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Abstract

The CNN UniversalMachine is applied to object oriented image compression algorithms
andproves its universalityfor future applicationsin thefield ofvery low bit rate coding.
This proposal joins [24] in unfolding the enormous computational abilities for a wide
class ofvideo compression techniques. Here a novel image analysis technique has been
considered and realized inform ofanalogic CNNalgorithms. The specific features ofthe
scheme, among them the extensive use of dynamic (finite running-time) CNN cloning
templates, are outlined and discussed through different computer simulations. When
implementedon the CNN UniversalMachine, its performances outdo those ofequivalent
digital systems and qualify the CNN Universal Machine as a serious competitor for
future video coding hardware.

I Introduction

On the eve ofcellularvideophone systems and videoconferencing facilities, the demand for
coding techniques providing very high compression ratios while maintaining a good
picture quality is steadily increasing. The already standardized methods do not cover this
area and are basically focusing on video on demand and video storage architectures. The
sole approach to videophone applications is ITU's H.261 standard which is the official
predecessor of the recently released MPEG standards. This group of coding schemes is
commonly referred as block based systems due to their intrinsic approach to motion
estimation. In terms of image understanding and redundancy removal in the incoming
videostream, these techniques have been proved to be suboptimal [22]. The H.261



standard offers its lowest transmission rate at 64 kbit/sec, which might satisfy the needs of
low quality systems using regular twin-paired wires or even broadband channels, but this
rate is far above the threshold allowed by cellular services. Further, the qualityis even then
fairly poor, and so improvements are necessary to open the door to future
telecommunication services, as previously mentioned.

The object oriented coding approach offers therefore a more sophisticated approach to
video coding. Its main difference to the block based systems is a strong image analysis
stage that can locate and label the shape, color and motion of objects appearing in the
original frame. Thus regions of great importance for image understanding, such as the
facial expressions of a speaker, for example, can be identified and subsequently coded
using special parameter sets. Still background objects that hardly change from one frame
of the sequence to another can be detected and are not included into the coding step
because the receiver can simply use the information used for the previous image. This
scheme decreases the required transmission rates significantly and allows the use of smart
concepts to even reduce these rates. If an upper boundary for image data may be given,
assume a typical value of 10 to 15 kbit/sec, then data might be hierarchically ordered from
higherto lower importance, e.g. by using the magnitudeoftheir motion, and be placed on
the channeluntil the given bound is reached. The remaining parts of the frame can then be
built up by simply restoring the information ofits predecessor.

Object based schemes are very likely to become part of the new emerging MPEG4
standard that is scheduled to be released in 1998 and is expected to cover the range of
very low bit rate applications. Unlike the other, block based, MPEG standards which can
be implemented by composing dedicated specialized hardware devices computing very
specific task, such as the discrete cosine transform DCT, the probable MPEG4 basic
architecture is composed of a multiple purpose video processing unit in its center, that is
supported by various coprocessors. It is easy to realize that the efficiency of such an
object oriented algorithm is directly related to the accuracy and speed of the available
image analysis algorithms. But in the case of real time applications like videophone
services, the hardware is not allowed to pass a certain processing time per frame, which
may lead to important losses in output quality.

We therefore propose the CNN Universal Machine (CNNUM) [19] with its short
computation times for convolution/deconvolution based nonlinear dynamic image
processing as elementary instructions to attempt to overcome this drawback. Offering
transfer rates of 50-100|isec per frame without I/O operations, a larger amount of image
features may be detected and so, the quality of the segmented output increases as well.
Being the main engine of an object oriented coding scheme, the CNNUM would be
responsible for the image analysis operations. It is evident that this part of every object
based system asks for the highest computational power and fits at the same time with the
main talents of the CNN architecture that proved its importance for real time image
analysis tasks throughout many reported contributions [3][4][5][6]. The remaining coding
and transmitting operations can then be managed by digital coprocessors in order to offer
a reliable interface to systems without the CNN core.



As many different approaches are proposed for image analysis in object oriented coding
techniques, and as the emerging standard is expected not to fix this part of the algorithm,
we show the universality of the CNNUM based image analysis for a popular image
analysis algorithm. This method takes advantage of luminance contrasts and motion
information to detect the contour lines ofmoving objects. Anothermethod canbe derived
from the extensive use of mathematical morphology. [21] depicts such a model whose
main morphological operations are described in [28]. Varying from the first scheme, this
technique finds objects characterized by regions ofhomogeneous intensity distributions.

Generally speaking, we show complex analogic CNN algorithms using known templates
(especially in [1], [24], and [26]), adjusted templates, and some new templates. The key
point is the CNN algorithmic aspect and the speed advantage provided by the CNNUM
architecture. Moreover, dynamic (finite running-time) templates are used extensively. In a
more detailed description we can state that the detection ofmoving contours is based on a
combination of a convolution with a gradient like operator to extract relevant contours
and a subsequent skeletonization of the contour mask. The major advantage of this
procedure is the fact that most operations are done in a purely binary mode. This enables
the use of simple digital memory to store intermediate results outside the CNN Universal
Machine without time consuminganalog-digital conversion.

Section II provides a more detailed view at the algorithm. Section HI discusses then the
results of different simulations. The issue of future implementations of the presented
algorithm on a CNN Universal Machine is finally discussed in Section IV.

II Object Oriented Image Analysis Algorithm

II. 1 Introduction and General Structure

In the context of an object oriented coding scheme, the main task to be accomplished by
an image analysis algorithm is the segmentation of a scene into different moving regions.
These regions should coincide with the real image to guarantee that the modeling and, in
particular, the description of the motion is efficient. Furthermore, the quality of such an
object related segmentation depends also on its consistency throughout a sufficient
number of image frames. This means that all segmented objects should have a global
uniform velocity that enables their recognition during a significant time interval. Only this
fairly strong condition allows the high compression rates of object oriented coding
schemes.

