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ABSTRACT

This paper introduces a technique, calledresynchronization, for reducing synchronization
overhead in embedded multiprocessor implementations. The technique exploits the well-known
observation [39] that in a given multiprocessor implementation, certain synchronization opera-
tions may beredundant in the sense that their associated sequencing requirements are ensured by
other synchronizations in the system. The goal of resynchronization is to introduce new synchro-
nizations in such a way that the number of additional synchronizations that become redundant
exceeds the number of new synchronizations that are added, and thus the net synchronization cost
is reduced.

First, we define the general form of our resynchronization problem; we show that it is NP
hard by establishing a correspondence to theset covering problem; and based on this correspon-
dence, we specify how an arbitrary heuristic for set covering can be applied to yield a heuristic for
resynchronization. Next, we show that for a certain class of applications, optimal resynchroniza-
tions can be computed efficiently by means ofpipelining. These pipelined solutions, however, can
suffer from significantly increased latency, and this motivates thelatency-constrainedresynchro-
nization problem, which we address for a restricted class of graphs that permit efficient computa-
tion of latency. Again using a reduction from set covering (although the construction is
significantly different), we show that latency-constrained resynchronization is NP hard. However,
we show that for the special case in which there are only two processors, latency-constrained
resynchronization can be solved in polynomial time. We also present a heuristic for latency-con-
strained resynchronization, and through a practical example, we demonstrate that this heuristic
gives an efficient means for systematically trading off between synchronization overhead and
latency.

This research was partially funded as part of the Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U.S. Air Force (under the RASSP program, contract F33615-
93-C-1317), the Semiconductor Research Corporation (project 94-DC-008), the National Science Founda-
tion (MIP-9201605), the State of California MICRO program, and the following companies: Bellcore, Bell
Northern Research, Dolby Laboratories, Hitachi, LG Electronics, Mentor Graphics, Mitsubishi, Motorola,
NEC, Pacific Bell, Philips, and Rockwell.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 201
East Tasman Drive, San Jose, California 95134, USA.

S. Sriram and E. A. Lee are with the Department of Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, California 94720, USA.

Memorandum UCB/ERL M95/70, Electronics Research Laboratory,
University of California, Berkeley, September, 1995.



2

1.  Introduction

This paper develops a technique calledresynchronization for reducing the rate at which

synchronization operations must be performed in a shared memory, embedded multiprocessor

system. Resynchronization is based on the concept that there can be redundancy in the synchroni-

zation functions of a given multiprocessor implementation [39]. Such redundancy arises when-

ever the objective of one synchronization operation is guaranteed as a side effect of other

synchronizations in the system. In the context of noniterative execution, Shaffer showed that the

amount of run-time overhead required for synchronization can be reduced significantly by detect-

ing redundant synchronizations and implementing only those synchronizations that are found not

to be redundant; an efficient, optimal algorithm was also proposed for this purpose [39], and this

algorithm was subsequently extended to handle iterative computations in [4].

The objective of resynchronization is to introduce new synchronizations in such a way that

the number of original synchronizations that consequently become redundant is significantly less

that the number of new synchronizations. We formulate and study this problem in the context of

self-timed execution of iterativesynchronous dataflowprograms. Over the past several years, syn-

chronous dataflow programming of iterative computations has attained significant popularity in

the application domain of digital signal processing (see for example [13, 23, 30, 35, 34, 38]), and

a wide variety of techniques have been developed to schedule synchronous dataflow programs for

efficient multiprocessor implementation, such as those described in [1, 7, 14, 27, 32, 36, 40, 44].

Resynchronization has been studied earlier in the context of hardware synthesis [12].

However in this work, the scheduling model and implementation model are significantly different

from the structure of self-timed multiprocessor implementations, and as a consequence, the prob-

lem formulations, analysis techniques, and algorithmic solutions do not apply to our context, and

vice-versa. We will explain the major differences between these two contexts in Subsection 3.5,

once we have developed the analytical models on which our work is based.

The purpose of this paper is to introduce the utility of resynchronization for self-timed

multiprocessor implementations of synchronous dataflow programs, examine the complexity of

fundamental problems that emerge from this concept, and develop a number of optimal and heu-
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ristic solutions to some of these problems. In synchronous dataflow (SDF), a program is repre-

sented as a directed graph in which the vertices (actors) represent computations, the edges specify

data dependences, and the number of data values (tokens) produced (consumed) by each actor

onto (from) each of its output (input) edges is fixed and known at compile time. This form of

“synchrony” should not be confused with the use of “synchronous” in synchronous languages [3].

The techniques developed in this paper assume that the input SDF graph ishomogeneous,

which means that the numbers of tokens produced or consumed are identically unity. However,

since efficient techniques have been developed to convert general SDF graphs into equivalent (for

our purposes) homogeneous graphs [25], our techniques can easily be adapted to general SDF

graphs. In the remainder of this paper, when we refer to adataflow graph (DFG) we imply a

homogeneous SDF graph.

Delays on DFG edges represent initial tokens, and specify dependencies between itera-

tions of the actors in iterative execution. For example, if tokens produced by the th execution of

actor  are consumed by the th execution of actor , then the edge  contains two

delays. In drawings of DFGs, we place a “D” on top of an edge that has unit delay, and if an edge

has  delays, then we place “ D” on top of the edge (see Figure 1).

Multiprocessor implementation of an algorithm specified as a DFG requires scheduling

the actors, which involves assigning actors in the DFG to processors, ordering execution of these

actors on each processor, and determining when each actor fires (begins execution) such that all

data precedence constraints are met. In [26] the authors propose a scheduling taxonomy based on

which of these tasks are performed at compile time (static strategy) and which at run time

(dynamic strategy); in this paper we will use the same terminology that was introduced there.

In thefully-static scheduling strategy of [26], all three scheduling tasks are performed at

compile time. This strategy involves the least possible runtime overhead. All processors run in

lock step and no explicit synchronization is required when they exchange data. However, this

strategy assumes that exact execution times of actors are known. Such an assumption is generally

not practical. A more realistic assumption for DSP algorithms is that good estimates for the exe-

cution times of actors can be obtained.

Under such an assumption on timing, it is best to discard the exact timing information

k
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from the fully static schedule, but still retain the processor assignment and actor ordering. This

results in theself-timed scheduling strategy [26]. Each processor executes the actors assigned to

it in a fixed order that is specified at compile time. Before firing an actor, a processor waits for the

data needed by that actor to become available. Thus in self-timed scheduling, processors are

required to perform run-time synchronization when they communicate data. Such synchronization

is not necessary in the fully-static case because exact (or guaranteed worst case) times could be

used to determine firing times of actors such that processor synchronization is ensured. As a

result, the self-timed strategy incurs greater run-time cost than the fully-static case.

By aprocessor, we mean either a programmable component, in which case the actors

mapped to it execute as software entities, or a hardware component, in which case actors assigned

to it are implemented and execute in hardware. See [19] for a discussion on combined hardware/

software synthesis from a single dataflow specification. Examples of application specific multi-

processors that use programmable processors and some form of static scheduling are described in

[6, 21, 42].

Interprocessor communication (IPC) between processors is assumed to take place through

shared memory, which could be global memory between all processors, or it could be distributed

between pairs of processors (for example, hardware first-in-first-out (FIFO) queues or dual ported

memory). Sender-receiver synchronization is also assumed to take place by setting flags in shared

memory. Typically, special hardware for synchronization, such as barriers [10] or semaphores

implemented in hardware, is prohibitively expensive for embedded multiprocessor machines. For

the same reason, we cannot assume the efficient support for polling shared synchronization vari-

ables that is available on certain cache-coherent multiprocessors [28]. Interfaces between hard-

ware and software are typically implemented using memory-mapped registers in the address

space of the programmable processor (again a kind of shared memory), and synchronization is

achieved using flags that can be tested and set by the programmable component, and the same can

be done by an interface controller on the hardware side [17]. Thus, in our context, effective resyn-

chronization results in a significantly reduced rate of accesses to shared memory for the purpose

of synchronization.
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2.  Background

Much of the nonstandard terminology that is introduced in this and subsequent sections is

summarized in a glossary at the end of the paper.

We frequently represent a DFG by an ordered pair , where  is the set of vertices

and  is the set of edges. We refer to the source and sink vertices of a graph edge  by

and , we denote the delay on  by , and we frequently represent  by the ordered

pair . We say that  is anoutput edgeof , and that  is aninput edgeof

. Edge  isdelaylessif , and it is aself loopif . In the

iterative execution of a DFG, the th invocation of an actor  is denoted , for .

Given , we say that  is apredecessorof  if there exists  such that

 and ; we say that  is asuccessorof  if  is a predecessor of . A

path in  is a finite, nonempty sequence , where each  is a member of ,

and , , …, . We say that the path

containseach  and each subsequence of ;  isdirected

from  to ; and each member of  istra-

versed by . A path that is directed from some vertex to itself is called acycle, and afundamen-

tal cycle is a cycle of which no proper subsequence is a cycle.

If  is a finite sequence of paths such that , for

, and , for , then we define theconcatenationof

, denoted , by

.

Clearly,  is a path from  to .

If  is a path in a DFG, then we define thepath delayof , denoted

, by

.

Since the delays on all DFG edges are restricted to be non-negative, it is easily seen that between
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any two vertices , either there is no path directed from  to , or there exists a (not nec-

essarily unique)minimum-delay path between  and . Given a DFG , and vertices  in

, we define  to be equal to  if there is no path from  to , and equal to the path

delay of a minimum-delay path from  to  if there exist one or more paths from  to . If  is

understood, then we may drop the subscript and simply write “ ” in place of “ ”.

By asubgraph of , we mean the directed graph formed by any  together

with the set of edges . We denote the subgraph associated with the

vertex-subset  by . We say that  isstrongly connectedif for each pair of

distinct vertices , there is a path directed from  to  and there is a path directed from  to .

We say that a subset  is strongly connected if  is strongly connected. A

strongly connected component (SCC)of is a strongly connected subset  such

that no strongly connected subset of  properly contains . If  is an SCC, then when there is

no ambiguity, we may also say that  is an SCC. If  and  are distinct SCCs in

, we say that  is apredecessor SCCof  if there is an edge directed from some vertex

in  to some vertex in ;  is asuccessor SCC of  if  is a predecessor SCC of . An

SCC is asource SCC if it has no predecessor SCC; an SCC is asink SCC if it has no successor

SCC; and an SCC is aninternal SCC if it is neither a source SCC nor a sink SCC. An edge is a

feedforward edge of  if it is not contained in an SCC, or equivalently, if it is not contained

in a cycle; an edge that is contained in at least one cycle is called afeedbackedge.

We denote the number of elements in a finite set  by . Also, if  is a real number, then

we denote the smallest integer that is greater than or equal to  by .

3.  Synchronization model

In this section, we present the model that we use for analyzing synchronization in self-

timed multiprocessor systems. The basic model was presented originally in [41] to study the exe-

cution and interprocessor communication patterns of actors under self-timed evolution, and in [5],

the model was augmented for the analysis of synchronization overhead.

Consider the execution of the four-processor schedule in Figure 1. In the self-timed execu-
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tion shown in Figure 1(c), it is assumed that zero time is required for interprocessor communica-

tion. If the timing estimates are accurate, the schedule execution settles into a repeating pattern

spanning two iterations of , and the average iteration period is 7 time units.

We model a self-timed schedule using a DFG  derived from the original

SDF graph  and the given self-timed schedule. The graph , which we to refer to
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as theinterprocessor communication modeling graph, or IPC graph for short, models the

sequential execution of actors that are assigned to the same processor, and it models constraints

due to interprocessor communication. For example, the self-timed schedule in Figure 1(b) can be

modeled by the IPC graph in Figure 1(d). The IPC edges are shown using dashed arrows. The rest

of this subsection describes the construction of the IPC graph in detail.

The IPC graph has the same vertex set  as , corresponding to the set of actors in .

The self-timed schedule specifies the actors assigned to each processor, and the order in which

they execute. For example in Figure 1, processor 1 executes  and then  repeatedly. We model

this in  by drawing a cycle around the vertices corresponding to  and , and placing a

delay on the edge from  to . The delay-free edge from  to  represents the requirement that

the th execution of  must precede the th execution of , and the edge from  to  with a

delay represents the constraint that the th execution of  can occur only after the th exe-

cution of  has completed. Thus if actors  are assigned to the same processor in that

order, then  would have a cycle , with

. If there are  processors in the schedule, then we have  such cycles cor-

responding to each processor.

As mentioned before, edges in  that cross processor boundaries after scheduling repre-

sent interprocessor communication. We call such edgesIPC edges. Instead of explicitly introduc-

ing specialsend andreceive primitives at the ends of the IPC edges, we model these operations as

part of the sending and receiving actors themselves. For example, in Figure 1, data produced by

actor  is sent from processor 2 to processor 1; instead of inserting explicit communication prim-

itives in the schedule, the send is modeled within actor  while the receive is modeled as part of

actor . This is done so as not to clutter  with extra communication actors. Even if the actual

implementation uses explicit send and receive actors, communication can still be modeled in the

above fashion because we are simply clustering the source of an IPC edge with the corresponding

send actor and the sink with the receive actor.

