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Abstract

Many qualitative properties of the product and the process are of interest during semi

conductor manufacturing. Typical examples are the sidewall surface roughness of a poly

silicon etching line and the average grain size for a polysilicon deposition film. These

properties are important since they affect directly the quality and performance of the inte

grated circuit (IC) devices being built. Traditionally, however, they are treated informally

and subjectively as tacit knowledge in the processing arena.

A systematic approach to modeling, simulating andcontrolling such qualitative prop

erties is presented in this work. This approach is based on the statistical analysis of cate

gorical data, and on fuzzy logic theory. The results show significant promise for

incorporating qualitative and quantitative features of a process in a computer-integrated

manufacturing environment.



Our approach is based on the viewpoint that qualitative process variables are categori

cal data and can thus be better understood with the helpof logistic regression analysis.

This analysis reveals important relationships between the input process settings and the

qualitative process output responses, in a way that is similar to linear regression analysis

for conventional numerical variables. Similarly, categorical process variables can be used

for process control, which is driven by a probabilistic model of the categorical variables.

The modeling framework proposed in this work is further built on a self-learning

inference system based on fuzzy logic theory. According to this methodology, both the

input and output variables (numerical or categorical) are "fuzzified" into linguistic vari

ables, which take several discrete values associated with membership functions. The lin

guistic values of the input and output variables are mapped through a fuzzy inference

process which is implemented as aseries of fuzzy set operations. The resulting linguistic

values obtained from such inference operations can be"defuzzified" intonumerical orcat

egorical values.

Such a fuzzy inference system can be designed and created by training data obtained

either from human expert knowledge, or automatically extracted from hard data from sta

tistically designed experiments. After the establishment ofthe initial inference system, the

membership functions can be tuned adaptively to accommodate process changes.

In applying such a qualitative modeling framework, engineers can extract, store,

update, and transfer their qualitative understanding and experience about aprocess along

with the quantitative knowledge. Hence, in addition to the conventional statistical, empiri

cal or physical modeling ofthe processing technology, the qualitative inference systems

proposed in this work are also useful in formal process modeling, simulation, and control.
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Motivation

Process modeling is one of the essential tasks in the semiconductor manufacturing

industry today. Extensive research and development has been carried out during the last

few years, both in industry and academia [1.1][1.2][1.3]. While some of the modeling

approaches target specific processes and equipment, such as Low Pressure Chemical

Vapor Deposition (LPCVD) [1.4] or Plasma Etching [1.5], othermethods seek to create

general modeling frameworks [1.6]. Most of these techniques are focusing on numerical

or quantitative process response variables.

In reality, however, many qualitative process observations are being informally col

lected and used along with quantitative measurements during the development and pro

duction runs of IC processes. These observations are mostly used to convey a visual

impression: printed patterns are "fuzzy" or "sharp," surfaces are "smooth" or "rough,"

layers adhere "well" or "badly" to the substrate. To date, these types of observations have

been collected side-by-side with quantitative observations, such as line-widths, layer

thicknesses, threshold voltages, average film grain size, etc. Even though formal statistical

techniques have been used extensively in dealing with quantitative observations, most

existing equipment models fail to describe these important qualitative aspects of the pro

cess [1.7]. Thus, qualitative observations have remained subjective, and their use has been

opportunistic, informal and inefficient. This is especially unfortunate, since qualitative

observations capture important information about the process. Further, the collection of
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qualitative information usually involves expensive analytical techniques and consumes a

great amount of resources [1.8].

The objective of this work is to propose a framework for modeling such qualitative

process characteristicsby developing an intelligent computer aided manufacturing system

that can capture qualitative as well as quantitative aspects of a manufacturing process.

Within this system models are developed that describe the qualitative relationships

between the equipment settingsand the process responses. Statistical analysis methods for

categorical data [1.9] and fuzzy logic-basedinference theory [1.10] form the mathematical

basis for our modeling system, as they have been shown to be effective media for captur

ing qualitative information.

1.2 Overview

In this dissertation, we introduce a systematic methodology for analyzing qualitative

observations in semiconductor manufacturing. Chapter 2 introduces the basics of experi

mental design [1.11] and categorical data analysis based on logistic regression [1.9]. This

regression method will beapplied to an actual plasma etching process developed at Texas

Instruments, Inc. [1.8]. Chapter 3 proposes a framework of statistical process control

(SPC) schemes to monitor and control qualitative process variables based on the logistic

regression models and other relevant categorical data analysis tools. This approach is a

generalization of theconventional SPC schemes used for numerical process variables.

Chapter 4 presents abrief introduction to fuzzy logic theory, followed byaself-learn

ing inference system based on that theory. A low pressure chemical vapor deposition
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(LPCVD) process is used as a test vehicle for such an inference modeling system. And in

Chapter 5, a combination of categorical analysis and fuzzy inference is employed to create

a framework for an intelligent self-learning modeling system. This method automatically

designs an initial fuzzy inference system through statistical categorical analysis of a

designed experiment. This initial systemcanbe tunedand adapted to accommodate newly

acquired experimental data. This way the system can learn from and adapt to process

changes.

Chapter 6 describes the various software programs created during to course of this

project. Based onthe object oriented programming paradigm, all the programs are written

in C, C++ and the X-window tool-kit under the UNIX environment. Chapter 6 also

includes asimple introduction to the Berkeley Computer Aided Manufacturing (BCAM)

software system and its relationship with this qualitative framework. Additional detail

information about these software packages are included in the Appendix. Finally in Chap

ter 7, potential applications of this work are proposed.

The flow-chart ofthis dissertation is shown in Figure 1.1, where the interdependence

among different chapters is depicted.
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Chapter 2 Categorical Data Analysis

According to established statistical nomenclature, a variable can be interval or cate

gorical. An interval variable is one thatcantake continuous numerical values. A categori

cal variable, on the other hand, takes only discrete values. If the values can be ordered

(such as the linguistic values "smooth," "rough," "very rough"), then the variable is an

ordinal categorical variable. If no ordering is possible (such as the linguistic values

"green," "blue," "red"), the variable is a nominal categorical variable [2.1][2.2].