In contrast to still image analysis algorithms, we deal with two different segmentation
techniques that consider the spatial as well as the temporal character of a distinct object.
We talk about intraframe segmentation when we consider solely the information provided
by a single frame, for example contours and textures. The contours correspond to abrupt
intensity changes in an image. The detection of reliable contour data is extremely



important for video coding applications. Errors resulting from a bad boundary detection
are highly visible to the human eye and decrease the sequence's quality significantly.
Therefore their correct localization is the most important task to be achieved by a good
segmentation algorithm. The second semantic component to be considered is the texture
of a region. Generally we interpret the region's intrinsic color (or gray-scale) and its
pattern as its texture information. Compared to contour detection, inconsistencies in
texture representation are far less disturbing and reduce the overall quality of the decoded
output only slightly.

The third pillar of a segmentation algorithm is the motion analysis in a scene. This step is
widely referred to as interframe segmentation. The interpretation of the motion occurring
in a certain image sequence can be helpful at various stages of a segmentation. The most
pertinent case is the distinction betweenchanged and unchanged regions. The computation
of the difference between two succeeding frames followed by an adequate thresholding
operation determines those areas. Furthermore, the choiceofanother, higherthreshold can
extract those parts of a sequence whose changes are quick and abrupt. These regions are
likely to be non-predictable by a predictive, motion compensating coding scheme.
Therefore, their shape and content has to be transmitted for every frame of a sequence.
The remaining parts of the scene, i.e. static background and slowly moving objects, are
predictable and are fed into special coding algorithms.

Looking at the special character ofvideophone and videoconferencing scenes, we started
from various assumptions to realize the segmentation. Most of these sequences show a
moving person in front of a still background. The attention of the receiving person are
likely to be focused on the movements of the facial regions, such as the eye and the
mouth. Their recognition is mainlybased on its motion and their shape can only be roughly
estimated using contour information. The use of texture is even less productive, because
most texture segmentation algorithms need a certain content of higher frequencies in the
regions spatial frequency spectrum. Unfortunately, facial zones point out a very smooth
and unicolored pattern, which is hard to extract in anunsupervised application like the one
we are looking at. Finally we have to focus on the overall goal of all our coding
endeavors. This is a significant coding gain and an output bitstream with a data rate below
15 kbit/sec. This implies a limited number of codable objects, which means at the same
time that the objects have to be larger but still reliable in terms of a uniform motion. Such
a result is only achievable if the segmented objects coincide exactly with the real world's
objects.
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Figure 1. Block diagram of the ImageAnalysisalgorithm of an object oriented coding
scheme. CNNUM suited tasks are marked by blocks with a white background color. Our
intention is focused on the emboldenedblock which is discussed in greater detail later in
this section. A light gray background denotes a task to be processed by an additional
microprocessor. Dashed lines symbolize procedures that are yet to be designed. The
input is a group of three frames of a given sequence. The output are the segmented
objects given in a parameter set coding the object shape, texture and motion. The H.261
Fallback System is not pretended to interact in the usual data flow of this object oriented
coding scheme, but it is used in the case of a complete system failure, which may occur
when the incoming frames vary extremely from the assumptions which are valid in the
context ofa regular videophone sequence.

Figure 1 presents the general skeleton of an object oriented image analysis block in which
we aim to integrate our segmentation algorithm, here called Segmentation and Object
Definition. This architecture is designed to fit into a wide range of proposed object
oriented coding methods [13][14]. All object oriented approaches report important
difficulties realizing a reliable segmentation digital hardware under the extremely strict
time limitations. The CNN Universal Machine increases the computational speed
enormously and offers at the same time an astonishing segmentation quality. After having
computed the segmentation in the form ofbinary masks marking the locations of extracted



fragments, a second stage models the geometrical andmotion properties ofthe objects and
encodes them using a special parameter set. The main idea ofthis Parameter Estimation is
to describe the mapping of the real world's three-dimensional (3D) space onto the two-
dimensional (2D) image plane, the motion (2D motion with two degrees of freedom or 3D
motion with 6 degrees of freedom), the surface shape and the local luminance signal which
equals our understanding ofthe region'stexture. Different approaches to parameterize this
data set have been reported [9][11][14][15], and their different applications and
performance features have been widely discussed throughout the related literature. The
Image Synthesis stage assembles all parameterized image fragments to a synthesis image
which is then compared to the original frame in the Consistency Observation block. The
iterated structure of our model allows then a repeated processing of the parameter
estimation, which occurs mainly if image fragments cannot be described by the previous,
simpler parameter set and need to be refined. In the case of a complete system failure,
which is likely to happen when our basic presumptions of slow motion videophone scenes
are neglected, the system may switch over to a H.261 Fallback Algorithm. But these
considerations are beyond the scope of this research, and the use of the CNN Universal
Machine for block-based image compression schemes remains still very doubtful.

