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Preface

This is the sixth annual edition of the 290W report. This edition includes descriptions of
projects completed during the Spring semester of 1995, in the context of the graduate course
"Special Issues in Semiconductor Manufacturing". Ten students have participated, and according
to the course requirements, these students worked with me on their projects during the last six
weeks of the semester.

Each of the presented projects covers at least one novel aspect of semiconductor manufactur
ing. The first four projects deal with statistical modeling of processing steps: The first discusses
the characterization of e-beam lithography, the second with thin film deposition, the third studies
ion implantation damage, and the fourth modelsa novel plasma immersion ion implantation pro
cess.

The second group, consisting of four projects, deals with statistical process control and its
extension for multiple real-time data streams, the introduction and statistical filtering of Optical
Emission Spectroscopy, and the modeling of slow temporal variability in plasma etching. The last
project in this group discusses the development of novel in-situ metrology for photolithography
control during the definition of a poly gate stack.

The third group consist of two projects that deal with IC design for manufacturability issues.
The first of these projects discusses the application of robust design principles, while the second
analyzes the electrical mismatch of devices fabricated in the Berkeley Microfabrication Labora
tory.

It is my hope that these reports will add to our understanding of semiconductor
manufacturing. My thanks go to the 290W students whose work made this document possible. I
am also grateful to the personnel and management of the BerkeleyMicrofabrication laboratory for
their help with the experimental part of the projects presented here.

Costas J. Spanos

August, 1995
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Characterization of factors affecting electron-beam

lithography using regression analysis

Charles H. Fields

This paper explores the results ofa35 full factorial experiment undertaken
to analyze the factors that affect the ultimateresolution achievable through
electron-beam (e-beam) lithography. The exposure tool used for this exper
iment was a Jeol 6400 Scanning Electron Microscope (SEM) that has been
modified to perform e-beam lithography. The five variables investigated
are electron energy expressed in kV, exposure dose in fiC/cm2, photoresist
thickness, line spacing pitch, and drawn linewidth. The results of the exper
iment were analyzed using regression analysis. The significance of each
parameter and cross-interactions was analyzed and a model was fit to sig
nificant terms. The resultsof the analysis are summarized in the conclusion
section of this paper.

1.0 Introduction

Electron-beam lithography offers the capability of patterning sub-quarter-micron features. In
fact, features as small as 10 nanometers have been patterned with the use of e-beam lithography
using lift-off and special pattern transfer techniques [2,3,4,5,6,7,8]. Indeed, this form of lithogra
phy hasmany interesting possibilities for the future of lithography in the semiconductor manufac
turing industry.

Onemightwonder why e-beam lithography is notmore widelyusedin today's semiconductor
manufacturing facilities. The reason is that there are still many obstacles to overcome before a
production-ready system would be feasible. Electron beam lithography differs from conventional
optical lithography in many areas. One difference is the photoresist used in e-beam lithography:
Poly-methylmethacrylete (PMMA). While PMMAis capable of good resolution (on the order of
5nm [1]), it suffers from poor plasma etch resistance which limits its effectiveness in pattern
transfer.

Another factor which limits the use of e-beam lithography is proximity effects. It is well
known that e-beam lithography suffers from proximity effects due to electron scattering, which
affect the critical dimensions (CDs) of the printed linewidths. This is due to elastic and inelastic
collisions of the electrons with the resist and substrate atoms. These collisions act to distort the
drawn patterns by scattering electrons both in the forward and backward directions. Computer
simulations of electron trajectories support the theory that the electron distributions of both the
forward and back scattered electrons are nearly gaussian. The forward and backward distributions
can be characterized by separate standard deviations denoted 07 and (J5 respectively. Figure 1
shows the distribution of the forwardscattered, backscattered and the total electron energy distri
butions for single pass lines drawn at the three electron energies studied in this paper. This figure
illustrates the fact that electron beam energy will affect both the forward and the backscattered
dose distributions and therefore the total dose distribution deposited in the resist. The forward-
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scattered gaussian half-width (af) decreases at higher energies and the backscattered half-width
(ab) increases. We should therefore expect to achieve higher resolution with higher electron ener
gies. This figure also illustrates the fact that the line spacing pitch will have an effect on the reso
lution of closely spaced lines. This variation in exposure dose for closely spaced features is
known as inter-proximity effect

s

Electron Energy Distributions at 20KV

1.6
Mlrcono fuml

a) Energy Distribution at 20kV
Electron Energy Distributions at 30KV

b) Energy Distribution at 30kV
fclectron fcnergy Distributions at 40KV

1.6
Mlrcons fuml

c) Energy Distribution at 40kV

Figure l. Forward-solid, Backward-Dotted, Total-dashed
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This experiment is designed to study both types of proximity effects: Intra-proximity and
inter-proximity. The major factor affecting the intra-proximity effect is the choice of electron
beam writing energy and exposure dose. This experiment will study three different energies (20,
30, and 40kV) as well as three dose levels. Inter-proximity effects are seen as CD variations
between closely spaced patterns. To characterize this variation, I propose to study three different
line spacing pitches.

Process technologists who develop e-beam processes are interested in how certain variable
process parameters will affect the lithographic performance capabilities. Process variables such as
resist thickness and dose might beexpected to affect the profiles of the patterns developed in the
resist. This proximity effect will tend to be more noticeable for smaller drawn linewidth dimen
sions.

2.0 Methodology

A 35 full factorial experiment was conducted on the Jeol 6400 Modified SEM located in the
Berkeley Microfabrication Laboratory. The five variables of writing energy (kV), resist thickness,
drawn linewidth, linewidth pitch, and exposure dose were explored. Four of the 5 variables were
run atthree levels. A matrix of doses was run over awiderange to permit feature of different sizes
and pitch to all clear at some dose. Three linewidth measurements were then taken at three doses
around the critical dose for the correct linewidth development.

Constraints oftime and effort would preclude exposing 35=243 different wafers. Fortunately,
due to the nature of e-beam lithography it is possible to automate the variation of exposure dose,
linewidth, and pitch so that several samples could be printed under varying conditions on the
same substrate. The only time constraint was on the measurement of the resulting linewidth
dimensions.

It is important in any experiment to preserve the initial assumption that our results will be
IIND. Therefore special care must betaken during the processing; i.e. exposure, development, Au
coating, and measurement. To insure the IIportion ofour IIND assumption, it isnecessary that all
process steps are repeated identically under identical conditions for the different resist thickness
samples.

3.0 Implementation

Three wafers were coated with different thicknesses of 950K molarity PMMA. The thickness
ofeach wafer was then measured on aNanospec ellipsometer in four locations on the periphery of
the wafer as well as the center. The average values of the thickness were measured to be 1670,
2233, and 3023A with standard deviations of 17.8, 21.8, and 9.7A respectively. Each wafer was
then cleaved into 10mm chips that were used for the e-beam exposure.

The experiment was conducted using atest matrix pattern designed using CAD software. The
test pattern consisted of 10|im long lines drawn at three different line spacing pitches. Figure 2a
shows the basic test pattern consisting of lines drawn at equal line space (L/S) pitch, one-half that
spatial frequency (1/2 pitch), and again at one-fourth the spatial frequency of the original (1/4
pitch). This pattern was then repeated at 5 different linewidth dimensions: 0.2|xm, 0.15nm,
O.ljLim, 75nm, and 50nm. Although this variable is now at five levels, the last two smallest fea
tures are near the resolution limit of the system and are not expected to clear. Figure 2bshows the
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Figure 2a. Basic line pitch test pattern

Figure 2b. Test patternsubgroup

Dose 1 Dose 2

etc...

Figure 2c. Full test pattern

test pattern subgroup for the three largest linewidths. The final test pattern written consisted of the
suberoup testpattern in figure 2bwritten 12 times (2 columns, 6 rows) at varying dose with20jliC/
cnr steps; see figure 2c. With astep size of 20u,C/cm2, there could beameasurement error of at
most 10jiC/cm2 which is at most a 1% error and at best an error of0.2% from the resulting data
set.

The field size of the 12 dose pattern was 95um. This pattern was repeated twice at each kV
setting on each of the three chips for a total of 24different dose settings per kV per chip. This test
pattern was used to expose each of the three wafer chips described above.

Beam setup and shape optimization is critical to the effective patterning of fine features.
Therefore, to insure identical/independent portion of our IIND condition, it is necessary that all
exposures are done under the same settings. All three chips were loaded on the same sample
holder and exposed during a single system pump-down. Changing the beam energy will affect the
shape of the electron column and therefore it is necessary to re-optimize the beam between
changes in kV. All the patterns for a given kV and dose range were written on each of the three
chips before the electron energy was set to a new value.

All three samples were developed at the same time under the identical conditions. The devel
opment was done for 60 seconds in a 3:1 mixture of Isopropyl Alcohol(IPA):Methyl Isobutyl
Ketone (MIBK). The development was immediately followed by a 20 seconds rinsewith IPAand
then a final rinse for an additional 20 seconds with DI water. Following development, all three
samples were coated with approximately 100A of Gold to aid in the linewidth measurements. The
sampleswere then measured on the same SEM in which they were exposed.

4.0 Results and Discussion

Very few of the 50 and 75nm lines cleared (or remained for the case of equal L/S patterns).
Few of these fine features printed and only at the highest kV setting. Therefore the data on these
two drawn linewidths was not analyzed. This means that the variable of drawn line will be studied
atthree levels. This fact will be discussed later as relates to theresults of the analysis. Neglecting
this data, a total of 195 linewidth measurements were taken.

Characterization of factors affecting electron-beam lithography using regression analysis EE290W S95
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The dose to clear each feature varied greatly for different combinations of the other four vari
ables. This resulted in measured linewidth data that is no longer perfectly orthogonal. Also there
was not always three separate doses that resulted in patterns that cleared and remained in tact for
every combination of variables. Nevertheless, the data can still be analyzed with the use of linear
regression. Using the statistical software JMP, a model was fit to the measured linewidth data
using linearregression. This model consisted of only the 5 first order terms. Table 1 details the fit
of the model. Parameter estimates are given as well as the significance of each effect. It is clear
that linear regression resulted in an excellent model fit to the data. It can also be seen, either from
the t-ratio or the F-ratio, that the most significant parameter modeled here is the drawn linewidth
with an F-ratio of 373.95. It is to be expected that the most important parameter in determining
the dimension of the resulting line is what dimension it was drawn. Ideally, a model fit with drawn
linewidth leverage should have a slope of one. From table 1 we see that the coefficient is 1.16.
This canbe attributed to intra-proximity effects since each line in this experimentwas drawn with
multiple electron beam passes per single drawn line. The backscattered electron exposures are
cumulative for each pass so the larger lines that require more beam passes will tend to be overex
posed and result in "blooming" of the lines.

The next most significant variable is the exposure dose with an F-ratio of 134.88. The expo
sure dose determines the total numberof electrons thatare deposited into the resist. As mentioned
earlier, dose played a critical role in determining which features cleared and remained in tact.
Electron energy was the next most important variable with an F-ratio of 111.60. At higher electron
energies, electrons are more likely to penetrate through the resist and stop in the silicon substrate.
These electrons do not provide exposure dose to the resist and therefore do not aid in the scissor
ing action in the positive photoresist. Finally we see that resist thickness is much less significant
but still almost three times as important as linewidth pitch.

Response: MeasLW

Summary of Fit

Rsquare
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.682403

0.029272

0.162154

195

u V

Parameter Estimates

Term Estimate Std Error t Ratio Prob>ltl
Intercept 0.0270409 0.0144 1.88 0.0620
kV -0.005397 0.00051 -10.56 0.0000
tresist -0.00003 0 -5.87 0.0000
DrawrtLW 1.1602101 0.06 19.34 0.0000
Pitch 0.0355368 0.00963 3.69 0.0003
Dose 0.0006061 0.00005 11.61 0.0000

Effect Test

Sum of Squares F Ratio Prot»FSource Npar m DF

kV 1 1 0.09562502 111.6031 0.0000
tresist 1 1 0.02956206 34.5016 0.0000
DrawnLW 1 1 0.32041484 373.9533 0.0000
Pitch 1 1 0.01166108 13.6095 0.0003
Dose 1 1 0.11557207 134.8831 0.0000

Table 1. Linear regression model fit data
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Figure 3 shows a plot of the whole-model test plotted along with the 95% confidence limit
curves, the Analysis of Variance (ANOVA) table for the model, and finally a plot of the residuals
of the model. The model has an F-ratio of 81.22; clearly an excellent fit.

Clear groupings of the data are present. These are seen as horizontal lines on the whole-model
test andas diagonal lines on the plotof the residuals. This can be explained by the fact that during
the measurement, the linewidth measurements were discretized into steps of 25nm due to the res
olution limits of the SEM. The lines in the Whole-Model test are also in increments of 25nm.

Figure 4 plots the linearregression model and the data vs. 4 of the 5 experimental variables.
The plot of linewidth vs. kV shows a decrease in developed CD as the en^v k inrreaseH Thk

(Whole-Model Test )
,' J

t X

0.30-

>'/ /
0.25- m . »»^f y».

" %y0'
0.20"

•jjffl
"

0.15-
/y

• >*7* • • .

A* • I

0.10- ' 'A
f-y//..—

• ...

***/lA —- T —'—1—•—1—'—I—1
0.05 0.10 0.15 0.20 0.25 0.30

MeasLW Predicted

[Analysis of Variance )
Source DFSum of Squares
Model 5 0.34795431

Error 189 0.16194108
C Total 194 0.50989538

0.10-

0.08-

0.06-

0.04-J'-

S 0.02-

0.00-j---r-'5\..-V-(*--V-

-0.02

-0.04-

-0.06-

-0.08-1—>—i—i—i—•—i—•—r
0.10 0.15 0.20 0.25

MeasLW Predicted

^ •• • •

Mean Square F Ratio
0.069591 81.2189

0.000857 Prob>F

0.0000

Figure 3. Linear regression model and plot of model residuals

provides us with a measure of the combined intra and inter-proximity effects. As the electron
energy is increased, there is less scatter in the resist and substrate which leads to a more narrow
energy deposition profile. The plot vs. the leverage of resist thickness shows a slight negative
slope, indicating the minor effect of this variable. Extrapolating the linear fit, we find that it would
require an extra ~0.6|xm of resist to equal theeffect of increasing the writing energy by only lOkV.
The plot of measured vs. drawn linewidth shows a positiveslopeof almostone, as mentioned ear
lier. Finally the plotof model vs. line pitch provides ameasure of the inter-proximity effect. This
plot demonstrates the tendency for closely spaced lines to blur together. This is the result of the
summation of the forward and backward scattered electrons from each of the nearby lines. This
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Figure 4.

Linear regression model fit and data vs. experimental variables
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leads to overexposure and widens CDs upon development. Figure 5 plots the model fit and data
vs. dose The steep slope of the line confirms our earlier analysis that exposure dose is the most
significant factor, aside from drawn linewidth.

Table 2 lists the correlation coefficients for second order interactions between the main
effects. The highest correlation is seen between dose and theother variables; confirming the con
clusion that dose is the most significant effect besides drawn LW. Investigation into 3rd,4th, and
5th order effects revealed no significant linear cross-interactions. Further analysis using models
involving non-linear models is recommened.

At the outset of thisexperiment it was suspected that both exposure dose and electron energy
played a key role in determining developed feature sizes. However, it was not obvious which
played the larger role. Now it is clear thatexposure dose carries moreweight in the final outcome.
Prior to this experiment, it was also incorrectly thought that the thickness of the PMMAlayer was
critical to achieve ultimate resolution. It is now apparent that varying thethickness of the photore
sist layer would not have as much affect on the proximity effects and the developed linewidth as

D086 ]

0.30-

0.25-

£ 0.20-

1 0.15"

0.10-

0.05"

'/

1 ' 1 ' 1 ' 1
100 200 300 400

Dose Leverage

• 1
500

Effect Test ]
Sum of Square* F Ratio OF

0.11557207 134.6831 1

Prob>F

O.0OCK)

Figure 5.
Model fit vs. dose

varying the energy of theelectron source. It can be seen from thedata that CDdistortion resulting
from proximity effects can be reduced by the use of a higher kV source.

5.0 Conclusion

The main factors affecting theresulting linewidths in electron-beam lithography were ana
lyzed using linear regression. Regression was used to fit a model to measured linewidth data from
a 3 factorial experiment. This model contained the five variables of exposure dose, electron
energy, line pitch, resist thickness and drawn linewidth. The results of the analysis point to expo
sure dose as themostimportant factor, after drawn linewidth, in determining thedeveloped CD.

Characterization of factors affecting electron-beam lithography using regression analysis EE290W S95
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r, -\ \

Correlat ions

tresist DrawnLW Pitch DoseVariable kV

kV 1.0000 -0.0179 -0.0226 0.0277 0.6968

tresist -0.0179 1.0000 0.0653 0.0185 0.3431

DrawnLW -0.0226 0.0653 1.0000 0.1814 -0.2746

Pitch 0.0277 0.0185 0.1814 1.0000 -0.3881

Dose

>-

0.6968 0.3431 -0.2746 -0.3881 1.0000

Table 2.
Second-order Cross-term interaction correlation coefficients

From the analysis we obtained a measure of both the inter and intra-proximity effects. Elec
tron beam writing energy was found be nearly as significant as dose and played the major role in
reducing proximity effects by reducing the forward-scattered distribution width. As mentioned
earlier, the only 50nm and 75nm lines thatdid not wash out, for the caseof equal L/S pitch, were
the ones written at the highest electron energy. This provides us with another measure of the inter-
proximity effects.

Althoughline pitch plays an important role in determining the magnitude of the inter-proxim
ity effects, it was found thatit is possible to overcome thiseffect by the proper choice of exposure
dose. In fact current research is under way to find efficient methods for the calculation of dose
corrections to compensate for proximity effects [9,10,11,12]. The thickness of the photoresist
layer (PMMA) had comparatively little effect with respect to proximity effects and therefore the
resulting developed linewidths. The latter two are interesting results and were not anticipated.
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A Model for The Formation of Thin Film Anodized

Aluminum

Amy Wang

Models have been developed to predict the thickness of electrochemically-
formed aluminum oxide films and the effect of anodic films on a solid-state

acoustic sensor given film anodization conditions. A method of defining a
precise anodization area using photolithography was developed to allow
anodization on the chip level, simplifying data collection. Anodization
variables investigated include anodization voltage, electrolyte concentra
tion, post-anodization soaktime, and limiting current of the power supply.

1.0 Introduction

Porous anodized aluminum coatings are commonly used in a number of commercial applica
tions as decorative, corrosion-resistant, or insulating layers. We would like to use these porous
films as a method of increasing the surface area on the active region of a masssensor. Many stud
ies have reported the results of specific anodization conditions on films; however, it is difficult to
find comprehensive studies that explore the effects of a number of different anodization condi
tions on film characteristics.

Ultimately we would like to measure porosity orsurface area of the anodic films and develop
a model to maximize surface area through anodization conditions, but first we must investigate
the feasibility of coating a solid-state device with an anodic film on the micro-level and character
ize how addition of the film affects sensorresponse.

The device used in these experiments is the Flexural Plate-wave (FPW) sensor, which is a
solid-state, acoustic sensor. The key sensing element of the device is a thin plate through which
acoustic waves propagate. The velocity of these waves depends on the material characteristics of
the film. A thin film deposited on the plate alters thematerial properties of the plate resulting in a
change in acoustic wave velocity from that of abare device. This velocity change canbe detected
through a shift in resonant frequency of the device. The frequency shift measuredcan also be used
to extract qualitative information about the effects of anodization conditions on the material char
acteristics of the film.

2.0 Methodology

Two experimental designs were implemented. The first was an L9 orthogonal array with four
anodization variables (Table 1). Each input had three levels that were varied over the experimen
tal space. Response variables measured were film thickness and the shift in resonant frequency of
the sensor. Replicate runs were included to measure the experimental error. The second design
measured film thickness alone as a function of two anodization parameters, voltage and electro
lyte concentration. A full factorial experiment was performed with replicate runs. Input levels

A Model forThe Formation of Thin Film Anodized Aluminum EE290W S95
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were centered around typically cited values in the literature, and the order of experimental runs
and location of film formation on the wafer were randomized.

voltage, V
(V)

cone,C

(%)

soaktime,

S(min)
current, I

(mA)
thickness, t

(Eq.l)(A)
freq. shift,
(kHz) (Af)

10 15 0 50 4517 -140

20 15 15 150 4769 -150
10 5 30 150 3714 -170

10 5 30 150 3714 -150

15 5 15 50 3840 -50
15 10 0 150 4241 -140

15 15 30 100 4643 -190

20 10 30 50 4367 -60

10 10 15 100 4115 -160

10 10 15 100 4115 -150

20 5 0 100 $$66 -20

20 5 0 100 3966 -50

TABLE 1. L9 Orthogonal array for anodization variables to predict sensor frequency shift.

