Memorandum UCB/ERL M95/70, Electronics Research Laboratory,
University of California, Berkeley, September, 1995.

RESYNCHRONIZATION FOR EMBEDDED MULTIPROCESSORS

Shuvra S. Bhattacharyya, Sundararajan Sriram, and Edward A. Lee

ABSTRACT

This paper introduces a technique, caliesi/nchronizationfor reducing synchronization
overhead in embedded multiprocessor implementations. The technique exploits the well-known
observation [39] that in a given multiprocessor implementation, certain synchronization opera-
tions may beedundantin the sense that their associated sequencing requirements are ensured by
other synchronizations in the system. The goal of resynchronization is to introduce new synchro-
nizations in such a way that the number of additional synchronizations that become redundant
exceeds the number of new synchronizations that are added, and thus the net synchronization cost
is reduced.

First, we define the general form of our resynchronization problem; we show that it is NP
hard by establishing a correspondence tosttecoveringoroblem; and based on this correspon-
dence, we specify how an arbitrary heuristic for set covering can be applied to yield a heuristic for
resynchronization. Next, we show that for a certain class of applications, optimal resynchroniza-
tions can be computed efficiently by meanpiptlining These pipelined solutions, however, can
suffer from significantly increased latency, and this motivatetatbacy-constrainedesynchro-
nization problem, which we address for a restricted class of graphs that permit efficient computa-
tion of latency. Again using a reduction from set covering (although the construction is
significantly different), we show that latency-constrained resynchronization is NP hard. However,
we show that for the special case in which there are only two processors, latency-constrained
resynchronization can be solved in polynomial time. We also present a heuristic for latency-con-
strained resynchronization, and through a practical example, we demonstrate that this heuristic
gives an efficient means for systematically trading off between synchronization overhead and
latency.

This research was partially funded as part of the Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U.S. Air Force (under the RASSP program, contract F33615-
93-C-1317), the Semiconductor Research Corporation (project 94-DC-008), the National Science Founda-
tion (MIP-9201605), the State of California MICRO program, and the following companies: Bellcore, Bell
Northern Research, Dolby Laboratories, Hitachi, LG Electronics, Mentor Graphics, Mitsubishi, Motorola,
NEC, Pacific Bell, Philips, and Rockwell.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 201
East Tasman Drive, San Jose, California 95134, USA.

S. Sriram and E. A. Lee are with the Department of Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, California 94720, USA.

1. Introduction
|

This paper develops a technique calesl/nchronizatiorior reducing the rate at which
synchronization operations must be performed in a shared memory, embedded multiprocessor
system. Resynchronization is based on the concept that there can be redundancy in the synchroni-
zation functions of a given multiprocessor implementation [39]. Such redundancy arises when-
ever the objective of one synchronization operation is guaranteed as a side effect of other
synchronizations in the system. In the context of noniterative execution, Shaffer showed that the
amount of run-time overhead required for synchronization can be reduced significantly by detect-
ing redundant synchronizations and implementing only those synchronizations that are found not
to be redundant; an efficient, optimal algorithm was also proposed for this purpose [39], and this
algorithm was subsequently extended to handle iterative computations in [4].

The objective of resynchronization is to introduce new synchronizations in such a way that
the number of original synchronizations that consequently become redundant is significantly less
that the number of new synchronizations. We formulate and study this problem in the context of
self-timed execution of iterativ&®/nchronous datafloprograms. Over the past several years, syn-
chronous dataflow programming of iterative computations has attained significant popularity in
the application domain of digital signal processing (see for example [13, 23, 30, 35, 34, 38]), and
a wide variety of techniques have been developed to schedule synchronous dataflow programs for
efficient multiprocessor implementation, such as those described in [1, 7, 14, 27, 32, 36, 40, 44].

Resynchronization has been studied earlier in the context of hardware synthesis [12].
However in this work, the scheduling model and implementation model are significantly different
from the structure of self-timed multiprocessor implementations, and as a consequence, the prob-
lem formulations, analysis techniques, and algorithmic solutions do not apply to our context, and
vice-versa. We will explain the major differences between these two contexts in Subsection 3.5,
once we have developed the analytical models on which our work is based.

The purpose of this paper is to introduce the utility of resynchronization for self-timed
multiprocessor implementations of synchronous dataflow programs, examine the complexity of

fundamental problems that emerge from this concept, and develop a number of optimal and heu-

ristic solutions to some of these problems. In synchronous dat&[o®),(a program is repre-

sented as a directed graph in which the verti@et®(s) represent computations, the edges specify
data dependences, and the number of data vdblesn§) produced (consumed) by each actor

onto (from) each of its output (input) edges is fixed and known at compile time. This form of
“synchrony” should not be confused with the use of “synchronous” in synchronous languages [3].

The techniques developed in this paper assume that the input SDF draptogeneoys
which means that the numbers of tokens produced or consumed are identically unity. However,
since efficient techniques have been developed to convert general SDF graphs into equivalent (for
our purposes) homogeneous graphs [25], our techniques can easily be adapted to general SDF
graphs. In the remainder of this paper, when we refedadadlow graph (DFG) we imply a
homogeneous SDF graph.

Delayson DFG edges represent initial tokens, and specify dependencies between itera-
tions of the actors in iterative execution. For example, if tokens produced by the th execution of
actorA are consumed by tilk+ 2) th execution of aBtor , then the(édd® contains two
delays. In drawings of DFGs, we place a “D” on top of an edge that has unit delay, and if an edge
hasn>1 delays, then we place “ D” on top of the edge (see Figure 1).

Multiprocessor implementation of an algorithm specified as a DFG requires scheduling
the actors, which involves assigning actors in the DFG to processors, ordering execution of these
actors on each processor, and determining when each actor fires (begins execution) such that all
data precedence constraints are met. In [26] the authors propose a scheduling taxonomy based on
which of these tasks are performed at compile time (static strategy) and which at run time
(dynamic strategy); in this paper we will use the same terminology that was introduced there.

In thefully-static scheduling strategy of [26], all three scheduling tasks are performed at
compile time. This strategy involves the least possible runtime overhead. All processors run in
lock step and no explicit synchronization is required when they exchange data. However, this
strategy assumes that exact execution times of actors are known. Such an assumption is generally
not practical. A more realistic assumption for DSP algorithms is that good estimates for the exe-
cution times of actors can be obtained.

Under such an assumption on timing, it is best to discard the exact timing information

from the fully static schedule, but still retain the processor assignment and actor ordering. This
results in theself-timed scheduling strategy [26]. Each processor executes the actors assigned to
it in a fixed order that is specified at compile time. Before firing an actor, a processor waits for the
data needed by that actor to become available. Thus in self-timed scheduling, processors are
required to perform run-time synchronization when they communicate data. Such synchronization
is not necessary in the fully-static case because exact (or guaranteed worst case) times could be
used to determine firing times of actors such that processor synchronization is ensured. As a
result, the self-timed strategy incurs greater run-time cost than the fully-static case.

By aprocessorwe mean either a programmable component, in which case the actors
mapped to it execute as software entities, or a hardware component, in which case actors assigned
to it are implemented and execute in hardware. See [19] for a discussion on combined hardware/
software synthesis from a single dataflow specification. Examples of application specific multi-
processors that use programmable processors and some form of static scheduling are described in
[6, 21, 42].

Interprocessor communicatiolPC) between processors is assumed to take place through
shared memory, which could be global memory between all processors, or it could be distributed
between pairs of processors (for example, hardware first-in-first-out (FIFO) queues or dual ported
memory). Sender-receiver synchronization is also assumed to take place by setting flags in shared
memory. Typically, special hardware for synchronization, such as barriers [10] or semaphores
implemented in hardware, is prohibitively expensive for embedded multiprocessor machines. For
the same reason, we cannot assume the efficient support for polling shared synchronization vari-
ables that is available on certain cache-coherent multiprocessors [28]. Interfaces between hard-
ware and software are typically implemented using memory-mapped registers in the address
space of the programmable processor (again a kind of shared memory), and synchronization is
achieved using flags that can be tested and set by the programmable component, and the same can
be done by an interface controller on the hardware side [17]. Thus, in our context, effective resyn-
chronization results in a significantly reduced rate of accesses to shared memory for the purpose

of synchronization.

2. Background
|

Much of the nonstandard terminology that is introduced in this and subsequent sections is
summarized in a glossary at the end of the paper.

We frequently represent a DFG by an ordered QAjJIE) , Wiere is the set of vertices
andE is the set of edges. We refer to the source and sink vertices of a graph edgge(€ by
andsnk(e) , we denote the delay an dglay(¢ , and we frequently represent by the ordered
pair (src(e), snk(€e)) . We say tha¢ is avutput edgeof src(€), and thate is amput edgeof
snk(e). Edge e igdelaylessf delay(@ = 0, and it is aself loopif src(e) = snk(e). In the
iterative execution of a DFG, the th invocation of an agtor is dengted k,#od, 2 ...

Givenx, yOV , we say that is@redecessorof y if there existseld E such that
src(e) = xandsnk(e) = y; we say that issuccessopof y if yis a predecessor of . A
pathin (V, E) is a finite, nonempty sequente;, e,, ..., e,) ,where each is a memker of |,
andsnk(e;) = src(e) ,snk(e,) = src(g) , ...,snk(e,_;) = src(g) . We say that the path
p = (e,e, ..., €,) containseache, and each subsequenc¢sfe,, ...,e,) p ; dirscted
from src(e;) to snk(e,); and each member §fsrc(g), src(e,), ..., src(e,), snk(e,)} ts-
versed byp. A path that is directed from some vertex to itself is callegcée, and aundamen-
tal cycleis a cycle of which no proper subsequence is a cycle.

If (Py, P2, ..., Py) is a finite sequence of paths such that= (e 1, € 5 ..., € 1) , for
1<i<k,andsnk(e ni) = src(g, 4) ,forl<i<(k-1) , then we define thencatenationof

(Py Py -+, Py) » denotedi(p,, Py, ..., PO, by

(P P o P)EE (8 1 1 €1 1 €0 11 € ooy B 10 -1 B) -

Clearly, L{py, Py, -, PU is a path fronsrc(e, ;) tenk(g nk)
If p = (e,e, ...,&,) isapathin a DFG, then we define fyeth delay of p, denoted

Delay(p), by

Delay(p) = z delay(e).

i=1

Since the delays on all DFG edges are restricted to be non-negative, it is easily seen that between

any two vertice, y[OV , either there is no path directed fromy to , or there exists a (not nec-
essarily uniqueininimum-delay path betweenx and/ . Given a DFG , and verticey in

G, we definepg(x, y) to be equalte if there is no path foom y to , and equal to the path
delay of a minimum-delay path fromm to if there exist one or more pathsXrony toG.If s
understood, then we may drop the subscript and simply write “ " in plageof “ .

By asubgraph of (V, E), we mean the directed graph formed by ®hyl V together
with the set of edgee O E|src(e), snk(e) D' V'} . We denote the subgraph associated with the
vertex-subseV' bygubgrapi{V') .We saythaly B sisongly connectedif for each pair of
distinct verticest, y , there is a path directed from yto and there is a path directeg from to
We say that a subset 0V is strongly connectesifgrapi{V') is strongly connected. A
strongly connected component (SCO)f (V, E) is a strongly connected sub3ét[1V such
that no strongly connected subseMof properly contdins V'. If is an SCC, then when there is
no ambiguity, we may also say thaibgrapi(V') isan SCCQIf @pd are distinct SCCs in
(V, E),we say thaC; ispredecessor SCOf C, if there is an edge directed from some vertex
in C, to some vertex iilC, C; issuccessor SCOfC, if C, is apredecessor SCCGf .An
SCC is asource SCCif it has no predecessor SCC; an SCCsmk SCCif it has no successor
SCC; and an SCC is amternal SCC if it is neither a source SCC nor a sink SCC. An edge is a
feedforward edge of(V, E) ifitis not contained in an SCC, or equivalently, if it is not contained
in a cycle; an edge that is contained in at least one cycle is cdedmckedge.

We denote the number of elements in a finiteSset | Yoy . Also, if is a real number, then

we denote the smallest integer that is greater than or equal tor by

3. Synchronization model
|

In this section, we present the model that we use for analyzing synchronization in self-
timed multiprocessor systems. The basic model was presented originally in [41] to study the exe-
cution and interprocessor communication patterns of actors under self-timed evolution, and in [5],
the model was augmented for the analysis of synchronization overhead.

Consider the execution of the four-processor schedule in Figure 1. In the self-timed execu-

tion shown in Figure 1(c), it is assumed that zero time is required for interprocessor communica-
tion. If the timing estimates are accurate, the schedule execution settles into a repeating pattern

spanning two iterations @& , and the average iteration period is 7 time units.

We model a self-timed schedule using a D&, = (V, Ejpc) derived from the original
SDF graphG = (V, E) and the given self-timed schedule. The g&ph , which we to refer to
Proc 4 Procl1| A | E *
Proc1 Execution Time Estimates Proc2 | B F |
@,_y@-——s_» Proc3| C | G
4 R A,C,H,F 12 Proc 4 | H |
B, E 13
G 4 . = Send
=R i
broc 2 B = Receive
[]=1de
(b) Schedule on four processors
A E [A E AT E [a E ATl E]
B F_| B F | B | F | B | F | B | F| |
c | G C G c | G C G cl | o |
| H | | H | | H] | H | | [H]
-t >
14

(c) Self-timed execution

&0 0 x5

Proc 17 ' Proc 4
| : (d) IPC graph
CS
D
Proc 2 Proc 3

Figure 1. Self-timed execution.

7

as theinterprocessor communication modeling graphor IPC graph for short, models the
sequential execution of actors that are assigned to the same processor, and it models constraints
due to interprocessor communication. For example, the self-timed schedule in Figure 1(b) can be
modeled by the IPC graph in Figure 1(d). The IPC edges are shown using dashed arrows. The rest
of this subsection describes the construction of the IPC graph in detail.

The IPC graph has the same vertexX\6et Gas , corresponding to the set of &Btors in
The self-timed schedule specifies the actors assigned to each processor, and the order in which
they execute. For example in Figure 1, processor 1 exeutes artd then repeatedly. We model
this in Gjpe
delay on the edge fro8 t# . The delay-free edge ffom Eto represents the requirement that

by drawing a cycle around the vertices correspondidg to Eand , and placing a

the k th execution oA must precede tke th executiokof , and the edgesfronA to with a
delay represents the constraint thatkhe th executign of can occur only aftkrthe th exe-
cution ofE has completed. Thus if actasv,, ...,v,, are assigned to the same processor in that
order, therG;, would have a cydlévy, V), (Vo, Vg), ooy (Vi _ 1, V), (Vi Vp)) 5 With
delay((v,, v4)) = 1.Ifthere areP processors in the schedule, then wefave such cycles cor-
responding to each processor.

As mentioned before, edges@® that cross processor boundaries after scheduling repre-
sent interprocessor communication. We call such eldRf@edges Instead of explicitly introduc-
ing speciabendandreceiveprimitives at the ends of the IPC edges, we model these operations as
part of the sending and receiving actors themselves. For example, in Figure 1, data produced by
actorB is sent from processor 2 to processor 1; instead of inserting explicit communication prim-
itives in the schedule, the send is modeled within dtor while the receive is modeled as part of
actorE . This is done so as not to clut@s. with extra communication actors. Even if the actual
implementation uses explicit send and receive actors, communication can still be modeled in the
above fashion because we are simply clustering the source of an IPC edge with the corresponding
send actor and the sink with the receive actor.

