear dynamics are very predictable
and therefore linear systems are very easy to analyze and control. This is not the case for
nonlinear systems however which can, in general, display very rich and complicated behavior.
This fact led considerable research effort in an attempt to determine conditions under which
the behavior of a nonlinear system can be linked to that of a linear system. This report
presents a brief overview of a number of techniques for establishing such a link. An attempt
was made to indicate the points that these techniques have in common and to contrast the
points on which they differ. A list of unresolved issues related to either the connection between
the various techniques or questions that remain unanswered by them is also given.

Consider the nonlinear dynamical system:

x = f(x,u) (1)



where x € Rn, u 6 Rm and / a smooth vector field1:

/:Rn —> TRn

a —* f(x)eTxRn

A very important special case of system 1 is the one where the input enters affinely in the
dynamics:

x = f(x)+g(x)u (2)

whereg(x) = [gi(x)... gm(x)] and gi(x) are smooth vector fields. Most of the results presented
here will be concerned with systems belonging to this class, even though some can be extended
to the the more general case 1.

We would like to establish conditions under which the dynamics of 1 and 2 are
adequately described by those of a linear system:

x = Ax-rBu (3)

where x <E R", u € R™, A G R"x" and B e R*Xlh with n >n,m> m.

The literature on this problem can roughly be divided into three distinct classes:

1. Jacobian linearization and extensions

2. Linearization by static state feedback and coordinate transformation

3. Linearization by dynamic state feedback and coordinate transformation

It should be noted here that the results in the first class (polynomial approximations, etc.)
are primarily concerned with approximate linearization while those in the other two classes
deal with exact linearization. This report will be restricted to the exact linearization results.
A brief discussion of the approximate techniques, as well as some attempts of extending the
exact results to systemsthat are "almost" linearizable will be given in the last section. Despite
considerable progress in this area there are still quite a few issues that remain unresolved.
Some of the most prominent ones will also be presented in the last section.

Due to restrictions of space and time this report will be rather terse and the pace
will be quite intense. In particular, I will assume that the reader is familiar with the basic
definitions and concepts of differential topology, nonlinear dynamical systems and exterior
differential systems. For background definitions and results the reader can refer to [1, 2, 3, 4].

2 Linearization by Static State Feedback

2.1 Problem Statement

Following the notation of [1] the problem of exact linearization by static state feedback and
coordinate transformation can be stated as follows:

*Most of the techniques presented here can be generalized to the casewhere the state evolves on a manifold.
Rn will be used however to simplify the calculations



Problem 1 (State Space Exact Linearization Problem)
Given a control system of the form 1and an initial state x°, find, ifpossible, a neighborhood
U of x°, apair offeedback functions a(x) and b(x), a coordinate transformation z = $(x) all
defined on U and matrices A € Rnxn and B € Rnxm, such that:

-^(f(x,a(x))) = Az
x=*-1(«)

d$d(f(x,a(x) + b(x)v)
dx dv

= B
Jx=*-i(*)

An~lB) = nrank(B AB .

In the special case of systems affine in the inputs, the problem simplifies to:

Problem 2 Given a control system of the form 2 and an initial state x°, find, if possible, a
neighborhood U ofx°, a pair offeedback functions a(x) and b(x), a coordinate transformation
z = $(x) all defined on U and matrices A e Rnxn and B € RnXm, such that:

fc(f(x) +9(x)a(x)) = Az
. x^Q-iiz)

~^(9(x)b(x))

rank(B AB

= B
x=*-l(2)

An~lB) = n

(4)

(5)

(6)

(7)

(8)

(9)

Note that the last condition of both problem statements implies that, if the Exact
Linearization Problem is solvable, wecan assume, without loss of generality, that the resulting
linear system will be in Brunovsky canonical form.

2.2 The Vector Field Approach

The standard results on linearization by static state feedback and coordinate transformation
concern systems of the form 2. The relevant theorems can be found in [1,2]. I will be using
the notation and definitions of [1].

Theorem 1 For the control system 2 define the filtration:

Go = span{gu...,gm}
Gi+i = Gi + span{[f, Gi\} = span{adkjgj :0<fc<« + l,l < j <m}

Suppose the matrix g(x°) has rank m. Then, the State Space Exact Linearization Problem is
solvable if and only if:

1. for each 0 < i < n —1 the distribution Gi has constant dimension near x°

2. The distribution Gn-\ has dimension n

3. for each 0 < i < n —2 the distribution Gi is involutive



If the system has only one input (m = 1) Theorem 1 simplifies to:

Theorem 2 The single input State Space Exact Linearization Problem is solvable if and only
if:

1. the matrix [g(x°) adjg(x°) ... aavj~1g(x0)] has rank n

2. the distribution Gn-2 = span{g, adjg, ..., adJl~2g] is involutive near x°.

The conditions for the single input case may seem slightly less restrictive, but in fact it turns
out that the involutivity of Gn-2 implies the involutivity of all Gi for 0 < i < n —2 in this
case. Even for the multi input case the involutivity of certain distributions (namely those
corresponding to the Kronecker indices of the resulting linear system) implies the involutivity
of others. However, an equivalent statement of Theorem 1 that takes this fact into account
would be unnecessarily complicated.

2.3 The Pfaffian System Approach

The problem of linearization can also be approached from the point of view of exterior dif
ferential systems. Let ftp(Rn) denote the set of smooth exterior p-forms on Rn and define
fl*(Rn) = 0 QP(Rn), the set of smooth exterior differential forms of all orders.

Definition 1 An exterior differential system is an ideal 2 C ft*(Rn) that is closed under
exterior differentiation. In particular a Pfaffian system of co-dimension n —s is an
exterior differential system on Rn generated by a set of linearly independent one-forms I =
{a1,...,a3}, hence 2= {uj A0 : uj € 1,0 G ft*(Rn)}.

A class of Pfaffian systems is of particular interest here:

Definition 2 A Pfaffian system I on Rn+m+1 of co-dimension m+1 is in Extended Goursat
Normal Form if it is generated by n one-forms of the form:

I = {dz} - zj+1dz° : i = 1,..., sj; j = 1,..., m}

where Si + s2 + ... + sm = n.

The term towers is used to describe the mchains of one forms dz\ —z3i+1dz°, each Sj "deep".
The class of Pfaffian systems that can be brought to Extended Goursat Normal Form via a
coordinate transformation is characterized by two equivalent theorems:

Theorem 3 The co-dimension m + 1 Pfaffian system I can be brought into Extended Goursat
Normal Form if and only if there exists a set of generators {a*- : i = 1,... sy,j = 1,..., m)
for I and an integrable one-form tt such that the system satisfies the Goursat congruences.
i.e. for all j:

da\ = -aJi+1 Air mod /(Sj~,) i = 1,... sj - 1
dai =£ 0 mod ISj 7-



Theorem 4 For the co-dimension m+ 1 Pfaffian system I define the derived flag;

/(0) = {a):i = l,...Sj]j = l,...,m}
/('+1) = {Q e Jw : da = 0 mod 1^}

The system can be converted to Extended Goursat Normal Form if and only if:
1. /<*> = {0} for some N

2. There exists a one-form tt such that {I^k\it} is integrable for k = 0,... ,N - 1.

An implicit assumption of the above Theorem is that the dimension of I® js constant for all
i. The proofs of both these theorems can be found in [5].

An equivalent formulation ofthe conditions ofTheorem 3 involving the annihilating
distributions is given in [6]. The result is restricted to Pfaffian systems of co-dimension two.

Theorem 5 Given a 2-dimensional distribution A construct two filtrations:

E0 = A FQ = A
Ei+1 = Ei + [E{, Ei] Fi+1 = Fi + [Fi, F0)

If all the distributions are of constant rank and:

dim Ei = dim Fx: = i + 2 i = 0,..., n —2

there exists a local basis {a1,... ,a3} and a one-form n such that the Goursat congruences are
satisfied for the differential system I = A1.

In [6] this Theorem is shown to be equivalent to Theorem 3 (and consequently Theorem 4).
It should be noted that the conditions involving the distributions are probably easier to check
than the Goursat congruences.

2.4 The connection between the two approaches

Note that any control system in of the form 1 can also be thought of as a Pfaffian system of
co-dimension m + 1 in Rn+m+1. The corresponding ideal is generated by the co-distribution:

/ = {dxi —fi(x, u)dt : i = 1,..., n} (10)

Note that the n + m + 1 variables for the Pfaffian system are the n states, m inputs and the
time i. For the special case of the affine system 2 the co-distribution becomes:

m

I = {dxi - (fi(x) + Yl9iAx)uj)di : i = 1,... ,n} (11)
j'=i

In this light the Extended Goursat Normal Form looks remarkably similar to the
Brunovsky Normal Form with Kronecker indices Sj,j = 1,..., m. Indeed if we identify coordi
nates z°, z3s +l,j = 1,..., m in the Goursat Normal Form with t, Uj,j = 1,..., m, the Pfaffian
system becomes equivalent (in vector field notation) to a collection of m chains of integrators,
each one Sj, j = 1,... ,ra "deep" and terminating with an input in the right hand side. With
this in mind, Theorems 3 and 4, that provide conditions under which a Pfaffian system can
be transformed to Extended Goursat Normal Form, can be viewed as linearization theorems.
Indeed:



Proposition 1 The control system 2 satisfies the conditions of Theorem 1 if and only if the
corresponding Pfaffian system 11 satisfies the conditions of Theorems 3 or 4 for n = dt.

In order to prove this we need the following fact:

Lemma 1 Consider a co-distribution 1^ and the corresponding annihilating distribution
(ll°Y = A. Define J*1) = {a € J<°> : da = 0 mod J<°>}. Then (I™)1 = {A + [A, A]}.

In other words the construction of the derived flag induces a filtration of the annihilating
distributions where the next step is spanned by the vector fields of the current step and their
Lie brackets.

Proof (of Proposition): Consider control system 2 and the equivalent Pfaffian system 11 and,
for simplicity, assume m = 2. Let:

I{0) = {dxi - (fi(x) + gn(x)ui + gi2(x)u2)dt :i = l,...,n}

A0 = (ll°Y = <

0 0 1

1 0 0

0
5

1
}

0

0 0 . / + glul +

As the notation suggests the first three entries in the distribution are scalars (correspond
ing to t, ui and u2) while the last entry is a column vector of dimension n. We will con
struct the derived flag 7(0) D 7(1> D ... D 7(Ar) and the corresponding orthogonal filtration
A0 C Aj C ... C AN. We will denote by M = {I{i),dt} and A, = (I^)1. We will go
through the conditions of Theorem 4 step by step, assuming w= dt:

Step 0: As above:

I{0) = {dxi-(fi(x) +gil(x)u1+gi2(x)u2)dt:i = l,...,n}

Ac = (7«V = <

= {vi,v2,v3}

The condition of Theorem 4 requires that 1^ be integrable. This is equivalent to:

A0= {vi,v2}

being involutive, which is true ([ui,v2] = 0 since both vector fields are constant).

Step 1: It is easy to show that:

u 0 1

1 0 0

0
?

1
?

0

0 0 . f -r9iui +g2u2 .

[vi,v2] = 0 [t>i,v3] =

0

0

0

L0i J

[U2, V3] =

0

0

0
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Therefore:

/(1) = {a e /(0) : da = 0mod 7<°>}

Ax = (lM)1 = <

= {vuv2,v3,v4,v5}

The condition of Theorem 4 requires that }M be integrable. This is equivalent to:

Ai = {vi,v2,v4,v5}

being integrable. Now:

[vuv2] = [vuv4] = [V!,U5] = [v2,v4] = [v2,v5] = 0

and:

u 0 1 ' 0 " " 0 "
1 0 0 0 0
0

)

1
1

0 ?

0 j
0

0 0 / + #!«! +92U2 . .9i . .92 .

[v4,v5] =

0

0

0

. \j9u92] .

Therefore Ai is involutive if and only if [gi,g2] is in the span of {#1,02}- Overall the condition
of Theorem 4 for the the first iteration of the derived flag holds if and only if distribution G0
of Theorem 1 is involutive.

Step 2:

[v3, v4] =

LU9i + &*«, + d±9lu2 J [d±f + ^glUl + d-£g2u2 Jdx

0

0

0

. (if* - &/) +(s?*«2 - fe^2) .
0

0

0

. adjgi - [g\,g2)u2 .

Similarlyfor [v3, vb). Therefore, assuming that the conditions of Step 1 hold and in particular
that [gi,g2] € spa,n{gi,g2}:

7(2) = {a € 7(1) : da = 0 mod 7(1)}



A2 = (7^)-L = A1 + <

rr 1 i r i I
^

0 0

0
5

0
>

>Ladjgi . . ad/g2 .
j

= {vni = l,...7}

The condition of Theorem 4 requires that 1^ be integrable. This is equivalent to:

A2 = {vi,v2,v4,v$,V6,v7}

being involutive. As before the only pairs that can cause trouble are the ones not involving
Vi and v2, i.e. the condition is equivalent to:

{9i,92,adjgi,adfg2}

being involutive. Overall the condition of Theorem 4 for the the second iteration of the derived
flag holds if and only if distribution G\ of Theorem 1 is involutive.

Step i: Assume that:

A,_! = I

r o I r o i r i i r i l r i

i 0 0 0 0

0
5

i
?

0
i

0
?

0

0 0 . f + giui + g2u2 . . o.d)gi . . o.d)g2

for 0 < k < i - 2. Also assume that 7(/r), 0 < k < i - 1 are integrable, or, equivalently, that
Ak for 0 < k < i —1 (which is the same as A* without the third vector field) are involutive,
or, equivalently, that Gk = {adlfgj : 0 < / < k,j = 1,2} for 0 < k < i - 2 are involutive.
Construct A1' = A'-1 + [A'-1, A1'-1]. By involutivity of A,-_i and the construction of the
filtration the only terms not already in A'-1 are ones of the form:

1

0

0

.L f + giui +g2u2.

0

0

0
i-2.ad) lgx

LUadif'29i +fe«4"2^i +§?<<Vi«2 -27i
dx ~92^2l —t—f + —t^-giui + —h-

. (If<V -*£*/) +(&<'* -*£**)«. +(fe<»* -*£*»)«, _

ad) g\ + [guad) 2gi]ui + \g2,a<Pf2gi]u2 .



(q,dm,) = *(P,X)

where dm, is the mean square point matching error. The notation q(P) is used
to denote the point set P after transformation by the registration vector q. Thus
we have found an estimation or "initial point" of our desired transformation and
this will be used to guide a search process for the local minimum of the function
/(0) = tr(MeT).

5 Steepest Descent

We will use steepest descent to find a local minimum of the function, f(Q). The
basic idea behind descent algorithm is that it begins at an initial point in the
domain of the function and it searches a neighbourhood of the initial point for
a new point at which the value of the function is less. The algorithm replaces
the initial point by the new point and then repeats the cycle. The algorithm
terminates when no significant reduction in the value of the error function can
be achieved. One disadvantage of descent is that its performance is difficult to
predict. The descent is not guaranteed to terminate after a fixed prespecifted
number of iterations. Worst still, the algorithm may become snagged in a local
minimum of the error function or it may spend a long time in regions where the
gradient of the error function is low.

One of the advantages of representing rotations by unit quaternions is that it is
easier to preserve the normalization during the descent. The descent algorithm
will be employed to find the minimum over the five-dimensional space formed
by the product of the three-dimensional space of unit quaternions q and the
two-dimensional space of unit translation vectors, t. The global minimum is
not unique this is because V(q,t) = V(—q,—t). The four choices of sign yield
two rigid displacements {R,t}, {R,-t}.

The strategy in the descent algorithms is to begin with an estimate (q,t) of the
rigid displacement and to calculate the effects of small perturbations Aq, At on
the value of V. The perturbation producing the greatest decrease in the value
of V(q,t) is used to update (q,t) according to the scheme [1]

(<M) "(q + Aq,t + At)

In addition to reducing the value of V the update is chosen so that

||9-rA«7|| = |kll=l

||<+ A<|| = ||t|| = l

The Taylor series expansion of the error function V about the point (q,t) to the
second order is

V(q + 6q,t+ 6t) = V(qt t) + I6q + m6t +6qTL6q + 26qTM6t + 6tTN6t + R3 (5)

where 1, m are vectors and L, M, N are matrices. The term R3 in (5) is third
order in St, 6q.

Their are two closely related forms of descent. Both forms are based on (5).
First order descent uses these terms on the right-hand side of (5) up to first order

9



in 6qor St and second order descent uses the terms up to second order in Sq or St.

In order to find the descent equation for our registration problem it is necessary
to find the gradient vector field on SO(n). Thus we define the Riemannian
metric on SO(n) by restricting the Frobenious norm on Rnxn to the tangent
space, TxSO(n), V* € SO(n). Since each tangent vector in TxSO(n) can be
written as xQ where SI € so(n) is skew symmetric the norm becomes

<tti,Q2>= tKOjlfc)

This inner product defines a Riemannian metric on the manifold GL(n) and by
using this, it becomes possible to pass from the linear term of (4) to a vector
field on GL(n). By restricting 6 to the orthogonal group, O(n), we find that
the linear function < 0TM,» > represents the gradient of f(Q). Projecting
this linear functional ontothe tangent space at 0 andsetting©T0 equal to this
results in the descent equation for f(Q):

0 = (0MT0 - M) (6)

Since O(n) is a compact group, the solution of (6) will approach a stationary
point. In fact, because of stability considerations the equilibrium point will be
a stationary point as well as a local minimum of f(Q)-

Let M = QQTN where Q and N are fixed n x n symmetric matrices then (6)
becomes

0 = -(-0iV0TQ0 + QON) (7)

By using the following change of variables we can rewrite equation (7) as one
which evolves in the space ofsymmetric matrices [5]. Let H = 0TQ0. Then

H = -(-eTQ(QNeTQQ - QBN) - (0TQ0#0T - NeTQ)Qe)

= -(-HNH + H2N - HNH+ NH2)
= -[H,[H,N))

where [A, B] = AB - BA denotes the matrix Lie bracket.