Categorical variables are encountered frequently in semiconductor manufacturing pro

cesses, but are often treated informally. For example, in plasma etching, the roughness of

the etched polysilicon side-wall surface is animportant indicator of the quality of an inte

grated circuit (IC) product. This quality depends on various process input settings that

comprise the process recipe.

Statistical analysis of categorical variables is usedextensively in biological and social

sciences, but has not been applied to semiconductor manufacturing. For example, there

might be a relationship between a person's age (an interval input variable) and the likeli

hoodto develop heart diseases, an ordinal categorical variable that may take discrete val

ues such as not likely, quite likely, or very likely. While the most common modeling

technique for an interval variable is linear regression analysis, a popular modeling method

for categorical data is logistic regression [2.1].
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2.1 Background Knowledge — A Plasma Etching Process

A semiconductor plasma dry develop (through etching) process developed at Texas

Instruments, Inc. (TI) [2.3] is usedas thetestvehicle for developing thequalitative model

ingmethodology in this work. The objective of theetching process is to create polysilicon

lines matching a target pattern as close as possible. The process settings are the tempera

ture, etchtime,power, pressure and oxygen flow rate inside thereactor. Experimental data

were obtained from a factorial design [2.4] based on these inputs. Many process output

variables are important in evaluating such a process. These output variables include not

only quantitative variables such as average line width of a printed pattern and the unifor

mity of the line width across the wafer, but also qualitative variables such as the sidewall

roughness, and the presence of indentations in the photoresist line profile, calledmouse

bites (Figure 2.1).

Desired Pattern Actual Pattern

uuu
/ / /

roughness mouse-bite

Figure 2.1 A PlasmaEtching Process

These ordinal categorical outputvariables takeonly a few discrete values, usually labeled

as "very rough," "rough," "smooth," "very smooth," etc. These values are assigned by

trained human operators who use established references and inspect the etched wafer

through a scanning electron microscope (SEM).
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2.2 Statistical Regression Analysis

In this section we will discuss both linear and logistic regression methods, which can

be used to analyze continuous and categorical outputvariables, respectively.

2.2.1 Linear regression modeling

In a single input, single output process, when both the input variable x and the output

variable y of a process are continuous interval variables, a linearregression model can be

applied, if we assume there is a linear relationship betweenx and y. This linear model is

expressed asyn = a+$xn+tn, where n is the nth observation for thevariables x andy,and e

is the error. Statistically, all the experimental runs are assumed to follow the above linear

model, subject to identically, independently and normally distributed errors, £„. Ifa and b

are the estimates of the model parameters a and P, respectively, then the estimated linear

model can be expressed as [2.4],

yn sa +bxn +e«s}n +en* n=l,2,...,N (2-1)

where the subscript n stands for the nth experimental run,yn is the measured experimental

value, yn = a + bxn is therespective predicted value, and en is the residual. Theparame

ters a and b are typically estimated through the method of least squares, i.e. they are cho

sen to minimize the sum of the squares of the residual en. Eq. (2-1) is called regression

equation and the output response variable y is sometimes called the dependent variable,

while x is called the independent variable or the regressor. When more than one input is

considered, the term bxn in Eq. (2-1) should be replaced by avector product bTxn, where x

represents the input vector in a multi-dimensional space, and b is the corresponding

parameter vector. In this case, the first equation in Eq. (2-1) represents a surface in a multi-
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dimensional space, so sometimes this model is also referred as response surface model.

An analysis of variance table (ANOVA) can be used to test the significance of each con

tributing factor, as well as the overall significance of the model. Lack-of-fit tests can be

used to determine if additional terms or transformations are needed [2.4][2.5].

2.2.2 Logistic regression modeling

The output variables of a process are often categorical data such as in the case of

mouse-bites and surface roughness mentioned above. Categorical variables take values

from an ordered set such as {"excellent,""good,""fair," "poor," "worst"). In this case, the

conventional linear regression model would not be very useful. On the other hand, when a

semiconductor manufacturing process is under statistical control, we can assume that

these categorical variables take their discrete valueswith fixed probabilities, and that they

can be observed through a systematic and consistent measurement procedure. We also

assume that when the process is in control, the categoryin which a given output "lands" is

independent of prior observations. This amounts to assumingthat in n experimental trials

with the same process input parameters, the number of outputs in each category will be

jointly multinomially distributed. Further, the probabilities of the different categories will

be functions of the input parameters; in particular, we assume that the odds in favor of cat

egory "z" will have the form indicated in Eq. (2-3), shown on the following page. Models

of this form can be fitted with logistic regression [2.1][2.2]. As will be seen later, that

functional form and its sigmoidal shape can easily be translated to fuzzy membership

functions. Further, these logistic models have a statistically adequate fit to the data.

Such logistic regression or logit model, createsa mapping of the continuous input vari-
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ables to the probabilities p that the output variable fall in each category, i.e., the logistic

method estimates the probability px of having results in category i, i=l,...,m. In order to

describe this model, we will first define the cumulative probabilities 71/ for acertain value1

of* as follows:

M*> = 5>>W (2"2)

The procedure of applying this method is summarized by the formula that defines the

logistic fitting curves:

exp(af + bx)
n-(x) = - - r—- i = 1,2, ...,m-l

' 1+exp(fl/ +b •x)
(2-3)

where ai_l <a.

where 7C,- are the cumulative probability functions. From this, the actual probabilities can

be estimated as:

PiW = «

7C, (x) , i= 1,

W/W -«,-.|W ' ' = 2, ...,m-l, (2-4)

l-nm_i(*)> i=m

Similarly to the linear regression case, a and b are the estimated parameters, and x is

the input variable. Since the output y is a categorical variable, p. (x) gives the probability

]. "Cumulative probability"in this work is the probability which accumulatesover the categoriesof
the categorical variable x.



12 Categorical DataAnalysis Chapter 2

that y falls into category i (i=l, 2,..., m). As in the linearregression case, various tests can

be applied to the estimated parameters and the significance level of the departure of the

corresponding input variable from zero can be evaluated.

