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Abstract

Many qualitative properties of the product and the process are of interest during semi-
conductor manufacturing. Typical examples are the sidewall surface roughness of a poly-
silicon etching line and the average grain size for a polysilicon deposition film. These
properties are important since they affect directly the quality and performance of the inte-
grated circuit (IC) devices being built. Traditionally, however, they are treated informally

and subjectively as tacit knowledge in the processing arena.

A systematic approach to modeling, simulating and controlling such qualitative prop-
erties is presented in this work. This approach is based on the statistical analysis of cate-
gorical data, and on fuzzy logic theory. The results show significant promise for
incorporating qualitative and quantitative features of a process in a computer-integrated

manufacturing environment.



Our approach is based on the viewpoint that qualitative process variables are categori-
cal data and can thus be better understood with the help of logistic regression analysis.
This analysis reveals important relationships between the input process settings and the
qualitative process output responses, in a way that is similar to linear regression analysis
for conventional numerical variables. Similarly, categorical process variables can be used

for process control, which is driven by a probabilistic model of the categorical variables.

The modeling framework proposed in this work is further built on a self-learning
inference system based on fuzzy logic theory. According to this methodology, both the
input and output variables (numerical or categorical) are “fuzzified” into linguistic vari—.
ables, which take several discrete values associated with membership functions. The lin-
guistic values of the input and output variables are mapped through a fuzzy inference
process which is implemented as a series of fuzzy set operations. The resulting linguistic
values obtained from such inference operations can be “defuzzified” into numerical or cat-

egorical values.

Such a fuzzy inference system can be designed and created by training data obtained
either from human expert knowledge, or automatically extracted from hard data from sta-
tistically designed experiments. After the establishment of the initial inference system, the

membership functions can be tuned adaptively to accommodate process changes.

In applying such a qualitative modeling framework, engineers can extract, store,
update, and transfer their qualitative understanding and experience about a process along
with the quantitative knowledge. Hence, in addition to the conventional statistical, empiri-
cal or physical modeling of the processing technology, the qualitative inference systems

proposed in this work are also useful in formal process modeling, simulation, and control.
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Chapter 1 Introduction

1.1 Motivation

Process modeling is one of the essential tasks in the semiconductor manufacturing
industry today. Extensive research and development has been carried out during the last
few years, both in industry and academia [1.1][1.2])[1.3]. While some of the modeling
approaches target specific processes and equipment, such as Low Pressure Chemical
Vapor Deposition (LPCVD) [1.4] or Plasma Etching [1.5], other methods seek to create
general modeling frameworks [1.6]. Most of these techniques are focusing on numerical

or quantitative process response variables.

In reality, however, many qualitatiye process observations are being informally col-
lected and used along with quantitative measurements during the development and pro-
duction runs of IC processes. These observations are mostly used to convey a visual
impression: printed patterns are “fuzzy” or “sharp,” surfaces are “smooth” or “rough,”
layers adhere *“well” or “badly” to the substrate. To date, these types of observations have
been collected side-by-side with quantitative observations, such as line-widths, layer
thicknesses, threshold voltages, average film grain size, etc. Even though formal statistical
techniques have been used extensively in dealing with quantitative observations, most
existing equipment models fail to describe these important qualitative aspects of the pro-
cess [1.7]. Thus, qualitative observations have remained subjective, and their use has been
opportunistic, informal and inefficient. This is especially unfortunate, since qualitative

observations capture important information about the process. Further, the collection of
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qualitative information usually involves expensive analytical techniques and consumes a

great amount of resources [1.8].

The objective of this work is to propose a framework for modeling such qualitative
process characteristics by developing an intelligent computer aided manufacturing system
that can capture qualitative as well as quantitative aspects of a manufacturing process.
Within this system models are developed that describe the qualitative relationships
between the equipment settings and the process responses. Statistical analysis methods for
categorical data [1.9] and fuzzy logic-based inference theory [1.10] form the mathematicgl
basis for our modeling system, as they have been shown to be effective media for captur-

ing qualitative information.

1.2 Overview

In this dissertation, we introduce a systematic methodology for analyzing qualitative
observations in semiconductor manufacturing. Chapter 2 introduces the basics of experi-
mental design [1.11] and categorical data analysis based on logistic regression [1.9]. This
regression method will be applied to an actual plasma etching process developed at Texas
Instruments, Inc. [1.8). Chapter 3 proposes a framework of statistical process control
(SPC) schemes to monitor and control qualitative process variables based on the logistic
regression models and other relevant categorical data analysis tools. This approach is a

generalization of the conventional SPC schemes used for numerical process variables.

Chapter 4 presents a brief introduction to fuzzy logic theory, followed by a self-learn-

ing inference system based on that theory. A low pressure chemical vapor deposition
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(LPCVD) process is used as a test vehicle for such an inference modeling system. And in
Chapter 5, a combination of categorical analysis and fuzzy inference is employed to create
a framework for an intelligent self-learning modeling system. This method automatically
designs an initial fuzzy inference system through statistical categorical analysis of a
designed experiment. This initial system can be tuned and adapted to accommodate newly
acquired experimental data. This way the system can learn from and adapt to process

changes.

Chapter 6 describes the various software programs created during to course of this
project. Based on the object oriented programming paradigm, all the programs are written
in C, C++ and the X-window tool-kit under the UNIX environment. Chapter 6 also
includes a simple introduction to the Berkeley Computer Aided Manufacturing (BCAM)
software system and its relationship with this qualitative framework. Additional detail
information about these software packages are included in the Appendix. Finally in Chap-

ter 7, potential applications of this work are proposed.

The flow-chart of this dissertation is shown in Figure 1.1, where the interdependence

among different chapters is depicted.
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Chapter 2 Categorical Data Analysis

According to established statistical nomenclature, a variable can be interval or cate-
gorical. An interval variable is one that can take continuous numerical values. A categori-
cal variable, on the other hand, takes only discrete values. If the values can be ordered
(such as the linguistic values “smooth,” “rough,” “very rough”), then the variable is an
ordinal categorical variable. If no ordering is possible (such as the linguistic values

“green,” “blue,” “red”), the variable is a nominal categorical variable [2.1]{2.2].

Categorical variables are encountered frequently in semiconductor manufacturing pro-
cesses, but are often treated informally. For example, in plasma etching, the roughness of
the etched polysilicon side-wall surface is an important indicator of the quality of an inte-
grated circuit (IC) product. This quality depends on various process input settings that

comprise the process recipe.

Statistical analysis of categorical variables is used extensively in biological and social
sciences, but has not been applied to semiconductor manufacturing. For example, there
might be a relationship between a person’s age (an interval input variable) and the likeli-
hood to develop heart diseases, an ordinal categorical variable that may take discrete val-
ues such as not likely, quite likely, or very likely. While the most common modeling
technique for an interval variable is linear regression analysis, a popular modeling method

for categorical data is logistic regression [2.1].
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2.1 Background Knowledge — A Plasma Etching Process

A semiconductor plasma dry develop (through etching) process developed at Texas
Instruments, Inc. (TI) [2.3] is used as the test vehicle for developing the qualitative model-
ing methodology in this work. The objective of the etching process is to create polysilicon
lines matching a target pattern as close as possible. The process settings are the tempera-
ture, etch time, power, pressure and oxygen flow rate inside the reactor. Experimental data
were obtained from a factorial design [2.4] based on these inputs. Many process output
variables are important in evaluating such a process. These output variables include not
only quantitative variables such as average line width of a printed pattern and the unifor-
mirty of the line width across the wafer, but also qualitative variables such as the sidewall
roughness, and the presence of indentations in the photoresist line profile, called mouse

bites (Figure 2.1).

Desired Pattern Actual Pattern
/ K lw ' 0 " "n ".
0 ’ !

/| V

roughness mouse-bite

Figure 2.1 A Plasma Etching Process

These ordinal categorical output variables take only a few discrete values, usually labeled
as “very rough,” “rough,” “smooth,” “very smooth,” etc. These values are assigned by
trained human operators who use established references and inspect the etched wafer

through a scanning electron microscope (SEM).
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2.2 Statistical Regression Analysis

In this section we will discuss both linear and logistic regression methods, which can

be used to analyze continuous and categorical output variables, respectively.

2.2.1 Linear regression modeling

In a single input, single output process, when both the input variable x and the output
variable y of a process are continuous interval variables, a linear regression model can be
applied, if we assume there is a linear relationship between x and y. This linear model is
expressed as y, = 0+Bx,+€,, where n is the nth observation for the variables x and y, and &
is the error. Statistically, all the experimental runs are assumed to follow the above linear
model, subject to identically, independently and normally distributed errors, €,. If 2 and b
are the estimates of the model parameters a and B, respectively, then the estimated linear

model can be expressed as [2.4],

Y, =atbx te, =3 +e,, n=12,..,N @1

where the subscript 11 stands for the nth experimental run, y, is the measured experimental
value, §, = a+bx, is the respective predicted value, and e,, is the residual. The parame-
ters a and b are typically estimated through the method of least squares, i.e. they are cho-
sen to minimize the sum of the squares of the residual e,,. Eq. (2-1) is called regression
equation and the output response variable y is sometimes called the dependent variable,
while x is called the independent variable or the regressor. When more than one input is
considered, the term bx,, in Eq. (2-1) should be replaced by a vector product bTx,,, where x
represents the input vector in a multi-dimensional space, and b is the corresponding

parameter vector. In this case, the first equation in Eq. (2-1) represents a surface in a multi-
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dimensional space, so sometimes this model is also referred as response surface model.
An analysis of variance table (ANOVA) can be used to test the significance of each con-
tributing factor, as well as the overall significance of the model. Lack-of-fit tests can be

used to determine if additional terms or transformations are needed [2.4][2.5].

2.2.2 Logistic regression modeling

The output variables of a process are often categorical data such as in the case of
mouse-bites and surface roughness mentioned above. Categorical variables take values
from an ordered set such as {“excellent,” “good,” “fair,” “poor,” “worst”}. In this case, the
conventional linear regression model would not be very useful. On the other hand, when a
semiconductor manufacturing process is under statistical control, we can assume that
these categorical variables take their discrete values with fixed probabilities, and that they
can be observed through a systematic and consistent measurement procedure. We also
assume that when the process is in control, the category in which a given output “lands” is
independent of prior observations. This amounts to assuming that in n experimental trials
with the same process input parameters, the number of outputs in each category will be
jointly multinomially distributed. Further, the probabilities of the different categories will
be functions of the input parameters; in particular, we assume that the odds in favor of cat-
egory “#” will have the form indicated in Eq. (2-3), shown on the following page. Models
of this form can be fitted with logistic regression [2.1][2.2]. As will be seen later, that
functional form and its sigmoidal shape can easily be translated to fuzzy membership

functions. Further, these logistic models have a statistically adequate fit to the data.