II.2 SEGMENTATION AND OBJECT LABELING

In Figure 2 we have a closer look at the structure of the Segmentation and Object
Labeling algorithm. In order to maximize the luminance information given in the image
sequence, we convert the color input into the YIQ gray-scale measure, which is used in
the American NTSC television. Here, the Y layer is subject to further processing. The
Edge Enhancing Low Pass Filtering then removes disturbing noise patterns with a linear
low pass operation. This operation maintains meanwhile the sharpness and contrasts of
boundary zones in order to improve the following edge detection performances. At this
point, the algorithm stores the filtered intermediate result. The segmentation of subsequent
image frames uses it for motion related functions. It has to be emphasized here that this
image is the only full gray-scale image to be stored while computing the whole
segmentation routine. All other I/O operations occurringwhile processing a segmentation
areofbinary natureandtherefore far less memory is required and the time consuming A/D
conversions between the CNN Universal Chip and surrounding digital memory can be
avoided. The detection and segmentation of fast moving areas is done in the Remarkable-
Feature Extraction algorithm. These areas are expected to contain information like eye,
nose, mouth and ears of a speaker in a videophone sequence. Generally it can be assumed
that any deterioration ofthe facial expressions are highly visible and decrease the resulting
image quality significantly. This mask is then merged with the result of the Intraframe
Segmentation, which is the detection of the still image's contours, and yields the complete
object oriented segmentation mask of a given image frame. Finally the information
provided by the Motion Detection module aims to separate the moving objects from the
unchanged background. In contrast to earlier contributions to the CNN paradigm
[1][17][18], this module detects general motion in an arbitrary gray scale environment.
This step enables the selective coding of only those fragments that are changed compared



to the preceding frames. The binary output is ordered by size and marks those areas that
are subjectto the succeeding parameter coding.
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Figure 2. Block diagram illustrating the structure of the Segmentation and Object
Labeling algorithm. This is the first block of the image analysis described in Figure 1.
One can imagine the same architecturefor the processingofall image frames. At certain
levels these architectures interact mutually and exchange their low pass filtered
intermediate results, this is JIp,,, Ylp,,a, and )lp,.-3, as it is demonstratedin this figure.

n.2.1 Image Preprocessing

Dealing in general with color images, we have to decompose them first into a
corresponding gray scale model. Generally, colors can be simulated by a superposition of
three primary colors, typically red, green, and blue. When a color image is processed,
three filters are used to extract the red, green, and blue (RGB) intensities in the image.



Later we perceive the recombination of the extracted intensity information exactly as the
original color. Unfortunately, the direct use of the RGB components is not reasonable,
because the human visual system is not particularly sensitive to pure color information.

CNN templates were already developed for transformations between different color
representations [20]. Given a RGB triplet (Rit G,, Bt) for pixel /, we compute the YIQ
values by

X 0.299 0.587 0.114

0.596 -0.274 -0.322

0.211 -0.523 0.312

0)

in a similar way as it has been presented in [20] for multi-layer CNN architectures. This
yields the three YIQ channels: the 7, or luminance, signal measures the perceived
brightness of the color and supports therefore a contrast and intensity based edge
detection, and the less significant chrominance signals / and Q. Omitting the chrominance
information we can develop the following cloning templates to realize the RGB-±Y
Transformation [22]:

A =[3], Bfi =[0.299], 7=0, (2)

A =[.)], B0= [0.587], 7=0, (3)

A=[0], B„= [0.114], 7=0. (4)

The corresponding flow chart is sketched in Figure 3. Here we assume the RGB
decomposition as already computed by the camera. This is a reasonable assumption when
talking about cellular videophone or any kind ofvideoconferencing system.
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Figure 3. Image Preprocessing decomposes the color frames into the YIQ system and
extractsthe Y channel. The incoming image is first split off into a red Rh green G„ and
blue B( channel, commonly reported as the RGB system. This decomposition is usually



part of the camera itself and is therefore not realized on a CNN Universal Machine. The
RGB to YTransformation computes then the luminance information Yt.

n.2.2 Edge Enhancing Low Pass Filtering

The complete body of theEdge Enhancing Low PassFiltering is illustrated inFigure 4.
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Figure 4. The Edge Enhancing Low Pass Filtering stage is intended to reduce the
incomingimage's noisewith a speciallowpass filter operation. In order to maintain the
sharpness of the scene's contours, an additional edge enhancement restores the most
important features, this is the moving contours.

When considering the use of the object oriented coding schemein wireless communication
systems, one has to take care of the significant disturbances introduced by noise patterns.
In addition, usual twisted telephone wires are far from being ideal. Therefore a general
need for noise removing filter techniques is obvious. A look on the power spectral
densities of natural images reveals a very high percentage of lower (and lowest)
frequencies, this means spatial waves having a period length of 10 pixels and more. This
leads to the assumption, that higher (and highest) frequencies usually belong to noise and
have to be smoothed. This operation is done bya spatial Low PassFilter template:

A =

0 1 0 0.1 0.1 0.1

1 -4 1 , B = 0.1 0.2 0.1

0 1 0 0.1 0.1 0.1

7 = 0 (5)



This cloning template, a combination of a Laplacian-Uke A template and an image
smoothing B template, obtained the best overall noise reduction while maintaining a good
output quality in terms of sharpness. Other templates for low pass filtering can be designed
using the knowledge given in [7] concerninglinear image filtering.

The drawback of a general low pass filtering operation is that the blurring does not spare
the contour information given in the image. This is the reason for an additional edge
enhancement algorithm to restore the sharpness of the image's boundary zones. Following
some ideas describing the use of the aniosotropic diffusion [16] and the CNN
implementations (e.g. in [1]), we realized this task by calculating first the Selective
Gradient, which detects importantboundary data only and omits less relevant parts of the
low pass filtered output by tuning its minimum bound. The template is similar to the
Gradient template given in [1], but allows a more accurate detection of relevant boundary
positions. Its result is a black and white output image. The threshold is fixed and depends
on the source data. As the system is limited to certain applications, for example
videophones, the threshold amplitude canbe prescribed once and needs no further changes
within the same application. The low pass filtered image is given to both input and state.