6 Simulation and Results

In order to implement matching problem A we used the data below. The model
point set, {x,}, and data point set, {p*}, used consisted of vertices of a rectangle
in Euclidean 3-space. The correspondence between the two point sets is known
and the data point set was aligned with the model point set via the techniques
described in this paper.

M iPi)
(0,0,0) (3,1,1)
(0,2,0) (1.1,1)
(2,2,0) (1,3,1)
(2,0,0) (3,3,1)
(0,0,2) (3,1,3)
(0,2,2) (1,1,3)
(2,2,2) (1,3,3)
(2,0,2) (3,3,3)

10



Figure 3: Rectangle reconstructed from point sets

In order to test the effectiveness of our methods the points of the data and
model sets were chosen to represent a rotation of 90 degrees and a translation
of 1 units along the x,y and z-axes. See figure 3. The rotation matrix and
translation vector corresponding to the data point set was estimated using unit
quaternions and found to be the following:

R(qn) =
0 1 ON

0
-1 0 0 , qr =

2
0 0 1 Vo

The descent equation (6) for f(Q) = tr(MQT) was solved using 2nd and 3rd
order Runge-Kutta formulas provided by Matlab. The elements of R(qii) were
used to form an initial value column-vector needed to solve the matrix equation.
The resulting transformation was found to be the following:

/-.5771 -.2116 -.7884 \ /3.1539\
R= .5775 -.5771 -.5771 , t= [ 2.5767

\-.5771 -.7884 .2116 / \ 3.1539/

where R was constructed from the resulting column-vector and t computed
using equation (4). Finally, these values of R and t were used in equation (3)
and minimized the function V(R,t) to the value of 38.7471. Next we wished
to solve the descent equation (6) analytically for a equilibrium point by setting
the right-hand side equal to zero. Noting that 7(0) = tr(MQT) - tr(MT0)
descent equation (6) was rewritten as

0 = (0M0 - MT).

Consider the following orthogonal matrix

0 = (MTM)1/2M-1, M= £>x?

(8)

(9)

where the square root is the symmetric, positive definite square root. Substi
tuting 0 into equation (8) we obtain the following

0 = (MTM)1^M-1M(MTM)1^2M-1 - MT

= (MTM)1/2/3(A/TM)1/2M-1 - MT

11



= (MTM)M-1 - MT

= MT-MT

= 0

Hence the 0 of equation (9) is an equilibrium point of equation (8) and thus
a local minimum of f(Q). Using the points from our data and model sets we
found that

M =

(16 24 16 \
8 16 16 ,
16 16 24/

Finally computing 0 via equation (9) we found that

(.5774 -.5774 .5774 \ /1.4226 \
.7887 .5774 -.2113 1, t= I .8453 ]

-.2113 .5774 .7887 / \ -8453 /

where the translation vector t was computed using equation (4). These values
of 0 and t were used in equation (3) and minimized the function V(0,t) to the
value of 13.5248.

In order to test matching problem B the below data was used. The model
and data sets are defined as before. However, the correspondence between the
two point sets is unknown. In order to find the permutation tt which satisfies
Theorem 1 we first simplified the problem by partitioning both the model and
data sets into two disjoint subsets. The first subset consisted of vertices on
the top face of the rectangle and the second subset consisted of those on the
bottom face. Since the axis of rotation is the z-axis the points on these two
faces are invariant. We then matched the corresponding subsets by finding two
permutations irt and nv

{*«} {*») M {P6>
(0,2,0) (2,0,2) (3,1,1) (3,1,3)
(2,2,0) (2,2,2) (1,1,1) (1,1,3)
(2,0,0) (0,2,2) (1,3,1) (1,3,3)
(0,0,0) (0,0,2) (3,3,1) (3,3,3)

We found that

*t(l) = 3, tt6(1) = 1

7T,(2) = 4, 7T6(2) = 4

*t(3) = l, tt6(3) = 3

7Tt(4) = 2, 7T*(4) = 2

Thus the permutation matrix is

n = (e3 e4 ei e2 e5 eg ti e6)

where ei denotes the i-th unit column vector in E8. After computing Qi and
Ni as described in theorem 1 and equating 0 to H we minimized the function
n(0) to the value of 72.

12



7 Conclusion

We have shown how to apply the matrix differential equation H = [Ht [H,N]]
to solve a matching problem in the following computer vision scenario: Given
3-D data in a sensor coordinate system, which describes a data shape that may
correspond to a model shape, and given a model shape in a model coordinate
system in a different geometric shape representation, estimate the optimal rota
tion and translation that aligns, or registers, the model shape and the data shape
minimizing the distance between the shapes and thereby allowing determination
of the equivalence of the shapes via a least squares matching criterion. We
used a rigidity constraint to simplify the registration and unit quaternions to
represent the rotation matrix associated with a matching transformation which
resulted in a good initial point of an error function. A descent equation was
used to find a local minimum for this function and thus give rise to the geomet
ric matching transformation. Our simulation shows that using the stationary
point © = (MTM)ll2M~l in matching problem A gives a better alignment
than iteratively solving the descent equation. In addition, matching problem B
was simplified by partitioning the model and data sets and finding permutations
for corresponding subsets. The partition was based on information about the
geometry of the point sets.
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1. Introduction

In this report we review the existing results in the feedback linearization of non
linear systems. In particular, we look at the body of papers which use tools from
theory of exterior differential systems to study the feedback linearization problem.
The use of thoery of exterior differential systems as compared to the traditional
differential geometric thoery to study the dynamic feedback linearization problem
gives a different angle to the problem.

Consider a nonlinear control system with n states and p controls

dx-^ = f(x,u,t) ser, ueW. (i.i)

where the state x € 2Rn, the controls u€W and the derivative of the state is taken
with respect to time t e &. The static state feedback linearization (STC) and the
dyanamic state feedback linearization (VTC) problem may be stated as follows

STC: For the control system (1.1/, find static state feedback controls u= a(x) +
P(x)v and a coordinate transformation z = <j>(x), such that in the new coordinates
z, the system can be expressed in Brunovsky normal form with v as the new set of
inputs.

VTC: For the control system (1.1/, find a general dynamic compensator of the
form

w = a(x,w) + B(x,w)v

u = a(x, w) + 0(x, w)v

and an extended state space diffeomorphism z - (f>(x,w), such that in these extended
coordinates the control system can be expressed in Brunovsky normal form with v
as the new set of inputs.

The STC problem was first solved in [9]. For the systems which are not static
feedback linearizable, the problem ofpartial feedback linearization has been solved
in [6], where the largest static feedback linearizable subsystem contained in 1.1 is
obtained. Necessary and sufficient conditions for STC problem are given in [10]. In



the exterior differential systems formulation, asimple algorithm has been proposed
to solve the STC problem by [1]. This algorithm can find the necessary feedback
transformations to solve the STC problem and is algebraically and computationally
much simpler. In this work, the control system is considered to be autonomous and
affine in inputs, and it is shown that the resulting linearizing controls are also
autonomous and affine in the new inputs. We give an overview of the procedure
followed in [1] and explain the algorithm with an example.

When the linearization problem cannot be solved using static feedback, the use
of dynamic feedback provides an appealing alternative. The VTC problem was
first stated in full generality in [11]. [12] establishes that the VTC problem is
equivalent to solving the STC problem when the number of inputs in the control
systems is one i.e., p = 1. Necessary and sufficient conditions when p = n - 1 are
also obtained. Although necessary and sufficient conditions for the VTC problem
are not available in general, several variations of this problem are analysed and a
significant amount of literature is available. One important variation that has been
studied extensively is the dynamic extension. A dynamic extension of a nonlinear
control system is an augmented systems with integrators added to the inputs. A
differential algebraic theory is used to study the dynamic extension problem in [2].
The dynamic extension problem is also stated in [12]. In [3], [8] notions such as
prolongations andabsolute equivalence from the exterior differential systemstheory
are used to study the feedback linearization problem. This provides a different
approach to looking at the dynamic feedback linearization problem as compared
to the traditional differential geometry approach. The dynamic extension problem
is equivalent to prolongation by differentiation in exterior differential systems. We
review the existing literature for solving the VTC problem in a exterior differential
systems setting.

The remainder of the report is organized as follows. In section 2 we give an
overview of the GS algorithm and show an example to expUcitly compute the input
transformations for solving the STC problem. In section 3 we define VTC problem
in an exterior differential equations setting and give the tools which would be used
to analyze this problem.

2. The GS Algorithm

The control system (1.1) generates a Pfaffian system 7 on sftn+p+1

7= {dx1 - fl(x,u)dt,dx2 -f2(x,u)dt,-- ,dx"i-£ix,u)dt} (2.1)
Definition 2.1. A control system is5 Brunovsky normal if there are integers ki >
•-• >kp> 0 (called the Kronecker indexes) and independent functions

^j^Ij"'* >X^ , Xi, ••• ,Xft2,"' j3?i, •*• ,Xft^,U ,'" ,U

such that the associated Pfaffian system I has generators of form

u\ = dx\ - x\dt, u\ —dx\ - x\dt, ••• ,ulkl = dxlkl —uldt

u>\ = dx\ —x\dt, uj\ = dx\ —x\dt, ••• ,u22 = dx\2 —u2dt



u/f = dx\ —x\dt, uj\ = dx\ —x\dt, ••• ,uk = dxpk —updt

The goal is to find a transformation that puts the original system into the
Brunovsky normal form. The Brunovsky normal form is a special case of extended
Goursat normal form [5] with independence condition dt.

Definition 2.2. Consider a Pfaffian systemI = {uj1, u2, ••• ,oj8}. The first derived
system is the collection of 1-forms 7 € 7 which satisfy the Frobenius conditions
d") = 0 mod I

J*1) = {7 e 7 :.dr=Q mod 1}

The process can be continued until at somemnite integerN for which 7(N+1) = 7(JV).
7(N) is called the bottom derived system and N is called the derived length.

The derived flag of (2.1) can be analyzed by calculating the exterior derivatives
of the generators. For 1 < i < p and 1 < j < ki - 1

a\jj —dtf\ dxlj+l
= dtA (dxlj+1 - xlj+2dt)

and for j = ki

= dtAUj+1

dujlk. = dt Adu1

and the derived flag can be expressed as a collection of p towers, and the jth. tower
is defined to be

w{ uP2 •" uriki

From the p towers, the top row of each tower taken together generate 7, and the
succeeding rows generate the derived flag of7. Notice that the derived length of 7
is ki by construction. Now define an integer TOj as

mj = dim 7(j)/7(j+1>
= number of towers with atleast j + 1 rows.

Therefore m5 is the largest integer such that km. > j + 1. Notice that each kj is
determined by the integers m.,.



Theorem 2.1. A control system can be put into Brunovsky normal form by a non
linear feedback transformation ifand only if there isaset ofgenerators for its associ
ated Pfaffian system satisfying the following congruences modulo 7^ for 1 < j < ki.

The proof of this theorem is given in detail in [1]. Notice that the congruences in
the theorem (2.1) are exactly the extended Goursat congruences with an indepen
dence condition dt. Now consider the control system

[X1] sinx2 ftf > r°o
X2 sinx3 0 /X3 = (x4)3 + 1 .

X4 xs + (x4)3 - (x1)10 0 J ^0
X* 0 .1.

The associated Pfaffian system has generators

I={u1,uj2,oj3,u4,uj5}

where

a;1 = dx1 - sinx2dt

u2 = dx2 - sinx3dt

u3 = dx3-((x4)3 + u1)dt
uj4 = dx4-(x5 + (x4)3-(x1)10)dt
u5 = dx5 - u2dt.

Step 1: The derived flag of 7 is given by

I™ = {ul,u2,u4}, Hx) = {u1}, 7<3> = {0}

The Kronecker indices can be obtained by looking at the derived flag of 7. Since
there are two control inputs, there are two towers i.e., two Kronecker indices fci and
k2. Since there are 5 states fa + k2 = 5. The first tower has two generators in its
second row, but dim 7(1) = 3 and dim 7(2> = 1, yielding k2 = 2 and hence k3 = 3.

Step 2 : We compute the two towered structure determining the congruences.
First we start with 7<2), since a;1 € 7(2) set u{ = a;1, so

du{ = dtAcosx2dx2 = dtAcosx2u>2

Now set second term in the above as u\ = cosx2u2. We started with 7(2) and since
the dimension of 7(1) = 3, we have to start a new tower with a generator which is a



complement of {cj1,^2} 6 7(1) namely u\ = w4. To obtain u\ and uj\, we calculate
the exterior derivatives, a\j\ and du)\ modulo 7(1). Thus,

a\j\ —dtA (—sinx2sinx3dx2 + cosx2cosx3dx3)
= dtA (cosx2cosx3)uj3 mod 7(1)

du2 = dtA(dx5 + Z(x4)2dx4 - lOfc1)9^1)

= dtAus mod mod 7(1).

Set uj\ = (cosx2cosx3)uj3 and u2 = w5.
Step 3: Modify generators u>j to obtain new generators for which the congruences

are replaced by equalities, so that the two towers are decoupled. The first congruence
for duj\ is already an equality so u\ need not be changed. Now to make <ku\ and
du2 into equalities we have

a\j\ = dtA(—sinx2sinx3u\ + cosx2cosx3)uj\)
duj\ =dtA (uj2 +Z(x4)2u2 - IO^YujI). Ajj/-

Now uj\ is modified to v C*S*

uj\ = (—sinx2sinx3u\ + cosx2cosx3)uj\)

and uj\ is modified to

uj\ = (uj2 + Z(x4)2u2 - KKa:1)9^).

(^

Step 4: Obtain the linearizing coordinates and linearizing controls. Since u{ =
dx1 —sinx2dt, we set the first two linearizing coordinates as y{ = x\ and y\ —sinx2.
Now writeuj\ = dyx)2-yldt, soy\ = cosx2sinx3. Tofind the first linearizing control,
write Q\ = dy\ - vldt. Therefore, the coefficient of dt in uj\ is the first linearizing
control, which is

v1 = sinx2sin2x3 —cosx2cosx3 ((x4)3 + u1).

. In a similar fashion, the linearizing coordinates can be found to be y2 = x4 and
y\ - x5 + (x4)3 - (x1)10, and the linearizing control is

v2 = 3(x4)V + (x4)3 - (x1)10) - lOfx1)9^!2 + u2.

3. Dynamic Feedback Linearization

There are several tools from exterior differential systems that are used to study
the (VTC) problem. The notions such as prolongations and absolute equivalence
are essential for studying this problem.

Definition 3.1. Let I be a Pfaffian system on a manifold M. Let tt be a canonical
projection such that ir: M x W> -• M. A Pfaffian system J onMxW is a Cartan
prolongation of the system if the following hold.

(1) **(!) C J



(2) For every solution curve c : (-e,e) —• M of I there exists a unique solution
curve c : (-e, e) —» M xW —• M of J with n o c = c.

Notice that Cartan prolongations can be used to study the equivalence between
systems of differential equations on manifolds of different dimensions. Also there
will be a one-to-one correspondence between solution trajectories of the original
system and the prolonged system as long as the solutions are smooth. In exterior
differential systems the independent variable time in the control systems becomes
another coordinate on the base manifold along with the dependent variable. So dt
is introduced as an independence condition. An independence condition is a one-
form that is not allowed to vanish along the solution trajectories of the system.
Notice that if the original system 7 has an independence condition r, then tt*t is
the independence condition for the prolonged system. The extended coordinates,
y G ffl, are called the fiber coordinates.

If 7 is a Pfaffian system with an independence condition dt on a manifold M and
du an integrable one-form in the complement of 7, then J = {7,du- ydt} is called a
first-order prolongation by differentiation. If 7 is a Pfaffian system of codimension
p + 1 then the p-th order prolongation by differentiation is called the total prolon
gation. Recall that dynamic extension of a control system is an augmented system
with integrators added to the inputs. So prolongation by differentiation is exactly
dynamic extension in the exterior differential systems perspective.

Definition 3.2. Two Pfaffian systems IUI2 are called absolutely equivalent if they
have Cartan prolongations J\,J2 that are equivalent i.e., there exists a diffeomor
phism (j> such that (f>*(J2) = Ji-

Another variation of the (VTC) problem is the endogenous dynamic dynamic
feedback problem. The dynamic feedback given in (VTC) is said to be endogenous
if w and v can be expressed as functions of x, u, t and a finite number of derivatives
of u.

We state two results for endogenous feedback from [3].
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Claire Tomlin

Notes for the Course EE290B, taught by Professor S. Sastry
Department of Electrical Engineering

University of California, Berkeley, 94720
Fall, 1994

1 Introduction

These notes were developed from the second part of an Advanced Topics in
Control Theory course taught at U.C. Berkeley in the fall of 1994.

The first chapter describes some of the mathematics of matrix Lie groups in a
self-contained manner. The second chapter introduces control systems with
left-invariant vector fields on matrix Lie groups. The examples are restricted
to 50(3) and SE(3), although a section about the Wei-Norman formula
discusses how one may deal with the higher dimension case. Some recent
work by Walsh, Sarti, and Sastry [8] about steering algorithms on S0(3) is
also described.

2 Mathematical Preliminaries

This chapter describes some of the main topics in the mathematics of matrix
Lie groups. The coverage is by no means exhaustive; its purpose is to provide
a good base for the applications in the next chapter.



2.1 Groups, Fields, and Algebras

We begin with a set of definitions.