For each IPC edge in  we add an IPC edge  in  between the same actors. We also

set the delay on this edge equal to the delay on the corresponding edge in . Thus, we add an IPC

edge from  to  in  with a single delay on it. The delay corresponds to the possibility that

V G G
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execution of  can lag the execution of  by one iteration. An IPC edge represents a buffer

implemented in shared memory, and initial tokens on the IPC edge are used to initialize this

shared buffer. The number of initial tokens is equal to the delay on the IPC edge. In a straightfor-

ward self-timed implementation, each such IPC edge would also be a synchronization point

between the two communicating processors.

The IPC graph has the same semantics as a DFG, and its execution models the execution

of the corresponding self-timed schedule. As per the semantics of a DFG, each edge  of

 represents the following data dependency constraint [41]:

, , (1)

where  and  respectively represent the time at which invocation  of actor

begins execution and completes execution. We set  for . Here

time is modelled as an integer that can be considered a multiple of the base clock.

The constraints in (1) are due both to IPC edges (representing synchronization between

processors) and to edges that represent serialization of actors assigned to the same processor.

To model execution times of actors we associate an execution time  with each vertex

of the IPC graph;  assigns a positive integer execution time to each actor .

The IPC graph can be viewed as a marked graph [33] or Reiter’s computation graph [37].

Below we use some of the well-known properties of such graphs to measure the self-timed evolu-

tion of the system that corresponds to a given IPC graph.

Definition 1: Thecycle meanof a cycle , denoted , in an IPC graph is defined by

, and

the maximum cycle mean of an IPC graph , denoted , is defined by

.

A fundamental cycle in  whose cycle mean is equal to  is called acritical cycle of .
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Note that for an IPC graph that is constructed from a schedule that is not deadlocked, the

denominator in the expression for  is necessarily positive [37]. Furthermore, in the self-

timed schedule for , an actor fires as soon as data is available at all of its input edges, and

such anas soon as possible (ASAP)firing pattern implies that the throughput of the corresponding

multiprocessor implementation is equal to  [37].

For example, in Figure 1(d),  has one SCC, and its maximal cycle mean is 7 time

units. This corresponds to the critical cycle :

,  time units, so the total time along this cycle is 14, and there

are two delays on this cycle. Thus the average iteration period for this schedule is 7 time units. We

have not included IPC costs in this calculation, but these can be included in a straightforward

manner by adding thesend andreceive costs to the corresponding actors performing these opera-

tions.

The maximum cycle mean can be calculated efficiently by repeated applications of the

Bellman-Ford shortest path algorithm [24].

If we only have execution time estimates available instead of exact values, and we set

in the previous section to be these estimated values, then we obtain theestimated iteration period

by calculating . Henceforth we will assume that we know theestimated throughput

of a given IPC graph.

In the transformations that we present in the rest of the paper, we preserve the estimated

throughput by preserving the maximum cycle mean of , with each  set to the estimated

execution time of actor . In the absence of more precise timing information, this is the best that

we can hope to do.

3.1 Synchronization protocols

In [4], we describe two synchronization protocols for an IPC edge. Given an IPC graph

, and an IPC edge , if  is a feedforward edge then we apply a synchronization proto-

col calledfeedforward synchronization (FFS), which guarantees that  never attempts to

read data from an empty buffer (to prevent underflow), and  never attempts to write data

into the buffer unless the number of tokens already in the buffer is less than some pre-specified

λ C( )

Gipc
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limit, which is the amount of memory allocated to that buffer (to prevent overflow). This involves

maintaining a count of the number of tokens currently in the buffer in a shared memory location.

This count must be examined and updated by each invocation of  and , and thus in

each graph iteration period, FFS requires an average of four accesses to shared memory (two read

accesses and two write accesses)1. We refer to these accesses to shared memory, which are per-

formed solely for the purpose of synchronization, assynchronization accesses.

If  is a feedback edge, then we use a simpler protocol, calledfeedback synchronization

(FBS), that only explicitly ensures that underflow does not occur, and requires only two synchro-

nization accesses per iteration period [4]. Such a simplified scheme is possible since the number

of tokens that simultaneously reside on the buffer for a feedback edge can be shown to be

bounded, and thus, it can be assumed that overflow will never occur if the buffer is sized appropri-

ately [5].

3.2 The synchronization graph

An IPC edge in  represents two functions: reading and writing of tokens into the

buffer represented by that edge, and synchronization between the sender and the receiver, which

could be implemented with FFS or FBS. To differentiate these two functions, we define another

graph called thesynchronization graph, in which edges between actors assigned to different pro-

cessors, calledsynchronization edges, representsynchronization constraints only. An execution

sourceof a synchronization graph is any actor that either has no input edges or has nonzero delay

on all input edges.

Recall that an IPC edge  of  represents thesynchronization constraint

, . (2)

1. Note that in our measure of the number of shared memory accesses required for synchronization, we ne-
glect the accesses to shared memory that are performed while the sink actor is waiting for the required data
to become available, or the source actor is waiting for an “empty slot” in the buffer. The number of accesses
required to perform these “busy-wait” or “spin-lock” operations is dependent on the exact relative execution
times of the actor invocations. Since in our problem context, this information is not generally available, we
use thebest casenumber of accesses — the number of shared memory accesses required for synchronization
assuming that IPC data on an edge is always produced before the corresponding sink invocation attempts to
execute — as an approximation.

e( )src e( )snk

e
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vj vi,( ) Gipc

start vi k,( ) end vj k vj vi,( )( )delay–,( )≥ k vj vi,( )delay>∀
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Initially, the synchronization graph is identical to the IPC graph because every IPC edge

represents a synchronization point. However, we will modify the synchronization graph in certain

“valid” ways (defined shortly) by adding/deleting edges. At the end of our optimizations, the syn-

chronization graph is of the form , where  is the set of edges deleted from

the IPC graph and  is the set of edges added to it. At this point the IPC edges in  represent

buffer activity, and must be implemented as buffers in shared memory, whereas the synchroniza-

tion edges represent synchronization constraints, and are implemented using FFS and FBS. If

there is an IPC edge as well as a synchronization edge between the same pair of actors, then the

synchronization protocol is executed before the corresponding buffer is accessed so as to ensure

sender-receiver synchronization. On the other hand, if there is an IPC edge between two actors in

the IPC graph, but there is no synchronization edge between the two, then no synchronization

needs to be done before accessing the shared buffer. If there is a synchronization edge between

two actors but no IPC edge, then no shared buffer is allocated between the two actors; only the

corresponding synchronization protocol is invoked.

The following theorem, which is developed in [5], underlies the validity of our synchroni-

zation optimizations.

Theorem 1: The synchronization constraints in a synchronization graph  imply

the constraints of the graph  if for all  such that , we have

 — that is, if for each edge  that is present in  but not in

there is a minimum delay path from  to  in  that has total delay of at most

.

If  and  are synchronization graphs with the same vertex-set

and the same set of intraprocessor edges (edges that are not synchronization edges), then pre-

serves  if for all  such that , we have . Thus

Theorem 1 guarantees that the synchronization edges of  can be used to implement the syn-

chronization constraints of  if  preserves . It is easily verified that thepreservesrelation

is transitive:

Fact 1: If ,  and  are synchronization graphs such that  preserves  and  pre-
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serves , then  preserves .

Given an IPC graph , and a synchronization graph  such that  preserves , if

we implement the synchronizations corresponding to the synchronization edges of , then

because the synchronization edges alone determine which actors must wait on actions performed

on remote processors, the iteration period of the resulting system is determined by the maximum

cycle mean of .

3.3 Redundant synchronization edges

Definition 2: A synchronization edge is redundant in a synchronization graph  if its removal

yields a graph that preserves . Equivalently from the definition of “preserves,” a synchroniza-

tion edge  is redundant if there is a path  from  to  such that

.

Fig. 2 shows an example of a redundant synchronization edge. Here, before executing

actor , the processor that executes  does not need to synchronize with the proces-

sor that executes  because due to the synchronization edge , the corresponding

invocation of  is guaranteed to complete before each invocation of  is begun. Thus  is

redundant. From this example, we see that the synchronization function associated with a redun-
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dant synchronization edge “comes for free” as a by product of other synchronizations, and thus, it

need not be implemented explicitly.

In [5], it is shown that if all redundant edges in a synchronization graph are removed, then

the resulting graph preserves the original synchronization graph — that is, the redundancies are

not interdependent. Thus, we need not implement the synchronization functions associated with

any of the redundant synchronization edges. An efficient algorithm is given in [4] for determining

the redundant synchronization edges of a synchronization graph. This algorithm is an extension to

iterative dataflow programs of an earlier algorithm developed by Shaffer [39] that optimally

removes redundant synchronization edges for the noniterative case.

3.4 Problem description

We define thesynchronization cost of a synchronization graph  to be the average num-

ber of synchronization accesses required per iteration period. Thus, if  denotes the number of

synchronization edges in  that are feedforward edges, and  denotes the number of synchro-

nization edges that are feedback edges, then the synchronization cost of  is .

The basic objective of the methods discussed in this paper is to minimize the synchronization

cost.

In [5], a simple, efficient algorithm, calledConvert-to-SC-graph, is described for introduc-

ing new synchronization edges so that the synchronization graph becomes strongly connected,

which allows all synchronization edges to be implemented with FBS. A supplementary algorithm

is also given for determining an optimal placement of delays on the new edges so that the esti-

mated throughput is not degraded and the increase in shared memory buffer sizes is minimized. It

is shown that the number of synchronization accesses required to implement the new edges that

are added byConvert-to-SC-graphcan be significantly less than the number of synchronization

accesses that are eliminated by converting all uses of FFS to FBS. However, this technique may

increase the latency.

In this paper, we propose another approach to reducing synchronization overhead called

resynchronization. Resynchronization is also based on inserting new synchronization edges; the

objective is to insert these edges so that the number of original synchronization edges that become

Gs

nff

Gs nfb

Gs 4nff 2nfb+( )
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redundant is greater than the number of new synchronization edges. As withConvert-to-SC-

graph, resynchronization can increase latency. We address the problem of optimal resynchroniza-

tion both in the context where there is no restriction on latency, and in the context of a hard

latency constraint that cannot be exceeded.

Generally, resynchronization can be viewed as complementary to theConvert-to-SC-

graph optimization: resynchronization is performed first, followed byConvert-to-SC-graph.

Under severe latency constraints, it may not be possible to accept the solution computed byCon-

vert-to-SC-graph, in which case the feedforward edges that emerge from the resynchronized solu-

tion must be implemented with FFS. In such a situation,Convert-to-SC-graphcan be attempted

on the original (before resynchronization) graph to see if it achieves a better result than resynchro-

nization withoutConvert-to-SC-graph. However, for synchronization graphs that have only one

source SCCand only one sink SCC, the latency is not affected byConvert-to-SC-graph, and thus,

for such systems resynchronization andConvert-to-SC-graph are fully complementary. This is

fortunate since such systems arise frequently in practice.

3.5 Comparison with the resynchronization model of Filo, Ku, and

De Micheli

As mentioned in Section 1, Filo, Ku and De Micheli have studied resynchronization in the

context of minimizing the controller area for hardware synthesis of synchronization digital cir-

cuitry [11, 12], and significant differences in the underlying analytical models prevent these tech-

niques from applying to our context. In the graphical hardware model of [12], called the

constraint graph model, each vertex corresponds to a separate hardware device and edges have

arbitrary weights that specify sequencing constraints. When the source vertex has bounded execu-

tion time, a positive weight  (forward constraint) imposes the constraint

,

while a negative weight (backward constraint) implies

.

If the source vertex has unbounded execution time, the forward and backward constraints are rela-

tive to thecompletiontime of the source vertex. In contrast, in our synchronization graph model,

w e( )

start e( )snk( ) w e( ) start e( )src( )+≥

start e( )snk( ) w e( ) start e( )src( )+≤
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multiple actors can reside on the same processing element (implying zero synchronization cost

between them), and the timing constraints always correspond to the case where  is positive

and equal to the execution time of .

The implementation models, and associated implementation cost functions are also signif-

icantly different. A constraint graph is implemented using a scheduling technique calledrelative

scheduling[22], which can roughly be viewed as intermediate between self-timed and fully-static

scheduling. In relative scheduling, the constraint graph vertices that have unbounded execution

time, calledanchors, are used as reference points against which all other vertices are scheduled:

for each vertex , an offset  is specified for each anchor  that affects the activation of , and

 is scheduled to occur once  clock cycles have elapsed from the completion of , for each .