Foreach IPC edge 8 we add an IPC edge Gjig between the same actors. We also
set the delay on this edge equal to the delay on the corresponding &lge in . Thus, we add an IPC

edge fromE tol inGy. with a single delay on it. The delay corresponds to the possibility that

execution ofE can lag the execution bf by one iteration. An IPC edge represents a buffer
implemented in shared memory, and initial tokens on the IPC edge are used to initialize this
shared buffer. The number of initial tokens is equal to the delay on the IPC edge. In a straightfor-
ward self-timed implementation, each such IPC edge would also be a synchronization point
between the two communicating processors.

The IPC graph has the same semantics as a DFG, and its execution models the execution
of the corresponding self-timed schedule. As per the semantics of a DFG, ea(:hjque of
Gipc represents the following data dependency constraint [41]:

start(v, k) = end(v, k— delay((vj, vi))), D(vj, V) U Ejpe, Uk > delay(vj, Vi), (1)

wherestart(v, K andend v B respectively represent the time at which invocktion ofactor
begins execution and completes execution. Wetset(v, K = end v B = 0 k £db . Here
time is modelled as an integer that can be considered a multiple of the base clock.

The constraints in (1) are due both to IPC edges (representing synchronization between
processors) and to edges that represent serialization of actors assigned to the same processor.

To model execution times of actors we associate an execution(tnne with each vertex
of the IPC grapht(v) assigns a positive integer execution time to eaclvactor

The IPC graph can be viewed as a marked graph [33] or Reiter's computation graph [37].
Below we use some of the well-known properties of such graphs to measure the self-timed evolu-

tion of the system that corresponds to a given IPC graph.

Definition 1: Thecycle meanof a cycleC , denoted(C) , in an IPC graph is defined by

t(v)

— Vis traversed by
A(C) Delay(C) , and

the maximum cycle mearof an IPC graptG,; denotéqnagGipc) , Is defined by

max
= AC)}.
max cycleCin G{ ©)
A fundamental cycle iS5, whose cycle mean is equal g, is catteitiaal cycle of Gy .

Note that for an IPC graph that is constructed from a schedule that is not deadlocked, the
denominator in the expression (C) Is necessarily positive [37]. Furthermore, in the self-
timed schedule foG;,.
such aras soon as possible (ASARINg pattern implies that the throughput of the corresponding

, an actor fires as soon as data is available at all of its input edges, and

multiprocessor implementation is equeatl(PC}W(Gipc))_l [37].

For example, in Figure 1(d%;,c has one SCC, and its maximal cycle mean is 7 time
units. This corresponds to the critical cycle((B, E), (E, I), (I, G), (G, B))
t(B) = t(E) = 3,t(l) = t(G) = 4 time units, so the total time along this cycle is 14, and there
are two delays on this cycle. Thus the average iteration period for this schedule is 7 time units. We
have not included IPC costs in this calculation, but these can be included in a straightforward
manner by adding theendandreceivecosts to the corresponding actors performing these opera-
tions.

The maximum cycle mean can be calculated efficiently by repeated applications of the
Bellman-Ford shortest path algorithm [24].

If we only have execution time estimates available instead of exact values, and(w§ set

in the previous section to be these estimated values, then we obtegtinetedteration period

1
A

max

by calculatingA ., - Henceforth we will assume that we knoweitenated throughput
of a given IPC graph.

In the transformations that we present in the rest of the paper, we preserve the estimated
throughput by preserving the maximum cycle mea@gf , With gagh set to the estimated
execution time of actov . In the absence of more precise timing information, this is the best that

we can hope to do.

3.1 Synchronization protocols

In [4], we describe two synchronization protocols for an IPC edge. Given an IPC graph
(V,E),andan IPCedgel] E ,d is afeedforward edge then we apply a synchronization proto-
col calledfeedforward synchronization (FFS) which guarantees thank(e) never attempts to
read data from an empty buffer (to prevent underflow),saate) never attempts to write data

into the buffer unless the number of tokens already in the buffer is less than some pre-specified

10

limit, which is the amount of memory allocated to that buffer (to prevent overflow). This involves
maintaining a count of the number of tokens currently in the buffer in a shared memory location.
This count must be examined and updated by each invocat&m(e) snéfe , and thus in
each graph iteration period, FFS requires an average of four accesses to shared memory (two read
accesses and two write accesseale refer to these accesses to shared memory, which are per-
formed solely for the purpose of synchronizationsyaschronization accesses

If eis a feedback edge, then we use a simpler protocol, dakeiback synchronization
(FBS), that only explicitly ensures that underflow does not occur, and requires only two synchro-
nization accesses per iteration period [4]. Such a simplified scheme is possible since the number
of tokens that simultaneously reside on the buffer for a feedback edge can be shown to be
bounded, and thus, it can be assumed that overflow will never occur if the buffer is sized appropri-
ately [5].

3.2 The synchronization graph

An IPC edge inGj,; represents two functions: reading and writing of tokens into the
buffer represented by that edge, and synchronization between the sender and the receiver, which
could be implemented with FFS or FBS. To differentiate these two functions, we define another
graph called theynchronization graph, in which edges between actors assigned to different pro-
cessors, callegynchronization edgesrepresensynchronization constraints onkxn execution
sourceof a synchronization graph is any actor that either has no input edges or has nonzero delay
on all input edges.

Recall that an IPC edde;, v;) @, representssyrchronization constraint

start(v, k) = end(v, k- delay((vj, v;))), Ok> delay(vj, V). (2)

1. Note that in our measure of the number of shared memory accesses required for synchronization, we ne-
glect the accesses to shared memory that are performed while the sink actor is waiting for the required data
to become available, or the source actor is waiting for an “empty slot” in the buffer. The number of accesses
required to perform these “busy-wait” or “spin-lock” operations is dependent on the exact relative execution
times of the actor invocations. Since in our problem context, this information is not generally available, we
use thébest casmumber of accesses — the number of shared memory accesses required for synchronization
assuming that IPC data on an edge is always produced before the corresponding sink invocation attempts to
execute — as an approximation.

11

Initially, the synchronization graph is identical to the IPC graph because every IPC edge
represents a synchronization point. However, we will modify the synchronization graph in certain
“valid” ways (defined shortly) by adding/deleting edges. At the end of our optimizations, the syn-
chronization graph is of the forV, (Ey,c—F +F')) , whefe is the set of edges deleted from
the IPC graph an&’ is the set of edges added to it. At this point the IPC e@gs in represent
buffer activity, and must be implemented as buffers in shared memory, whereas the synchroniza-
tion edges represent synchronization constraints, and are implemented using FFS and FBS. If
there is an IPC edge as well as a synchronization edge between the same pair of actors, then the
synchronization protocol is executed before the corresponding buffer is accessed so as to ensure
sender-receiver synchronization. On the other hand, if there is an IPC edge between two actors in
the IPC graph, but there is no synchronization edge between the two, then no synchronization
needs to be done before accessing the shared buffer. If there is a synchronization edge between
two actors but no IPC edge, then no shared buffer is allocated between the two actors; only the
corresponding synchronization protocol is invoked.

The following theorem, which is developed in [5], underlies the validity of our synchroni-

zation optimizations.

Theorem 1: The synchronization constraints in a synchronization g@pk (V, E;) imply
the constraints of the grafgh, = (V, E,) ifforallE, suchthdatE, ,we have
pGl(src(s), snk(g)) < delay(e) —that is, if for each edge that is presenGin but n@,in
there is a minimum delay path frognc(e) $ok(g) (that has total delay of at most
delay(g).

If G, = (V,E)) andG, = (V, E,) are synchronization graphs with the same vertex-set
and the same set of intraprocessor edges (edges that are not synchronization ed@spreien
servesG, if for all e 0 E, such thae O E; , we havpel(src(e), snk(g)) < delay(¢) . Thus
Theorem 1 guarantees that the synchronization edgés of can be used to implement the syn-
chronization constraints &6, &, preserv@s . Itis easily verified thairdserveselation

is transitive:

Fact 1: If G;, G, and G5 are synchronization graphs such fBat presédyes Gand pre-

12

servesG; , theis; preservés,

Given an IPC grap,:. , and a synchronization gr@ph suclthat pre€gjyves , If
we implement the synchronizations corresponding to the synchronization edgges of , then
because the synchronization edges alone determine which actors must wait on actions performed
on remote processors, the iteration period of the resulting system is determined by the maximum

cycle mean of54 .

3.3 Redundant synchronization edges

Definition 2: A synchronization edge redundant in a synchronization grap8 if its removal
yields a graph that preserv@s . Equivalently from the definition of “preserves,” a synchroniza-

tion edgee is redundant if there is a pgt# (frerm(e) sné(e such that
Delay(p) < delay(€.

Fig. 2 shows an example of a redundant synchronization edge. Here, before executing
actorD , the processor that execytés B, C, D} does not need to synchronize with the proces-
sor that executdsE, F, G, H} because due to the synchronizatiorxgdge , the corresponding
invocation ofF is guaranteed to complete before each invocatibn of is begurx,Thus is

redundant. From this example, we see that the synchronization function associated with a redun-

Figure 2. An example of a redundant synchronization edge: the edge x, is redundant.

13

dant synchronization edge “comes for free” as a by product of other synchronizations, and thus, it
need not be implemented explicitly.

In [5], it is shown that if all redundant edges in a synchronization graph are removed, then
the resulting graph preserves the original synchronization graph — that is, the redundancies are
not interdependent. Thus, we need not implement the synchronization functions associated with
any of the redundant synchronization edges. An efficient algorithm is given in [4] for determining
the redundant synchronization edges of a synchronization graph. This algorithm is an extension to
iterative dataflow programs of an earlier algorithm developed by Shaffer [39] that optimally

removes redundant synchronization edges for the noniterative case.

3.4 Problem description

We define theynchronization costof a synchronization grapB; to be the average num-
ber of synchronization accesses required per iteration period. Thys, if denotes the number of
synchronization edges @, that are feedforward edgesngnd denotes the number of synchro-
nization edges that are feedback edges, then the synchronization Gost of4n is 2n;,)
The basic objective of the methods discussed in this paper is to minimize the synchronization
cost.

In [5], a simple, efficient algorithm, callébnvert-to-SC-graphs described for introduc-
ing new synchronization edges so that the synchronization graph becomes strongly connected,
which allows all synchronization edges to be implemented with FBS. A supplementary algorithm
is also given for determining an optimal placement of delays on the new edges so that the esti-
mated throughput is not degraded and the increase in shared memory buffer sizes is minimized. It
is shown that the number of synchronization accesses required to implement the new edges that
are added bZonvert-to-SC-graplan be significantly less than the number of synchronization
accesses that are eliminated by converting all uses of FFS to FBS. However, this technique may
increase the latency.

In this paper, we propose another approach to reducing synchronization overhead called
resynchronizationResynchronization is also based on inserting new synchronization edges; the

objective is to insert these edges so that the number of original synchronization edges that become

14

redundant is greater than the number of new synchronization edges. Aowitkrt-to-SC-
graph resynchronization can increase latency. We address the problem of optimal resynchroniza-
tion both in the context where there is no restriction on latency, and in the context of a hard
latency constraint that cannot be exceeded.

Generally, resynchronization can be viewed as complementary @otivert-to-SC-
graphoptimization: resynchronization is performed first, followeddonvert-to-SC-graph
Under severe latency constraints, it may not be possible to accept the solution comg@gded by
vert-to-SC-graphin which case the feedforward edges that emerge from the resynchronized solu-
tion must be implemented with FFS. In such a situa@amyvert-to-SC-graplan be attempted
on the original (before resynchronization) graph to see if it achieves a better result than resynchro-
nization withoutConvert-to-SC-graphHowever, for synchronization graphs that have only one
source SC@ndonly one sink SCC, the latency is not affectec€Cbyvert-to-SC-graphand thus,
for such systems resynchronization &whvert-to-SC-graplare fully complementary. This is

fortunate since such systems arise frequently in practice.

3.5 Comparison with the resynchronization model of Filo, Ku, and

De Micheli

As mentioned in Section 1, Filo, Ku and De Micheli have studied resynchronization in the
context of minimizing the controller area for hardware synthesis of synchronization digital cir-
cuitry [11, 12], and significant differences in the underlying analytical models prevent these tech-
nigues from applying to our context. In the graphical hardware model of [12], called the
constraint graphmodel, each vertex corresponds to a separate hardware device and edges have
arbitrary weights that specify sequencing constraints. When the source vertex has bounded execu-
tion time, a positive weightv(e) fdrward constraintimposes the constraint

start(snk(€)) = w(e) + start(src(e)),
while a negative weighbackward constraintimplies
start(snk(€)) < w(e) + start(src(e)).
If the source vertex has unbounded execution time, the forward and backward constraints are rela-

tive to thecompletiontime of the source vertex. In contrast, in our synchronization graph model,

15

multiple actors can reside on the same processing element (implying zero synchronization cost
between them), and the timing constraints always correspond to the caseww)ere IS positive
and equal to the execution time @it(e)

The implementation models, and associated implementation cost functions are also signif-
icantly different. A constraint graph is implemented using a scheduling techniquerektec
scheduling22], which can roughly be viewed as intermediate between self-timed and fully-static
scheduling. In relative scheduling, the constraint graph vertices that have unbounded execution
time, calledanchors are used as reference points against which all other vertices are scheduled:
for each vertew , an offset is specified for each anahor that affects the activation of , and
v is scheduled to occur onde clock cycles have elapsed from the compledjion of , for each

In the implementation of a relative schedule, each anchor has attached control circuitry
that generates offset signals, and each vertex has a synchronization circuit that agstvestan
signal when all relevant offset signals are present. The resynchronization optimization is driven by
a cost function that estimates the total area of the synchronization circuitry, where the offset cir-
cuitry area estimate for an anchor is a function of the maximum offset, and the synchronization
circuitry estimate for a vertex is a function of the number of offset signals that must be monitored.

As a result of the significant differences in both the scheduling models and the implemen-
tation models, the techniques developed for resynchronizing constraint graphs do not extend in
any straightforward manner to the resynchronization of synchronization graphs for self-timed
multiprocessor implementation, and the solutions that we have developed for synchronization
graphs are significantly different in structure from those reported in [12]. Most notably, the funda-
mental relationships that we develop between set covering and our use of resynchronization have

not emerged in the context of constraint graphs.
4. Resynchronization
|

As discussed above, it is sometimes possible to reduce the total number of irredundant
synchronization edges by adding new synchronization edges to a synchronization graph. We refer

to the process of adding one or more new synchronization edges and removing the redundant

16

edges that result assynchronizatiorfdefined more precisely below). Figure 3(a) illustrates this
concept. Here, the dashed edges represent synchronization edges. Observe that if we insert the
new synchronization edg#,(C, H) , then two of the original synchronization eddés; &)

and(E, J) — become redundant. Since redundant synchronization edges can be removed from
the synchronization graph to yield an equivalent synchronization graph, we see that the net effect
of adding the synchronization eddg(C, H) is to reduce the number of synchronization edges
that need to be implemented by . In Figure 3(b), we show the synchronization graph that results
from inserting theesynchronization edge,(C, H) into Figure 3(a), and then removing the
redundant synchronization edges that result.