Definition 1 (Group) A group G is a set with a binary operation (•) :
G x G —• G, such that, Va, b, c in G, the following properties are satisfied:

1. associativity: (a •b) •c —a- (b- c)

2. 3 an identity eBa'e = e-a = a

3. 3 an inverse a"1 B a • a'1 = a"1 • a — e.

A group G is called abelian if a •b= b •a, Va, 6 in G.

Definition 2 (Homomorphism) A homomorphism between groups, <j> :
G —* H, is a map which preserves the group operation:

#a.6) = #a).#&).

Definition 3 (Isomorphism) An isomorphism is a homomorphism which
is bijective.

Definition 4 (Field) AfieldK is a set with two binary operations: addition
(+), and multiplication (•), such that:

1. K is an abelian group under (+), with identity 0

2. K —{0} is an (abelian) group under (-), with identity 1

3. (-) distributes over (+) 3 a • (b+ c) = a •b+ a •c.

Some examples of fields are presented below.

R is a field with addition and multiplication defined in the usual way.

R2, with addition defined in the usual way and with multiplication defined
as:

(xux2) - (2/1,2/2) = (siyi,S2y2)

2



for {xi, x2, j/i, y2} in R, is not a field. Why not? If it were, we would have:

(1,0)-(0,1) = (0,0)

(M)-1. (1,0). (0,1) = (1,0)-1. (0,0)
(0,1) = (0,0).

This is clearly a contradiction. R2 can be made into a field if we define (•) as
(xi,x2) • (3/1,2/2) = (xiyi —x2y2,xxy2 + x2yx). We denote this field as C, the
set of complex numbers, where (xx,x2) = xx + %x2.

If we relax the requirement that K —{0} be an abelian group under multi
plication, we may define the quaternions as a field. This field is denoted H,
for Hamiltonian field.

The quaternions Harethe set of 4-tuples (xx,x2,X3,x4) = (xx+ix2+jX3+kx4)
with addition defined in the usual way, and multiplication defined according
to the following table:

(•) 1 I J k

1 1 I J k

I I -1 k -J

J J -k -1 1

k k J —I -1

In the following we will be defining similar constructions for each of the fields
R, C, and H. For ease of notation, we denote the set as K € {R, C, H}.

We write Kn as the set of all n-tuples whose elements are in K. If we
denote 0 : Kn —> Kn as a linear map, then i/> has matrix representation
Mn(K) e Knxn. Kn and Mn(K) are both vector spaces over K.

Definition 5 (Algebra) An algebra is a vector space with a multiplication
operation which distributes over addition.

Mn(K) is an algebra with multiplication defined as the usual multiplication
of matrices: for A,B,C € Af„(K),

A(B + C) = AB + AC
(B + C)A = BA + CA.



Definition 6 (Unit) If A is an algebra, x € A is a unit if there exists
y € A such that xy = yx = 1.

If A is an algebra with an associative multiplication operation, and U € A
is the set of units in A, then U is a group with respect to this multiplication
operation.

2.2 Matrix Groups

The class of groups whose elements are n xn matrices is introduced in this
section.

General and Special Linear Groups

• The group of units of M„(K) is the set of matrices M for which det(M) ^ 0,
where 0 is the additive identity of K. This group is called the general
linear group and denoted by GL(n,K).

• SL(n, K) C GL(n, K) is the subgroup of GL(n, K) whoseelements have
determinant 1. SL(n, K) is called the special linear group.

Orthogonal Matrix Groups

• 0(n,K) C GL(n,K) is the subgroup of GL(n,K) whose elements ma
trices A satisfy the orthogonality condition: AT = A'1, where AT is
the complex conjugate transpose of A.

Examples of orthogonal matrix groups are:

0(n) = 0(n, R) is called the orthogonal group.

U(n) = U(n, C) is called the unitary group.

Sp(n) = Sp(n, H) is called the symplectic group.

Note that for A € GL(n, H), A denotes the complex conjugate of the quater
nion, defined by conjugating each element, using

x + ty + jz + kw = x —ty —jz —kw.



An equivalent way of defining the symplecticgroup is as a subset of GL(2n, C),
such that

Sp(n) = {Be GL(2n, C) : BTJB = J;BT = B'1},
where the matrix J is called the infinitesimal symplectic matrix, and is writ
ten as:

J =

0 1 "
o—1 0J

0
r o r
-10

0 0

0

0

0 1

-1 0

Special Orthogonal Matrix Groups

• SO(n) = 0(n) fl SL(n, R) is the set of all orthogonal matrices of de
terminant 1. It is called the special orthogonal group.

• SU(n) = U(n)C\SL(n, C), the set of all unitary matrices of determinant
1, is called the special unitary group.

Euclidean Matrix Groups

• The Euclidean group is the set of matrices E(n) such that

E(n) = {A£ R<»+i>*<»+i) : A= R p
Qlxn ]_ ,ReGL(n),p£Rn}.

• The special Euclidean group is the set of matrices SE(n) such that

R p
Qlxn ]_SE(n) = {A€ R(»+i>*<»+i> : A = ,ReSO(n),peRn}.

Proposition 1 Let G C Afn(K) be a matrix group. Let 7 : [a,b] -* G be a
curve with 0 € (a, 6) and 7(0) = /. Let T be the set of all tangent vectors
77(0) to curves 7. Then T is a real subspace of Mn(K).



Proof: If 7 and a are two curves in G, then 7'(0) and ^'(O) are in T. Also,
7<r is a curve in G with (7<r)(0) = 7(0)<7(0) = /.

—(i(u)<t(u)) = i(u)(j(u) + i(u)a'(u)

(7<r)'(0) = y(0M0) + 7(0y(0)

= 7;(0) + </(0).

Since 7a is in G, (7<r)'(0) is in T. Therefore, 7/(0)<j(0) + 7(0)<r'(0) is in T,
and T is closed under vector addition.

Also, if Y(0) € T and r G R, if we let a(u) = 7(ru), then <r(0) = 7(0) = /
and ^'(O) = rcr'(0). Therefore, ra'(O) € 71, and T is closed under scalar
multiplication. •

Definition 7 (Dimension of a Matrix Group) The dimension of the ma
trix group G is the dimension of the vector space T of tangent vectors to G
at I.

We now introduce a family of matrices which we will use to determine the
dimensions of our matrix groups. Let so(n) denote the set of all skew-
symmetric matrices in M„(R),

so(n) = {A£ Mn(R) : AT + A = 0}.

Similarly, the set

su(n) = {Ae M„(C) : AT + A= 0}

denotes the skew-hermitian matrices, and the set

sp(n) = {Ae Mn(H): AT + A = 0}

denotes the skew-symplectic matrices. We also define

sl(n) = {A€ Mn(R) : trace(4) = 0},

and

se(n) = {AE R<»+i»«»+i> : A = iy p

0 0
,weSO(n),PeRn}.



Now consider the orthogonal matrix group. Let 7 : [a, b] —* 0(n), such that
7(«) = A(u), where A(u) € 0(n). Therefore, j4t(u)j4(u) = /. Taking the
derivative of this identity with respect to u, we have:

A,T(u)A(u) + AT(u)A'(u) = 0.

Since A(0) = I,
A^(0) + A'(0) = 0.

Thus, the vector space TiO(n) of tangent vectors to 0(n) at / is a subset of
the set of skew-symmetric matrices, so(n):

7/0(n) C so(n).

Similarly, we can derive

TiU(n) C su(n)
TiSp(n) C sp(n)

Armed with our definition of the dimension of a matrix group, we conclude
that:

dim 0(n) < dim so(n)
d\mU(n) < dimsu(n)

dim Sp(n) < dim5p(n)

We will now show that these inequalities are actually equalities.

Definition 8 (Exponential and Logarithm) The matrix exponential func
tion, exp : Mn(K) —> A/n(K), is defined in terms of the Taylor series expan
sion of the exponential:

e =I+A +H+u+-
The matrix logarithm log : Mn(K) -* Mn(K) is defined only for matrices
near the identity matrix I:

Proposition 2 A € so(n) => eA € SO(n).



Proof: (eA)T = eAT = eA~x = (eA)~l, therefore, eA € 0(n). Using
det(e^) = etrace<A>, we have det(e^) = e° = 1. D

Similarly,

A € su(n) => eA € tf(n);
A g sp(n) => eA € 5p(n);
A€s/(n) => eA€5X(n);
/I € se(n) => eA € 5£(n).

Proposition 3 A" G 50(n) ==* log(X) € so(n).

Proof: Noting that log(AT) = log(X) + log(K) iff XY = YX, we take
the logarithm on both sides of the equation: XXT = XTX = I. Thus,
log(X) + \og(XT) = 0, so log(X) € so(n). D

Similarly,

XeU(n) ==> log(X) € au(n);
X€Sp(n) =* \og(X) € sp(n);
XeSL(n) =» \og(X) e «/(n);

*€5£(n) => log(X) € *e(n).

The logarithm and exponential thus define maps which send a matrix group
G to its tangent space T, and vice versa.

Definition 9 (One Parameter Subgroup) A one parameter subgroup 7
of a matrix group G is a smooth homomorphism 7 : R -+ G.

The group operation in R is addition, thus, 7(1* + v) = *y(u) •"f(v). Since R
is an abelian group under addition, we have that

7(11 + v) = 7(1; + u) = 7(1/) •7(u) = 7(v) •*y(u).

Note that by defining 7 on some small neighbourhood U of 0 € R, 7 is defined
over all R, since for any x € R, some -x € U and 7(0;) = (~f(^x))n.
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Proposition 4 If A € M„(K), then eAu is a one parameter subgroup.

Proof: Noting that ex+Y = exeY iff AY = YX, we have

ei4(«+v) _ eAu+Av _ ei4ue-Aw

since A commutes with itself. •

Proposition 5 Let 7 be a one parameter subgroup of Mn(K). Then there
exists A 6 Mn(K) such that *y(u) = eAu.

Proof: Define A = <r'(0), where a(u) = log7(11), (ie. 7(11) = e°^). We
need to show that a(u) = Au, a line through 0 in Mn(K).

V ' v—0 v

lim1°S7^"f v)"~loS7(tt)

limlog7^7^~lQg7^

u-»o t;

= </(0)
= A

Therefore, cr(it) = Au. •

So, given any elementin the tangent space of G at /, its exponential belongs
toG.

Proposition 6 Let A € TjO(n,K), the tangent space at I to 0(n,K). Then
there exists a unique one parameter subgroup 7 in 0(n,K) with 7'(0) = A.

Proof: 7(11) = eAu is a one parameter subgroup of GL(n, K), and 7 lies in
0(n,K) since -y(u)T*f(u) = (eAu)TeAu = I. D



Thus,
dim 0(n, K) > dimso(n,K).

But we have shown using our definition of the dimension of a matrix group
that

dimO(n,K) < dimso(n,K).

Therefore,
dim 0(n, K) = dimso(n, K),

and the tangent space, at I, to 0(n,K) is exactly the set of skew-symmetric
matrices.

Now the dimension of so(n, R) is easily computable: we simply find a basis.
Let Eij be the matrixwhose entries areallzero except the ijth entry, which is
1, and the jith entry, which is -1. Then Eij, for i < j, form a basis for so(n).
There are ^y^ of these basis elements. Therefore, dimO(n) = ^—^.
Similarly,

dim50(n) = H(2_ll)
dimU(n) = n2

dimSU(n) = n2 - 1
dim5p(n) = n(2n + 1).

2.3 Matrix Lie Groups and their Lie Algebras

We start our discussion of matrix Lie groups with some definitions from
differential geometry.

Definition 10 (Topological Space) A topological space is a set M with a
collection of subsets T of M having the properties:

1. 0 and M are in T;

2. the union of the elements of any subcollection of T is in T;

3. the intersection of the elements of any finite subcollection ofT is in T.
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T is called a topology on M.

Definition 11 (Homeomorphism) A homeomorphism f between two topo-
logical spaces M and N is a bijective, continuous map f : M —* N with a
continuous inverse f~l : N —> M.

Definition 12 (Manifold) An n-manifold is a topological space M with the
property that, if x € M, then there is some neighbourhood U of x such that
U is homeomorphic to Rn.

Definition 13 (Chart, Atlas, Maximal Atlas) A chart (<p, U) on an n-
manifold M is an open set U of M and a homeomorphism (p : U —* Rn.
Two charts, (y?, U) and (<j>, V), are said to have smooth overlap if the maps
<t>~1 o <p : Rn —• Rn and (p'1 o <j> : Rn —• Rn are smooth. A family of charts
which covers M and whose members have smooth overlap is called an atlas.
A maximal atlas for M is an atlas which contains the maximum number of
charts.

Definition 14 (Differentiable Manifold) A differentiable manifold is a
manifold with an associated maximal atlas.

The atlas allows us to perform calculus on the manifold: the charts in the
atlas provide explicit homeomorphisms which refer the manifold to Rn, a
space in which we know how to integrate and differentiate. The requirement
that the charts have smooth overlap guarantees that these operations are
well-defined over the whole manifold.

We may characterize a smooth function f : M —> N, where M is an m-
manifold and N is an n-manifold, according to the corresponding atlases on
M and N. Let (<p, U) be a chart on M and (<j>, V) be a chart on N. Let p € M
such that U is an open neighbourhood of p and V is an open neighbourhood
of f(p). Then / is said to be smooth at p if

<t> o / o^ : Rm -+ Rn

is smooth at (p(p).

11



We now introduce the concept of tangent vectors to manifolds. In Rn, tangent
vectors to smooth surfaces are easy to picture, however smooth surfaces and
tangent vectors in an arbitrary manifold are not as intuitive to visualize.

Let M be a differentiable m-manifold with p € M. Let

A(p) = {(W,f) :p e W, W open in M, / : W -• R is smooth}.

Define vector addition and scalar multiplication on A(p) as, for (Wx ,fx), (W2, f2) € A(p)
and r € R,

(Wi,/i) + W,/j) = (W,rnv,,/, + /j)
rW,/i) = (W„r/,).

Under these operations, A(p) is a real vector space. We make A(p) into an
algebra by defining vector multiplication as

(wx,fx)(w2,f2) = (wx n w2,fxf2).

Definition 15 (Tangent Vectors) A tangent vector (toMatpisa lin
ear map £ : A(p) —*• R satisfying, for f,g € A(p):

1- if f = g in a neighbourhood of p, then £(f) = ((g);

2. ((fa) = /(p)to) + «/)*(?)•

The second condition above is called the derivation law.

Consequences of this definition:

• If / is a constant function (f(q) = r,Wq € U)> then V tangent vectors
{, an = o.

Proof:

«/•*) = f(p)((a) + i(f)g(p)
«»••*) = rt(g)+ t(f)9(p)

Therefore, {(f)g(p) = 0 since f (r •p) = rf(p). Since this holds Vp, we
have £(/) = 0.

12



• K /(p) = g(p) = 0 then £(/<,) = 0.

Tangent vectors are operators which act on functions: if 7 is a smooth curve
in a manifold M, then 7 gives rise to a linear function

« = 7.(<): A(p) -» R

defined by

*(<)(/)=7.«(/) = (/°7)m
which may be described as the directional derivative of / at p in the direction
of 7. The tangent space of M at a point p, denoted TPM, is the set of all
tangent vectors to M at p.

Proposition 7 TPM is a real vector space of dimension m, the dimension
ofM.

Proof: With the definition of vector addition and scalar multiplication on
tangent vectors as follows, for £,n € Tp(M),r 6 R,

(i + v)U) = Z(f) + v(f)
K)(/) = r«/),

it is easy to verify that TPM is a real vector space.

We now prove that the dimension of TPM is m.

Let (<p, U) be a chart on M, where p € <p(U) C M and U 6 Rm. Suppose
that jlf sits in the ambient space RN, and assume that <^(0) = p. The best
approximation to y?: U —> M at 0 is the map:

y?(u) = <p(0) + d(p0(u) = x + dip0(u).

Recall that tp'1 is a smooth map from M to Rm Choose an open set W in
RN and a smooth map $': RN -• Rm that extends tp"1. Thus $' oy? is the
identity map of U, so, by the chain rule,

Rm ^ TP(M) ^ Rm
is the identity map of Rm. Therefore, d(p0 : Rm -> TP(M) is an isomorphism,
and the dimension of TP(M) is m. D
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Definition 16 (Smooth Vector Fields) A smooth vector fieldX ona man
ifold M is an assignment of Xp € TPM for each p € M, such that, if
f : M —• R is a smooth function, then

(Xf)r = X,(f): M -. R

is smooth over p.

The smooth vector fields on M form a real vector space. Indeed, it is easy
to check that if A and Y are smooth vector fields, then A + Y is a smooth
vector field, since (A -I- Y)(f) = X(f) + Y(f). If A is a smooth vector field
and r G R then rX is smooth, where rX(f) = r(X(f)).

Definition 17 (Integral Curve) Let c : [0,1] —» M be a curve on the
differential manifold M, and let X be a smooth vector field on M. The curve
c is said to be an integral curve of the vector field X if

c = X(c(t)).

Vector fields thus represent differential equations on manifolds.

The space of smooth vector fields becomes an algebra under the appropriate
multiplication operation. If we have two smooth vector fields A and Y, let
us define

(X o Y)(p)(f) = Xp((Yf)p).

Now (Yf)p is a smooth function from M to R, thus

X,(Yf)p : A(p) -* R.

However, Xp(Yf)p may not necessarily be a tangent vector. Consider an
example in which

M = Rn,

X - ±

Y = A.
dx2

14



Thus,
d2f

Xp{Yf)p = dx^dx~2lpi
and, for this example, the derivation law is not satisfied. Therefore, (A o Y)
is not a tangent vector, so the vector space of smooth vector fields is not
closed under this operation.