Such logistic regression or logit model, creates a mapping of the continuous input vari-
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ables to the probabilities p that the output variable fall in each category, i.e., the logistic
method estimates the probability p; of having results in category i, i=1,...,m. In order to
describe this model, we will first define the cumulative probabilities m; for a certain value!

of x as follows:

m(x) = 3 p;(x) 2-2)
<

The procedure of applying this method is summarized by the formula that defines the

logistic fitting curves:

exp(a; + b - x)

T (x) = 1+exp(a;+b-x)

=12,...m-1
(2-3)

where a;_, <aq;,

where =; are the cumulative probability functions. From this, the actual probabilities can

be estimated as:

nl (x) ’ i= 13
pi(x) =\ (x) -m;_, (x), i=2,..,m-1, - (24)
l—Rm_l(X), i=m

Similarly to the linear regression case, a and b are the estimated parameters, and x is

the input variable. Since the output y is a categorical variable, p,(x) gives the probability

1. "Cumulative probability” in this work is the probability which accumulates over the categories of
the categorical variable x.
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that y falls into category i (i=1, 2, ..., m). As in the linear regression case, various tests can
be applied to the estimated parameters and the significance level of the departure of the

corresponding input variable from zero can be evaluated.

Figure 2.2 shows an example of what the logistic fitting functions and the probability
functions might look like, when plotted against one of the continuous explanatory vari-
ables. As we see in Eq. (2-3), the cumulative probability curves are distinguished from
each other through the different constant parameters a;. In reality, when two categories are
not significantly different we can combine them to be the same category without degrad-

ing the fit.

mouse bites Cumulative Probabilities 7t/x)
1.0

0.8
0.6
04
0.2
0.0

|

worst

good

0

mouse bites Probabilities p;(x)
1.0
0.8
0.6
04
0.2
0.0

w (normalized)

A RN R EENER

)
b

Jfair poor

w (normalized)

Figure 2.2  Logistic Regression Results — Mouse Bites Probabilities vs. Power w
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2.3 Design of Experiment

In order to understand the relationship between certain output response variables and
the input process settings, a set of experimenits can be run to obtain the data needed. The
most efficient way to carry out such an experiment is to set the input settings in some par-
ticular arrangement so that the effects of these input variables can be determined through a
minimal number of experiments. The systematic approach to conducting such an investi-

gation effectively is called statistical experimental design [2.4).

One of these approaches is the factorial design, where the experimental settings are
chosen to be at the corners of a multi-dimensional cube in the input space. Figure 2.3(b)
depicts a 2-dimensional example. Comparing the more intuitive alternative way of chang-
ing one input parameter at a time, the benefit of factorial design is seen clearly. If the four
points in (a) are chosen, the effect for x; and x, would be estimated as Y;-y, and

¥, =Y. » respectively. However, if the four points in (b) are chosen, these two effects will
be (3 +74) _ () +,) and (r2+4) _ 0y +33) , respectively. It can be shown [2.4]

2 2 2 2
that option (b) gives better precision with the same number of experiment runs. In addi-

tion, option (b) allows us to estimate the interaction (1 +54) _ (¥2+3) of the two

2 2
inputs.
(@) X2 (b) %2
A A
b y2 Y4
Ya
Ye Y1 y3

— -

X3 S|

Figure 2.3  Factorial Experimental Design in a Two-Dimensional Space
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There are many variations of factorial designs, and many other approaches to experi-
mental design besides factorial design. The experimental data used in this work are based
on the plasma etching process mentioned before, and these experiments were carried out

at TI using a 3-level 3-factor factorial design (see Section 2.4).

2.4 Analyzing the Qualitative Experimental Data — Mouse Bites

Table 2.1 shows the experimental data collected from a plasma etching process at
Texas Instruments, Inc. (To protect proprietary information, only the normalized values
{-1,0, 1} of the input parameters are shown). This is a full 3-level factorial experiment

with 6 replicates at the center.

Table2.1 A Surface Imaging, Dry Develop Process (Courtesy: Texas Instruments)

No.|Power| Pressure| Oxygen roughness mouse bites
(w) | (») |Flow (0))|l{ smooth, fair, rough, roughest} |{ good, fair, poor, worst}
i 1] -1 | 1 roughest poor
-1 0 -1 fair fair
3] 0 0 0 fair poor
291 -1 -1 0 smooth good
30 -1 1 -1 fair fair
31§ O -1 -1 rough worst
32y 0 0 0 rough fair

The model for the mouse bites used four levels based upon the logistic statistics. It is
used in this section to illustrate how to carry out logistic regression to analyze categorical
process variables such as surface roughness and mouse bites. The commercial software

used is called JMP [2.6]. JMP is an interactive subset of SAS and runs on Macintosh com-

puters.
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Table 2.2 to Table 2.5 contain the results of the logistic analysis to assess the logit
model for mouse bites versus all three input factors (w, p, and 0,). The guiding principle
in logistic regression is the same as in linear regression, namely, to compare the observed
values of the response variable to the model predicted values with and without the input
variable in question. In the linear regression model, this evaluation can be realized simply
through the sum of squares of the residuals with and without considering the input vari-
ables. In the logistic regression model, however, the corresponding estimator is the so
called Log Likelihood function, which is a measure of the difference between the observed
values and the model prediction values, with or without considering input variables. The

comparison to assess a logit model is carried out though the following formula:

G = -2In [ (likelihood without the variable)]

(likelihood with the variable)

O =
= -2In =

M n (i)
H(l‘[w" ]

Lk=1Vi=1 .

where (i) is the cumulative probability for category k for the i sample, n;. is the number
of samples falling into category k, and y(i)=1 when the it sample falls into category k and
Yi(i)=0 otherwise. Also in Eq. (2-5), n = Y n, , n, = Y 3, (i) and k=1,2,...,M, where
M is the total number of categories. Such a li;elihood ratio 'G obeys asymptotically the Chi
Square (xz) distribution with M-1 degrees of freedom [2.1]. From the result showing in
Table 2.2, we see that the %2 value for the model is 40.879 and the probability that this or a

larger x2 occurs by mere chance is very close to zero, indicating the strong significance of
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the model.

Table 2.2 Model Fit for Mouse Bites (Including w, p, and O,)

Statistic w/o variables | w/variables | Chi-Square Probability
-2 Log Likelihood 83.075 42.196 40.879 < 0.0001

Table 2.2 gives a detailed list of the estimated parameters for the logit model. As we
see from the table, not every input factor is significant. For instance, the %2 value for O,
flow rate is only 2.4 and the corresponding significance level is more than 12%. Accord-
ingly, we can eliminate the insignificant input factor O, from our mouse bites logit model

and re-compute the logit model analyses.

Table 2.3 Logit Coefficients and Effect Test (w, p, and 0,)

Coefficients ‘ Value Std. Error I Chi-Square | Probability
Intercept 1 (0;) 46645 | 13184 1252 | 00004 |
Intercept 2 (o) -1.7653 0.7084 6.21 0.0127
Intercept 3 (0t3) 0.6485 0.5902 1.21 0.2719

Power w (B,) -5.2884 1.3620 15.08 0.0001
Pressure p (B,) -1.3700 0.6680 421 0.0403

Oxygen Flow Rate 0, (B3) 0.9962 0.6425 240 0.1210

The results of the logistic modeling excluding O, are shown in Table 2.4 and Table 2.5.
From comparing Table 2.2 with Table 2.4, and Table 2.3 with Table 2.5, we see the simpler

model without O, is just as good as the previous model with all three inputs.
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Table 2.4 Model Fit for Mouse Bites (Including only w and p)

w/o variables | w/ variables

Statistic Probability

-2 Log Likelihood

By convention, a variable is considered significant if its significance probability is less
than 5% [2.4])[2.7]. We see from Table 2.3 or Table 2.5 that both inputs w and p are signif-
icant according to our model, however the power w is a much more dominant factor, as its

x2 value is much larger than that of the pressure p.

Table 2.5 Logit Coefficients and Effect Test of the Reduced Model (w and p)

Coefficients Value Std. Error | Chi-Square | Probability
Intercept l-(—a-—_l) ;l:ﬁ 1.2022 12.93 0.0003
Intercept 2 (0y) -1.7561 0.6895 6.49 0.0109
Intercept 3 (03) 0.5915 0.5689 1.08 0.2985

Power w (B,) -4.833 1.2325 15.38 0.0001
Pressure p (B,) -1.2598 0.6318 3.98 0.0461

Figure 2.4 plots the different models for mouse bites. The probability curves agree
well with results from the above tables. There is almost no visible difference between the
full model (a) and the reduced model (b) since input O, is insignificant. There are small
visible differences between (b) and a model (c) based solely on power w, since p is signif-
icant but not as much as the main factor w. For comparison, a model (d) based solely on

pressure p is also shown.
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(a) Mouse Bites vs. (-B;*w-By*p-B3¢0,) (b) Mouse Bites vs. (-B;*w-B,*p)

— complete model — reduced model
1.0 ! 1.0 |- J
091\ 804 09 |- 800d
0.8 / 0.8 —

0.7}—

worst _| 0.7 worst

fair

0.6 poor, 0.6 fair poor —
0.5 0.5
0.4 04
03 0.3
0.2 0.2
0.1 0.1
0.0 ; . 00 ;

-6.1 0 6.1 -1.7 0 7.7

(c) Mouse Bites vs. w (d) Mouse Bites vs. p

— model based on power only — model based on pressure only
1.0 FF T 1.0 FF ] -+
09— - 09 — —
0.8 = good - 0.8 —
0.7 — / \ - 0.7 —
0.6 fair worst 0.6 =
0.5 poor — 05 —
0.4 - 04 -
03— - 03 —
02— _— 0.2
0.1 = - 0.1
0.0 1 7 0.0

-1 0 1

Figure 2.4  Probability Plots for Mouse Bites — Four Possible Models

This procedure of screening the insignificant input factors is important in reducing the
complexity of a modeling system. In reality, a process may have a large number of input
factors, but it is too costly and (as we have seen in the above example) unnecessary to

include all inputs in modeling a process response.
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2.5 Summary

Many qualitative characteristics in a semiconductor manufacturing process can be
treated as statistical categorical data. Similar to linear regression for analyzing conven-
tional numerical data, a logistic regression model can be applied to these qualitative pro-
cess variables collected along with the quantitative data from designed experiments. This
regression modeling technique can reveal relationships between these qualitative process
outputs with input process settings such as power, pressure and Oxygen flow rate in a typ-
ical plasma etching process. This analysis can also be used to screen out insignificant

input factors in modeling the response of a process.
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Chapter 3 Statistical Process Control Based
On Categorical Data

In Chapter 2, logistic regression models are created for categorical process outputs.
Once these models have been shown to represent the process accurately, they can be used
for quality control during production. These “model-based” Statistical Process Control
(SPC) schemes allow the controllable variables of a process to change during production.
The model is then used to account for these changes during SPC. This chapter proposes

several different SPC schemes for categorical variables.

As defined, the logit model predicts the logs of cumulative probabilities of several out-
put categories as a linear function of the controllable process inputs [3.1]. For SPC, how-
ever, the actual probabilities of each category can be assessed. These probabilities can be
calculated by taking consecutive differences between the cumulative probabilities, as
shown in Eq. (2-4). There is usually a significant prediction error in these probabilities,
since the model is based on limited sampling of noisy experimental data. This is in con-
trast to standard SPC practice, where the classical +36 control limits are considered
“exact.” The probabilities of each category cannot be considered exact because in a typical
categorical modeling situation the sample size is limited and the confidence interval of the
predicted probability values is wide. The error in probability prediction can be estimated
with the assumption that the estimated model parameters have a multivariate normal dis-

tribution.
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3.1 Short-Term SPC Using Categorical Models

The objective of short-term SPC is to identify abrupt (i.e. short term) process malfunc-
tions during production. Since the logistic models are made to predict probabilities, the
corresponding SPC control procedure is based on the predicted probabilities of each out-
come category of a process. For a certain category, the prediction error is usually substan-

tial and is calculated first.