Anodizations were performedunder constantvoltage conditions. This method was deemed to
be more likely to give reproducible film thicknesses since the film simply grows until the voltage
drop across the film thickness is not sufficient to further the oxidation reaction. Thus, the first
input variable chosen wasanodization voltage. Thesecond variable waselectrolyte concentration,
which is known to affect film thickness and morphology. A sulfuric acid electrolyte was used
because it is the most commonly studied electrolyte that yields porous films. The last two vari
ables were notexpected to affect film thicknesses, but to control aspects of the film morphology.
Apost-anodization soak in 10%H2S04 solutionwas includedto determine if further contact with
the electrolytechanged the density of the film (increased porosity). A current limit was also set on
the power supply to limit the large initial current flow that occurs during constant voltage anod
ization. This could have possible effects on the morphology of the film during initial growth.
Experiments in which only voltage and electrolyte concentration were varied used a 100 mA cur
rent limit and no post-anodization soak.

3.0 Implementation

Anodization Technique. A method of spot anodizations on individual dies was developed to
form thin film anodized aluminum in lithographically specified areas on a wafer. For the first
experiment, aluminum was sputtered on a wafer with fabricated FPW devices. Photoresist was
spun on and patterned, exposing the active area of the sensor. The exposed aluminum was then
anodizedunder differentconditions. In the second experiment, aluminum was anodizedon a bare
silicon wafer toenable a more accurate measurement offilm thickness. Acontact area was opened
in the resist for electrode contact to the wafer (Fig.l). Since the areas were defined lithographi
cally, theanodized area and electrode geometry were repeatable foreach experiment.
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FIGURE 1. Experimental set-up for anodization on a single die.

Anodizations were performed at a probe station. A drop of electrolyte of desired concentration
wasdroppedover the exposedaluminum area. Surface tension and the physical barrier of the pho
toresist was sufficient to keep the drop confined to a single die. One probe contacted the defined
contact area on the die and the other was lowered into the electrolyte drop, completing the current
path. A Tektronix PS 5010 programmable power supply was used as a constant voltage source.
The current limit on the supply was also varied as an input parameter. Current was monitored dur
ing the anodization process using a multimeter. Zero current indicated completion of the anodiza
tion. With this method, a matrix of anodized films with different anodization conditions was
formed on a single wafer for evaluation of film thickness and sensor response.

Film Measurements. Film thickness was measured optically using the NanoSpec film thick
ness monitor. An index of refraction was assumed from literature values [1]. The frequency spec
trum of each device before and after anodization was measured using an HP 4195 Network
Analyzer and was captured using LabView [2]. The shift in resonant frequency between the two
spectra (Fig. 2) was determined by calculating the cross correlation between the two spectra on
Matlab [3]. The frequency lag yielding the peak correlation was taken to be the frequency shift.

FIGURE 2. Shifted frequency spectrum and cross-correlation between the two spectra.

frequency (MHz) frequency shift (kHz)
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The JMP [4] software was used to analyze the data and generate predicting models. A linear
model wasexpectedand confirmed for film thickness as a function of anodization parameters, and
significant effects were determined. Two aspects of the frequency measurement were examined:
1) a simple, empirical, linear model predicting frequency response for a film given anodization
conditions was developed, and 2) the relationship between film thickness and frequency response
was examined to determine if film thickness was the dominant effect in determining sensor fre
quency, or if other factors, such as film morphology also played a significant role.

4.0 Results and Discussion

Thickness Analysis. Several difficulties were encountered in measuring thickness of the anod
ized films. Initial optical measurements on the device wafer did not give physical values. We
attribute this experimental error to the sensitivity of the optical measurement to reflectivity of the
underlying surface, which was unknown.Analysis of the frequency data showed anodization volt
age and electrolyte concentration to be the most significant effects on sensor response, as was
expected. Consequently, a second experiment was performed varying only voltage and concentra
tion conditions. These anodizations were formed on a bare silicon wafer so that the underlying
layer would have a known reflectivity and accurate thickness measurements could be taken.

A linear model was sufficient to predict film thickness. Physically, film thickness increases
with the amount of current that is passed during the anodization process [5]. Thus, increased
anodization voltage and electrolyte concentration both result in thicker films. Final results gave
the following model,

Thickness = 3128 + 25.2 V + 70.1 C.

(±260) (±14.3) (±12.7) (1)

JMP analysis is shown in Figure 3. The results show insignificant lack of fit. Likely reasons
for the non-reproducibility of film thicknesses are measurement error in assuming a constant
indexof refraction for all optical measurements. A better method wouldbe to use a technique that
allows measurement of index of refraction as well as thickness. There is also film non-uniformity
overthe area anodized causing variance in thickness measurements. This is a disadvantage of the
spot anodization technique, which does not allow mixing of the electrolyte. Residual analysis
shows the error to be random.

It is unexpected that the anodization voltage does not play a more dominant role in determin
ing the thickness of the film (F Ratio = 3 vs. F Ratio = 30 for the concentration parameter). It is
possible that the aluminum thickness (0.25 |im) was insufficient for this characteristic to manifest
itself to its full extent. In other words, in an infinitely thick film of aluminum, the oxidation pro
cess would proceed until the barrier potential for further oxidation exceeds the anodization volt
age,but in this situation, the supply of aluminum is depleted or electrical contact is broken before
this point is reached. This would explain the large significance of the intercept in comparison to
the othereffects, indicating that the oxide thickness is dominated by the initial aluminum thick
ness. However for the applications of interest for the sensor, we are interested only in very thin
alumina films so that they do not drastically change the characteristic device response and so we
subsequently only studied very thin films.

Sensor Response. In the first analysis, we form a simple, linear model predicting frequency
shift for given anodization conditions. The analysis summary is shown inFig. 4. It is interesting to
notethat although voltage and concentration are still themost significant effects, post-anodization
soak time and the current limit are also significant, indicating that film morphology also affects
the observed frequency shift. The model predicted is as follows,
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Af = -63.6 + 6.83 V - 7.82 C - 0.661 - 0.99 S

<±21.3> (±0.89) (±0.93) (±0.10) (±0.31) (2)

The lack of fit in this model was good and the intercept term is less significant than in the
thickness measurements. Potential experimental error lies in the lack of resolution of capturing
the frequency spectrum on the network analyzer. Only a shift of 10,000 Hz could be resolved. A
better method of measurement would be to oscillate the device and measure frequency on a
counter with better resolution; this, however, would make data acquisition decidedly more diffi
cult.

In the second analysis we relate film thickness predicted from Eq. 1 with frequency shift mea
surements to determine if the observed response was primarily a function of film thickness. This
would indicate that the dominant cause for frequency change was due to the change in flexural
rigidity of the plate (a function of Young's modulus of the film).

The fact that the frequency shifts are all negative suggests a reduction in Young's modulus of
the film, which is likely since pure aluminum is much stiffer than aluminum oxide [1]. In other
words, as the aluminum film is anodized and converted to aluminum oxide, the composite
Young's modulus of the sensor plate is reduced. An upward frequency shift would indicate a
reduction in density of the film. If one effect were dominant of the other, the shift in frequency
would increase with film thickness. However, we observe the reverse effect, which leads us to
believe that as the film grows, the density effect becomes more significant and results in an
upward frequency shift.

Fig. 5 shows plots of frequency shift versus voltage for constant electrolyte concentrations. A
very simple physical model relating frequency shift to film thickness has a parabolic relationship.
Although there are not enough data points to accurately fit a model for the relationship, it is inter
esting to note that the concavity of the curves change as concentration increases. This shows that
there is a critical point where density effects become more prominent over the reduction in com
posite plate rigidity. Indeed, studies have shown that increased electrolyte concentration reduces
density of the film and increased thickness also results in reduced density [6]. The density is
inversely proportional to the sensor frequency; thus, the reduced density with increasing thickness
agrees with the upward frequency trend shown in plots (a) and (b). However plot (c) shows a dif
ferent behavior that exhibits an inflection point. A possible interpretation of this data is that this
point reflects where density effects become significant, resulting in an upward frequency shift.
However there are really not enough data points to make this assertion.

5.0 Conclusions

Models were developed for predicting thickness of an anodized aluminum film and the effect
of the film on resonant frequency of a sensor for given anodization conditions. A method of per
forming anodizations on individual sensors was developed and implemented. The models agree
with physical behavior observed in anodic films studied in literature references. These models
enable us to characterize sensor response and choose desired anodization conditions when the
sensors are used for mass detection.
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Response: Thickness

Summary of Fit
Rsquare
Root Mean Square Error
Mean of Response
Observations (or Sum
Wgts)

Lack of Fit

0.808512

174.9795

4271.636

11

22

Source

Lack of Fit

T3F Sum of Squares Mean Square F Ratio

104870.06

140072.67

17478.3

70036.3

H2155"
Pure Error

Total Error

Prob>F

244942.73 0.9215

Parameter Estimates

Term Estimate Std Error t Ratio Prob>ltl

Intercept 3128.5714 260.378 12.02 0.0000

voltage 25.2 14.287 1.76 0.1158

concentration 70.130952 12.6641 5.54 0.0005

Effect Test

Source Nparm T3F^ Sum of Squares F Ratio Prob>F

voltage 1 1 95256.00 3.1111 0.1158
concentration 1 1 938057.82 30.6670 0.0005

Analysis ofVariance
Source" DF Sum of Squares Mean Square F Ratio

Model 2 1034213.8 517107 16.8841
Error 8 244942.7 30618 Prob>F

C Total 10 1279156.5 0.0013
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o-

-200-

Residuals
ouuu

Whole-Model Test /

4750"

' * /

4500" --y --""
4250-

/ / y''

4000-

3750"

• / /

* i i i i
-400 i i i i i

3500 3750 4000 4250 4500 4750 5000

thickness Predicted
3500 3750 4000 4250 4500 4750 5000

thickness Predicted

FIGURE 3. JMP analysis for thickness model.
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Response: Frequency

Lack of Fit

Source

Lack of Fit

Pure Error

Total Error

DF Sum of Squares
454.3307

700.0000

1154.3307

-23

Mean Square
113.583

F Ratio

0.4868

233.333 Prob>F

0.7510

Parameter Estimates

Term Estimate Std Error t Ratio Prob>ltl

Intercept -63.70079 21.2018 -2.99 0.0202

voltage 6.8293963 0.88917 7.68 0.0001

cone -7.826772 0.93427 -8.38 0.0001

current -0.657218 0.09063 -6.60 0.0003

soak time -0.990376 0.31347 -3.16 0.0159

Effect Test
Source Nparm DF Sum of Squares F Ratio Prob>F

voltage 1 1 9728.151 58.9927 0.0001

cone 1 1 11573.273 70.1817 0.0001

current 1 1 7175.902 43.5155 0.0003

soak time 1 1 1645.906 0.0815 0.0159

Summary of Fit

Rsquare 0.967836

Room Mean Square Error 2.84151

Mean of Response 119.167

Observations (or Sum
Wgts)

12

Analysis ofVariance
Source DF Sum of Squares Mean Square F Ratio

Model 4 34737.336 8684.33 52.6628

Error 7 1154.331 164.90 Prob>F

C Total 11 35891.667 0.0000

Whole-Model Test

•150 -100 -50

frequency Predicted

FIGURE 4. JMP analysis for sensor frequency shift.
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FIGURE 5. Sensor frequency shift vs. thickness for fixed concentration levels.
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Ion Implant Damage Study Using a Factorial Design

Donggun Park

Factorial design ofexperiment isapplied for the study ofthe charging dam
age during the high current ion implantation process. The effects of dose,
pattern size, and capping oxide are selected as the experimental factors to
be studied in two levels. The MOS capacitor structures which have
LOCOS isolation are used for the measurement of the interface trap gener
ation. Implantation dose is the most significant factor to the damage. The
Dose of lxlO16 cm*2 with capping oxide 85nm, as a suggested process inte
gration condition, dose not show any damage.

1.0 Introduction

IonImplantation is oneof themost important processes forVLSI integrated circuitfabrication
because of its ability to control the precise amount of impurities. However, the ion implantation
process is also very expensive. Especially the high current ion implantation process for the tran
sistorssource and drain formation takes long time and is a bottleneck process in the IC fabrication
line. This process is intentionaly slow in order to prevent the devices from the charging damage
during the ion implantation. A decade ago, when the charging damage was shown by studies of
the oxide breakdown, the ion beam current was higher than 10mAto reduce the process time.
Since then ion beam current of high current implant process has been reduced down to 1mA, and
electron shower was introduced.[l] And the ion implantation is known as not only a time-consum
ing process but also a most expensive process. Recently some academic studies on the ion
implantationcharging damage were reportedshowingthat there is a charging damage typically on
the very large size of antenna ratio (ratio of gate poly pattern to the active oxide area) from the
oxide breakdown data.[2,3] In this study the charging damage will be studied in terms of the inter
face trap generation which is more sensitive in detecting the charging damage than the oxide
breakdown comparison.[4] The important factors of the ion implantation for the process integra
tion of ICs will be discussed including the interaction effects between the factors. In addition, we
will draw conclusions from the quantitative study of the effects and the possible process integra
tion conditions, which could improve the manufacturing efficiency without any charging damage.

2.0 Methodology

A two level three factor factorial design of experiment was implemented for the study of the
ion implantation charging damage study. Three test chips from the wafers were measured and
averaged as the data of the experiment. The factors are ion implantation dose, antenna ratio, and
capping oxide on top of the gate polysilicon. The significance was estimated by the standard error
calculated from the insignificant higher order interaction effects, and also the normal probability
plots were used for the estimation of the significance of the effects and residuals. The analysis of
variance(ANOVA) was performed for the quantitative estimation of the significance of the effects
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compared to the error. [5,6] The three factors and their levels used in the two stages are listed in
Table 1.

Level Implant Dose Antenna ratio Capping oxide

+ 3xl016cm'2 14:1 Onm

- lxl016cnr2 1.6:1 85 nm

TABLE 1. Factors and levels for the factorial experimental design

3.0 Implementation

The p-type silicon wafers were processed with the LOCOS process for the isolation between
the capacitors in the Berkeley microfabrication laboratory. The field oxide and the gate oxide
thickness were 400nm and 12nm, respectively. Threshold voltage control ion implantation was
applied using 1.9xl012, 60KeV, and 4$BF2+. The deposition of in-situ n+-doped polysilicon was
followed by the deposition of 85nm oxide using CVD LTO process. Using photolithography and
etching thegate polysilicon were patterned and also the capping oxides were selectively removed
by HF etch. Finally, the wafers were implanted with the conditions of 75As+, 60KeV, electron
flood gun current 40mA, and ion beam current of 8mA using NOVA 10-80 high current ion
implanter.

The samples were measured to get the data ofthe initial interface trap densities before they are
sent for the ion implantation. The quasi-Capacitance Voltage measurement technique was applied
toget the Low-frequency CV data. The interface trap generation ofeach sample was calculated
from the CV curves using the relation of

1 -1
1 -A

(1)
ox ox J

where Cf is capacitance after ion implantation, Q is the initial capacitance, Cox is the capacitance
ofaccumulation status, and Nit is interface trap density as afunction ofthe surface potential.[7]
Thesurface potential, 4>s, is calculated using

O

vftA ox/

dV (2)

where Vg is thegate voltage, and V^ is the flat band voltage.[8]

Fig. 1shows the test patterns which were used for this experiment. The active area used here
is80x80um2,while the gate poly patterns are lOOxlOOum2 (Antenna Ratio 1.6:1) and 300x300um2
(Antenna Ratio 14:1).

Ion Implant Damage StudyUsing aFactorial Design
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FIGURE 1. Vertical structure of the test devices. Capping oxide on top of the polysilicon
gate is one of the factors to be evaluated in this experiment.

4.0 Results and Discussion

The CV curves in Fig. 2 show that the minimum capacitance increases due to the addition of
the capacitance which is due to the generated interface traps. The interface traps are generated by
the tunneling currentpassing through the thin gateoxide during the high current ion implantation
charging.
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FIGURE 2. CV curves show the changes in minimum capacitance and shape due to the
charging damage. Large charging damage is shown at 3xl016 cm*2 dose.
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The data which werecalculated from theequations (1) and (2) are summarized in Table 2. The
effects of each factors and the interaction terms are extracted using Yate's algorithm. The esti
mated variance for each test conditions within wafer is 0.047, which is good enough so that we
can choose the average value for the estimation ofthe effects. The generated interface trap density
data were transformed by taking natural log to the densities because the difference between the
low values and high values was very large.In addition, this transformation helped linearizing the
effects. The analysis wasperformed using the raw data andseveral forms of the transformation to
find that the transformation in the logarithmic scale is the most sensitive and easier to interpret.

Fig. 3 shows the normal probability plots of the effects and the residuals. Only the effects of
Dose, Capping oxide, and the interaction ofDose and Capping oxide are significant, as they fall
far from the line passing through the other points. Therefore the model can be expressed as the
equation (3),

Y = 23.5 + 1.97D + 1.47C - 1.65DC (3)

On the other hand, the normal probability plot of the residuals lie approximately along a
straight line, we do not suspect any severe non-normality in the data. There are no indications of
severe outliers. Also the standard error calculated with the insignificant factors is 0.636. Again,
we can conclude with approximate 95% confidence intervals, that the effects of Dose, Capping
oxide, and DC interaction term are important while the restof the effects are not.
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Implant
Dose

Antenna

Ratio

Capping
oxide

log(Nit)

(log(cnr2))
(1) (2) (3) Divide Estimate Identifi

cation

-1 -1 -1 18.42 42.87 88.13 187.97 8 23.5 AVG

-1 -1 24.45 45.26 99.84 15.75 4 3.94 D

-1 1 -1 18.42 49.31 14.45 3.62 4 0.90 A

1 -1 26.84 50.53 1.31 2.26 4 0.57 DA

-1 -1 24.29 6.03 2.39 11.71 4 2.93 C

-1 25.01 8.42 1.23 -13.14 4 -3.29 DC

-1 1 24.97 0.72 2.39 -1.16 4 -0.29 AC

1 25.56 0.59 -0.13 -2.51 4 -0.63 DAC

TABLE 2. Calculation of the effects using Yate's Algorithm. The estimated within-wafer
variance (s2) is 0.047, which is calculated from the data of 3 dies on a wafer.
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FIGURE 3.Normal Probability plots for the effects and the residuals. It is obvious thatonly
the factors of D,C, and DCare the significant factors from the plots.

Fig. 4 shows that the large positive effect of interface trap generation occurs primarily when
capping oxide is at the low level (85nm). If we use the capping oxide on top of the polysilicon
with low level ofdose, the charging damage can be prevented. However, ifwe use the higher level
of dose, then either capping oxide thickness levels will provide higher trap generation levels.
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25.3(C)

24.7 (A")

FIGURE 4. Interaction plots of theeffects showing that the dose isa primary effect onthe
charging damage. The 95% confidence intervals of the effects are shown.
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The analysis of variance summarized in Table 3 confirms the significant factors which were
founded from the normal probability plot. The factors, D, C, and DC, are important even at the
1%level. (F0.o,,i,4 = 21.2)

TABLE 3.Analysis ofVariance for the factors ofcharging damage due to ion implantation

Source of

Variance

Sum of

Squares

Degrees of

Freedom

Mean

Square
Fo

D 31.02 1 31.02 38.4

C 17.13 1 17.13 21.2

DC 21.59 1 21.59 26.7

Error 3.23 4 0.81

Fo.oi,i,4 - 21.2, F0025>if4 = 12.22, F005tM = 7.71, F0 u 4= 4.54

5.0 Conclusions

Afactorial experiment was usedfor the study of ion implantation charging damage in terms of
the interface trap density. The factorial experimental design shows obvious results as well as the
confidence level. The normal probability plot of effects and residuals is a very useful tool in dis
covering the significant factors. The dose is primary factor to the interface trap generation. And
also the capping oxide on the gate electrode will protect the gate oxide from the implantation
charging damage, when the dose level is low enough. For example, with the dose of 2xl016 cm*2
and capping oxide 85nm, the interface trap density is increased by 4xl09 cm"2, which leads the
threshold voltage shift of 2.4mV. Finally, the antenna ratio levels chosen in this experimentmight
be too close to have significant effects on the output.
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Modeling Plasma-Immersion-Ion-Implantation ByA
Response Surface

Jiang Tao

In this project, a Response-Surface Method has been used to study and
model the dependence of ionization efficiency of 0+ and02+ ions in oxy
gen plasmaon experimental variables (microwave power, oxygen flow rate
and magnet current). Through this analysis, an optimized plasmacondition
has been found which can be used in the SIMOX formation process and to
solve the multiple ion implantation problem associated with the Plasma-
Immersion-Ion-Implantation (PHI) system.