In the implementation of a relative schedule, each anchor has attached control circuitry

that generates offset signals, and each vertex has a synchronization circuit that asserts anactivate

signal when all relevant offset signals are present. The resynchronization optimization is driven by

a cost function that estimates the total area of the synchronization circuitry, where the offset cir-

cuitry area estimate for an anchor is a function of the maximum offset, and the synchronization

circuitry estimate for a vertex is a function of the number of offset signals that must be monitored.

As a result of the significant differences in both the scheduling models and the implemen-

tation models, the techniques developed for resynchronizing constraint graphs do not extend in

any straightforward manner to the resynchronization of synchronization graphs for self-timed

multiprocessor implementation, and the solutions that we have developed for synchronization

graphs are significantly different in structure from those reported in [12]. Most notably, the funda-

mental relationships that we develop between set covering and our use of resynchronization have

not emerged in the context of constraint graphs.

4.  Resynchronization

As discussed above, it is sometimes possible to reduce the total number of irredundant

synchronization edges by adding new synchronization edges to a synchronization graph. We refer

to the process of adding one or more new synchronization edges and removing the redundant

w e( )

e( )src

v f i ai v

v f i ai i
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edges that result asresynchronization (defined more precisely below). Figure 3(a) illustrates this

concept. Here, the dashed edges represent synchronization edges. Observe that if we insert the

new synchronization edge , then two of the original synchronization edges —

and  — become redundant. Since redundant synchronization edges can be removed from

the synchronization graph to yield an equivalent synchronization graph, we see that the net effect

of adding the synchronization edge  is to reduce the number of synchronization edges

that need to be implemented by . In Figure 3(b), we show the synchronization graph that results

from inserting theresynchronization edge  into Figure 3(a), and then removing the

redundant synchronization edges that result.

Definition 3 gives a formal definition of resynchronization that we will use throughout the

remainder of this paper. This considers resynchronization only “across” feedforward edges.

Resynchronization that includes inserting edges into the SCCs, is also possible; however, in gen-

eral, such resynchronization may increase the estimated throughput (see Theorem 2 at the end of

this section). Thus, for our objectives, it must be verified that each new synchronization edge

introduced in an SCC does not decrease the estimated throughput. To avoid this complication,

which requires a check of significant complexity ( , where  is the modi-
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fied synchronization graph — this is using the Bellman Ford algorithm described in [24])for each

candidate resynchronization edge, we focus only on “feedforward” resynchronization in this

paper. Future research may address combining the insights developed here for feedforward resyn-

chronization with efficient techniques to estimate the impact that a givenfeedback resynchroniza-

tion edge has on the estimated throughput.

Definition 3: Suppose that  is a synchronization graph, and  is

the set of all feedforward edges in . Aself-timed resynchronizationof  is a finite set

 of edges that are not necessarily contained in , but whose source and

sink vertices are in , such that (a).  are feedforward edges in the DFG

; and (b).  preserves  — that is,

for all . Each member of  that is not in  is called aresynchronization edge

of the resynchronization ,  is called theresynchronized graphassociated with , and this

graph is denoted by .

Here we use the “self-timed” qualification to distinguish our context of resynchronization

from the context of [12], which, as discussed in Section 3.5, is significantly different, and involves

both the insertion of new synchronization edges (serialization), and the modification of selected

edge weights (timing constraints). In the remainder of the paper, we drop the “self-timed” qualifi-

cation, and when we useresynchronization in a technical sense, we mean the self-timed resyn-

chronization concept defined in Definition 3.

If we let  denote the graph in Figure 3, then the set of feedforward edges is

;  is a resynchronization

of ; Figure 3(b) shows the DFG ; and from Figure 3(b), it is easily

verified that , , and  satisfy conditions (a) and (b) of Definition 3.

In the remainder of this section, we introduce a number of properties of resynchronization

that we will use throughout the developments of this paper. The following definition is fundamen-

tal to these properties.

Definition 4: Suppose that  is a synchronization graph and  is a resynchronization of . If

G V E,( )= F e1 e2 … en, , ,{ }≡

G G

R e1′ e2′ … em′, , ,{ }≡ E

V e1′ e2′ … em′, , ,

G∗ V E F–( ) R+( ),( )≡ G∗ G ρG∗ ei( )src ei( )snk,( ) ei( )delay≤

i 1 2 … n, , ,{ }∈ R E

R G∗ R

R G( )

G

F B G,( ) E J,( ) E C,( ) H I,( ), , ,{ }= R d0 C H,( ) E C,( ) H I,( ), ,{ }=

G G∗ V E F–( ) R+( ),( )=

F R G∗

G R G s
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is a synchronization edge in  that is not contained in , we say thateliminates . If ,

, and there is a path  from  to  in  such that  contains  and

, then we say that contributes to the elimination of .

A synchronization edge  can be eliminated if a resynchronization creates a path  from

 to  such that . In general, the path  may contain more than

one resynchronization edge, and thus, it is possible that none of the resynchronization edges

allows us to eliminate  “by itself”. In such cases, it is the contribution of all of the resynchroni-

zation edges within the path  that enables the elimination of . This motivates the our choice of

terminology in Definition 4. An example is shown in Figure 4.

The following two facts follow immediately from Definition 4.

Fact 2: Suppose that  is a synchronization graph,  is a resynchronization of , and  is a

resynchronization edge in . If  does not contribute to the elimination of any synchronization

edges, then  is also a resynchronization of . If  contributes to the elimination of one

and only one synchronization edge , then  is a resynchronization of .

G R R s s′ R∈

s′ s≠ p s( )src s( )snk R G( ) p s′

p( )Delay s( )delay≤ s′ s

s p

s( )src s( )snk p( )Delay s( )delay≤ p

p

p p

D D

D D

D
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Z
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D
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Z

Figure 4. An illustration of Definition 4. Here each processor executes a single actor. A
resynchronization of the synchronization graph in (a) is illustrated in (b). In this resyn-
chronization, the resynchronization edges  and  both contribute to the
elimination of .
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Fact 3: Suppose that  is a resynchronization graph,  is a resynchronization of ,  is a syn-

chronization edge in , and  is a resynchronization edge in  such that .

Then  does not contribute to the elimination of .

For example, let  denote the synchronization graph in Figure 5(a). Figure 5(b) shows a

resynchronization  of . In the resynchronized graph of Figure 5(b), the resynchronization

edge  does not contribute to the elimination of any of the synchronization edges of , and

thus Fact 2 guarantees that , illustrated in Figure 5(c), is also a resynchroniza-

G R G s

G s′ R s′( )delay s( )delay>

s′ s

G

Figure 5. Properties of resynchronization.
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tion of . In Figure 5(c), it is easily verified that  contributes to the elimination of exactly

one synchronization edge — the edge , and from Facts 1 and 2, we have that

, illustrated in Figure 5(d), is a also resynchronization of .

Lemma 1: Suppose that  and  are synchronization graphs such that  preserves , and

 is a path in  from actor  to actor . Then there is a path  in  from  to  such that

, and , where  denotes the set of actors traversed by

path .

In Figure 5(a), if we let , , and , then the path

 in Figure 5(b) confirms Lemma 1 for this example.

Here  and .

Proof of Lemma 1:Let . By definition of thepreservesrelation, each  that

is not a synchronization edge in  is contained in . For each  that is a synchronization edge

in , there must be a path  in  from  to  such that .

Let , , denote the set of s that are synchronization edges in ,

and define the path  to be the concatenation

.

Clearly,  is a path in  from  to , and since  holds whenever  is a

synchronization edge, it follows that . Furthermore, from the construction

of , it is apparent that every actor that is traversed by is also traversed by .■

Lemma 2: Suppose that  is a synchronization graph;  is a resynchronization of ; and

 is a resynchronization edge such that . Then  is redundant in .

Thus, a minimal resynchronization (fewest number of elements) has the property that

 for each resynchronization edge .

Proof: Let  denote a minimum-delay path from  to  in . Since  is a resynchroniza-

tion edge,  is not contained in , and thus,  traverses at least three actors. From Lemma 1,
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it follows that there is a path  in  from  to  such that ,

and  traverses at least three actors. Thus,  and , and we

conclude that  is redundant in .■

As a consequence of Lemma 1, the estimated throughput of a given synchronization graph

is always less than or equal to that of every synchronization graph that it preserves.

Theorem 2: If  is a resynchronization of the synchronization graph , then

.

Proof: Suppose that  is a critical cycle in . Lemma 1 guarantees that there is a cycle  in

 such that a) , and b) the set of actors that are traversed by  is a

subset of the set of actors traversed by . Now clearly, b) implies that

, (3)

and this observation together with a) implies that . Since  is a critical cycle in ,

it follows that .■

Thus, in general, any saving in synchronization cost obtained by rearranging synchroniza-

tion edges may come at the expense of a decrease in estimated throughput. As implied by Defini-

tion 3, we avoid this complication by restricting our attention to feedforward synchronization

edges. Clearly, resynchronization that rearranges only feedforward synchronization edges cannot

decrease the estimated throughput since no new cycles are introduced and no existing cycles are

altered. Thus, with the form of resynchronization that we address in this paper, any decrease in

synchronization cost that we obtain is not diminished by a degradation of the estimated through-

put.

Before implementation, a synchronization graph must be made strongly connected to

ensure that all IPC buffer sizes are bounded (in the absence of guarantees on actor execution

times) [5]. As outlined in Section 3, this is done either by applying the FFS synchronization proto-

col, which effectively adds a feedback edge from  to  for each feedforward synchro-

p′ R G( ) x y p′( )Delay 0=

p′ p′( )Delay x y,( )( )delay≤ p′ x y,( )≠

x y,( ) R G( )

R G
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nization edge , or by applying theConvert-to-SC-graph transformation, which permits use of

the more efficient FBS synchronization protocol, and in general yields a lower overall synchroni-

zation cost than use of FFS [5]. By placing sufficient delay on certain edges, either of these tech-

niques can be performed in such a way that the estimated throughput does not decrease. Thus, if

we apply self-timed resynchronization to a synchronization graph that is not strongly connected,

and then transform the resulting synchronization graph to a strongly connected graph using one of

the two methods described above, there still will be no net degradation in estimated throughput.

5.  Correspondence to set covering

We refer to the problem of finding a resynchronization with the fewest number of elements

as theresynchronization problem. In [5], we formally show that the resynchronization problem

is NP-hard; in this section, we explain the intuition behind this result. To establish the NP-hard-

ness of the resynchronization problem, we examine a special case that occurs when there are

exactly two SCCs, which we call thepairwise resynchronization problem, and we derive a

polynomial-time reduction from the classicset covering problem[9], a well-known NP-hard

problem, to the pairwise resynchronization problem. In the set covering problem, one is given a

finite set  and a family  of subsets of , and asked to find a minimal (fewest number of mem-

bers) subfamily  such that . A subfamily of  is said tocover if each mem-

ber of  is contained in some member of the subfamily. Thus, the set covering problem is the

problem of finding a minimal cover.

Although the correspondence that we establish between the resynchronization problem

and set covering shows that the resynchronization problem probably cannot be attacked optimally

with a polynomial-time algorithm, we will show that the correspondence allows any heuristic for

set covering to be adapted easily into a heuristic for the pairwise resynchronization problem, and

applying such a heuristic to each pair of SCCs in a general synchronization graph yields a heuris-

tic for the general (not just pairwise) resynchronization problem. This is fortunate since the set

covering problem has been studied in great depth, and efficient heuristic methods have been

devised [9].

e

X T X

Ts T⊆ t
t Ts∈
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X



24

Definition 5: Given a synchronization graph , let  be a synchronization edge in ,

and let  be an ordered pair of actors in . We say that subsumes  in

if . Thus, if , then  subsumes

 if . We may omit the qualification “in ” if the graph in

question is understood from context.

Thus, in a synchronization graph ,  subsumes  if and only if a

zero-delay synchronization edge directed from  to  makes  redundant.

The following fact is easily verified from Definitions 3 and 5.

Fact 4: Suppose that  is a synchronization graph that contains exactly two SCCs,  is the set

of feedforward edges in , and  is a resynchronization of . Then for each , there exists

 such that  subsumes  in .

5.1 NP-hardness

An intuitive correspondence between the pairwise resynchronization problem and the set

covering problem can be derived from Fact 4. Suppose that  is a synchronization graph with

exactly two SCCs  and  such that each feedforward edge is directed from a member of

to a member of . We start by viewing the set  of feedforward edges in  as the finite set that

we wish to cover, and with each member  of , we associate the subset

of  defined by . Thus,  is the set of feedforward edges of

 whose corresponding synchronizations can be eliminated if we implement a zero-delay syn-

chronization edge directed from the first vertex of the ordered pair  to the second vertex of .

Clearly then,  is a resynchronization if and only if each  is contained in at

least one  — that is, if and only if

covers . Thus, solving the pairwise resynchronization problem for  is equivalent to finding a

minimal cover for  given the family of subsets .