Definition 3 gives a formal definition of resynchronization that we will use throughout the
remainder of this paper. This considers resynchronization only “across” feedforward edges.
Resynchronization that includes inserting edges into the SCCs, is also possible; however, in gen-
eral, such resynchronization may increase the estimated throughput (see Theorem 2 at the end of
this section). Thus, for our objectives, it must be verified that each new synchronization edge
introduced in an SCC does not decrease the estimated throughput. To avoid this complication,

which requires a check of significant complexi®((V||Elog,(|V|)) , wh@reE) is the modi-

(@) (b)

Figure 3. An example of resynchronization.

17

fied synchronization graph — this is using the Bellman Ford algorithm described ifof2Z4xch
candidate resynchronization edge, we focus only on “feedforward” resynchronization in this

paper. Future research may address combining the insights developed here for feedforward resyn-
chronization with efficient techniques to estimate the impact that a fgigdbackesynchroniza-

tion edge has on the estimated throughput.

Definition 3: Suppose thaG = (V, E) is a synchronization graph, asd{e;, e,, ..., €.} is
the set of all feedforward edges@ sAlf-timed resynchronizationof G is a finite set

R={¢' &' ...,e,} of edges that are not necessarily containdg in , but whose source and
sink vertices are iV, such that (&):,e,’, ...,e,/ are feedforward edges in the DFG

GU=(V, ((E-F) +R)); and (b).GU preserve8 — that [s,(src(e;), snk(g)) < delay(e;)
foralli0{1, 2 ...,n}. Each member dR thatis nott is calleegsynchronization edge
of the resynchronizatioR G. is called tresynchronized graphassociated witlR , and this
graph is denoted bR(G)

Here we use the “self-timed” qualification to distinguish our context of resynchronization
from the context of [12], which, as discussed in Section 3.5, is significantly different, and involves
both the insertion of new synchronization edgesiélizatior), and the modification of selected
edge weights (timing constraints). In the remainder of the paper, we drop the “self-timed” qualifi-
cation, and when we usesynchronization in a technical sense, we mean the self-timed resyn-
chronization concept defined in Definition 3.

If we let G denote the graph in Figure 3, then the set of feedforward edges is
F={(BG),(EJ),(EC),H,N} R={d(C, H),(E C),(H,I)} is aresynchronization
of G; Figure 3(b) shows the DFGU = (V, ((E-F)+R)) ; and from Figure 3(b), it is easily
verified thatF ,R , and3d] satisfy conditions (a) and (b) of Definition 3.

In the remainder of this section, we introduce a number of properties of resynchronization
that we will use throughout the developments of this paper. The following definition is fundamen-

tal to these properties.

Definition 4. Suppose that is a synchronization graphBnd is a resynchronizatidon o . If

18

is a synchronization edge 8 that is not containe@ in , we sayRRaiminates s If S0 R,
s'#s,andthereis apath frosrc(s) ®mk(s) KR G suchtpat contdins and

Delay(p) < delay(9, then we say that' contributes to the elimination of s.

A synchronization edge can be eliminated if a resynchronization creates@ path from
src(s) to snk(s) such thaDelay(p < delay(9 . In general, the paggth may contain more than
one resynchronization edge, and thus, it is possible that none of the resynchronization edges
allows us to eliminat@ “by itself”. In such cases, it is the contribution of all of the resynchroni-
zation edges within the path that enables the eliminatign of . This motivates the our choice of

terminology in Definition 4. An example is shown in Figure 4.

The following two facts follow immediately from Definition 4.

Fact 2: Suppose tha is a synchronization graRh, is a resynchronizati®n of r,and isa
resynchronization edge iR . if does not contribute to the elimination of any synchronization
edges, theR—-{r}) is also a resynchronizatio@of r.If contributes to the elimination of one

and only one synchronization edge , tifét-{ 1} +{s}) is a resynchronizati@n of

A

(a) (b)

Figure 4. An illustration of Definition 4. Here each processor executes a single actor. A
resynchronization of the synchronization graph in (a) is illustrated in (b). In this resyn-
chronization, the resynchronization edges (V, X) and (X, W) both contribute to the
elimination of (V, W).

19

Fact 3: Suppose tha& is a resynchronization graph, is a resynchronizat®n®f , isasyn-
chronization edge & , angl is a resynchronization ed@e in sucHdlz(s) > delay(9

Thens' does not contribute to the eliminatiorsof

For example, leG denote the synchronization graph in Figure 5(a). Figure 5(b) shows a
resynchronizatiolR ofs . In the resynchronized graph of Figure 5(b), the resynchronization
edge(x,, y3) does not contribute to the elimination of any of the synchronization edges of , and

thus Fact 2 guarantees theit= R—{ (%, Y3)} , illustrated in Figure 5(c), is also a resynchroniza-

(©) (d)

Figure 5. Properties of resynchronization.

20

tion of G . In Figure 5(c), it is easily verified th@at;, y,) contributes to the elimination of exactly
one synchronization edge — the edgsg, ys) , and from Facts 1 and 2, we have that

R"=R —{(Xs5 Y4)} +{(Xs5 ¥5)} , illustrated in Figure 5(d), is a also resynchronizatiofsof

Lemma l: Supposethat an@ are synchronization graphs suctethat preGerves , and
p is a path inG from actox toactyr . Thenthereisapgath G'in komy to such that
Delay(p') < Delay(p), andtr(p) O tr(p’) , wherdr(¢) denotes the set of actors traversed by

path¢ .

In Figure 5(a), ifwe lek = x; y =Yy, ,an@ = ((X3, Y1), (Y1, ¥2)) then the path
P = ((X5, X5), (X5, X3), (X3, Y1), (Y1: ¥5)) In Figure 5(b) confirms Lemma 1 for this example.
Heretr(p) = { Xy, Y. Yo} andr(p’) = { X3, Xo, X3, Y1, Yo} -

Proof of Lemma 1Let p = (g, e, ..., €,) . By definition of thepreserveselation, eacle; that
is not a synchronization edge@ is containe&in . For each that is a synchronization edge
in G, there mustbe apaty @& frosc(g) d$ok(e) such tbatay(p) < delay(e)

Lete ,e,....g ,i;<i,<..<iy, denotethe set@f s that are synchronization edg@sin ,

i ?
and define the path to be the concatenation

e, ey, ..., eil_l), [JF (eil+1, o € 1) Poy ooy (eim_1+1, eim_l), Pry (eim+1, e

P
Clearly, p isapath i’ from ty ,and sinBelay(p) < delay(e) holds wheneyer is a
synchronization edge, it follows th&elay(p) < Delay(p . Furthermore, from the construction

of p, it is apparent that every actor that is traversed by is also travergecaby

Lemma 2: Suppose thaG is a synchronization gragh; is a resynchronizatiGn of ; and
(X, y) is a resynchronization edge such tpg(x,y) = 0 . Tphery) is redund&{tGin
Thus, a minimal resynchronization (fewest number of elements) has the property that

pg(X', y") >0 for each resynchronization ed@€, y')

Proof: Let p denote a minimum-delay path from yo @& . Sifog) Is a resynchroniza-

tion edge(x, y) isnotcontained@® ,andthps, traverses atleastthree actors. From Lemma 1,

21

it follows that there isa path’ IR(G) from to such tislay(p) = 0 ,
and p’ traverses at least three actors. TBeday(p') < delay((x) pasd X, y) , and we
conclude thatx, y) isredundantiR(G) m.

As a consequence of Lemma 1, the estimated throughput of a given synchronization graph

is always less than or equal to that of every synchronization graph that it preserves.

Theorem 2: If Ris a resynchronization of the synchronization gr&h , then
AmadR(G)) 2 A ,,LG).

Proof: Suppose tha€ is a critical cycle@ . Lemma 1 guarantees that there is £cycle in
R(G) such that aPelay(C') < Delay(C) , and b) the set of actors that are traverséd by is a

subset of the set of actors traversedyy . Now clearly, b) implies that

tvz Y v, 3)
v is traversed by’ v is traversed byC
and this observation together with a) implies th@E') > A(C) . Slhce is acritical cy@e in

it follows thatA . (R(G)) 2 A,,(G) .=

Thus, in general, any saving in synchronization cost obtained by rearranging synchroniza-
tion edges may come at the expense of a decrease in estimated throughput. As implied by Defini-
tion 3, we avoid this complication by restricting our attention to feedforward synchronization
edges. Clearly, resynchronization that rearranges only feedforward synchronization edges cannot
decrease the estimated throughput since no new cycles are introduced and no existing cycles are
altered. Thus, with the form of resynchronization that we address in this paper, any decrease in
synchronization cost that we obtain is not diminished by a degradation of the estimated through-
put.

Before implementation, a synchronization graph must be made strongly connected to
ensure that all IPC buffer sizes are bounded (in the absence of guarantees on actor execution
times) [5]. As outlined in Section 3, this is done either by applying the FFS synchronization proto-

col, which effectively adds a feedback edge fremi(e) srtf @ for each feedforward synchro-

22

nization edges , or by applying ti@onvert-to-SC-graplransformation, which permits use of

the more efficient FBS synchronization protocol, and in general yields a lower overall synchroni-
zation cost than use of FFS [5]. By placing sufficient delay on certain edges, either of these tech-
niques can be performed in such a way that the estimated throughput does not decrease. Thus, if
we apply self-timed resynchronization to a synchronization graph that is not strongly connected,
and then transform the resulting synchronization graph to a strongly connected graph using one of

the two methods described above, there still will be no net degradation in estimated throughput.

5. Correspondence to set covering
|

We refer to the problem of finding a resynchronization with the fewest number of elements
as theresynchronization problem In [5], we formally show that the resynchronization problem
is NP-hard; in this section, we explain the intuition behind this result. To establish the NP-hard-
ness of the resynchronization problem, we examine a special case that occurs when there are
exactly two SCCs, which we call tipairwise resynchronization problem and we derive a
polynomial-time reduction from the classiet covering problerf®], a well-known NP-hard
problem, to the pairwise resynchronization problem. In the set covering problem, one is given a
finite setX and a familyf of subsets ¥f , and asked to find a minimal (fewest number of mem-
bers) subfamilyT 0T such that | t = X . Asubfamily®f is saidewer X if each mem-
ber of X is contained in some r;lngnSber of the subfamily. Thus, the set covering problem is the
problem of finding a minimal cover.

Although the correspondence that we establish between the resynchronization problem
and set covering shows that the resynchronization problem probably cannot be attacked optimally
with a polynomial-time algorithm, we will show that the correspondence allows any heuristic for
set covering to be adapted easily into a heuristic for the pairwise resynchronization problem, and
applying such a heuristic to each pair of SCCs in a general synchronization graph yields a heuris-
tic for the general (not just pairwise) resynchronization problem. This is fortunate since the set
covering problem has been studied in great depth, and efficient heuristic methods have been
devised [9].

23

Definition 5: Given a synchronization gragh |, let;, X,) be a synchronization ed@e in
and let(y,, y,) be an ordered pair of actorsGn . We say(thaty,) subsumes(x;, X,) in G
if p(Xq, Y1) + P(Yo X)) < delay((Xq, X,)). Thus, if delay((x, X,)) = 0, then(y,, y,) subsumes
(Xq, X5) if p(X3, Y1) = p(Yar X5) = 0. We may omit the qualification “ic " if the graph in

guestion is understood from context.

Thus, in a synchronization gragh = (V, E) (Y, Y,) subsuipgsx,) ifand only if a
zero-delay synchronization edge directed frpm yfo m@kgsx,) redundant.

The following fact is easily verified from Definitions 3 and 5.

Fact 4: Suppose tha is a synchronization graph that contains exactly two 8CCs, is the set
of feedforward edges i@ , arll is aresynchronizatidd of . Then foreddadh , there exists

e O F' such thaf(src(e'), snk(€)) subsumes (@

51 NP-hardness

An intuitive correspondence between the pairwise resynchronization problem and the set
covering problem can be derived from Fact 4. Supposéxhat is a synchronization graph with
exactly two SCCL; an@, such that each feedforward edge is directed from a me@bper of
to a member o€, . We start by viewing the Bet of feedforward eddgés in as the finite set that
we wish to cover, and with each membper { 0% y)|(xO C;, ydC,)} , We associate the subset
of F defined byx(p) ={el F|(psubsumes)} . Thusx(p) is the set of feedforward edges of
G whose corresponding synchronizations can be eliminated if we implement a zero-delay syn-
chronization edge directed from the first vertex of the orderedopair to the second vertex of
Clearly then{e;’, e, ..., &,'} isaresynchronization if and only if each F is contained in at
least onex((src(g '), snk(g'))) —thatis, if and only{ifx((src(e;"), snk(q')))|1s i <n}
coversF . Thus, solving the pairwise resynchronization probler@for is equivalent to finding a
minimal cover forF given the family of subsdtg(x, y)|(xO C;,y O C,)}

Figure 6 helps to illustrate this intuition and our method for converting an instance of the
set covering problem to an instance of pairwise resynchronization. Suppose that we are given the

set X = {Xq, X5, X3, X,} , and the family of subsefs= {t, t,, t5} , wheye= {x,, X3} ,

24

t, = { X3, Xo}, andt; = {X,, X4} . To construct an instance of the pairwise resynchronization
problem, we first create two vertices and an edge directed between these feeriaelsmember

of X; we label each of the edges created in this step with the corresponding meXber of . Then
foreacht O T , we create two verticesrc(t) arghiq t) . Next, for each relatiort J- (there
are six such relations in this example), we create two zero-delay edges — one directed from the

vsrc(t;) vsrc(t,) vsrc(ts)

vsnk(t,) vsnk(t,) vsnk(ts)
) M) M)

(@)

vsrc(t,)

vsnk(t,) vsnk(ts)
M)

(b)

Figure 6. (a@). An instance of the pairwise resynchronization problem that is derived from

an instance of the set covering problem.
(b). The DFG that results from a solution to this instance of pairwise resynchroni-

zation.

25

source of the edge correspondingio vuc(t;) , and another directed/QrM(ntj) to the sink
of the edge corresponding xp . This last step has the effect of making each pair
(vsrc(t;), vsnk(t)) preserve exactly those edges that correspond to members of ; in other
words, after this constructioj((vsrc(t;), vsnk(t))) = t; , for each . Finally, for each edge cre-
ated in the previous step, we create a corresponding feedback edge oriented in the opposite direc-
tion, and having a unit delay.

Figure 6 shows the synchronization graph that results from this construction process.
Here, it is assumed that each vertex corresponds to a separate processor; the associated unit delay,
self loop edges are not shown to avoid excessive clutter. Observe that the graph contains two
SCCs —({ src(x;)} O {vsrc(t;)}) and{snk(x)} O{vsnKt;)}) — and that the set of feedfor-
ward edges is the set of edges that correspond to membérs of . Now, recall that a major corre-
spondence between the given instance of set covering and the instance of pairwise
resynchronization defined by Figure 6(a) is thetvsrc(t;), vsnk(t))) = t; , foreach . Thus, if
we can find a minimal resynchronization of Figure 6(a) such that each edge in this resynchroniza-
tion is directed from somesrc(t,) to the correspondusgk t) , then the assodjated 's form
a minimum cover oK . For example, it is easy, albeit tedious, to verify that the resynchronization
illustrated in Figure 6(b) dy(vsrc(t,), vsnkK t;)), do(vsrc(ts), vsnK t;))} , is a minimal resyn-
chronization of Figure 6(a), and from this, we can conclude{that,} is a minimal cover for
X. From inspection of the given seXs and , it is easily verified that this conclusion is correct.