The candidate multiplication operation under which the vector space of
smooth vector fields becomes an algebra must therefore somehow cancel these
mixed partial derivatives.

Proposition 8 For smooth vector fields X, Y, the operator

f —• Xp(Yf) - Yp(Xf)

is a tangent vector.

Proof: We prove only that the operator defined above satisfies the deriva
tion law:

XP(Y(fg)) = Xp(f(Y(g)) + Y(f)g)
= Xp(f)Y„(g) + f(p)X,(Y(g)) + Xp(Y(f))g(p) + Yp(f)Xp(g).

There is a symmetric formula for Yp(X(fg)). Thus

XvVUg)) - Yp(X(fg)) = (XPY - YpX)(f)g(p) + f(P)(XpY - YpX)(g). D

We now have a multiplication operation which makes smooth vector fields
on M into algebras. Let [A, Y] = XY —YX denote the vector field defined
by [X,Y]P = XPY-YPX.

Definition 18 (Lie Algebra) A Lie algebra is a real vector space, V, with
a multiplication operation [ , ] which satisfies, for A,B € V,

1. [A,B] = -[B,A];

2. [A,B + C) = [A,B] + [A,C],
[A + B,C] = [A,C] + [B,C];
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3. for r € R, r[A,B] = [rA,B\ = [A,rB];

I [A, [B, C]) + [B, [A,C]] + [C,[A,B]] = 0.

The fourth condition is called the Jacobi Identity.

Proposition 9 The set C(M) of smooth vector fields on a differentiable
manifold M forms a Lie Algebra under [ , ].

Proof: We have shown that C(M) is a vector space, and it is a matter of
substitution to show that [A, Y]p = XPY —YPX satisfies the four properties
listed above. •

The multiplication operation [A, Y] is called the Lie bracket of A and Y.

Definition 19 (Lie Group) A Lie group is a group G which is also a dif
ferentiable manifold such that, for a, b € G,

1. (a,b) i—• ab

2. at—> a-1

are smooth functions.

All finite dimensional Lie groups may be represented as matrix groups. For
example, since the function det : Rn —• R is continuous, the matrix group
GL(n, R) = def1(R —{0}) is open. It can be given a differentiable structure
which makes it an open submanifold of Rn . Multiplication of matrices in
GL(n, R) is continuous, and smoothness of the inverse map follows from
Cramer's Rule. Thus, GL(n, R) is a Lie group. Similarly, 0(n), SO(n), E(n),
and SE(n) are Lie groups.

In order to study the algebras associated with matrix Lie groups, the concepts
of differential maps and left translations are first introduced.

Let M, N be differentiable manifolds and let M —* N be a smooth map.

Then tjj induces a linear map TP(M) —* T^P)N:

W o £)(/) = tif o 0),
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for f € TpM,f € A(ip(p)). The map aty is called the differential of xf>.

Let G be a Lie group with identity /, and let A/ be a tangent vector to G at
J. We may construct a vector field defined on all of G in the following way.
For any g € G, define the left translation by g to be a map Lg : G —> G such
that Lg(x) = gx, where x £ G. Since G is a Lie group, Lg is a diffeomorphism
of G for each g. Taking the differential of Lg at e results in a map from the
tangent space of G at e to the tangent space of G at g:

dLa : TeG -* TgG

such that

X„ = </!,(*,).

The vector field formed by assigning Xg € TgG for each g € (7 is called a /e/fc
invariant vector field.

Proposition 10 If X and Y are left invariant vector fields on G, then so is

ix,n

Proof: Let g € G and / € A(g).

dLg[X,YUf) = [X,YUfoL9)
= Xe(Y(foLs))-Y.(X(foL„))
= dL,X.(yf)-dL,Y.(Xf))
= *,(K/) - K9(A7)
= {X,Y]g{f). a

Also, if A and V are left invariant vector fields, then X + Y and rX, r € R
are also left invariant vector fields on G. Thus, the left invariant vector fields
of G form an algebra under [ , ], which is called the Lie algebra of G and
denoted C(G). C(G) is actually a subalgebra of the Lie algebra of all smooth
vector fields on G.

With this notion of a Lie group's associated Lie algebra, we can now look
at the Lie algebras associated with some of our matrix Lie groups. We first
look at three examples, and then, in the next section, study the general map
from a Lie algebra to its associated Lie group.
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Examples:

• The Lie algebra of GL(n, R) is denoted <//(n, R), the set of all n x n real
matrices. The tangent space of GL(n, R) at the identity can be iden
tified with Rn since GL(n, R) is an open submanifold of Rn . The Lie
bracket operation is simply [A, B] = AB —BA, matrix multiplication.

• The special orthogonal group SO(n) is a submanifold of GL(n, R), so
SO(n)i is a subspace of GL(n, R)/. The Lie algebraof SO(n), denoted
so(n), may thus be identified with a certain subspace of Rn . We have
shown in the previous section that the tangent space at / to SO(n) is
the set of skew- symmetric matrices; it turns out that we may identify
so(n) with this set. For example, for 50(3), the Lie algebra is:

so(3) = w =

0 —Wz w2 ' m
U>3 0 -wx ,w = w2

—W2 wx 0 W3

The Lie bracket on so(n) is defined as [u>Q,tuJ = (wa x t^), the skew-
symmetric matrix form of the vector cross product.

The Lie algebra of SE(S), called se(3), is defined as follows:

*e(3)«{f«[j J]w,v€R3\.
The Lie bracket on se(3) is defined as

(wx X W2) WX X v2 —W2 X vx
0 0

2.4 The Exponential Map

In computing the dimension of 0(n, K) in Section 2.2, we showed that for
each matrix A in 0(n, K)/, there is a unique one parameter subgroup 7 in
0(n, K), with 7(11) = eAu, such that 7;(0) = A. In this section we introduce
a function

exp : TeG -> <?,
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for a general Lie group G. This map is called the exponential map of the
Lie algebra C(G) into G. We then apply this exponential map to the Lie
algebras of the matrix Lie groups discussed in the previous section.

Consider a general Lie group G with identity e. For every f € TeG, let
^ : R -» (? denote the integral curve of the left invariant vector field A^
passing through e at t = 0. Thus,

fc(0) = e

and

jtMt) =*«(*(*))•
One can show that <j>^(t) is a one parameter subgroup of G. Now the expo
nential map of the Lie algebra C(G) into G is defined as exp : TeG —• G such
that for s € R,

exp(fs) = <^(s)
exp(0 = ^(1).

Thus, a line £s in C(G) is mapped to a one parameter subgroup <f>z(s) of G.

We differentiate the map exp(£s) = <t>^(s) with respect to s at s = 0 to obtain
d(exp) : TeG -• TeG such that:

d(exp)(0 = ^(0) = (,

thus, e?(exp) is the identity map on TeG.

By the inverse function theorem,

exp : C(G) -• G

is a local diffeomorphism from a neighbourhood of zero in C(G) onto a neigh
bourhood of e in (7, which is denoted as Go, the identity component of G.

We now discuss the conditions under which the exponential map is surjective
onto the Lie group.

Definition 20 (Path Connected) For any two points x and y of a topo
logical space X, a path in X from x to y is a continuous map f : [0,1] —• A
such that /(0) = x and /(l) = y. X is said to be path connected if every
pair of points of X can be joined by a path in A.
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Go is path connected by construction: the one parameter subgroup exp({s) = ^(s)
defines a path between any two elements in Go.

Proposition 11 If G is a path connected Lie group and H is a subgroup
which contains an open neighbourhood U of e in G, then H = G.

Proof: See Curtis [1].

We may thus conclude that if G is a path connected Lie group, then exp : C(G)
is surjective. If G is not path connected, exp(£(G)) is the identity component
Go of G.

For matrix Lie groups, the exponential map is just the matrix exponential
function, eA, where A is a matrix in the associated Lie algebra.

• For G = 50(3), the exponential map expiw, w € so(3), is given by

,7, W U>e» =/ +U) +¥ +¥ +...,

which can be written in closed form solution as:

e'i =/+]i^iisin||u'll+l[^iF(1-cos||u,|l)-
This is known as Rodrigues'formula.

• For G = SE(3), the exponential map expf, f G se(3) is given by

e< =

for w = 0, and

e< =

for w / 0, where

/ v

0 1

e* Av
0 1

A= / + T7J^(l-cos||u;||)+ W
II t* IIs II t* IIs

20
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2.5 Canonical Coordinates on Matrix Lie Groups

Let {Ai, A2,..., A„} be a basis for the Lie algebra C(G). Since

exp : C(G) -• G

is a local diffeomorphism, the mapping a : Rn —• G defined by

g = exp{<7iAi + ... -f <rnA„}

is a local diffeomorphism between a € Rn and g € G for g in a neighbourhood
of the identity e of G. Therefore, a : U —• Rn, where U C G is a neighbour
hood of e, may be considered a coordinate mapping with coordinate chart
(a, U). Using the left translation Lg, we can construct an atlas for the Lie
group G from this single coordinate chart. The functions o\ are called the
Lie-Cartan coordinates of thefirst kindrelative to the basis {Ai, X2,..., A„}.

A different way of writing coordinates on a Lie group using the same basis
is to define 6 : Rn -• G by:

g = exp XX0X expXx02 . . .exp An0n

for g in a neighbourhood of e. The functions (0x,02,...0n) are called the
Lie-Cartan coordinates of the second kind.

An example of a parameterization of 50(3) using the Lie-Cartan coordinates
of the second kind is just the product of exponentials formula:

R = e^e^e**3
cos(0i) -sin(0i) 0
sin(0i) cos(0i) 0

cos(02) 0 sin(02)
0 1 0

1 0 0

0 cos(03) -sin(03)
0 sin(03) cos(03)0 0

where R € 50(3) and

1 J |_ -sin(02) 0 cos(02)

x =

0 0 0 "

0 0 -1
A

y =

0 1 0

001"

000 z =

-100

0-10

1 0 0

0 0 0

This is known as the ZYX Euler angle parameterization. Similar parameter-
izations are the YZX Euler angles, and the ZYZ Euler angles.
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A singular configuration of a parameterization is one in which there does
not exist a solution to the problem of calculating the Lie-Cartan coordinates
from the matrix element of the Lie group. For example, the ZYX Euler
angle parameterization for 50(3) is singular when 02 = —ir/2. The ZYZ
Euler angle parameterization is singular when 0X = —03 and $2 = 0, in which
case R = I, illustrating that there are infinitely many representations of the
identity rotation in this parameterization.

2.6 The Campbell-Baker-Hausdorff Formula

The exponential map may be used to relate the algebraic structure of the Lie
algebraC(G) of a Lie group G with the group structure of G. The relationship
is described through the Campbell-Baker-Hausdorff (CBH) formula which is
introduced in this section. The notions of conjugation and adjoint maps
are first described. The structure of a Lie algebra in terms of its structure
constants is also presented.

If M is a differentiable manifold and G is a Lie group, we define a left action
of G on M as a smooth map $ : G x M —• M such that

1. $(e,x) = x for all x € M

2. for every g,h € G and x € M, $(g,$(h,x)) = $(gh,x).

The left action of G on itself defined by Cg : G —• G:

Cg(h) = ghg-i =Rg-xLgh

is called the conjugation map associated with g.

The derivative of the conjugation map at e is called the adjoint map, defined
as Adg :C(G) -+ C(G) such that, for f € C(G), g € G,

Ad9(0 = (Te(Cg))(0 = Te( Rg->Lg)(0.

If G C GL(n,C), then Ada(() = g(g'1.

The lower-case adjoint map ad^ : C(G) —• C(G) is defined as
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Lemma 1 (Campbell-Baker-Hausdorff Formula) If x,y e C(G), then

Ad^y = e'ye-* =y+[x, y] +-[*,[x, y]] + ^j[a;[a:, [x, y]]] +...

= y + adsy + -aa*xy + -adixy + ...

The CBH formula is a measure of how much x and y fail to commute over
the exponential: if [x,y] = 0, then Ade*y = y.

If {Ai, A2,..., An} is a basisfor the LiealgebraC(G), the structure constants
ofC(G) with respect to {Ai, A2,..., An} are the values ckj £ Rdefined by:

[xi,xj] = 'E4Xk.
k

Lemma 2 Consider C(G) with basis {Xx,X2,...,Xn} and structure con
stants d-j with respect to this basis. Then

f[ expfoAj)* IIexp(-PiXj) =E &*»,
i=i J=r jb=l

where pj Q R and (ki € R.

Proof of 2: We first prove the lemma for r = 1. Using the CBH formula,
write:

exp(p1A1)A,exp(-PlA1) =A, +£ |̂r^p?.
*=i K-

The terms adXl A,- are calculated using the structure constants:
n

adXlX{ = J2 CilXnx
m=i

<<* = E E <s«s,*..
m=i ri2=i

<<* = E E ••• E «R«B,«B. •••cia>->xnt
tll=l Tl2=l Hfc=l
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Substitute the above formula for adx%Xi into A,- -I- £j£i ^ 'Pi> and note
that since each of the c£- is finite, the infinite sum is bounded. The (ki are
consequently bounded and are functions of c£, k\, and p\. The proof is
similar for r > 1. D

3 Left Invariant Control Systems on Matrix
Lie Groups

This chapter uses the mathematics developed in the previous chapter to
describe control systems with left-invariant vector fields on matrix Lie groups.
For an n-dimensional Lie group G, the type of system described in this section
has state which can be represented as an element g € G. The time differential
equation which describes the evolution of g can be written as:

n

9 = 9(52XiUi),
»=i

where the u,- are the inputs, and the A,- are a basis for the Lie algebra C(g).
In the above equation, gX{ is the notation for the left invariant vector field
associated with A,-. The equation represents a driftless system, since if it,- = 0
for all i, g = 0.

In the first section, the state equation describing the motion of a rigid body
on SE(Z) is developed. The second section develops a relationship, called the
Wei-Norman formula, between the inputs ut- and the Lie-Cartan coordinates
of the group. In the third section, the problem of steering a control system
on 50(3) is studied through a specific example.

3.1 Frenet-Serret Equations: A Control System on
SE(3)

In this section, arc-length parameterization of a curve describing the path of
a rigid body in R3 is used to derive the state equation of the motion of this
left invariant system.
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Consider a curve

a(s):[0,l]-R3,

representing the motion of a rigid body in 3-space. Represent the tangent to
the curve as

t(s) = a'(s).

Constrain the tangent to have unity norm, ||*(s) ||= 1, so that

<t(s),t(s)>=l.

Now taking the derivative of the above with respect to s, we have

< t'(s), t(s) > + < t(s), t'(s) >= 0,

so that t'(s) ± t(s). Denote the norm of t'(s) as

K(*)II=*W,

where k(s) is called the curvature of the motion: it measures how quickly
the curve is pulling away from the tangent. Let us assume /c > 0. Denoting
the unit normal vector to the curve a(s) as n(s), we have that

t'(s) = n(s)n(s),

and also

<n(s),n(s)>= 1

so that n'(s) _L n(s).

The binormal to the curve at s is denoted as 6(5), where

6(5) = t(s) x n(s),

or equivalently,

Let

n(s) = b(s) x t(s).

n'(s) = r(s)b(s),
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where t(s), called the torsion of the motion, measures how quickly the curve
is pulling out of the plane defined by n(s) and 6(5). Thus

b'(s) = t'(s) x n(s) + t(s) x n'(s)
= k(s)u(s) x n(s) + t(s)T(s)b(s)
= r(s)t(s) x b(s)
= r(s)n(s),

where 71(5) x n(s) = 0.

Similarly,

n'(s) = b'(s) x t(s) + b(s) x t'(s)
= r(s)n(s) x t(s) + n(s)b(s) x n(s)
= -r(s)b(s) - n(s)t(s).

We thus have:

a'(s) = t(s)
t'(s) = /e(s)n(s)

n'(s) = -r(s)b(s) - K(s)t(s)
b'(s) = r(s)n(s).

Since ^(s),n(s), and 6(5) are all orthogonal to each other, the matrix with
these vectors as its columns is an element of 50(3):

[t(s), n(s), b(s)] e 50(3).

Thus,
t(s) n(s) b(s)

0 0 0

a(s)
e SE(3),

and

d " t(s) n(s) b(s) 0(5) "
ds 0 0 0 1

t(s) n(s) b(s) ttfc)
0 0 0
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0

0
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These are known at the Frenet-Serret equations of a curve. The evolution of
the Frenet-Serret frame in R3 is given by

9 = gX,

where g € SE(3) and A is an element of the Lie algebra se(3). We may
regard the curvature k(s) and the torsion t(s) as inputs to the system, so
that if

ux = k(s)
u2 = -t(s),

then
r o -ux 0 1 1

9 = 9
ux

0

0

u2

—u2

0

0

0

L 0 0 0 o J
which is a special case of the general form describing the state evolution of
a left invariant control system in 5i?(3).

An example of the general form of a left invariant control system in SE(3)
is given by an aircraft flying in R3:

r o -u3 u2 u4 '

9 = 9
«3

-u2

0

ux

-ux

0

0

0

L 0 0 0 o J
The inputs ux,u2, and u3 control the roll, pitch, and yawof the aircraft, and
the input u4 controls the velocity in the forward direction.

Specializing the above to SE(2), we have the example of the unicycle rolling
on the plane:

' 0

u2

—u2

0

1 "

0

. 0 0 0

9 = 9

In this case, the input u2 controls the angle of the wheel.

The previous formulation describes kinematic steering problems since it is
assumed that we have direct control of the velocities of the rigid bodies. In
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the control of physical systems, though, we generally only have access to
the forces and torques which drive the motion. A more realistic approach
would therefore be to formulate the steering problem with a dynamic model
of the rigid body, which uses these forces and torques as inputs." Dynamic
models are more complex than their kinematic counterparts, and the control
problem is harder to solve.