Figure 6 helps to illustrate this intuition and our method for converting an instance of the

set covering problem to an instance of pairwise resynchronization. Suppose that we are given the

set , and the family of subsets , where ,
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, and . To construct an instance of the pairwise resynchronization

problem, we first create two vertices and an edge directed between these verticesfor each member

of ; we label each of the edges created in this step with the corresponding member of . Then

for each , we create two vertices  and . Next, for each relation  (there

are six such relations in this example), we create two zero-delay edges — one directed from the

Figure 6. (a). An instance of the pairwise resynchronization problem that is derived from
an instance of the set covering problem.

(b). The DFG that results from a solution to this instance of pairwise resynchroni-
zation.
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source of the edge corresponding to to , and another directed from  to the sink

of the edge corresponding to . This last step has the effect of making each pair

 preserve exactly those edges that correspond to members of ; in other

words, after this construction, , for each . Finally, for each edge cre-

ated in the previous step, we create a corresponding feedback edge oriented in the opposite direc-

tion, and having a unit delay.

Figure 6 shows the synchronization graph that results from this construction process.

Here, it is assumed that each vertex corresponds to a separate processor; the associated unit delay,

self loop edges are not shown to avoid excessive clutter. Observe that the graph contains two

SCCs —  and  — and that the set of feedfor-

ward edges is the set of edges that correspond to members of . Now, recall that a major corre-

spondence between the given instance of set covering and the instance of pairwise

resynchronization defined by Figure 6(a) is that , for each . Thus, if

we can find a minimal resynchronization of Figure 6(a) such that each edge in this resynchroniza-

tion is directed from some  to the corresponding , then the associated 's form

a minimum cover of . For example, it is easy, albeit tedious, to verify that the resynchronization

illustrated in Figure 6(b), , is a minimal resyn-

chronization of Figure 6(a), and from this, we can conclude that  is a minimal cover for

. From inspection of the given sets  and , it is easily verified that this conclusion is correct.

This example illustrates how an instance of pairwise resynchronization can be constructed

(in polynomial time) from an instance of set covering, and how a solution to this instance of pair-

wise resynchronization can easily be converted into a solution of the set covering instance. Our

proof of the NP-hardness of pairwise resynchronization, presented in [5], is a generalization of the

example in Figure 6.

We summarize with the following theorem.

Theorem 3: The pairwise resynchronization problem is NP-hard, and thus, the resynchroniza-

tion problem is NP-hard.

Proof: A formal proof is given in [5].
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5.2 A family of heuristics

We have pointed out that the correspondence we have established between set covering

and pairwise resynchronization allows us to adapt any heuristic for set covering into a heuristic

for pairwise resynchronization. Furthermore applying such a heuristic for pairwise resynchroniza-

tion to each pair of SCCs in a general synchronization graph gives a heuristic for the general

resynchronization problem. Figure 7 below shows how any algorithmCoverthat solves the set

covering problem can be applied to derive a heuristic algorithm for resynchronization.

6.  Chaining synchronization graphs

In this section, we define a broad class of synchronization graphs for which optimal resyn-

chronizations can be computed efficiently using a simplechainingprocedure. Such a solution,

when applicable, can be viewed as a pipelined implementation in which each SCC of the synchro-

nization graph corresponds to a pipeline stage.

Definition 6: Suppose that  is an SCC in a synchronization graph , and  is an actor in .

Then  is aninput hub of  if for each synchronization edge  in  whose sink actor is in ,

we have . Similarly,  is anoutput hub of  if for each synchronization edge

 in  whose source actor is in , we have . We say that  islinkable if

there exist actors  in  such that  is an input hub,  is an output hub, and . A

synchronization graph ischainable if each SCC is linkable.

For example, consider the SCC in Figure 8(a), and assume that the dashed edges represent

the synchronization edges that connect this SCC with other SCCs. This SCC has exactly one input

hub, actor , and exactly one output hub, actor , and since , it follows that the

SCC is linkable. However, if we remove the edge , then the resulting graph (shown in Fig-

ure 8(b)) is not linkable since it does not have an output hub. A class of linkable SCCs that occur

commonly in practical synchronization graphs are those SCCs that corresponds to only one pro-

cessor, such as the SCC shown in Figure 8(c). In such cases, the first actor executed on the proces-
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Figure 7. An algorithm for resynchronization that is derived from an arbitrary algorithm Cover
for the set covering problem

Function Resynchronize
Input: A synchronization graph .

Output: A synchronization graph  that preserves .

Compute  for each ordered pair of vertices in . /* used in Pairwise */

For  each SCC  of

For  each SCC  of

If  is a predecessor SCC of Then

Compute

End If
End For

End For

Return

Function Pairwise( , , )

Input:  Two strongly connected synchronization graphs  and , and a set  of edges

whose source vertices are all in  and whose sink vertices are all in .

Output:  A resynchronization .

For  each vertex  in

For  each vertex  in

End For
End For

Return
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Ẽ Ẽ E f–( ) F∪( )=
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sor is always an input hub and the last actor executed is always an output hub.

In the remainder of this section, we assume that for each linkable SCC, an input hub  and

output hub  are selected such that , and these actors are referred to as theselected

input hub and theselected output hub of the associated SCC. Which input hub and output hub

are chosen as the “selected” ones makes no difference to our discussion of the techniques in this

section as long they are selected so that .

An important property of linkable synchronization graphs is that if  and  are distinct

linkable SCCs, then all synchronization edges directed from  to  are preserved by the single

ordered pair , where  denotes the selected output hub of  and  denotes the selected

Figure 8. An illustration of input and output hubs for synchronization graph SCCs.
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input hub of . Furthermore, if there exists a path between two SCCs  of the form

, where  is the selected output hub of ,  is the selected

input hub of , and there exist distinct SCCs  such that for

,  are respectively the selected input hub and the selected output hub of

, then all synchronization edges between  and  are redundant.

From these properties, an optimal resynchronization for a chainable synchronization graph

can be constructed efficiently by computing a topological sort of the SCCs, instantiating a zero

delay synchronization edge from the selected output hub of the th SCC in the topological sort to

the selected input hub of the th SCC, for , where  is the total number

of SCCs, and then removing all of the redundant synchronization edges that result. For example,

if this algorithm is applied to the chainable synchronization graph of Figure 9(a), then the syn-

chronization graph of Figure 9(b) is obtained, and the number of synchronization edges is reduced

from  to .
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Figure 9. An illustration of a simple algorithm for optimal resynchronization of chainable
synchronization graphs. The dashed edges correspond to synchronization edges.
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This simple chaining technique corresponds to pipelining, where each SCC in the output

synchronization graph corresponds to a pipeline stage. Pipelining has been used extensively to

increase throughput via improved parallelism (“temporal parallelism”) in multiprocessor DSP

implementations (see for example, [2, 15, 31]). However, in our application of pipelining, the load

of each processor is unchanged, and the estimated throughput is not affected (since no new cyclic

paths are introduced), and thus, the benefit to theoverall throughput of our chaining technique

arises chiefly from the optimal reduction of synchronization overhead.

This technique can be generalized to optimally resynchronize a somewhat broader class of

synchronization graphs. This class consists of all synchronization graphs for which each source

SCC has an output hub (but not necessarily an input hub), each sink SCC has an input hub (but not

necessarily an output hub), and each internal SCC is linkable. In this case, the internal SCCs are

pipelined as in the previous algorithm, and then each for each source SCC, a synchronization edge

is inserted from one of its output hubs to the selected input hub of the first SCC in the pipeline of

internal SCCs, and for each sink SCC, a synchronization edge is inserted to one of its input hubs

from the selected output hub of the last SCC in the pipeline of internal SCCs. If there are no inter-

nal SCCs, then the sink SCCs are pipelined by selecting one input hub from each SCC, and join-

ing these input hubs with a chain of synchronization edges, and then inserting a synchronization

edge from an output hub of each source SCC to an input hub of the first SCC in the chain of sink

SCCs.

As implied earlier, although the techniques described in this section preserve the estimated

throughput, they may result in significantly increased latency. For example in Figure 9, the latency

of the resynchronized solution is the sum of the execution times of all actors in the graph. In the

following section, we address a problem that becomes relevant when such a latency increase can-

not be tolerated, but there is some margin within which the latency can be increased. This is the

problem of optimally reducing the number of synchronization edges without increasing the

latency beyond some pre-specified threshold .

A somewhat analogous conflict between latency and synchronization overhead is dis-

cussed in a significantly different context in [43]. Here the objective is to reduce the probability of

metastable states in a digital circuit. This probability can be reduced arbitrarily by passing a signal

Lmax
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through a sufficiently long chain of flip flops. However, alternative techniques that have minimal

impact on latency have been devised for a restricted class of problems [43].

7.  Latency-constrained resynchronization

As discussed in section 4, resynchronization cannot decrease the estimated throughput

since it manipulates only the feedforward edges of a synchronization graph. Frequently in real-

time DSP systems, latency is also an important issue, and although resynchronization does not

degrade the estimated throughput, it generally does increase the latency.

In this section we define thelatency-constrained resynchronization problem for self-timed

multiprocessor systems, and we show that although the resynchronization problem has a simple

polynomial time solution for the class of chainable synchronization graphs, the latency-con-

strained resynchronization problem is NP-hard even if the input graph is assumed to be chainable.

7.1 Problem statement

Definition 7: Suppose  is a DFG,  is a synchronization graph that results from a multipro-

cessor schedule for ,  is an execution source in , and  is an actor in  other than , then

we define thelatency from  to  by 1. We refer to  as the

latency input associated with this measure of latency, and we refer to  as thelatency output.

Intuitively, the latency is the time required for the first invocation of the latency input to influence

the associated latency output. More precisely, it is the earliest time at which an invocation  of

executes such that there is a sequence of invocations , where ,  and

for , the semantics of the DFG  imply that at least one token produced by  is con-

sumed by .

Note that our measure of latency is explicitly concerned only with the time that it takes for

thefirst input to propagate to the output, and does not in general give an upper bound on the time

1. Recall that  and  denote the time at which invocation  of actor  commences and
completes execution. Also, note that  since  is an execution source.
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for subsequent inputs to influence subsequent outputs. Extending our latency measure to maxi-

mize over all pairs of “related” input and output invocations would yield the alternative measure

 defined by

. (4)

Currently, there are no known tight upper bounds on  that can be computed efficiently from

the synchronization graph for any useful subclass of graphs, and thus, we use the lower bound

approximation , which corresponds to the critical path, when attempting to analyze and opti-

mize the input-output propagation delay of a self-timed system. The heuristic that we present in

Section 9 for latency-constrained resynchronization can easily be adapted to handle arbitrary

latency measures; however, the efficiency of the heuristic depends on the existence of an algo-

rithm to efficiently compute the change in latency that arises from inserting a single new synchro-

nization edge. The exploration of incorporating alternative measures — or estimates — of latency

in this heuristic framework, possibly with adaptations to the basic framework, would be a useful

area for further study.

Before defining the complexity of the latency-constrained resynchronization problem, we

define a class of synchronization graphs for which our latency measure can be computed effi-

ciently. In words, this is simply the class of graphs in which the first invocation of the latency out-

put is influenced by the first invocation of the latency input. Equivalently, it is the class of graphs

that have at least one delayless path in the DFG directed from the latency input to the latency out-

put.

Definition 8: Suppose that  is a DFG,  is a source actor in , and  is actor in  that is not

identical to . If , then we say that  istransparent with respect to latency input

 and latency output . If  is a synchronization graph that corresponds to a multiprocessor

schedule for , we also say that  istransparent.

If a synchronization graph is transparent with respect to a latency input/output pair, then

the latency can be computed efficiently using longest path calculations on anacyclicgraph that is

derived from the input synchronization graph . This acyclic graph, which we call thefirst-iter-

LG′
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ation graph of , denoted  is constructed by removing all edges from  that have non-

zero-delay, adding a vertex , setting , and adding delayless edges from  to each

source actor (other than ) of the partial construction until the only source actor that remains is

. Figure 10 illustrates the derivation of .

Given two vertices  and  in  such that there is a path in  from  to , we

denote the sum of the execution times along a path from  to  that has maximum cumulative

execution time by . That is,

. (5)

If there is no path from  to , then we define  to be . Note that for all

, since  is acyclic. The values  for all pairs  can be com-

puted in  time, where  is the number of actors in , by using a simple adaptation of the

Floyd-Warshall algorithm specified in [9].

Fact 5: Suppose that  is a DFG that is transparent with respect to latency input  and latency

output ,  is the synchronization graph that results from a multiprocessor schedule for , and
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Figure 10. An example used to illustrate the construction of . The lower graph is
when  is the upper graph.
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 is a resynchronization . Then , and thus .

Proof: Since  is transparent, there is a delayless path  in  from  to . Let

, where  and , denote the sequence of actors traversed by . From

the semantics of the DFG , it follows that for , either  and  execute on the

same processor, with  scheduled earlier than , or there is a zero-delay synchronization

edge in  directed from  to . Thus, for , we have , and thus,

that . Since  is a resynchronization of , it follows from Lemma 1 that

. ■

The following theorem gives an efficient means for computing the latency  for trans-

parent synchronization graphs.