A =

"0 0 0" a a a

0 1 0 , B = a 0 a

0 0 0 a a a

I = -threshold (6)

2 yiryu

Then we convert the white areas of the binary into zero-gray values. In the CNN
literature, the gray levels of a given gray scale images lay in the range of [-1,+1], where
white is equivalent to -1 and black is equivalent to +1. Thus the zero-gray level refers
explicitly to the half intensity in the image space. In order to compute the conversion, we
apply the black and white frame to the input of the CNN, while a unicolored zero-gray
image ofthe same size is given to the output state.

A=[l], B=[0.5], 7=0.5 (7)
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Black and zero-gray masks are the appropriate choice when arithmetical operations have
to be computed. Here we multiply the black and zero-gray gradient mask with the
difference of the original frame and the low pass filtered one, which is the high pass
filtered image frame. Thus we consider only those high frequency components that belong
to real image contours and not to noise. Adding the result to the low pass filtered image
produces therefore a significant edge enhancement effect.

n.2.3 Motion Detection

The flow chart ofthe Motion Detection algorithm is given in Figure 5.

Yu>,i

k. Motion Detection
Absolute Value

and Thresholding
vAthTMD

Small Object
Removal

"Small Object Killer"Y[j>,i-3 \
Mask Ymdj

Figure 5. Motion Detection is done by computing the pixelwise difference of two
incoming frames. The significant motionis extracted by a thresholding operation and an
elimination of small detected moving areas that aremostly due to noise influences. The
output is a binary mask where moving parts aremarked in black.

In a first step the algorithm calculates the pixelwise frame difference of two fields i and
/+3. Here, the period length is chosen in a way that every third frame of an original
sequence of 30 frames/sec is encoded. This results inacoding scheme transmitting only 10
frames/sec, which denotes a compression ratio of 3:1. Other typical transmission
situations, such like frame rates of 7.5 Hz or even 5Hz are easy to adapt by increasing the
number to 4 or 6, respectively. Generally it can be assumed that the longer the period
length is selected, the more accurate the image analysis has to work in order to avoid
important artifacts. This results from the simple presumption that thelonger we choose the
period to be, the more complex the scene's apparent motion will be. Then, the absolute
frame difference is computed byapplying the Absolute Value template as it isgiven in(8).
The image frame showing an intensity distribution in [-1,+1] is fed to the input of the
CNN, and the nonlinear B template maps it onto the range [0,+l].

A=[0], B=[Z>], 7=0 (8)
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Comparing theresult to acertain threshold, the pixel is assigned either to the change state,
that is black, if the threshold Tmd exceeded or to the unchanged state, this is white, if the
result is under orequal Tmd. Such athresholding operation is easy to implement on a CNN
Universal Machine [1]. We download the image to be thresholded in the state and execute
the following template operation until the transient is settled.

A =[2], B =[0], I=-TA
MD (9)

The choice of the threshold is a crucial part of the whole algorithm. A very interesting
approach to obtain a threshold amplitude fitting the purpose of detecting the contour
motion might be the allocation of the standard deviation of the mean squared frame
difference to the threshold Tmd. Nevertheless, in our simulation to be reported later we
have chosen a fixed value for Tmd and reached a reliable extraction of the moving
contours. Generally the threshold has to consider the chosen transmission rate, too. A
higher frame frequency needs a lower threshold value and vice versa. It is important to
note that neither an adapted nor a fixed threshold are able to extract only relevant data.
Moving contours often show a large number of neighbored pixels detected after the
thresholding. This is in a sharp contrast to insignificant objects of smaller size. Therefore
we can eliminate these regions using a Small Object Removal or Small Object Killer
template, as it has been reported in [26].

A =

'1 1 f "0 0 0"

1 2 1 , B = 0 2 0

1 1 1 0 0 0

7 = 0 (10)

The resulting binary output mask preserves the moving objects in their entirety and, after
anintermediate storage, the algorithm uses it later in the interframe segmentation to divide
changed andunchanged regions.
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n.2.4 Remarkable-Feature Extraction

Similar to the Motion Detection procedure, the Remarkable-Feature Extraction
procedure also uses a frame difference to compute its result. The main purpose is the
detection of image regions showing high speed changing. In the case of typical head-and-
shoulder-scenes with a very detailed display of the person's facial expressions, it can be
assumed that most ofthe attention a possible spectatoris payingto the scene is focused on
the speakers eyes, mouth, and even nose or ears. Artifacts of any kind in the transmission
ofthese components decrease therefore the subjective perceptionofthe sequence's quality
in a very important manner. Furthermore, these changes are not predictable within a
typical transmission rate of 10 frames/sec, this means, it is impossible to estimate the
motion of these regions. Therefore they have to be coded and transmitted in a pure
intraframe coding mode for every transmitted image frame. A more detailed consideration
ofthis algorithm follows the presentation ofthe flow chart in Figure 6.
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Figure 6. The aim of the Remarkable-Feature
Extraction function is the detection of image
parts fulfilling certain size and motion criteria at
the same time. This result is computed by taking
the difference of two directly succeeding frames,
whose absolute pixel values are then compared
to a relatively high threshold. The Hollow
Filling intends to merge very small objects, such
as the eye balls or the teeth, with the
surrounding object.