3.2 The Wei-Norman Formula

In this section we derive the Wei-Norman formula, which describes a re
lationship between the open loop inputs to a system and the Lie-Cartan
coordinates used to parameterize the system.

Consider the state equation of a left-invariant control system on a Lie group
G with state g £ G:

n

9 = 9(J2XiUi)'
i=l

where the u,- are inputs and the At- are a basis of the Lie algebra C(g).

We may express g in terms of its Lie-Cartan coordinates of the 2nd kind:

g(t) = exp(7i(<)Ai)exp(72(*)^2) •••exp(7„(0A„).

Thus,

9 = ETK03«*(7iAi)X»n«P(7,-Ai)

i=l )=1 j=l

= jEtKOE&M**,
i=l *=1

Where the last equation results from Lemma 2. If we compare this equation
with the state equation, we may generate a formula for the inputs to the
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system in terms of the Lie-Cartan coordinates:

so that

«i(0
u2(t)

. «»(*)

tJW

Lv-w

&(7)

T-l

e«(7)

Ly.w J

«i(<) •
«2(t)

. «»(t).
The above is known as the Wei-Norman formula. It transforms the problem
from a differential equation on Lie groups to one in Rn: steering from an
initial configuration gi to a final configuration gj is converted into steering
from 7(0) to 7(1), both vectors in Rn.

3.3 Steering a Satellite on 50(3)

This section introduces a set of algorithms for steering on 50(3). The simple
structure of the group is exploited to solve for the control inputs directly,
instead of using the Wei-Norman formula of the previous section to transform
the problem. The algorithms and results are described in detail in the paper
by Walsh, Sarti, and Sastry [8].

A satellite is a rigid body floating in space. There are rotors or momentum
wheels attached to its body which create linearly independent momentum
fields which rotate the satellite to any configuration in 50(3). The satellite
may be modelled as a drift free system on 50(3):

AAA

g = gbxux + gbiui + ghuz,

where g € 50(3), S, € so(3), and the wt € R are scalars. The vector 6, € R3
describes the direction and magnitude of the momentum field created by the
ith momentum wheel on the satellite. Given an initial state gi and a desired
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final state <jr/, we wish to find control inputs ux(t), u2(t), u$(t) which will steer
the system from gi to gj in finite time T.

First, consider the case in which ti,- ^ 0 for i 6 {1,2,3}. Since we have
assumed that the momentum fields are linearly independent, the input vector
fields bxux, 02U2, and 03U3 span the tangent space so(3) at every point of
50(3). If we assume that the inputs are constant (ux,u2,u3) and applied
over one second, the solution to the state equation is

g; = g{ exp(6i«! + &2ix2 + &3ti3).

Since the exponential map is surjective onto 50(3), for any initial configura
tion gi and final configuration gj, inputs (ux,u2,u3) may be calculated which
steer the system from gi to gj, hence the system is completely controllable.
This is the easy case.

The second case that we consider is the two input system in which tti = 0.
We claim that even without the first vector field, the system is completely
controllable. An intuitive way to see why this claim is valid is to consider
the ZYZ Euler angle parameterization of 50(3). If rotation about the y axis
corresponds to pitch, and rotation about the z axis corresponds to roll, then
rotation about the x axis (yaw) may be generated from the two vector fields
corresponding to pitch and roll. To see this, let R € 50(3) be defined as
R = g719f- We may parameterize R as

R = e*9le*92ei8i.

Recalling that the ZYZ Euler angle parameterization is singular at R = /,
we perturb the representation about R = I with respect to the angles $2 and
$3 to obtain:

dR
dOz R=I = *
dR
d$2 'ye**3)

= (Ade-*e3y)

2!
= y + -03[z,y] + ...

Where the last equation results from the CBH formula. Since

[z,y] = (z xy) = -x,

30

= y + ad-if>3y +—ad*_i63y + ...



perturbations of R with respect to 02 produce motion in the direction of x.

Considering the same control problem as in the three input case, we proceed
to calculate the required inputs (ux(t),u2(t)) through a series of steps.

If the momentum vectors 62 and 03 are not orthogonal, the first step is to
orthogonalize their actions using the Gram-Schmidt algorithm. If v2 corre
sponds to pitch and v3 corresponds to roll, then Gram-Schmidt produces:

«3

u2
=

'fe fe'
0 fe

v3

V2

where

fe = (II h ID"1,
fe = (\\b2-bT2hfixh\\)-\
fe = -fc^nfe-

Thus, defining ax, a2, and a3 as the lengths of time that u3 (roll) is applied,
v2 (pitch) is applied, and then v3 applied again, the equation to solve is:

9il9S = exp(Pnhax)exp(pX2b3a2 + fe&2a2)exp(fe63a3).

The second step is to transform the system so that the input vector fields
are the canonical ones for R3. We construct the matrix K € 50(3):

# = [fe&3 (fe&3 + fe&2) (fe*3X(fe&3-rfe62))].

Now K~lfixxb$ = ex and K~l(f3x2bz + fe&2) = e2, where ei and e2 are the
standard first two basis vectors for R3. Defining the similarity transform as

g{t) = K-lg-'g(t)K,

and taking the derivative of the above, results in

g(t) = g(t)(exvx + e2v2),

which is in the desired canonical representation.
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The third step is to solve the general form of the roll-pitch-roll equation for
the coordinates (ai,a2,a3). Denoting

sin ax = 5ai

COS02 = C02

etc., we obtain

gj = (giK)~lgjK = exp(e1a1)exp(e2a2)exp(eia3)

*Soi"So2 CajC03 5ajC02503 C0jS03 50lCa2C03

. Cai502 30jC03 "T C0jCa2Sa3 5aj5a3 "T C0lC02C03

Denoting the elements of gj as Jy, we may solve for (ax,a2, a3):

ai = atan2(5f2i,-^3i) if P3i ^ 0

= acot2(-£3i,£2i) else
a2 = atan2(5fnsin(a1),52i) if^2i 7^0

= atan2(^ii cos(ai), —#3i) e^se
a3 = atan2(512,5i3) if gx3 ^ 0

= acot2(£13,£i2) else

Finally, in the fourth step, the a,- calculated in the previous step are used to
compute the actual controls. Assuming the system is steered from gi to gj
in the time duration T, the controls below are applied each for a duration of
Z.
3*

(t*i,«2)i = (3fe^,0)
(ux,u2)2 = (3feJ,3feJ)
("1,1*2)3 = (3fe^,0).
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3.4 Concluding Remarks

The representation of a system as one with left-invariant vector fields on
matrix Lie groups:

n

9 = 9(52 x^),
t=i

is a natural one for systems describing the motion of a rigid body with
respect to a coordinate frame attached to the body. Aircraft, underwater
vehicles, and satellites such as the one modelled in the previous section are
all important examples of systems which may be modelled and controlled
using matrix Lie groups.

The appeal of this theory is that it is mathematically simple: once the system
has been modelled using matrix Lie groups, the computation of the controls
required to place the system in a desired final configuration is no harder than
the corresponding problem in linear system theory.

The theory of Lie groups and Lie algebras is of current interest in optimal
control theory, in which a control solution is sought to minimize a prespecified
cost function. The optimal control problem reduces to solving two differen
tial equations - a problem which is theoretically simple on Rn but becomes
very complicated on a differentiable manifold, since the differential equations
are only defined locally on each coordinate chart. If the manifold is a Lie
group, however, the optimal control problem may be simplified. Using the
exponential map from C(G) to G, the problem may be formulated on the
Lie algebra C(G) of the group. For groups such as 50(3) and SE(Z), the
Lie algebras are isomorphic to i?n, allowing for a global definition of the dif
ferential equations. Optimal control on Lie groups therefore not very much
more complicated than optimal control on Rn.
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1 Introduction

The goal of this research is to control the rolling ellipsoid on the plane between an initial point
and final point in configuration space. This example is chosen since it is a dynamic system that
evolves on a Lie Group and involves nonholonomic constraints. The hope of this report is to learn
more about controlling nonholonomic mechanical systems and controlling systems on Lie Groups.
A dynamic model of the nonholonomic system is presented and a controller is developed to control
the ellipsoid to points in plane. This controller controls to points in the plane and does not control
the orientation ofthe ellipsoid. One can take a fibre bundle point ofview withthe orientation being
the basespace and the position being the fiber direction. This controller then generates locomotion
in the fiber direction by motions in the base space. A controller is then presented which controls
the orientation of the ellipsoid relative to a fixed spatial frame. These two controllers are then
combined in an attempt to simultaneously control both position and orientation. The controlled
system is simulated using a simulation program created by Brian Mirtich and John Canny called
Impulse-Based Dynamic Simulation [1]. The simulation results for the three control methods are
presented. The report concludes with a discussion of future research on the controlled ellipsoid.

2 Dynamic Equations

The configuration space of the free rigid ellipsoid is SE(3), the Euclidean Group. The system is
shown in Figure 1. The spatial reference frame is fixed to the horizontal plane. For the controller
design, it is assumed that the ellipsoid is in contact with the planar surface. This constraint is
holonomic and reduces the dimension ofthe configuration space by one. The controller design also
assumes that the ellipsoid is rolling without slip. The rolling constraints are two nonholonomic
constraints. The configuration of the ellipsoid in contact with the plane is given by the (x,y)
position of the center of mass and the orientation ofa body frame fixed to the ellipsoid. The body
frame is chosen to be a reference frame fixed to the ellipsoid and centered at the center of mass.
The orientation of the body frame relative to the spatial frame is given by R € 50(3). Given
a point in the body frame, pt,, the coordinates of the point in the spatial frame, ps, is given by
ps = R pb + Pcm, wherepem is the location of the center of mass in the spatial frame.
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Figure 1: Rolling Ellipsoid

The control inputs are the torques about the three axes of the body frame. The method of
generating these torques is not given. The dynamic equations are shown in equations (l)-(3). In
the following equations/: 9£3 —* so(3) and": so(3) —• 9?3.

where

R = Rwb

Xu>b = UbX lujb + rc + Tf + Tg

A(R) =
1 0 0

0 1 0
bs(R),

(i)
(2)

(3)

us = (RRTY is the spatial angular velocity, u)b = (RTR)~ is the body angular velocity, J is the
diagonal inertia matrix, and bt8 is the contact point written in terms of the translated spatial frame,
a frame with the same orientation as the spatial frame but centered at the origin of the body frame.
Since the contact point is written in terms of the translated spatial frame, the contact point is only
a function of the orientation. One can find the contact point in the translated frame by minimizing
the Z coordinate subject to the equations of the ellipsoid surface written in the translated spatial
frame. If the equation for the ellipsoid surface written in the body frame coordinates is x[Exb = 1,
then the equation in the translated spatial frame coordinates is xJ,sRERTxts = 1. Minimizing the
Z coordinate subject to the equation for the ellipse gives the following equation involving 6*5:

RE~lRT =bts [0 0 1]6ts. (4)

Solving equation (4) for bts gives the contact point in terms of the translated spatial frame coordi
nates. The torque on the body is given by the controller torque, rc, the torque from friction at the



contact point, r/, and the torque from gravity, rg. The simulation program provides the contact
point location, bta, as well as r/ and rg. One can calculate the messy expressions for Tf and rg but
this is not done in this report.

3 Controller

3.1 Position Control

The position controller attempts to drive the ellipsoid from an initial center of mass position to a
final center ofmassposition. The orientation at the initial and final position is not controlled. Based
on the current position, the controller determines a desired center of mass velocity. The controller
then uses a pseudo inverse on equation (3) to determine a desired spatial angular velocity. The
controller is designed to bring the spatial angular velocity to the desired angular velocity through
body torques. The body torque is determined through equations (5) - (8).

\ Ucm ycm J

uf =,4* (R) ( g- ) (6)
y ycm f

u>ies = RTu>¥$ (7)
Tc =IK*(ui's-u>b) (8)

Equation (5) defines the desired positional velocity in the spatial coordinates and uses the
controller gain, fc£m. Equation (6) uses the pseudo inverse of A(R), denoted A* (R), and the desired
center of mass velocity to calculate the desired spatial angular velocity. Equation (7) calculates the
corresponding desired body angular velocity. The last equation calculates the torque based on an
error between the desired and actual body angular velocities, the inertia matrix, and a controller
gain matrix, Kg.

The conjecture for this controller is that it drives the ellipsoid to a position "close" to the
desired position. The torques from gravity and friction often prevent the controller from reaching
the desired position. The desired position may be reached by "cancelling" the contribution of the
torque from friction and gravity in equation (2) with the controller torque.

3.2 Orientation Control

The orientation controller drives the ellipsoid through body torques to a desired orientation from an
initial orientation. The orientation of the ellipsoid is represented by quaternions, and the controller
attempts to drive the error in quaternions to zero. Quaternion representation is a four parameter,
two to one covering of 50(3) that is free from singularities. This representation is also convenient
for numerical simulation.

The desired orientation is represented by a desired quaternion value. The controller calculates
an error between the desired orientation, gjes, and the current orientation, q. Since qdes represents
the same orientation as —qdes, two errors are calculated. One error is based on -<?<&«> and the



other is based on qdes- The error with the smaller norm is used to calculate a desired velocity in
quaternion space, qdes .

The relationship between the body angular velocity and the velocity in quaternion space is
shown in equation (9).

u>& = 2
-qx Qs qz ~%
-% -Qz Qs <lx

-Qz °y ~9x qa

qx

%

Qz

:=W(q)q, (9)

where q = (<Zsj<7xj<?y)<k). This expression is used to calculate the desired body angular velocity,
w^es, from a desired quaternion velocity, qdes-

The same expression for rc in equation (8) is used to drive ub to the desired value, w^s. The
controller is outlined as follows:

1- ex = qdes - q and e2 = -qdes - 9-

2. e = ex if ||ei|| < 116211 else e = e2.

3. qdes = k\e.

4. wies = W(q)qdes.

5. Tc =IKP(u;bies-Ub)
Thecontroller gains in the orientation controller are fcj and Kg, the same gain used in the position
controller.

The claim for this controller is that it brings the orientation "close" to the desired orientation.
The torque from gravity and friction prevents the controller from reaching the desired orientation.
The desired orientation may be reached by "cancelling" the contribution of the torque from friction
and gravity in equation (2) with the controller torque. The orientation controller is conjectured
to stabilize orientation in the presence of no external torques, such as those due to friction and
gravity.

3.3 Position and Orientation Control

The goal of this report is to control to a point in configuration space using the three body torques.
The controller must control to a desired orientation of the ellipsoid at a desired position in the
plane. The desired configuration is five dimensional and there are only three inputs.

A first attempt at controlling both position and orientation is to manually switch between the
two control modes. The simulation results of one switching strategy is shown in the next section.

4 Simulations

The simulation results are presented in this section. The ellipsoid has the long axis along the
body x-axis. The longest distance between two points along the x-axis is 20cm. The length of
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Figure 2: Controlling the Position of the Center of Mass

the two remaining axes are 10cm. The mass of the ellipsoid is l.OKg. The inertias are lO.Og cm2
about the long axis and 25.Og cm2 about the two remaining axes. The ellipsoid in the simulation
is approximated by a polygon. The controller gains in the simulations are kW = 1.0|, Kg =
25.0- ' " " ~ -1

s rad
and JfcJ = 5.0§.

4.1 Position Controller Results

In the first simulation, the ellipsoid is placed at the origin and commanded to reach Xcm =
-100.0cm, ycm = 0.0cm. The resulting motion of the ellipsoid is to initially roll in the direction
of the long axis followed rotation about the long axis. The results of this simulation are shown in
Figure 2. The first graph is the position in the XY plane. The asterisk is the desired center of mass
position. The second graph is the norm ofthe position erroras a function of time. The body torques
are shown in the last graph. The ellipsoid does not reach the desired location, but the norm of
the position error decreases to 2.85cm. The final position is Xcm = -100.37cm,ycm = 2.83cm. The
fact that the controller does not converge to the desired position may be due to the the controller
torques being unable to overcome the effects of gravity and friction.

4.2 Orientation Controller Results

In this simulation, the ellipsoid is placed at the origin, and the position controller is activated to
disturb the orientation. The position controller is then turned off and the orientation controller is
turned on at approximately 1.8s. The simulation results are shown in Figure 3. The first graph
is the norm of the error in the quaternion variables. The second graph is the torques over time.
The orientation controller drives the error to a value close to zero. The norm of the error is 0.0220
at the end of the simulation. The error not converging to zero may be a result of the polygonal
model, and the effects of gravity.



Figure 3: Controlling the Orientation

4.3 Position and Orientation Controller Results

In this simulation, the ellipsoid is commanded to Xcm = 50.0cm, ycm = —70.0cm from the origin at
the initial orientation. The simulation results are shown in Figure 4. The position in the plane is
shown followed by the norm of the position error. The next graph is the norm of the orientation
error. The last graph is the torques over time.

Initially, the position controller is switched on and the orientation controller is turned off. After
the desired center of mass position is approximately reached, the position controller is turned off
and the orientation controller is turned on. At this point, the orientation error converges close
to zero but the position error increases. The orientation controller is turned off and the position
controller is turned back on. The norm of the position error of the ellipsoid decreases again, but is
greater than the value at 7s. The position controller is then turned off followed by the orientation
controller turning on and then off. Finally, the position controller is turned on followed by the
orientation controller turning on as well. The resulting norm in position and orientation error is
between the maximum and minimum errors experienced during the switching. Using a switching
controller came out of a discussion with John Lygeros.