The goal is to find the 67% (i.e. +0) confidence intervals of the predicted probabilities
[3.2]. The objective is to start with the multivariate normal distribution of the intercepts
and the coefficients, and to transform this distribution as an expression of the linear com-
binations of the three input variables: power w, pressure p, and Oxygen flow rate O,.
Mathematically, this transformation is equivalent to a linear change of coordinates in a
multi-dimensional space. Once such a transformation is accomplished, the linear combi-
nations of the three input variables can be set to their correlated 46 extremes in order to

calculate the extreme predicted probabilities for each category.

Consider, for example, the probabilities of each category of mouse bites, at the nomi-
nal settings of the process (Figure 3.1). The depicted 67% confidence intervals in Figure
3.1 are calculated from the variance-covariance matrix of the estimated model parameters.
This is accomplished by transforming the multivariate normal statistics of the model
parameters to the multivariate normal statistics of the linear combinations of the process
parameters and the intercepts. For SPC purposes, only the category that has very small

probability (category 2 in this example) needs to be examined.
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(Power, Pressure, O,) = (0, 0, 0)
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Figure 3.1  Example of Category Histograms with 67% Confidence Intervals.

There are two main objectives in a statistical process control scheme. One is to reduce
the probability of “false” alarms. This probability is also called type I error rate, and is
symbolized by o.. The other objective is to reduce the probability of missing the “true”
alarms, or the rate of type II error, symbolized by B. This objective is equivalent to
increasing the probability of generating “true™ alarms, or equivalently, increasing the

power of the test, 1-J.

Another way to explain this concept is to discuss the average run length (ARL) of a
control chart. The ARL is defined as the average number of runs before an out-of-cbntrol
alarm occurs [3.3]. Therefore, if the process is in control, ARLy = 1/a.. Similarly, if the
process is out of control, ARL = 1/(1-f). Ideally we want a very long ARL and a very

short ARL.

In order to evaluate the ARL, one must define the rules for alarm generation. In this
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work we will consider sequential runs rules, i.e. “issue an alarm if k out of the lastn
wafers appeared in categories (or combinations of categories) that they have been deemed
unlikely.” Either single runs rules, or combinations thereof might be employed. In this
example two sets of rules for short term malfunction alarm generation will be presented.
The (1100) rule raises an alarm when out of the last two sampled wafers, one falls in cate-
gory 2 and the other in category 31, A better rule is the (2000) and (1100) combination: it
raises an alarm if either both sampled wafers are in category 2, or one is in category 2 and

the other is in category 3.

The ARL corresponding to these runs rules are calculated based on the multinomial

distribution:

k i
P{x= (x,xp %)} = k] x—"» (3-1)
i=1™ !
The resulting ARL curves are plotted in Figure 3.2 against the actual probability of cate-
gory 2 in a malfunctioning process. By definition, the probability of a false alarm is the
inverse of ARLy, and the maximum false alarm probability within the range of prediction

of the model is the inverse of min(ARLg), which is plotted in Figure 3.2.

1. Category 1 was not included in this analysis since it was not represented in the experimental data.
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Mouse Bites

- \ —#— ARL(1100) + (2000)
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Category 2 Probability During a Malfunction

Figure 3.2 ARL for Various Rules as a Function of the Category 2 Probability.

What follows is another example of short-term SPC applied to the process optimized
for mousebites. Now category 5 is the least likely category, and it will be used for alarm
generation. A single runs rule will be sufficient here: raise an alarm if one of the last two
sampled wafers is in category 4 and the other is in category 5. The rule delivers nice ARL
characteristics, with relatively low probability of false alarms, and high sensitivity to mod-

erate shifts of the process.
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Figure 3.3  Predicted Histogram and Probability Ranges for the Optimized Process
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Figure 3.4  Characteristic Function of 007/ Runs Rule Applied to the Optimized Process

In summary, the characteristics of the short-term SPC show that it is possible to gener-
ate reliable alarms, as long as we can find either individual or combinations of low-proba-

bility categories.
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3.2 Long Term SPC

In addition to abrupt malfunctions in the process, there will be slow (i.e. long term)
process drifts that might happen due to natural and unavoidable process aging. These
might be caused by depletion of chemicals, seasoning of the chamber, scheduled or
unscheduled maintenance events, etc. A different approach can be adopted to catch such
slow process drifts, since, unlike short term alarms, slow drifts maybe be corrected by
simple feedback adjustments. The number shown in (3-2) is called power divergence, a

cumulative figure of merit that describes the match between the process and its model:

i (3-2)
2 i,

where T1; is the observed probability and I1; is the value predicted by the model for the
last k observations. The power divergence observes the Pearson chi-square statistic and is
(approximately) distributed according to a known xi‘ , distribution [3.4]. Therefore an
upper control limit can be found for this number for an acceptable false alarm level. If the
limit is exceeded, then this long-term SPC model will indicate an alarm. Furthermore, as
will be discussed in Section 3.3, this alarm means that the model is no longer consistent
with the process, and it has to be re-fitted. A process control action (recipe update) may

follow each adaptation of the model.

In this section, two examples of long-term SPC are examined. In the following simu-
lated examples, the Pearson chi-square statistic is used as a function of time, given a simu-

lated drift in the process.This drift of the process is simulated by shifting the expected
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probability values shown in Eq. (3-2) (See Figure 3.5).

D Probabilities before the process change:
(p2. 3. P4 Ps) =(0.01,0.16, 0.53, 0.30)

1.0 . Probabilities after the process change:

0.8 — (P2 P3 Pa Ps) = (0.11,0.11, 0.48, 0.30)

£ 0.6
£ 0.4 —
0.2 —

0.0

HENREERERE

Figure 3.5 Category Probabilities Before and After the Process Change

Such a model-based SPC scheme can be applied even if the controls of the process are
allowed to move. In the first example, the process is locked, i.e. the controls of the process
(input vector or recipe setting x) are not changing during the simulated runs. In the second
example, however, all the controls of the process are allowed to change randomly within
the center 50% of their experimental range in order to simulate a situation where the pro-

cess is constantly being modified by a run-to-run controller.

The power divergence statistic is calculated over a window of the last 40 runs. The
change depicted in Figure 3.5 is introduced at wafer #100. The long-term SPC control
charts results for the Power-Divergence statistic, as defined in Eq. (3-2), are shown in Fig-
ure 3.6 and Figure 3.7, for the locked and unlocked processes, respectively. The change
introduced for an unlocked process (Figure 3.7) is similar to that of the locked process,

except there are no constant probability distributions for the four categories.
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Figure 3.6 A Long-Term SPC Example with Locked Process Settings
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3.3 A Model-Update Algorithm for Process Control

Let us assume that a process is in control most of the time. Thanks to the short term
SPC scheme we discussed earlier, an abrupt change in the process would cause an out-of-
control alarm. For a longer period of time, however, there might be a permanent change or
shift in the process settings and the machine conditions. When such a change in the pro-
cess is detected by the long term SPC scheme, the model must be updated in order to
describe the “new” process. This can be accomplished by readjusting some of the inter-
cepts, while using the same linear combination of process parameters. This model update
is implemented using a maximum likelihood approach, based on a weighted least squares

minimization scheme, which will be illustrated in this section.

3.3.1 Model update approach

Probability prediction models are usually fitted by maximizing the likelihood of the
observed data. This maximization is done by choosing the appropriate values of the model
used to describe the data. In the case of long term SPC model update for categorical data,
each observation contributes some Log Likelihood, defined as the weighted sum of all the

prediction probabilities over the training set. Therefore, the fitting problem can be recast

as a minimization problem:

min (-2LogL) = min(-2§,wjlog (8 ) (3-3)

where w; is the weight of the j"‘ observation, and f’,- is the estimated probability. The

model that yields the highest probabilities for the actual observations “fits” the best.
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If the observations are collected sequentially in time, then they can be pre-weighted
using an exponentially weighted moving average (EWMA) scheme that assigns less
importance to older observations. The steepness of the EWMA scheme can be adjusted to

match the dynamics of the process. The weighting used in our example is shown in Figure

38
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Figure 3.8 EWMA Modeling Update

The general way of fitting a probability model is accomplished by maximizing the
likelihood of the observation vector. This leads to a numerical minimization problem that
can be solved by using the Gauss-Newton iterative method depicted here. The method of
“Iteratively Re-weighted Least Squares (IRLS)” [3.5] is employed by solving the follow-

ing equation for the multinomial variable vector Zj:
T
;D,- W;(Z;-p) =0 (3-4)

where P; is the vector of category probabilities computed for the current model parame-
ters. Dj is the matrix of partial derivatives of p;: and Wj is the weight matrix. The actual

solution is found iteratively by the Gauss-Newton method:
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J

Yor = ot (25 90;) 5, W5 -8) (3-5)
Jj

where ‘:ym is the model parameter vector (al, a2, ..., ak, b) after the mth iteration. D;, WJ
and éj are approximations to Dj, WJ and P evaluated at ?m . The weights are adjusted
before each iteration, so that observations that do not fit very well are deemphasized. In
general, the weight of an observation is the inverse of its estimated variance at each itera-

tion.

3.3.2 Examples of model adaptation

As in the case of long-term SPC, a process shift will be introduced as depicted in Fig-
ure 3.5. Note that for the unlocked process, the probability of each category is no longer

constant, but the change still follows the formula in Figure 3.5.

Figure 3.9 shows an example of the locked (fixed input) process where the “routine”
process experiences a moderate shift after wafer #100. The change is detected by the long-
term SPC algorithm and the update algorithm readjusts the intercepts of the model. The
long-term SPC alarm was generated at wafer #130 and the model was updated at wafer
160. Notice that after the model adaptation, the value of the power-divergence statistic
drops below the control limit. Eq.(3-6) shows the model change due to the difference of.

parameter a; before and after the model adaptation at wafer #160.

exp(4.6644506 - b - x)

1 + exp(4.6644506 - b - x)
exp(0.730513 - b - x)

1 +exp(0.730513 -4 - x)

wafer #1 to #159

m,(x) = (3-6)

after wafer #160
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Note that all three intercepts change in order to accommodate the shift in the cumulative

distributions (see Table 3.1).