Theorem 4: Suppose that  is a synchronization graph that is transparent with respect to

latency input  and latency output . Then .

Proof: By induction, we show that

 for every actor  in , (6)

which clearly implies the desired result.

First, let  denote the maximum number of actors that are traversed by a path in

 (over all paths in ) that starts at  and terminates at . If , then clearly

. Since both the LHS and RHS of (6) are identically equal to  when , we

have that (6) holds whenever .

Now suppose that the result holds whenever , for some , and consider the

scenario . Clearly, in the self-timed (ASAP) execution of , invocation  com-

mences as soon as all invocations in the set
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have completed execution. All members  satisfy , since otherwise  would

exceed . Thus, from the induction hypothesis, we have

,

which implies that

. (7)

But, by definition of , the RHS of (7) is clearly equal to , and thus we have that

.

We have shown that (6) holds for , and that whenever it holds for

, it must hold for . Thus, (6) holds for all values of .■

Theorem 4 shows that latency can be computed efficiently for transparent synchronization

graphs. A further benefit of transparent synchronization graphs is that the change in latency

induced by adding a new synchronization edge (a “resynchronization operation”) can be com-

puted in  time, given  for all actor pairs . We will discuss this further, as

well as its application to developing an efficient resynchronization heuristic, in Section 9.

Definition 9: An instance of thelatency-constrained synchronization problem consists of a

transparent synchronization graph  with latency input  and latency output , and alatency

constraint . A solution to such an instance is a resynchronization  (if one

exists) such that (1) , and (2) no resynchronization of  that results in a

latency less than or equal to  has smaller cardinality than .

Given a transparent synchronization graph  with latency input  and latency output ,

and a latency constraint , we say that a resynchronization  of  is alatency-constrained

resynchronization (LCR) if . Thus, the latency-constrained resynchroniza-

tion problem is the problem of determining a minimal LCR.
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7.2 NP-hardness

Recall that optimal solutions for the resynchronization problem can be computed in poly-

nomial time for chainable synchronization graphs. In this subsection we show that latency-con-

strained resynchronization is NP-hard even for the very restricted subclass of chainable

synchronization graphs in which each SCC corresponds to a single actor, and all synchronization

edges have zero delay. Thus, the algorithms in Section 6 cannot be extended to yield polynomial

time algorithms for optimal latency-constrained resynchronization on the same classes of graphs.

As with the resynchronization problem, the intractability of latency-constrained resyn-

chronization can be established by a reduction from set covering. To illustrate this reduction, we

suppose, as in the illustration of our reduction for the resynchronization problem, that we are

given the set , and the family of subsets , where

, , and . Figure 11 illustrates the instance of latency-

constrained resynchronization that we derive from the instance of set covering specified by

. As in Figure 6, each actor corresponds to a single processor and the self loop edges for

each actor are not shown. The numbers beside the actors specify the actor execution times, and the

latency constraint is . In the graph of Figure 11, which we denote by , the edges

labeled  correspond respectively to the members  of the set  in

the set covering instance, and the vertex pairs (resynchronization candidates)

 correspond to the members of . For each relation , an edge

exists that is directed from  to . The latency input and latency output are defined to be

and  respectively, and it is assumed that  is transparent.

The synchronization graph that results from an optimal resynchronization of  is shown

in Figure 11, with redundant resynchronization edges removed. Since the resynchronization can-

didates  were chosen to obtain the solution shown in Figure 11, this solution cor-

responds to the solution of  that consists of the subfamily .

A correspondence between the set covering instance  and the instance of latency-

constrained resynchronization defined by Figure 11 arises from two properties of our construc-

tion:

X x1 x2 x3 x4, , ,{ }= T t1 t2 t3, ,{ }=

t1 x1 x3,{ }= t2 x1 x2,{ }= t3 x2 x4,{ }=

X T,( )

Lmax 103= G

ex1 ex2 ex3 ex4, , , x1 x2 x3 x4, , , X

v st1,( ) v st2,( ) v st3,( ), , T xi t j∈

stj sxi in

out G

G

v st1,( ) v st3,( ),

X T,( ) t1 t3,{ }

X T,( )



38

Observation 1: .

Observation 2: If  is an optimal LCR of , then

each resynchronization edge in  is of the form

, or of the form . (8)

The first observation is immediately apparent from inspection of Figure 11. The second

observation is justified in the following proof.

Proof of Observation 2:We must show that no other resynchronization edges can be contained in

an optimal LCR of . Figure 13 specifies arguments with which we can discard all possibilities

Figure 11. An instance of latency-constrained resynchronization that is derived from an
instance of the set covering problem.
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other than those given in (8). In the matrix shown in Figure 13, the entry corresponding to row

and column  specifies an index into the list of arguments on the right side of the figure. For each

of the six categories of arguments, except for #6, the reasoning is either obvious or easily under-

stood from inspection of Figure 11. For example, edge  cannot be a resynchronization edge

in  because the edge already exists in the original synchronization graph; an edge of the form

 cannot be in  because there is a path in  from  to each ;  since other-

wise there would be a path from  to  that traverses , and thus, the latency

Figure 12. The synchronization graph that results from a solution to the instance of
latency-constrained resynchronization shown in Figure 11.
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would be increased to at least ;  from Lemma 2 since ; and

 since otherwise there would be a delayless self loop. Three of the entries in Figure 13

point to multiple argument categories. For example, if , then  introduces a cycle,

and if  then  cannot be contained in  because it would increase the latency

beyond .

The entries in Figure 13 markedOK are simply those that correspond to (8), and thus we

have justified Observation 2.■

Observation 3: Suppose that  is an optimal LCR of  and suppose that  is a

resynchronization edge in , for some  such that . Then

contributes to the elimination of one and only one synchronization edge — .

Proof: See Appendix B.

Now, suppose that we are given an optimal LCR  of . From Observation 3 and Fact 2,

a. Assuming that ; otherwise 1 applies.
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6. See Appendix A.
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we have that for each resynchronization edge  in , we can replace this resynchroniza-

tion edge with  and obtain another optimal LCR. Thus from Observation 2, we can efficiently

obtain an optimal LCR  such that the only resynchronization edges in  are of the form

.

For each  such that

, (9)

we have that . This is because  is assumed to be optimal, and thus,  contains no

redundant synchronization edges. For each  for which (9) does not hold, we can replace

 with any  that satisfies , and since such a replacement does not affect the

latency, we know that the result will be another optimal LCR for . In this manner, if we repeat-

edly replace each  that does not satisfy (9) then we obtain an optimal LCR  such that

each resynchronization edge in  is of the form , and (10)

for each , there exists a resynchronization edge  in  such that . (11)

It is easily verified that the set of synchronization edges eliminated by  is . Thus,

the set  is a cover for , and the cost (number

of synchronization edges) of the resynchronization  is , where  is the number

of synchronization edges in the original synchronization graph. Now, it is also easily verified

(from Figure 11) that given an arbitrary cover  for , the resynchronization defined by

(12)

is also a valid LCR of , and that the associated cost is . Thus, it follows from

the optimality of  that  must be a minimal cover for , given the family of subsets . The

synchronization graph shown in Figure 11 is precisely .1
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To summarize, we have shown how from the particular instance  of set covering,

we can construct a synchronization graph  such that from a solution to the latency-constrained

resynchronization problem instance defined by , we can efficiently derive a solution to .

Once this example of the reduction from set covering to latency-constrained resynchronization is

understood, it is easily generalized to an arbitrary set covering instance . The generalized

construction of the initial synchronization graph  is specified by the steps listed in Figure 14.

The main task in establishing our general correspondence between latency-constrained

resynchronization and set covering is generalizing Observation 2 to apply to all constructions that

follow the steps in Figure 14. This generalization is not conceptually difficult (although it is rather

1. In general (for an arbitrary instance of set covering),  can be one of multiple possible sets; the number
of possibilities for  is equal to the number of distinct solutions to the given set covering instance.
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Figure 13.
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• For each , instantiate an actor labeled  that has execution time .

• For each

Instantiate an actor labeled  that has execution time .

Instantiate the edge .

Instantiate the edge .

•For each

Instantiate the edge .

For each , instantiate the edge .

• Set .

v w z in out, , , , 1 1 100 1 1

t T′∈ st 40

x X′∈
sx 60

ex d0 v sx,( )≡

d0 sx out,( )

t T′∈
d0 w st,( )

x t∈ d0 st sx,( )

Lmax 103=

Figure 14. A procedure for constructing an instance  of latency-constrained resynchroniza-
tion from an instance  of set covering such that a solution to  yields a solution to .I sc I lr I sc
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tedious) since it is easily verified that all of the arguments in Figure 14 hold for the general con-

struction. Similarly, the reasoning that justifies converting an optimal LCR for the construction

into an optimal LCR of the form implied by (10) and (11) extends in a straightforward fashion to

the general construction. Furthermore, it is easily verified that this conversion can be executed in

 time (  time to convert the initial solution to a form that corresponds to (9) and

 time to convert this intermediate solution to a form that corresponds to (10) and (11)). We

thus arrive at the following theorem.

Theorem 5: The latency-constrained resynchronization problem is NP-hard for the following

classes of synchronization graphs (in decreasing order of generality): general transparent synchro-

nization graphs; transparent, chainable synchronization graphs; transparent synchronization

graphs in which each SCC corresponds to a single processor; transparent synchronization graphs

in which each SCC corresponds to a single processor, each processor executes only one actor, and

all synchronization edges have zero delay.

8.  Two-processor systems

In this section, we show that although latency-constrained resynchronization for transpar-

ent synchronization graphs is NP-hard, the problem becomes tractable for systems that consist of

only two processors — that is, synchronization graphs in which there are two SCCs and each SCC

is a fundamental cycle. This reveals a pattern of complexity that is analogous to the classic non-

preemptive processor scheduling problem with deterministic execution times, in which the prob-

lem is also intractable for general systems, but an efficient greedy algorithm suffices to yield

optimal solutions for two-processor systems in which the execution times of all tasks are identical

[8, 16]. However, for latency-constrained resynchronization, the tractability for two-processor

systems does not depend on any constraints on the task (actor) execution times. Two processor

optimality results in multiprocessor scheduling have also been reported in the context of a sto-

chastic model for parallel computation in which tasks have random execution times and commu-

nication patterns [29].

In an instance of thetwo-processor latency-constrained resynchronization (2LCR)

O T′( ) O T′( )

O T′( )
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problem, we are given a set ofsource processor actors , with associated execution

times , such that each  is the th actor scheduled on the processor that corresponds to

the source SCC of the synchronization graph; a set ofsink processor actors , with

associated execution times , such that each  is the th actor scheduled on the processor

that corresponds to the sink SCC of the synchronization graph; a set of irredundant synchroniza-

tion edges  such that for each ,  and

; and a latency constraint , which is a positive integer. A solution

to such an instance is a minimal resynchronization  that satisfies . In the

remainder of this section, we denote the synchronization graph corresponding to our generic

instance of 2LCR by .

As in the previous section, we assume that  is transparent. Also, we start by assuming

that  for all , and we refer to the subproblem that results from this restriction as

delayless 2LCR. In the following two subsections, we show that delayless 2LCR can be solved

efficiently in polynomial time, and in Subsection 8.3, we extend this analysis to show that the gen-

eral 2LCR problem can also be solved efficiently.

8.1 Interval covering

An efficient polynomial time solution to delayless 2LCR can be derived by reducing the

problem to a special case of set covering calledinterval covering, in which we are given an

ordering  of the members of  (the set that must be covered), such that the collec-

tion of subsets  consists entirely of subsets of the form .

Thus, while general set covering involves covering a set from a collection of subsets, interval cov-

ering amounts to covering an interval from a collection of subintervals.

Interval covering can be solved in  time by a simple procedure that first selects

the subset , where

;

then selects any subset of the form , , where

;

x1 x2 … xp, , ,

t xi( ){ } xi i

y1 y2 … yq, , ,

t yi( ){ } yi i

S s1 s2 … sn, , ,{ }= si si( )src x1 x2 … xp, , ,{ }∈

si( )snk y1 y2 … yq, , ,{ }∈ Lmax

R LR G( ) x1 yq,( ) Lmax≤

G̃

G̃

si( )delay 0= si

w1 w2 … wN, , , X

T wa wa 1+ … wb, , ,{ } 1 a b N≤ ≤ ≤,

O X T( )

w1 w2 … wb1
, , ,{ }

b1 b w1 wb, t∈( ) for somet T∈{ }( )max=

wa2
wa2 1+ … wb2

, , ,{ } a2 b1 1+≤

b2 b wb1 1+ wb, t∈( ) for somet T∈{ }( )max=
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then selects any subset of the form , , where

;

and so on until . It is easily verified that the collection of selected subsets will be a mini-

mal cover for .

8.2 Two-processor latency-constrained resynchronization

To reduce delayless 2LCR to interval covering, we start with the following observations.