This example illustrates how an instance of pairwise resynchronization can be constructed
(in polynomial time) from an instance of set covering, and how a solution to this instance of pair-
wise resynchronization can easily be converted into a solution of the set covering instance. Our
proof of the NP-hardness of pairwise resynchronization, presented in [5], is a generalization of the
example in Figure 6.

We summarize with the following theorem.

Theorem 3: The pairwise resynchronization problem is NP-hard, and thus, the resynchroniza-

tion problem is NP-hard.

Proof: A formal proof is given in [5].

26

5.2 A family of heuristics

We have pointed out that the correspondence we have established between set covering
and pairwise resynchronization allows us to adapt any heuristic for set covering into a heuristic
for pairwise resynchronization. Furthermore applying such a heuristic for pairwise resynchroniza-
tion to each pair of SCCs in a general synchronization graph gives a heuristic for the general
resynchronization problem. Figure 7 below shows how any algo@dwerthat solves the set

covering problem can be applied to derive a heuristic algorithm for resynchronization.

6. Chaining synchronization graphs
|

In this section, we define a broad class of synchronization graphs for which optimal resyn-
chronizations can be computed efficiently using a simipéningprocedure. Such a solution,
when applicable, can be viewed as a pipelined implementation in which each SCC of the synchro-

nization graph corresponds to a pipeline stage.

Definition 6: Suppose tha€ is an SCC in a synchronization g@aph xand is an a€or in
Thenx is aninput hub of C if for each synchronization edge whose sink actor i€in
we havep(x, snk(e)) = 0 . Similarlyx is aautput hub of C if for each synchronization edge

e in G whose source actor is i@ , we hayg(src(e), X) = 0 . We say@hatlinkiable if

there exist actorg, y i€ suchthat isaninput hub, is an output hup-drdy) = 0 A

synchronization graph hainableif each SCC is linkable.

For example, consider the SCC in Figure 8(a), and assume that the dashed edges represent
the synchronization edges that connect this SCC with other SCCs. This SCC has exactly one input
hub, actorA , and exactly one output hub, aétor , and gifBeF) = 0 , it follows that the
SCC is linkable. However, if we remove the ed@e F) , then the resulting graph (shown in Fig-
ure 8(b)) is not linkable since it does not have an output hub. A class of linkable SCCs that occur
commonly in practical synchronization graphs are those SCCs that corresponds to only one pro-

cessor, such as the SCC shown in Figure 8(c). In such cases, the first actor executed on the proces-

27

Function Resynchronize
Input: A synchronization graph G = (V, E).

Output: A synchronization graph G that preserves G.

E=E
Compute pg(X, y) for each ordered pair of vertices in G. /* used in Pairwise */
For each SCC C, of G
For each SCC C, of G
If C, is a predecessor SCC of C; Then
Compute E; = {el E|(src(e) O C,) and (snk(e) O G)}
F = Pairwise(subgrapt{ C), subgrapi G), E)
E = ((E-E)DF)
End If

End For
End For

Return (V, E)

Function Pairwise(G,, G,, F)
Input: Two strongly connected synchronization graphs G; and G,, and a set F of edges
whose source vertices are all in G; and whose sink vertices are all in G, .

Output: A resynchronization F'.

For each vertex u in G;
For each vertex v in G,

X((u, v))={e 0 F|(pg(src(e), u) = 0) and (pg(v, snk(e)) = 0)}

End For
End For
T = {Xx((u;v)|(uisinG,andvisin G,)}
= = Cover(F 1)

Return {dy(u, v)|x((u, v)) 0=}

Figure 7. An algorithm for resynchronization that is derived from an arbitrary algorithm Cover
for the set covering problem

28

sor is always an input hub and the last actor executed is always an output hub.

In the remainder of this section, we assume that for each linkable SCC, an ingut hub and
output huby are selected such théx, y) = 0 , and these actors are referred teetected
input hub and theselected output hubof the associated SCC. Which input hub and output hub
are chosen as the “selected” ones makes no difference to our discussion of the techniques in this
section as long they are selected soifaty) = O

An important property of linkable synchronization graphs is th@fif @pnd are distinct
linkable SCCs, then all synchronization edges directed €gm C,to are preserved by the single

ordered paifl, ,) ,wherg denotes the selected output hGh of I|,and denotes the selected

()

Figure 8. An illustration of input and output hubs for synchronization graph SCCs.

29

input hub ofC, . Furthermore, if there exists a path between two 8GCE,’ of the form
((04,15),(05,13), ..., (0,_1, 1)), whereo, is the selected output hub®f i,, isthe selected
input hub ofC," , and there exist distinct SCLs Z,, ..., Z,_, 0O{C,',C,'} such that for
k=23..(n=-1),i, 0, are respectively the selected input hub and the selected output hub of
Z,_1, then all synchronization edges betwégn and are redundant.

From these properties, an optimal resynchronization for a chainable synchronization graph
can be constructed efficiently by computing a topological sort of the SCCs, instantiating a zero
delay synchronization edge from the selected output hub of the th SCC in the topological sort to
the selected input hub of tife+ 1) th SCC,ifor 1, 2, ..., (n—-1) , where is the total number
of SCCs, and then removing all of the redundant synchronization edges that result. For example,
if this algorithm is applied to the chainable synchronization graph of Figure 9(a), then the syn-
chronization graph of Figure 9(b) is obtained, and the number of synchronization edges is reduced

from4 to 2.

(a) (b)

Figure 9. An illustration of a simple algorithm for optimal resynchronization of chainable
synchronization graphs. The dashed edges correspond to synchronization edges.

30

This simple chaining technique corresponds to pipelining, where each SCC in the output
synchronization graph corresponds to a pipeline stage. Pipelining has been used extensively to
increase throughput via improved parallelism (“temporal parallelism”) in multiprocessor DSP
implementations (see for example, [2, 15, 31]). However, in our application of pipelining, the load
of each processor is unchanged, and the estimated throughput is not affected (since no new cyclic
paths are introduced), and thus, the benefit totkeall throughput of our chaining technique
arises chiefly from the optimal reduction of synchronization overhead.

This technique can be generalized to optimally resynchronize a somewhat broader class of
synchronization graphs. This class consists of all synchronization graphs for which each source
SCC has an output hub (but not necessarily an input hub), each sink SCC has an input hub (but not
necessarily an output hub), and each internal SCC is linkable. In this case, the internal SCCs are
pipelined as in the previous algorithm, and then each for each source SCC, a synchronization edge
is inserted from one of its output hubs to the selected input hub of the first SCC in the pipeline of
internal SCCs, and for each sink SCC, a synchronization edge is inserted to one of its input hubs
from the selected output hub of the last SCC in the pipeline of internal SCCs. If there are no inter-
nal SCCs, then the sink SCCs are pipelined by selecting one input hub from each SCC, and join-
ing these input hubs with a chain of synchronization edges, and then inserting a synchronization
edge from an output hub of each source SCC to an input hub of the first SCC in the chain of sink
SCCs.

As implied earlier, although the techniques described in this section preserve the estimated
throughput, they may result in significantly increased latency. For example in Figure 9, the latency
of the resynchronized solution is the sum of the execution times of all actors in the graph. In the
following section, we address a problem that becomes relevant when such a latency increase can-
not be tolerated, but there is some margin within which the latency can be increased. This is the
problem of optimally reducing the number of synchronization edges without increasing the
latency beyond some pre-specified threshold,

A somewhat analogous conflict between latency and synchronization overhead is dis-
cussed in a significantly different context in [43]. Here the objective is to reduce the probability of

metastable states in a digital circuit. This probability can be reduced arbitrarily by passing a signal

31

through a sufficiently long chain of flip flops. However, alternative techniques that have minimal

impact on latency have been devised for a restricted class of problems [43].

7. Latency-constrained resynchronization
|

As discussed in section 4, resynchronization cannot decrease the estimated throughput
since it manipulates only the feedforward edges of a synchronization graph. Frequently in real-
time DSP systems, latency is also an important issue, and although resynchronization does not
degrade the estimated throughput, it generally does increase the latency.

In this section we define th&tency-constrained resynchronization probleEmself-timed
multiprocessor systems, and we show that although the resynchronization problem has a simple
polynomial time solution for the class of chainable synchronization graphs, the latency-con-

strained resynchronization problem is NP-hard even if the input graph is assumed to be chainable.

7.1 Problem statement

Definition 7: SupposeG, isaDFG5 is a synchronization graph that results from a multipro-
cessor schedule f@&, X, is an execution sourd8in ,yand isanadckorin other than |, then
we define thdatency from x toy by Ls(x, y)=end y 1+ pGO(x, y)) L. We refer tox as the

latency input associated with this measure of latency, and we refer to &gehey output.

Intuitively, the latency is the time required for the first invocation of the latency input to influence
the associated latency output. More precisely, it is the earliest time at which an invggation ~ of
executes such that there is a sequence of invocatians..., i, , where, i, =y, and
for 1<k <n, the semantics of the DFG, imply that at least one token produadgd by is con-
sumed byl ,; .

Note that our measure of latency is explicitly concerned only with the time that it takes for

thefirst input to propagate to the output, and does not in general give an upper bound on the time

1. Recall thasstart(v, k) aneéndv, k) denote the time at which invocation of actor commences and
completes execution. Also, note tisaart(x 1) = 0 simce is an execution source.

32

for subsequent inputs to influence subsequent outputs. Extending our latency measure to maxi-
mize over all pairs of “related” input and output invocations would yield the alternative measure
L' defined by

Lg'(xy) = max({endy k+pg (x y))—stari(x K|(k=1 2 ...)}). (4)

Currently, there are no known tight upper bounds.gh that can be computed efficiently from
the synchronization graph for any useful subclass of graphs, and thus, we use the lower bound
approximationL 5 , which corresponds to the critical path, when attempting to analyze and opti-
mize the input-output propagation delay of a self-timed system. The heuristic that we present in
Section 9 for latency-constrained resynchronization can easily be adapted to handle arbitrary
latency measures; however, the efficiency of the heuristic depends on the existence of an algo-
rithm to efficiently compute the change in latency that arises from inserting a single new synchro-
nization edge. The exploration of incorporating alternative measures — or estimates — of latency
in this heuristic framework, possibly with adaptations to the basic framework, would be a useful
area for further study.

Before defining the complexity of the latency-constrained resynchronization problem, we
define a class of synchronization graphs for which our latency measure can be computed effi-
ciently. In words, this is simply the class of graphs in which the first invocation of the latency out-
put is influenced by the first invocation of the latency input. Equivalently, it is the class of graphs
that have at least one delayless path in the DFG directed from the latency input to the latency out-

put.

Definition 8: Suppose thaG, isaDF®, isasourceactdsin ,\and isac®rin thatis not
identical tox . prGO(x, y) = 0, thenwe say th&, trmnsparent with respect to latency input
x and latency outpuy . I is a synchronization graph that corresponds to a multiprocessor

schedule foiG, , we also say that triansparent.

If a synchronization graph is transparent with respect to a latency input/output pair, then
the latency can be computed efficiently using longest path calculationsacgcicgraph that is

derived from the input synchronization grah . This acyclic graph, which we célisthigéer-

33

ation graph of G, denotedi (G) is constructed by removing all edges f@&m that have non-
zero-delay, adding a vertex |, settit{iw) = 0 , and adding delayless edges from to each
source actor (other than) of the partial construction until the only source actor that remains is
U . Figure 10 illustrates the derivation ofG)

Given two verticex ang i(G) such that there is a pafi{@) ftomy to , we
denote the sum of the execution times along a pathfromy to that has maximum cumulative

execution time byT ; (G)(x, y) . Thatis,

Tie)(xy) = max% z t(2)

p traverses z

(pis a path fromx to y in i (G)), (5)

If there is no path fromx ty , then we defi?ﬁfp(G)(x, y) to-Hoe . Note that fog, &l
T; (G)(x, y) <+, sincefi (G) is acyclic. The valuds (G)(x, y) for all paksy can be com-
puted inO(n3) time, wher@ is the number of actor&in , by using a simple adaptation of the

Floyd-Warshall algorithm specified in [9].

Fact 5. Suppose thaG, is a DFG that is transparent with respect to latencxinput and latency

outputy , G, is the synchronization graph that results from a multiprocessor schedbje for , and

A © G
® © ®

Figure 10. An example used to illustrate the construction of fi(G). The lower graph is fi(G)
when G is the upper graph.

34

G is a resynchronizatio®, . Thex(x,y) =0 ,and tH’qﬁG)(x, y)=0

Proof: SinceG, is transparent, there is a delayless pathGyin ~ fromy to . Let

(uy, Uy, ..., u,), wherex = u; and/ = u, , denote the sequence of actors traversed by . From
the semantics of the DFG, , itfollows thatfbgi<n , eitber apd; execute on the
same processor, witly scheduled earlier than , or there is a zero-delay synchronization
edge inG, directed fromy; to;,; .Thus, féi<n , wehae(u,u,,) =0 ,andthus,

thatpg (%, y) = 0. SinceG s a resynchronization®f , it follows from Lemma 1 that

P, y) =0.m

The following theorem gives an efficient means for computing the latggcy for trans-

parent synchronization graphs.

Theorem 4: Suppose thaG is a synchronization graph that is transparent with respect to

latency inputx and latency output . Theg(x, y) = Tﬁ(G)(U,y)
Proof: By induction, we show that
endwl) = Tﬁ(G)(U,W) for every actow irfi(G) (6)

which clearly implies the desired result.

First, letmt(w) denote the maximum number of actors that are traversed by a path in
i(G) (over all paths iri (G)) that startsat and terminates at mt(fn) = 1 , then clearly
w = U . Since both the LHS and RHS of (6) are identically equgud = O whenu , we
have that (6) holds whenevert(w) = 1

Now suppose that the result holds wheneagiw) < k , for domg , and consider the
scenariomt(w) = k+1 . Clearly, in the self-timed (ASAP) executiorGof , invocation com-

mences as soon as all invocations in the set

Z ={ zl|z is a predecessor @f in fi(G)}

35

have completed execution. All members Z satisfy z) < k , Since othem/ite) would

exceed(k + 1) . Thus, from the induction hypothesis, we have
start(w, 1) = max(end z1)|z; 0 Z) = max Tﬁ(G)(U, z)|(z 0 2)),

which implies that
endlw1) = max(Tg (v, 2)|(z0 2)) + (W. (7)

But, by definition oﬂ'ﬁ(G) , the RHS of (7) is clearly equaﬂ"tp(G)(U, w) , and thus we have that
end w1) = Tsg(v,w).
We have shown that (6) holds fort(w) = 1, and that whenever it holds for

mt(w) = k=1, it must hold fomt(w) = (k+ 1) . Thus, (6) holds for all valuesrof(w) = .