Table 3.1 A Model Adaptation Example

before after
change

(2 P3 P4 P5) P2+ .1,p3-.05,py- .05, ps)
-5.288 w - 1.370 p + 0.996 O,

linearterm: & - x

intercept: 0y

intercept: ot3 -1.7653 0.0965
intercept: oy 0.6485 : 2.1631

20 | |
18 |-
16 |—

14 |
12 L UCL

10 |—

o =0.05
5% (11.34)

Power-Div

O N A~ N OO
|

50 100 150 200
run

process change introduced model adaptation completed at #160

Figure 3.9 A Model Adaptation Example with Locked Process Settings

A second model adaptation example is shown in Figure 3.10. This example is similar
to the first example, except the process is unlocked: the input variables are allowed to vary

50% randomly but uniformly within the center half of the original experimental range.
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Figure 3.10 A Model Adaptation Example with Unlocked Process Settings

3.4 Summary

A systematic methodology for model-based SPC was presented that takes advantage

of qualitative process observations. The IRLS methcgkfonndodeinedicaijh affesienidfiples is consistently ¢
models can be changed once, or continuously. Updated models are locally accurate. Since
the adaptation is based on new probability estimates, it takes 30-50 observations after the
change to estimate new frequencies of occurrence. Given these statistical tests, model
updates can be easily automated. Even though its implementation is straightforward, the

methodology offers a novel approach to characterize and use important, yet informal qual-

itative knowledge about a process.
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Chapter 4 A Self-Learning Fuzzy Inference System

The methods in the previous two chapters about categorical data analysis are direct
generalizations of conventional statistical analysis for continuous variables. Even though
the approach is useful and informative, its usage is limited since the adaptive model needs
large amounts of data to be effective. Also, knowledge obtained from one process is diffi-
cult to transfer to another process. In this chapter, we will introduce an approach based on
fuzzy logic inference, to create systems appropriate for qualitative features. In Chapter 5,
we will combine the formality of the statistical approach to the flexibility of a fuzzy infer-

ence system.

Fuzzy logic has been applied successfully in many fields where qualitative knowledge
and data are involved. In this chapter, we explore a fuzzy logic application on process
modeling. Specifically, a prototype qualitative model based on experimental data is cre-
ated to predict the average grain size of polysilicon deposition films through a fuzzy infer-

ence system.

The overall goal of this work is to develop a software system that uses fuzzy models
for the inference of qualitative aspects of a process (see Figure 4.1). Within this system,
models are developed from experimental data to describe qualitative process attributes,
which are usually understood by an experienced process engineer, but ignored by most
quantitative approaches. A low pressure chemical vapor deposition (LPCVD) furnace for
polysilicon deposition has been selected as a test vehicle for this investigation [4.1]. Proto-

type models can be developed to predict process responses such as grain size, surface
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roughness, grain orientation and step coverage of a deposited film, based on recipe set-
tings, i.e., deposition/annealing temperature, dopant flow rate, silane flow rate, pressure,
and deposition time, etc. The combined quantitative-qualitative models can be used for
equipment and process simulation, recipe generation, diagnosis, and control. Similar qual-
itative models may also be developed for other equipment and processes.

Recipe ﬁ Responses

Temp. ™

—® Grain Size

1 Surf, Rough.

>

Flow Rate INFERENCE

—|Refract. Index

Dep. Time [~ )

Figure 4.1 A Fuzzy Inference System for LPCVD Process

4.1 Background Knowledge

4.1.1 Low pressure chemical vapor deposition process

Figure 4.2 depicts the Tylan horizontal glass tube reactor used for polysilicon LPCVD
[4.2]). The wafers are stacked perpendicularly to the longitudinal axis of the tube, and are
placed at 1.2 cm intervals. Aluminum cantilever rods support the boats, which carry the
wafers. Silane (SiH,4), mixed with an inert carrier gas (N,), is injected at the lower front
end of the tube, and is pumped out from the back end. Three main heating coils are placed
along the tube to maintain the proper operating temperature. A heat baffle in the front por-
tion of the furnace reduces radiative heat loss and also serves to facilitate both temperature

and gas velocity control in the middle and back sections of the tube.
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Heaters
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Figure 4.2 Deposition Furnace (Courtesy: Sherry F. Lee [4.2])

There are many qualitative properties that cannot be modeled numerically, such as
grain size, surface smoothness, etc., even though extensive research has been done on
those aspects and much knowledge has been accumulated. However, these qualitative
characteristics of the polysilicon film are very important to semiconductor devices. A
well-built control system must capture, at Jeast qualitatively, human knowledge about
relationships between the LPCVD process settings and the process responses in order to '
make the process more controllable and enhance the quality of the devices. As shown in
this chapter, an inference system based on fuzzy logic would be a good candidate to cap-

ture qualitative human knowledge.
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4.1.2 Grain size prediction

Among other quantitative and qualitative features of an LPCVD deposited polysilicon
film, the average grain size (s) is one of the important quantities that characterize the
structure and property of the film and that will affect the semiconductor device perfor-
mance [4.3]. The grain size can be measured in a number of different ways. Figure 4.3 and
Figure 4.4 show how a polysilicon film structure responds to the different process setting

of deposition temperature (T,), annealing temperature (7,), and doping profile [4.3].

POLYCRYSTALLINE
SILICON (625°C)

Figure 4.3  Grain Size (Structure) vs. T (Courtesy: T. Kamins [4.3])

Figure 4.3 shows a transmission electron micrograph of 0.6 um thick polysilicon films
deposited onto S;0, at 550°C and 625°C in an LPCVD reactor. The deposition tempera-
ture T, does have an effect on the grain structure. The structure of a polysilicon film

deposited at 625°C has an average grain size of about 70 nm.
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(d) undoped and heat-treated 0.5um
—_—

Figure 44  Grain Size (Structure) vs. 7, and Doping Profile (Courtesy: T. Kamins [4.3])

Figure 4.4 gives another example of how grain structure (and grain size) could be
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affected by different recipe settings during deposition. It shows cross section transmission
electron micrographs of 0.6 um thick polysilicon films deposited in an LPCVD reactor at
T4 = 625°C. The initial columnar structure of undoped polysilicon films (a) changes little
when the undoped films are annealed (d), but phosphorus doping increases the grain size
(b), which is further enlarged by additional annealing of the doped films (c). Other experi-
ments show that for phosphorus doped polysilicon films, the grain size of the polysilicon
structure increases when 7, increases, however, after high temperature (T,) annealing, the
films deposited with lower T, would have larger average grain size than those deposited

with higher T, [4.4].

To date, there are no generally accepted theories that explain the complicated rélations
between deposition/annealing temperatures and resulting grain size (s). The expert knowl-
edge on this field is very qualitative and sometimes contradictory. The proposed model in
this chapter manages to capture the empirical qualitative knowledge into a computer soft-
ware system that would eventually help process engineers better understand the subject.
Since this system is based on fuzzy logic theory, a brief introduction to fuzzy logic and a

fuzzy inference decision-making system is given in the following section.

4.2 An Introduction to Fuzzy Logic

The concept of Fuzzy Logic was first introduced by Professor Lotfi A. Zadeh [4.5] of
the University of California at Berkeley, in June 1965. In the last few years, the subject

has flourished and applications of this theory can now be found in many disciplines.
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4.2.1 Fuzzy sets and membership functions

Central to Fuzzy Logic is the concept of the fuzzy set [4.6]. The fuzzy set theory is in
many ways a generalization of the classical set theory. A classical (crisp) set A is normally
defined as a collection of elements or objects x (belong to a super-set X) which satisfy cer-
tain conditions specifying A. Each element xe X can either belong to or not belong to the
set A, where ACX. To generalize this definition, we can introduce a membership function
U (on X) for each element x in order to quantify its belongness to the crisp set 4, i.e.
n(x)=1 if xe A and p(x)=0 if x¢ A. If we allow this membership function to be continuous,
we can define a fuzzy set B as a collection of elements xe X with membership function

K(x), where p(x) can be any real number between 0 and 1:

B = {(xip(®)[re X} @1

4.2.2 Fuzzy logic and rules

In Boolean logic, the most basic logic operations we need to consider are “PASS”,
“COMPLEMENTARY”, “AND"” and “OR”. The rules of those operations and their

“fuzzy” generalizations are expressed as shown in Table 4.1:

Table 4.1 Boolean Logic Rules

Name Crisp Rule Equivalent Fuzzy Membership Value
PASS IF xc A, THEN ze Z IF j4(x)=1, THEN piz)=1
COMPL. IF x¢ A, THEN ze Z IF p4(x)=0, THEN px(z)=1

OR |IFxeAvyeB,THENzeZ | IFpy(x)=1 OR pg(y)=1, THEN pAz)=1
AND |IFxeAAyeB,THENzeZ | IF py(x)=1 AND pp(y)=1, THEN pAz)=1

where “1” can be defined as “true” and “0” as “false”.
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Thus fuzzy logic can be regarded as a generalization of the classical Boolean logic by
allowing the “membership function™ p(x) to be any number between () and 1. Equiva-
lently, Boolean logic is a special case of fuzzy logic. A set of equivalent fuzzy logic rules

(“fuzzy rules™) can be defined for the above four basic logic operations as shown in Table

4.2:
Table 4.2 Fuzzy Logic Rules
Name Rule Membership Value
PASS IF (x, pa(x)) € A, THEN (g, pz(z)) € Z Hz(2) = pa(x)
COMPL. | IF (x. py(x)) € A, THEN (z, uzz)) e Z HZ2) = 1-p4(x)
OR IF (x, pplx)) € A OR (x, Hp(x)) € B, Hz(z) = max( pa(x), pg(x))

THEN (s, pxz)) e Z

AND IF (x. py(x)) € A AND (x. ppg(x)) € B, HZ(z) = min( pa(x). pp(x))
THEN (G, px2)) e Z

where all of the values of the membership functions are between () and 1. Note that the
above definition given for the “OR and “*AND” are not unigue. Other definitions are also

in usc in the liwerature [4.6].

4.2.3 The concept of the linguistic variable

A linguistic variable has a name, and a set of linguistic values [4.6]. Each of these lin-
guistic values is associated with a value of a membership function. For example: a per-
son's age A can be a linguistic variable taking linguistic values from the set {juvenile,
voung, middle-aged. old, very old). The relationship between the numerical value of the
age and the corresponding linguistic values can be captured by membership functions as

shown in Figure 4.5.
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H(x)
A middle-aged
Jjuvenile *
1.0 young old very old
0.0
10

25 40 65 90 > X (base value)
L— age A(x) = 0.7\young & 0.3\middle-aged

Figure 4.5 Membership Functions of the Various Age Groups

Consider that if x=30, the value of the linguistic variable “age” is then A(x) =
0.7\young & 0.3\middle-aged, which means that for x=30, the linguistic variable A has the
value “young” with a membership of 0.7 and the value “middle-aged” with a membership

of 0.2.

Once we have captured information in terms of linguistic variables, we can then use
fuzzy logic to describe the relationship among such variables. For instance, a rule may
exist which states: IF A is young THEN P is energetic, where P is another linguistic vari-
able that stands for a person’s physical condition and takes values from the set {inactive,

energetic}. Using fuzzy logic terminology, this rule can be expressed as:

Menergetic(P) = Hyoung(A4)-

The concept is depicted in Figure 4.6.
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A

young Henergetic(P) = Hyoung(4)

07é nunuluululluunnuuunulilIII"|lu.

L Physical

35 <40 Age ysic
| A(xp) = 0.7\young P = 0.7\energetic

Figure 4.6 Example of a Fuzzy Logic Inference Rule

energetic

This is actually a simple case of fuzzy inference with only one input (A) and one output

(P). More general cases of fuzzy inference will be introduced in the next section.

4.2.4 Fuzzy inference
Fuzzy inference is an “approximate reasoning” technique, based on fuzzy logic rules,
linguistic variables, and their membership functions. The concept will be illustrated

through examples that use the model of a polysilicon LPCVD process.