Figure 2.2 shows an example of what the logistic fitting functions and the probability

functions might look like, when plotted against one of the continuous explanatory vari

ables. As we see in Eq. (2-3), the cumulative probability curves are distinguished from

each other through the different constantparameters a-v In reality, when two categories are

not significantly different we can combine them to be the same category without degrad

ing the fit.

bites Cumulative Probabilities nt{x)
T

w (normalized)

w (normalized)

Figure 2.2 Logistic Regression Results — Mouse Bites Probabilities vs. Power w
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2.3 Design of Experiment

In order to understand the relationship between certain output response variables and

the input process settings, a setof experiments can be run to obtain the data needed. The

most efficient way to carry out such an experiment is to set the input settings in some par

ticular arrangement so that the effects ofthese input variables can be determined through a

minimal number of experiments. The systematic approach to conducting such an investi

gation effectively is called statistical experimental design [2.4].

One of these approaches is the factorial design, where the experimental settings are

chosen tobe at the corners of amulti-dimensional cube in the input space. Figure 2.3(b)

depicts a 2-dimensional example. Comparing the more intuitive alternative wayof chang

ing one input parameter ata time, thebenefit of factorial design is seen clearly. If the four

points in (a) are chosen, the effect for xj and x2 would be estimated as yd-ya and

>'b ~ )'c ' respectively. However, if the four points in (b) are chosen, these two effects will

be (v3+>4) _ (yi+y2) and (y2 +?4) _ (vi+v3). respectively. It can be shown [2.4]
2 2 2 2

that option (b) gives better precision with the same number of experiment runs. In addi

tion, option (b) allows us to estimate the interaction (vi +3^) (y2 +3V 0f the two
2 " 2

inputs.

(a) x2 (b) *2

vb v2 v4

ya
-.yd

Ji v3

*i *1

Figure 2.3 Factorial Experimental Design in aTwo-Dimensional Space
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There are many variations of factorial designs, and many other approaches to experi

mental design besides factorial design. The experimental data used in this work are based

on the plasma etching process mentioned before, and these experiments were carried out

at TI using a 3-level 3-factor factorial design (see Section 2.4).

2.4 Analyzing the Qualitative Experimental Data — Mouse Bites

Table 2.1 shows the experimental data collected from a plasma etching process at

Texas Instruments, Inc. (To protect proprietary information, only the normalized values

{-1, 0, 1} of the input parameters are shown). This is a full 3-level factorial experiment

with 6 replicates at the center.

Table 2.1 A Surface Imaging, DryDevelop Process (Courtesy: Texas Instruments)

No. Power

(w)

Pressure Oxygen
Flow (02)

roughness
{smooth,fair, rough, roughest)

mouse bites

{good, fair, poor, worst)
1 1 -1 1 roughest poor

2 -1 0 -1 fair fair

3 0 0 0 fair poor

... ... ... ... ... ...

29 -1 -1 0 smooth good
30 -1 1 -1 fair fair

31 0 -1 -1 rough worst

32 0 0 0 rough fair

The model for the mouse bites used four levels based upon the logistic statistics. It is

used in this section to illustrate how to carry out logistic regression to analyze categorical

process variables such as surface roughness and mouse bites. The commercial software

used is calledJMP [2.6]. JMPis an interactive subset of SAS and runson Macintosh com

puters.
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Table 2.2 to Table 2.5 contain the results of the logistic analysis to assess the logit

model for mouse bites versus all three input factors (w,p, and 02). The guiding principle

in logistic regression is the same as in linear regression, namely, to compare the observed

values of the response variable to the model predicted values with and without the input

variable inquestion. In the linear regression model, this evaluation can berealized simply

through the sum of squares of the residuals with and without considering the input vari

ables. In the logistic regression model, however, the corresponding estimator is the so

called Log Likelihood function, which is a measure of the difference between the observed

values and the model prediction values, with orwithout considering input variables. The

comparison to assess a logit model is carried outthough the following formula:

G = _2j |" (likelihood without the variable) "I
L (likelihood with the variable) J

= -21n

n(?)
k= 1

M ( n \

rw<)
UsIVbI

(2-5)

where nk(i) is the cumulative probability for category k for the Ith sample, nk is the number

ofsamples falling into category k, and yrfi)=1when the f* sample falls into category kand

yk(i)=0 otherwise. Also in Eq. (2-5), n =^nk , nk =^jyk(i) and fc=l,2,...,M, where
k i

M is the total number of categories. Such alikelihood ratio G obeys asymptotically the Chi

Square (x2) distribution with MA degrees of freedom [2.1]. From the result showing in

Table 2.2, we see that the %2 value for the model is 40.879 and the probability that this or a

larger% occurs by mere chance is very close to zero, indicating the strong significance of
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the model.

Table 2.2 Model Fit for Mouse Bites (Including w,p, and 02)

Statistic w/o variables w/ variables Chi-Square Probability

-2 Log Likelihood 83.075 42.196 40.879 < 0.0001

Table 2.2 gives a detailed list of the estimated parameters for the logit model. As we

see from the table, not every input factor is significant. For instance, the x value for 02

flow rate is only 2.4 and the corresponding significance level is more than 12%. Accord

ingly, we can eliminate the insignificant input factor 02 from our mouse bites logit model

and re-compute the logit model analyses.

Table 2.3 Logit Coefficients and Effect Test (h>, p, and 02)

Coefficients Value Std. Error Chi-Square Probability

Intercept 1 (0C]) -4.6645 1.3184 12.52 0.0004

Intercept 2 (a2) -1.7653 0.7084 6.21 0.0127

Intercept 3 (0:3) 0.6485 0.5902 1.21 0.2719

Power w (P]) -5.2884 1.3620 15.08 0.0001

Pressurep (p2) -1.3700 0.6680 4.21 0.0403

Oxygen Flow Rate 02 (P3) 0.9962 0.6425 2.40 0.1210

The results of the logistic modelingexcluding 02 are shown in Table2.4 and Table 2.5.

From comparing Table 2.2 with Table 2.4, and Table 2.3 with Table 2.5, we see the simpler

model without 02 is just as good as the previous model with all three inputs.
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Table 2.4 Model Fit for Mouse Bites (Including only w and/?)