The detection of a fast moving object is most likely when taking the difference of two
successive image frames. The applied threshold Trf is independent of the threshold Tmd.
Here we operated also with a fixed value for different video sequences. Despite this simple
approach, the related results illustrate a very good overall quality. Except the different
threshold amplitude, the thresholding operation is the same as it was used at the beginning
of the Motion Detection block. The binary output mask shows a rather scattered set of
objects and is therefore hard to code or label. The task to be achieved now is simplifying
the fragments in order to shorten their contours and to fill holes laying inside the objects
themselves. The latter job is done by the Hollow Filling template, which has been
presented and discussed in [26]:

A =

0.5 0.5 0.5" "0 0 0"

0.5 2 0.5 , B = 0 2 0

0.5 0.5 0.5 0 0 0_

7 = 3.5 (11)

The problem raising when using this template is mainly its transient (a finite running-time
template) character. Therefore one has to stop the template's transient after 10-15x. This
time interval proved to be sufficient to fill inside holes without deteriorating the outer
shape. The output is subsequently processed by some operations belonging to the class of
binary morphological image processing algorithms [27]. More details about this issue are
presented in [28], where a short summary of the main ideas of the mathematical
morphology is followed by its realization on the CNNUM. Generally, we simplify the
input mask by a sequence of morphological erosions and dilations [10], which is known
as a Binary Morphological Opening. The simplification effect is the greater the more
iterations of erosions and dilations are computed. Notice that the features do not revert
completely to their original shape during dilation, but instead take on the shape imposed
by the structuring element's shape. The structuring element is the mask which determines
the way an image is eroded or dilated [10]. Continuing the dilation beyond the number of
erosion cycles makes the features larger than their original size. The following flow chart
given in Figure 7 explains this procedure graphically.
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Binary morphological erosion and dilation by means of a square structuring element are
realized on a CNN Universal Machinewith the templates (12) and (13) [28].

'0 0 0" "1 1 1"

A = 0 2 0

0 0 0

"0 0 0"

, B = 1 1 1

1 1 1

"i i r

, h = -9.5, (12)

A = 0 2 0

0 0 0

, B = i i i

i i i

, 4 = 9.5, (13)

Figure 8. Binary erosion £(0,S) of an image 0 by a square structuring element S.
Picture 1 shows the original image O. Picture2 depicts the result ofthe binary erosion of
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0 by S. It is easyto understand oneof the mainapplications of binary erosion, this is the
separation of different main features of the image, here the two rectangular blocks, by
deleting the connecting elements.

Figure 9. Binary opening 0(0,5) of an image 0 by a square structuring element S.
Picture 1 shows the eroded original image S(0,S). Picture 2 illustrates the result of the
binary dilation of£(0,5) by S which equalsthe binary opening 0(0,S).

Figure 10. A second binary dilation Z>(0(0,5),5) of the opening 0(0,5) by a square
structuring element S. Picture 1 shows the original image 0(0,5). Picture 2 depicts the
result of the binary dilation of 0(0,S) by 5. One can see howa dilation is able to join
different features of an image andto fill cracks withinan object.

Some of the most striking geometrical aspects of binary morphological erosion, dilation
and opening are pictured and explained in the Figures 8, 9, and 10. The execution the
Binary Morphological Opening requires the image to be processed to be given at the
same time to the input and the state. The now simplified mask is finally compared with the
result after the Hole Filling operation in order to eliminate objects that are smaller than
Nh. This operation is done by the (Patch) Restoration template given in (14), [26]. The
simplified image isloaded in thestate of the CNN, while the image to be compared with is

16



given to the input. The final Remarkable-Feature Mask Yrfj contains then only those
fragments that fulfill the size requirements defined by the number of iterations of the
morphological opening.

A =

0.5 0.5 0.5 "0 0 0"

0.5 4 0.5 , B = 0 4 0

0.5 0.5 0.5_ 0 0 0

J =-1.5 (14)

n.2.5 Intraframe Segmentation

After having included two different aspects ofmotion into our segmentation algorithm, we
focus now on the information coming with one single image frame. This part of a video
compression scheme is commonly called Intraframe Segmentation. Our intraframe mode
is not a pure one, because we include the Remarkable-Feature Extraction into the data
flow ofthe segmentation. Nevertheless, this is not done to detect moving image parts for
motion coding purposes, but to extract a special class of objects, here, the facial
expressions of a speaker. The block diagram of the Intraframe Segmentation is pointed
out in Figure 11.

The first step of the segmentation is the detection of the scene's contours. Like it has
already been done earlier in this imageanalysis, we use also here a gradient operator based
edge detection template. In contrast to the previously reported Selective Gradient, we
take also very small pixel differences into our considerations. For the rest the use of the
Gradient template is similar and needs no further explanations. The template's structure is
the following [1]:

A =

*0 0 0" a a a

0 1 0 , B = a 0 a

0 0 0 a a a

17

I = -threshold (15)

W«



'

Yu>,{

Edge Detection
with Gradient

i '

Skeletonization

Yrj
'^(m)

Insignificant Line
Removal

i '

Hollow Filling
and Restoration

i f

Binary Edge
Detection

i '

Skeletonization

Se

i
igmentation Mask YS,i

Figure 11. Intraframe segmentation uses the
frames' intrinsic information, this is its
contours, to detect the shapes of different image
regions. Skeletonization is an iterated process
that stops when all contours are reduced to one
pixel thin lines. The algorithm allows a reliable
and exact object segmentation. The results of the
Remarkable-Feature Extraction are then added

and the new contour lines are extracted. Finally
a last Skeletonization takes place and
insignificant lines are deleted.