Theorem 4 shows that latency can be computed efficiently for transparent synchronization
graphs. A further benefit of transparent synchronization graphs is that the change in latency

induced by adding a new synchronization edge (a “resynchronization operation”) can be com-

puted inO(1) time, giverT; (G)(a, b) for all actor paifa, b) . We will discuss this further, as

well as its application to developing an efficient resynchronization heuristic, in Section 9.

Definition 9: An instance of théatency-constrained synchronization problenconsists of a
transparent synchronization gragh with latency input and latency optput |atedey

constraintL ... = Ls(X, y). A solution to such an instance is a resynchroniza®ion (if one

exists) such that (ll)R(G)(x, y)<L , and (2) no resynchronizatio® of that results in a

max

latency less than or equaltq,,, has smaller cardinality fhan

Given a transparent synchronization gr&ph with latency irput and latency gutput
and a latency constraiht,,., , we say that a resynchronizRtionG of latsney-constrained

resynchronization (LCR) if LR(G)(X, y)<L Thus, the latency-constrained resynchroniza-

max®

tion problem is the problem of determining a minimal LCR.

36

7.2 NP-hardness

Recall that optimal solutions for the resynchronization problem can be computed in poly-
nomial time for chainable synchronization graphs. In this subsection we show that latency-con-
strained resynchronization is NP-hard even for the very restricted subclass of chainable
synchronization graphs in which each SCC corresponds to a single actor, and all synchronization
edges have zero delay. Thus, the algorithms in Section 6 cannot be extended to yield polynomial
time algorithms for optimal latency-constrained resynchronization on the same classes of graphs.

As with the resynchronization problem, the intractability of latency-constrained resyn-
chronization can be established by a reduction from set covering. To illustrate this reduction, we
suppose, as in the illustration of our reduction for the resynchronization problem, that we are
given the setX = { X;, X,, X3, X,} , and the family of subséts= {t;, t,, t5} , Where
t; = {x, X3}, t, = {X4, X,}, andt; = {x,, X,} . Figure 11 illustrates the instance of latency-
constrained resynchronization that we derive from the instance of set covering specified by
(X, T). As in Figure 6, each actor corresponds to a single processor and the self loop edges for
each actor are not shown. The numbers beside the actors specify the actor execution times, and the

latency constraint i& = 103 . Inthe graph of Figure 11, which we deno@ by , the edges

max
labeledex,, ex,, €X;, €x, correspond respectively to the memBegrs.,, X3, X, of thé set in
the set covering instance, and the vertex pairs (resynchronization candidates)
(v, st;), (v, st,), (v, st;) correspond to the members©f . For each rela>tjd1_n‘1tj , an edge
exists that is directed frowsr;ntj gx . The latency input and latency output are defineishto be
andout respectively, and it is assumed t@at is transparent.

The synchronization graph that results from an optimal resynchronizat®n of is shown
in Figure 11, with redundant resynchronization edges removed. Since the resynchronization can-
didates(v, st;), (v, st;) were chosen to obtain the solution shown in Figure 11, this solution cor-
responds to the solution ¢K, T) that consists of the subfajjlyt;}

A correspondence between the set covering insSt@Xce) and the instance of latency-
constrained resynchronization defined by Figure 11 arises from two properties of our construc-

tion:

37

Observation 1: (x; O't; in the set covenginstance) < ((v, stj) sussumesex in G).
Observation 2: If Ris an optimal LCR ofG , then

each resynchronization edgeR is of the form

(v,st),i0{1,2 3}, orofthe form(stj, sx), X O t; . (8)

The first observation is immediately apparent from inspection of Figure 11. The second
observation is justified in the following proof.

Proof of Observation 2/Ve must show that no other resynchronization edges can be contained in

an optimal LCR ofG . Figure 13 specifies arguments with which we can discard all possibilities

eX,

exX,\ eXx_ex3

L. =103

Figure 11. An instance of latency-constrained resynchronization that is derived from an
instance of the set covering problem.

38

other than those given in (8). In the matrix shown in Figure 13, the entry corresponding to row
and columnc specifies an index into the list of arguments on the right side of the figure. For each
of the six categories of arguments, except for #6, the reasoning is either obvious or easily under-
stood from inspection of Figure 11. For example, edge) cannot be a resynchronization edge
in R because the edge already exists in the original synchronization graph; an edge of the form

(sxj, w) cannot be irR because there is a patlsin ~ fwem to sxcl{z, w) O R since other-

wise there would be a path from a¢oit that travenges w si, sx , and thus, the latency

Figure 12. The synchronization graph that results from a solution to the instance of
latency-constrained resynchronization shown in Figure 11.

39

would be increased to at legX4 (in,z) JR from Lemma 2 spgln, z) = 0 ; and

(v, v) O R since otherwise there would be a delayless self loop. Three of the entries in Figure 13
point to multiple argument categories. For examplx]- il t, , (h;eql st) introduces a cycle,
and if x; O't; then(sx;, st) cannot be contained?n because it would increase the latency
beyondL ., -
The entries in Figure 13 mark@K are simply those that correspond to (8), and thus we

have justified Observation .

Observation 3: Suppose thaR is an optimal LCR &f and supposeéhat(st SX) isa
resynchronization edge R ,forsomel{1,2 3 4,j0{1, 2 3} such that t . Tehen

contributes to the elimination of one and only one synchronization edge —

Proof: See Appendix B.

Now, suppose that we are given an optimal LIERR Gof . From Observation 3 and Fact 2,

vV | w z in | out| st| sx
v 5 3 1 2 4 | okl 1 1. Exists inG .
w 3 5 6 2 4 1 4 2. Introduces a cycle.
z| 2| 3| 5] 2| 1] 3 3 3. Increases the latency beyong,,
in 1 1 4 5 4 4 4 4.pg(a;, @) = 0 (Lemma 2).
outf| 2 2 2 2 5 2 2 5. Introduces a delayless self loop.
st || 3 | 2| 3| 2| 4] 35 OR 6. See Appendix A.
sx || 2 2 3 2 1| 23| 35

a. Assuming tha!(j 0 t; ; otherwise 1 applies.

Figure 13. Arguments that support Observation 2.

40

we have that for each resynchronization e(:kg:g sx) Rin , we can replace this resynchroniza-
tion edge withex, and obtain another optimal LCR. Thus from Observation 2, we can efficiently

obtain an optimal LCRR' such that the only resynchronization eddg®s in are of the form
(v, st).
For eachx, 0 X such that

Etj|((xi O tj) and ((v, stj) 0OR')), (9)
we have thaex OR' . This is becauBé is assumed to be optimal, an&k(I)s, contains no
redundant synchronization edges. For egdh X for which (9) does not hold, we can replace

ex with any (v, stj) that satisfies; [t and since such a replacement does not affect the
latency, we know that the result will be another optimal LCRFor . In this manner, if we repeat-

edly replace eachx that does not satisfy (9) then we obtain an optimaR'CR such that

each resynchronization edgeRY is of the f@umst) , and (10)
for eachx; O X , there exists a resynchronization e(dgej) R"in sucintIilaIi . (11)
It is easily verified that the set of synchronization edges eliminat&i by{ e>qip(i 0 X} . Thus,

the setl’' ={ t; | (v, t;) is a resynchronization edge i’} is a cover foX , and the cost (number
of synchronization edges) of the resynchronizaBRdn (Nis-|X| + |T'|) , WNere is the number
of synchronization edges in the original synchronization graph. Now, it is also easily verified

(from Figure 11) that given an arbitrary covier ~ ¥or , the resynchronization defined by
R =(R"={(v, tj)|(t; DT)}) +{(v, tj)|(t; D T,)} (12)

is also a valid LCR o, and that the associated cddtlis| X +|T,|) . Thus, it follows from
the optimality ofR” thafl” must be a minimal cover ¥r , given the family of sulisets . The

synchronization graph shown in Figure 11 is preciﬁé’ly'L

41

To summarize, we have shown how from the particular insteXce) of set covering,
we can construct a synchronization gr&ph such that from a solution to the latency-constrained
resynchronization problem instance defineddy , we can efficiently derive a solutlnTp
Once this example of the reduction from set covering to latency-constrained resynchronization is

understood, it is easily generalized to an arbitrary set covering int4hde) . The generalized

construction of the initial synchronization gra@h is specified by the steps listed in Figure 14.
The main task in establishing our general correspondence between latency-constrained
resynchronization and set covering is generalizing Observation 2 to apply to all constructions that

follow the steps in Figure 14. This generalization is not conceptually difficult (although it is rather

* Instantiate actors v, w, Z in out, with execution times 1, 1, 100, 1, and 1, respectively,

and instantiate all of the edges in Figure 11 that are contained in the subgraph associated
with these five actors.

e For each t O T', instantiate an actor labeled st that has execution time 40.
e Foreach xO X'

Instantiate an actor labeled sx that has execution time 60.
Instantiate the edge ex= d,(v, SX .
Instantiate the edge dy(sx ou .
eForeachtd T
Instantiate the edge dy(w, st) .
For each x O t, instantiate the edge dy(st, sX .
e Set L., = 103.

max

Figure 14. A procedure for constructing an instance of latency-constrained resynchroniza-
tion from an instance | . of set covering such that a solution to |, yields a solution to |.

1. In general (for an arbitrary instance of set coveriRY), can be one of multiple possible sets; the number
of possibilities forR” is equal to the number of distinct solutions to the given set covering instance.

42

tedious) since it is easily verified that all of the arguments in Figure 14 hold for the general con-
struction. Similarly, the reasoning that justifies converting an optimal LCR for the construction
into an optimal LCR of the form implied by (10) and (11) extends in a straightforward fashion to
the general construction. Furthermore, it is easily verified that this conversion can be executed in
O(|T']) time (O(|T'|) time to convert the initial solution to a form that corresponds to (9) and
O(|T'|) time to convert this intermediate solution to a form that corresponds to (10) and (11)). We

thus arrive at the following theorem.

Theorem 5: The latency-constrained resynchronization problem is NP-hard for the following
classes of synchronization graphs (in decreasing order of generality): general transparent synchro-
nization graphs; transparent, chainable synchronization graphs; transparent synchronization
graphs in which each SCC corresponds to a single processor; transparent synchronization graphs
in which each SCC corresponds to a single processor, each processor executes only one actor, and

all synchronization edges have zero delay.

8. Two-processor systems
|

In this section, we show that although latency-constrained resynchronization for transpar-
ent synchronization graphs is NP-hard, the problem becomes tractable for systems that consist of
only two processors — that is, synchronization graphs in which there are two SCCs and each SCC
is a fundamental cycle. This reveals a pattern of complexity that is analogous to the classic non-
preemptive processor scheduling problem with deterministic execution times, in which the prob-
lem is also intractable for general systems, but an efficient greedy algorithm suffices to yield
optimal solutions for two-processor systems in which the execution times of all tasks are identical
[8, 16]. However, for latency-constrained resynchronization, the tractability for two-processor
systems does not depend on any constraints on the task (actor) execution times. Two processor
optimality results in multiprocessor scheduling have also been reported in the context of a sto-
chastic model for parallel computation in which tasks have random execution times and commu-
nication patterns [29].

In an instance of thevo-processor latency-constrained resynchronization (2LCR)

43

problem, we are given a set sburce processor actors;, X, ..., Xp with associated execution
times{t(x,)} , suchthateach isthe th actor scheduled on the processor that corresponds to
the source SCC of the synchronization graph; a s&hkfprocessor actorg,, y,, ..., Yq: with
associated execution timés(y;)} , such that gach is the th actor scheduled on the processor
that corresponds to the sink SCC of the synchronization graph; a set of irredundant synchroniza-
tion edgesS = { s, s,, ..., s5;} such that for eash src(s;) U { X, X5, ..., Xp} and
snk(s)) O{ %, Y, .-, yq} , and a latency constraibt,,, , which is a positive integer. A solution
to such an instance is a minimal resynchronizaion that satlsfjes(xy, Yq) < Lpax . Inthe
remainder of this section, we denote the synchronization graph corresponding to our generic
instance of 2LCR byNS

As in the previous section, we assume Bat s transparent. Also, we start by assuming
that delay(s;) = O for alls; , and we refer to the subproblem that results from this restriction as
delayless 2LCR In the following two subsections, we show that delayless 2LCR can be solved
efficiently in polynomial time, and in Subsection 8.3, we extend this analysis to show that the gen-

eral 2LCR problem can also be solved efficiently.

8.1 Interval covering

An efficient polynomial time solution to delayless 2LCR can be derived by reducing the
problem to a special case of set covering cafiegtval covering, in which we are given an
orderingw,, w,, ..., Wy of the members & (the set that must be covered), such that the collec-

tion of subsetd consists entirely of subsets of the fony w

a+1 -1 Wpt, 1<asbs N

Thus, while general set covering involves covering a set from a collection of subsets, interval cov-
ering amounts to covering an interval from a collection of subintervals.
Interval covering can be solved @(|X||T|) time by a simple procedure that first selects
the subsefw,, wy, ..., wy, } , where
b, = max({b|(w;, w, Ot) forsomet 0 T});
then selects any subset of the fofm, , w, ,,,....,W,} a,sb;+1 , where

b, = max({ b|(w|Ol+ 1 Wy O'1) for somet 0 T});

44

then selects any subset of the form, , w oWy} agsby+1 , where

ag+1

by = max({ b|(wb2+ 1 W, Ot) for somet 0 T});

and so on untib, = N . Itis easily verified that the collection of selected subsets will be a mini-

mal cover forX .

8.2 Two-processor latency-constrained resynchronization
To reduce delayless 2LCR to interval covering, we start with the following observations.

Observation 4: Suppose thaR is a resynchronizatiorfbfr OR , and contributes to the
elimination of synchronization edge . Then subsuses . Thus, the set of synchronization
edges that contributes to the elimination of is simply the set of synchronization edges that are

subsumed by

Proof: This follows immediately from the restriction that there can be no resynchronization edges

directed from &, toam (feedforward resynchronization), and thBé(NB) , there can be at

most one synchronization edge in any path directed Bmfs) snkps) =

Observation 5: If R is a resynchronization ofs , then

L (X1 Yg) = max({tyeq(sre(s)) + tgyc{snk(s'))|s' O R}), where

tored(X) = Zt(xj) fori = 1,2 ..., p,andtg, . (y;) = Zt(yj) fori = 1,2 ...,q .

j<i IEX
Proof. Given a synchronization edd&,, y,) 1R , there is exactly one delayless pa(lé)n
from x; to Yq that containgx,, y,) and the set of vertices traversed by this path is

{ X0 X2 s X Y Yo + 10 -+-» Yg} - The desired result follows immediatesy.

Now, corresponding to each of the source processor actors that satisfies

tpred(xi) + t(yq) < L,,ax We define an ordered pair of actors (a “resynchronization candidate”) by
Vi = (X, y;), wherej = min({k|(tpeq(%i) + tsycd Vi) < Lmax}) - (13)

45

Consider the example shown in Figure 15. Here, we assumigzhat 1 for each actor

z,and L, = 10 . From (13), we have

V1 = (Xli yl)! V2 = (Xz, yl)! V3 = (X3! y2)! v4 = (X4! y3) '

V5 = (XS! y4)’ VG = (X61 y5)! V7 = (X7’ y6)! V8 = (X8! y7) ' (14)

If v; exists for a giverx; ,thed,(v;) can be viewed as the “best” resynchronization edge

that hasx;, as the source actor, and thus, to construct an optimal LCR, we can select the set of

Lo = 10 @ (b)

Figure 15. An instance of delayless, two-processor latency-constrained resynchroniza-
tion. In this example, the execution times of all actors are identically equal to unity.