1.0 Introduction

Recently, extensive research efforts have been focused on SOI (silicon-on-Insulator) technol
ogy mainly because SOI CMOS technology is much simpler than bulk CMOS technology and the
absence of latch-up, the reduced parasitic source and drain capacitance. In addition, the ease of
making shallow junctions will extend the CMOS performance limits beyond scaling limits in bulk
CMOS [1]. SIMOX (Separation by Implanted Oxygen) was the first and leading method to pro
vide ultra-thin silicon monocrystalline film on top of Si02. It has been generally believed that
there is a tremendous promise for SOI technologies as CMOS scaling advances beyond 0.25p.m.

The availability of low-cost, low-defect density SOI substrates with Si thin film thickness of
about 1000A is the key bottleneck inthe widespread use of SOI inthe IC industry. Within the past
few years, there hasbeen significantprogress in the material quality. It has been demonstratedthat
the dislocation density in SIMOX is a steep function of oxygen implant dose [2]. Further, it is
known that when the implant dose is below "critical" dose, less than 1000defects/cm2 can be
achieved. This critical dose is a function of the implant energy and decreases below lxlOI8/cm2
as the implant energy is reduced [2]. Therefore, by optimizing ion implantation conditions, the
dislocation densities in SIMOX can be significantly reduced. Now, the main challenge is the sup
ply of high quality SIMOX substrates at low cost. Nowadays the commercial SIMOX substrate
costs about $200/per wafer compared to about $30/per wafer for normal bulk Si. This is mainly
because of the high cost of the conventional ion-implanter and their limitations in ion current and
beam area.

A novel ion implantation technique is Plasma-Immersion-Ion-Implantation (PHI), which has
the advantages of simple machine design, low cost and high throughput. This method has been
proposedrecently, and is expected to have a wide application in SIMOX technology. In this tech
nology, oxygen plasma is generated by an ECR source, and oxygen ions diffuse into the process
chamber where they are extracted directly from plasma in which the wafer holder is located.
Implantation is achieved as the positively charged ions in the plasma sheath are accelerated
toward the wafer as shown in Fig.l. The space charge region between the plasma and a negatively
biased target can sustain a potential difference up to lOOkV, with an implantation flux as high as
1016/cm2-sec. There is no mass selection or ion optics in this technology, and the complexity of
the implant machine is greatly reduced. The implantation area can be quite large, and a large
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workpiece can be accommodated without scanning the beam. The simple machine design, high
throughput, and small reactor size make PHI a good candidate for cluster tool implantation.

''bias

Magnets Soft Iron Shielding Wafer Holder

Assembly

Mode

Converter

2.45GHz T Source Chamber
uWave
Input •

FIGURE 1. Schematic plot of the PHI system
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FIGURE 2. (a) Oxygen concentration profile calculated from RBS measurement on the as
implanted wafer and (b) XTEM micrograph of the double buried oxide layer formed after
annealing.

However, oxygen plasma consists of both 02+ and 0+ ions. Because the mass of 02+ is twice
that of 0+, the projected range Rp will be roughly two times different for these two kinds of ions.
Therefore, it will form two discrete peaks after the implantation as shown in Fig.2, which shows
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two separate Si02 layers were formed after thermal annealing. This has been a major problem
since low implantation energy was required in order to form very thin top single crystalline Si.

In this project, the response-surface method was used to study the effects of process condition
on plasma composition, and establish a mathematical relationship between process variables and
the ratio of O+ and 02+ ion density and find the process conditions that can maximize this ratio.
In other words, we seek to optimize this process so that only one kind of ion will dominate in the
plasma.

2.0 Experimental Design

In PHI technology, plasma is generated by an electron cyclotron resonance (ECR) source
powered by a 2.45GHz microwave power supply (xl) and a matching network (magnet field,
which is controlled by the magnet current x3). The ion generation efficiency will be determined
by xl, x3 and oxygen flow rate x2 (these are also the only adjustable variables in experiment). A
20-run experimen
it is shown in Tab

Table I. Experimental

Run

was designed in order to perform full resolution surface response analysis, and

Design

ock

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

xl x2 x3 comment

-1 -1 -1 FF

-1 -1 1 FF

-1 -1 FF

-1 1 FF

-1 -1 FF

-1 1 FF

-1 FF

1 FF

-1.682 0 0 Axial

1.682 0 0 Axial

0 - 1.682 0 Axial

0 1.682 0 Axial

0 0 •1.682 \ Axial

0 0 1.682 Axial

0 0 0 Center

0 0 0 Center

0 0 0 Center

0 0 0 Center

0 0 0 Center

0 0 0 Center

The levels of the variables in coded units were:

code x1(microwave power (W))x2 (gas flow rate (sccm))x3 (magnetic current(mA))
1 500 40 220

0 400 30 210

-1 300 20 200
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The ion density was measured by using Mass Spectrometry (SXP 500). By setting the mass at
16 or 32 amu (atomic-mass-unit), we can measure the ion density of 0+ or 02+. Therefore, for
each run, I measured 0+ and 02+ ion densities separately bychanging the mass selection.

3.0 Results and Discussion

To carry out the experiment, the real experiment run sequence has been randomized as
shown inTable n. The measured ion density ratio of 0+ and 02+ is also shown inTable n.
Table II. Experimental Results

Run xl x2 x3 ratio(0+ /

1 0 0 0 1.0875

2 1 1 1 1.5964

3 -1 -1 -1 1.0426

4 0 0 0 3.1784

5 -1.682 0 0 0.6923

6 0 0 -1.682 0.3288

7 0 0 0 1.6544

8 -1 1 -1 0.6821

9 0 0 0 0.7641

10 0 -1.682 0 5.2035

11 1 1 -1 0.4582

12 -1 -1 1 2.8622

13 0 1.682 0 0.8542

14 1.682 0 0 1.4168

15 -1 1 1 0.9221

16 0 0 1.682 0.9316

17 0 0 0 0.4285

18 1 -1 -1 1.0115

19 1 -1 1 2.7091

20 0 0 0 1.7928

We used the JMP statistical analysis software to analyze the data, and try to fit the data to dif
ferent models. First, I fit the data to a factorial model, and found that xl, xl*x2, xl*x3, x2*x3,
and xl*x2*x3 are not important terms. By ignoring these terms, I tried to build different models
in order to get the best fit. Based on some theoretical and fundamental understanding of plasma
chemistry, I found the best model that fits the experiment data is:

Y(ratio)= 1.1 - 0.826X2 + 05585X22 + 0.4326X3 (1)
(±0.234) (±0.221) (±0.213) (±0.221)

The fitting results are shown in Table in. The physical explanations are following:

(1) From this model, we can see the ion density ratio (O+ /02+) is independent of microwave
power (xl) in our experiment range (300W to 500W). This is because from plasma chemistry
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point of view, there exists a critical power for generating 0+ and 02+ ions in oxygen plasma.
When the microwave power is larger than this critical power, the plasma chemistry, i.e. generation
of 0+ and 02+ ions and electrons, will not be affected by the input microwave power. From this
experiment, we found the critical power to be below 300W in our plasma system.

Response: Ratio

Summary of Fit

0.606427

RootMean Square Error 0.816946
Mean ofResponse 1.480896
Observations (or Sum Wgts) 20

Lack of Fit

Source

Lack of Fit

Pure Error

Total Error

DF

5

11

16

Sum of Squires
5.089335

£.589080

10.678416

Mean Square F Ratio
1.01787 2.0033

0.50810 Prot»F

0.1565

Parameter Estimates

Term

Intercept
Surface:X2

Surface:X2'X2

X3

Effect Test

Estimate

1.0995572

•0.826132

0.5584577

0.4326388

Std Error

0.23362

0.22106

0.21326

0.22106

t Ratio

4.71

•3.74

2.62

1.96

ProMtl

0.0002

0.0018

0.0186

0.0680

Source Nparm DF Sum of Squares
Surface(X2) 2 2 13.897335
X3 1 1 2.556240

F Ratio Prob>F

10.4115 0.0013

3.8301 0.0680

hole-Model Test

6"
* /

5"

4"

i /

i /

2
a

3"

i /
* i / .

' / '*
i A «•'

/ /• +'

2-

'*'/-'''
/1' •'

./ »
A ' *

01r i i i i i
12 3 4 5

Ratio Predicted

[Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 3 16.453574 5.48452 85177
Error 16 10.678416 0.66740 Prot»F
CTotal 19 27.131990 0.0015

urface(X2)

(2) From this model, we can see the ion density ratio (0+ /02+) is linearly dependent on the
magnet current (x3) or the magnet field. This is because by changing the magnet field, the ECR
zone location (or plasma location) will be changed. Therefore, the ion loss to the aluminum cham
ber wall or the ion density will be affected.

(3) From this model, we can see the ion density ratio (0+ /02+) is strongly dependent on oxy
gen gas flow rate or the chamber pressure. This is because plasma chemistry strongly depends on
oxygen source concentration. By changing the oxygen flow rate or the available oxygen to gener
ate plasma, the generated ion density can be greatly varied.

Fig.3 shows the 3-D plot ofEq.(l), and we can see that the optimal condition for SIMOX pro
cess is set x2 at the lowest level and x3 at the highest level.Fig.3 3-D plot ofthe ratio of0+/02+
as a function of oxygen flow rate x2 and magnet current x3.

4.0 Conclusion

In this project aResponse Surface method has been used to study oxygen plasma conditions in
aSIMOX formation process. Amodel has been developed to model the ratio of0+/02+ as afunc
tion of process variables (microwave power, oxygen flow rate and magnet current). The results
show that microwave power has little effect on the 0+/02+ ratio. The physical meaning of this
model has been briefly presented. By using this model, it is found that bysetting oxygen flow rate
to the lowest level and the magnet current to the highest level in our experiment range, we can
achieve theoptimal plasma condition for aSIMOX formation process.

Modeling Plasma-Immersion-Ion-Implantation By A Response Surface EE290W S95



38

Acknowledgment

I would like to thank my colleagues S. Sundar Kumar Iyer for helping me set up the Mass
Spectrometry to carry out the experiment, Xinhui Niu for helping me use the JMP software to
analyze the experiment data, andprofessor C. Spanos for guidance and valuable discussions.

References

[1] J.R Colinge, «Silicon-on-Insulator Technology: Materials to VLSI», Kluwer Academic
Publisher, 1991.

[2] S. Nakashima, et al., Proc. 5th International Symposium on SOI Technology and Devices,
Electrochem. Soc, vol.92-13, p.358,1992.

FIGURE 3. Fig.3 3-D plot of the ratio of 0+/02+ as a function of oxygen flow rate x2 and
magnet current x3.

Modeling Plasma-Immersion-Ion-Implantation By A ResponseSurface EE290W S95



-39-

Multiple Data Streams in Real-Time Multivariate

Statistical Process Control

Herb Huang

A real-time multivariate statistical process control (SPC) methodology
using time-series filters and multivariate analysis techniques has been pro
posed and implemented by previous authors. This paper first describes the
methodology, and then attempts to expand its scope to include multiple,
asynchronous data streams; in addition, some practical issues are resolved.
The work is incorporated into a commercially available software package
that employs these techniques. Examples using data from a plasma etcher
are given.

1.0 Motivation

The real-time SPC methodology described in the next section has been shown to be useful for
monitoring equipment faults. However, it has the following limitations:

1. It is limited to synchronous data, i.e.,datain which all measurements are sampled at the same
times and at equal time intervals.

2. The models created may be inappropriate.

In addition, the following practical limitations are observed when the methodology is imple
mented into software:

1. Scaling is needed when data streams vary greatly in absolute value, otherwise numerical
round-off errors become substantial.

2. Extremely large data setsmust be compressed in order to fit intocomputer memory.

This work addresses items#1 in both of the above lists. The goal is to allow real-time SPC of
all types of data streams. In principle, there should be no limit to the number of data streams that
can be analyzed. To this end, a method of synchronizing multiple datastreams is presented. Also,
scaling is implemented into thesoftware, so that data streams with greatly varying absolute values
can be accommodated.

The remaining issues are the subject of ongoing research.

2.0 Introduction

Traditional control charts use measurements that are assumed to be independent from one
sample to the next [1]. Themeasurements are then plotted on a chartandpoints which fall outside
a set ofcontrol limits are considered tobe"out-of-control." Incontrast, the data which this paper
considers are real-time data that violate the assumptions of independence. The data are, in fact,
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highly auto-correlated (correlated between samples), as well as cross-correlated (correlated
between variables). Therefore, traditional control charts can notbe applied directly on these data.

The real-time SPC methodology used for this work will nowbe described. This methodology
has been implemented in a commercially available software package, known as RTSPC. For a
more complete description, see the original authors' text [2][3] [4] [5]. The methodology can be
separated into two parts: system modeling and fault detection.

2.1 System modeling

Before faults can be detected, the system to be controlled must be characterized with in-con-
trol data. These data are assumed to represent the normal operating mode of the system. System
modeling consists of the following steps: 1) selection of signals, 2) identification of time-series
models, 3) estimation of model parameters, and 4) calculation of the covariance matrix of the
model residuals. The selection of signals and the identification of the time-series models are diffi
cult in general. Moreover, they often require subjective decision-making and employ physical or
intuitive knowledge. The selection of signals may require a designed experiment or some kind of
trial and error [6].

Assuming the desired signals have been selected, the next step is to model them with time-
series models. The models used are also known as ARIMA models. Much literature is available
on these models[7][8][9][10][ll][12][13][14], thus this paper will only briefly introduce them. In
short, the models are of the general form:

4> (B) wt = Q(B) at (1)
p q

(t>(B) =l- x v*«e<*> =*- X e***
k=\ k=l

wt =Wdzrd>0
Vzt = zt-zt_vB zt - zt_k

where zf are the data, w are the differenced data, and a are the prediction errors.

The identification of time-series models and estimation of the model parameters have been
implemented into an automatic model generation program by [4]. The method used in RTSPC for
identifying time-series models is based on the modified Yule-Walker equations, augmented with
known heuristics and experience with the selectedsignals [4] [16]. Once the models are identified
for each signal, the model parameters areestimated and the covariance matrix of the model resid
uals are calculated. Together, the models and the covariance matrix characterize the system.

2.2 Fault detection

2.2.1 Overview

Fault detection uses the results from the system modeling to monitor the operation of the sys
tem andgenerate alarms when the system has deviated from the previously modeled state. A sim
ulation tool developed at the University of California, known as Ptolemy [15], will be used as a
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framework in which to discuss the faultdetection algorithm. This framework was chosen because
it allows a high-level signal-processing view of theSPC methodology and, at the same time, illus
trates some of the practical issues involved with implementing it into a software utility.

Real-Time SPC

Real-time ARIMA

data filters grouping

*RM<A 'I atvffage^

^—^—X
3l^^^ I WMA ' «wlftage^

FIGURE 1.

Commutator

Hotellings
TA2

-:* I
rkSlider

upper
control

limit

l<itcoodlioo»Ol

Control
Chart

rxBarGrap'

Play *

Alarm

FIGURE 1.shows anoverview of the real-time SPC methodology. ThePtolemy diagram con
sists of blocks (also known as "stars" in Ptolemy) that each process their inputs and then send
their outputs along the connecting link to the next block. The left-most blocks in the figure
("ReadFile") read data from a file on disk. The figure shows only three streams of real-time data
corresponding to three different sensors, but any number can be supported. The data then feeds
into the ARIMA filter blocks, which use the previously calculated time-series models. These
models forecast the output for each sample, which is then subtracted from the actual value to
result in the forecasting residual. The result of a ARIMA filter is to whiten the data, i.e., to remove
autocorrelation from the data.

After ARIMA filtering, the data is grouped to adjust the sensitivity of alarms. The group size
is adjustable by theuser. A high group size averages the data, thus smoothing it.

In RTSPC, there are actually two ARIMA models for each variable; one is a seasonal model
(between wafers), and the other is a non-seasonal model (within wafer). The entire procedure
shown in FIGURE 1. is simply repeated for each of the two models, using different group sizes.
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After grouping, the output of the three streams feeds into the "Commutator." The purpose of
this block is to interleave the three streams into one. The interleaved stream is fed into the
"Hotelling's TA2" block, where the T2 statistic is calculated. The T2 statistic is then fed to a
graphical plotter, as well as a decision block, which checks to see if the statistic has crossed the
uppercontrol limit. The uppercontrol limitinFIGURE 1.is given by the "TkSlider" block, which
allows the userto adjust theupper control limit as desired. The theoretical upper control limit for
the T2 statistic is related to the F-distribution and depends on the Type I error, a, the number of
samples, N, andthe number of monitored variables, r [1]:

UCL - plN-UF
When an alarm occurs, the "Alarm" block is triggered.

2.2.2 ARIMA filter

The ARIMA filter block is shown in FIGURE 2. The filter consists of three "FIR" (finite
impulse response) blocks. The diamonds placed on the connections denote delays (i.e., the back
ward shift operator). The user must fill in the actual model parameters (not shown in the figure)
obtained from system modeling. The first FIR performs differencing, the second calculates the
auto-regressive (AR) portion of the model, and the third calculates the moving average (MA) por
tion of themodel. The output is the forecasting residual. The overall filter corresponds to a ratio
nal transfer function [16][17].

ARIMA filter

Suh t :id

Sub

SZfl^^^

residual

mean AR MA

FIGURE 2.

2.2.3 Hotelling's T2

The calculation ofthe T2 statistic is shown in FIGURE 3. The input to this block is an inter
leaved stream of data, and the outputs are the scalar values of the statistic. The block at the bot
tom-left labeled "Covariance Matrix" is the covariance matrix calculated from the residuals of the
in-control models. If x is the input (column) vector, then:

T2 = nxTSrlx

where n is the group size (a scalar) and S is the covariance matrix.
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3.0 Implementation

The two important modifications required are the synchronization of data streams and the
scaling of data. Synchronization of data streams is required in order to incorporate multiple data
streams into a single analysis. Scaling of the data is important to maintain an acceptable numeric
precision when using digital arithmetic. Another more practical (and perhaps just as difficult)
problem is the management of limited computer memory.

3.1 Synchronizing data streams

An example pair of datastreams is drawn inFIGURE 4. to illustrate the problem of asynchro
nous data streams. In the figure, Data A and Data B represent two streams of data. Each stream
has its own sample times and is not necessarily sampled at regular intervals. However, the real
time SPC methodology describedabove requires that all data streams be sampled at identical and
equally spaced times.

The proposed synchronization method is to linearly interpolate between measurements and
take samples of all measurements at equally spaced times. The linearinterpolation is given by:

y.-v^(vy0 (3)
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where s is the desired sample time and t. < s < try. From the figure, the method is easily
seen pictorially. If the desired sample times are 1, 2,3,..., then the method consists of simply tak
ing the samples as the points that cross the vertical lines extending from each sample time.

Different sample times

FIGURE 4.

The sampling frequency needs to be carefully chosen. A sampling frequency that is too fast
will introduce additional correlation into the data; onthe other hand, a sampling frequency that is
too slow will throw -away useful information. A good compromise is to sample at the rate of the
slowest data stream.

3.2 Scaling

The motivation for scaling is to improve numerical precision. All operations on computers are
done with finite precision, and if one is not careful, round-off errors can result in miscalculations.
An example of an algorithm vulnerable to numerical precision problems is matrix inversion. In
RTSPC, matrix inversion is required during model generation and also for the calculation of the
Tz statistic.

The effects of finite precision are especially damaging when the data streams vary greatly in
absolute value. Such data streams produce highly ill-conditioned matrices; the result is that
round-off errors can cause amatrix tobecome numerically singular, thus causing matrix inversion
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to fail [18]. The usual cure for this malady is to scale the data to unity variance before doing
matrix inversion, so that the data values are of the sameorderof magnitude.