Statistic w/o variables w/ variables Chi-Square Probability

-2 Log Likelihood 83.075 44.910 38.165 < 0.0001

Byconvention, a variable isconsidered significant if itssignificance probability is less

than 5% [2.4][2.7]. We see from Table 2.3 orTable 2.5 that both inputs wand p are signif

icant according to ourmodel, however the power wis a much more dominant factor, as its

X2 value is much larger than that of the pressure p.

Table 2.5 Logit Coefficients and Effect Test of the Reduced Model (w and/?)

Coefficients Value Std. Error Chi-Square Probability

Intercept 1 (aj) -4.3228 1.2022 12.93 0.0003

Intercept 2 (a2) -1.7561 0.6895 6.49 0.0109

Intercept 3 (a3) 0.5915 0.5689 1.08 0.2985

Power w(p!) -4.833 1.2325 15.38 0.0001

Pressure p (p2) -1.2598 0.6318 3.98 0.0461

Figure 2.4 plots the different models for mouse bites. The probability curves agree

well with results from the above tables. There is almost no visible difference between the

full model (a) and the reduced model (b) since input 02 is insignificant. There are small

visible differences between (b) and a model (c) based solely on power w, since/? is signif

icant but not as much as the main factor w. For comparison, a model (d) based solely on

pressure p is also shown.
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Figure 2.4 Probability Plots for Mouse Bites — Four Possible Models

This procedure of screening the insignificant input factors is important inreducing the

complexity of a modeling system. In reality, a process may have a large number of input

factors, but it is too costly and (as we have seen in the above example) unnecessary to

include all inputs in modeling a process response.
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2.5 Summary

Many qualitative characteristics in a semiconductor manufacturing process can be

treated as statistical categorical data. Similar to linear regression for analyzing conven

tional numerical data, a logistic regression model can be applied to these qualitative pro

cess variables collected along with the quantitative data from designed experiments. This

regression modeling technique can reveal relationships between these qualitative process

outputs with input process settings such as power, pressure and Oxygen flow rate in a typ

ical plasma etching process. This analysis can also be used to screen out insignificant

input factors in modeling the response of a process.
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Chapter 3 Statistical Process Control Based

On Categorical Data

In Chapter 2, logistic regression models are created for categorical process outputs.

Once these models have been shown to represent the process accurately, they can be used

for quality control during production. These "model-based" Statistical Process Control

(SPC) schemes allow the controllablevariablesof a process to change during production.

The model is then used to account for these changes during SPC. This chapter proposes

several different SPC schemes for categorical variables.

As defined, the logit model predicts the logs of cumulative probabilities of several out

put categories as a linear function of the controllable process inputs [3.1]. For SPC, how

ever, the actual probabilities of each categorycan be assessed. These probabilities can be

calculated by taking consecutive differences between the cumulative probabilities, as

shown in Eq. (2-4). There is usually a significant prediction error in these probabilities,

since the model is based on limited sampling of noisy experimental data. This is in con

trast to standard SPC practice, where the classical ±3a control limits are considered

"exact." The probabilities of each category cannotbe considered exact because in a typical

categorical modeling situation the sample size is limited and the confidence interval of the

predicted probability values is wide. The error in probability prediction can be estimated

with the assumption that the estimated model parameters have a multivariate normal dis

tribution.
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3.1 Short-Term SPC Using Categorical Models

The objective of short-term SPC is to identify abrupt {i.e. short term) process malfunc

tions during production. Since the logistic models are made to predict probabilities, the

corresponding SPC control procedure is based on the predicted probabilities of each out

come category of a process. For a certain category, the prediction error is usually substan

tial and is calculated first.

The goal is to find the 67% (i.e. ±c) confidence intervals of the predicted probabilities

[3.2]. The objective is to start with the multivariate normal distribution of the intercepts

and the coefficients, and to transform this distribution as an expression of the linear com

binations of the three input variables: power w, pressure p, and Oxygen flow rate 02.

Mathematically, this transformation is equivalent to a linear change of coordinates in a

multi-dimensional space. Once such a transformation is accomplished, the linear combi

nations of the three input variables can be set to their correlated ±a extremes in order to

calculate the extreme predicted probabilities for each category.

Consider, for example, the probabilities of each category of mouse bites, at the nomi

nal settings of the process (Figure 3.1). The depicted 67% confidence intervals in Figure

3.1 are calculated from the variance-covariance matrix of theestimated model parameters.

This is accomplished by transforming the multivariate normal statistics of the model

parameters to the multivariate normal statistics of the linear combinationsof the process

parameters and the intercepts. For SPC purposes, only the category that has very small

probability (category 2 in this example) needs to be examined.
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Figure 3.1 Example of Category Histograms with 67% Confidence Intervals.
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There are two main objectives in a statistical process control scheme. One is to reduce

the probability of "false" alarms. This probability is also called type I error rate, and is

symbolized by a. The other objective is to reduce the probability of missing the "true"

alarms, or the rate of type II error, symbolized by p. This objective is equivalent to

increasing the probability of generating "true" alarms, or equivalently, increasing the

power of the test, 1-p.

Another way to explain this concept is to discuss the average run length (ARL) of a

control chart. The ARL is defined as the average number of runs before an out-of-control

alarm occurs [3.3]. Therefore, if the process is in control, ARLq= 1/a. Similarly, if the

process is out of control, ARL = l/(1—J3). Ideally we want a very long ARL0 and a very

short ARL.

In order to evaluate the ARL, one must define the rules for alarm generation. In this
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work we will consider sequential runs rules, i.e. "issue an alarm ifk out of the last n

wafersappeared in categories(or combinations ofcategories) thattheyhavebeendeemed

unlikely." Either single runs rules, or combinations thereof might be employed. In this

example two sets of rules for short term malfunction alarm generation will be presented.

The (1100) rule raises an alarmwhen out of the last two sampled wafers, one falls in cate

gory 2 and the other in category 31. A better rule isthe (2000) and (1100) combination: it

raises an alarm if either both sampled wafers are in category 2, or one is in category 2 and

the other is in category 3.