46

resynchronization edges entirely from amonguwhe s. This is established by the following two

observations.

Observation 6: Suppose thaR isan LCR @ , and suppose (hkaty,) is a synchronization
edge inR such thatx,, y,) #v, . TheiR—{(x, Y,)} +{dy(v,)}) isan LCRRf

Proof: Letv, = (X, Y.) andR' = (R—={(x, Yp)} +{dy(v,)}) , and observe thaj exists,

since
((Xa’ yb) [R) [(tpred(xa) + tsucc(yb) < I-max) O (tpred(xa) + t(yq) < I—max)'
From Observation 4, the set of synchronization edgeg xhay,) contributes to the elimination
of is simply the set of synchronization edges that are subsumied,byy,) . Mow, if is asyn-
chronization edge that is subsumed(ky, y,) , then
P& (STE(S), %) + p5(Yp SNK(S)) < delay(s). (15)
From the definition o/, , we havethak b , and thus, ﬁgs(lyc, Yp) = 0 . It follows from (15)
that
P& (SIC(9), X,) + P (Yo SNK(S)) < delay(s), (16)
and thus, thav, subsumss .Hengg, subsumes all synchronization edges that con-

tributes to the elimination of, and we can conclude Riat is a valid resynchronizaéon of
From the definition o/, , we know thaf, . 4(X,) +tg,cdYc) S Lgmax - andthus siRce s

an LCR, we have from Observation 5 tiRat is an LER.

From Fact 3 and the assumption that the membe8s of are all delayless, an optimal LCR

of G consists only of delayless synchronization edges. Thus from Observation 6, we know that

there exists an optimal LCR that consists only of members of thedigivy) (but not necessarily

of all dy(v;) s). Furthermore, from Observation 5, we know that a collestionv; of sisanLCRif

47

and only if [] x(v) = {sy, sy ..., s}, Whergg(v) is the set of synchronization edges that are
vOV

subsumed by . The following observation completes the correspondence between 2LCR and

interval covering.
Observation 7: Lets;',s,’, ..., s," be the ordering od;, s, ..., s, specified by
(X4 = src(s'), Xy = src(sj'), a<b)O (i<j). a7)

That is thes' 's are ordered according to the order in which their respective source actors execute
on the source processor. Suppose that for some€l, 2, ..., p} , sorre , and some
id{1,2 ..., n—m}, we haves' [J x(vj) and; ' O x(vj) . Then

S+17Si+2 0 Sam—1 HX(V)).
In Figure 15(a), the ordering specified by (17) is
S = (X1, ¥2): 85" = (X2 Ya): 83" = (X3, Ye): S4' = (X5, ¥7), 85" = (X7, Yg) (18)
and thus from (14), we have

X(Vl) = {sll}! X(VZ) = {81'1 82'}! X(V3) = {81'1 82" 53'}’ X(V4) = {82" 53'}
X(VS) = {52'1 53" S4'}’ X(VG) = {53” S4'}’ X(V7) = {53” S4'1 85,}! X(VB) = {84'! 85,} ’ (19)

which is clearly consistent with Observation 7.

Proof of Observation 7_et v; = (xj, y;) , and supposk is a positive integer such that
i <k <i+m. Then from (17), we know thqné(src(sk’), src(S,,)) = 0 . Thus, since

S+m U x(vj) , we have that

pé(src(sk'), x) = 0. (20)

48

Now clearly
ps(snk(s’), snk(§)) = O, (21)

since otherwisep)é(snl(sk’), snk(s;')) = 0 and thus (from 1) subsusjes , which contra-
dicts the assumption that the memberSof are irredundant. Finally, sintg(v;) , we know
thatpé(y|, snk(s;')) = 0. Combining this with (21) yields

pa(¥, snk(s,)) = 0, (22)

and (20) and (22) together yield thsgt [x(vj) m.

From Observation 7 and the preceding discussion, we conclude that an optimal GCR of
can obtained by the following steps.

(a) Construct the ordering}’, s,’, ..., s,” specified by (17).

(b) Fori = 1,2 ..., p, determine whether or ngt exists, and if it exists, compute
(©) Computex(vj) for each value pf such thgt exists.

(d) Find a minimal cove€ fo6 given the family of subs@aj(ivj)|vj existg

(e) Define the resynchronizatidt = { Y, |x(vj) 0 C}

Steps (a), (b), and (e) can clearly be performed(iN) time, where is the number of

vertices inG . If the algorithm outlined in Section 8.1 is employed for step (d), then from the dis-

cussion in Section 8.1 and Observation 8(e) in Section 8.3, it can be easily verified that the time

complexity of step (d) iQ(NZ) . Step (c) can also be perform@l(mz) time using the obser-

vation that ifv, = (x;, yj) , therx (vi) ={(x,, yp) U SJasiandb> j} , where

S={s,s, ...,s,} Isthe set of synchronization edgeﬁn . Thus, we have the following result.

Theorem 6: Polynomial-time solutions (quadratic in the number of synchronization graph ver-

49

tices) exist for the delayless, two-processor latency-constrained resynchronization problem.

Note that solutions more efficient than m(eNZ) approach described above may exist.
From (19), we see that there are two possible solutions that can result if we apply Steps
(a)-(e) to Figure 15(a) and use the technique described in Subsection 8.1 for interval covering.
These solutions correspond to the interval coGgrs= { X (vs), X(v7)} and
C, = {x(vg), X(vg)} . The synchronization graph that results from the interval dOyer 5

shown in Figure 15(b).

8.3 Taking delays into account

If delays exist on one or more edges of the original synchronization graph, then the corre-
spondence defined in the previous subsection between 2LCR and interval covering does not nec-
essarily hold. For example, consider the synchronization graph in Figure 16. Here, the numbers
beside the actors specify execution times; a “D” on top of an edge specifies a unit delay; the
latency input and latency output are respectivgly y;qnd ; and the latency constraint is

Lnax = 12. Itis easily verified that; exists for= 1,2, ...,6 , and from (13), we obtain
V1 = (Xg Y3)s V2 = (Xp Ya)s V3 = (X3, Y6)s Va = (X4, ¥g) Vs = (X5, ¥g), Ve = (X ¥g) - (23)
Now if we order the synchronization edges as specified by (17), then
S' = (X, Yj+q) fori =1,2 3 4,ands’ = (x;,y;_,) fori =5,6,7 8, (24)

and if the correspondence between delayless 2LCR and interval covering defined in the previous

section were to hold for general 2LCR, then we would have that
each subset(v;) isofthe forfs,',s,,,",....8,'}, 1<as<b<8 . (25)
However, computing the subsetév;) , we obtain

X(v1) ={s;, 57,85} X (Vo) = {51, S, sg'}, X(V3) = {5, 85}

50

X(Va) ={s4'}, X(v5) ={s4' S5’} X(Ve) ={S4'. S5+ S6'} (26)

and these subsets are clearly not all consistent with the form specified in (25). Thus, the algorithm
developed in Subsection 8.2 does not apply directly to handle delays.

However, the technique developed in the previous section can be extended to solve the
general 2LCR problem in polynomial time. This extension is based on separating the subsumption
relationships between the 's and the synchronization edges into two categeyies(i;, yj)
subsumes the synchronization edge (%, Y;) then we say;tdasubsumess if i<k, and

we say thaw; 2-subsumess if i= k. For example in Figure 16(ay, = (X;,¥3) 1-subsumes

Lax = 12

Figure 16. A synchronization graph with unit delays on some of the synchroniza-
tion edges.

51

both (x4, y3) and(Xg, y,) , ands = (X5 Yg) 2-subsumes,, yg) andg, y,)

Observation 8: Assuming the same notation for a generic instance of 2LRC that was defined in
the previous subsection, the initial synchronization gléph satisfies the following conditions:

(a) Each synchronization edge has at most one unit of dedday(s;) [{ 0, 1}).

(b) If (xi, yj) is a zero-delay synchronization edge érgd y,) is a unit-delay synchroni-
zation edge, then<k angd>|

(c) If v; 1-subsumes a unit-delay synchronization e@geyj) ,then also 1-subsumes
all unit-delay synchronization edges that satsfy(s) = % ,,,,n>0

(d) If v; 2-subsumes a unit-delay synchronization e(dgeyj) ,then also 2-subsumes
all unit-delay synchronization edges that satsfy(s) = x _,,,n>0

(e) If (x;, y;) and(xy, y,) are both distinct zero-delay synchronization edges or they are
both distinct unit-delay synchronization edges, thek (@rk) = (j<I)

(f) If (x;,y;) 1-subsumes a unit delay synchronization efigey,) , tEen

Proof outline:From Fact 5, we know that(x,, yq) = 0 . Thus, there exists at least one delayless
synchronization edge iG .Let be one such delayless synchronization edge. Then it is easily
verified from the structure & that for all,y; ,there exists a path Gin directedxrom
toy; such thaipi,j contains R contains no other synchronization edges, and
Delay(pi,j) < 2. It follows that any synchronization edge whose delay exceeds unity would be
redundant irG . Thus, part (a) follows from the assumption that the synchronization eéges in
are all irredundant.

The other parts can be verified easily from the structu@® of including the assumption

that all synchronization edges@ﬂ are irredundant. We omit the details.

Resynchronizations for instances of general 2LCR can be partitioned into two categories
— category Aconsists of all resynchronizations that contain at least one synchronization edge
having nonzero delay, amategory Bconsists of all resynchronizations that consist entirely of
delayless synchronization edges. An optimal category A solution (a category A solution whose

cost is less than or equal to the cost of all category A solutions) can be derived by simply applying

52

the optimal solution described in Subsection 8.2 to “rearrange” the delayless resynchronization

edges, and then replacing all synchronization edges that have nonzero delay with a single unit

delay synchronization edge directed froxg1 , the last actor scheduled on the source processor to

y; . the first actor scheduled on the sink processor. We refer to this apprddgbrabm A .

An example is shown in Figure 17. Figure 17(a) shows an example where for general
2LCR, the constraint that all synchronization edges have zero delay is too restrictive to permit a
globally optimal solution. Here, the latency constraint is assumedlig he= 2 . Under this
constraint, it is easily seen that no zero-delay resynchronization edges can be added without vio-
lating the latency constraint. However, if we allow resynchronization edges that have delay, then
we can apply Algorithm A to achieve a cost of two synchronization edges. The resulting synchro-
nization graph, with redundant synchronization edges removed, is shown in Figure 17(b). Observe
that this resynchronization is an LCR since only delayless synchronization edges affect the
latency of a transparent synchronization graph.

Now suppose the® (our generic instance of 2LCR) contains at least one unit-delay syn-

chronization edge, suppose ti@} IS an optimal category B soluti@h for afd let denote

Lmax = 2
() (b)

Figure 17. An example in which constraining all resynchronization edges to
be delayless precludes the ability to derive an optimal resynchronization.

53

the set of resynchronization edgesdp . Ud(é) denote the set of synchronization edges in
G that have unit delay, and I(atkl, yll), (xkz, ylz), (ka, ylM) denote the ordering of the mem-
bers ofud(G) that corresponds to the order in which the source actors execute on the source pro-
cessor —thatig(i <j) O (k; < kj) . Note from Observation 8(a) tmlité) is the set of all
synchronization edges i@ that are not delayless. Alsdslatg GG,) denote the set of unit-
delay synchronization edges@ that are 1-subsumed by resynchronization édgesin . Thatis,
1subg GG,) ={sD ud G|((zy, z,) O Ry)) st((z;, z,) 1-subsumesinG)} .
If 1subg ~C;‘;Gb) is not empty, define

r= min({j|(xkj,y|j) 0 1subg ~GGb)}). (27)

Suppose X, Y,y) O 1subg GG,) . Then by definition of m' =1, , and thus
pé(ylr, Yyr) = 0. Furthermore, since,, and execute on the same procpawﬁ,,, X)) <1
Hencepé(xm, X;) + pé(ylr, Yoe) <1 = delay(x,, ¥,y) , SO we have that,, y,r) subsumes

(X Yyy) N G. Since(X,,, Yny) is an arbitrary membermﬂ(é) , we conclude that
Every member ofisubg NGGb) is subsumed [, y|r) . (28)
Now, if I = (ud(G) — 1subg GGy)) is not empty, then define
u = max({ j|(4,) 0T}, (29)

and suppos€Xx, Y,y) O . By definition of m< k, and thus(x, x,) = 0 . Furthermore,

sincey,,, and)/q execute on the same proceﬁ%(lyq, Y) <1 . Hence,
pé(xm! Xku) + pé(yq’ ym’) <1= delay(xm’ ym’))

and we have that

Every member of is subsumed (3’5,1(“, yq) . (30)

Observe also that from the definitionsrof and , and from Observation 8(c),

54

((1sub§ GG,)#O)and (M #0)) 0 (u=r—1); (31)

(1subg GG,) =0) O (u= M); (32)
and
(r=0)0 (r=1). (33)

Now we define the synchronization grab(‘é) me}) = (V,(E- ud(é)) +P) ,
whereV andE are the sets of vertices and edgé iR =;{dy(x, y|r), do(xku, yq)} , If both
1subg GGy) andl” are non-empty? = { dy(x;, y,r)} I is empty; aRd= {do(xku, yq)}
if 1subg GG,) is empty.

Theorem 7: G, is a resynchronization o"_f(é)

Proof: The set of synchronization edgesZ(lé) Eig+ P , Whgge Is the set of delayless syn-

chronization edges ic . Singg, isa resynchronizatioé of , it suffices to show that for each

el P,
Pg,(src(e), snk(e)) = 0. (34)
If 1subg ~GGb) is non-empty then from (27) (the definitioniof) and Observation 8(f),
there must be a delayless synchronization &tige G in suchrk@) =vy,, fongsnpe
Thus,

Pg, (X1 Y1) S Pg,(Xq, src(e')) + pg (snk(E), y) = 0+pg (Yw Y1) = O,
and we have that (34) is satisfied éorF (X, y|r)
Similarly if I is non-empty, then from (29) (the definitionwof) and from the definition of
2-subsumedhere exists a delayless synchronization eglge G,in suclsrd(at) = x, for

somew = Kk, . Thus,

pr(Xkua yq) < pr(Xku’ SrC(e')) + pr(Snk(e'), X]) = pr(Xku’ Xw) + 0 = Os

55

hence, we have that (34) is satisfieddor (xku, yq)

From the definition oP , it follows that (34) is satisfied for eveiy P m .