One example is determining the grain size (s) given the deposition temperature (T,)
and annealing temperature (7,) of a process. These three parameters (T4, T, and s) should
be fuzzified to linguistic variables by representing them through fuzzy sets and member-
ship functions. For example, in LPCVD of polysilicon, a grain size of 180nm is fuzzified

using the membership functions depicted in Figure 4.7:
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med

2 : Grain Size (nm)
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Grain Size = {(small, 0), (medium, 0.3), (large, 0.2)}

Figure 4.7 Grain Size

The following fuzzy rules for annealed polysilicon films were deduced from expert

knowledge:

1. IF the deposition temperature is low, THEN the grain size is large.

2. TF the annealing temperature is high, THEN the grain size is large.

These rules can be summarized in a rule table as shown in Table 4.3:

Table 4.3 Fuzzy Rule Table

Grain Size T, low T, med T, high
T4 low large
T, med med

T, high small

Now consider a set of input values pairs T, T,,. The fuzzified inputs can be represented

by linguistic values through their membership values:

T;=0.8\low & 0.25\med;
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T, =0.45\med & 0.5\high;

By applying the fuzzy rules of Table 4.3!, the output membership values are:
w;(T4=low, T, =high) = min(0.8, 0.5) = 0.5;
wy(T4=med, T, =med) = min(0.25, 0.45) = 0.25.

Thus the output grain size s is:
s = 0.25\med & 0.5\large.

Finally, a “defuzzification” technique should be applied to obtain a numerical value of
an output linguistic variable after fuzzy inference. There are many ways to defuzzify an
output. A simple way is to do a “weighted average”:

- W]’A+WZ'B

s (4-2)

w1+w2

where A and B are corresponding numerical values for s = large and s = med.

1. There are many ways other than the “minimum” operation to obtain the weights w 1 and w from
the “AND" rules for multiple inputs. An alternative is to use the product of membership values of
each individual input (see Section 4.3).
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The entire inference algorithm is illustrated in Figure 4.8.

“‘d “a “’S
) '\
low high large
/‘ 08 . o5l w; = min (8,.5) = 0.5
> —\p
med med med
0.25 i{ \ /N0.45  w,=min (25, 45) = 025
T, T, Grain Size
weighted
input 1 input 2 average
Grain Size
output

Figure 4.8  Fuzzy Inference

In a more general situation, different rule uses may lead to “conflicting” results, i.e.,
there may be two or more different weights for one specific output value, The proper infer-
ence procedure is to sum up the weights for the same output (linguistic) value and then

apply the above defuzzifying algorithm to obtain the numerical output value.

In the next section, a more generic grain size prediction model based on input values
of (T4,T,) will be presented. The rules for the inference system will be derived directly

from the existing experimental data, or “training data”.
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4.3 Self-Learning LPCVD Models

4.3.1 Representation and inference of a general fuzzy system
A fuzzy inference system with 2 independent inputs {x;, x;} and one output y is con-

sidered in this section. This system may be directly generalized to an n-input system [4.7].
The inference rules of such a 2-input fuzzy system are expressed as:
. RUIC—{IJ} IF X iSAlI'andeiSAzj THEN ylSWu

where {i,j} (i=0,1,....m, j=0,1,...,n) are rule numbers, A;; and Azj are membership functions
of the antecedent part, and wy; is a real number of the consequent part of the output value

of y.

Without loss of generality, the membership functions Ay; are expressed by triangles as

shown in Figure 4.9:

ayo ap e A1 ey A1m

Figure 4.9 Membership Functions for x;

The expressions that correspond to the triangle membership functions are:



50 A Self-Leaming Fuzzy Inference System Chapter 4

(X1—8yi-1
a);—ay ;i1
A.=13a,.,,-Xx 4-3)
L “Lirl 71 when a,;<x,<a ;,
d, :. =0, ’
Li+1~ 4y
L -
0, otherwise.

The expressions for A,; can be obtained simply by changing the subscript “1” to “2”.

Here, when applying the Rule-{i,j}, we use a different version of the “AND” rule
applied in Section 4.2. Namely, we use the product of A; and Aj;, instead of their mini-
mum value, in order to obtain the weight for output value wj;. The defuzzified predicted

output $ thus can be derived by weighted average:
y = ZA“-Aszij (4-4)
ij

In this case, the constraint for the sum of weights ZAl i’ A2j = 1 is the result of the
ij
above definition of membership functions.

4.3.2 A self-tuning algorithm for model adaptation

Assume a set of new output data y,"*¥ is acquired from an experimental data-base, |
that corresponds to input data {xy;, x;} (k=1, ..., ). The fuzzy inference system will learn
and fit these data by adjusting the parameters {ay;, ay;, w;, i=0, 1, ..., m, j=0, 1, ..., n}.
Namely, the system parameters {ay;, a,j, w;;} will be decided based on a data set {xyy, x5,

new }

Yk

First, a cost function is first defined:
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300y
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51

(4-5)

where A;; and Ay; are also functions of x;; and x,; as shown in their definitions above. To

solve the ensuing optimization problem, the derivatives of E need to be calculated, which

are shown as;
oE _ i(? new) A A
= Kk~ k 2
awU o J
and,
3E n q i+1
-~ new
o5 5 () 5 )
Vo js0 k=1 I=i-1
aE m q Jj+1
new
50, = 2 2(9k‘yk ) ( 2 WIJJ
2j i=0 k= I=j-1

where,

(4-6)

47

(4-8)
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—A.-A,;
Ny , when a,,; ,<x,<a;
ay;=a,i- '
Uu. = A .- A
‘ L% when a;;<x;Sa, ;. 4-9)
a, . a i NED!
1""'1 1i
-0, otherwise.
(1-A )-A
_ nio] 2’, when a,; <x;<a,;
U, = y;=ay ;4 (4-10)
0, otherwise.
Ay ...-D- A,
~ix ] 2 when a;;<x;<a; ;. g
Upp1 = ay ie1— 9 4-11)
0, otherwise.
and similarly,
- =A, A,
1i “72j
——=—, when a,; ;<x,<a,;
Ayi=a3j-1 ! J
V. = A,.'A
! U "3 when 0y <X, Sdy 13 (4-12)
a2.j+1~ %
0, otherwise.
A (1-4, . )
1 =1
i 2] , Wheﬂ azj_1<x2$a2j;
Vj_l - azj’_az‘j_l ) (4-13)
0, otherwise.
Ao (A =1)
1i 2.j+1 , when aZj<x2502j+1;
Viser =) %2j+17% (4-14)

0, otherwise.
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The constraints of those parameters are:

amSal1 <. Salm,
4-15)
a5 < a,, <..8 a,,.

There are many optimization techniques available to solve this problem. The BCAM
system’s non-linear variable metric constraint optimization package Hanpal [4.8][4.9] is

used to obtain the (m + 1) X (n +1) + g parameters {ay;, ay;, w;;}.

4.3.3 Simulation results for grain size prediction

The 12 data points in Figure 4.10 are past experimental result of X-ray-measured aver-
age grain size of phosphorus-doped LPCVD polysilicon films. The first 9 representing
date points are used as training data to derive 9=3x3 rules for the inference system (i.e.
m=n=2, see previous section). By applying the fuzzy inference algorithm illustrated in
Section 4.3.1, the system interpolates all the data points for a 2-dimensional region of

input space (T, T,), as shown by the curves in Figure 4.10(a).
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Figure 4.10 X-ray Grain Size versus Annealing and Deposition Temperatures (LPCVD)

The remaining 3 data points are newly introduced data and the system tries to best fit
all the 12 data points by optimizing the cost function as defined in Eq. (4-5). Note that
while the number of rules does not change, the membership functions are modified by
changing the parameters {a,;, ;) and the corresponding output parameters w;; (ij = 0,1,2
in this case). The total number of optimized parameters is 15 (= m+n+2+(m+1)x(n+1)).
The result is shown in Figure 4.10(b), where the curves are now fitting all of the 12 points.
For this example, the cost function had the initial value of 1.44x10° and was reduced to

1.18x10% in 28 iterations, as shown in Figure 4.11.
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Figure 4.11  Cost Function versus the Number of Iteration

Finally, the membership functions before and after the optimization process for repre-
senting the two input linguistic variables (T, T,) are shown in Figure 4.12. The numerical

rules are shown below:

* 9 wraining data points:

580 900
a, = [a;;] = |600| ay = layl = {950
640 1000
) 4-16)
170 270 290
w = [w;] = [103 170 205, where i,j = 1,2,3.
50 70 90

* 3 new data points:
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(4-17)

where the unit for temperature parameters ay;, a,; and X, X is °C, and the unit for the

grain size parameter w;; and the desirable output data points y;

BeW is nm.

After the solution of the optimization problem, the 15 new parameters are:

579.8 915.4
a; = [598.0| a, = 1947.4|
624.5 999.2
170.8 270.0 291.0
w = 1108.5 176.8 213.5| where i,j = 1,2,3.
574 72.5 84.6

as plotted in the lower parts of Figure 4.12(a) and Figure 4.12(b).

(4-18)
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Our results show that the fuzzy logic based inference system can represent qualitative
knowledge well. Also, it can adaptively adjust the system parameters to accommodate

new data.

The combined quantitative and qualitative models can be used for LPCVD recipe gen-

eration and process control. The knowledge base may be further modified and enhanced

after taking into account actual process responses. (See Figure 4.13).
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4.4 Summary

Due to the large number of process variables and their complex interactions in a semi-

conductor manufacturing environment, the pertinent expert knowledge is mostly qualita-

tive and incomplete. To build a computer-aided integrated system for future intelligent

manufacturing applications, fuzzy logic based qualitative models can be used to capture

qualitative human knowledge in a computer software simulation system. This fuzzy infer-

ence system can be self-learning to accommodate updated expert knowledge.
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According to fuzzy logic methodology, the process parameters are first fuzzified into
linguistic variables before the inference rules are applied. These linguistic values of the
process parameters are then mapped to appropriate linguistic values of the output parame-
ters. The mapping is implemented as a series of fuzzy set operations. The proper input-
output relationships are captured by means of designing the appropriate membership func-
tions and inference rules through the existing training data. The output linguistic values
obtained from the fuzzy inference system are finally defuzzified into conventional numer-

ical values.

When the new process data is obtained, the system automatically adjusts the member-
ship functions and the corresponding fuzzy rule parameters to best fit the new data. This
self-learning algorithm has great potential in applications on real-time process control in a

computer-aided manufacturing environment.

Often, however, experimental data is scarce and noisy. In the next chapter, we will dis-
cuss the application of formal statistics in dealing with such data before we use them for

the creation of a fuzzy inference system.
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Chapter 5§ Using Categorical Analysis To Design A Fuzzy

Inference System

In this chapter we propose a systematic method for designing a fuzzy inference system
through statistical data pre-processing. This approach is appropriate in modeling the qual-
itative aspects of a semiconductor manufacturing process, when extensive training data
are often limited or difficult to collect due to the high cost of conducting experiments. In
view of the limited number of data sets from a designed experiment, this system employs
the proper statistical analysis in order to highlight the significant effects. Simple fuzzy
inference rules are then created to capture input-output relationships and to initialize the
corresponding membership functions. The output process variable can be continuous or
categorical, and the fuzzy system can be further tuned to accommodate additional experi-

mental data when they become available.