4.0 Results and Discussion

Examples of the real-time SPC methodology will be given using data from the Lam 4400
Rainbow etcher in the Berkeley MicroLab andusing the RTSPC softwarepackage. Real-time data
are available from three sources: the Brookside LamStation software which obtains measure
ments via SECS-II, the Comdel Real Power Monitor (RPM-1) via RS232, and the Chromex
Imaging Spectrograph (OES data). Currently, RTSPC is limited to analysis of datafrom a particu
lar source (the LamStation).

Data scaling was implemented before the automatic model generation. This allowed success
ful generation of models for RF power, RF voltage, andRF phaseerror using data from the RPM-
1. Previously, the model generator had failed when attempting to model these data. FIGURE 5.
displays original and forecasted data using a generated model for RF voltage.

Close Hanjcopyj [About | VRF:ARIMA(0>1>1)

0.00 50.00 100.00 150.00 200.00 250.00 300.00

FIGURE 5.

The interpolation scheme discussed in the previous section was implemented into a utility
called "interp." Thisutility takes data streams and samples them at regular intervals, using linear
interpolation. The utility was run on both LamStation signals and RPM-1 signals in order to syn
chronize the streams. Then another utility, "merge", was created to merge the data streams into a
single file. Baseline models were created and the results fed into the SPC module of RTSPC. The
merging with compressed data from OES has not yet been tried, but there are no difficulties
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expected, sincethe OES data are simply another stream of data to be synchronized, merged, mod
eled, and monitored.

Data scaling was also implemented before inverting the covariance matrix in the T2 statistic.
This allows RTSPC to calculate control charts for all types of data. No figure is included for this;
it suffices to say that the combination of baseline signals from the RPM-1 and LamStation pro
duced a control chart that appeared in-control.

A more detailed summary of software changes to RTSPC is included in the appendix.

5.0 Future Work

The following is a list of ideas for future work.

The methods presented in this paper for supporting multiple data streams could be incorpo
rated into the RTSPC package.

Many more methods are known for identifying and estimating time-series models. The
Mayne-Firoozan method and Akaike method are some examples [16].

Currently, RTSPC employs two different models for each variable, a seasonal model and a
non-seasonal model. The T2 statistic is calculated using both types of models. A different multi
variate control chart, the CUSUM chart, mightbe tried instead [19]. A CUSUM chart may prove
to be more sensitive than the T2 chart [20]. However, a is difficult to calculate in general.

A stability check for the ARIMA model generator shouldbe added. The stability criteria for
an ARIMA model specifies that the roots of the polynomials, <() (B) and 0 (B) , should lie out
side the unit circle in the complex plane [8]. When unstable or nearly unstable models are gener
ated, the user should be warned. Furthermore, this information can be used to improve model
identification. Various polynomial root finding algorithmscan be found in [18].

The overall memory management of RTSPC desperately needs to be improved. The current
mis-management of memory limits the number of variables and amount of data that can be ana
lyzed.

The current matrix inversion algorithm is an LU-decomposition. This could be replaced by a
Singular Value Decomposition (SVD). The SVD is perhaps twice as slow, but it is numerically
very stable [18]. Moreover, it produces extremely useful diagnostic information. The condition
number of the matrix can be calculated to alert theuser of potential numerical precision problems.
Also, when near-singular matrices are detected, the algorithm can eliminate bad parameters from
a model.

Futurework might implement machinerecipes as another input to RTSPC; this would obviate
the need to create a new baseline model every time a machine recipe is changed.

Another project could involve using real-time data for final wafer state prediction, but this
would involve a major re-working of the current RTSPC framework.
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Appendix for developers: software changes to RTSPC

arima

general

• cleaned up entire code; code is now much easier to read and to work with
• fixed calculations of auto-correlation and covariance when data is not zero-mean
• patched up dynamic memory leaks
• temporary file nameprefix changed to: arima$PID, where $PID is theprocess ID number

data file

• data is read one line at a time and only the necessary amount of memory is used
• fixed a bugthatused tocause theparser to skip the first line after each header (except thefirst

header)
• headers are identified by the first word of the first header (canbe any string); theseheaders

mark the separation between wafers
• wafers with insufficient data are ignored; a warning is printed
• blank lines are ignored, as are lines beginning with the commentcharacter '#'

configuration file

• addedMAX_DIFF and MAX_SEA_DIFF as options that allow the user to specify the maxi
mum differencing order

• allowed use of '#' as a comment character

spcwish

cleaned up entire code; code is now much easier to readand to work with
residuals are scaled to unity variance before calculating inverse of covariance matrix
fixed some dynamic memory leaks, but there is still a big problem with dynamically allocated
memory

data file parser no longer looks for "SAS"
prints warnings when seasonal upper control limit is bogus
temporary file nameprefix changed to spc$PID, where $PJD is the process ID number

rtspc

added a "Postscript" button in theplot window that creates a Postscript file named "/tmp/can-
vas-[exec whoami].ps", where [exec whoami] is replaced with the user's login name,
madechanges in the proceduresfetchjiewmodelfile andcreate_spc_config to allowdata files
that trigger on a keyword other than "step".
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Real-Time SPC for Plasma Etching Using Optical
Emission Spectroscopy

Roawen Chen

A new approach of real-time statistical process control (RTSPC) for
plasma etching is proposed in this term project. Instead of using the real
time signals from other conventional sensors such as an RF monitor and
SECSII-based signals, we monitored the signals from optical emission
spectroscopy (OES) from 250nm-750nm. Principal component analysis
(PCA) was used to filter real-time OES signals before further analysis.
Time-series models, as well as multivariate T2 analysis, were used to con
struct an SPC chart.

1.0 Introduction

Plasma etching has been widely used in the manufacturing of submicron IC devices. Tradi
tionally, test wafersare run andmeasured after machine recipe changes, andthen used to examine
the monitored parameters (e.g., etchingrate). When the monitored parameters exceed the control
limits, an alarm will be generated to indicate a possible machinemalfunction. However, with the
advent of smaller feature sizes and larger wafer dimensions, the requirements for betterreal-time
machine monitoring are increasing. Because of this, recent efforts have focused on several sens
ing techniques that are needed to provide real-time plasma process information. In our plasma
etcher (i.e. Lam4400), RFmonitor, LamStation, and end-point detector (i.e. monochromatic spec-
trography) were installed to collect the real-time signals. In this project, instead of monitoring
these common real-time signals, we attempted to monitor signals from the optical emission spec
trum. More specifically, 1024 wavelengths from 250nm to 750nm were monitored. In addition,
because the spectra were collected from three different positions inside the plasma, this technique
takes into account etching uniformity. However, applying standard control charts to the real-time
OES signals is not a viable method because these signals are highly correlated, and the mean
valueof a given wavelengthmay alsodrift with time. Also, the analysis of 1024variables for real
time SPC is unnecessarily timeconsuming. Therefore, Principal Component Analysis (PCA) was
used to compress the OES data set, and then baseline ARIMA time-series filters and multivariate
statistics were used to analyze these variables.

2.0 Methodology

This section starts with the collection of real-time OES data, followed by then a brief intro
duction of our data compression techniques. After that, the reduced data set is processed by
RTSPC, a software utility which was developed in Berkeley Computer-Aided Manufacturing
group. This software provides the capability to automatically generate time seriesmodels and also
combine the residuals into a multivariate T2 chart. The concepts of time-series modeling and
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Hotelling's T2 statistic will be brieflydiscussed in the last two parts. An overviewof the real-time
SPC flow chart is shown below.

OES
Data

Compression
RTSPC T2 Chart

Figure 1. Flow Chart of this real-time SPC study

2.1 Real-Time signals

The real-time signals are collected using a spatially resolved OES system which has been
installed in the Berkeley Microfabrication Laboratory. The Chromex spectrograph (Chromex
250IS), with the Princeton Instruments 256x1024 CCD camera is mounted in the instrument rack.
Three optical fibers are connected from the spectrograph to the Lam 4400 reactor viewport. The
spectrograph is set up to view the plasma across three distinct spots arranged laterally above the
etching wafer. We have chosen a 150 groove/mm grating with spectral resolution of 0.4nm, in
orderto acquire spectral range from 250to 750nm in thereasonable acquisition timeof about one
second/sample.

Since baseline wafers must first be processed to build the real-time series models,nine wafers
were etched on the Lam Rainbow 4400 using the given baseline recipe (i.e. recipe #400). In this
example, poly-Si was etched to endpoint and the total etching time was approximately 40-50 sec
onds. To simplify thetime-series modeling, the same number ofdata points, orstep length, isused
for each wafer. Fifteen continuing spectra were selectedfrom the same time frame for each wafer
with the acquisition rate of 1/sec, excluding a few starting, unstabilized spectra and the spectra
detected from the overetching period. In this term project, only the data collected from the middle
lens are used. A typical spectrum collected during poly-Si etching is shown in Figure 2.

wavelength(nm)

Figure 2 A typical spectrum collected from Cl2/He poly-Si etching

However, the profile of intensity vs. time forwafer #4 shows some unusual discontinuities, as
shown in Figure 3. These might be due to either some problems with the wafer, which were
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unknown prior to the run, or the malfunction of machine. Thus, only eight wafers were used to
create the baseline time-series models, excluding the wafer#4. Once the time series models are
created, wafer #4, along with other eight wafers is analyzed by RTSPC in order to demonstrate
RTSPC's alarm generation capability.

Figure 3 Intensity vs. time for wafer #4 atwavelength of 260nm

2.2 Data Reduction

Since typical OES data contains 1024 correlated variables ineach spectrum, it is not practical
to use them for real-time SPC. Two data compression techniques are performed to reduce the vari
able numbers in this study.

First, Principal Component Analysis (PCA) is used to transform the input variables to a setof
orthogonal variables. The transformed variables, known as principle components (PCs), are the
linear combinations of the original variables. Since the covariance matrix of the original input
matrix X is symmetric, it can be decomposed to X^^VQW7, where the diagonal elements of the
Q are the eigenvalues and the columns of V are the eigenvectors of XTX. The coefficients of the
original variable are the eigenvectors V. The general equation of PCA is thus

PC=(X-JFJV (1)

where X7 is the vector of average values ofeach variable in X. The higher value of PC (i.e. larger
score) denotes thelarger variation along this transformed coordinate axes. In short, the purpose of
PCA is to explain most of the variance in the original data setby only a few PCs without losing
too much information. A better way to understand PCA is to illustrate it geometrically, as shown
in Figure 4.

Another method is to simply select those distinct atomic and molecular spectral peaks from
the spectra. That is, instead of using the entire spectrum, only those wavelengths contributed by
the important chemical species are selected for real-time SPC. As such, the monitoring variables
are reduced to only about 10, which are presumed to explain most of variance in theetching pro
cess. Those distinct wavelengths are listed in Table.1.
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PCI, PC2,.... are the PCA transformed new axes

PC2

PCI

-+* xl

Figure 4 Principal component transformation for one wafer. 15 data
points (i.e. 15 spectra foreach wafer) in 1024 dimensional space

Table 1: Distinct wavelengths in our OES data

wavelength(nm) possible element
1 260 Cl2
1 308 Cl2
3 m He

4 499 •>

5 664 He

6 703 He

7 111 CI

8 738 CI
9 752 CI
10 771 CI

3.0 Results and Discussion

3.1 Reduced OES Data

Method 1: PCA. As described in the previous section, the original correlated OES data
can be transformed to a setof orthogonal variables using PCA. Usually, only few principal
components are enough to capture most of the variance of the original variables. In this
case, the eigenvalue of the first PC explains 99% of the total variation of the inputmatrix,
that is, most of process variation exists along one specificeigenvector.

In order to observe wafer-to-wafer variation or a long-term trend, the data points for
each wafer needto be compared under thesame eigenvector, as illustrated in Figure 5. For
each wafer, the within-wafer variation can be illustrated by the geometrical shrinking or
expanding of the data domain. The wafer-to-wafer variation can be explained by the dif
ference between the center points of each wafer's data domain under the same coordinate
axes. Therefore, the same eigenvector should be used for each baseline wafer to conduct
principal component transformation. Inourcase, the eigenvector is given by
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x2

wafer #1
wafer #2

1024 dimensional space
PCI

•*- xl

Figure 5. An illustration of the wafer-to-wafer variation in the PCA
transformed coordinate axes. Note that the PC coordinate
axes are fixed for all wafers

(xT X \y mean meanJ'vbaseiine = eigenvector
Ifi

X - -I
mean o

where Xt is the intensity matrix for wafer i, which contains 1024 variables and 15 observations.
The equation for the transformed variables PCs is thus

PC = (X-XT)Vbaseiine (2)

Figure 6 shows that the values of these PCs change with time. Notice that the score for each
principal component roughly follows a seasonal upward trend.
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Time

H^AAriMM4V^\^U
Time

Figure6 The scores overeightwafers for three principal components

Method 2: Using Ten Distinct Wavelengths. In this case, only 10 wavelengths were selected
from theoriginal OES data fortime-series modeling. The profiles of intensity vs. time for these 10
wavelengths are shown in Appendix A.

3.2 RTSPC Algorithm

3.2.1 Baseline Model Generation

Up to this pointwe have twodifferent filtered data sets with only three uncorrelated variables
(reduced byPCA) or ten correlated variables (by selecting ten distinct wavelengths from the orig
inal OES data). These datawere acquired while themachine was operating in control. Next, these
datawill be decomposed to wafer-to-wafer and within-wafer components, andtime-series models
will be generated using these selective data sets and our automatic model generation routine,
RTSPC.

The results of the baseline model generation are shown inFigure 7, which displays the double
T2 chart for the data used to generate the model. The baseline data along with their corresponding
within-wafer andwafer-to-wafer filtered residuals are shown in Appendix B. Note that in thedou
ble T2 chart the long-term signals (the bar plots) seem to be zero. This is because the sample size
(i.e. n) is close to the variables number (i.e. p), the control limits of wafer-to-wafer T2 is much
higher than that ofwithin-wafer components1. While RTSPC scaled two separate T2 statistics into
one plot, the bar plot for wafer-to-wafer T2 are scaleddown to a small value and, as a result, can-

1. The control limits of the double T2 chart: In the case of PCA reduced data, p=3, n=8 for long-term components
and n=120 forshort-term components. Thus T2 control limits are

' = —5—Fo.oi,3,5=s50(/onS~/erm) ; ' ~ ^aoi.MM"11 {short-term)
In thecaseof dataset with 10wavelengths, p=10, n=8 forlong-term components andn=120 for short-term com

ponents. Because n < p forlong-term case, RTSPC justselect a number without statistical meaning. Thus T2 control
limits in our case are

T2 =25 (long - term) ; I2 =10F00, ,0 ,20 - 25 (short - term)
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not to be observed. Note that the value of the double T2 statistic (shown on the left side of double
T2 chart) only indicates the T2 statistic of the short-term components.

16.12

12.006

- Method 1

Doubl«-TA2

0.072

6.048 AA
3.024

0.0 , >^^ M ^ ' *2 ^ ** Yk ^ \ ^^ h w y—wu
Doubla.T*2

Figure 7 Double-T2 control chart from thebaseline experiment (NOTE: The line
plots are the within-wafer T2 and the bar plot are the wafer-to-wafer T2)

Both data compression techniques show similar double T2 charts. However, for the PCA
reduced data set, the short-term signals (the line plots in the double-T2 chart) indicate a slight
problem with wafer #7. This is obviously due to the noisy spike in the original data of the second
principal component shown in Fig.6.

The within-wafer and wafer-to-wafer ARIMA time series models generated by RTSPC are
shown in Appendix C.

3.2.2 Fault Detection Example

Once the time-series models for the baseline process were created, the RTSPC software was
able to generate real-time alarms in the case of misprocessed wafers. The peculiarwafer#4 men
tioned in Section 2.1, was used along with other baseline wafers to demonstrate the alarm genera
tion capability of RTSPC. Figure 8 gives the results for this additional run. One can see that both
data reduction methods result in similar double T2 statistics.

For method 1,both wafer-to-wafer andwithin-wafer T2 statistics clearly identified the fault in
wafer #4 even though this wafer only causes limited shift in the original signals, as shown in Fig.
3. For method 2, the within-wafer T5 statistics were able to signal problems with wafer #4. How
ever, no wafer-to-wafer T2 alarm was generated. Again, this was obviously due to the insufficient
amount of baseline wafers and the large number of variables.

These data and their corresponding wafer-to-wafer residuals and within-wafer residuals are
shown in Appendix D.
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Double-T^

Method

Figure 8 Double-T2 control chart from the verification testing

4.0 Conclusion and Future Work

In this term project we have demonstrated a new approach for performing real-time SPC using
full-range OES data. The entire algorithm including thePCA and the following RTSPC takes only
few minutes, which is fast enough in real manufacturing sites. BCAM's RTSPC shows its fault
detection capability for within-wafer variation. Two different data compression methods give us
similar results, even though PCA only usedthree variables, compared to 10or so variables chosen
for the second method. In fact, since the first principal component captures most of the variance in
the OES data, one might be able to monitor this single variable instead of using multivariate T2
statistics. In the case of wafer-to-wafer components, our ARIMA analysis and its following T2
statistics don't mean much because we have too few observations in this study.

Future work includes a new baseline experiment with large number of wafers (more than 20
wafers). It would improve our wafer-to-wafer ARIMA filters and give a better performance of
RTSPC. Also, instead of monitoring the entire spectrum,one can collect the OES data from selec
tive spectral range with higher resolution. For example, we can acquire a narrow spectral window
that contains the endpoint wavelength (405nm for poly-Si etching). In addition, sensor fusion
which integrates OES data with other real-time signals is another promising approach to conduct
RTSPC. Furthermore, by including the OES data from three different spatial lens, within-wafer
etching uniformity can be monitored in real-time. The results of RTSPC for etching uniformity
will be included in Appendix E.

Acknowledgments: My thanks go to Mr. Shenqing Fang for allowing me to collect the
data from his Microlab baseline experiment. I also wish to thank Herb Huang and Eric Boskin for
their assistance with the RTSPC software.
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Appendix A.

The original real-time intensity data for the ten selective wavelengths
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Appendix B

B.l Baseline data for three principal components along with their corresponding
within-wafer and wafer-to-wafer filtered residuals
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B.2 Baseline data for ten selective variables along with their corresponding within-
wafer and wafer-to-wafer filtered residuals
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Original Data Wafer-to-Wafer Residuals Within-Wafer Residuals
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Appendix C. Within-wafer and wafer-to-wafer ARIMA baseline
models

Method 1

signals
TUT

within-wafer model

TC2
ARUMA(1,1,0)
ARIMA(1,0,3)

PCX ARIMA(2,0,0)

Method 2

signals

TKT

PK3

PK4

TK5"
PKfJ

TKT

PK8

PK9

PK10

within-wafer model

ARIMACl.l.Oj'
ARIMA( 1,1,0)
ARIMA(3,0,0)
ARIMA(2,0,0j
ARIMA(2,0,0)
ARIMA(0,0,0)
ARIMA(1,1,0T
ARIMA( 1,1,0)
ARIMA( 1,1,0)
ARIMA( 1,1,0)

Real-Time SPC forPlasma Etching UsingOptical Emission Spectroscopy

wafer-to-wafer model

ARHVIA(2,1,1)
ARIMA(2,0,2)
ARIMA(2,0,0)

wafer-to-wafer model

ARIMA(2,l,iy
ARIMA(2,1,0)
ARIMA(1,0,0)
AklMA(0,0,17
ARIMA(0,0,2)
ARIMA(2,0,0)
ARIMA(1,1,0)
ARIMA(2,l,2j
AR1MA(2,1,1)
ARIMA( 1,1,0)
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Appendix D

D.l Original data for three principal components along with their corresponding
within-wafer and wafer-to-wafer filtered residuals

\&

m

in

17

PCI

SGML PCI

3 < 5

sgkilpci

SGXALPB

3 4 5 6 7

Original Data

\1&

IMWBIFOT:PCI

I 5 J

WAFER-TT>WAFER RESDUJkL PC2

3 I 5

WAFBt-IfrWAFER RESDUAL PCS

2 j i s i ? « s~-q i 2 j r

Wafer-to-Wafer Residuals Within-Wafer Residuals

Real-TimeSPC for Plasma Etching Using Optical EmissionSpectroscopy

•MHUFBtRESDiHL-PCI

: 3 <

J < 5 I

•mW-WAFERIESEXULPCS

EE290W S95



-63-

D.2 Original data for ten selective variables along with their corresponding within-
wafer and wafer-to-wafer filtered residuals

Original Data Wafer-to-Wafer Residuals Within-Wafer Residuals
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Appendix E

Real-time SPC for wafer etching uniformity using OES data

The following results were obtained from work relevant to this term project. As men
tioned in the previous sections, the main advantage of optical emission spectroscopy in plasma
etching is that it contains the in-situ and spatial information of etching status. Therefore, it is a
promising way to perform real-time SPC for within-wafer etching uniformity. In this section, I
will show some preliminary results of this novel method.