The resulting output map includes all necessary contour pixels, but it is far from being
sufficiently exact for segmentation purposes. The contours vary in width due to the
different character of the detected edges. Sharp boundary zones have a fairly thin contour
line, while smooth edges usually produce thicker lines. This effect can be reduced with a
very accurate choice of the gradient threshold, but starting from the assumption of an
unsupervised working coding scheme, we suggest another way to have a good result for
every kind of edges. The Skeletonization proposed in [23] is a very powerful line thinning
algorithm whose symmetrical approach reduces everytype of line to its center pixels. This
is ideal for our purposes because the contour lines produced by the gradient operation are
widened on both sides almost identically. Our simulations proved that this assumption is
valid for most cases and leads to very accurate segmentation results. Skeletonization is an
circularly used set of 8 cloning templates, this means that the output of one operation is
fed back to the input of the next one. This is repeated until the result remains constant for
one complete loop. This interruption criterion is easy to detect by processing an 'XOR'
between the most recent skeleton and the skeleton after the last complete cycle and using
a global "all white" check.
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"0 0 0" "0.25 0.25 0

A = 0 3 0 . B,= 0.25 -0.25 -0.25 , /=-0.75, (16)

0 0 0 0 -0.25 0

'0 0 0' ' 0.25 0.25 0.25'

a = 0 3 0 > B2 = 0 -0.25 0 , 7 = -0.75, (17)

0 0 0 -0.25 -0.25 0

'0 0 0" ' 0 0.25 0.25'

a = 0 3 0 • B3 = -0.25 -0.25 0.25 , I =-0.75, (18)

0 0 0_ 0 -0.25 0

*0 0 0~ "-0.25 0 0.25'

a = 0 3 0 > »4 = -0.25 -0.25 0.25 , 7=-0.75, (19)

0 0 0 0 0 0.25

"0 0 0" ' 0 -0.25 0

a = 0 3 0 . B5 = -0.25 -0.25 0.25 , / = -0.75, (20)

0 0 0_ _ 0 0.25 0.25_

"0 0 0" "0 -0.25 -0.25"

a = 0 3 0 > B6 = 0 -0.25 0 , I = -0.75, (21)

0 0 0 0.25 0.25 0.25_

"0 0 0" "0 -0.25 0

a = 0 3 0 > B7 = 0.25 -0.25 -0.25 , /=-0.75, (22)

0 0 0_ 0.25 0.25 0

"0 0 0" "0.25 0 0

a = 0 3 0 . B8 = 0.25 -0.25 -0.25 , I = -0.75. (23)

0 0 0_ 0.25 0 -0.25_

The resulting skeleton is then merged with the Remarkable-Feature Mask Yrfj. Merging
means in our case a logic 'OR' of both binary frames. The next operation deletes those
contour lines that do not belong to a specific object. As an object is defined by the
presence of its closed contour line, this Insignificant Line Removal removes all contour
elements that do not belong to an object, i.e. open contour lines. Therefore it simplifies the
image by turning all black pixels into white that do not have at least two neighbors. The
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operation needs the merged image to be sent to both input and initial state ofthe CNN. Its
computation time depends on the length of connected pixels of the longest broken
contour.

A =

'1 1 f "0 0 0"

1 1 1 , B = 0 5 0

1 1 1 0 0 0_

I=-\ (24)

This is followed by the execution of a finite running-time Hollow Filling template (11)
followed by a Restoration template (14) in order to fill very small objects and merge them
with larger neighbors. The product of this operation shows large black fragments whose
contours have to be extracted. In the case of a binary image, this task is computed by the
Binary Edge Detection template [1]. The input mask is here fed to both CNN input and
state.

A =

'0 0 0'

0 2 0 , B =

0 0 0

-0.25 -0.25 -0.25

-0.25 2 -025

-0.25 -0.25 -025

I = -1.4 (25)

A second Skeletonization erases finally those pixels that are redundant for the new contour
description. Contrary to the previous application of this block, we need now only one
iteration to receive a steady state.

The output of this process is the complete segmentation into distinct objects starting from
the original image frame. The Segmentation Mask Ysti contains all objects in the form of
closed contour lines. Now it merely remains to define the moving ones among all objects.
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II.2.6 INTERFRAME SEGMENTATION AND OBJECT LABELING

Ys,i
Initial conditions

Y
Marker Design

(Marker Based)
Restoration

Binary
Morphological

Dilation

<XOR

Moving Object
Detection

Segmented and Labeled
Output

'MDJ

Figure 12. The Interjrame Segmentation and Object Labeling operation sorts the
fragments detected by the Intraframe Segmentation by size and transmits only those,
which are also part of the motion detection mask Ymdj. This algorithm is based on
markers, which are areas pointing out the location of segmented image objects. An
external logic controls the data flow, such as switching the input of the Marker Design
block after the initial conditions have been downloaded.

The main ideas of this concluding block of our segmentation algorithm are marker based
object reconstruction, labeling by size and detection of moving objects. These functions
figure also in the form of distinct blocks in the flow chart of the whole algorithm which is
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shown in Figure 12. Here it has to be stressed that labeling by size is chosen to sort the
outgoing data stream. This is ofcourse anentirely random choice and certainly not part of
the upcoming coding standard. A marker of a given object is defined as a black patch in
the binary image spacewhose surface covers the entire area of the marked object, as it is
explained in Figure 13 for an ensemble oftwo objectsand a marker patch.

Figure 13. The marker M (for presentation
purposes given in gray) marks only object Ox but
not object 02. This results from the simple
observation that 0\ is completely contained in
M, while parts of 02 do not coincide with M. In
terms of mathematical set theory this means that
Ox e M, but 02 e M.

Figure 14. This sequence of 5 pictures explains in a graphical way how the Marker
Design operation works. Picture 1 depicts the original image with its skeletonized
contour lines. In picture 2 these lines are gradually widened, but none of the given
closed contours is already filled up with black color. Therefore none of the objects is
marked. In picture 3 the nose and the neck of our cartoon person are entirely filled with
black color thus they are marked. Another line expanding operation adds the ears, the
eyes, the mouth and the buttons to the set of marked objects. This is presented in picture
4. Finally, the whole head is marked in picture 5.