Observation 4: Suppose that  is a resynchronization of , , and  contributes to the

elimination of synchronization edge . Then  subsumes . Thus, the set of synchronization

edges that  contributes to the elimination of is simply the set of synchronization edges that are

subsumed by .

Proof: This follows immediately from the restriction that there can be no resynchronization edges

directed from a  to an  (feedforward resynchronization), and thus in , there can be at

most one synchronization edge in any path directed from  to .■

Observation 5: If  is a resynchronization of , then

, where

 for , and  for .

Proof: Given a synchronization edge , there is exactly one delayless path in

from  to  that contains  and the set of vertices traversed by this path is

. The desired result follows immediately.■

Now, corresponding to each of the source processor actors  that satisfies

 we define an ordered pair of actors (a “resynchronization candidate”) by

, where . (13)

wa3
wa3 1+ … wb3

, , ,{ } a3 b2 1+≤

b3 b wb2 1+ wb, t∈( ) for somet T∈{ }( )max=

bn N=

X

R G̃ r R∈ r

s r s

r

r

yj xi R G̃( )

s( )src s( )snk

R G̃

L
R G̃( ) x1 yq,( ) t pred s′( )src( ) tsucc s′( )snk( )+ s′ R∈{ }( )max=

t pred xi( ) t xj( )
j i≤
∑≡ i 1 2 … p, , ,= tsucc yi( ) t yj( )

j i≥
∑≡ i 1 2 … q, , ,=

xa yb,( ) R∈ R G̃( )

x1 yq xa yb,( )

x1 x2 … xa yb yb 1+ … yq, , , , , , ,{ }

xi

t pred xi( ) t yq( )+ Lmax≤

vi xi yj,( )≡ j k t pred xi( ) tsucc yk( )+ Lmax≤( ){ }( )min=
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Consider the example shown in Figure 15. Here, we assume that  for each actor

, and . From (13), we have

,

. (14)

If  exists for a given , then  can be viewed as the “best” resynchronization edge

that has  as the source actor, and thus, to construct an optimal LCR, we can select the set of

x2

x3

x4

x5

x6

x7

x8

x1

y2

y3

y4

y5

y6

y7

y8

y1

DD

Lmax = 10 (a) (b)
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x5
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y4
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y6

y7

y8

y1

DD

Figure 15. An instance of delayless, two-processor latency-constrained resynchroniza-
tion. In this example, the execution times of all actors are identically equal to unity.

t z( ) 1=

z Lmax 10=

v1 x1 y1,( )= v2 x2 y1,( )= v3 x3 y2,( )= v4 x4 y3,( )=, , ,

v5 x5 y4,( )= v6 x6 y5,( )= v7 x7 y6,( )= v8 x8 y7,( )=, , ,

vi xi d0 vi( )

xi
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resynchronization edges entirely from among the s. This is established by the following two

observations.

Observation 6: Suppose that  is an LCR of , and suppose that  is a synchronization

edge in  such that . Then  is an LCR of .

Proof: Let  and , and observe that  exists,

since

.

From Observation 4, the set of synchronization edges that  contributes to the elimination

of is simply the set of synchronization edges that are subsumed by . Now, if  is a syn-

chronization edge that is subsumed by , then

. (15)

From the definition of , we have that , and thus, that . It follows from (15)

that

, (16)

and thus, that  subsumes . Hence,  subsumes all synchronization edges that  con-

tributes to the elimination of, and we can conclude that  is a valid resynchronization of .

From the definition of , we know that , and thus since  is

an LCR, we have from Observation 5 that  is an LCR.■

From Fact 3 and the assumption that the members of  are all delayless, an optimal LCR

of  consists only of delayless synchronization edges. Thus from Observation 6, we know that

there exists an optimal LCR that consists only of members of the form  (but not necessarily

of all s). Furthermore, from Observation 5, we know that a collection  of s is an LCR if

vi

R G xa yb,( )

R xa yb,( ) va≠ R xa yb,( ){ }– d0 va( ){ }+( ) R

va xa yc,( )= R′ R xa yb,( ){ }– d0 va( ){ }+( )= va

xa yb,( ) R∈( ) t pred xa( ) tsucc yb( )+ Lmax≤( ) t pred xa( ) t yq( )+ Lmax≤( )⇒ ⇒

xa yb,( )

xa yb,( ) s

xa yb,( )

ρ
G̃

s( )src xa,( ) ρ
G̃

yb s( )snk,( )+ s( )delay≤

va c b≤ ρ
G̃

yc yb,( ) 0=

ρ
G̃

s( )src xa,( ) ρ
G̃

yc s( )snk,( )+ s( )delay≤

va s va xa yb,( )

R′ G̃

va tpred xa( ) tsucc yc( )+ Lmax≤ R

R′

S

G̃

d0 vi( )

d0 vi( ) V vi
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and only if , where  is the set of synchronization edges that are

subsumed by . The following observation completes the correspondence between 2LCR and

interval covering.

Observation 7: Let  be the ordering of  specified by

. (17)

That is the 's are ordered according to the order in which their respective source actors execute

on the source processor. Suppose that for some , some , and some

, we have  and . Then

.

In Figure 15(a), the ordering specified by (17) is

, (18)

and thus from (14), we have

, (19)

which is clearly consistent with Observation 7.

Proof of Observation 7:Let , and suppose  is a positive integer such that

. Then from (17), we know that . Thus, since

, we have that

. (20)

χ v( )
v V∈
∪ s1 s2 … sn, , ,{ }= χ v( )

v

s1′ s2′ … sn′, , , s1 s2 … sn, , ,

xa si ′( )src= xb sj ′( )src= a b<, ,( ) i j<( )⇒

si ′

j 1 2 … p, , ,{ }∈ m 1>

i 1 2 … n m–, , ,{ }∈ si ′ χ vj( )∈ si m+ ′ χ vj( )∈

si 1+ ′ si 2+ ′ … si m 1–+ ′, , , χ vj( )∈

s1′ x1 y2,( )= s2′ x2 y4,( )= s3′ x3 y6,( )= s4′ x5 y7,( )= s5′ x7 y8,( )=, , , ,

χ v1( ) s1′{ }= χ v2( ) s1′ s2′,{ }= χ v3( ) s1′ s2′ s3′, ,{ }= χ v4( ) s2′ s3′,{ }=, , ,

χ v5( ) s2′ s3′ s4′, ,{ }= χ, v6( ) s3′ s4′,{ }= χ v7( ) s3′ s4′ s5′, ,{ }= χ v8( ) s4′ s5′,{ }=, ,

vj xj yl,( )= k

i k i m+< < ρ
G̃

sk′( )src si m+ ′( )src,( ) 0=

si m+ ′ χ vj( )∈

ρ
G̃

sk′( )src xj,( ) 0=
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Now clearly

, (21)

since otherwise  and thus (from 17)  subsumes , which contra-

dicts the assumption that the members of  are irredundant. Finally, since , we know

that . Combining this with (21) yields

, (22)

and (20) and (22) together yield that .■

From Observation 7 and the preceding discussion, we conclude that an optimal LCR of

can obtained by the following steps.

(a) Construct the ordering  specified by (17).

(b) For , determine whether or not  exists, and if it exists, compute .

(c) Compute  for each value of  such that  exists.

(d) Find a minimal cover  for  given the family of subsets .

(e) Define the resynchronization .

Steps (a), (b), and (e) can clearly be performed in  time, where  is the number of

vertices in . If the algorithm outlined in Section 8.1 is employed for step (d), then from the dis-

cussion in Section 8.1 and Observation 8(e) in Section 8.3, it can be easily verified that the time

complexity of step (d) is . Step (c) can also be performed in  time using the obser-

vation that if , then , where

 is the set of synchronization edges in . Thus, we have the following result.

Theorem 6: Polynomial-time solutions (quadratic in the number of synchronization graph ver-

ρ
G̃

si ′( )snk sk′( )snk,( ) 0=

ρ
G̃

sk′( ) si ′( )snk,snk( ) 0= sk′ si ′

S si ′ χ vj( )∈

ρ
G̃

yl si ′( )snk,( ) 0=

ρ
G̃

yl sk′( )snk,( ) 0=

sk′ χ vj( )∈

G̃

s1′ s2′ … sn′, , ,

i 1 2 … p, , ,= vi vi

χ vj( ) j vj

C S χ vj( ) vj exists{ }

R vj χ vj( ) C∈{ }=

O N( ) N

G̃

O N
2( ) O N

2( )

vi xi yj,( )= χ vi( ) xa yb,( ) S∈ a i≤ b j≥and{ }≡

S s1 s2 … sn, , ,{ }= G̃
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tices) exist for the delayless, two-processor latency-constrained resynchronization problem.

Note that solutions more efficient than the  approach described above may exist.

From (19), we see that there are two possible solutions that can result if we apply Steps

(a)-(e) to Figure 15(a) and use the technique described in Subsection 8.1 for interval covering.

These solutions correspond to the interval covers  and

. The synchronization graph that results from the interval cover  is

shown in Figure 15(b).

8.3 Taking delays into account

If delays exist on one or more edges of the original synchronization graph, then the corre-

spondence defined in the previous subsection between 2LCR and interval covering does not nec-

essarily hold. For example, consider the synchronization graph in Figure 16. Here, the numbers

beside the actors specify execution times; a “D” on top of an edge specifies a unit delay; the

latency input and latency output are respectively  and ; and the latency constraint is

. It is easily verified that  exists for , and from (13), we obtain

. (23)

Now if we order the synchronization edges as specified by (17), then

 for , and  for , (24)

and if the correspondence between delayless 2LCR and interval covering defined in the previous

section were to hold for general 2LCR, then we would have that

each subset  is of the form . (25)

However, computing the subsets , we obtain

O N
2( )

C1 χ v3( ) χ v7( ),{ }=

C2 χ v3( ) χ v8( ),{ }= C1

x1 yq

Lmax 12= vi i 1 2 … 6, , ,=

v1 x1 y3,( )= v2 x2 y4,( )= v3 x3 y6,( )= v4 x4 y8,( )= v5 x5 y8,( )= v6 x6 y8,( )=, , , , ,

si ′ xi yi 4+,( )= i 1 2 3 4, , ,= si ′ xi yi 4–,( )= i 5 6 7 8, , ,=

χ vi( ) sa′ sa 1+ ′ … sb′, , ,{ } 1 a b 8≤ ≤ ≤,

χ vi( )

χ v1( ) s1′ s7′ s8′, ,{ }= χ v2( ) s1′ s2′ s8′, ,{ }= χ v3( ) s2′ s3′,{ }=, ,
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, (26)

and these subsets are clearly not all consistent with the form specified in (25). Thus, the algorithm

developed in Subsection 8.2 does not apply directly to handle delays.

However, the technique developed in the previous section can be extended to solve the

general 2LCR problem in polynomial time. This extension is based on separating the subsumption

relationships between the 's and the synchronization edges into two categories: if

subsumes the synchronization edge  then we say that1-subsumes if , and

we say that 2-subsumes  if . For example in Figure 16(a),  1-subsumes
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Figure 16. A synchronization graph with unit delays on some of the synchroniza-
tion edges.
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both  and , and  2-subsumes  and .

Observation 8: Assuming the same notation for a generic instance of 2LRC that was defined in

the previous subsection, the initial synchronization graph  satisfies the following conditions:

(a) Each synchronization edge has at most one unit of delay ( ).

(b) If  is a zero-delay synchronization edge and  is a unit-delay synchroni-

zation edge, then  and .

(c) If  1-subsumes a unit-delay synchronization edge , then  also 1-subsumes

all unit-delay synchronization edges  that satisfy .

(d) If  2-subsumes a unit-delay synchronization edge , then  also 2-subsumes

all unit-delay synchronization edges  that satisfy .

(e) If  and  are both distinct zero-delay synchronization edges or they are

both distinct unit-delay synchronization edges, then  and .

(f) If  1-subsumes a unit delay synchronization edge , then .

Proof outline:From Fact 5, we know that . Thus, there exists at least one delayless

synchronization edge in . Let  be one such delayless synchronization edge. Then it is easily

verified from the structure of  that for all , there exists a path  in  directed from

to  such that  contains ,  contains no other synchronization edges, and

. It follows that any synchronization edge  whose delay exceeds unity would be

redundant in . Thus, part (a) follows from the assumption that the synchronization edges in

are all irredundant.