The key concept of this methodology is to monitor the intensity range among OES data
collected from three optical lens, instead of the OES data only from central lens. In other words,
we calculated the value of maximum intensity minus minimum intensity for each wavelength
from our triple data sets. (NOTE: the maximum value here is selected from values of three lens)
Since the plasma intensity uniformity might be related to the etching rate uniformity, the range
among the data sets from three optical lens ought to indicate the characteristics of etching unifor
mity. However, since the three OES data sets have different scaling due to the possible misalign
ment, a proper scaling is extremely important in order to compare them under the same scale.
Thus, for each set of OES spectrum, we divide all wavelength's intensities by their maximum.
(NOTE: the maximum here means themaximum intensity among 1024 different wavelengths. In
this study, it means the intensity at the wavelength of 260nm) As a result, all spectra have the
same configuration but the intensities are scaled to the values between 0 and 1. Once we have
these scaled data sets, the range between these "triple OES data" can be determined. The rest of
work follows the procedures shown in Figure 1. The PCA and RTSPC are performed in order to
obtain adouble T* chart. These results are shown in the following plots.

The scores of first three principal components over wafers

Real-TimeSPC forPlasma EtchingUsingOptical Emission Spectroscopy EE290W S95



65

Modeling Temporal Variability on a Lot to Lot Basis in

Semiconductor Manufacturing Equipment

Anna M. Ison

The purpose of this project is to study the time-dependent behavior of
semiconductor manufacturing equipment on a lot-to-lot basis. Real-time
signals determined to be most sensitive to changes in the machine state
were collected using LamStation software from a Lam TCP 9600 metal
plasma etcher in an experiment conducted by Texas Instruments. The
methodology developed in this paper is based on simulated data generated
by combining a theoretical lot-to-lot model with wafer-to-wafer models
identified from real data. Statistical process control (SPC) techniques were
then employed to monitor the wafer-to-wafer, and lot-to-lot residuals
respectively. In particular, to simulate machine aging, a drift component
was added to the wafer-to-wafer models in order to study the sensitivity of
the lot-to-lot model to drifting in the wafer behavior.

1.0 Introduction

Driven by the need to remain competitive in a growing marketplace, companies in the semi
conductor manufacturing industry are striving to maintain high yield, decrease circuit geometries,
and increase throughput in the face of growing costs and tighter product specifications. As the
demands of the industry mount, variation in the fabrication process limits production and thus
becomes more of a concern. Furthermore, the increasing complexity of microfabrication
machines makes it advantageous to apply real time control procedures to reduce the effects of that
variation.

A model capturing the variability of the machine is necessary before one can devise a method
ology to design a controller. There are two types of variability present in the semiconductor man
ufacturing process - spatial and temporal. Spatial variability describes variation over some
physical dimension. In the case of semiconductor manufacturing, this type of variability occurs
primarily across the wafer. In contrast, temporal variability refers to variation over time. In single
wafer machines, the wafers are loaded into the machine one at a time during processing. The
wafers are processed in groups called lots, where the time in between processing of lots can vary
substantially. Furthermore, the input settings of the machine may be changed, or some mainte
nance may be performed on the machine during the interim period between processing of lots.
Thus, we can consider temporal variability to occur over different time scales. Specifically, varia
tion occurs within the processing time of each wafer, from wafer to wafer, and from lot to lot.

The monitored signals used in this work were those suspected to be most sensitive to changes
in the chamber state of the etcher [1], This is important because the machine state is directly
related to the state of the wafer, and of course, we are ultimately concerned with the wafer output
characteristics. It has been found in the past that these observations are highly autocorrelated. One
would expect time series patterns to be most evident within the processing time of a wafer
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(referred to as real-time), but they have also been found on the wafer-to-wafer level [1]. It is pos
sible that there may also be some time dependency from lot to lot. However, due to limitations
imposed by the amount of actual data available atthe timeof this study, this behavior could notbe
investigated. Instead, the lot means were assumed to follow an Exponentially Weighted Moving
Average (EWMA) trajectory, and the methodology developed was based on this assumption.
Modeling of the time-dependent behavior on a lot to lot basis can be conducted in the future as
more data becomes available. This can easily be incorporated into the framework developed in
this paper.

Traditional SPC techniques such as the Shewhart quality control chart methods assume that
theunderlying process is stationary, i.e. that the mean and variance donotvary withtime, and that
the observations are identically, independently, and normally distributed (IIND) [2]. Applying
these techniques directly to data which contain time series patterns will result in increased false
alarm and missed alarm rates [1]. In order to deal with this situation, time series modeling can be
used to filter out the time dependencies, and then traditional or multivariate SPC methods can be
applied to the residuals. This is the approach taken in this work.

2.0 Methodology

2.1 Selection of Real Time Signals for the TCP Etching System

The ability of a model to describe the state of a machine is highly dependent on the data used
to create the model. Much of the past work in modeling plasma etch equipment has used response
surface methodology (RSM) models to map the input settings of the machine directly to output
states of the wafer (etch rate, uniformity, selectivity and anisotropy). However, it hasbeen shown
in [3] that for plasma processes, electrical and mechanical signals, such as the load impedance and
coil positions, provide a better description of thechamber state than do the input settings. These
signals are referred to as real-time equipment signals [1].

LamStation Description

Bottom

RFCoil

RF Tune Vane Position Equivalent position of the tune vane posi
tion in matching network of the lower coil

RF Load Coil Position Equivalent position of the loadcoil position
in matching network of the lower coil

Line Impedance Apparent input impedance of the lower
matching network

RF Phase Error Phase error between the currentand voltage
at the bottom coil

DC Bias Measures the charge on the electrodes due
from electrons
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LamStation Description

Top TCP
Coil

TCP Tune VaneCapacitor
Position

Position of the tune vane capacitor of the
matching network for the top coil

TCP Phase Error Phase errorbetween the currentand voltage
at the top coil

TCP Load Capacitor
Position

Position of the load capacitor of the match
ing network for the top coil

Line Impedance Apparent input impedance of the upper
matching network

RFBias DC bias when both sources are powered

Endpoint Reads the intensity of the plasma in the
chamber at a particular wavelength

TABLE 1. Real Time State Signals Collected for the Lam TCP 9600

The plasma source of a TCP etching system consists of two planar coils located at the top and
bottom of the chamber. An induced RF field causes the gas near the coil to ionize, creating the
plasma. The real-time signals found to be most sensitive to the chamber state of the Lam TCP
9600 metal etcher are related to both the top and bottom coils. The signals used in this study are
summarized in Table 1 [1].

2.2 ARIMA Time Series Modeling and SPC

Univariate time series models, and in particular, ARIMA (Auto-Regressive Integrated Mov
ingAverage) models areused to account fordependencies among sequential measurements of the
same signal. The assumption is that a major part of the signal's behavior can be explained by
using past observations of the signal. This explanation is formalized through an ARIMA(p,d,q)
model, where p is the auto-regressive order, d is the integration order, and q is themoving average
order. Thus, with ty representing the autoregressive and 9 the moving average parameters
respectively, a non-stationary time series xt can be described by an equation of the following
form:

wr =-S+*W'-*+Xe*a'-. (1)

k= 1 * = 0

where 90 is set to 1, \^}\ <1 ,the error term at ~N(0, a2) , and wf are the differenced data

Wt = V xt (2)

where V is the dth order differencingoperator,
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and Vxt =xt-xt_] , ^2xf =Vlxt-V]xt_] .

For a more thorough explanationof time series models, the reader is referred to [4] and [5].

Real-time signals are monitored in order to detect changes in machine statewhich are not rep
resentative of the normal operating behaviorof the process. These changes indicate that a fault or
malfunction may have occurred. Using SPC methods, this type of change would presumably be
detected if the process were out of statistical control. However, to make such a determination
requires a point of reference, and this is provided by the baseline behaviorof the process. In other
words, ARIMA models are derived from data taken while the process is running under normal
operating conditions; this establishes the baseline behavior, and the limits under which the pro
cess is considered to be in statistical process control. The models are then used with current read
ings to forecast each new value of the signal. The differences between the forecasted values of the
model, and the actual values of the signal are the residuals. If the process is operating under statis
tical control, these residuals are IIND variables by definition, and can be plotted in standardSPC
charts.

Thus, after applying an iterative ARIMA modeling procedure to the collected data, the "good
ness" of the model (as measured by its ability to capture the timeseries patterns in the signal) can
be determined by examining the residuals to check that they do in fact resemble END variables.
This was the method employed in this study.

2.3 Generation of Simulated Data Sets

In general, time series modeling requires several observations, preferably at least 50 data
points. Unfortunately, the available data spanned a total of 41 wafers, but comprised only two
lots. Thus, time series methods could be used to model wafer-to-wafer, but not lot-to-lot behavior.
To overcomethis problem, simulateddata wereusedfor the purposes of this study.

2.3.1 Expressing the EWMA as an ARIMA Model

The exponentially weighted moving average, or EWMA, is a univariate method which
expresses the forecast (zt) for time tas a weighted mean of the most recent observation ( z x )
and the last forecast ( zt_ Y). A common form ofthe EWMA is given by the following equation:

zt = (l-Bi)z,-i +ei*,-i 0)

where 0 < 9j < 1 .

Now consider an ARIMA(0,7,7) model given by the following equation:

zt = zt-\-®\at-l+at <4>

and suppose that 6, is known. The forecast of zt formed at time (f-1) based on (4) is

2r = */-l-V/-l (5)

since at time (M), at is not known and is assigned itsexpected value of zero. By subtracting (5)
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from (4) we obtain

z,-V= at (6)

Thus, the difference between the observed value zt and the forecasted value z is the random
shock at for time t. Returning to the EWMA in (3), the terms may berearranged to get

zt = Vj-e, (<:,_,-z,_,) (7)

Using (6) to substitute a{_] into (7) for zl_]-zt_] , we see that a forecast from the
EWMA in equation (7) is identical to a forecast from the ARIMA(0,7,7) in equation (5). Thus, the
EWMA may be interpreted as an ARIMA(0,7,7); the reader is referred to [4] for a more detailed
discussion of this topic.

2.3.2 Simulating Data Sets

The equivalence between EWMA and ARIMA(0,7,7) models was used to simulate data based
on the assumption that the lot means followed an EWMA trajectory. An identification procedure
was conducted on this simulated data to estimate a lot-to-lot model. Wafer-to-wafer ARIMA time
series models based on wafer averages were identified using the available baseline data, and these
were combined with the lot-to-lot model to generate data representing several lots. To simulate
the effect of machine aging, linear drift components were added to the wafer models in a random
fashion, with a different drift occurring in each lot. A change in recipe was simulated by adding
an abrupt shift in the lot means for a few consecutive lots. The generation of these data sets and
the underlying assumptions are discussed in more detail in section 3.4.

3.0 Implementation

All of the identification procedures, data set simulations, and control charts were implemented
using S-PLUS software in an S-PLUS environment [6].

3.1 Real-Time

The readings collected for each signal track the behavior of the process in real-time, or in
other words, within the processing time of each wafer. Although time series patterns would be
expected to be most prevalent at this level, the models developed in this study do not capture real
time behavior. Instead, an average value for the signal was calculated for each wafer, and these
wafer averages were used to determine a wafer-to-wafer model. For results involving time-series
modeling and filtering on a real-time level, the reader is referred to [1].

3.2 Wafer-to-Wafer

On the wafer-to-wafer level, where each point in the series was an average value for the signal
over a wafer, analysis of the data demonstrated that although no significant autocorrelations were
visible in the majority of the monitored signals, two signals were found that exhibited time depen
dent behavior. Standard control charts could be applied directly to many of the signals with no
correlated behavior. Since this is not such an interesting case, this work focuses on one of the two
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signals demonstrating time series patterns, namely the RF Tune Vane Position. The methodology
for analysis is fully developed for this signal, and can be generalized to other signals exhibiting
time series behavior, such as the RF Load Coil Position. However, specific results for the latter
signal are not included in this work.l6*

Using baseline data taken from the machine under normal operating conditions, an ARIMA
time series model was identified for the RF Tune Vane Position signal, and the residuals were used
to construct an xbar chart. The data set consisted of a total of 38 points corresponding to 38 wafer
averages. The model was estimated using the first 30 points so that the last 8 points could be com
pared against a forecast of the model.

3.3 Lot-to-Lot

On the lot-to-lot level, each point in the series would represent the average value for the signal
over a lot. The available data comprised only two lots, and hence only two lot averages - or two
points in the series. Since the analysis could not be continued based on only two data points, the
lot averages were assumed to follow a known trajectory given by an EWMA. The series of points
representing the lot averages was generated by computer simulation using an ARIMA(0,7,7)
model with a moving average parameter 9, = 0.6 . The lot-to-lot variance was assumed to be a
multiple of the wafer-to-wafer variance. More specifically, the wafer-to-wafer variance for the RF
Tune Vane Position signal was calculated from the data to be CL- = 232 . The lot-to-lot vari
ance for this signal was chosen to be about seven times this value, namely (J2, = 1600 . This
generated series of points representing 50 lot averages was then used as a data set to estimate an
ARIMA model.

3.4 Generating Data for Different Cases

To simulate data collected from the machine under other conditions representing real scenar
ios that might be encountered, two cases were considered. First, drifting behavior as a result of
machine aging was assumed to occur at a wafer-to-wafer level; a drift at the lot-to-lot level would
then arise from the cumulative effect of this wafer-to-wafer drift. Secondly, an abrupt shift in lot
averages might result from maintenance performed, or from changing the input settings of the
machine (changing the recipe) between lots.

3.4.1 Adding a Random Drift Component

A linear drift was added at the wafer-to-wafer level by the following mechanism:

xdrift W = x{i) +mi (8)

where x is a series of wafer averages, /* denotes the index corresponding to the wafer number
(i.e. for 30 wafers, i = {1, 2,..., 30}) and m is the slope of the lineardrift. Thus, because we consid
ered a sample size of50 lots with 30 wafers per lot, 50 values ofmhad to be chosen correspond
ing to the wafer-to-wafer drifts in each lot. The values ofmwere determined by a random number
generator operating on a normal distribution. A small drift component was determined by choos
ing mfrom ~N(0.5,0.25). The non-zero mean ensures that a cumulative drifting effect will occur
over the lot-to-lot behavior. In a similar manner, a large drift was simulated by choosing mfrom
~N(0,4). The mean was chosen to be zero in this case because the drifts from wafer-to-wafer were
already quite large, so that adding any cumulative effect over lots would justamplify the
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Wafer Averages: Baseline vs. Simulated Data with Drift

_ Wajar Number
Small Drill Compon.nt

FIGURE 1.Wafer Averages: Baseline (solid) vs. Simulated Data with Small/Large Drifts

magnitude of these drifts. Examples of typical values for m corresponding to a small drift (m =
0.7), and a largedrift (m= 5) at the wafer-to-wafer level are displayed in Figure 1.

The final version of the simulated data combining wafer-to-wafer and lot-to-lot models is
given by

ydrifi[i,k] = y(k) +m(k) xi (9)

where y is a series of lot averages, k denotes the index corresponding to the lot number (i.e. for 50
lots, k = {1, 2,..., 50}), m(k) is the slope of the wafer-to-wafer drift for lot k, and i is the index
denoting the wafer number (i.e. for 30 wafers, i= {1,2,..., 30}). The simulated data, ydrifi [i, k], is
in matrix form, with each row representing a different wafer, and each columncorresponding to a
different lot. To plot the data in the proper time sequence, one would concatenate the columns
together, so that one set of 30 points (wafer averages) would be followed by another set of 30
points, over a total of 50 sets (each representing a lot). The result of this concatenation for the
small and large drift components added at the wafer-to-wafer level are shown in Figure 2, which
plots the resulting lot averages for these two cases.

Lot Averages: Baseline vs. Simulated Data

F*^\
W/ ^^vj^ ^-^*!a^-iS'

o 10 so so

Tim*
Small Drift Component

40 60

J^^s-O \-~cAk. p^\^<^J^y
\ /^v

FIGURE 2. Lot Averages: Baseline (solid) vs. Simulated Data with Wafer-to-Wafer Drifts
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3.4.2 Adding an Abrupt Shift

An abrupt shift in this context refers to a sudden jump in value in the trajectory of the signal.
This kind of effect might be seen from one lot to another if the input settings for the machine were
changed (recipe change), or if maintenance were performed on the machine in between process
ing of lots. Data was generated to mimic the effect of a recipe change or maintenance event by
arbitrarily adding a constant term to consecutive lot averages for a selectednumberof lots. Figure
3 shows the result of adding an offset of +50 to the average values in lots 8 through 15, an offset
of -250 to lots 40 to 43, and an offset of +375 to the average value of lot number 26. This data set
was analyzed against the standards set by the baseline data to determine whether these shifts
would be detected using SPC.

Lot Averages: Baseline vs. Simulated Data with Abrupt Shifts

FIGURE 3. Lot Averages: Baseline (solid) vs. Simulated Datawith Abrupt Shifts

4.0 Results and Discussion

4.1 Wafer to Wafer Results

4.1.1 Time Series Modeling

An ARIMA time series model was identified for the RF Tune Vane Position, which exhibited
autocorrelated behavior in its wafer averages. The model was found to be an ARIMA(0,0,i), with
a moving average parameter 6 = -0.292. The model was identified using thefirst 30 wafer aver
ages, so thattheremaining 8 points could becompared against a forecast using themodel. This is
depicted inFigure 4, which plots the forecast of the model with the upper and lower two standard
deviation limits. From the plot we can conclude that the forecasting capability of the model is
acceptable based on a comparison with the actual data. The residuals of this model are displayed
on a quantile-quantile plot which is a graphical display to test the distribution of the data. In this
case, the data are tested against the normal distribution. If the plot isapproximately a straight line,
then the residuals follow a normal distribution. The residuals for this model are shown to satisfy
the END criteria required for SPC as demonstrated by the quantile-quantile plot in Figure 4.

^ . Time
Original Data (solid) vs Forecast from ARIMA Model

-1 O 1

Quantiles of Standard Normal

FIGURE 4. (a) Original Data (solid) vs.Forecast from ARIMA Model and (b) Residuals
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4.1.2 Fault Detection

SPC techniques were used on the residuals of the wafer-to-wafer model described in the pre
vious section to establish limits (based on baseline data) for an xbar chart at the 95% confidence
level. This chart is plotted in Figure 5. Data sets corresponding to small and large drift compo
nents added at the wafer-to-wafer level were filtered by this model, and the resulting residuals
plotted on the xbar chart with limitsestablished by the baseline data. Figure 6 showsthe residuals
corresponding to the data plotted in Figure 1 for typical values corresponding to small and large
drift components at thewafer-to-wafer level. Inboth cases, it is evident thatthedrift component is
detected successfully by the out-of-control points visible on the xbar charts in Figure 6.

.xbar Chart
for RF.I

FIGURE 5. Baseline Xbar Chart for RF Tune Vane Position Wafer-to-Wafer Residuals
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FIGURE 6. Xbar Charts for Wafer Residuals - Small (top) and Large (bottom) Drifts

4.2 Lot to Lot Results

4.2.1 Time Series Modeling

Because of an inadequate amount of actual data available for lot-to-lot modeling, simulated
data representing 50 lot averages generated by an EWMA model with a theoretical moving aver
age parameter 9, = 0.6 , and lot-to-lot variance of alot = 1600 , were used to estimate an
ARIMA model.
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The identified lot-to-lot model was found to be an ARIMA(0,7,7), with a moving average
parameter 9, = 0.54 . Thus, themodeling procedure was found to perform adequately, with the
estimated model closely approximating the original theoretical model used to generate the data.
Theseries of points generated by these two (original and identified) models is plotted in Figure 7.