The ARL corresponding to these runs rules are calculated based on the multinomial

distribution:

VP{x= (xlyx2,...,xk)} =*![] (3-1)

r-i^'!'

The resulting ARL curves are plotted in Figure 3.2 against theactual probability of cate

gory 2 in a malfunctioning process. By definition, the probability of a false alarm is the

inverse of ARL0, and the maximum false alarm probability within the range of prediction

of the model is the inverse of min(ARLq), which is plotted in Figure 3.2.

1. Category 1was not included inthis analysis since it was not represented inthe experimental data.
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Mouse Bites

0.2 0.3 0.4 0.5

Category 2 Probability During a Malfunction

ARL(1100) + (2000)

ARL(llOO)

0.6

Figure 3.2 ARL for Various Rules as aFunction ofthe Category 2Probability.
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What follows is another example of short-term SPC applied to the process optimized

for mousebites. Now category 5 is the least likely category, and it will be used for alarm

generation. A single runs rule will be sufficient here: raise an alarmif one of the last two

sampled wafers is in category 4 and the other is incategory 5.The rule delivers niceARL

characteristics, with relatively low probability of false alarms, and high sensitivity tomod

erate shifts of the process.
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Figure 3.4 Characteristic Function of0011 Runs Rule Applied to the Optimized Process

Insummary, the characteristics of the short-term SPC show that it is possible togener

ate reliable alarms, as long as we can find either individual orcombinations of low-proba

bility categories.
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3.2 Long Term SPC

In addition to abrupt malfunctions in the process, there will be slow (i.e. long term)

process drifts that might happen due to natural and unavoidable process aging. These

might be caused by depletion of chemicals, seasoning of the chamber, scheduled or

unscheduled maintenance events, etc. A different approach can be adopted to catch such

slow process drifts, since, unlike short term alarms, slow drifts maybe be corrected by

simple feedback adjustments. The number shown in (3-2) is called power divergence, a

cumulative figure of merit that describes thematch between the process and its model:

* fn.-n-V
^ ft

where 11/ is the observed probability and ft, is the value predicted by the model for the

last k observations. The power divergence observes the Pearson chi-square statistic and is

2
(approximately) distributed according to a known %k_] distribution [3.4]. Therefore an

upper control limit can be found for this number for an acceptable false alarm level. If the

limit is exceeded, then this long-term SPC model will indicate an alarm. Furthermore, as

will be discussed in Section 3.3, this alarm means that the model is no longer consistent

with the process, and it has to be re-fitted. A process control action (recipe update) may

follow each adaptation of the model.

In this section, two examples of long-term SPC are examined. In the following simu

lated examples, the Pearsonchi-square statistic is used as a function of time, given a simu

lated drift in the process.This drift of the process is simulated by shifting the expected
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probability values shown in Eq. (3-2) (See Figure 3.5).

| | Probabilities before the process change:
(P2> P3> P+ Ps) = (0-01» 0-16,0.53,0.30)

m Probabilities after the process change:
(P2> P3> P4> Ps) = (O.H. 0.11,0.48,0.30)

Category

Figure 3.5 Category Probabilities Before and After the ProcessChange

Such a model-based SPC scheme canbe applied even if the controls of the process are

allowed to move. In the first example, the process is locked, i.e. the controls of the process

(input vectoror recipe setting x) are notchanging during the simulated runs. In the second

example, however, all the controls of the process are allowed to change randomly within

the center 50% of their experimental range in order to simulate a situation where the pro

cess is constantly being modified by a run-to-run controller.

The power divergence statistic is calculated over a window of the last 40 runs. The

change depicted in Figure 3.5 is introduced at wafer #100. The long-term SPC control

charts results for the Power-Divergence statistic, as defined in Eq. (3-2), are shown in Fig

ure 3.6 and Figure 3.7, for the locked and unlocked processes, respectively. The change

introduced for an unlocked process (Figure 3.7) is similar to that of the locked process,

except there are no constant probability distributions for the four categories.
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Figure 3.6 A Long-Term SPC Example with Locked Process Settings

20 p—p
18 -

16

14 |_

5 12 U UCL
IIIIIIIIIMMIIIltllMllllllllllltllllllIMM

I M

% 10
mi iiHiiiii iiii iiiiiiaiiinii

100 150
run

t
process change

MV -
200

Figure 3.7 A Long-Term SPCExample with Changing Process Settings

a = 0.05
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3.3 A Model-Update Algorithm for Process Control

Let us assume that a process is in control most of the time. Thanks to the short term

SPC scheme we discussed earlier, an abrupt change in the process would cause an out-of-

control alarm. For a longer period of time, however, there might be a permanent change or

shift in the process settings and the machine conditions. When such a change in the pro

cess is detected by the long term SPC scheme, the model must be updated in order to

describe the "new" process. Thiscan be accomplished by readjusting some of the inter

cepts, while using the same linear combination ofprocess parameters. This model update

is implemented using a maximum likelihood approach, based on a weighted least squares

minimization scheme, which will be illustrated in this section.

3.3.1 Model update approach

Probability prediction models are usually fitted by maximizing the likelihood of the

observed data. This maximization is done by choosing the appropriate values ofthe model

used to describe the data. In the case of long term SPC model update for categorical data,

each observation contributes some Log Likelihood, defined as the weighted sum of all the

prediction probabilities over the training set. Therefore, the fitting problem can be recast

as a minimization problem:

min (-2LogL) => min(-2£w,log (pp \

where wj is the weight of the/h observation, and Pj is the estimated probability. The

model that yields the highest probabilities for the actual observations "fits" the best.
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If the observations are collected sequentially in time, then they can be pre-weighted

using an exponentially weighted moving average (EWMA) scheme that assigns less

importance to older observations. The steepness of the EWMA scheme can be adjusted to

match the dynamics ofthe process. The weighting used in our example is shown in Figure

3.8.
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Figure 3.8 EWMA Modeling Update
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age n-i

The general way of fitting a probability model is accomplished by maximizing the

likelihood of the observation vector. This leads to a numerical minimization problem that

can be solved by using the Gauss-Newton iterative method depicted here. The method of

"Iteratively Re-weighted Least Squares (IRLS)" [3.5] is employed by solving the follow

ing equation for the multinomial variable vector Z.:

XZ>>,.(Z,-p.)=0 (3-4)

where p. is the vector of category probabilities computed for the current model parame

ters. Dj is the matrix of partial derivatives ofp., and W. is the weight matrix. The actual

solution is found iteratively by the Gauss-Newton method:



32 Statistical Process Control Based On Categorical Data Chapter 3

v j y 1

where ^ is the model parameter vector (al, a2,..., ak, b) after the mth iteration. t)j, Wj

and p. are approximations to D., W. and p., evaluated at tOT• The weights are adjusted

before each iteration, so that observations that do not fit very well are deemphasized. In

general, the weight of an observation is the inverse of its estimated variance at each itera

tion.