Corollary 1: The latency oZ(G) is no greater thap,,, - Thaﬂ_i§(é)(x1, Yq) < Lmax

Proof: From Theorem 7, we know th&, presenZe(é) . Thus, from Lemma 1, it follows that
Lz(é)(xl, yq) < LGb(xl, yq) . Furthermore, from the assumption tlke&t is an optimal category B

LCR, we havel g (x5, yg) <L . We conclude tHai(é)(xl, Yo) SLmax ®-

max

Theorem 7, along with (31)-(33), tells us that an optimal category B L@R of s always a

resynchronization of

(1) a synchronization graph of the form

(V. ((E-ud(8) + {dg(xy, ¥1.). do(X . Y9)})) . L<a <M, (35)
or

(2) of the graph(V., ((E - ud(G)) + {dg(xy, 1)})) (36)
or

(3) of the graph(V, ((E - ud(B)) + {dg(X . Y)})) - (37)

Thus, from Corollary 1, an optimal resynchronization can be computed by examining each
ofthe(M +1) = (|ud(é)| + 1) synchronization graphs defined by (35)-(37), computing an opti-
mal LCR for each of these graphs whose latency is no greatelr than , and returning one of the
optimal LCRs that has the fewest number of synchronization edges. This is straightforward since
these graphs contain only delayless synchronization edges, and thus the algorithm of Section 8.2

can be used.

56

Recall the example of Figure 16(a). Here,
ud(G) = {(Xs Y1): (Xg: ¥2)s (%7, ¥a), (X, Ya)?
and the set of synchronization graphs that correspond to (35)-(37) are shown in Figure 18(a)-(e).
The latencies of the graphs in Figure 18(a)-(e) are respectively 14, 13, 12, 13, and 14. Since
Lhax = 12, we only need to compute an optimal LCR for the graph of Figure 18(c) (from Corol-

lary 1). This is done by first removing redundant edges from the graph (yielding the graph in Fig-

Figure 18. The synchronization graphs considered in Algorithm B for the example in Figure 16.

57

ure 19(b)) and then applying the algorithm developed in Section 8.2. For the synchronization
graph of Figure 19(b), and.,,, = 12 , itis easily verified that the set of sis
V1 = (Xq, Y3)s Vo = (Xp, Ya)s Va3 = (X3, Y6)s V4 = (X4 Yg), Vs = (X5, Yg), Vg = (X Ya) -

If we let
S = (X1, Y3), S = (X2 ¥e)s S3 = (X3, ¥7), 84 = (Xg: Ya) (38)

then we have,
X(V1) = {51}, X(V2) = {5}, X(V3) = {s5 S5}, X(Va) = X(V5) = O, X(Ve) = {ss}. (39)

From (39), the algorithm outlined in Subsection 8.1 for interval covering can be applied to
obtain an optimal resynchronization. This results in the resynchronizatoq v, v, Vg} . The
resulting synchronization graph is shown in Figure 19(c). Observe that the number of synchroni-
zation edges has been reduced fi®m 3to , while the latency has increasddfrom to

Lnax = 12. Also, none of the original synchronization edge&in are retained in the resynchro-

m

nization.

We say thaAlgorithm B for general 2LCR is the approach of constructing the

()
()
&)
5
>
G
)
&)

(@) (b) (€)

Figure 19. Derivation of an optimal LCR for the synchronization graph of Figure 18(c).

58

(|ud(é)| + 1) synchronization graphs corresponding to (35)-(37), computing an optimal LCR for
each of these graphs whose latency is no greatei.than , and returning one of the optimal
LCRs that has the fewest number of synchronization edges. We have shown above that Algorithm
B leads to an optimal LCRBnder the constraint that all resynchronization edges have zero. delay

Thus, given an instance of a general 2LCR, a globally optimal solution can be derived by
applying Algorithm A and Algorithm B and retaining the best of the resulting two solutions. The
time complexity of this two phased approach is dominated by the complexity of Algorithm B,
which is O(|ud(é)| N2) (a factor ofud(é)| greater than the complexity of the technique for
delayless 2LCR that was developed in Section 8.2), wKere is the number of vergces in
Since|ud(é)| < N from Observation 8(e), the complexit;O'(sNB)

Theorem 8: Polynomial-time solutions exist for the general two-processor latency-constrained

resynchronization problem.

The example in Figure 17 shows how it is possible for Algorithm A to produce a better
result than Algorithm B. Conversely, the ability of Algorithm B to outperform Algorithm A can
be demonstrated through the example of Figure 16. From Figure 19(c), we know that the result
computed by Algorithm B has a cost®f synchronization edges. The result computed by Algo-
rithm A can be derived by applying interval covering to the subsets specified in (26) with all of the

unit-delay edgess{’, s5', s;’, sg') removed:

X(vy) ={s;'}, x(v5) ={s;,S,'}, x(v3) ={s,',s5'}
X(Vy) = X(V5) = X(Ve) = {s,'}- (40)

A minimal cover for (40) is achieved Hy (v,), X(v3), X(v,)} ., and the corresponding synchro-
nization graph computed by Algorithm A is shown in Figure 20. This solution has a dost of syn-
chronization edges, which is one greater than that of the result computed by Algorithm B for this

example.

59

9. A heuristic for latency-constrained resynchronization
|

In this section, we present the application of a well-known set covering heuristic to the
latency-constrained resynchronization problem, and we illustrate the ability of this method to sys-
tematically trade off latency for synchronization overhead. Our heuristic for latency-constrained
resynchronization is based on the simple greedy approximation algorithm for set covering that
repeatedly selects a subset that covers the largest numbaradhing elementsvhere a remain-
ing element is an element that is not contained in any of the subsets that have already been

selected. In [18, 20] it is shown that this set covering technique is guaranteed to compute a solu-

Figure 20. The solution derived by Algorithm A when it is applied to the
example of Figure 16.

60

tion whose cardinality is no greater th@n(|X|) + 1) times that of the optimal solution, where
X is the set that is to be covered.

To adapt this set covering technique to latency-constrained resynchronization, we con-
struct an instance of set covering by choosing th&Xset , the set of elements to be covered, to be

the set of synchronization edges, and choosing the family of subsets to be
T ={X(vy, V) |((ve, Vo O V) and (pg (v, vp) =) and (L' (vy, Vo) < Liya)} (41)

whereG = (V, E) is the input synchronization graph, &nd s the latency of the synchroniza-

tion graph(V,{ E+{ (v, v,)}}) thatresults from adding the resynchronization édge,) to
G. Assuming thafT; (G)(x, y) has been determined foxalf 1V L', can easily be computed
from

I—'(Vl, Vz) = max({ (Tﬁ (G)(U, Vl) +T5 (G)(V27 OL)), LG}) ’ (42)
whereu is the source actorffG) o, is the latency output,Land is the late@cy of

The middle constrainpg(v,, v;) = © ,in (41) ensures that inserting the resynchroniza-
tion edge(v,, v;) does not introduce a cycle, and thus that it does not reduce the estimated
throughput.

Our heuristic for latency-constrained resynchronization determines the family of subsets
specified by (41), chooses a member of this family that has maximum cardinality, inserts the cor-
responding delayless resynchronization edge, removes all synchronization edges that it subsumes,
and updates the valugg (G)(x, y) apd(x y) for the new synchronization graph that results.
This process is then repeated on the new synchronization graph, and it continues until it arrives at
a synchronization graph for which the computation defined by (41) produces the empty set — that
is, the algorithm terminates when no more resynchronization edges can be added without increas-

ing the latency beyontd . Figure 21 gives a pseudocode specification of this algorithm (with

max
some straightforward modifications to improve the running time). Fact 1 guarantees that the result
returned bytatency-constrained-resynchronizati@always a valid resynchronization.

Clearly, each time a delayless resynchronization edge is added to a synchronization graph,

the connectivityof the graph is increased by at least one, where the connectivity is defined to be

61

function latency-constrained-resynchronization
input : a synchronization graph G = (V, E)
output : an alternative synchronization graph that preserves G.

compute pg(x,y) for all actor pairs x, y V
compute Tj (G)(x, y) for all actor pairs x, yO (V O{v})
complete= FALSE
while not (completé
best= NULL M =0
for x, ydOVv
if ((Pg(y: X) = @) and (L'(X, y) < Lpay)
X* = x((x)
it (Ix*|>M)
M = [x*|
best= (xy
end if

end if
end for

if (best= NULLD
complete= TRUE

else
E = E—x(bes) +{dy(bes)}
G =(V,E
for x, yO(V O{u}) [* update Tj ©) */
ThewX ¥) = max({T5c)(X ¥), Tj)(X src(bes)) + Ty g)(snk(bes), Y})
end for
for x, yO vV [* update pg */
PrewX) = min({pg(X, ¥), p(X src(bes)) + pg(snk(bes), Y})
end for
Pe = Prnew Ti@) = Thew
end if
end while
return G

end function

Figure 21. A heuristic for latency-constrained resynchronization.

62

number of ordered vertex paif, y) that satisf(x,y) = 0 . Thus, the number of iterations

of thewhile loop in Figure 21 is bounded abovelM}'2 . The complexity of one iteration of the
while loop is dominated by the computation required to update the longest and shortest path quan-
tities Tﬁ(G) andpg respectively, both of which can be accomplish&(j\/| 2) time. Thus, the
time-complexity of the overall algorithm @(|V|4) . In practice, however, the number of resyn-
chronization steps is much lower thlaﬂ2 since the constraints on the latency and on the intro-
duction of cycles severely limit the number of resynchronization steps. ThL@(M?) bound

can be viewed as a very conservative estimate.

9.1 Example

Figure 22 shows the synchronization graph topology that results from a six-processor
schedule of a synthesizer for plucked-string musical instruments in 11 voices based on the Kar-
plus-Strong technique. Herexc represents the excitation input,yeach represents the computa-
tion for thei th voice, and the actors marked with “+” signs specify adders. Execution time
estimates for the actors are shown in the table at the bottom of the figure. In this egample, and
out are respectively the latency input and latency output, and the latehd§ is . There are ten
synchronization edges shown, and these are all irredundant.

Figure 23 shows how the number of synchronization edges in the result computed by our
heuristic changes as the latency constraint varies. If justaver units of latency can be tolerated
beyond the original latency of 170, then the heuristic is able to eliminate a single resynchroniza-
tion edge. No further improvement can be obtained unless roughly aB6ther units are allowed,
at which point the number of synchronization edges drops to , and then d@wn to for an addi-
tional 8 time units of allowable latency. If the latency constraint is weakeng82o , just over
twice the original latency, then the heuristic is able to reduce the number of synchronization edges
to 6. No further improvement is achieved over the relatively long ran(88%— 644 . When
L hax2 645, the latency of the pipelined solution (see Section 6) is permissible, and this allows
the minimal cost o6 synchronization edges for this system, which is half that of the original syn-
chronization graph.

Figure 24 illustrates how the placement of synchronization edges changes as the heuristic

63

Figure 22. The synchronization graph that results from a six processor schedule

execution time

exc 32
Vi, Vo, .ov, Vg 51
out 16
+ 04

of a music synthesizer based on the Karplus-Strong technique.

64

10.00 -

9.50 -

9.00 -

8.50 —

8.00 —

7.50 -

7.00 -

6.50 —

6.00 -

5.50 -

5.00 -

|
200.00

L max # synch edges
170< L, 4S 220 10
221 L a0 S 267 9
268< LS 275 8
276< LS 381 7
382< LS 644 6
B45< L S 5
I I I I
300.00 400.00 500.00 600.00

65

|
700.00

Figure 23. Performance of the heuristic on the example of Figure 22.

L. =221

)

~ - - - - -
-
\
\
- -
- -
- -
- -
- -
- -
> -
-
-
-
-
-
-

=276

Lmax

()

S

\ \ \
\ \ \

\

\

\

\

/\/ //’/
N -
~N__ __--

L. =382

(d)

Figure 24. Synchronization graphs computed by the heuristic for different values of L.

66

is able to attain lower synchronization costs. Each of the four topologies corresponds to a break-
point in the plot of Figure 23. For example Figure 24(a) shows the synchronization graph com-
puted by the heuristic for the lowest latency constraint value for which it computes a solution that
has9 synchronization edges.

Note that synchronization graphs computed by the heuristic are not necessarily identical

over any of the_ ., ranges in Figure 23 in which the number of synchronization edges is con-

X
stant. In fact, they can be significantly different. This is because even when there are no resyn-
chronization candidates available that can reduce the net synchronizati¢jx cogt> 1) , the
heuristic attempts to insert resynchronization edges for the purpose of increasing the connectivity;
this increases the chance that subsequent resynchronization candidates will be generated for
which |x(*)| > 1. For example, Figure 25, shows the synchronization graph computed when

L hax IS just below the amount needed to permit the pipelined solution. Comparison with the
graph shown in Figure 24(d) shows that even though these solutions have the same synchroniza-

tion cost, the heuristic had much more room to pursue further resynchronization opportunities

Ly = 644

Figure 25. The synchronization graph computed by the heuristic for L., = 644.

67

with L, = 644, and thus, the graph of Figure 25 is more similar to the pipelined solution than
it is to the solution of Figure 24(d).

Earlier, we mentioned that o(D(|V|4) complexity expression is conservative since it is
based on e}aVl2 bound on the number of iterations oivthike loop in Figure 21, while in prac-
tice, the actual number @fhile loop iterations can be expected to be much Iesslﬂ‘i%n . This
claim is supported by our music synthesis example, as shown in the graph of Figure 26. Here, the
X-axis corresponds again to the latency constigint, , and the -coordinates give the number
of while loop iterations that were executed by the heuristic. We see that bédweenl3 and itera-
tions were required for each execution of the algorithm, which is not only much less than
|V|2 = 484, itis even less thalV| . This suggests that perhaps a significantly tighter bound on

the number of while loop iterations can be derived.

10. Conclusions
|

This paper develops a post-optimization called resynchronization for self-timed, embed-
ded multiprocessor implementations. The goal of resynchronization is to introduce new synchro-
nizations in such a way that the number of additional synchronizations that become redundant
exceeds the number of new synchronizations that are added, and thus the net synchronization cost
is reduced. Two specific resynchronization problems are addressed. In the first context, which we
refer to here asnbounded-latency resynchronizatjeve impose the constraint that resynchroni-
zation cannot degrade the throughput of the original schedule, and to ensure this constraint effi-
ciently, we restrict resynchronization to involve only feedforward synchronization edges. In the
second context, callddtency-constrained resynchronizatijome assume the same constraints
and we consider a user-specified upper bound on latency that the resynchronized solution must
respect.

We show that the general forms of both problems are intractable by deriving reductions
from the classic set covering problem. For unbounded-latency resynchronization, we define a
broad class of systems for which optimal resynchronization can be performed in polynomial time

by a method that is roughly equivalent to pipelining. For latency-constrained resynchronization,

68

Number of Iterations

]

13.00 - -

12.50 - -

12.00 - -

11.50 - -

11.00 - -

10.50 - -

10.00 - _

9.50 - -

9.00 - 7 _

8.50 — -

8.00 - -

7.50 - -

7.00 - [L _

6.50 — _

6.00 — -

5.50 - -

5.00 - _

! ! ! ! ! ! X
200.00 300.00 400.00 500.00 600.00 700.00

Figure 26. Number of resynchronization iterations versus L., for the example of Figure 22.

max

69

we develop polynomial time techniques to optimally resynchronize two-processor systems. We
also develop heuristic techniques for both problem contexts. For the unbounded-latency case, we
show that a heuristic framework emerges naturally from the correspondence to set covering.
Given an arbitrary heuristic for set covering, this framework generates a heuristic for unbounded-
latency resynchronization. Based on a simple approximation algorithm for set covering that was
developed previously, we propose a heuristic for latency-constrained resynchronization, and
through an example of a music synthesis application, we illustrate the performance of our imple-
mentation of this heuristic. The results demonstrate that the technique can efficiently trade off
between synchronization overhead and latency.