5 Future Work and Conclusions

These relatively simple controllers produce reasonable results for position control and orientation
control. The position controller effectively generates locomotion through internal torques. The
effectiveness of the controllers are not proven and the simulations show that the position controller
does not reach the final position in some cases. The position controller performs well even when
the no-slip condition is not obeyed. Simulations have been performed on a slippery plane and the
controller managed to bring the ellipsoid "close" to the desired position. The orientation controller
seems to drive the error in quaternion space to zero for the orientation chosen. This orientation is
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Figure 4: Attempting to Control Position and Orientation

stable with no torque. Other orientations which require finite torques at the desired location will
produce finite errors. The switching controller seemed to bring the system to a region around the
desired position and orientation but does not converge to the desired configuration.

The combinationof these controllers does not accomplish the goal but is a first attempt. Future
work involves designing better controllers and proving the effectiveness of the controllers. Another
approach is to kinematically generate a path for the ellipsoid to follow from initial configuration
to final configuration and design another controller to make the ellipsoid follow the trajectory. Yet
another approach is to use the position controller to bring the ellipsoid close to the desired position
and then to use a controller to drive the orientation to error as well as removing the small position
error.

The control design and simulation method used for this example is a very efficient method of
simulating the system and tuning the controller. The windows for the displayed ellipsoid and the
window for controllerparameters are shown in Figure 5 and 6. Gains can be changed quickly as the
simulation is running and the results of the changes are seen almost instantly. Interactive controller
design/simulation is a very effective tool for prototyping controlled mechanical systems.
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1 Introduction

Much work has been done on the control and steering of nonholonomic systems in the past
few years, but the systems that have been discussed have generally been drift-free. Very little
work exists concerning general systems with drift, although some specific cases have been
addressed (for example, left-invariant systems on SO(3) and GL(n) with drift, [5], [2]). In
the real world, however, systems with drift are common; bodies in free-fall with some initial
angular momentum have drift. An example of this kind of problem is a human diver. After
the diver has left the board, his angular momentum is conserved, but is generally not zero;
the diver can change the drift velocity by changing his moment of inertia. The control goal
for the system is to execute a certain maneuver, a forward one-and-a-half somersault pike,
for example, and then enter the water in a fully extended, vertical position. Since the diver
is falling while executing the maneuver, there is a predetermined length of time in which the
controls can act. In this report, I will discuss a simplified, two-dimensional diver model and
the associated control system.

2 Model

The two-dimensional diver model is shown in figure 1. The two-dimensional dynamical model
used in simulation was developed from a fully three-dimensional model with 18 degrees of
freedom in the joints, generously shared with us by Professor Jessica Hodgins at the Georgia
Institute of Technology (see [7]). The two-dimensional diver model has 5 degrees of freedom:
x, z, $i, On, and #3. The x and z directions do not affect the control except to determine when
the diver hits the water, so we will ignore them for now. This system is now an asymmetrical
version of the planar skater discussed in [6]. There, it is demonstrated that the planar skater
(when drift-free) can reorient its main axis by moving its two arms sinusoidally and out of
phase with each other. This method of steering with sinusoids has also been used to steer
cars with trailers and firetrucks [4],[1].

The Lagrangian of the diver is given by:

L= \(ml +m.l +m.a)(x2 +z2)+l-It0\ +̂
^U+jfJl +̂ +il^+e.r

-r2((jlzlz+jlxlx)cos62 + Ui*lx-3ixlz)sm02)91{ei+92)]

+\rna[(faz +JlxWl +(al +<£)& +9zf
+2((jara, + jaxax)cos03 + (jazdx - jaxaz)sin03)^i(^i + #3)]

nit = 51.7793 mi = 27.6938 ma = 9.1235:

/, = 3.2900 I, = 1.9921 I„ = 0.322G

jh = -0.0042 ./,. = -0.3754 jux = -0.0470 ./„. = 0.1S96

I, = -0.042G /. = -0.2993 ar = 0.0124 a. = -0.2442

1



where mt, mi, and ma are the masses of the torso, legs, and arms respectively, It, //, and Ia
are the inertias, jix and jiz are the x and z components of the distance from the torso center
of mass to the leg joint, jax and jaz are the components for the arm joint, lx and lz are the x
and z components of the distance from the leg joint to the legs' center of mass, and ax and
az are the components for the distance from the arm joint to the arms' center of mass. Since

ctt --—
dOl ~ dtd6Y

we have |£ = fi, a constant. One thus finds that the single constraint for this system is

with

cti

a2

«3

0

7

8

e

ft [ct! + 2@ cos $2 + 27sin92 + 26 cos 93 + 2e sin93] 9X
+ [a2 + ,0 cos 92 + 7 sin92] 92 + [a3 + 8cos03 + esin93] 03

61 62 63

3 j

It + h + Ia + m,(jfz + jfx) + nn(l2z + l\) + ma(j2az + j2ax) + ma(a\ + a\) = 12.0394
Ii + mi(l2z + l2x) = 4.5230
la + ma(a2z + a2x) = 0.8681
™>i(jlzlz +jixlx) = 3.1167

rnitiizlx - jixh) = 0.4076

ma(jazaz + jax^x) = -0.4277
ma(jazax - jaxaz) = -0.0833

3 Control Task - Preliminary Analysis

Our initial goal is to control the diver in a forward l| somersault pike. In three dimensions,
combinations of somersaulting and twisting may be performed, but somersaults are the
only dives that are possible for the two-dimensional model. Since there are three degrees
of freedom and one constraint, there are two controls available. If we choose two linearly
independent vectors g\ and g2 which annihilate the constraints and which allow us to control
02 and #3 directly, we can write

'01"
92

r -^ 1

1 Ui +

r -^ 1
h

0 u2 +

r jl n
bx

0

Jz. 0 1 . 0 .
=:gi(9)Ul+g2(9)u2 + f(9)



Figure 1: 2-D diver model.

In our diver model, 61 can never equal zero. Note that the drift is a nonlinear function of
(92,93). Since

[91,92]= 0
0

{9i,92, [91,92]} spans the space (except at. (02,93) where the first, entry in [gx, g2] is zero), the
system is locally controllable even without, making use of the drift; the Lie bracket direction
is the same as the drift direction. The first entry in [<h, g2] is zero when tan(92 —93) = \66~3e:
in our model, this happens at about 02 —93 = —3.57 degrees.

We can, dually, look at the diving problem as a Pfaffian exterior differential system

I = {a}

where a = bxd9i + b2d92 + b3d93 —\xdt. If we can convert, this system into a standard form,
we may be able to use sinusoidal or other steering methods that have been used for other
systems. We have:

da = dbi A dOx + db2 A d92 + db3 A d93

db^
d93

= 2(/?sin02 -icos02)d9l A d02 + 2(8sh\93 -€cos93)d91 A d93

db2 dbA Jn Jn (db3 dbA JA Jn (db3_j^AlWs+ _-_ \d91Ad93 +U± d92 A d03

da A a = (2b3{3s'm92 - icos02) - 2b2{8sm03 -ecos93))d91 Ad02 Ad03

-2fi(6s\n02 -ycos92)d91 Ad92Adt - 2^i(8sm93- ecosO3)d.0l Ad03Adt



Assuming \x 7^ 0, da Aa ^ 0 except when tan 92 = ^ and tan03 = |. (In our model, this
happens at about 92 = 7.45 degrees and 93 = 11.02 degrees. Note that for these values,
92 —93 = —3.57 degrees.) Also,

(da)2 Aa = 0,

so a has Pfaffian rank 1 (except at the points just described). In other words, the derived
flag for this system looks like

Jt°> = {a}
IM = {0}

as expected.
By Pfaff's theorem, we can find local coordinates (21, 22,23) so that

{a} = {dz3 - z2dz1}.

To do this, we need to find two functions /j and f2 which satisfy

da A a A dfi = 0

a A dfi ± 0

a A d^ A df2 = 0

dfiAdf2 ^ 0

Then, by the theorem, df2 —gdfi =: dz3 —z2dzx. 4j±. and ^ will become the directly controlled
inputs of the system. ^ will be controlled indirectly, since the constraint a = 0 requires
df2 = gdfi. If we write dfi = aid9i + a2d92 + a3d93 + aAdt, then the first equation becomes

daAaAdfi = [2(/xa3 + 63a4)(/?sin02 —7cos02) - 2(fia2 + b2(i4)(8sh\93 - ecos03)] d9iAd92Ad93Adt

= 0

The solution is not unique. It is notable that /1 = t is not a solution, so the system is not
feedback linearizable. Simple time-scalings such as /1 = t + h(92) or /1 = t + h(9i) also fail,
as do /1 = 92 and fi = 93. /1 = 9i will satisfy the equation, but since in the diver system
only functions of92 and 93 can be controlled directly, a system ofcoordinates with ^j- as an
input is not useful. A more useful solution is

dfi = (6sm92 -jcos02)d92 + (8sm03 -€cos93)d93

Using this /1 and writing df2 = Cid9i + c2d02 + c3d03 + c4dt, we get

a Adfi Adf2 = (a26!C3 - 036^2 + a3b2ci - a2&3Ci)d#i Ad02 Ad03
+(a2/ici -I- a2&ic4)<20i A d02 A dt + (a3(.tci + a3bic<i)d0i A d93 A dt
+(a3fiC2 —cl2jic3 + as62c4 —o263C4)d02 A d93 A dt

= 0



where a2 = 0sin92 —7cos02 and a3 = 8sin93 —ecos93. Continuing, one possible solution
for df2 is given by

df2 = —&i(a263 + a3b2)d0i + b2(d2b3 - a3b2)d02 - b3(a2b3 —a362)d03 + fi(a2b3 + a3b2)dt

Requiring {a} = {df2 —gdfi}, we find

g = 2b2b3

Now, since we have the constraint. df2 —gdfi —0, we can write

dfi = (0 sin 02 - 7 cos02)d02 + (8sin 03 - ecos03)d03 = uYdt
dg = 263(7cos 92 - 0sin 02)dO2 + 2b2(e cos93 - 8sin 93)d93 = u2dt
df2 = gfi = guidt

4 Steering Methods

4.1 Sinusoids

If we can control ux and u2, we can control f2. Integrating the expression for df2 above, we
get

h = (ash + a2b3)({it - bi9i) + h(92,93)

Thus by driving f2, we can drive nt -bx9i, and thereby control $u but not in arbitrary time,
since we do not control t. To see ifwe can control ux and u2, solve for ^ and ^:

d92 b2ui + u2

dt 2(63 - 62)(7cos02 - Psm02)
d93 _ b3ui + u2
dt " 2(b2 - b3)(ecos03 - 6sh\03)

We can provide arbitrary ux and u2 except, when tan<?2 = * tan ^3 = |, or b2 = b3 (which
cannot happen with our diver model). Unfortunately, the first two conditions give values for
02 (7.45 degrees) and 03 (11.02 degrees) which fall within the desired ranges for these angles.
If the diver is started with arms and legsat anglesnot too near these critical angles, applying
i*i = .Asinu;£, u2 = B cos tot can steer 9\. As soon as A and B get too large, however, and
try to push 92 or 93 toward the critical angles, driving Ui and w2 along the sinusoid becomes
impossible.

This system was simulated using the SD/FAST equation generation and simulation pack
age with the two-dimensional human model described above. Some sample trajectories are
shown in figures 2- 3, and some images from one of the simulations are shown in figure 4. All
of these simulations start with the same angular velocity about the center of mass. For sim
ulations starting in different, configurations, and therefore with different moments of inertia,
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this means they start with different angular momenta. Note that for a one-and-a-half som
ersault dive, the diver needs to rotate through exactly -540 degrees by the time he reaches
the water.

These controls are promising, but, unfortunately, in the diver problem we want to start
at 92 = 93 = 0, where only small amplitude controls are possible. In order to get a significant
change in overall rotation, one would have to apply high frequency inputs (see figure 3), but
this is not an attractive solution. Since a only drops rank at a few pairs (92,93), it is possible
that with different choices of /i and /2, a better control system may be found.

4.2 Optimal Control Methods

There are several other possible approaches to the diver control problem. The system is
not left invariant, so methods that have been developed for steering left-invariant control
systems (see [5], [2], for example) cannot be applied. It may be possible, though, to make use
of some optimal control techniques like those in [3]. There, Sastry and Montgomery derive
coupled differential equations for the optimal controls of a system of the form

m

x = f(x) + ^gi(x)ui
i=i

l rTThe controls are optimal in the sense that they minimize ^ /0 |u(£)|2<ft. For the m = 2 case,
their result looks like:

ii2
0 PT[9u92]

VT[92,9i] 0
Ui

u2
+

•pTlf,9i]
•pT[f,92]

ui = -pT9i(x)

dfT . dgJ , t , u, d92T , t , \\P = —^ P+ ~^ P(P 9i{x)) + -fa P(P 92{x))
& = f(x)-9i(x)(pT9i(x))-92(x)(pT92(x))

For the diving system, we get immediately that pi = 0, so pi = k (since /, gi, and g2 are
not functions of 9i). The Lie brackets with f become:

[f,9i] =

If, 92] =

n dbi n

6*002
0

0

H Obj -i

0

0



[<7i,<72] also lies along the 9i axis, as shown above, so the equation for the controls becomes:

with

Ui

u2

k (h dbl l 06j\ ,.

k (h dbi i, dbj \

f£(M2 " V) - ^bim
&(Mi " p) ~ Ifchm

9 = f(9) + 9i(9)ui+gi(9)u2
0

kn Obi
~bjd82
kudbx
bf 093

nk dbi
1J 00^

k ( h Qh. j_ /, Qh\ k (h dbA ,.

6f 5gJ ~ fcf i62^j til - jj (-015^ + fe3^J U2
^i = ~PT9i{9)

These equations would have to be solved numerically.

4.3 Adaptive or Learning Methods

One final approach to the diving problem is to design an adaptive controller which would
search a restricted control space to find a good control. Even a very simple learning algorithm
can, if given a suitable space to search, find a control law that will drive the diver through
a l| somersault pike. For example, the simulation shown in figures 5 and 6 used a control
law chosen by an algorithm that searched among controls of the form

Ml =

Wo =

x/2
A

' -ilzxiH
e 2«r2

V2TTO-2
e 2«t2

(J-P2L-"-''2
> 5^2

e 2<t2

by varying the parameters ,4, a2, pu and p2 - px (within restricted ranges) around the best
values it had found so far. The family of controls was chosen as a biologically plausible
velocity profile. The controls were evaluated based on the error of the final rotation angle
from -540 degrees and the final angles of the arms and legs away from zero. An initial
control was found by taking the best of several random trials. The algorithm kept simple
schemas characterizing the relationship (positive vs. negative) between the parameters and
the final rotation angle. A schema was updated each time its parameter was changed. The
schemas depended most heavily on recent data so that the algorithm could adapt to the
very different, nonlinear regions of the control space. The memory of a schema decayed over
several learning cycles, and some noise was added to the next parameter choice to avoid
getting stuck at a parameter maximum or minimum, which would prevent the schema from
adapting.
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This learning approach can certainly be made more general, but any parameter-learning
algorithm needs a family of controls among which to choose. For a real diver, the specified
family of controls might be analogous to the instructions given by a teacher, with the pa
rameter fine-tuning left for practice. More biologically-motivated learning approaches might
give some insight into how an algorithm could learn the structure of the controls as well as
fine-tune the parameters.

5 Future Work

Future work on this project, will have two facets. I plan to try to improve on the sinusoidal
control presented here, within the Pfaffian system framework, as well as to develop a more
powerful, biologically-inspired learning algorithm that will require less prespecified informa
tion than the one described above. Developing controls for this kind of system has potential
applications in dynamic animation and robotics, and may also lead to insights into biological
control systems themselves.
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Abstract

The purpose of this paper is to investigate the applicability of the dy
namical system H ~ [H,[HtN]], where H and N are symmetric n x n
matrices and [A,B] = AB - BA. We have shown that this dynamical sys
tem can be used effectively in the registration of 3D maps from image
correspondences. The idea is to recast the combinatorial optimization
problem to that of function minimization. The method of steepest de
scent is used to generate an effective algorithm for the minimization. The
minimization yields the information necessary to construct a transforma
tion matrix T such that given two sets of points {z,} and {xj} x, = Tx(-Vi
where T € SE(3) and x,,x{ € En. Two matching problems are presented
and applied to registration.
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1 Introduction

In this paper, some results are presented involving a set of matrix differential
equations:

H = [H,[H,N]\, H(0) = H0 (1)

where H,N € J2nxn , N is a constant matrix and [A,B] = AB - BA denotes the
matrix Lie bracket.

The following problems were proposed by Brockett [4]:

MATCHING PROBLEM A. Given a representation * of a Lie group act
ing on an inner product space (V,<,>) and given two ordered sets of points
{xi,X2,...,xp} and {yi,V2,...,ty>} in V, find <f>€$ such that

p

n=^2 < <f>(xi) ~Uii4>(*i) ~Vi >
i=l

is as small as possible.

By using a least squares matching criterion the above problem can be recast as
oneabout minimizing the function tr(QTQQN—2MQT) where 0 € SO(n) and
Q, N and M are fixed n x n symmetric matrices. Equation (1) is equivalent to
a certain gradient flow on the space of orthogonal matrices; that is, differential
equations evolving in a Riemannian manifold and which are counterparts to the
descent equation [5]

x = A^ (2)

in Euclidean n-space, En. Let G be a subgroup of GL(n) and Lg the Lie algebra
associated with G then the best 0o € G such that

tr(QlQQQN - MTe0)L = 0

VX € Lg is the transformation which solves matching problem A. If we give
GL(n), the set of n x n nonsingular matrices, the structure of a Riemannian
manifold and investigate the gradient vector field associated with the function
the descent equation can be used effectively for the minimization needed to find
0o.

The registration or geometric matching problem in computer vision involves
finding the optimal rotation and translation, (R,t), that aligns, or registers two
given sets of points. When an a priori solution of the correspondence problem
is assumed it suffices to solve matching problem A in order to find the desired
transformation (R,t) = ^ € $. We now present a more general problem.