3.3.2 Examples of model adaptation

As in the case of long-term SPC, a process shiftwill be introduced as depicted in Fig

ure 3.5. Note that for the unlocked process, the probability of each category is no longer

constant, but the changestill follows the formula in Figure3.5.

Figure 3.9 shows an example of the locked (fixed input) process where the "routine"

process experiences a moderate shift after wafer #100. The change isdetected by the long-

term SPC algorithm and the update algorithm readjusts the intercepts of the model. The

long-term SPC alarm was generated at wafer #130 and the model was updated at wafer

160. Notice that after the model adaptation, the value ofthe power-divergence statistic

drops below the control limit. Eq.(3-6) shows the model change due to the difference of

parameter al beforeand after the model adaptation at wafer#160.

KiC*) = 1

exp(4.6644506-*x)
1^(4.6644506-*-*) Wafer#110#159

exp(0.730513-fts) c *-,*,» (36)
i l+exp(0.730513-*.*) afterWafer#16°
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Note that all three intercepts change in order to accommodate the shift in the cumulative

distributions (see Table 3.1).

Table 3.1 A Model Adaptation Example

change

linear term: b x

intercept: a2

intercept: 0C3

intercept: oc4

before after

(P2> P3> P4> Ps) (p2+.U p3-.05, p4-.05,p5)

-5.288 w -1.370 p + 0.99602

-4.6645

•1.7653

0.6485

100 150
run

-0.7305

0.0965

2.1631

a = 0.05

5% (11.34)

process change introduced model adaptation completed at #160

Figure 3.9 A Model Adaptation Example with Locked Process Settings

A second model adaptation example is shown in Figure 3.10. This example is similar

to the first example, except the process is unlocked: the input variables are allowed to vary

50% randomly but uniformly within the center half of the original experimental range.



34 Statistical ProcessControl Based On Categorical Data Chapter 3

a = 0.05

(11.34)

50 100 150 200

t - t
processchange introduced model adaptation completed at #160

Figure 3.10 A Model Adaptation Example with Unlocked Process Settings

3.4 Summary

A systematic methodology for model-based SPC was presented that takes advantage

ofqualitative process observations. The IRLS methcgfe&miiadBmiBdn^^dffisffiBtcaBples is consistently o

models can be changed once, or continuously. Updated models are locally accurate. Since

the adaptation is based on new probability estimates, it takes 30-50 observations after the

change to estimate new frequencies of occurrence. Given these statistical tests, model

updates can be easily automated. Even though its implementation is straightforward, the

methodology offers anovel approach to characterize and use important, yet informal qual

itative knowledge about a process.
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Chapter 4 A Self-Learning Fuzzy Inference System

The methods in the previous two chapters about categorical data analysis are direct

generalizations of conventional statistical analysis for continuous variables. Even though

the approach is useful and informative, its usage is limited since the adaptive model needs

large amounts of data to be effective. Also,knowledge obtained from one process is diffi

cultto transfer to another process. In this chapter, we will introduce an approach based on

fuzzy logic inference, to create systems appropriate for qualitative features. In Chapter 5,

we will combine the formality of the statistical approach to the flexibility of a fuzzy infer

ence system.

Fuzzy logic has been applied successfully in many fields where qualitative knowledge

and data are involved. In this chapter, we explore a fuzzy logic application on process

modeling. Specifically, a prototype qualitative model based on experimental data is cre

ated to predict the average grain size of polysilicon deposition films through a fuzzy infer

ence system.

The overall goal of this work is to develop a software systemthatuses fuzzy models

for the inference of qualitative aspects of a process (see Figure 4.1). Within this system,

models are developed from experimental data to describe qualitative process attributes,

which are usually understood by an experienced process engineer, but ignored by most

quantitative approaches. A low pressure chemical vapor deposition (LPCVD) furnace for

polysilicon deposition hasbeen selected asatest vehicle for this investigation [4.1]. Proto

type models can be developed to predict process responses such as grain size, surface
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roughness, grain orientation and step coverage of a deposited film, based on recipe set

tings, i.e., deposition/annealing temperature, dopant flow rate, silane flow rate, pressure,

and deposition time, etc. The combined quantitative-qualitative models can be used for

equipment and process simulation, recipe generation, diagnosis, and control. Similar qual

itative models mayalso be developed for other equipment and processes.

Recipe

Temp.

Doping

Flow Rate

Pep. Time

r

FUZZY

INFERENCE

Responses

Grain Size

Surf. Rough.

Refract. Index

Figure 4.1 A Fuzzy Inference System for LPCVD Process

4.1 Background Knowledge

4.1.1 Low pressure chemical vapor deposition process

Figure 4.2 depicts the Tylan horizontal glass tube reactor used for polysilicon LPCVD

[4.2]. The wafers are stacked perpendicularly to the longitudinal axis of the tube, and are

placed at 1.2 cm intervals. Aluminum cantilever rods support the boats, which carry the

wafers. Silane (SiH4), mixed with an inert carrier gas (N2), is injected at the lower front

end of the tube, and is pumped out from the back end. Three main heating coils are placed

along the tube tomaintain the proper operating temperature. A heat baffle in the front por

tion of the furnace reduces radiative heat loss and also serves to facilitate both temperature

and gas velocity control in the middle and back sections of the tube.
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Gas Inlet
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Si H4 (g) <-> Si (s) + 2 H2 (g)