Lot Moans of RF Tune Vane Position - EWMA Model

FIGURE 7. Original Lot-to-Lot Data (solid) vs. Simulated Data from Identified Model

4.2.2 Fault Detection

SPC techniques were used on the residuals of the lot-to-lot model described in the previous
section to determine the upper and lower control limits for an xbar chart at the 95% confidence
level for the baseline data. This chart is plotted in Figure 8. Data sets corresponding to small and
large drifts added at the wafer-to-wafer level as described in section 3.4.1 andplotted in Figure 2
were filtered through the lot-to-lot model. The residuals were then plotted against the xbar chart
established by the baseline data; these are depicted in Figure 9. Note that the small drift compo
nent, which was easily detected at the wafer-to-wafer level, is more difficult to detect at the lot-to-
lot level. In contrast, for the larger drift components, theeffect on the lot averages was so strong
that deviations were clearly visible on the xbar chart even on a lot-to-lot level.

3 o 7 Q 11 13 10 17 lO 21 23 2B 27 SO 31 33 3S 37 39 41 43 4S 47 40

Group

Number bayond limits -» a
NumNr violating runt » a

Numbar ot Qroupa_a> 49
Taraat j» • 1.221007*

tft& SSnlfSl Bml!: •KdSBBSr'

FIGURE 8. Xbar Chart for Lot-to-Lot Residuals - Baseline Data

Modeling Temporal Variability onaLotto LotBasis in Semiconductor Manufacturing Equipment EE290W S95



I a

1
\/\/

J-\ Is--

75-

xbar Chart
for Lot.Residuals.Small.Drift

ywvv'va. A, A a AA •
3 5 7 0 11 13 15 17 10 21 23 26 27 20 31 33 35 37 30 41 43 45 47 40

Group

«umber bayond Mmtta m 5
umbar violating runs - S

fppar Control Ltmll • 8a2MCb54~

xbar Chart
for Lot.Residuals.Large.Drift

-UGL

mtw^tw
• a •

1 3 S 7 0 11 13 15 17 10 21 23 25 27 20 31 33 35 37 30 41 43 45 47 40

Group

Numbar ol Group* • 49
Target • -1.2210074
Lowor Control Limit m •82.6068003
Upper Control Ltmll • 80.2540054

«umber beyond limits • 13
umber violating rune » 1

FIGURE 9. Xbar Chart for Lot-to-Lot Residuals - Small and Large Wafer-to-Wafer Drifts

Finally, the data injected with abrupt shifts at the lot-to-lot level (described in section 3.4.2
and plotted in Figure 3) were filtered by thelot-to-lot model, and the resulting residuals plotted in
an xbarchart shown in Figure 10. This demonstrates that on a lot-to-lot level, abrupt shifts in lot
averages arising from a change in recipe or maintenance would be very effectively detected using
this methodology.

xbar Chart
for Lot.Residuals.Abrupt.Shift
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FIGURE 10. Xbar Chart for Lot-to-Lot Residuals with Abrupt Shifts in Lot Averages

5.0 Conclusions and Future Work

By monitoring real-timesignalsbelievedto best reflect the chamber state, the time-dependent
behavior of a metal plasma etcher was studied on both wafer-to-wafer and lot-to-lot levels. Due to
a lack of data on the lot-to-lot level, simulated data were generated by combining an assumed lot
to-lot model with wafer-to-wafer models identified from real data. ARIMA time-series models
were used to filter out the time-dependent patterns in the signal. The resulting residuals were then
used to establish xbar charts based on the baseline data. Data sets were generated to simulate
common phenomena such as machine aging, maintenance, or changes in recipe, in order to study
the effectiveness of the xbar charts in detecting these events on wafer-to-wafer and lot-to-lot lev
els. In general, the small drift component was more visible at the wafer-to-wafer level. Since these
drifts were added at the wafer-to-wafer model, this result is not surprising. On the lot-to-lot level,
large drifts in wafer behavior were easily detected, as were abrupt shifts in the lot averages.
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Several assumptions were made in order to conduct this analysis. First, the wafer-to-wafer
model was assumed to remain the same from lot to lot, changingonly by an offset given by the lot
averages. Secondly, it was assumed that the lot averages followed an EWMA trajectory. This
assumption could be relaxed in the future. However, we must still assume that the lots are pro
cessed closely enough in time that a time-dependency will exist; otherwise there will be no time-
dependent behavior to model. It was also assumed that a linear drift would occur on the wafer-to-
wafer level, and that drifting on the lot-to-lot level would be the result of a cumulative effect of
this wafer-to-wafer drift. Finally, it was assumed that machine maintenance and recipe changes
wouldtake place in between processing of lots, and that this wouldcause an abrupt jump in value
in the lot averages.

Future work will focus on applyingthis methodology to actual dataobtained over several lots.
However, due to potentially large time intervals between processing of lots, in addition to mainte
nance events and recipe changes which may take place during those intervals, we would not
expect the same kind of time-dependency to occur from lot to lot as was found for wafer to wafer,
and within the processing time of a wafer. The assumptions made above will have to be checked
against results obtained from the actual data. If the lot averages are found to follow some kind of
time-series behavior, then this methodology should be able to identify significant changes which
shift the lot averages. Using actual data, we can check the sensitivity of the SPC techniques at a
lot-to-lot level to a real changein the input settingsof the machine, or a real maintenanceevent. If
successful, anext step would beto employ multivariate techniques such as Hotelling's T-squared
statistic to capture correlations among the different signals at a lot-to-lot level. However, depend
ing on the time series behavior of the actual lot averages, a different methodology may be
required to deal with variation on a lot-to-lot basis.
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In-Situ Poly Gate Photoresist
Metrology and Control

Xinhui Niu

Photoresist film thickness and photo-active compound concentration are
two important quantities in photolithographic process. In this work, metrol
ogy is developed for measuring them in-situ during gate polysilicon pat
terning. Experimental design is used to model the spin-coat equipment for
run-to-run process control. Finally, an EWMA procedure is applied for
baseline monitoring and control.

1.0 Introduction

To go beyond classical Statistical Process Control (SPC) in semiconductor manufacturing, we
must develop effective methods that are capable of quickly detecting and responding to the
changes in the performance of the photolithographic process. By combining statistical process
control and feedback/feed-forward control, a run-to-run control application can provide more
accuracy and flexibility. In this work we focus on the run-to-run control application in a photore
sist coating process.

This work consists of three parts. First we develop a method for extracting the film informa
tion in-situ, using adaptive simulated annealing as the optimization computation engine. Fast and
accurate real-time or quasi real-time metrology is the foundation of run-to-run control. Then we
build an accurate regression model for the coater, considering the machine aging. This model will
be used for run-to-run coat recipe design. The coating process exhibits autocorrelated observa
tions, so an Exponentially Weighted Moving Average (EWMA) control chart is designed for
baseline statistical process control.

2.0 Methodology

2.1 In-situ automated metrology for photolithography

In-situ processing information is very important to real-time control. Most film thickness
measurement systems require that the wafer be brought to the instrument. A metrology which can
measure the photoresist thickness and photo-active compound concentration (PAC) has been
developed by Sovarong Leang, et al. [7]. However, like other metrologies, the operation of this
method needs specific prior information about all the films. This requirement will be impossible
when we have many variations in previous process steps, especially when we have more than two
films. So the first task of this project is to develop metrology to extract all the interesting informa
tion of any material films. This metrology belongs to the reflectometry category.

Reflectometry is a fast, accurate and convenient way to measure film thickness, reflective
indices and other characteristics on the wafer. It is convenient for monitoring IC processes for
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several reasons: high good spatial resolution, high throughput, high precision, accuracy and can
be easily automated. For example, in this work we use a modified SC Inspector [17]. Features on
the order of 2 mm can be measured. Because of the high data acquirement rate (0.25 seconds), the
measurement rate is limited by the extraction computation. Most importantly, once the equipment
is set up, the measurement is fully automated, and communication links between the computer
and the instrument eliminate the need for human intervention.

Interference of light waves reflected from each interface of a multi-layer film structure deter
mines the structure's reflectance [1]. A typical film structure is shown in FIGURE 1.

photoresist

poly

ox

si

FIGURE 1 Multi-layer film example in the reflectometry.

Each film has its own index of refraction n andabsorption coefficient k. In this work, we use
Cauchy coefficients Na and Nb to calculate n ,

n = Na + —
X2

For photoresist, k is determined by Dill's A and B parameters,

k = }_(A(X)PAC +B(X))
471

(1)

(2)

where A(X) is the bleachable absorption, and B(X) is the nonbleachable absorption [12].

The optical properties of a layer of film are described by its characteristic matrix M. Assum
ing that, after careful alignment, the incident angle is approximately equal to 0, then

M =

In-Situ Poly Gate Photoresist Metrologyand Control

cos (knnl) -—sin (k-.nl)

-sin (kQnl) cos (kQnl)
(3)
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where n is the index of refraction, / is the film thickness,
of a stack of N films is then

k - 2nK0-~X The characteristic matrix

N

M = FK
J=l

(4)

Assume that the two end films are semi-infinite, in otherwords, the thickness values of the air
and silicon substrate are °o, the reflectivity of theentire stack is

R_ <M11 +M\2nsj)nalr- (M2l+M22nsi)
(Mu+Mnnsi)nair+ (M2l+M22ns.) (5)

The relative value to the reflectivity of bare silicon (including a typical 2.5-4.5 nm of native
oxide) will be the theoretical reflectivity for each wavelength. Reflectance spectrograph can be
measured by the Inspector from 320 nm to 820 nm wavelength range. Measured and theoretical
curves can be matchedby optimizing the film thickness, the PAC of the resist, etc. The problem is
formulated as

min COSt= £ (^measured "^theoretical)2

In the typical problem of FIGURE 1, we will have following parameters to be optimized:

Table 1

NO. Parameter Description Range
1 PAC PAC of photoresist [0,1]
2 PhTh thickness of photoresist [1100, 1300] nm

3 PhNa Na of photoresist [1.57,1.62]

4 PhNb Nb of photoresist [11500,13500]

5 PolyTh thickness of poly [480, 660] nm

6 OxTh thickness of oxide [90, 120] nm

(6)

The selection of these parameters will be discussed in section 3.2.

Because there exist local minima in the optimization, traditional optimization algorithms are
not appropriate here. FIGURE 2 shows an example of the local minimum phenomena in the opti
mization process. In this example, we have 2 parameters to be optimized, the thickness of photo
resist and poly. It is known that for this process, the range of photoresist thickness is between
1100 nm and 1300 nm, and the range of the poly thickness is between 480 nm and 660 nm. In this
example we can clearly see several local minimums. To find the global minimum, in this work we
use stochastic methods, such as simulated annealing.
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iocal minimums in the optimization process
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local minimums in the contour plot
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FIGURE 2 Local minimums in the optimization.

2.2 Simulated annealing

Simulated Annealing (SA) exploits an analogy between the way in which a metal cools and
freezes into a minimum energy crystalline structure and the search for a minimum in a more gen
eral system.

SA's major advantage over other methods is its ability to avoid becoming trapped at local min
imums. The algorithm employs a random search, which not only accepts changes that decrease
the objective function, but also some changes that increase it. In general, simulated annealing
consists of four functional relationships:

1. g(x) : the probability density function ofthe state-space ofD parameters

x = {x.,i = 1...D}

2. h(a) : the probability density function ofaccepting a new value given the last examined
value.

3. T(k): the schedule of "annealing" the "temperature" T in annealing-time steps k.
4. /(a) : the objective function.

Generally SA optimization methods choose new points at various distances from their current
point a . Each new point is generated probabilistically according to agiven generating distribution
g (a) . Then the algorithm calculates the objective function f(x) and probabilistically decides
whether to accept it. The new point may be accepted even if it has a larger function value than the
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current point. The criteria for acceptance are determined by an acceptance function h(x) the
temperature parameter T and the difference in the function values of the two points. As the opti
mization progresses, T is reduced, thus lowering the probability that the acceptance function will
accept anew point if its functional value is greater than that ofthe current point.

Based on above, SA can:

1. deal with arbitrary degrees ofnonlinearities, discontinuities, and stochasticities;
2. deal with arbitrary boundary conditions and constraints associated with the cost functions;
3. statistically guarantee finding an optimal solution.

It is important to note that first, the cost function (either a sum of squares of the difference
between the model and data, or amaximum likelihood function) can be stochastic simply because
one of the parameters is defined tobe generated by arandom number generator. If the cost func
tion is stochastic, then derivatives often will not exist, and so those algorithms that rely on deriva
tive information cannot be used; second, a statistical guarantee for simulated annealing means
that the total space will be truly sampled, although the time could beinfinite and the requirement
of machine precision could be unrealistic.

The primary criticism is that SA could be impractical slow if not used appropriately. In this
work, we use a very powerful SA public software, which is called "Adaptive Simulated Anneal
ing (ASA)", developed by Lester Ingber [6]. ASA is found to be at least exponentially faster than
other simulated annealing algorithms [5]. Several optimization parameters are tuned to enhance
SA performance in this work, as will be discussed later in this report.

2.3 Equipment modeling

The characterization of IC processes through modeling has become a necessity in semicon
ductor manufacturing. The models may be physical, empirical or a combination of both. In this
work, an equipment model is derived using a statistically designed experiment and linear regres
sion analysis [2] [15]. The quality of the model is tested by its R2 value and residual plot.

2.4 EWMA for autocorrelated measurement

Traditional statistical process control techniques, like the Shewhart family, have a fundamen
tal assumption that the observations are uncorrelated [9]. In other words, a reasonable model for
the observations from the process is

X, = li +e, (7)

where p. is the process mean and e is a sequence of independently and identically distributed ran
dom variables. In a photo-lithographic process, wafers are usually processed in a pipeline fash
ion1. For example, the throughput of a coater is typically around 30~60 wafers/hour. The high
sampling frequency makes the observations autocorrelated.

Time series modeling is one of several approaches dealing with autocorrelated data. In this
approach, one first fits an appropriate time series model to the observations and then applies con-

1. Our metrology needs less than half of the longest cycle time in the original pipeline, so introducing the in-situ
metrology does not bring any pipeline delay.
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trol charts to the stream of residuals from this model. The typical time series model employed is
the autoregressive integrated moving average (ARIMA) model. However, in practical control,
using this approach is frequently awkward, especially when many control variables are in ques
tion. Developing an explicit ARIMA model for each variable of interest is potentially time-con
suming. One alternative approach is exponentially weighted moving average (EWMA).

The EWMA can be used as the basis of a control chart. The EWMA is defined as

Zt = XXt+(l-X)Zt_l (8)

where 0 < X < 1. The EWMA can be used in certain situations where the data are autocorrelated.
Actually it can be shown that ARIMA(0,1,1) can be interpreted as an EWMA. If kt+] (t) is the
forecast for the observation in period t + 1 madeat the end of period t, then

*r+l(0 =z, . (9)

and the sequence of one-step-ahead prediction errors

e, =*,-*,(*-1) (10)

are independently and identically distributed with zero mean and standard deviation aD, assuming
that the underlying process is really IMA(1,1). Therefore, control charts could be applied tothese
one-step-ahead prediction errors. In addition, even If the process is not exactly IMA(1,1), and if
the observations from the process are positively autocorrelated and the process mean does not
drift too quickly, the EWMA with an appropriate value for Xwill provide an excellent one-step-
ahead predictor [10].

One procedure for constructing an EWMA control chart is described by Montgomery and
Mastrangelo as following[ 10]:

1. Choice of X: select the value of Xthat minimizes the sum ofthe squares ofthe one-step-ahead
prediction errors.

2. Estimation of ap: if X is chosen as suggested above over n observations, then calculate the
variance by
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X«,2
P n • W

3. First control chart: plot one-step-ahead EWMA prediction errors.

4. Second control chart: plot original observations on which the EWMA forecast is superim
posed.

Assume that the one-step-ahead prediction errors e. ~IIND (0, a ) , then for the first control
chart, the control limits are ' P
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UCLt+1=wa
in J • (12)LCLl+i =w<sp

for the second chart, the control limits are

UCLl+l=Zl +Wc
(13)LCLl+1=Zt-Wcp

where w is the "distance" of the control limits from the center line, expressed in standard devia
tion units and determined by the type I error of the control chart.

3.0 Results and Discussion

In order to demonstrate the application of run-to-run process control, several experiments
have been designed and carried out.

3.1 Experimental setup
1. Wafers: p-type, 4-inch silicon.

2. Oxidation, about 100 nm of oxide2.
3. LPCVD, about 600 nm of polysilicon.
4. Equipment: SVG8626/36 photoresist coater track, SC Inspector.
5. Photoresist: OCG820 G-line positive photoresist.

3.2 In-situ film thickness extraction

Two of the top goals of designing an in-situ sensor are accuracy and speed. Even through sim
ulated annealing can guarantee rinding an acceptable solution, the computational cost for practical
accuracies might be prohibitive. Several techniques are applied to shorten the optimization time.

Accurate material coefficients are required for the optimization cost function. Unfortunately
we only know the standard (or textbook) values for these coefficients. The actual values have
some deviations from the standard values. For example, the A-B-C values of the photoresist
change over the time, and different texts give different Cauchy coefficients Na and Nb for Sili
con, etc. To use the ASA algorithm efficiently, it is important to narrow the number and range of
free variables.

Even though the material coefficients differ from the standard values, the form of the relative
relationship over wavelength is assumed known. Under this assumption, the absolute intensity
waveform might change, but the relative shape of the waveform will not. In the strategy of the
optimization, when the cost function drops down below a certain value, we put more weight on
the similarity between the theoretical and observed waveform, especially at those peak and valley
positions (wavelength). This is very important in order to avoid re-annealing, which is extremely
slow.

2. The thickness extraction of oxide will not affect the extraction of other layers.
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While tuning the optimization algorithm, wefound thatat higher wavelength range (520nm ~
820nm), the variation of photoresist Na and Nb has little effect on the cost function, the oxide
thickness variation also has little effect on the costfunction. So at higher wavelength, we extract
the photoresist thickness by optimizing 2 variables, photoresist thickness and polysilicon thick
ness, providing the oxide thickness. At the lower wavelength range (320nm ~ 470nm), the varia
tion of photoresist Na and Nb has large impact on the costfunction. So at this range, we extract
the PAC by optimizing 3 variables, photoresist Na and Nb value and its PAC, providing the
thickness values of photoresist, polysilicon and oxide.

FIGURE 3 shows the optimization performance versus both the "accepted run number" and
"generated run number". In this example we extract the photoresist thickness by optimizing 3
variables, the thickness of photoresist, poly and oxide. From the figure we can see that to get a
good optimization result, we need about 400 runs to be generated and 70 runs to be accepted.
These are used as the stopping criterion in this specific problem.

ASAD»3

10' 10'
accepted run

10' 10'
generated run

FIGURE 3 The cost of the ASA algorithm in the photoresist thickness extraction.

FIGURE4 shows the comparison between the observed and theoretical relative intensity after
PACbp and THK extraction. The two waveforms are not exactly matched because that the mate
rial coefficient are different from the standard values. Since we concentrate on optimizing the
similarities of two waveforms, they look similar, especially in the location of peaks and valleys.

As stated before,our goal of the in-situ measurement is its accuracy and speed. It takes about
0.25 seconds for data collection and about 25 to 35 seconds for thickness and PAC extraction.
This method is very powerful because that it allows us to extract the information of those films
under the photoresist simultaneously. This is one of the foundation of the idea of "Custom Photo
lithographic Process Design", which is to design and control the photoresist thickness depending
on the film to be etched. FIGURE 5 is the poly thickness extraction for 2 lots. The 47 wafers were
processed in 4 different occasions under the same process recipe. Wecan see both large variation
between lot and within lot in LPCVD process. FIGURE 6 shows the photoresist in two different
locations (related to the wafer center) in a lot.
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poly thickness

FIGURE 4 Poly thickness extraction from two lots.
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FIGURE 5 Photoresist thickness variation within wafer.

3.3 Experimental Design and Modeling

In order to build effective equipment models for process control, it is desirable to determine a
minimal set of input/output parameters to observe and control. For the photoresist coater, the
input parameters include spin speed (SPS), bake temperature (BTE) and bake time (BTI). The
output parameters include photoresist thickness (PhTh) and photo-active compound concentration
(PAC). PAC is further divided into the PAC before exposure (PACbp) and the PAC after exposure
(PACxp).
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It has been shown that PACbp is highly correlated with PhTh and mainly determined by the
BTE [8]. However, changing the bake temperature is time consuming. For example, SVG8626
will take about 5 minutes if to decrease the temperature by 5 °C. From the viewpoint of control, it
would be better to avoid changing the bake temperature.