Additionally, a valid marker is not allowed to have holes or cracks, these are spots of
white pixels inside the outer boundary line. Figure 14 sketches the case of a skeletonized
image featuring several objects to be marked. Generally, the markers are produced by
gradually expanding the existing contour lines. The resulting contours cover more and
more parts of the image, until the whole set of objects is marked. The first input to the
MarkerDesign operation is therefore the original skeleton Ys,u which is also given to the
state ofthe CNN. The template hasthe following form [1]:

A =

"0 1 0' "0 0 0"

1 2 1 , B = 0 2 0

0 1 0 0 0 0_
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After the transient has run for about 20x, which we defined as the usual running length for
one stage, it is stopped and the result is send to the next operation. In a parallel path of
Figure 14 the result is fed back to the input for the next stage ofthis labeling by size. This
step is repeated until no new objects are extracted. The Global Logic device verifies this
condition and stops the computation. A simple 'XOR* between two frames can detect
changed pixels and an external microprocessor automatically controls the data flow.
Returningto the main path, the resultofthe previous operation is comparedto the original
skeleton Ys,i. If the marker marks a region with one or several closed contours, then these
objects will now be filled with black color. This step is referred as Marker Based
Restoration and utilizes the same template as it is presented in (14). The marker mask is
here fed to the initial state and the Segmentation Mask Ys,t goes to the input. The
computational expenses are slightly higher than used for the marking operation. They
depend in a very sensitive way on the scene that has to be segmented.

When the transient reaches the steady state, a logic 'XOR' separates the contour lines
from the result. This segmentation mask features black objects separatedby white contour
lines, which do not contribute to any of its surrounding objects and remain therefore areas
ofuncertainty. A good example for such uncertainty areas can be considered in picture 5a
of Fig 15. An easy way to segment these areas, too, is to allocate them to the most
recently marked objects that are touching them. This is processed by a Binary
Morphological Dilation with a cross-shaped B template (27) filling the (now white) areas
that the contour lines covered before.

A =

'0 0 0" '0 1 0"

0 2 0 , B = 1 1 1

0 0 0 0 1 0

7 = 5.5 (27)

It is easy to understand that with every larger marker mask, the already detected and
segmented objects are once again segmented. The actual labeling by size is then realized
by a simple logic operation. The segmentation results of the previous stages are summed
up, which corresponds here to the logic 'OR', and compared to the latest segmentation
using another *XOR\ So, only the new segmented objects remain in the mask. These
operations are illustrated in Figure 15 for the case of the previously used cartoon person.
The pictures with emboldened numbers are those that satisfy the given size criterion
applied at a certain labeling stage. The normal numbers indicate that these images are the
segmentation result including all objects, even those that were already segmented during
anearlier stage ofthe algorithm. It is easy to observe how the logic 'OR' extracts the new
emerging objects. Finally one can see the importance of an additional dilation when
considering picture 4 ofFigure 15. The contour lines have also to be allocated to an object
in order to be segmented, too. The dilation with the cross-shaped structuring elements
does exactly this job [28].
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Figure 15. This sequence demonstrates final and intermediate results of the Marker
Based Object Restoration. Picture 3 showsthe first segmentation result which is directly
correlated to picture 3 of Figure 14. There the nose and the neck of the cartoon person
were marked for restoration. Picture 4a depictsall marked and restored objectsof picture
4 of Figure 14. A logic 'OR' with the previously segmented objects (picture 3) selects
now the new objects that are subject to segmentation at this stage. The resulting
segmentation mask is given in picture 4. The use of the same operations produces then
the pictures 5a and 5, related to picture 5 of Figure 14.

Every object of every segmentation mask is finally checked whether it belongs to the
Motion Detection Mask YMDJ or to the unchanging portions of the scene. This Moving
Object Detection template (28) requires that YMD>i is fed to the state while the actual
segmentation mask is applied to the input. Its processingtime depends only on the object's
size and shape.

A =

0.5 0.5 0.5 "0 0 0"

0.5 4 0.5 , B = 0 4 0

0.5 0.5 0.5_ 0 0 0_

J = -0.5 (28)

Here solely those objects that show at least in some parts changes due to motion are
subject to further coding. All other objects, i.e. still objects, are wiped out of the
segmentation mask. This result is then the data base for the remaining parts of the image
analysis system. After the segmentation of all moving objects of an image is finished, a last
comparison, a logic 'XOR', between the mask showing all moving objects and theMotion
Detection Mask YMDyi detects those parts of YMd,, that are not yet segmented. The result is
given as an additional segmentation mask and concludes the Interframe Segmentation. A
good visual example for such a case is given in the simulations done with the Miss
America video sequence (see Figure 40). All parts of the image that are not segmented are
contributed to the still background and remain uncoded while the moving parts are send to
the Parameter Estimation module.
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Ill Simulations

III.l Introduction

The universality of the proposed analogic programs is proved by segmenting two
standardized image sequences, Claire and Miss America. These sequences have been
selected by international expert groups (ITU Study Group XV) as typical videophone
sequences showing head and shoulder in motion. The sequence Claire has been provided
by the Centre National d"Etudes des Telecommunications (CNET), France, while the
sequence Miss America was designed by the British Telecom Research Laboratories
(BTRL). These test sequences exist in different formats for different application aspects.
In these experiments, the Common Intermediate Format (CIF) will be used which has
been accepted for videophone applications by the ITU. Each picture consists of 288 lines
and 352 pixels per line for the luminance component and of 144 lines and 176 pixels per
line for both chrominance components. Each sample is quantized with 8 bits, and the
frame rate of the sequences is 29.97 Hz.

Fig. 16. Typical frame of thetest sequence Claire. Fig. 17. Typical frame of the test seq. Miss America.

III.2 Simulation Results

We show here the images we obtained after having tested the proposed algorithms. The
images are given in the same order as it was already used when describing the analogic
programs in greater detail. Additionally we refer at every stage to the notations introduced
in Figure 2.