As shown in Chapter 4, in a fuzzy inference modeling system the process parameters
become linguistic variables and the qualitative relationships between input and output
parameters are represented by fuzzy inference rules. Such a system can be adapted by run-
ing the fuzzy membership functions to accommodate newly acquired experimental data.
However, the initial design of such a system requires the determination of the number of
rules as well as the number and initial form of the membership functions. This problem is
complicated by the large number of input factors, and by the high cost of acquiring exten-

sive experimental data in a semiconductor manufacturing environment.

To solve this problem, a statistical data pre-processing method based on linear and
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logistic regression analysis can be used (see Chapter 2). Starting from the experimental
data obtained from statistically designed experiments, statistical analysis can screen out
insignificant input variables for a specific output response, thus reducing the complexity
of the problem. At the same time, the rules and initial membership functions of the infer-
ence system can be extracted from the results of the statistical analysis. The system can be
subsequently refined and adapted to newly acquired experimental data by further tuning its

membership functions.

5.1 Knowledge Extraction from Designed Experiments

As shown in Section 2.4, the following table gives an example of data from a designed

experiment [5.1] for a dry develop process!.

Table 5.1 A Dry Develop Process

Power|Pressure | Oxygen Flow roughness mouse bites

w) { smooth, fair, rough, roughest} 00T, WOrst }
1 -1 roughest

-1 0 -1 fair fair

0 0 0 I] fair poor

-1 -1 0 smooth good

-1 1 -1 fair fair

0 -1 -1 rough worst

0 0 0 rough fair

Starting from the data table obtained from the 3-level factorial design shown, linear
regression analysis is used for interval variables (e.g. the average line width /w) and logis-

tic regression analysis is applied for categorical variables (e.g. mouse bites). Only the sta-

1. Input values have been normalized.
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tistically significant input(s) are then considered for building the fuzzy inference system
for each output variable. To simplify the explanation of such a fuzzy system building pro-
cess, we consider first one input variable for each output response. In this way, we will
illustrate our fuzzy system design method through the examples of modeﬁng a continuous
output variable (e.g. line-width /w) vs. an input variable (e.g. power w), and a categorical
output variable (e.g. mouse bites) vs. an input variable (e.g. pressure p). Multi-input situa-

tions will be discussed afterwards.

Assume that the linear fitting curve for Iw vs. w from the linear regression analysis is

as shown in Figure 5.1,

A line-width

A
ly
A H
12 ...................... v E
A H H
ll ------- : E E
- : : :
J [ L ’
Wl W2 W3 w

Figure 5.1 Linear Regression Model

where w, w; and w; are the input settings (i.e. = -1, 0, 1 in this case), and 7; 7; and g
are their corresponding output values predicted by the linear regression model of the form
shown in Eq. (2-1) in Chapter 2. The model parameters are extracted from the data using

the method of least squares [5.1]. The proposed fuzzy rules are then:
* IFw=w; THEN Iw=lw; (Iw;are fuzzified linguistic values corresponding to 7‘\ ).

The corresponding membership functions are chosen in the simplest linear form, or the tri-

angular shapes, as shown in Figure 5.2:
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g Mo Iw: Fuzzy linguistic variable
1.0
twy Iws Iw;: Fuzzy linguistic values
- (i=1,2,3 in this case)
wi LY) w3 w

Figure 5.2  Initial Input Membership Functions for Continuous Output Variables

For the categorical variable mouse bites, on the other hand, the initial membership
functions of p are derived from the logistic regression probability functions (Figure 5.3).

The functions were discussed in detail in Chapter 2.

Hpite

Figure 5.3  Initial Input Membership Functions for Categorical Output Variables

Then the corresponding fuzzy rules would be:

* IFp = py, THEN mouse bites = class m with membership W (pp), fori=1.2,...m.

From Eqgs. (2-2), (2-3) and (2-4) in Chapter 2, a maximum value for each probability

function can be derived for when i =2, ..., m-1:
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a.—a,_
max p,(x;) = p;(x¥) = tanh( : 4' 1),

(5-1)
a.+a.
when bx? = -—'T"l ,

where x is the input variablel. It is easy to see that these probability functions p,(x;) are

symmetrical around x? :

p;(x%+x) =p,(x0-x) , (5-2)

Thus, the fuzzy rules for categorical variables can also be written as:

IF X=x) , THENY =Y, , (5-3)

where X and Y are the (fuzzified) input and output linguistic variables, and Y; stands for
linguistic/categorical value “class i”"). These p; (x;) will be the initial membership func-
tions for categorical variable such as mouse bites. For the boundary casesi=1andi=m

cases, the fuzzy rules become:

IF X = smallest, THEN Y =Y, , (5-4)

and,

IFX = largest , THEN Y=Y, . (5-5)

Hence, an initial fuzzy inference system can be automatically created from the values

of the input recipe settings such as w and p to infer the output parameter values, such as /w

1. The discussion in this section can be easily generalized to multi-input case by substituting x for
the input vector x. and b x for d7ex.
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and mouse bites. To make the system self-learning to accommodate newly acquired data,
however, we need to define a “cost function” which measures the difference between the
experimental data and the model predicted data, as indicated in Chapter 4. Since such a
cost function would depend on the membership parameters, an optimization can be carried

out to tune the membership functions in the process of self-learning.

For an interval (continuous) variable such as line-width, the definition of a cost func-
tion is the same as that in Chapter 4 [see Eq. (4-5)], where a self-learning fuzzy inference
system was built for the continuous output variables of the semiconductor process. For a
categorical output such as mouse bites, the corresponding cost function would still be of

the same form as for the interval variable:

£ 13 (5 -6

However, instead of numerical values, the model predicted output y; and the measured
experimental data y}"eas will be two sets of probability values, corresponding to the cate-
gory values i = 1, 2, ..., m, from the fuzzy inference and from the new experimental data,

respectively.

To optimize the system and to accommodate newly acquired experimental data, the
membership parameters will be changed to minimize the cost function. These adjustable
parameters are the centers and widths of triangular membership functions for the interval/
continuous variables, and likewise a; and b; of the exponential membership functions for

the categorical variables.
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In Chapter 2, we discussed in detail how to screen out the insignificant input variables
based on their corresponding effective test in the statistical regression analysis. After
applying this statistical screening [5.2], each output variable is modelled only through the
few statistically significant input variables. The corresponding linear regression fitting
lines and the logistic regression probability functions can be used to define the initial

membership functions of the fuzzy inference system.

Hiw Hrough

P
L

input input

Figure 5.4 Membership Functions

In summary, as shown in Figure 5.4, the membership functions for line-width are designed
with simple triangular shapes, and they are extracted from the linear regression model. For
the ordinal variable mouse bites, however, the membership functions have the exponential
forms used in the logistic regression model. Such an inference system can incorporate
both interval and categorical process responses in the same adaptive set of fuzzy rules.

This system will now be described in some detail.

5.2 The Initial Fuzzy System

From the statistical regression analysis, the following rule table is deduced for the data
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in Table 5.1

Table 5.2 Statistical Pre-processing

w P o

Iw - 0" 0
rough + o+ 0
bite + o 0

where “+” means output increases when input increases, “~” means output decreases
when input increases, and “0” means the output does not show significant dependence on
the input, as we explained in Chapter 2. The symbols “0*” and “0™ denote slight trends

much smaller than the ones denoted by “+” and “-".

After the fuzzy rules are extracted, their corresponding initial membership functions
should also be chosen. These membership functions are quite different for interval and for

categorical output variables.

5.2.1 Fuzzy inference for interval output variables

For interval variables such as /w, the simple triangular membership functions are used.
The output values corresponding to the peaks of membership functions are obtained from
the linear regression line fitting for singular input variable (Figure 5.5). After the initial
rules and membership functions are created, the inference procedure will be the same as
those in Chapter 4. Figure 5.6 shows the result of such an inference process when both

input variables, power w and pressure p, are considered.
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Figure 5.5 Linear Regression Fitting

line-width

Figure 5.6  Line-width vs. w for Different p

As shown in these figures, line-width depends to a large extent on w and is only

slightly dependent on p.
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5.2.2 Fuzzy inference for categorical output variables

For the categorical variables roughness and mouse bites, the probability functions
from the logistic regression model are used as the initial membership functions, with their
corresponding output values to be the original categorical values. Figure 5.7 shows the
probability functions of output mouse-bite versus input w, after applying the logistic

regression analysis.

(a) Logistic fitting curves of cumulative probability

o
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(b) Probability and initial membership functions
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Figure 5.7 Mouse Bites vs. w

Even though these curves are the same as those in Chapter 2, in the context of the
fuzzy inference system they take a new meaning. Namely, instead of probability functions,

they now play the role of the initial membership functions. These membership functions
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can be used for inference and can be tuned later to accommodate new data. Similarly, Fig-
ure 5.8 plots the initial membership functions of roughness for all three input variables.
Guided by the initial statistical analysis, the effect of the O, flow rate is insignificant while

the effect of the pressure p is less significant than that of power w.
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A ]

After creating the initial fuzzy inference system, we can apply the fuzzy inference

mechanism described in Chapter 4 to derive the output probabilities for roughness and

mouse bites with different input values of power w and pressure p. The output probability

values against input w at various values of p are plotted in Figure 5.9 and Figure 5.10,
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respectively for roughness and mouse bites.
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Figure 5.9  Roughness vs. w for Different Values of p
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Figure 5.10  Mouse Bites vs. w for Different Values of p
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Note that the curves in Figure 5.9 and Figure 5.10 can be interpreted as probability values
as well as the membership values of the ourput variable, as they are the results from the

fuzzy inference process for different input value combinations for w and p.

5.3 Model Adaptation

To take full advantage of a fuzzy inference system, a self-learning algorithm similar as
the one described in Chapter 4 can be used for model adaptation. When applying such a
fuzzy inference system designed through categorical data analysis, the shape of the mem-

bership functions can be tuned by minimizing the cost function shown in Eq. (5-6).

Figure 5.11 shows the results from such a membership tuning process. We used two
different sets (16 data sets for each) of data extracted from the original experiment as our
“new” experiment data to tune the system membership parameters. Since the system
parameters before tuning are principally based on existing knowledge on a specific pro-
cess, they should not be changed drastically just to accommodate newly acquired experi-

mental data. Therefore, a modified formula is used in obtaining the results showing in this

section.

N N
_1 o new 2 weight 0)2
E=3 Zl(yi'yj ) =52 (91"5'1') (5-7)
j = j: 1

<0 . . . o . .
where Y; 1s the system output prior to the tuning. The modification consists of adding a
weighted term to constrain the system not moving too far away from the original state. By

minimizing the cost function E, we obtain the updated fuzzy inference system, as shown
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in Figure 5.11.
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Figure 5.11  Mouse Bite vs. w for Different p (Fitted to Data Set A and to Data Set B)

For data set A, we see that the 16 new data points introduced agree quite well with the

original system, thus the membership functions show only minor changes. For data set B,
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however, the middle two categories (“fair” and “poor”) are now merged, indicating a
rather drastic change during the learning. The cost function vs. the number of iterations in
the optimization process are plotted in Figure 4.11. The same optimization tool is

employed as in Chapter 4 [5.3][5.4).
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Figure 5.12  Cost Function vs. the Number of Iteration (with data set A and data set B)

Updating the fuzzy model parameters for interval output variables, such as line-width,
is the same as shown in Chapter 4. Therefore, the complete system has the additional

advantage of integrating interval and categorical output variables.
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5.4 A Qualitative Modeling Framework

An object-oriented framework is being built to facilitate both inference system design
and system usage. As shown in Figure 5.13, in the system usage period, the fuzzy mem-
bership functions will be tuned to accommodate newly acquired experimental data. Such a
membership tuning technique is a direct generalization from the methodology in Chapter
4, where only the continuous output variables were considered. A more detailed software

implementation of such a framework is discussed in the next chapter.