The other parts can be verified easily from the structure of , including the assumption

that all synchronization edges in  are irredundant. We omit the details.■

Resynchronizations for instances of general 2LCR can be partitioned into two categories

— category Aconsists of all resynchronizations that contain at least one synchronization edge

having nonzero delay, andcategory B consists of all resynchronizations that consist entirely of

delayless synchronization edges. An optimal category A solution (a category A solution whose

cost is less than or equal to the cost of all category A solutions) can be derived by simply applying

x7 y3,( ) x8 y4,( ) v5 x5 y8,( )= x4 y8,( ) x5 y1,( )

G̃

si( )delay 0 1,{ }∈

xi yj,( ) xk yl,( )

i k< j l>

vi xi yj,( ) vi

s s( )src xi n+= n 0>,

vi xi yj,( ) vi

s s( )src xi n–= n 0>,

xi yj,( ) xk yl,( )

i k≠ i k<( ) j l<( )⇔

xi yj,( ) xk yl,( ) l j≥

ρ x1 yq,( ) 0=

G̃ e

G̃ xi yj, pi j, G̃ xi

yj pi j, e pi j,

pi j,( )Delay 2≤ e′

G̃ G̃

G̃

G̃
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the optimal solution described in Subsection 8.2 to “rearrange” the delayless resynchronization

edges, and then replacing all synchronization edges that have nonzero delay with a single unit

delay synchronization edge directed from , the last actor scheduled on the source processor to

, the first actor scheduled on the sink processor. We refer to this approach asAlgorithm A .

An example is shown in Figure 17. Figure 17(a) shows an example where for general

2LCR, the constraint that all synchronization edges have zero delay is too restrictive to permit a

globally optimal solution. Here, the latency constraint is assumed to be . Under this

constraint, it is easily seen that no zero-delay resynchronization edges can be added without vio-

lating the latency constraint. However, if we allow resynchronization edges that have delay, then

we can apply Algorithm A to achieve a cost of two synchronization edges. The resulting synchro-

nization graph, with redundant synchronization edges removed, is shown in Figure 17(b). Observe

that this resynchronization is an LCR since only delayless synchronization edges affect the

latency of a transparent synchronization graph.

Now suppose that  (our generic instance of 2LCR) contains at least one unit-delay syn-

chronization edge, suppose that  is an optimal category B solution for , and let  denote

xp

y1

Figure 17. An example in which constraining all resynchronization edges to
be delayless precludes the ability to derive an optimal resynchronization.
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the set of resynchronization edges in . Let  denote the set of synchronization edges in

 that have unit delay, and let  denote the ordering of the mem-

bers of  that corresponds to the order in which the source actors execute on the source pro-

cessor — that is, . Note from Observation 8(a) that  is the set of all

synchronization edges in  that are not delayless. Also, let  denote the set of unit-

delay synchronization edges in  that are 1-subsumed by resynchronization edges in . That is,

.

If  is not empty, define

. (27)

Suppose . Then by definition of , , and thus

. Furthermore, since  and  execute on the same processor, .

Hence , so we have that  subsumes

 in . Since  is an arbitrary member of , we conclude that

Every member of  is subsumed by . (28)

Now, if  is not empty, then define

, (29)

and suppose . By definition of ,  and thus . Furthermore,

since  and  execute on the same processor, . Hence,

,

and we have that

Every member of  is subsumed by . (30)

Observe also that from the definitions of  and , and from Observation 8(c),
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; (31)

; (32)

and

. (33)

Now we define the synchronization graph  by ,

where  and  are the sets of vertices and edges in ; , if both

 and  are non-empty;  if  is empty; and

if  is empty.

Theorem 7:  is a resynchronization of .

Proof: The set of synchronization edges in  is , where  is the set of delayless syn-

chronization edges in . Since  is a resynchronization of , it suffices to show that for each

,

. (34)

If  is non-empty then from (27) (the definition of ) and Observation 8(f),

there must be a delayless synchronization edge  in  such that  for some .

Thus,

,

and we have that (34) is satisfied for .

Similarly if  is non-empty, then from (29) (the definition of ) and from the definition of

2-subsumes, there exists a delayless synchronization edge  in  such that  for

some . Thus,

;
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hence, we have that (34) is satisfied for .

From the definition of , it follows that (34) is satisfied for every .■

Corollary 1: The latency of  is no greater than . That is, .

Proof: From Theorem 7, we know that  preserves . Thus, from Lemma 1, it follows that

. Furthermore, from the assumption that  is an optimal category B

LCR, we have . We conclude that .■

Theorem 7, along with (31)-(33), tells us that an optimal category B LCR of  is always a

resynchronization of

(1) a synchronization graph of the form

, , (35)

or

(2) of the graph , (36)

or

(3) of the graph . (37)

Thus, from Corollary 1, an optimal resynchronization can be computed by examining each

of the  synchronization graphs defined by (35)-(37), computing an opti-

mal LCR for each of these graphs whose latency is no greater than , and returning one of the

optimal LCRs that has the fewest number of synchronization edges. This is straightforward since

these graphs contain only delayless synchronization edges, and thus the algorithm of Section 8.2

can be used.

e xku
yq,( )=

P e P∈

Z G̃( ) Lmax L
Z G̃( ) x1 yq,( ) Lmax≤

Gb Z G̃( )

L
Z G̃( ) x1 yq,( ) LGb

x1 yq,( )≤ Gb

LGb
x1 yq,( ) Lmax≤ L

Z G̃( ) x1 yq,( ) Lmax≤

G̃

V E G̃( )ud–( ) d0 x1 ylα
,( ) d0 xkα 1–

yq,( ),{ }+( ),( ) 1 α M≤<

V E G̃( )ud–( ) d0 x1 yl1
,( ){ }+( ),( )

V E G̃( )ud–( ) d0 xkM
yq,( ){ }+( ),( )

M 1+( ) G̃( )ud 1+( )=

Lmax
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Recall the example of Figure 16(a). Here,

,

and the set of synchronization graphs that correspond to (35)-(37) are shown in Figure 18(a)-(e).

The latencies of the graphs in Figure 18(a)-(e) are respectively 14, 13, 12, 13, and 14. Since

, we only need to compute an optimal LCR for the graph of Figure 18(c) (from Corol-

lary 1). This is done by first removing redundant edges from the graph (yielding the graph in Fig-
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Figure 18. The synchronization graphs considered in Algorithm B for the example in Figure 16.
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ure 19(b)) and then applying the algorithm developed in Section 8.2. For the synchronization

graph of Figure 19(b), and , it is easily verified that the set of s is

.

If we let

, (38)

then we have,

. (39)

From (39), the algorithm outlined in Subsection 8.1 for interval covering can be applied to

obtain an optimal resynchronization. This results in the resynchronization . The

resulting synchronization graph is shown in Figure 19(c). Observe that the number of synchroni-

zation edges has been reduced from  to , while the latency has increased from  to

. Also, none of the original synchronization edges in  are retained in the resynchro-

nization.

We say thatAlgorithm B for general 2LCR is the approach of constructing the
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Figure 19. Derivation of an optimal LCR for the synchronization graph of Figure 18(c).
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( ) synchronization graphs corresponding to (35)-(37), computing an optimal LCR for

each of these graphs whose latency is no greater than , and returning one of the optimal

LCRs that has the fewest number of synchronization edges. We have shown above that Algorithm

B leads to an optimal LCRunder the constraint that all resynchronization edges have zero delay.

Thus, given an instance of a general 2LCR, a globally optimal solution can be derived by

applying Algorithm A and Algorithm B and retaining the best of the resulting two solutions. The

time complexity of this two phased approach is dominated by the complexity of Algorithm B,

which is  (a factor of  greater than the complexity of the technique for

delayless 2LCR that was developed in Section 8.2), where  is the number of vertices in .

Since  from Observation 8(e), the complexity is .

Theorem 8: Polynomial-time solutions exist for the general two-processor latency-constrained

resynchronization problem.

The example in Figure 17 shows how it is possible for Algorithm A to produce a better

result than Algorithm B. Conversely, the ability of Algorithm B to outperform Algorithm A can

be demonstrated through the example of Figure 16. From Figure 19(c), we know that the result

computed by Algorithm B has a cost of  synchronization edges. The result computed by Algo-

rithm A can be derived by applying interval covering to the subsets specified in (26) with all of the

unit-delay edges ( ) removed:

. (40)

A minimal cover for (40) is achieved by , and the corresponding synchro-

nization graph computed by Algorithm A is shown in Figure 20. This solution has a cost of  syn-

chronization edges, which is one greater than that of the result computed by Algorithm B for this

example.

G̃( )ud 1+

Lmax

O G̃( )ud N
2( ) G̃( )ud

N G̃

G̃( )ud N≤ O N
3( )

3

s5′ s6′ s7′ s8′, , ,

χ v1( ) s1′{ }= χ v2( ) s1′ s2′,{ }= χ v3( ) s2′ s3′,{ }=, ,

χ v4( ) χ v5( ) χ v6( ) s4′{ }= = =

χ v2( ) χ v3( ) χ v4( ), ,{ }

4
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9.  A heuristic for latency-constrained resynchronization

In this section, we present the application of a well-known set covering heuristic to the

latency-constrained resynchronization problem, and we illustrate the ability of this method to sys-

tematically trade off latency for synchronization overhead. Our heuristic for latency-constrained

resynchronization is based on the simple greedy approximation algorithm for set covering that

repeatedly selects a subset that covers the largest number ofremaining elements, where a remain-

ing element is an element that is not contained in any of the subsets that have already been

selected. In [18, 20] it is shown that this set covering technique is guaranteed to compute a solu-
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Figure 20. The solution derived by Algorithm A when it is applied to the
example of Figure 16.
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tion whose cardinality is no greater than  times that of the optimal solution, where

 is the set that is to be covered.

To adapt this set covering technique to latency-constrained resynchronization, we con-

struct an instance of set covering by choosing the set , the set of elements to be covered, to be

the set of synchronization edges, and choosing the family of subsets to be

, (41)

where  is the input synchronization graph, and  is the latency of the synchroniza-

tion graph  that results from adding the resynchronization edge  to

. Assuming that  has been determined for all ,  can easily be computed

from

, (42)

where  is the source actor in ,  is the latency output, and  is the latency of .

The middle constraint, , in (41) ensures that inserting the resynchroniza-

tion edge  does not introduce a cycle, and thus that it does not reduce the estimated

throughput.

Our heuristic for latency-constrained resynchronization determines the family of subsets

specified by (41), chooses a member of this family that has maximum cardinality, inserts the cor-

responding delayless resynchronization edge, removes all synchronization edges that it subsumes,

and updates the values  and  for the new synchronization graph that results.

This process is then repeated on the new synchronization graph, and it continues until it arrives at

a synchronization graph for which the computation defined by (41) produces the empty set — that

is, the algorithm terminates when no more resynchronization edges can be added without increas-

ing the latency beyond . Figure 21 gives a pseudocode specification of this algorithm (with

some straightforward modifications to improve the running time). Fact 1 guarantees that the result

returned bylatency-constrained-resynchronization is always a valid resynchronization.

Clearly, each time a delayless resynchronization edge is added to a synchronization graph,

theconnectivityof the graph is increased by at least one, where the connectivity is defined to be

X( )ln 1+( )

X

X

T χ v1 v2,( ) v1 v2, V∈( ) ρG v2 v1,( ) ∞=( ) L′ v1 v2,( ) Lmax≤( )and and( ){ }≡

G V E,( )= L′

V E v1 v2,( ){ }+{ },( ) v1 v2,( )

G Tfi G( ) x y,( ) x y, V∈ L′

L′ v1 v2,( ) Tfi G( ) υ v1,( ) Tfi G( ) v2 oL,( )+( ) LG,{ }( )max=

υ fi G( ) oL LG G

ρG v2 v1,( ) ∞=

v2 v1,( )

Tfi G( ) x y,( ) ρG x y,( )

Lmax
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function  latency-constrained-resynchronization
input : a synchronization graph

output : an alternative synchronization graph that preserves .

compute  for all actor pairs

compute  for all actor pairs

 = FALSE

while  not

,

for
if

if

end if
end if

end for
if

else

for /* update  */

end for
for /* update  */

end for
,

end if
end while
return
end function

G V E,( )=

G

ρG x y,( ) x y, V∈

Tfi G( ) x y,( ) x y, V υ{ }∪( )∈

complete

complete( )
best NULL= M 0=

x y, V∈
ρG y x,( ) ∞=( ) L′ x y,( ) Lmax≤( )and( )

χ* χ x y,( )( )=

χ* M>( )
M χ*=

best x y,( )=

best NULL=( )
complete TRUE=

E E χ best( )– d0 best( ){ }+=

G V E,( )=

x y, V υ{ }∪( )∈ Tfi G( )

Tnew x y,( ) Tfi G( ) x y,( ) Tfi G( ) x best( )src,( ) Tfi G( ) best( )snk y,( )+,{ }( )max=

x y, V∈ ρG

ρnew x y,( ) ρG x y,( ) ρG x best( )src,( ) ρG best( )snk y,( )+,{ }( )min=

ρG ρnew= Tfi G( ) Tnew=

G

Figure 21. A heuristic for latency-constrained resynchronization.
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number of ordered vertex pairs  that satisfy . Thus, the number of iterations

of thewhile loop in Figure 21 is bounded above by . The complexity of one iteration of the

while loop is dominated by the computation required to update the longest and shortest path quan-

tities  and  respectively, both of which can be accomplished in  time. Thus, the

time-complexity of the overall algorithm is . In practice, however, the number of resyn-

chronization steps is much lower than  since the constraints on the latency and on the intro-

duction of cycles severely limit the number of resynchronization steps. Thus, our  bound

can be viewed as a very conservative estimate.