Table 1 is the designed experiment which is conducted in two different days according to dif
ferent block. The experiment consists oftwo 23 experiment design, each with 3center points. We
measured 3 random locations close to the center of the wafer. The averages of each run are used to
build the model. Since on each wafer, the locations of three measurement are close, we do not
expect to see large variation among them. From the extracted data we can see that the metrology
isself-consistent. Equation (14) isthe linear regression model with an R2 of0.9977. FIGURE 7 is
the model fitting and residual plot. From the residual plot we can see the residuals are normally
distributed. The high value ofR2 and normally distributed residuals indicate that the model is ade
quate and accurate.

Table 2 Experimental design for coater

Run Block SPS

(rpm)
BTE

(°C)

BTI

(sec)

PhTh

(nm)
PhTh

(nm)
PhTh

(nm)
1 4600 60 00 1167.196 1164.986 1168.637

2 3600 90 85 1305.012 1312.360 1300.286

3 5600 30 85 1057.972 1059.117 1056.263

4 3600 30 95 1336.918 1332.783 1329.071
5 3600 90 95 1315.420 1313.697 1311.961
6 5600 30 95 1061.549 1055.810 1060.625
7 3600 30 85 1333.289 1328.629 1332.508
8 5600 90 95 1051.291 1050.889 1049.330
9 4600 60 90 1161.115 1166.964 1160.433
10 5600 90 85 1053.542 1053.647 1053.147
11 4600 60 90 1181.660 1177.723 1177.772
12 2 5600 30 85 1064.716 1051.140 1061.883
13 2 5600 90 95 1044.846 1042.245 1044.119
14 2 3600 30 95 1335.203 1331.890 1332.722
15 2 5600 30 95 1064.982 1064.182 1063.228
16 2 5600 90 85 1054.228 1050.301 1052.753
17 2 4600 60 00 1176.359 1173.438 1174.665
18 2 3600 90 95 1309.892 1306.741 1309.767
19 2 3600 90 85 1318.893 1317.619 1319.452
20 2 4600 60 90 1177.319 1175.234 1174.574
21 2 4600 60 90 1180.061 1176.274 1178.223
22 2 3600 30 85 1335.173 1333.280 1330.116

PhTh = 0.284146 +
80691.261

Vsps
+ (-0.2580632) BTI + (-0.06735417) BTE (14)

Strictly speaking, the equipment model is only accurate in a certain time period because of
machine aging". FIGURE 8shows the drift of the equipment model. "*" and "+" are the photo

resist thickness measurement in two-week time interval. We can see aclear process drift. Consid
ering the lifetime of an equipment model, asimple model modification is proposed as following-
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coater model fitting plot
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coater model residual plot

Quantiles of Standard Normal

FIGURE 6 Coater model fitting and residual plot.
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FIGURE 7 The drift of the equipment model.
25

+ 1st week
* 3rd week

Assume that we have built two models in the near past, fx and f2, then the modified model is

/= Xfl+(\-X)f2

0<X<\
(15)

where X is determined by several new baseline runs.
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3.4 EWMA control chart

We apply EWMA control chart to a baseline run, which includes 24 wafers. FIGURE 9 repre
sents the plot of the sum of squared one-step-ahead prediction errors for the EWMA as a function
of X. The minimum squared prediction error occurs at X= 0.6. With this Xvalue, FIGURE 7 (a)
shows the EWMA center line control chart, FIGURE 7 (b) shows the one-step-ahead prediction
error. From both control charts, we can see two points out of control. The first alarm can be
explained as lack of dummy wafer beforehand. The second alarm is a process fault. We can see
the clear process drift.

500

450

400-

350-

300

250

150

sum of squared one-step-ahead predictionerror

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
lambda

FIGURE 8 Sum of squared one-step-ahead prediction errors versus X.

f o

FIGURE 9 EWMA charts on the baseline process.

Based on the calculated X and a , we monitor next 13 wafers under same process recipe.
FIGURE 11 are the corresponding EWMA charts, all of themare in process control.
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FIGURE 10 EWMA chart.

4.0 Conclusions

In this work we first developed a powerful in-situ film metrology. Then we builda model for
the coaterbased on the experimental design. Accurate equipment model is for future run-to-run
process recipe design. Because of the high process throughput, we also implement an EWMA
control chart to monitor a certain process for the autocorrelated measurement.
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Application of the Robust Design Method for IC
Design Improvement

Jone Chen

A computer based experiment for IC design improvement is studied. By
applying the Robust Design Method, the optimal and robust IC design for
manufacturability can be quickly achieved. This is done with the assump
tion of an additive model of factor effects, and the use of an orthogonal
array to define the matrix experiment and to maximize the quality metric
(signal to noise ratio) of the performance criterion. Based on such a tech
nique, a circuit designer can quickly get feedback on circuit performance
and its sensitivity to manufacturing imperfections.

1.0 Introduction

Due to process variations in IC manufacturing, parameter variations may cause product to
either degrade in performance or even perform outside the given specifications. Therefore, to
reduce the effect of parameter variations on product performance is required. For this purpose, the
Robust Design Method (Taguchi's-based method) [1] is a very useful design philosophy.

The Robust Design Method is aimed at optimizing product performance, manufacturability,
and cost by varying certain decision variables in order to make the product less sensitive to manu
facturing imperfections. It uses an orthogonal array to explore the decision variables with a small
number of experiments, and to maximize the signal to noise ratio of the performance criterion and
thus find the optimal variable settings. Though this technique is simple and powerful, the assump
tion of the additive model for factor effects need to be confirmed by using confirmation runs.

In this report, the application of the Robust Design Method to improve the design of a VLSI
circuit building block, an adder, is illustrated. The experiment was conducted by using the
HSPICE [2] circuit simulator. After the analysis of the experiment, the error and the assumption
of the additive model for factor effects are investigated. The conclusion of the optimal parameter
settings is also discussed.

2.0 Methodology

In order to improve the quality of a product by minimizing the effect of the process variations
without eliminating the causes, a set of design parameters that cause the smallest deviation of the
quality characteristic from its desired target is required. In traditional work, such an optimal set of
design parameters was found by trial and error. Foreach parameter, the effect on the products per
formance has to be examined alone. When the number of control variables increase, this approach
can be very costly and time consuming.

The Robust Design Method performs only a smaller number of experiments and makes con
clusions based on the available results. This is done by an orthogonal array that defines the matrix
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experiment. Because any two columns of an orthogonal matrix are mutually orthogonal, combina
tions of factor levels occur an equal number of times. Such a technique allows the effects of all
variables to be determined efficiently.

An important assumption in Robust Design Method is the additive model for factor effects of
variables. This means that no interaction terms of factor effects exist. One might doubt this rather
optimistic assumption. Fortunately, in the real case, the interaction terms usually can be negligible
in comparison with the main effects. Besides, the definition of the signal to noise ratio (as will be
stated later) as a logarithm function can further improve this drawback. However, after the analy
sis of factor effects, this additive model still has to be validated by confirmation runs.

The way to find the optimal setting of each variable under a specific performance criterion is
achieved by maximizing the quality metric called signal to noise ratio (SN). The definition of the
signal to noise ratio, for the speed of an adder, is the following:

SNspeed = -101og10(delay)(dB)

The factor effect of variable A set at level 1 is calculated as the following:

m = SN,

m n

i= 1 i= 1

where SN is the mean of all nexperiments and SNA1 is the mean ofmexperiments where variable
A is set to level 1. By plotting the factor effects for all decision variables, the optimal setting of
variables under a certain performance criterion can be determined.

3.0 Implementation

An adder was used to illustrate the application of Robust Design Method for IC design
improvement. The decision variables are oxide thickness (Tox), the width ofthe carry input buffer
transistors (Win), and the width and length of the carry output buffer transistors (Wout, Lout). The
levels of each factor are listed in Tab. 1.

Factor levell lever2 lever3

Tox (nm) 15 20 25

Lout (um) 1.0 1.2 1.4

Win (um): NMOS, PMOS 4,8 6,12 8,16
Wout(um): NMOS, PMOS 4,8 6,12 8,16

TABLE 1. Definition of decision variables and their factor levels

The performance criteria to be optimized are speed (delay from the carry input to carry out
put), speed degradation due to hot-carrier effects, area (the sum ofthe product ofchannel length
and channel width ofeach transistor), sensitivity ofspeed to variations ofthe channel length, and
thesensitivity of power to variations of the channel length.
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The speed degradation due to hot-carrier effects was estimated by two HSPICE simulation
runs. During the first HSPICE run, the hot-carrier induced damage (quantified as a Age parameter
[3]) of each transistor under a specified circuit operation time was calculated from the waveform
of gate and drain voltages. The second HSPICE run was used to simulate the degraded circuit
behavior by adding avoltage controlled current source in parallel with each degraded transistor as
shown in Fig. 1. This voltage controlled current source is used to model the hot-carrier induced
degradation in drain current and has been found to be a function of the Age parameter, effective
channel length L, gate to source voltage Vgs, and drain to source voltage Vds [4]

D

>

Use a voltage
controlled

current source

to model Aid.

A Id = f(Age, L, Vgs, Vds)

Fresh NMOS Degraded NMOS

FIGURE 1. Hot-carrier effect can be modeled by a voltage controlled current source

The definition of the signal to noiseratio of eachperformance criterion is the following:

SN1 = SNspeed = -10 log10(delay0) (dB)

SN2 = SNdeg(speed) = -101og10

delaydeg-delay0
delay*

(dB)

SN3 = SN^ = -10 log10(area) (dB)

SN4= SNpower = -10 log10(power) (dB)

SN5 = SNsenofspeedtoAL = -10 log10(sen_of_speed to AL * delay0) (dB)

SN6= SNsenofpowerto ^ = -10 log10(sen_of_power to AL * power) (dB)

where delay0 is the delay of a fresh adder, delaydeg is the delay of a degraded adder, and
delayT .AT-delayT

sen_of_speed to AL = l + hl, l
AL

PowerL +AL-PowerL
sen_of_power to AL =

AL
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where L=l .2u,m, AL=0.05um delayL+AL and powerL+AL are the delay and power when the channel
length of each transistor increases by 0.05p.m. The sensitivity of speed and power to the channel
length is important when considering the process variation causing the channel length of all tran
sistors to shift out of their designed target values.

4.0 Results and Discussion

According to the orthogonal array, the matrix experiment and the results of each quality met
ric (in dB) are shown in Tab. 2. The factor effect of each decision variable has been calculated and
shown in Tab. 3 and in Fig. 2

Level Result

Exp.# T Lout wln ™out SN1 SN2 SN3 SN4 SN5 SN6

1 1 1 1 1 85.63 13.35 94.41 26.07 121.70 9.75

2 1 2 2 2 86.05 14.43 94.10 25.84 122.47 9.28

3 1 3 3 3 86.20 15.34 93.77 25.59 122.85 8.63

4 2 1 2 3 85.84 26.03 94.05 25.98 122.09 10.05

5 2 2 3 1 85.03 23.83 94.18 26.31 121.58 15.60

6 2 3 1 2 85.02 23.68 94.10 26.14 120.93 10.28

7 3 1 3 2 85.12 37.89 94.10 26.30 120.96 15.89

8 3 2 1 3 84.90 35.10 94.02 26.17 120.73 13.85

9 3 3 2 1 84.28 25.12 94.21 26.71 121.04 17.63

10 1 1 1 3 86.24 14.39 94.13 25.71 122.39 10.81

11 1 2 2 1 85.60 14.55 94.27 26.03 122.46 10.85

12 1 3 3 2 85.97 15.26 93.94 25.77 122.60 10.33

13 2 1 2 2 85.59 25.26 94.18 26.14 121.58 9.37

14 2 2 3 3 85.74 35.57 93.87 25.93 122.31 9.31

15 2 3 1 1 84.61 23.76 94.29 26.41 120.68 13.27

16 3 1 3 1 84.67 35.74 94.24 26.54 120.75 18.76

17 3 2 1 2 84.65 30.77 94.18 26.36 120.43 14.20

18 3 3 2 3 84.91 24.22 93.84 26.15 120.84 11.26

Average 85.34 24.13 94.11 26.12 121.58 12.17

Error(exp) 0.240 2.153 0.114 0.143 0.239 1.785

Confirm

cl 2 2 2 2 85.39 24.33 94.10 26.13 121.42 9.60

predicted 85.18 26.29 94.20 26.25 121.58 11.44

error 0.206 -1.96 -0.09 -0.13 -0.167 -1.83

c2 1 1 3 3 86.59 17.66 93.97 25.65 123.03 10.13

predicted 86.44 19.52 94.01 25.67 122.81 10.02

error 0.150 -1.86 -0.04 -0.02 0.218 0.116

TABLE 2. Experimental matrix and the experimental results
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Factor level Effect

SN1 SN2 SN3 SN4 SN5 SN6

T*ox 1 0.613 -9.573 -0.003 -0.285 0.835 -2.232

2 -0.032 2.227 0.008 0.033 -0.050 -0.859

3 -0.582 7.346 -0.005 0.252 -0.785 3.090

Lout 1 0.178 1.316 0.080 0.003 0.002 0.263

2 -0.007 1.582 -0.001 -0.011 0.087 0.008

3 -0.171 -2.898 -0.079 0.008 -0.089 -0.271

wTTin 1 -0.160 -0.621 0.085 0.024 -0.434 -0.147

-• 2 0.041 -2.525 0.004 0.022 0.170 -0.766

3 0.119 3.146 -0.088 -0.046 0.264 0.913

"out 1 -0.365 -1.403 0.161 0.224 -0.209 2.136

2 0.056 0.422 -0.001 -0.027 -0.082 -0.615

3 0.309 0.981 -0.159 -0.197 0.292 -1.522

Error(eff) 0.098 0.879 0.047 0.059 0.098 0.729

TABLE 3. Factor effect of each decision variable for each performance criterion

Before drawing any conclusions about the experimental results, the errors associated with the
experiment needs to be evaluated. There are two kinds of errors that have to be considered. First,
theexperimental error (oexp), which determines whether themodel is good or not. The second one
is the effect error (oeff), which determines whether the factor effect is significant or not.

For computer-basedexperiments, care must be taken concerning the estimation of experimen
tal error. In real-world experiments, two kinds of model error exist. One is the random noise error,
which accounts for the error when the identical inputs during different time space create different
results. The other is the lack of fit error, which is the error between model prediction and the mean
value of experimental results. It is clear that only lack of fit error could exist for computer-based
experiments because the same inputs always result in the same output. Therefore, the root-mean-
squared (r.m.s.) error [5] of the data was used to estimate the computer-based experimental error
(cexp). The root-mean-squared error is calculated as follows:

,x2

n
rms -

where n is the number of experimental points and y,- and y. are the measured and model predic
tion values ofthe output at the ith experiment, respectively. *The other concern is that such estima
tion of experimental error rely on the lack of fit error. However, for small number of experimental
runs, the degree of freedom left for error is zero. This causes no lack of fit error and the above
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experimental error estimation will fail. In such a case, the number of experiments need to be
increased so the lack of fit error can be estimated.
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Fig. 2 and 3 show the factor effect of each performance criterion. The decision of a factor set
ting at level i is better than at level j, judged by whether their output difference is more than twice
the effect error (ceff) ornot. The effect error is calculated from the experimental error as the fol
lowing:

-2-1
m

aeff - ~ aexp

where m is the number of experiments that the decision variable is set at level i (for the adder
example in this report, m=6). If the output difference is less than twice oeff, setting at level i or
level./ is considered to have no significant difference in output. It means that such a conclusion is
correct for about 95% of probability.

Tab. 4 shows the optimal parameter setting for each performance criterion.

Factor

level

Speed Deg(Speed) Area Power Sen_of_speed
toAL

Sen_of_power
toAL

T 1 3 2,1,3 3 1 3

Lout 1 2,1 1 3,1 2,1 1,2,3

wln 3,2 3 1 1,2,3 3,2 3,1

^out 3 3,2 1 1 3 1

TABLE 4. The optimal setting of each decision variable for each performance criterion

It is evident that for different performance criteria, the optimal parameter settings are differ
ent. Therefore, designers have to pick the parameter setting based on what performance criterion
are considered to be important.

Finally, twoconfirmation runs were performed. First, thetypical case of each level setting was
used. Second, the settingwas picked to aimed at highest speed. In bothcases, the lack of fit errors
are all less than three times of theestimated experimental error. This indicates that the assumption
of additivity of factor effects is valid in this study.

5.0 Conclusions

Thefundamentals of theapplication of theRobust Design Method for IC design improvement
are presented in this report. It shows that through the Taguchi's design philosophy, the optimal
setting of parameters for product performance and IC manufacturability can be quickly found.
The orthogonal array for experiment matrix, the assumption of the additive model of factoreffect,
the maximizing the signal to noise ratio, and the confirmation runs form the core concept in this
design technique. The circuit designer can quickly get feedback from such a methodology on cir
cuit performance and its sensitivity to variation in IC manufacturing.
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Transistor Matching Properties of the UC Berkeley
CMOS Process

Manolis Terrovitis

The subject of this project is the examination of mismatch among transis
tors manufactured in the UC Berkeley microfabrication line. Although the
data is corrupted by processing and measurement noise, basic patterns
about the matching behavior can be found with the aid of statistical pro
cessing.

1.0 Introduction

Because of IC processing imperfections there are small differences in the behavior of identi
cally designed devices. Two kinds of variation can be considered. Global variation accounts for
the total variation of a process parameterover a wafer or a lot. Local variation, or mismatch is the
difference in a process parameterbetween adjacent devices that are designed to be used together
in a circuit. Mismatch is critical in Analog Designs whose operation is often based on the ratio
rather than the absolute values of the components. Mismatch, in these cases, causes random input
offset in amplifiers, and determines the nonlinearity errors of most kinds of A/D converters.

Our study is focused on transistormismatch. Different drain currents under identical bias con
ditions arethe result of different process parameters, mainly the threshold voltage, the current fac
tor (the product of mobility, thickness of the oxide, and ratio of the effective width over the
effective length of the channel), and the substrate factor. We will study measurements of the
threshold voltage and we will investigate the factors that affect the threshold voltage mismatch of
NMOS and PMOS devices. The results for one wafer will be presented and discussed next. The
results of a second wafer will be summarized in the appendix.

2.0 Measurements

In this section we describe the transistors from which the measurements were collected. We
will also discuss a manufacturing problem that affects the quality of our results. Finally, we will
describe the available equipment and the procedure we followed in taking the measurements in
order to achieve certain accuracy.

2.1 Test Structures

Our measurements are collected from four by four arrays of transistors, shown in FIGURE 1.
The transistors have a width of 20p.m and a length of 2p.m. Every four transistors in one row share
a common source and every four in a column share a common drain. All 16 share a common gate.
There are 52 dies on each 4" wafer, and each die has six arrays of NMOS and six of PMOS tran
sistors.

Transistor Matching Properties of the UC Berkeley CMOS Process EE290W S95
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FIGURE 1 Four by four array of transistors.

Metal 2 is used to connect the common drains as well as for the connections from the common
sources to the pads as can be seen in FIGURE 1. These wafers have been fabricated in the Berke
ley Microfabrication Laboratory where the baseline process is still under development and the
vias are not reliable. Some residual oxide on metal1 creates an open-circuit, but we found that
applying a high voltage, breaks down the residual oxide and establishes contact. Therefore, in
order to enable the experiment, before we took any measurement from each device, we applied
8V on the Gate and the Drain for 2 seconds.

However, even the "enabled" contact has possibly high resistance, is nonlinear and generally
has unpredictable behavior. An electric schematic of the array including the via resistances is
shown in FIGURE 2. Because of the remaining high via resistance, our measurements are cor
rupted, and so theconclusions drawn from the subsequent analysis cannot begeneralized.
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FIGURE 2 Electric schematic of the array including the"enabled" highresistance vias.
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2.2 Equipment accuracy

For the measurements we used an automatic wafer tester, consisting of the Electroglas Auto-
probe 200IX, theHP4084A Switching Matrix Controller, the HP4085A Switching Matrix and the
HP4141A DCSource/Monitor. For therange of voltages that we apply in order to measure thresh
old voltage, the advertised resolution of the DC Source/Monitor is lmV, and for the range of cur
rents that we measure the advertised accuracy is 0.17pA.

In order to test the accuracy of thisequipment in the threshold voltage measurement, we mea
sured repeatedly the threshold voltage of one device, first without moving the pins from the pads
and then by raising and reapplying thepins before each measurement. The scatter plot of themea
surement showed only random error for the first 40 points. In the case that the pins do not move
from the wafer the standard deviation of the measurements was 0.247mV and in the case that we
raise the pinsbefore each measurement, for the setof the40 first points, 0.484mV.