System Setup
Designed Statistical
Experiment > Data Pl:e-
processing
System Update
Newly Acquired
Experimental Data
1 |
Membership I;‘:leg %.'{;TE
Tuning
Knowledge Base
System Usage
Recipe Generation g—
Fuzzy Inference
User Specifications —P>
Model Outputs l TOutput Specs

Figure 5.13  Creating, Tuning and Using the Fuzzy Inference System




78 Using Categorical Analysis To Design A Fuzzy Inference System Chapter 5

5.5 Summary

By employing formal statistical data preprocessing, a systematic approach is created to
extract fuzzy rules and membership functions to initiate a fuzzy inference system. The sta-
tistical regression analysis simplifies the input-output relationships and identifies signifi-
cant effects in view of experimental noise. This system can accommodate both interval/
continuous and categorical/discrete process variables in an integrated format. In addition,
it is possible to tune the system to accommodate newly acquired experimental data in a

self-learning fashion.

This systematic data pre-processing procedure offers not only better membership
functions, but also better fuzzy inference rules extracted from the designed experiments.
This is because the system effectively screens out the experimental noise using formal sta-
tistical tests. This fuzzy system design approach is well suited to a semiconductor manu-
facturing environment where process variability and measurement resolution are often

comparable to the quantity being monitored.
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Chapter 6 Software Implementation

In today’s semiconductor manufacturing field, software is becoming more and more
important both for design and processing. For the target of cbmputer integration of semi-
conductor manufacturing, we need to develop user-friendly software system to model the
semiconductor processing equipment. This is a major objective of the Berkeley Computer

Integrated Manufacturing (BCAM) System [6.1]{6.2].

The BCAM software system is a framework built to facilitate the experimentation
with various CAM applications. It features an interactive user interface that operates in the
UNIX X-Window environment and interfaces with various commercial statistical pack-
ages and a relational database. The system currently supports real-rime monitoring, real-
time SPC, diagnosis, recipe generation, equipment modeling, etc. Most of the existing

models, however, cannot capture the qualitative features of a process.

To adequately model a manufacturing sequence, one has to consider the important
qualitative aspects of the process. Only a combination of the qualitative and quantitative
modeling approaches can produce an effective modeling system which meets modern

semiconductor manufacturing requirements.

This chapter will summarize the prototype software implementation of the qualitative
modeling approaches presented in previous chapters. They are currently stand-alone soft-
ware systems in the user account: raymond@radon.eecs.berkeley.edu:~raymond/. The

final goal, however, is to incorporate these software programs into the BCAM system.
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6.1 Self-Learning Fuzzy System — Linear Membership Functions

This software package is written in C language and named “self_learn”. The source
files are in the directory: ~raymond/programs/learning_demo/. It is a direct software
implementation of algorithms developed in Chapter 4. It also interacts with the Hanpal
optimizer package, which also serves as the optimizer for the whole BCAM system. Fig-
ure 6.1 is the flowchart of the system, where each block represents a major program which
carries out the fuzzy inference procedures. More details are given in the source code docu-

mentation and in the README file in the directory.

poly_grain_size.in
. o el memb.c
4 o.Iy _line_width.in membership functions
input data files I
learning.c : inference.c
main program inference rules )
iteration draw.c
plotting
funct.c

Hanpal optimizer ¢ : cost function definition

Figure 6.1  Flowchart for Simple Self-Learning Fuzzy System (“self_learn™)

There are two types of input files. File poly_grain_size.in contains the information for
the grain size prediction model discussed in Chapter 4, while poly_line_width.in is for the

numerical output (e.g. polysilicon line width /w) inference model designed with linear
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regression analysis (see Chapter 5). All the data for training and tuning the system are
stored in the same input file. If applied to a real world problem, however, the tuning data

should come from the on-line machine for model adaptation.

6.2 Improved User Interface with C++ and X-Window Programming

These software packages are written in C++ and use the X-toolkit. The source files are
in the two directories: ~raymond/programs/inference_demo_c++/ and ~raymond/pro-
grams/inference_demo_Xt/. These two packages can only do inference, but they are more
flexible and user friendly. The systems accept multiple input factors and multiple output
variables. They also allow users to experiment with different shapes of membership func-
tions, such as linear versus exponential. The flowcharts for these two systems are shown in

Figure 6.2 and Figure 6.3, respectively.

rule.in Initialize.cc
input data files read in the input data file

l

ruleClass.cc

Inference.cc
main program fuzzy inference

! i

Draw.in Draw.cc, DrawPoint.cc | MemberRange.cc
plotting specs plotting results membership func.

Figure 6.2  Flowchart for ~/programs/inference_demo_c++/.
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There are two class objects defined in these two packages, i.e. class ruleBase, which
includes all the fuzzy rules and membership functions, and class drawData, which con-
tains the plotting specs for drawing the inference relationships between the model output
variable and input factors. The package “inference_demo_Xt” is similar to

“inference_demo_c++", except it has an X-window interface.

rule.in Initialize.cc ruleClass.cc
input data files ™1 read in the input data file » main program
XtDraw.cc XtRules.cc XtTopLevel.cc
Plotting Widget f#—] Rule Base Widget [<—} Top Level Widget
plotting results may change rule base choose model types
Inference.cc MemberRange.cc
. —
Fuzzy inference membership func.

Figure 6.3  Flowchart for ~/programslinference_demo_Xt/.

6.3 Fuzzy System Designed with Categorical Data Analysis

One of the main contributions of this project is the combination of fuzzy inference sys-
tem with the categorical regression analysis, as explained in Chapter 5. There are three
steps to realize an adaptive (or self-learning) fuzzy inference system designed with the
logit regression model. First, the logistic regression analysis is carried out through the

JMP software on Macintosh. The inference part is implemented in the software package
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~raymond/programs/logit_demo/ and lastly, the model adaptation programs are in ~ray-
mond/programs/logit_learning_demo/. This software package is named “logit_learn” and

its flowcharts are in Figure 6.4, which uses the mouse bites model as an example.

Jdataldata.in ./s.rc/inp.utData.cc
. data files | read in the input data file
1nput data hiles initialize the rule base
l “logit_demo”
Jsrcldraw.cc -
Jdataldraw.bite | main program ./src/membfrsh:p.cc
model parameters fuzzy inference membership func.
plotting results :
(from logistic regression)
] SR NS UN G S O BN BN NR OE W - . . - R SR R W G AR NS e
I “logit_learning_demo”
funct.c bite2.data

cost function definition[ ™ Hanpal optimizer [« new data sets

Figure 6.4  Self-Learning Fuzzy System Designed with Logistic Regression

After taking input data obtained from logistic regression analysis, the initial inference
system will be created and can be used to predict process output responses for any input
setting. When new data sets are added, “logit_learning_demo” will tune the membership
parameters through Hanpal optimizer and feed the parameters after tuning back to
“logit_demo” for re-run. Since the process output responses for this system are categorical
ordinal variables such as mouse bites or surface roughness, the model outputs are proba-
bility distributions for those ordinal variables falling into different categories, as discussed

in the text and shown in the figures in Chapter 5.
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6.4 Summary

This chapter describes the general program structures for the software packages from
which most of the results in the previous chapters are obtained. As Table 6.1 shows, we
mainly presented three types of modeling systems, mostly discussed in Chapter 4 and

Chapter 5.

Table 6.1

Software Packages for Different Process Output Variables

Package
Name

Process
Output

System Design

System
Inference

Model
Adaptation

Self Learn || Grain Size || humandesignated | learning demol/ learning_demo/
Self Learn || Line-width statistical pre- | learning_demo/ | learning_demo/
processing
Logit_Learn || MouseBites || statistical pre- logit_demo/ logit_learning_
processing demo/

More detailed programming informations are given in the Appendix in the disserta-
tion, the README files in each software package, and comments included in individual
input data files and program files. Further improvements of the software implementations

are discussed in the next chapter.
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Chapter 7 Conclusions And Future Work

We have presented a systematic methodology as well as an implementation of the
algorithm that takes advantage of the qualitative aspects of the semiconductor manufactur-
ing process. This work offers a novel approach to characterize and apply the important,
yet qualitative knowledge of a process. Within our modeling framework, categorical pro-
cess output responses can be modeled along with quantitative responses. The conventional
application of statistical process control can be generalized for those qualitative process
Qariables. The main modeling approach, however, is a fuzzy inference system which cap-
tures the human knowledge on the qualitative aspects of a process. Such a system can be
designed with the logistical regression analysis with categorical data, used with the fuzzy
logic base inference rules, and updated with a self-learning scheme by tuning the member-
ship functions. Some actual semiconductor processes are chosen as test vehicles for such a
modeling framework, including the Low Pressure Chemical Vapor Deposition (LPCVD)
process and the Plasma Dry Etching process. The results show a promising future for such

a qualitative modeling methodology.

Our final goal is to establish, within the Berkeley Computer-Aided Manufacturing
(BCAM) system [7.1][7.2), a qualitaﬁve modeling module which extracts automatically
qualitative knowledge from designed experiments and updates the knowledge database for
newly acquired data. Such a module can be used for equipment and process simulation,
recipe generation, diagnosis, and control. Some discussions on the possible future work

based on this Ph.D. project are presented in this chapter.
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7.1 Possible Future Projects

7.1.1 Qualitative Knowledge Base and Data Base

Additional qualitative models can be developed for more equipment and processes in
the future. When the fuzzy inference system becomes a BCAM module, it should share
the same database, collected from real processes, with other modules running within the
BCAM system [7.2]. There could be also a database for the fuzzy rules and other qualita-
tive knowledge, available to the BCAM users. This will help the user to build new qualita-

tive models for some specific processes or update the existing models.

7.1.2 Fuzzy Recipe Generation

The qualitative inference module can lead to a fuzzy recipe generation module, where
a manufacturing process recipe for input-settings will be generated from user specifica-
tions of outputs [7.3]. Those outputs can be qualitative as well as quantitative in nature.
This recipe generation procedure is a reverse inference problem, since the manufacturing
process outputs (user specs) become the inputs of the fuzzy system, therefore both expo-
nential shape (initialized from logistic regression) and triangular shape (initialized from
linear regression) of membership functions are to be considered together at the same time.
In order to create appropriate membership functions, however, it is expected to require a

great amount of process data to build a reliable recipe model.

7.1.3 Optimization Algorithm

Our results show that the fuzzy logic based inference system can well represent quali-
tative knowledge and adaptively adjust the system parameters to fit new data. In a real-

world problem, however, the input variables are likely inter-dependent, and the member-
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ship tuning process might become too complicated to solve with a generic optimizer such
as the Hanpal used in this work [7.4)[7.5]. Therefore, more investigation may be carried
out to find the best optimization tools for our fuzzy inference system. Some possible
approaches might include the Neural Network [7.6][7.7] and/or Genetic Algorithm

[7.8][7.9] methods.