Heaters
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Wafers

Cantilever Rod

Figure 4.2 Deposition Furnace (Courtesy: Sherry F. Lee [4.2])

There are many qualitative properties that cannot be modeled numerically, such as

grain size, surface smoothness, etc., even though extensive research has been done on

those aspects and much knowledge has been accumulated. However, these qualitative

characteristics of the polysilicon film are very important to semiconductor devices. A

well-built control system must capture, at least qualitatively, human knowledge about

relationships between the LPCVD process settings and the process responses in order to

make the process more controllable and enhance the quality of the devices. As shown in

this chapter, an inference system based on fuzzy logic would be a good candidate to cap

ture qualitative human knowledge.
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4.1.2 Grain size prediction

Among other quantitative and qualitative features of an LPCVD deposited polysilicon

film, the average grain size (s) is one of the important quantities that characterize the

structure and property of the film and that will affect the semiconductor device perfor

mance [4.3]. The grain size can be measured in a number of different ways. Figure 4.3 and

Figure 4.4 show how a polysilicon film structure responds to the different process setting

of deposition temperature (7^), annealing temperature (Ta), and doping profile [4.3].

AMORPHOUS StUCON K" jgB POLYCRYSTAUJNE *%
(550°C) K jF? SILICON (625° C)

€

Figure 4.3 Grain Size (Structure) vs. Td (Courtesy: T. Kamins [4.3])

Figure 4.3 shows a transmission electron micrograph of 0.6 Jim thick polysilicon films

deposited onto Sj02 at 550°C and 625°C in an LPCVD reactor. The deposition tempera

ture Trf does have an effect on the grain structure. The structure of a polysilicon film

deposited at 625°C has an average grain size of about 70 nm.
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(a) undoped

(b) doped

(c) doped and heat-treated

(<f) undoped and heat-treated 0,5u.m
» 1
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Figure 4.4 Grain Size (Structure) vs. Ta and Doping Profile (Courtesy: T. Kamins [4.3])

Figure 4.4 gives another example of how grain structure (and grain size) could be
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affected by different recipe settings during deposition. It shows cross section transmission

electron micrographs of 0.6 pm thick polysilicon films deposited in an LPCVD reactor at

Td =625°C. The initial columnar structure ofundoped polysilicon films (a) changes little

when the undoped films are annealed (d), but phosphorus doping increases the grain size

(b), which is further enlarged by additional annealing ofthe doped films (c). Other experi

ments show that for phosphorus doped polysilicon films, the grain size of the polysilicon

structure increases when Td increases, however, after high temperature (Ta) annealing, the

films deposited with lower Td would have larger average grain size than those deposited

with higher Td [4.4].

To date, there are no generally accepted theories that explain the complicated relations

between deposition/annealing temperatures and resulting grain size (s). The expert knowl

edge on this field is very qualitative and sometimes contradictory. The proposed model in

this chapter manages to capture the empirical qualitative knowledge into acomputer soft

ware system that would eventually help process engineers better understand the subject.

Since this system is based on fuzzy logic theory, abrief introduction to fuzzy logic and a

fuzzy inference decision-making system isgiven inthe following section.

4.2 An Introduction to Fuzzy Logic

The concept of Fuzzy Logic was first introduced by Professor Lotfi A. Zadeh [4.5] of

the University of California at Berkeley, in June 1965. In the last few years, the subject

has flourished and applications ofthis theory can now be found in many disciplines.
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4.2.1 Fuzzy sets and membership functions

Central to Fuzzy Logic is the concept of the fuzzy set [4.6]. The fuzzy set theory is in

many ways a generalization of the classical set theory. A classical (crisp) set A is normally

defined as a collection of elements or objects x (belong to a super-set X) which satisfycer

tain conditions specifying A. Each element xeX can eitherbelong to or not belong to the

setA, whereA£X. To generalize this definition, we can introduce a membership function

u (on X) for each element x in order to quantify its belongness to the crisp set A, i.e.

P(a)=1 if xeA and p(a)=0 if xeA. If we allow thismembership function to be continuous,

we can define &fuzzy set B as a collection of elements xeX with membership function

\l(x), where \i(x) can be any real number between 0 and 1:

B= {(x,\iB(x))\xeX} (4-1)

4.2.2 Fuzzy logic and rules

In Boolean logic, the most basic logic operations we need to consider are "PASS",

"COMPLEMENTARY", "AND" and "OR". The rules of those operations and their

"fuzzy" generalizations are expressed as shown in Table 4.1:

Table 4.1 Boolean Logic Rules

Name Crisp Rule EquivalentFuzzy Membership Value

PASS IFjceA,THENzeZ IFu^UTHENuz^l

COMPL. IF ^ A, THEN zeZ IF [iA(x)=0, THEN Uz(z)=l

OR IFjteAvyefl.THENzeZ DFu^lOR \lB(yh\,THEN\L2iz)=l

AND IFxeAAyeB,TUENzeZ IF u^l AND tLtfyhh THENu^l

where "1" can be defined as "true" and "0" as "false".
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Thus fuzzy logic can be regarded as a generalization of the classical Boolean logic by

allowing the "membership function" |i(x) to be any number between 0 and 1. Equiva

lently, Boolean logic is a special case of fuzzy logic. A set of equivalent fuzzy logic rules

("fuzzy rules") can be defined for the above four basic logic operations as shown in Table

4.2:

Table 4.2 Fuzzy Logic Rules

Name Rule Membership Value

PASS IF (x, \iA(x)) e A, THEN (z, u^)) € Z Mz<") = M/iW

COMPL. IF (.v. m^U)) e A THEN (z, \x^z)) € Z Pz(z) = 1-u^U)

OR IF(.v,M*tf»€ AOR U,M*U))e B,
THEN (-, MzU)) € Z

MzU) = max( \iA(x), \xB(x))

AND IF ix. mU)) e A AND (x. \lB(x)) € fl,
THEN (r,MzU))eZ

ix^z) = min( \iA(xl \iB(x))

where all of the values of the membership functions are between 0 and I. Note that the

above definition given for the "OR and "AND" are not unique. Other definitions are also

in use in the literature |4.6].