MATCHING PROBLEM B. Given a representation $ of a Lie group acting on
an inner product space (V,<,>) and given two sets of points {xi,x2, ...,xp}
and {i/i,!/2, .,!/p} in V, find <f> € $ and a permutation ir 6 np, the set of all
permutations of the integers l,2,...,p, such that

p

V- S <^(x*(0) ~ W. tf(*»(o) ~ Vi >



is as small as possible.

When complete a prion ignorance about the correspondence problem is assumed
the solution of matching problem B has a variety of applications. For example,
in pattern recognition features of objects need to be matched or registered with
a data base before recognition of the object is possible. Note that problem A is
a special case of problem B in the sense that v(i) = i is assumed.

2 Least squares matching problem

We will show that the matching problem A is equivalent to one about minimiz
ing tr(QTQQN) —2trMQT. Consider the least squares criterion

V=£(©*.' +b~yi)TQ(exi +b- Vi)

where 0 is an element of a closed Lie group and Q is a symmetric positive defi
nite nx n matrix. We can simplify notation by eliminating b. In homogeneous
coordinates [3],

and

Hence

n=£(©*,• - yt)TQ(exi - yt)
»=i

By using properties of the trace, tr, we obtain

n=tr(E eTQexiXJ - Q(eXiyT - yiXJeT) +W!f),
»=1

Since trAB = trBA we have

p

n=tr(BTQQN - 2M0T) +£ yjQyi.
i=l

where

issl i=l

Since y,- and a?,- are given data, minimizing n is equivalent to maximizing the
function /(0) = tr(MQT).

We will now show that matching problem B is equivalent to one about mini
mizing functions of the form

r} =£eTQieNi
t=i

where as before 0 is restricted to the orthogonal group.



Consider two sets of points {xi,X2,..Mxp} and {yi,y2, >»,yp) € En. We want
to find a permutation it such that the least squares criterion

p

,7 =Hlla:ir(,)-yd|2
1=1

is as small as possible. Since the elements of a diagonal matrix can be permuted
with a permutation matrix II, i.e.

TLTdiag(ai,a2,...,aP)U =diag(a^i),a^2), •••» <**(n))»

in the case n = 1 the above minimization problem is resolved by finding the
permutation matrix maximizing

tr[nTdiag(xi,x2,.... zn)Hdiag(yi, y2,..., yn)].

which is true in view of

p p p

£(x*(0 - y,)2 =£>?(,) +Vi) - 2J^*.(oifc
*=i i=i »=i

Let Q = diag(xi,x2, ...,x„) and N = diag(y1,y2,...tyn)' Since UTQU =
rfta<7(x,(i),x,(2), ...,**(„)) we have

fi(n) = tr(Q2 + N2- 2UTQIIN)

Since the permutation matrices form a subgroup of SO(p) we could allow II to
be an arbitrary orthogonal matrix 0 G SO(p) and obtain

maxfi(n) < maxfi(0)
n @

In 1937 von Neumann [8] proved a theorem which shows that for 0 fixed the
above inequality is in fact an equality. His theorem demonstrates a method by
which the problem of rearranging a set of numbers defined on a finite symme
try group can be encoded as an optimization problem on SO(p). In order to
solve the minimization problem we then set up a gradient flow system on SO(p).

For the general case n > 1 we denote the jth element of the ith vector x,- by x,j
and similarly for y,-. In addition, we define Qj and Nj as

Qj = diag(xlj,x2j,...,Xpj),

Nj = diag(yXj, y2j,..., ypj),

To minimize n we must maximize the trace of a sum of terms, i.e.

3 = 1

This maximum value can only be increased by replacing n by 0 and we have

rnin||x,(i) - y,-||2 <£||xd|2 +||y,||2 -2m^tr(QTQiQNj).
3=1

If for some?r the magnitude of error between xw^) and y; is smaller than one-half
the distance between y, and its nearest neighbor, then the permutation solution
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Figure 1: Geometric matching

is a local minimum. The following theorem [4] summarizes our results

Theorem 1. Let xi,X2, ...,xm and yi,y2, —,ym be vectors in En. For i = l,2,...,n
let Qi and N{ be m by m matrices defined as

Qi = </»'aflf(xi,-,X2i, ...,xmt),

Ni = diag(yu>y2i, ••, Vmi).

If the permutation it which minimizes

m

»? =]Cllx'(o-wll2
1=1

produces an approximate match which is sufficiently accurate so that for all i

ll*»(t) ~rf < j m/nIN " xi\?y
then equating 0 to the corresponding permutation matrix II yields a local min
imum for

n(e) = J>(eTQ,6JV,).
i=i

Thus the best match is an attractor for the descent equation on the group of m
by m orthogonal matrices

0=£ eQieTNie - NiSQi.
i=i

3 Registration

Registration or the geometric matching problem in computer vision involves es
tablishing a correspondence between two given sets of features observed in two
views. See Figure 1. There are two main applications [7]: object recognition and
visual navigation. The problem in object recognition is to match data observed
in a dynamic scene at different instants in order to recover object motions and
to interpret the scene. The ability to deal with large motions is usually essen
tial for applications to object recognition. In visual navigation, because the
maximum velocity of an object is limited and the sample frequency is high, the



motion between curves in successive frames is in general small or known within
a reasonable precision. Given that the motion between two successive frames is
small, a curve in the first frame is close to the corresponding curve in the second
frame. By matching points on the curves in the first frame to their closest points
on the curves in the second, a motion which brings the curves in the two frames
closer can be found. See Figure 2. The rigidity assumption implies the conser
vation of local structure of objects, such as the angle and distance between two
line segments, during their motion. This constraint provides a powerful tool
when dealing with geometric matching [2].

A
Figure 2: Closest point matching

4 Recognition and Locating 3D Shapes

There are a number of categories of representations for 3D shapes. Homoge
neous representations deal with only one resolution and are simpler to use and
build. We will use these representations to satisfy the requirements for solving
the problem of recognizing and locating objects.

Our goal is to produce a list of matched model and scene primitives, such as
points, lines and planar patches, which we refer to as the recognition task. In
addition, we would like to locate the identified model in the workspace, i.e. com
pute the rigid displacement that takes the model onto the scene. In order to
make the decomposition of the rigid displacement T unique, we assume that the
axis of the rotation goes through the origin of coordinates and that the rotation
is applied first.

The combinatorial complexity for the search strategy needed to reach our goal
can be very high. However, by using the constraint of rigidity the size of the
search space is reduced. Several techniques exist for producing such a search
strategy. Some widely used examples are relaxation matching, Hough transform
clustering and tree search. We have used a quaternion-based procedure for
yielding the least squares rotation and translation.

4.1 Mathematical Representation of the Rigidity Constraint

We would like to apply the rigidity constraint to estimate the transformation
between model and scene given a partial match. Thus given a set of pairings
(Mi,Si) where the M,-'s and Si's are primitives of the model and scene respec
tively, the problem is to compute the "best" transformation T that applies the
model onto the scene. We find T by minimizing the sum of the distance between
T(Mi) and 5,-, i.e.

p

Mm£z>(T(M,),S,).
•=i



The distance D and corresponding minimization problem depend on the type
of primitives. In our case the primitives are points and hence D is the usual
distance between the scene point and the transformed model point. We applied
a least squares method and hence the problem is to minimize the function

V(R1t) =YtWRPi+t-Xi\\2 (3)
t=l

where p,-, x< are points representing the scene and model respectively. R is
constrained to be a rotation matrix and we have represented this rotation as a
quaternion which is the simplest way of solving the problem.

Definition of quaternions Quaternions are elements of a vector space en
dowed with multiplication. A quaternion q can be considered as being a 4-
dimensional vector (a, 7) where a = go € R+ and 7 = [gi g2 q3]T € i23. A
multiplication is defined over the set of quaternions as

(a, 7) *(a', 7') = (aa' - 7T7',ay' + a'y + 7 A7')

where A is the cross product.

The conjugate and magnitude of a quaternion q are defined as follows:

g = (o,-7),

|9|2 = g*9 = (a2 + ||7||2,0) = (|M|2,0)

Note that T23 isa subspace ofQ dueto the identification v = (0,v). Similarly, the
magnitude is an extension of the euclidean magnitude and is "multiplicative":

k*«T = kla*kT

A rotation R of axis v and angle 6 can be represented by two quaternions
q = (a, 7) and —q with \q\ = 1. The application of the rotation is translated
into a quaternion product by the relation

Ru = g * u * g,

where the vectors and quaternions are identified. In addition, the 3x3 rotation
matrix generated by a unit rotation quaternion, q = [go q\ qi qzY'» is given
below:

(9o + 9i-92-«3 2(qiq2-qoq3) 2(qiq3 + q0q2) \
2(qiq2 + qoq3) ql - q\+ q\- q\ 2(^3-0091) I
2(qiq3-q*q2) 2(^93+ 0o9i) ?o-?2-02 + 03/

The mapping between the rotations and the quaternions is defined by

a = cos(0/2) and 7 = s*n(0/2)v.

Hence the relation defining the minimization problem can be translated into a
minimization in the space of quaternions with the new constraint |g| = 1.



4.2 Corresponding Point Set Registration

We next review a procedure for yielding the least squares rotation and trans
lation. Since reflections are not desired we use a quaternion-based algorithm
instead of a singular value decomposition (SVD) method in three dimensions.
However, the SVD approach, based on the cross-covariance matrix of two point
distributions, does, generalize easily to n dimensions and would be the method
of choice for n > 3 in any n-dimensional applications.

Let qR = [go gi g2 gs]T be a unit rotation quaternion and qr = [?4 gs qe]T
be a translation vector. The complete registration state vector q is denoted
q = (qR qr)T- Let P = {p,} be a measured data point set to be aligned with a
model point set X = {x,}, where Nx = Np and where each point p,- corresponds
to the point x,- with the same index. The following approach can be found in
a number of computer vision papers. Using the mean square the minimization
problem in eq. (3) can be rewritten in quaternion notation as [6]

1 Np
V(qR,qT) = tt- Y, WltiPi + VT- *,||2.

1 P i=i

The "center of mass" \ip of the measured point set P and the center of mass fix
for the model point set X are given by

^ =77"E* and p* = j^S*'"
'p ,=i "x i=i

The cross-covariance matrix £ °f the sets P and X is given by

£p* =-RlTA^iKPi- Pp)(*i~ P*)T] =77;Ei,=i\Pix7]-Pptix-
Next the cyclic components of the anti-symmetric matrix Ay = (%2px ~ H2Px)iJ
are used to form the column vector A = [A23 A3i Au]T. This vector is then
used to form the symmetric 4x4 matrix Q(5Zn*)

where I3 is the 3x3 identity matrix. The unit eigenvector qR = [go gi g2 g3]T
corresponding to the maximum eigenvalue of the matrix Q(5Zpr) is selected as
the optimal rotation. The 3x3 rotation matrix, R(qR), is computed using the
equation

R(<IR) = 2r(qR)r(qR)T - q^qRI3 + 2g0Qx(g*)

where r(g«) = [gi g2 q3]T and Qx(qR) is given by

(go -93 qi \
93 9o -9i J

-g2 91 90. /

The optimal translation vector is given by

qT = fix-R(qR)fiP- (4)

This least squares quaternion operation is 0(NP) and is denoted as

8



and similarly for ad%j 1g2. By the assumed involutivity of At_i the last two terms are already
in A,-_i. Therefore we can write:

A,- = At_i + i

'

• 0 "

0

• 0 *

0

>

0
5

0

.
. adlflgi . . ad)~1g2 . .

The conditions of Theorem 4 requires that /(*') be integrable. This is equivalent to At- being
involutive. As before the only pairs that can cause trouble are the ones not involving Vi and
v2. Hence the condition is equivalent to Gt_i = {adfyj : 0 < k < i —l,j = 1,2} being
involutive.

By induction, for any i, the condition of Theorem 4 for the the ith iteration of the
derived flag holds if and only ifdistribution Gt_i is involutive, i.e. if and only if condition (3)
ofTheorem 1holds. In addition note that thedimension ofGi keeps increasing by at least one,
until, for some M, Gm-\ = Gm- The involutivity assumption on Gm-i prevents any further
increase after this stage is reached. Note that the dimension of Gi is bounded above by n.
Hence, as the dimension of Gi increases by at least one at each step until it saturates, M <n.
Note that the Am will have dimension three greater than the dimension of Gm-i- Moreover
AM = Am+i and therefore 7<M) = /(M+]), i.e. the derived flag stops shrinking after M steps.
The remaining condition of Theorem 4, namely that there exists N such that 7(7V) = {0} is
clearly equivalent to saying that 7(A/) = {0}, or equivalently that AM has dimension n + 3.
This in turn is equivalent to the dimension of Gm-i being n. As M < n this is equivalent
to the dimension of Gn-i being equal to n, i.e. condition (2) of Theorem 1. The remaining
condition of Theorem 1, namely that the dimension of G, is constant for all 0 < i < n - 1
is taken care of by the implicit assumption that the dimension of all co-distributions in the
derived flag is constant. D

A few more comments can be made on the relation between the vector field and
Pfaffian approaches to feedback linearization:

• The coordinate transformation considered in the forms context corresponds to both
state feedback and coordinate transformation in the vector field notation. The reason is
that the state space Rn+m+1 in the forms context does not discriminate between states,
inputs and time, hence a coordinate transformation will make the inputs in the original
coordinates functions ofthe state in the original coordinates and possibly time. However
it can be shown [7] that time does not enter into the transformation at all, that is a
time invariant state feedback and coordinate change can always be found. In addition
the coordinate transformation can also be chosen to be both time and input.

• Theorems 3 and 4 are not equivalent to 1 in their general form. The reason is that
they allow -k to be any integrable one-form and not just dt. Therefore we expect more
systems to match the conditions of 3 and 4 than those of 1. It should be noted however
that a choice of tt other than dt implies, rescaling of time as a function of the state.
Even though this effect is very useful for the case of driftless systems (where the role of
time is effectively played by an input) solutions for tt ^ dt are probably not very helpful
for linearizing control systems with drift.



•

•

Theorems 3 and 4 are capable of dealing with the more general case of systems of
the form 10 (or equivalently 1). The corresponding conditions for the vector field case
have not been thoroughly investigated. Some progress in this direction can be made
by following the steps of Proposition 1, but the resulting conditions do not seem to be
terribly informative.

The equivalence between Theorems 1 and 4 implies that some of the integrability con
ditions of 4 may be redundant. In fact the only steps of the flag construction that we
need to worry about are the ones where a tower terminates.

Theorem 5 is a very interesting alternative to Theorems 3 and 4 as it provides a way
of determining if a Pfaffian system can be brought into Goursat normal form just by
looking at the annihilating distributions, without having to determine a one-form tt or
an appropriate basis. Unfortunately a generalization to multi-input systems (or more
precisely to the extended Goursat normal form) is not easy to formulate. It should be
noted that the conditions on the filtrations are very much like involutivity conditions. It
may be interesting to try to relate these conditions to the conditions of Theorem 4 (the
connection to the conditions of Theorem 3 is provided in [6]) and see if a formulation
for the extended problem can be constructed in this way.

3 Linearization by Dynamic State Feedback

3.1 Problem Statement

Following (more or less) the notation of [8] the problem of exact linearization by dynamic
state feedback and coordinate transformation can be stated as follows:

Problem 3 (Dynamic Feedback Linearization Problem)2
Given a control system of the form 1 find, if possible, a dynamic feedback compensator:

w = a(x,w) + B(x,w)v

u = cx(x,w) + p(x,w)v

where w 6 Rq,v € Rem and an extended state space diffeomorphism z = <b(x,w),z 6 Rn =
Rn+9 such that the resulting system is linear and controllable (without loss of generality in
Brunovsky form).

It should be noted here that the problem statement above requires that both the system and
the controller dynamics be rendered linear and controllable. This condition is relaxed in the
problem statement considered in where only the system dynamics are required to be linear and
controllable. This relaxed condition implies that a separate analysis (primarily for stability)
is carried out for the controller dynamics.

An interesting special case of the general Dynamic Feedback Linearization Problem
is the following:

2Similar to problem statement 1 all conditions may be restricted to a neighborhood U of an equilibrium
point x°.

10



Problem 4 (Feedback Linearization by Dynamic Extension,)
Given a control system of the form 1find, if possible, a dynamic feedback compensator of the
form:

wl = w
1+1 1 <i<p.j-l,pj>l (12)

Ki = <*j(*>v>) +E&(I'U,)V'W 1<3 < m,pj > 0 (13)
'=i

Uj = w\ l<j<m,nj>0 (14)
m'

Uj = ctj(x,w) + Y,/3jj(x,w)vl(t) l<j<rn,Uj = 0 (15)
/=i

for some integers Uj > 0 where m' > m. and P(x,w) has full rank m in a neighborhood an
equilibrium point in Rn+ti,u = £)[!, Pj-

In other words the added dynamics simply involve adding strings of integrators in front of
some of the input channels and defining the new inputs to be linear combinations of the
resulting derivatives of the old inputs:

(w)

= a(x,w) + /3(x,w) I ••• I (16)
/ u{r] \ I vi

\ ^m) Jm / \ vm>

3.2 The Vector Field Approach

As for the static feedback case the results using the vector field approach are restricted to
systems of the form 2. The problem of linearization by general dynamic state feedback and
coordinate transformation is still largely open. Even for the special case of dynamic extension
no necessary and sufficient conditions exist. In [8] the following results are proved:

Theorem 6 // system 2 is locally dynamic feedback linearizable, then its Jacobian lineariza
tion at the origin is completely controllable.