This means that the in series resistance of the pin-pad contact is a random variable and we
should compensate for this also in order to measure in acommonway all the devices. We decided
to take each measurement 5 times by raising the chuck between successive measurements and
consider the averages. This way, the above accuracy is divided by the square root of 5 and our
final measurement has a standard deviation of 0.216mV.

3.0 Analysis

In this section, the results of the measurements are analyzed using statistical processing soft
ware (Splus) in order to characterize the mismatch behavior. We examine the pattern of the
threshold voltage across the array, we look for a pattern of the mismatch across the wafer, we
quantify mismatch within the array, the die, and thewafer and, finally, we investigate the effect of
distance on mismatch between two transistors in the array.

3.1 Superposition of the arrays

As a first test we superimposed the threshold voltage of all the arrays across the wafer and the
results for the NMOS case are shown in FIGURE 3. The sample size is 52*6=312 arrays. We
observe that the average of the threshold voltage of the transistors across the one diagonal is
higher. In order to check if this effect is significant we plot the standard deviation of the measured
threshold voltage across the array also. The result which is shown in FIGURE 3, shows that this
pattern is significant. The corresponding plots for the PMOS transistors are shown in FIGURE 4.
We observe the same phenomenon although not as intense as in the NMOS case.

There is not straightforward explanation for this pattern. In orderto look into this effect and
acquire some insight from a specific example, we plot themeasured threshold voltage across two
sample NMOS arrays in FIGURE 5. From this plot we observe that we have better matching
across one dimension. This probably happens because the transistors share common sources and
common drains. For example high resistance in series with a common drain modifies in a similar
way the measurement of all four transistors that share this drain as can be seen in FIGURE 2. This
does not explain the pattern observed in FIGURE 3 and FIGURE 4, which may be due to the
unpredictable behavior of the via resistances.
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Superposition of the arrays St. Dev. ofmeasurements

FIGURE 3 Average and Standard Deviation across 312 NMOS arrays.

Superposition o( the arrays St. Dev. of measurements

FIGURE 4 Average and Standard Deviation across 312 PMOS arrays.

3.2 Wafer plot of mismatch

In order to examine mismatch across the wafer we need a metric of local mismatch for the
whole array. We decided to use the variance of the measured threshold voltages. The resulting
maps are shown in FIGURE 6 for the NMOS and the PMOS cases.

From this figure we suspect that for the NMOS case matching is better in the center of the
wafer than in the periphery. In order to check this hypothesis we plot the scatter plot of the value
of mismatch with respect to the distance from the center in FIGURE 7.

Transistor Matching Properties of the UC Berkeley CMOS Process EE290W S95
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One sample array A second sample array

FIGURE 5 Threshold voltage in two sample NMOS arrays.

NMOS PMOS

FIGURE 6 Perspective map of array Vtmismatch across the wafer for NMOS (left) and
PMOS (right) transistors.

NMOS PMOS

Group A Group B

'."*."• ;»:.• •• •'•*-•"' "IS.'2?.**• - • «.

FIGURE 7 Scatter plot of array Vt mismatch with respect to radial distance for NMOS
(left) and PMOS (right) transistors.
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It is hard to draw a conclusion from this graph. Since each one of the points represents vari
ance which follows achi-square distribution, the sum of some of those follows achi-square distri
bution also, with degrees of freedom equal to the sum of the degrees of freedom of each
individual. Therefore, we can form an F-test that examines the hypothesis that the mismatch is
equal in the center of the wafer and in the periphery. We divide the data in two groups, group A,
which includes the arrays with radial distance less than 17,000 microns from the center, and group
B which includes the rest. For the NMOS arrays the number of samples in group A is nA=78 and
in group B nR=221. Each mismatch value is thevariance of threshold voltage of 16 devices, and it
follows a chi-square distribution with 15 degrees of freedom. Hence the sum of the members of
group A has 15nA degrees of freedom and the sum of the members of group has 15nB degrees of
freedom.

We calculate that

2
a

$t-X'?~B,*(15-B*)
i = i

B G~ 2^-X'f-^-x'OS-i.,)
t = i

SB/nB
——~F(\5nB,\5nA)
*A/nA

y =

SR/nn
——- = 1.13
SA/nA

and

P(y>1.13) = 0.005

The F-test shows that the null hypothesis of equality of the mismatch can be rejected against
the alternative hypothesis of lower mismatch in the center with probability of type I error 0.5%.
Therefore there is evidence that the matching is better in the center, but not by much since the
ratio of the averageof the mismatch is only 1.13.

We repeat the same test for the PMOS devices. From FIGURE 6 and FIGURE 7 we do not
have reason to suspect that mismatch isbetter inthe center. Analysis similar to this performed for
the NMOS devices shows that

JT71 =092SA/nA

where nA=83 and nB=228. Testing the null hypothesis that the mismatch is equal in the two
groups against the alternative that it is higher in the center (the opposite than for NMOS) shows
that the null hypothesis can be rejected with probability of type I error 2.96%. Therefore here
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there is evidence that the mismatch is higher in the center, butnotby much since the ratio of the
average mismatch in the two groups is only 0.92.

In addition, in order tocheck if there are any vertical orhorizontal mismatch patterns, we cal
culated horizontal and vertical mismatch in each array. For the horizontal mismatch, this was
done bycalculating thestandard deviation of the threshold voltage of the transistors in eachof the
four rows and averaging them. This was done because four values ofmismatch in approximately
the same point cannot be depicted on the wafer map. The vertical mismatch was calculated in a
similar way bycalculating thestandard deviation ineach column and averaging thefour columns.
The results are shown in FIGURE 8.

Horizontal and vertical mismatch have different shape, but not specific pattern. There are

horizontal mismatch

FIGURE 8 Horizontal and vertical mismatch across the wafer for the NMOS devices.

areas where the vertical mismatch dominates and others where the horizontal dominates. The
average of theoverall mismatch is 3.4e-4 V2, the horizontal is 2.1e-4 V2 and the vertical is 2.6e-4
V2.

The corresponding wafer perspective maps for the PMOS devices are shown in FIGURE 9.

These graphs lead to thesame conclusions as for theNMOS devices. The average of the over
all mismatch is 3.4e-4 V2, thehorizontal is 1.9e-4 V2, and the vertical is 2.7e-4 V2.

3.3 Within array, die, and wafer variability

The purpose of the next step was to calculate the average variability within the array, within
the die, and within the wafer. The first is just the average of the mismatch of the arrays and has
been calculated above. The variability across the die can becalculated by averaging thethreshold
voltage ineach array, then taking thevariance over each dieand finally averaging thevariances of
all the dies. The variation across the wafer (between dies) can be calculated by averaging the
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horizontahfifShB vertical mismatch

FIGURE 9 Horizontal and vertical mismatch across the wafer for the PMOS devices.

threshold voltage across each die and then taking the variance for all dies. The squareroot of the
above variations for the NMOS transistorsare depicted in Table 1.

Table 1: Within array, die and wafer mismatch for NMOS devices

Source of mismatch

within array
Average Mismatch

within die (between array averages)
within wafer (between die averages)
between trans, in different arrays of the same die
between trans, in different dies

18.4 mV

12.0mV

9.5 mV

22.0 mV

23.9 mV

The mismatch between individual transistors in different arrays of the same die can be consid
ered as the sum of two random processes: one that gives the mismatch between the means of the
two arrays and one that gives the mismatch within one array. Therefore the variance is given as
the sum of the variances of the two processes.The mismatch between individual transistors in dif
ferent dies can be calculated in a similar way.

The above results agree with our intuition. Averaging the threshold voltage across each array
in order to calculate the within die variability smooths the local variations. This is the reason that
large devices (such as the array average) exhibit exist smaller mismatch compared to thatof small
devices. It is well known thatthemismatch (expressed as the standard deviation of a parameter) is
inversely proportional to the square root of the area of the devices.

Wecan form a statistical test to verify the (obvious) inequality of mismatch within the array,
within the die and within the wafer. The test is depicted in table 2.

Table 2: Testing of equality of mismatch from different sources for NMOS devices

Source of variation

within array
within die

within wafer

mean square (Volt)
sa=0.0003403383
sd=0.000144819
sw=9.067722e-5

Transistor Matching Properties of the UC Berkeley CMOS Process

degrees of freedom
52*6*(16-1)
52*(6-l)

ratio

sa/sd=2.350094
sd/sw=1.597082

(5CT)
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The test of equality of mismatch within the array and within the die gives that we can reject
the null hypothesis of equality with probability of error essentially 0. Similar test of equality of
mismatch between the within die and the within wafer variation confirms that we can reject the
null hypothesis at a level of confidence 2.29%.

The corresponding values for the PMOS devices are shown in Table 3 and Table 4.

Table 3: Within array, die and wafer mismatch for PMOS devices.

Source of mismatch

within array
Average Mismatch

within die (between arrays)
within wafer (between dies)
between trans, in different arrays of the same die
between trans, in different dies

18.4 mV

13.4 mV

10.9 mV

22.8 mV

25.2 mV

Table 4: Testing of equality of mismatch from different sources for PMOS devices.

Source of variation

within array
within die

within wafer

mean square (Volts )
sa=O.OOQ3385738

sd=0.0001812777

sw=0.0001183602

degrees of freedom
52*6*(16-1)
52*(6-l)
(52-1)

ratio

sa/sd=1.867708

sd/sw=1.531576

Test of equality of mismatch within the array and within thediegives thatwecanreject the
null hypothesis of equality with probability of error 1.4e-10. The test of equality of mismatch
between the within dieand the within wafer variation confirms that wecanreject thenull hypoth
esis with probability of error 3.42%.

3.4 Dependence of mismatch on distance within the array

From each raw (or column) of transistors in the arrays we can calculate

• 3 differences of threshold voltage between devices with distance 1 (adjacent transistors),

• 2 differences of threshold voltage between devices with distance 2 (there is one transistor in
between) and

• 1 difference of threshold voltage between devices with distance 3 (there are two transistors in
between).

Horizontal distance of 1corresponds to 25pm andvertical distance of 1 to 22p.m. In this anal
ysis we will use the absolute value of these differences. In order to simplify the analysis we aver
age the differences from each raw (column) that correspond to the same distance. Then we
average the differences that correspond to the same value of distance, and we keep three values
form each array, one for each value of the distance. We can consider the distance as a "treatment"
and perform the analysis of variance in order to check if the mean value of mismatch is different
for the three distances.

Transistor MatchingProperties of the UC Berkeley CMOS Process EE290W S95
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The data now consists of either absolute values of difference of threshold voltage or average
of those and does not follow a Gaussian distribution. We have three sets of data, one for each
value of the distance. We can divide each set in smaller groups, for example each consisting of 10
arrays, and average the data, thus obtainingone value from each group. Then the central limit the
orem can guarantee the normality of the distribution of the averaged data. Applying the above
method to the horizontal mismatch of the NMOS transistors we obtain the following ANOVA
table:

Table 5: Mismatch versus horizontal distance for NMOS transistors

source of variance mean (Volts) mean square (Volt2) df. ratio

trn with dist. = 1 0.01558989 81=8.8750256-06 20
trn with dist. = 2 0.01576097 s2=0.244643e-O6 29

trn with dist. = 3 0.0156616 s3=2.154695e-05 20
within treatment sR=1.32222le-05 87 sT/sR=0.01617
between treatment ST=2.214264e-07 2

P(F(2,87)>sT/sR) = 0.98

Therefore there is serious evidence that the means are equal and that the mismatchbetween the
devices does not depend on distance. Thisagain is a result that weexpect. In [2] we find: "The rel
ativeeffectof the mismatch due to the distance is only significant for large area devices with con
siderable spacing."

Repeating the same procedure for vertical mismatch of the NMOS transistors we obtain the fol
lowing results:

Table 6: Mismatch versus vertical distance for NMOS transistors

source of variance mean (Volts) mean square (Volt2) df. ratio

trn with dist. = 1 0.01468043 sl=1.124?86e-05 29

trn with dist. = 2 0.01555932 s2=1.00454e-05 29

trn with dist. = 3 0.01548039 s3=1.5l0556e-05 29

within treatment sR=1.213294e-05 87 sT/sR=0.59002
between treatment sT=7.158657e-06 2

P(F(2,87) >sT/sR) =0.56

Therefore we conclude that the mismatch within the arrays doesnot depend on distance.

The results for the PMOS devices are shown in Table 7 and Table 8, and lead to the same results
asforNMOS. Thelevel ofconfidence atwhich we can reject the null hypothesis ofequality ofthe
means remains high.

TransistorMatching Properties of the UC Berkeley CMOS Process EE290W S95
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Also the fact that the mismatch does not increase monotonically with distance in some of these
cases supports the previous conclusion.

Table 7: Mismatch versus horizontal distance for PMOS transistors

source of variance

trn with dist. = 1

trn with dist. = 2

trn with dist. = 3

within treatment

between treatment

mean (Volts)
0.01451119

0.01448647

0.01529769

P(F(2,87) > sT/sR) = 0.7347046

mean square (Volt2)
sl=1.088l02e-O5
s2=1.90976e-0T"
s3=2.501969e-05

sR=2.1333O7e^0T
ST=6.599281e-06

df.

W

W

30

W

ratio

sT/sR=0.30935

Table 8: Mismatch versus vertical distance for PMOS transistors

source of variance mean (Volts) mean square (Volt2) df. ratio

trn with dist. = 1 0.0142865 sl=l.O53066e-05 29

trn with dist. = 2 0.0143878 s2=1.010334e-05 20
trn with dist. = 3 0.01292618 s3=9.30914e-06 20
within treatment sR=9.9734l2e-06 87 sT/sR=2.00385
between treatment ST=1.9985l7e-05 2

P(F(2,87)>sT/sR) = 0.14

4.0 Conclusions

Threshold voltage measurements have been taken from four by four transistor arrays fabri
cated in the baseline of the microfabrication lab at UC Berkeley. Our data is corrupted by prob
lematic metal1 to metal2 via contacts. However, we are able to statistically process the
measurements and draw some conclusions about the mismatch behavior.

Thefirst result is thatdevices along onediagonal tend to have higher threshold voltage. There
is not a good explanation for this phenomenon.

Second, for the NMOS devices we observe that mismatch is lower in the center of the wafer
while for the PMOS is lower in the periphery. In both cases the difference is statistically signifi
cant, but small.

Third, we calculated the average variation of the threshold voltage across the array, across the
die (between arrays) and across the whole wafer (between dies). We found, as we expected, that
as we go from smaller to larger structures the variation is reduced.

Last, we considered the effect of the distance between transistors in the mismatch. We found
that distance is not a significant factor when the devices have small size and are close to each
other.
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Appendix

In this appendix we summarize the results from a second wafer. For convenience the figures
and the tables have the same number as the corresponding for the first wafer.

Superposition of the arrays
St. Dev. of measurements

FIGURE A3. Average and Standard Deviation across 312 NMOS arrays.

Superposition of the arrays St. Dev. of measurements

FIGURE A4. Average and Standard Deviation across 312 PMOS arrays.
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From FIGURE 3 and FIGURE 4 we observe that the threshold voltage is higher across theone
diagonal for this wafer also. There is very close similarity to the corresponding pattern of thefirst
wafer that we examined.

NMOS
PMOS

FIGURE A6. Perspective map of mismatch across the wafer for NMOS (left) and PMOS
(right) transistors.

NMOS PMOS

FIGURE A7. Scatter plot of mismatch with respect to radial distance for NMOS (left) and
PMOS (right) transistors.

For the NMOS arrays nA=72,nB=211

SB/nB
SA/nA

= 0.86

The hypothesis of equality of mismatch in the two groups against the alternative that the mis
match is higher in the center can be rejected with type I error: 0.1 %

For the PMOS arrays nA=83, nB=227
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SB/nB
SA/nA

= 0.94

The hypothesis of equality of mismatch in the two groups against the alternative that the mis
match is higher in the center can be rejected with type I error: 10.3%

From the above we conclude that there is not significant difference of mismatch in the center
and the periphery. The differences that appear are rather random than systematic.

FIGURE A8. Horizontal and vertical mismatch across the wafer for the NMOS devices.

horizontal mismatch

FIGURE A9. Horizontal and vertical mismatch across the wafer for the PMOS devices.
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Table Al. Within array, die and wafer mismatch for NMOS devices

Source of mismatch

within array
within die (between arrays)
within wafer (between dies)
between trans, in different arrays of the same die
between trans, in different dies

Average Mismatch
20.4 mV

11.5 mV

9.8 mV

23.4mV

25.4 mV

Table A2. Testing of equality of mismatch from different sources for NMOS devices

Source of variation mean square (Volt ) degrees of freedom
52*6*(16-1)

ratio

within array
within die

sa= 0.0004163085
sd= 0.000131196T

= 9.615566e-05

52*(6-l)
sa/sd= 3.173168
sd/sw= 1.364418

within wafer
'W (5MT

Test of equality of mismatch within the array and within the die gives that we can reject the
null hypothesis of equality with probability of error essentially 0. The test of equality of mismatch
between the within die and the within wafer variation gives that we can reject the null hypothesis
with probability of error 9.2%.

Table A3. Within array, die and wafer mismatch for PMOS devices.

Source of mismatch Average Mismatch
within array 21.2mV

within die (between arrays) 12.7 mV

within wafer (between dies) 10.6 mV
between trans, in different arrays of the same die 24.7mV
between trans, in different dies 26.7 mV

Table A4. Testing of equality of mismatch from different sources for PMOS devices.

Source of variation mean square (Volt2) degrees of freedom ratio

within array sa=0.0004516236 52*6*(16-1) sa/sd=2.784553

within die sd=0.0001621889 52*(6-l) sd/sw=l.437304

within wafer sw=0.0001128425 (52-1)

Test of equality of mismatch within the array and within the die gives that we can reject the
null hypothesis of equality with probability of erroressentially 0. The test of equality of mismatch
between the within die and the within wafer variation gives that we can reject the null hypothesis
with probability of error 6.0%.
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Table A5. Analysis of variance to examine dependance of mismatch on distance in
horizontal direction for NMOS transistors.

source of variance mean (Volts) mean square (Volt2) df. ratio

trn with dist. = 1 sl=8.066728e-O6 11
trn with dist. = 2 0.01717022 s2=0.31l530e-O6 27
trn with dist. = 3 0.01654502 s3=1.98O440e-O5 27
within treatment sR=1.269425e-05 81 sT/sR=0.21664
between treatment ST=2.75008e-06 2

P(F(2,87)>sT/sR) = 0.81

Table A6. Analysis of variance to examine dependanceof mismatch on distance in
vertical direction for NMOS transistors.

source of variance

trn with dist. = 1

trn with dist. = 2

trn with dist. = 3

within treatment

between treatment

P(F(2,87) >sT/sR) =0.68

mean (Volts)
0.01705387

0.01767579

0.01790014

mean square (Voir)
sl=7.400891e-06

s2= 1.156053e-05

s3=2.236883e-05

sR= 1.377675^05"
St= 5.38198 le-06

df. ratio

27

"27

27

%\ sT/sR= 0.3907

Table A7. Analysisof variance to examine dependance of mismatch on distance in
horizontal direction for PMOS transistors.

source of variance

trn with dist. = 1

trn with dist. = 2

trn with dist. = 3

within treatment

between treatment

P(F(2,87)>sT/sR) = 0.12

Appendix

mean (Volts)
0.01353845

0.01403697

0.01534171

mean square (Volt2)
sl=7.390386e-O6~
s2=5.92278e-06

s3=2.429320frffT
sR=1.253840e-O5
ST=2.688005e-05

df.

30

30

W

ratio

sT/sR=2.1438
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Table A8. Analysis of variance to examine dependance of mismatch on distance in
vertical direction for PMOS transistors.

source of variance

trn with dist. = 1

trn with dist. = 2

trn with dist. = 3

within treatment

between treatment

mean (Volts)
0.01939411

0.01927744

0.01692616

mean square (Voir)
sl=2.051774e-05

s2=1.385921e-05

s3=2.484398e-"05"
sR=1.979831e-05
ST=5.816451e-05

df. ratio

20"
"87 sT/sR=2.93785

P(F(2,87) > sT/sR) = 0.058

The lastcase shows some difference in the means, butit is a rather a random phenomenon since
the mean that corresponds to longer distance is smaller.

Again, we conclude that there is not significant dependance of mismatch on distance within
the array.
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