Skipping the Image Preprocessing operation, which is of minor interest at this time, we
start the discussion of the simulation results with Edge Enhancing Low Pass Filtering.
Both sets of images show first the results after a convolution with a simple low pass
kernel as it is given in (5). The noise removal is efficient, but the quality of the images'
contour lines is poor. Therefore we add in Yjj>j formerly removed high frequency

25



components to the contour areas and reach a significant improvement of the images'
sharpness while maintaining the low background noise level.

Figure 18. }', after simple LP filtering. Figure 19. )'/./.„ output of Edge Enhancing LP Filter.

Figure 20. )', after simple LP filtering. Figure 21. YLPl, output of Edge Enhancing LP Filter.

The next operation depicts all moving parts of the image on a pixelwise base. These are
the previously mentioned Motion Detection Masks Ymdj- Their information is stored and
exploited later in this algorithm.
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j
Figure 22. Motion Detection Mask Yudj. Figure 23. Motion Detection Mask Yuda

In aparallel path to the Motion Detection operation, the Remarkable-Feature Extraction
is processed. After an initial thresholding of the absolute difference of two directly
succeeding image frames, the next step extracts image fragments matching aspecific size
criterion. With an adequate set of running-time and threshold parameters, facal1 areas can
be successfully extracted. This enables the Parameter Coding algorithm to distinguish
between objects of predictable motion and those, as the remarkable features, that have to
be coded independently. The images in our presentation show for both simulations the
thresholded absolute difference image and the Remarkable-Feature Mask Ym.

Figure 24.Thresholded abs. Ywj - Yu>j.t diff.. Figure 25. Remarkable-Feature Mask Kot.|.

27



Figure 26. Thresholded abs. r«-Y„M diff.. Figure 27. JWMWta*.j«
'AF,/-

The Atfqfom Segmentation intends to decompose the image into aset of obiectsTherefore ,t calcu ates first acontour map ofthe image by meioffc^S/t^S
The irregular contour knes are then thinned to aone oixel wide skeleton^Thl S-
Snotsssm***•^^^ss£!L™! T^8 V*"* COntOU^, "^removed •nd ** «WWonaI Hollow Filling md**£«,-decreases the number ofobjects by merging small objects to larger „2o7
The: final SegmenMon Mask 7* results then from asimpleVzry XSS^
operation followed by one iteration ofthe Skeletonization vetectton

Figure 28. Thresholded Gradient ofYu.,,. Figure 29. Skeleton after first Skeletonization.
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Figure30. Inclusionof Yrpj Figure 31. LineRemoval, object merging and
Skeletonization yield the Segm. Mask Ys,f.

Figure 32.Thresholded Gradient of Yu>,u Figure 33. Skeleton after first Skeletonization.

Figure34. Inclusion of 1W>

29

Figure 35. LineRemoval,objectmerging and
Skeletonization yield the &g/n. Mask YSii.



The final Interframe Segmentation and Object Labeling separates still image parts from
moving objects and sends the moving segments to the next unit, the Parameter
Estimation. This data stream is labeled by means of a size criterion. After the last moving
object was detected, the algorithm verifies if all information given in the Motion
Detection Mask Yrfj has already been allocated to image objects. If this check fails, an
additional mask will send the missing image portions to the Parameter Estimation. A
good example for such a mask is displayed in Figure 40.

Figure 36. Moving objects.

Figure 37. Fast moving objects (see Yrf.,). Figure 38. Still background.
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Figure 39. Moving objects.

Figure 41. Fast moving objects (see YRFj).

Fig. 40. Additional segmentation mask featuring the
remaining, not yet considered parts of YMD%I (see Fig. 23).

Figure 42. Still background.

IV Implementations

The complete execution time of the Segmentationand ObjectLabeling algorithm depends
on the image size and the complexity of the given scene. The following survey features
all estimated processing times of the different algorithms without I/O operations:
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Algorithm Time int

Image Preprocessing 3

Edge Enhancing Low Pass Filtering 50

Motion Detection <15

Remarkable-Feature Extraction <150

Intraframe Segmentation <300

Interframe Segmentation and Object Labeling <600

Total <1118

Table 1. Processing times for the different algorithms computing the Segmentation and
ObjectLabeling.

For a usual CIF frame of 360x288 pixels computed on a recent design of the CNN
Universal Chip, the usual time constant x is equal to about 250 nsec [22]. The results
given in Table 1 show therefore that up to 300 frames could be segmented per second.
The real working frequency is probably slightly slower, because some other functions of
the image analysis algorithm also require computation time on the CNN Universal
Machine. This surplus in processing time allows therefore an even more accurate
processing ofeach image frame without slowing down the whole coding process itself.

V CONCLUSION

Compared to the general requirements for an object oriented coding technique, we can
see that the CNN Universal Machine is perfectly suited for the critical time criterion
imposed by the real time character of a two way videophone dialogue while offering, at
the same time, a reliable and exact image segmentation. The CNN Universal Machine is
therefore able to adapt itself to every kind of transmission situation, depending on the
overall goal of extremely low transmission rates or a high output quality. The first target
is achievable due to the very accurate description of moving objects, allowing an exact
distinction between predictable and unpredictable moving objects and still background. If
on the other hand a high picture quality is demanded, it is possible to segment a video
sequence into moving objects while maintaining the transmission rate of 30 frames/sec
provided by the input sequence. This figure exceeds significantly the results reported for
other related segmentation schemes [9][12], commonly being limited to transmission
rates below 10 frames/sec. Thus we are able to conclude that the CNN Universal Chip is
an ideal hardware component to compute the object oriented image analysis in very low
bitrate video coding systems.
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