Theorem 7 If for a set of integers {m,.. .,um}, 0 < ui < ... < um, u = ESi/'j, the
distributions, up to input reordering,

A0 = span{gk : uk = 0}
At+1 = A; + ad/A, + span{gk : uk = i + 1} i > 0

are such that in a neighborhood of the origin in Rn;

1. Ai is of constant rank for 0<i<n + um —1

2. A, is involutive for 0 < i < n + um —1

3. rankAn+flm_i = n

4- fe, A,-] C Al+1 for all j, 1 < ; < m such that Uj > 1 and all i,0 < i < n + um - 1

11



then the system is locally dynamic feedback linearizable by dynamic extension and a local
diffeomorphism on a neighborhood of the extended state space Rn+t*.

The necessary condition of Theorem 6 is shown to be not sufficient by means of a counter
example.

3.3 The Prolongation Approach

Problem 4 can also be approached in the framework of Pfaffian systems by means of prolon
gations by differentiation.

Definition 3 Let I be a Pfaffian system of co-dimension rn + \ in Rn+m+1 with coordinates
t,u,x where dt is an independence condition and {dt,dui,.. .,dum} forms a complement. Let
{pi, •••,/*m} be a set of non-negative integers, u = ££Li Pj- The system I augmented by the
u one forms:

dui —w\dt, ..., ditfj41-1 —w^dt,
du2 —w\dt, ..., dwj1-1 —w^dt,

dui-wlmdt, ..., dwfS-i-wgdt

is called a prolongation by differentiation of I. The augmented system is defined on
pn+m+jx+l

Prolongation by differentiation is a special case of the Cartan prolongation. Utilizing this
definition the following theorem can be stated:

Theorem 8 Consider the Pfaffian system I = {a1,...,a"} on Rn+m+1 with independence
condition dz° and complement {dz°,dui,... ,dum}. If there exists a list of non-negative inte
gers {pi,... ,um},p = 5ZSsi Pj such that the prolonged system:

J ={ a\...,a"
dui —w\dt,... ,dwi*~ —w^dt,
du2 —w\dt,..., dw^1 _1 —w^ dt,

dui-wlmdt,...,dw%-l-w%dt}

satisfies the condition that {J^k\dz0} is integrable for all k, then I can be transformed to
extended Goursat Normal Form using prolongation by differentiation.

For the relevant theorems and definitions the reader is refered to [5]

3.4 The Infinitesimal Brunovsky Form

An altogether different approach to dynamic feedback linearization is presented in [9]. It
revolves around an alternative flag construction that can be used to derive a special normal
form, the Infinitesimal Brunovsky Form. An interesting fact about the whole construction is
that any accessible nonlinear system can be brought into this form.

12



Consider the system 2 and let K denote the field of meromorphic functions of
x, u, it,..., where the dot stands for the usual time differentiation. Let S denote the K vector
spaceofoneforms, spannedby {dxx,..., dxn, dui,..., dum, dui,..., dum,...} = {dx, du, du,...}
Define the time derivative of w = £ •ctjdvj £ € by

^ = J2(&jdvj + otjdvj)
3

k=l UX* j=\ UXk k=i

The relative degree of a one form u> is defined as the smallest integer r such that w(r) £
span^fdx}. If such an integer does not exist define r = oo.

Consider a flag defined iteratively by:

Ho = span^{da:,dw} (17)
Hk = {u>£Hk-i :u£Hk-i} k>0 (18)

Clearly, S D H0 D Hi = span^dz} D H2 D .... Moreover, as the dimension of Hi is finite
(n), the flag will stop decreasing after a finite number of steps, i.e. there exists k* > 0 such
that Hk.+i = Hk<+2 = ... = Hoo. The reason this flag is important is highlighted by the
following theorems:

Proposition 2 The following statements are equivalent:

1. The system satisfies the strong accessibility rank condition

2. Any non zero form hasfinite relative degree

3. #co = {0}

Theorem 9 Suppose i/^ = {0}. There exist a list of integers {n,... ,rm}, invariant under
regular static state feedback, and m one forms ui,...,um with relative degrees r],...,rm such
that:

1. spanK{Jf\ 1< i < m, 0< j < r%•- 1} = spanK{dx)

2. spanK{u\3\ 1< i < m,0 < j < r,} = spanK{dx, du}

3. The forms {Jf\ 1<i <m,j > 0} are linearly independent. In particular, YZLi r,- = n.

An equivalent form of the last result is the following:

13



Corollary 1 Suppose H^ = {0}. Then the basis {wfii, 1 < i < m,0 < j < rt} of span^dx}
defined by u>,-j = df~1' yields:

Wi,i = LOi$

<*>!>,—1 = Ui>ri

Vi,n = E ciijdxj + Y^ t>i,jduj
j=i i=i

where dijybij £ K and the matrix [6,j] has an inverse in the ring ofmxm matrices with
entries in K.

The last representation, called the Infinitesimal Brunovsky form, highlights the similarity
of this construction with the regular Brunovsky form: the two forms are identical, with scalar
quantities replaced by one forms. Using this normal form the following Theorems can be
proved:

Theorem 10 The system is linearizable by static state feedback if and only if Hoc = {0} and
for all k = 1,... ,k*, Hk is integrable.

Theorem 11 Suppose H^ = {0} and let Q, = (u>i,... ,u>m)T. There exists a system of lin
earizing outputs y = h(x,u,..., t^""1)) GRm if and only if there exist an invertible polynomial
operator P€£mxm [±] such that d(PSl) =0.

3.5 Connection between the approaches

A first observation is that, a system that is not linearizable by state feedback may be lineariz
able by dynamic feedback only if it has more than one input. In other words:

Theorem 12 The following statements are equivalent:

1. System 2 with m —1 is static feedback linearizable

2. System 2 with m = 1 is dynamic feedback linearizable

This fact is relatively easy to illustrate in the case where the only dynamic feedback of interest
is dynamic extension:

Proposition 3 A single input system of the form 2 is feedback linearizable by dynamic ex
tension if and only if it is static feedback linearizable.

Proof: The proof can be carried out using any of the above approaches. One step of dynamic
extension (integrator) suffices to illustrate the point. Consider the Pfaffian system ft0' =
{dxi —fi(x, u)dt,..., dxn —fn(x, u)di) in Rn+2. Add a prolongation to obtain the augmented
system 7(0) = {dxi —/i(z,u)dt,...,dxn —fn(x,u)dt,du —vdt] of co-dimension 2 in Rn+3 The
first step of the derived flag of the augmented system yields /W = {dxi —fi(x, u)dt,..., dxn —
fn(x,u)dt] as d(du - vdt) = —dv Adt ^ 0 mod 7(0) whereas d(dx{ —f{(x,u)dt) only contain
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terms in dxi Adt and du Adt which are both 0 mod I^°\ Note that /M (and consequently 7^
for all i) is independent of v. Moreover, I& = 7(,_1), while {7(,),d*} = {I^°\du - vdt,dt) =
{I^°\du,dt}. Therefore, the extended system satisfies the conditions of Theorem 4 for tt —dt
if and only if the original system does. •

The proof for the general dynamic feedback case can be found in [8] for the vec
tor field formalism and in [9] for the infinitesimal Brunovsky form formalism. It should be
noted here that the second proof is extremely simple whereas the vector field proof is rather
complicated.

A simple calculation, similar to the one in Proposition 3 can be used to show the
following:

Proposition 4 Consider system 1. An extended system obtained by adding the same number
k of integrators in front of each input is linearizable by static state feedback if and only if the
original system is.

The same is probably true about feedback linearization by dynamic extension as well.
Concerning the relation between the dynamic extension results 7 and 8 the following

statement is probably true:

Conjecture 1 There exist integers satisfying the conditions of Theorem 7 if and only if there
exist integers satisfying the conditions of Theorem 8 for w = dt.

One way to prove this statement would be by making use of the fact that the proof of Theo
rem 7 relies on the fact that the given conditions on the distributions (involving vectorfields in
Rn) are equivalent to the conditions of Theorem 1 for distributions involving the vector fields
in the extended space Rn+". Proposition 1 can then be used to show that these conditions
on Rn+M are equivalent to the conditions of Theorem 8. A direct proof of this conjecture will
probably involve rather cumbersome calculations, but should be possible.

The relation between the standard Pfaffian system approach and the infinitesimal
Brunovsky form is a bit more obscure. The following can be said:

Proposition 5 If the system is linearizable by static state feedback (equivalently the conditions
of Theorems 3 and 4 hold for dz° —dt) then the two flag constructions are the same, mod dt,
i.e.:

Hk = J**"1) mod dt

Proof: As both flag constructions are intrinsic we can assume, without loss ofgenerality, that
the system is already in the canonical coordinates of the Goursat normal form. Then:

7<°> = {dzi-zi+idz°:i=l,...,sj;j = l,...,m}
Hi = {dz\ :i = 1,...sj;j = l,...,m}

Recall that, in the context of system 1 (equivalently 10), z° plays the role of time (hence
dz° = dt) and z3Sj+l plays the role of Uj, j = 1,..., m. Observe that the above co-distributions
are identical if the terms in dz° are dropped from 7(0).
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The next iteration of the two flags yields:

J(1) = {a € 7<°> :da = 0mod 7<°>}
= {dzi-zUidz°:i = l,...,Sj-l;j = l,...,m}

H2 = {use Hi:d>£ Hi]
= {d^ :i = l,...,Sj-l;j = l,...,m}

Note that d(d*^ - zJ3j+idz°) = -d^j+1 Ad*° which is not equal to 0mod 7<°> as, when
wedged with all the forms in J(°> will produce ±A7=i',=i H Adz^+1 Adz° ^ 0. Similarly
di^ = dzSj+i = duj g span^{dzj : i = 1,.. .,Sj;j = 1,... ,m}. Again the two constructions
are the same if the terms in dz° are dropped from 7*1).
In general, for the kth step assume that:

7**-1) = {dzi-zi+idz°:i = l,...,Sj-k + l;j = l,...,m}
Hk = {dz{:i = l,...,Sj-k + l;j = l,...,m}

Then:

I{k) = {a € J**"1) : da = 0 mod J**""1*}
= {dz\ - zJi+idz° : i = 1,... ,Sj - k; j = 1,... ,m}

Hk+i = {ujeHk:d>eHk}
= {dz\ :i = l,...,Sj-k;j = l,...,m}

Note again that d(dzJSj_k+1 - z3Sj_k+2dz°) = -dz33j_k+2 Adz° which will not be zero when
wedged with all the one forms spanning 7(*"1). Similarly, dz{ _k+1 = dzSj-k+2 $. Hk. Yet
again the two co-distributions are identical if the terms in dz° are dropped from I^kK •

In view of Theorem 10 the following is also likely to be true.

Conjecture 2 The two flag constructions are related by:

Hk = 7(A:"1) mod dt

only if the system is linearizable by static state feedback.

Unfortunately, the proof of this statement eludes me at the moment. Here are some examples
that illustrate the point:

Example: Ball and Beam (give or take a sine)
This is an example of a single input system that is not linearizable by static (and hence
dynamic) state feedback. The equations of the dynamics read:

Xi = X2

X2 = xix4 — x3

x3 = x4

£4 = u
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The flag associated with the infinitesimal Brunovsky form is:

77o = \dxi, dx2,dx3,dx4,du]
Hi = \dxi, dx2-, dx3,dx4]

H2 = {dxi,dx2,dx3}
H3 = {dxi,dx2 — 2xiX4dx3}
H4 = {(1 + 2x2X4 + 2xiu)dxi + 2xix4(dx2 —2xix4dx3)}
H5 = {0}

Note that, if we let u> = (1 + 2x2x4 + 2xiu)dxi + 2xix4(dx2 - 2xxx4dx3), du A u> ^ 0 (as
it will contain, among other things, the term x\x4du Adxi Adx2), therefore H4 = {a;} is
not integrable. Hence, according to Theorem 10 and Theorem 12, the system will not be
linearizable by any of the techniques considered here, as expected.

The derived flag construction for the same system leads to:

7(0) = {dxi - x2dt, dx2 - (xixl - x3)dt, dx3 - x4dt, dx4 - udt}
7(1) = {dxi - x2dt, dx2 - (xixl - x3)dt, dx3 - x4dt]
P2' = {dxi —x2dt, dx2 —2xix4dx3 + (xix\ + x3)dt]
I™ = {0}

Note that the two flags are identical (neglecting the dt terms) until the fourth step where the
dimension of the derived flag drops by two. According to Theorem 4 (and 5 this implies that
the system is not linearizable by static state feedback. My guess is that the reason for this is
the fact that at this step the input u appears explicitly as a coefficient in 774. Indeed it turns
out that, if in the derived flag calculation we substitute dx4 = udt in this last step (going
from 7(2) to 7(3)) the augmented flag becomes:

7(3) = {(1 +2x2x4 +2xiu)(dxi - x2dt) +2xix4(dx2 - 2xix4dx3 +(xix\ +x3)dt))}
I{4) = {0}

which again is identical to the last two steps of the Hk flag. Loosely speaking H4 "detects"
that the system is not feedback linearizable with static feedback when it reaches H4 and at
tempts some form of brute force dynamic extension.

Example: Harrier (give or take some parasitic effects)
This is an example of a two input system that is not linearizable by static state feedback, but
is linearizable by dynamic extension. The dynamics of the system read:

Xi = x2

x2 = —sin x5ui

x3 = x4

x4 = cos X5Ui — 1

x5 = x6

x6 = u2
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It is easy to show that the system is not feedback linearizable by static state feedback. How
ever, if two integrators are added in front of input ux the resulting eight state, two input
system is feedback linearizable.

The flag associated with the infinitesimal Brunovsky form is:

770 = {dxi,dx2,dx3,dx4,dxs,dxs,dui,du2}
Hi = {dxi, dx2, dx3, dx4,dx5, dx6}
H2 = {dxi, dx3, dx5, cos x5dx2 + sin x5dx4}
H3 = {cos x5dxi + sin x5dx3, (sin x5)x6dxi - (cos x5)x6dx3 + (cos x5dx2 + sin x5dx4)}
H4 = {0}

Letting Ui = cosxsdzi + sinx5da:3 and u2 = (smx5)x6dxi - (cosa:5)a:6da;3 + (cosx5dx2 +
sin x5dx4) it is easy to show that dui Ao?i Aw2 ^ 0 (as it contains terms in dxiAdx3Adx4Adx5
among other things). Therefore, H3 = span^{u;i,u;2} is not integrable and hence, according
to Theorem 10 the system is not linearizable by static state feedback. Even though it is
known that the system is linearizable by dynamic extension, there seems to be no easy way
of determining the form of the invertible operator P of Theorem 11.

The derived flag on the other hand has the form:

7(0) = {dxi —x2dt, dx2 + sin x5Uidt, dx3 —x4dt, dx4 —(cos£5Ui —\)dt, dx5 —x6dt, dx6 —u2dt}
P = {dxi —x2dt, dx3 —x4dt, dx5 —x§dt, cos x^dx2 + sin x$dx4 + sinx^dt}

The calculation involved in the next step of the derived flag are rather complicated. However,
the pair of one forms we would expect to find in 7^ because of the structure of H3, namely
cosa:5(d.Ti —x2dt) + sinx5(da:3 —x4dt) and sinx5X6(dxi —x2dt) —cosxsX6(dx3 —x4dt) +
(cosx5dx2 + sinx5dx4 + sm x5dt), do not satisfy the necessary conditions. It seems that the
two flags diverge at this point. An interesting observation is that, if we define outputs t/i = Xi
and y2 = x3 (the position of the plane), and attempt to input-output linearize the system
this is exactly the step where input uj shows up (without u2) and we can conclude that the
linearization will fail. It would be interesting to try to relate this observation with the maximal
linearizable subsystem [10] and hence give a bit more substance to this observation.

Some more loose comments on the various approaches presented above:

• The infinitesimal Brunovsky form approach presented above is the only one of the three
that can tackle the more general problem 3.

4 Concluding Remarks & Topics of Interest

A number of different approaches that can be used to linearize a nonlinear system by state
feedback and coordinate transformation were presented. It was shown that they all produce
comparable results in most cases, even though some are better suited to tackle certain problems
than others. These techniques represent significant progress for all the problems posed here.
There is still a lot to look strive for however. For example an extension of the vector field
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conditions for bringing the system to extended Goursat normal form may be very useful and
may provide insight into many hard problems in the area of exterior differential systems.

Another direction that deserves further attention is linearization by dynamic state
feedback. It should be noted that, even for the case of dynamic extension, all the results
provide just sufficient conditions for the problem to be solvable. In particular all the theorem
statements start with an assumption of the form "if there exist ..." ("integers such that ..."
or "invertibleoperator ..."), but provide no insight on if those integers or operators exist and
how to determine them. Moreover there are no bounds (upper or lower) on the number of
dynamicextension steps required or the degree ofthe operators. Allof these are properties that
depend only on the system specification, therefore it should be possible to answer the above
questions given just the system equations. It should also be noted that most of the literature is
concerned with dynamic extension and non-singular input transformations. Of the theorems
presented here only 11 claims to address the general dynamic state feedback case. Singular
input transformations are briefly discussed in [5] and compared with the corresponding results
using the extended Goursat normal form and prolongations. Both these topics merit further
attention.

Finally it should be noted that the conditionsfor feedback linearization are "closed",
i.e. they essentially hold for a set of "measure zero" in the "space" of dynamical systems. It
is therefore useful to know what, if anything, can be done about systems that don't satisfy
these conditions, as most systems encountered in practice fall in this category. This problem
was first addressed in [11] and then, more formally, in [12]. A different approach, related more
to input-output linearization is taken in [13] and [8]. It would be interesting to compare the
two approaches, and hopefully determine classes of systems that are better suited for one or
the other.
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