Several useful directions for future work emerge from our study. These include investigat-
ing whether efficient techniques can be developed that consider resynchronization opportunities
within strongly connected components, rather than just accross feedforward edges; and develop-
ing more general measures of latency that can be computed efficiently. There may also be consid-
erable room for improvement over our proposed heuristics, which are straightforward adaptations
of existing set covering algorithms. In particular, it may be interesting to search for properties of
practical synchronization graphs that could be exploited in addition to the correspondence with
set covering. A related direction for further study is the exploration of additional useful special
cases that can be resynchronized optimally, for both the unbounded-latency and latency-con-

strained contexts.

Appendix A

Proof of Argument #6 in Figure 1By contraposition, we show thétv, z) cannot contribute to
the elimination of any synchronization edge®f , and thus from Fact 2, it follows from the opti-
mality of R that(w, 2 O R . Suppose thétv, z contributes to the elimination of some synchro-

nization edges . Then

Pr(o)(SIC(S), W) = Pregy(SNK(9) = 0. (43)

70

From the matrix in Figure 13, we see that no resynchronization edge can have as the source ver-
tex. Thus,snk(s) 0{ z ou} .Now, ifsnk(s) = z,thes = (v, 2 , and thus from (43), there is a
zero delay path from tw iR G . However, the existence of such a pR{Gh implies the
existence of a path fronm tut that traverses acipwg si, sx; , Which in turn implies that
LR(G)(in, out) =104, and thus thaR is not a valid LCR.

On the other hand, gnk(s) = out , thesrc(s) O{ z sX, SX, SX3, S¥X} . Now from
(43), src(s) = z implies the existence of a zero delay path from wto RiH , Which implies
the existence of a path from ¢mt that traverges z sf, sx , Which in turn implies that
L nax= 204. On the other hand, Brc(s) = sx for some |, then since from Figure 13, there are
no resynchronization edges that havesan as the source, it follows from (43) that there must be
a zero delay path iR(G) fromut to . The existence of such a path, however, implies the
existence of a cycle iR(G) singg;(w, out) = 0 . Thissk(s) = out implies Rat is not
an LCR.m

Appendix B
|

Proof of Observation 3SinceR is an optimal LCR, we know that must contribute to the elim-

ination of at least one synchronization edge (from Fact 2)sLet be some synchronization edge

such thate contributes to the elimination®f . Then
Pr(c)(Src(s), src(€)) = prig(snk(e), snk(9) = 0. (44)

Now from Figure 13, it is apparent that there are no resynchronization edges in ths have or
out as their source actor. Thus, from (4dpk(s) = sx sok(s) = out . Now, if

snk(s) = out thensrc(s) = sx forsomé&#i ,osrc(s) = z . However, since no resynchro-
nization edge has a member{afX;, SX,, SX;, SX,} as its source, we must (from 44) rule out
src(s) = sx. Similarly, if src(s) = z, then from (44) there exists a zero delay patR(i®)

from z to st , which in turn implies thdtg) (in, out) >140 . But this is not possible since our

assumption thaR is an LCR guarantees ﬁ@g)(in, out) <103 . Thus, we conclude that

71

srk(s) # out, and thus, thasrk(s) = sx
Now (snk(s) = sx) implies that (a = ex or (b} = (si,sx) forsome such that
x; Ot (recall thatx; O tj and thus, thlt# j).8f= (si,sx) , then from (44),

pR(G)(stk, stj) = 0. It follows that for any member; [t there is a zero delay paR(iB)

that traversest, st;
Lr(g)(in, out) = 140.

amgly . Thus= (st,sx) does not hold since otherwise

Thus, we are left only with possibility (a) s-= ex m.

Glossary

S:
p(x y):
Pe(X ¥):

delay(e):
Delay(p):

d,(u, v):

A

max-

X(p):

[Py P2 -+ P
2LCR

connectivity

The number of members in the finite Set
Same ap; withthe DFG understood from context.

If there is no path il fro;x ty , thepy(X, y) = « ; otherwise,
pg(X, y) = Delay(p), wherep is any minimum-delay path fraxm yo

The delay on a DFG edge

Given a pathp Delay(p is the sum of the edge delays over all edges in
p.

An edge whose source and sink verticestare vand |, respectively, and
whose delay is equal t©

The maximum cycle mean of a DFG.

The set of synchronization edges that are subsumed by the ordered pair of
actorsp .

Theconcatenatiorof the pathgpy, p,, ..., py -
Two-processor latency-constrained resynchronization.

The connectivity of a DF& is the number of ordered vertex |pairg)
in G that satisfypg(x,y) = 0 .

contributes to the elimination

If G is a synchronization grapls, is a synchronization edgéirR , isa
resynchronization o6 § O0R §' #s , and there is a ppth fren(s)

to snk(s) in R Q suchthap contains amdkelay(p)<delay(9 ,then
we say thas' contributes to the eliminationsof

72

critical cycle A fundamental cycle in a DFG whose cycle mean is equal to the maximum
cycle mean of the DFG.

cycle mean The cycle mean of a cycleé in a DFG is equal toD , WAere s the
sum of the execution times of all vertices traverse@by [and isthe sum
of delays of all edges i€

eliminates If G is asynchronization grapi® is a resynchronizatiotcof ,and isa
synchronization edge i , we say tiiat eliminases sf R

end v K: The time at which invocatiok of acter completes execution.

estimated throughput

execution source

FBS

feedback edge
feedforward edge

FFS

LCR

Given a DFG with execution time estimates for the actors, the estimated
throughput is the reciprocal of the maximum cycle mean.

In a synchronization graph, any actor that has no input edges or has non-
zero delay on all input edges is called an execution source.

Feedback synchronization. A synchronization protocol that may be used
for feedback edges in a synchronization graph. This protocol requires two
synchronization accesses per schedule period.

An edge that is contained in at least one cycle.
An edge that is not contained in a cycle.

Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges of the synchronization graph. This protocol requires
four synchronization accesses per iteration period.

Latency-constrained resynchronization. Given a synchronization @ggaph
a latency input/output pair, and a positive intelggr,, , a resynchroniza-
tion R of G is an LCR if the latency oR' G is less than or equal fQ,

maximum cycle mean

Given a DFG, the maximum cycle mean is the largest cycle mean over all
cycles in the DFG.

resynchronization edge

R(G):

SCC

Given a synchronization gragh and a resynchronizé&on , a resynchro-
nization edge oR is any member Bf that is not containe@ in

If G is a synchronization graph arRl is a resynchronizatio@of , then
R(G) denotes the graph that results from the resynchronizRtion

Strongly connected component.

73

self loop: An edge whose source and sink vertices are identical.
start(v, K : The time at which invocatiok of acter commences execution.

subsumes Given a synchronization edd&;, x,) and an ordered pair of actors
(y1! y2) ’ (y1! y2) SUbsume$X11 XZ) If
P(Xq, Y1) + PV, Xy) < delay((Xy, X,)) -

t(v): The execution time or estimated execution time of actor

Ts (G)(x, y): The sum of the actor execution times along a path fomy to in the first
iteration graph of5 that has maximum cumulative execution time.

References

[1] S. Banerjee, D. Picker, D. Fellman, and P. M. Chau, “Improved Scheduling of Signal Flow
Graphs onto Multiprocessor Systems Through an Accurate Network Modeling TechKigge,”
Signal Processing VIIEEE Press, 1994.

[2] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, “Macro Pipelining Based Scheduling
on High Performance Heterogeneous Multiprocessor Syst#ats? Transactions on Signal
Processing\ol. 43, No. 6, pp. 1468-1484, June, 1995.

[3] A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time Sys-
tems,”Proceedings of the IEEB/I. 79, No. 9, 1991, pp.1270-1282.

[4] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Minimizing Synchronization Overhead in
Statically Scheduled Multiprocessor Syster®sgceedings of the 1995 International Conference
on Application Specific Array Processp8&rasbourg, France, July, 1995.

[5] S. S. Bhattacharyya, S. Sriram, and E. A. [@gtimizing Synchronization in Multiprocessor
Implementations of Iterative Dataflow Progrgnvemorandum No. UCB/ERL M95/3, Electron-
ics Research Laboratory, University of California at Berkeley, January, 1995.

[6] S. Borkaret. al, “iWarp: An Integrated Solution to High-Speed Parallel ComputiRg3;
ceedings of Supercomputing 1988 Confere@rtando, Florida, 1988.

[7] L-F. Chao and E. H-M. Sh&tatic Scheduling for Synthesis of DSP Algorithms on Various
Models technical report, Department of Computer Science, Princeton University, 1993.

[8] E. G. Coffman, JrComputer and Job Shop Scheduling Thedfiey, 1976.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivastroduction to AlgorithmsMcGraw-Hill,
1990.

[10] H. G. Dietz, A. Zaafrani, and M. T. O’keefe, “Static Scheduling for Barrier MIMD Architec-
tures,”Journal of Supercomputinyol. 5, No. 4, 1992.

74

[11] D. Filo, D. C. Ku, C. N. Coelho Jr., and G. De Micheli, “Interface Optimization for Concur-
rent Systems Under Timing Constrainlf§EE Transactions on Very Large Scale Integration
\Vol. 1, No. 3, September, 1993.

[12] D. Filo, D. C. Ku, and G. De Micheli, “Optimizing the Control-unit through the Resynchro-
nization of OperationsINTEGRATION, the VLSI Journalol. 13, pp. 231-258, 1992.

[13] G. R. Gao, R. Govindarajan, and P. Panangaden, “Well-Behaved Dataflow Programs for DSP
Computation,Proceedings of the International Conference on Acoustics, Speech and Signal Pro-
cessingMarch, 1992.

[14] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing Memory Requirements in Rate-Opti-
mal SchedulesProceedings of the International Conference on Application Specific Array Pro-
cessorsSan Francisco, August, 1994.

[15] P. HoangCompiling Real Time Digital Signal Processing Applications onto Multiprocessor
SystemsMemorandum No. UCB/ERL M92/68, Electronics Research Laboratory, University of
California at Berkeley, June, 1992.

[16] T. C. Hu, “Parallel Sequencing and Assembly Line Proble@ségrations Researchol. 9,
1961.

[17] J. A. Huisken et. al., “Synthesis of Synchronous Communication Hardware in a Multiproces-
sor Architecture,Journal of VLSI Signal Processingol. 6, pp.289-299, 1993.

[18] D. S. Johnson, “Approximation Algorithms for Combinatorial Probledwmjtnal of Com-
puter and System Scienc¥bl. 9, pp. 256-278, 1974.

[19] A. Kalavade, and E. A. Lee, “A Hardware/Software Codesign Methodology for DSP Appli-
cations,”IEEE Design and Tesvtol. 10, no. 3, pp. 16-28, September 1993.

[20] L. Lovasz, “On the Ratio of Optimal Integral and Fractional Covéistrete Mathematics
Vol. 13, pp. 383-390, 1975.

[21] W. Koh, “A Reconfigurable Multiprocessor System for DSP Behavioral Simulation”, Ph.D.
Thesis, Memorandum No. UCB/ERL M90/53, Electronics Research Laboratory, University of
California at Berkeley, June, 1990.

[22] D.C. Ku, G. De Micheli, “Relative scheduling under timing constraints: algorithms for high-
level synthesis of digital circuitslEEE Transactions on Computer-Aided Design of Integrated
Circuits and System¥/0l.11, No.6, pp. 696-718, June, 1992.

[23] R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren,
“GRAPE: A CASE Tool for Digital Signal Parallel ProcessingEE ASSP Magazin&ol. 7,
No. 2, April, 1990.

[24] E. Lawler,Combinatorial Optimization: Networks and Matrojdslolt, Rinehart and Win-
ston, pp. 65-80, 1976.

[25] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs
for Digital Signal ProcessinglEEE Transactions on Computefebruary, 1987.

75

[26] E. A. Lee, and S. Ha, “Scheduling Strategies for Multiprocessor Real-Time ®ISBgcom
November 1989.

[27] G. Liao, G. R. Gao, E. Altman, and V. K. AgarwalComparative Study of DSP Multipro-
cessor List Scheduling Heuristjdechnical report, School of Computer Science, McGill Univer-
Sity.

[28] B. Lim, A. Agarwal, “Waiting Algorithms for Synchronization in Large-Scale Multiproces-
sors,”ACM Transactions on Computer Systekd. 11, No. 3, pp. 253-294, August, 1993.

[29] D. M. Nicol, “Optimal Partitioning of Random Programs Across Two ProcessBEE
Transactions on Computevol. 15, No. 2, February, pp. 134-141, 1989.

[30] D. R. O’Hallaron,The Assign Parallel Program Generatdfemorandum CMU-CS-91-141,
School of Computer Science, Carnegie Mellon University, May, 1991.

[31] K. K. Parhi, “High-Level Algorithm and Architecture Transformations for DSP Synthesis,”
Journal of VLSI Signal Processing, January, 1995.

[32] K. K. Parhi and D. G. Messerschmitt, “Static Rate-Optimal Scheduling of Iterative Data-
Flow Programs via Optimum UnfoldingdEEE Transactions on Computeil. 40, No. 2, Feb-
ruary, 1991.

[33] J. L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice-Hall Inc., 1981.

[34] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using Ptdleany,”
nal of VLSI Signal Processinyol. 9, No. 1, January, 1995.

[35] D. B. Powell, E. A. Lee, and W. C. Newman, “Direct Synthesis of Optimized DSP Assembly
Code from Signal Flow Block Diagram$2toceedings of the International Conference on Acous-
tics, Speech, and Signal Processi8gn Francisco, March, 1992.

[36] H. Printz,Automatic Mapping of Large Signal Processing Systems to a Parallel Machine
Ph.D. thesis, Memorandum CMU-CS-91-101, School of Computer Science, Carnegie Mellon
University, May, 1991.

[37] R. Reiter, Scheduling Parallel Computatialsyrnal of the Association for Computing
Machinery October 1968.

[38] S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Sys-
tems,”Proceedings of the International Conference on Application Specific Array Progessors
Berkeley, August, 1992.

[39] P. L. Shaffer, “Minimization of Interprocessor Synchronization in Multiprocessors with
Shared and Private Memorytiternational Conference on Parallel Processiig89.

[40] G. C. Sih and E. A. Lee, “Scheduling to Account for Interprocessor Communication Within
Interconnection-Constrained Processor Netwoilksernational Conference on Parallel Process-
ing, 1990.

[41] S. Sriram and E. A. Lee, “Statically Scheduling Communication Resources in Multiproces-

76

sor DSP architectures?roceedings of the Asilomar Conference on Signals, Systems, and Com-
puters November, 1994.

[42] S. Sriram and E. A. Lee, “Design and Implementation of an Ordered Memory Access Archi-
tecture,”’Proceedings of the International Conference on Acoustics Speech and Signal Processing
April, 1993.

[43] W. K. Stewart and S. A. Ward, “A Solution to the Special Case of the Synchronization Prob-
lem,” IEEE Transactions on Computeil. 37, No. 1, pp. 123-125, January, 1988.

[44] V. Zivojnovic, H. Koerner, and H. Meyr, “Multiprocessor Scheduling with A-priori Node
Assignment,VLSI Signal Processing VIIEEE Press, 1994.

77