9.1 Example

Figure 22 shows the synchronization graph topology that results from a six-processor

schedule of a synthesizer for plucked-string musical instruments in 11 voices based on the Kar-

plus-Strong technique. Here,  represents the excitation input, each  represents the computa-

tion for the th voice, and the actors marked with “+” signs specify adders. Execution time

estimates for the actors are shown in the table at the bottom of the figure. In this example,  and

 are respectively the latency input and latency output, and the latency is . There are ten

synchronization edges shown, and these are all irredundant.

Figure 23 shows how the number of synchronization edges in the result computed by our

heuristic changes as the latency constraint varies. If just over  units of latency can be tolerated

beyond the original latency of 170, then the heuristic is able to eliminate a single resynchroniza-

tion edge. No further improvement can be obtained unless roughly another  units are allowed,

at which point the number of synchronization edges drops to , and then down to  for an addi-

tional  time units of allowable latency. If the latency constraint is weakened to , just over

twice the original latency, then the heuristic is able to reduce the number of synchronization edges

to . No further improvement is achieved over the relatively long range of . When

, the latency of the pipelined solution (see Section 6) is permissible, and this allows

the minimal cost of  synchronization edges for this system, which is half that of the original syn-

chronization graph.

Figure 24 illustrates how the placement of synchronization edges changes as the heuristic
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Figure 22. The synchronization graph that results from a six processor schedule
of a music synthesizer based on the Karplus-Strong technique.
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Figure 23. Performance of the heuristic on the example of Figure 22.
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is able to attain lower synchronization costs. Each of the four topologies corresponds to a break-

point in the plot of Figure 23. For example Figure 24(a) shows the synchronization graph com-

puted by the heuristic for the lowest latency constraint value for which it computes a solution that

has  synchronization edges.

Note that synchronization graphs computed by the heuristic are not necessarily identical

over any of the  ranges in Figure 23 in which the number of synchronization edges is con-

stant. In fact, they can be significantly different. This is because even when there are no resyn-

chronization candidates available that can reduce the net synchronization cost , the

heuristic attempts to insert resynchronization edges for the purpose of increasing the connectivity;

this increases the chance that subsequent resynchronization candidates will be generated for

which . For example, Figure 25, shows the synchronization graph computed when

 is just below the amount needed to permit the pipelined solution. Comparison with the

graph shown in Figure 24(d) shows that even though these solutions have the same synchroniza-

tion cost, the heuristic had much more room to pursue further resynchronization opportunities

9

Lmax

χ *( ) 1>( )

χ *( ) 1>

Figure 25. The synchronization graph computed by the heuristic for .Lmax 644=

D

D D D D

Lmax = 644

D

Lmax



68

with , and thus, the graph of Figure 25 is more similar to the pipelined solution than

it is to the solution of Figure 24(d).

Earlier, we mentioned that our  complexity expression is conservative since it is

based on a  bound on the number of iterations of thewhile loop in Figure 21, while in prac-

tice, the actual number ofwhile loop iterations can be expected to be much less than . This

claim is supported by our music synthesis example, as shown in the graph of Figure 26. Here, the

-axis corresponds again to the latency constraint , and the -coordinates give the number

of while loop iterations that were executed by the heuristic. We see that between  and  itera-

tions were required for each execution of the algorithm, which is not only much less than

, it is even less than . This suggests that perhaps a significantly tighter bound on

the number of while loop iterations can be derived.

10.  Conclusions

This paper develops a post-optimization called resynchronization for self-timed, embed-

ded multiprocessor implementations. The goal of resynchronization is to introduce new synchro-

nizations in such a way that the number of additional synchronizations that become redundant

exceeds the number of new synchronizations that are added, and thus the net synchronization cost

is reduced. Two specific resynchronization problems are addressed. In the first context, which we

refer to here asunbounded-latency resynchronization, we impose the constraint that resynchroni-

zation cannot degrade the throughput of the original schedule, and to ensure this constraint effi-

ciently, we restrict resynchronization to involve only feedforward synchronization edges. In the

second context, calledlatency-constrained resynchronization, we assume the same constraints

and we consider a user-specified upper bound on latency that the resynchronized solution must

respect.

We show that the general forms of both problems are intractable by deriving reductions

from the classic set covering problem. For unbounded-latency resynchronization, we define a

broad class of systems for which optimal resynchronization can be performed in polynomial time

by a method that is roughly equivalent to pipelining. For latency-constrained resynchronization,

Lmax 644=
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Figure 26. Number of resynchronization iterations versus  for the example of Figure 22.Lmax
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we develop polynomial time techniques to optimally resynchronize two-processor systems. We

also develop heuristic techniques for both problem contexts. For the unbounded-latency case, we

show that a heuristic framework emerges naturally from the correspondence to set covering.

Given an arbitrary heuristic for set covering, this framework generates a heuristic for unbounded-

latency resynchronization. Based on a simple approximation algorithm for set covering that was

developed previously, we propose a heuristic for latency-constrained resynchronization, and

through an example of a music synthesis application, we illustrate the performance of our imple-

mentation of this heuristic. The results demonstrate that the technique can efficiently trade off

between synchronization overhead and latency.

Several useful directions for future work emerge from our study. These include investigat-

ing whether efficient techniques can be developed that consider resynchronization opportunities

within strongly connected components, rather than just accross feedforward edges; and develop-

ing more general measures of latency that can be computed efficiently. There may also be consid-

erable room for improvement over our proposed heuristics, which are straightforward adaptations

of existing set covering algorithms. In particular, it may be interesting to search for properties of

practical synchronization graphs that could be exploited in addition to the correspondence with

set covering. A related direction for further study is the exploration of additional useful special

cases that can be resynchronized optimally, for both the unbounded-latency and latency-con-

strained contexts.

Appendix A

Proof of Argument #6 in Figure 12.By contraposition, we show that  cannot contribute to

the elimination of any synchronization edge of , and thus from Fact 2, it follows from the opti-

mality of  that . Suppose that  contributes to the elimination of some synchro-

nization edge . Then

. (43)

w z,( )

G

R w z,( ) R∉ w z,( )

s

ρR G( ) s( )src w,( ) ρR G( ) z s( )snk,( ) 0= =
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From the matrix in Figure 13, we see that no resynchronization edge can have  as the source ver-

tex. Thus, . Now, if , then , and thus from (43), there is a

zero delay path from  to  in . However, the existence of such a path in  implies the

existence of a path from  to  that traverses actors , which in turn implies that

, and thus that  is not a valid LCR.

On the other hand, if , then . Now from

(43),  implies the existence of a zero delay path from  to  in , which implies

the existence of a path from  to  that traverses , which in turn implies that

. On the other hand, if  for some , then since from Figure 13, there are

no resynchronization edges that have an  as the source, it follows from (43) that there must be

a zero delay path in  from  to . The existence of such a path, however, implies the

existence of a cycle in  since . Thus,  implies that  is not

an LCR.■

Appendix B

Proof of Observation 3:Since  is an optimal LCR, we know that  must contribute to the elim-

ination of at least one synchronization edge (from Fact 2). Let  be some synchronization edge

such that  contributes to the elimination of . Then

. (44)

Now from Figure 13, it is apparent that there are no resynchronization edges in  that have  or

 as their source actor. Thus, from (44),  or . Now, if

, then  for some , or . However, since no resynchro-

nization edge has a member of  as its source, we must (from 44) rule out

. Similarly, if , then from (44) there exists a zero delay path in

from  to , which in turn implies that . But this is not possible since our

assumption that  is an LCR guarantees that . Thus, we conclude that

z

s( )snk z out,{ }∈ s( )snk z= s v z,( )=

v w R G( ) R G( )

in out v w st1 sx1, , ,

LR G( ) in out,( ) 104≥ R

s( )snk out= s( )src z sx1 sx2 sx3 sx4, , , ,{ }∈

s( )src z= z w R G( )

in out v w z st1 sx1, , , ,

Lmax 204≥ s( )src sxi= i

sxi

R G( ) out w

R G( ) ρG w out,( ) 0= s( )snk out= R

R e

s

e s

ρR G( ) s( )src e( )src,( ) ρR G( ) e( )snk s( )snk,( ) 0= =

R sxi

out s( )snk sxi= s( )snk out=

s( )snk out= s( )src sxk= k i≠ s( )src z=

sx1 sx2 sx3 sx4, , ,{ }

s( )src sxk= s( )src z= R G( )

z stj LR G( ) in out,( ) 140>

R LR G( ) in out,( ) 103≤
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, and thus, that .

Now  implies that (a)  or (b)  for some  such that

 (recall that , and thus, that ). If , then from (44),

. It follows that for any member , there is a zero delay path in

that traverses ,  and . Thus,  does not hold since otherwise

.

Thus, we are left only with possibility (a) — .■

Glossary

: The number of members in the finite set .

: Same as  with the DFG  understood from context.

: If there is no path in  from  to , then ; otherwise,
, where  is any minimum-delay path from  to .

: The delay on a DFG edge .

: Given a path ,  is the sum of the edge delays over all edges in
.

: An edge whose source and sink vertices are  and , respectively, and
whose delay is equal to .

: The maximum cycle mean of a DFG.

: The set of synchronization edges that are subsumed by the ordered pair of
actors .

: Theconcatenation of the paths .

2LCR: Two-processor latency-constrained resynchronization.

connectivity: The connectivity of a DFG  is the number of ordered vertex pairs
in  that satisfy .

contributes to the elimination:
If  is a synchronization graph,  is a synchronization edge in ,  is a
resynchronization of , , , and there is a path  from
to  in  such that  contains  and , then
we say that  contributes to the elimination of

s( )snk out≠ s( )snk sxi=

s( )snk sxi=( ) s exi= s stk sxi,( )= k

xi tk∈ xi t j∉ k j≠ s stk sxi,( )=

ρR G( ) stk stj,( ) 0= xl t j∈ R G( )

stk stj sxl s stk sxi,( )=

LR G( ) in out,( ) 140≥

s exi=

S S

ρ x y,( ) ρG G

ρG x y,( ) G x y ρG x y,( ) ∞=
ρG x y,( ) p( )Delay= p x y

e( )delay e

p( )Delay p p( )Delay
p

dn u v,( ) u v
n

λmax

χ p( )
p

p1 p2 … pk, , ,( )〈 〉 p1 p2 … pk, , ,

G x y,( )
G ρG x y,( ) 0=

G s G R
G s′ R∈ s′ s≠ p s( )src

s( )snk R G( ) p s′ p( )Delay s( )delay≤
s′ s
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critical cycle: A fundamental cycle in a DFG whose cycle mean is equal to the maximum
cycle mean of the DFG.

cycle mean: The cycle mean of a cycle  in a DFG is equal to , where  is the
sum of the execution times of all vertices traversed by , and  is the sum
of delays of all edges in .

eliminates: If  is a synchronization graph,  is a resynchronization of , and  is a
synchronization edge in , we say that  eliminates  if .

: The time at which invocation  of actor  completes execution.

estimated throughput:
Given a DFG with execution time estimates for the actors, the estimated
throughput is the reciprocal of the maximum cycle mean.

execution source: In a synchronization graph, any actor that has no input edges or has non-
zero delay on all input edges is called an execution source.

FBS: Feedback synchronization. A synchronization protocol that may be used
for feedback edges in a synchronization graph. This protocol requires two
synchronization accesses per schedule period.

feedback edge: An edge that is contained in at least one cycle.

feedforward edge: An edge that is not contained in a cycle.

FFS: Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges of the synchronization graph. This protocol requires
four synchronization accesses per iteration period.

LCR: Latency-constrained resynchronization. Given a synchronization graph ,
a latency input/output pair, and a positive integer , a resynchroniza-
tion  of  is an LCR if the latency of  is less than or equal to .

maximum cycle mean:
Given a DFG, the maximum cycle mean is the largest cycle mean over all
cycles in the DFG.

resynchronization edge:
Given a synchronization graph  and a resynchronization , a resynchro-
nization edge of  is any member of  that is not contained in .

: If  is a synchronization graph and  is a resynchronization of , then
 denotes the graph that results from the resynchronization .

SCC: Strongly connected component.

C T D⁄ T
C D

C

G R G s
G R s s R∉

end v k,( ) k v

G
Lmax

R G R G( ) Lmax

G R
R R G

R G( ) G R G
R G( ) R
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self loop: An edge whose source and sink vertices are identical.

: The time at which invocation  of actor  commences execution.

subsumes: Given a synchronization edge  and an ordered pair of actors
,  subsumes  if

.

: The execution time or estimated execution time of actor .

: The sum of the actor execution times along a path from  to  in the first
iteration graph of  that has maximum cumulative execution time.
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