7.1.4 Software Integration
As shown in Table 6.1, the current version of software implementation are stand-alone.
In order to integrate the software packages discussed in Chapter 6 under a single system-

atic module framework, several improvements should be made [7.2){7.10]:

* to run the categorical analysis as well as the linear regression analysis in the UNIX
environment, then the results could automatically be used to create the initial fuzzy

inference system.

* to upgrade the Hanpal optimizer with object-oriented C++ programming, so the model

adaptation can be integrated with the rest of the system.

* To integrate the fuzzy inference system with the rest of the BCAM system, including

sharing the same data base, library function, and X-window interface.

And finally, to apply such a qualitative modeling methodology in the industry, a great
amount of work on testing and reliability investigations ought to be carried out, which

requires industry cooperation with the supply of additional process data and expertise.
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Appendix User’s Guide for Software Packages

There are five software packages developed during this project. The computer user
account: raymond@radon.eecs.berkeley.edu:~raymondiprograms/, contains a sub-direc-
tory of ~raymond/programs/ that includes a set of programs. There are README files in
each sub-directory which describes the purpose of the package and the steps to execute the
programs. There are also a READ file_list file for each package which lists the files in that
package. The name of each package is similar to that of the sub-directory that contains it.

Some of the general notations for all packages are listed as follows:

¢ The first part of all input files contains the values read by the program. The second part

contains the corresponding variable names in the programs for these input values.

* Ineach group of data values, the first line indicates the name for the variable (a charac-
ter string), the second line is the number of values for that variable to be entered (the

length of a data array). What follows is the value of each variable.

* Variable names starting or ending with min, max, Step in series are usually specs for

plotting, i.e. number of steps within the range [min_value, max_value].

*  Within the programs, the definition and the explanation of a variable is given in the

header files, where the variable is first declared.

* Most output data files are plotting files for the UNIX command xgraph. Most of the

figures in this dissertation were imported from these xgraph plots.



92 Conclusions And Future Work Chapter 7

A.1 Simple Fuzzy Inference and Adaptation — learning_demo
(“self_learn”)

This package is a simple self-learning fuzzy inference system. Here “simple” means
that the membership functions are triangular. It was used to produce the results discussed
in Chapter 4 (grain size model) and in Chapter 5 (line width model), using the two input
files: poly_grain_size.in and poly_line_width.in, respectively. For the grain size model, the
system reads in the experimental data sets directly from the input files, and input values of
these experimental data sets are transformed directly to the membership parameters. For
the line width model, however, the input files contain results from the linear regression
analysis of the original experimental data, which are used to build the triangular member-
ship functions. After building the membership functions, the system treats these two cases

identically for model inference and mode] adaptation.

The adaptation or self-learning part of the program is done with the Hanpal optimizer.
The Makefile first makes the object file funct.o and the Hanpal library function libfunct.a
by combining the cost function definition funct.c with the rest of the Hanpal optimizer
package in user directory: ~spanos/prometheus/. The rest of the programs are mainly used
for fuzzy inference, and for plotting the results with the UNIX xgraph utility. The two pro-
grams, random.c and systems.c, are testing programs created in the model development
process for verifying the inference algorithm, and they are not needed during normal exe-
cution. The file memb.c evaluates the membership function values and can be treated as
part of the main inference program: inference.c, which carries out the fuzzy inference
operation. The file draw_point.c is for drawing points on xgraph figures with different

styles, and should be treated as part of the main plotting program draw.c, which takes the
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plotting specs (input/output names, plotting ranges for inputs, plotting points for each
curve, etc.) from the input files grain_size.in or linear_regression.in. And finally, the pro-
gram learning.c serves as the main program for reading in the input data, organizing dif-

ferent subroutine programs and plotting outputs. The relevant output files are:

* optim.out — log file from the Hanpal optimization process.

* hanpal.inl, hanpal.in2 — input parameter files for Hanpal optimizer.

* hanpal.data, learning.output — output parameters from Hanpal.

* hanpal.plot — cost function versus the number of iteration, e.g. Figure 4.11.

» membership.plot — membership function plots before and after optimization, e.g. Fig-

ure 4.12.

+ systems.plot — system inference results plots, e.g. Figure 4.10.

A.2 Fuzzy Inference Systems Designed with Logistic Regression —
logit_demo (‘““logit_learn”)

The package contains a fuzzy inference system with membership functions designed
from logistic regression analysis for categorical data, such as mouse bites (see Chapter 5).
The programs are written in C++ object-oriented programming and are structured in sev-
eral sub-directories: bin/ for all the object file and executable files (binary files), include/
for head files, src/ for all the C++ source code, datra/ for the input data files and output/ for

all the output files that can be plotted using xgraph.

In addition to the usual README, READ file_list and Makefile files in this package,



94 Conclusions And Future Work Chapter 7

there is an alias file called Runfile. It is designed for making the running of this software
package easier. The notes in the README file explain the alias names used for running
this software with Runfile. For instance, “rund dr22” is an alias name for UNIX shell com-
mand “make -f ~raymand/programs/logit_demo/Runﬁle dr22”, and then dr22 is an object

defined in that Runfile file.

There are two types of input files: data.in is the original experimental data table and
draw.<out> is the drawing specs and the membership parameters resulted from logistic
(as well as linear) regression analysis, where <out> is the name of process output vari-
able, such as mouse bites. Another input file in that sub-directory datal/ is called
draw.<out>_learning, which contains membership functions resulting from tuning with

the Hanpal optimizer (see Section A.3).

There are also two kinds of output plotting files: <data_table_#>.<output>_<input>
contains the experimental data sets read in from the input file daza.in, and
<data_table_#>-<output>_<input> are the results from the model inference, where
<data_table_#> stands for the label of the experimental data table (only data table #2 is
explained is this dissertation), <oufput> is the process output name (e.g. bite stands for
mouse bites), and <input> is the process input name (e.g. w stand for the power w). Those
output plotting files are shown as Figure 5.5 to Figure 5.11 in Chapter 5. Note that this
system also includes an inference model for the numerical process output line-width. This
demonstrates that we can incorporate both numerical and categorical output models in the

same fuzzy inference system.



Chapter 7 Conclusions And Future Work 95

A.3 Model Adaptation for the Fuzzy Inference Systems Designed with
Logistic Regression — logit_learning_demo (“logit_learn”)

This software package is complementary to the package “logit_demo”, i.e. it tunes the
membership functions for the fuzzy inference system “logit_demo™ through minimizing a
cost function with the Hanpal optimizer. The cost function is defined in Junct.c, and fol-
lows Eq. (5-7) in Section 5.3. The input file <our>.data (e.g. bite.data) contains the initial
membership parameters and the new experimental data sets with which the system is to be
optimized. The output membership parameters after tuning are written in the file called
draw.<our>_learning, which will be copied in the input sub-directory for the software
package “logit_demo” for re-running the inference model with the tuned membership
functions. Another output file, hanpal.plot, is the plotting file for the cost function values

versus iteration numbers (e.g. Figure 4.11).

There are two equivalent methods to compare the model results with the experimental

data shown as follows.

Suppose there are three model probabilities p, g, r, corresponding to the three catego-
ries P, O, R of a process output categorical variable, and p+g+r = 1. And the newly
acquired data sets are results are from k+m-+n experimental runs with k, m, n times falling
in categories P, O, R, respectively. Then we may have two methods in constructing the
cost functions. We can, for example, make the experimental probability data for each cate-
gory based on only one experimental run, i.e. either lor 0, depending whether or not the
output falls into that specific category. Therefore, the first choice of cost function would be

in the following format:
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o Ej= (p-12+(q-00+(r-0) — assume the first run falls in category P,
+(-0P+(q-1F +(r-0p — and another run falls in Q,
+ e —and soon ......

=k(p-1P+m+n)p*+m(g-12+(m+k)@ +n(r-1P + (k+m) P

= (k+tm+n) (PP + @ +P) -2(kp+mq+nr)+(k+m+n)

On the other hand, since the model prediction of the probability values are numbers
between [0,1] for each category, we may also group together the experimental data having
the same input setting in order to have an input probability value between 0 and 1. There-
fore, we may have an alternative definition of the cost function with the experimental
probability values are k/(k+m-+n), m/(k+m+n), n/(k+m+n), for categories P, O, R, respec-

tively:

o Ey= [p-ki(k+m+n)]? + [q - mi(k+m+n)] + [r - ni(k+m+n)]?

= (p*+ @ +r2)-2 (kp +mgq+ nrii(k+m+n) + (k2 + m® + nz)/(k+m+n)2
Therefore, the difference between E; and E,:

Ejl(k+m+n) - Ey = 1 - (k2 + m? + n?)l(k+m+n)?

=2(km+mn+n k)/(k+m+n)2

is a constant, which means that these two methods are equivalent in optimization with the
minimization of the cost function. For the convenience of programing, we choose the

method in E; as our cost function.

To make the Hanpal optimizer effective and convergent, we have to introduce several
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constraints which reflect the properties of the membership functions initially derived from
logistic modeling. These constraints are explained in the forms of inequality functions

defined in the cost function definition file funct.c and are listed below:

¢ Three membership parameters a;, o, o3 are originally the three intercepts of logit
model (see Chapter 3 and Chapter 5), hence they should be sequential in value:
Omin < 0 < 0ty <03 < Oty

where the optimization range [Oty;;, Otmax] should be given by the program user.

* The maximum value point for the two middle membership functions represent the two
linguistic values (mouse bites model) fair and poor. They should still remain within

the original input range after tuning [see equations (5-1) to (5-5) in Chapter 5).

* The membership parameters 8 should not change sign during the optimization, since
that would imply a reversion in the direction of dependency between the input and out-

put variables.

A.4 Simple Fuzzy Inference Systems with C++ Objected-Oriented
Programming — inference_demo_c++

This software package is an upgraded version of the inference part of package
“learning_demo”, with C++ objected-oriented programming and flexibility for multiple
inputs and outputs. There are two kinds of C++ class objects. The first one, ruleBase, is
used for storing fuzzy rules and membership functions, and the other one, drawData, is
used for storing the plotting specs. Similarly, input file rule.in inputs fuzzy rules and mem-

bership functions to the system, and another input file Draw.in inputs the specifications for
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plotting the inference results. Output plotting files are in the form of system.plot_<in>,
where <in> stands for the main process input variable (e.g. deposition temperature T, for
the grain size model). The membership functions can be chosen by the users to be linear or

exponential, specified in Draw.in.

A.5 Simple Fuzzy Inference Systems with X-window Interface —
inference_demo_Xt

This software package is an upgrade from the package “inference_demo_c++", with
the addition of UNIX X-window toolkit programming (Athena Widgets). The default
input date file rule.in inputs the original fuzzy rules and membership functions, which are
editable through the X-window interface widgets when programs are in running. The plot-
ting specs can also be typed in through those widgets dynamically. The user can use a

number of different types of membership functions for better simulation results.

There are three levels of interface widgets, implemented with programs
XtTopLevel.cc, XtRules.cc and XtDraw.cc, respectively. The top level widget specifies the
input/output names and the types of membership functions to be used (e.g. linear or expo-
nential). The second level widget, or the rule table widget, specifies the rule base along
with the membership function parameters. Finally, the last level widget is for plotting the

model inference results.
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