4.2.3 The concept of the linguistic variable

A linguistic variable has a name, and a set of linguistic values [4.6]. Each of these lin

guistic values is associated with a value of a membership function. For example: a per

son's age A can be a linguistic variable taking linguistic values from the set {juvenile,

young, middle-aged, old, very old). The relationship between the numerical value of the

age and the corresponding linguistic values can be captured by membership functions as

shown in Figure 4.5.
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very old

Figure 4.5 Membership Functions of theVarious Age Groups
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65 90 - x(base value)

age A(x) = 0.7\young & 0.3\middle-aged

Consider that if jc=30, the value of the linguistic variable "age" is then A(x) =

0.7\young &0.3\rniddle-aged, which means that for jr=30, thelinguistic variable A has the

value "young" with a membership of 0.7 and thevalue "middle-aged" with amembership

of 0.2.

Once we have captured information in terms of linguistic variables, we can then use

fuzzy logic to describe the relationship among such variables. For instance, a rule may

existwhich states: IF A is young THEN P is energetic, where P is another linguistic vari

able that stands for a person's physical condition and takes values from the set [inactive,

energetic). Using fuzzy logic terminology, thisrule can be expressed as:

MenergeticV' ) =Hyoungv^)*

The concept is depicted in Figure4.6.



Chapter 4 A Self-Learning Fuzzy InferenceSystem

^energeticv) "~ Myoungv^)

m& ;- i
25 a 40

A(x0) = 0.7\young1
Age

Figure 4.6 Example of a Fuzzy Logic Inference Rule

energetic

.^ Physical

P = 0.7\energetic
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This is actually a simple case of fuzzy inference with only one input (A) and one output

(P). More general cases of fuzzy inference will be introduced in the next section.

4.2.4 Fuzzy inference

Fuzzy inference is an "approximate reasoning" technique, based on fuzzy logic rules,

linguistic variables, and their membership functions. The concept will be illustrated

through examples that use the model of a polysilicon LPCVD process.

One example is determining the grain size (s) given the deposition temperature (Td)

and annealing temperature (Ta) of a process. These three parameters (Td, Ta, and s) should

befuzzified to linguistic variables by representing them through fuzzy sets and member

ship functions. For example, in LPCVD of polysilicon, a grain size of 180nm is fuzzified

using the membership functions depicted in Figure 4.7:
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• Grain Size (nm)

50 100 150 T200 300

Grain Size = {(small, 0), (medium, 0.3), (large, 0.2)}

Figure 4.7 Grain Size
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The following fuzzy rules for annealed polysilicon films were deduced from expen

knowledge:

1. IF the deposition temperature is low, THEN thegrain size is large.

2. IF the annealing temperature is high, THEN the grain size is large.

These rules can be summarized in a rule table as shown in Table 4.3:

Table 4.3 Fuzzy Rule Table

Grain Size Ta low Ta med Ta high

Td low large

Td med med

Td high small

Now consider a setof input values pairs Td, Ta. The fuzzified inputs can berepresented

by linguistic values through theirmembership values:

Td= 0.8\low&0.25\med;
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^ =0.45\med&0.5\high;

By applying the fuzzy rules ofTable 4.3!, the output membership values are:

wj(Td=low, Ta =high) = min(0.8,0.5) =0.5;

w2(Td =med, Ta =med) =min(0.25,0.45)=0.25.

Thus the output grain size s is:

s = 0.25Smed & 0.5Marge.

Finally, a"defuzzification" technique should be applied to obtain anumerical value of

an output linguistic variable after fuzzy inference. There are many ways to defuzzify an

output. A simple way is to do a"weighted average":

s =

Wj •A + w2 -B
wx+w2 (4"2)

where A and B are corresponding numerical values for s =large and s =med.

1. There are many ways other than the "minimum" operation to obtain the weights Wj and w2 from
the "AND" rules for multiple inputs. An alternative isto use the product ofmembership values of
each individual input (see Section 4.3).
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The entire inference algorithm is illustrated in Figure 4.8.

Vd H*

low

input 1 input 2

A
high large
A w;=min(.8,.5) =0.5 ^ A

^ZZ^—^.

weighted I T
average ^1^

I Gra
output "^ '

Grain Size

Grain Size

Figure 4.8 Fuzzy Inference

In a more general situation, different rule uses may lead to "conflicting"results, i.e.,

there maybetwo ormore different weights for one specific output value. The proper infer

ence procedure is to sum up the weights for the same output (linguistic) value and then

apply the above defuzzifying algorithm to obtain the numerical outputvalue.

In the next section, a more generic grain size prediction model based on input values

of (Td,Ta) will be presented. The rules for the inference system will be derived directly

from the existing experimental data, or"training data".
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4.3 Self-Learning LPCVD Models

4.3.1 Representation and inference of a general fuzzy system

A fuzzy inference system with 2 independent inputs {xj, x2) and one output y is con

sidered in this section. This system may be directly generalized to an «-input system [4.7].

The inference rules of such a 2-input fuzzy system are expressed as:

• Rule-{/J} IF a'j isAuandx2is A2j THEN yi&Wn,

where {/,/} (i=0,\,...,m,j=Q,\,...,/?) are rule numbers, A^ and ,4,. are membership functions

of the antecedent part, and w,, is a real number of the consequent part of the output value

ofv.

Without loss of generality, the membership functions An are expressed by triangles as

shown in Figure 4.9:

*1

al0 an .... ahm.x ax m

Figure 4.9 Membership Functions for xx

The expressions that correspond to the triangle membership functions are:
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Au-

when ax i_1<xl<ali;x\~au-i

aU+i-xi . • . («)—, when au<Xl<ali+1;
"l.i +i °ii

0, otherwise.

The expressions for A2j can beobtained simply by changing the subscript "1" to"2".

Here, when applying the Rule-{/,/}, we use a different version of the "AND" rule

applied in Section 4.2. Namely, we use the product ofAn and A2j, instead of their mini

mum value, in order to obtain the weight for output value w,y. The defuzzified predicted

output y thus can be derived by weighted average:

ij

In this case, the constraint for the sum of weights ^A1{ •A2j- =1 is the result of the

above definition of membership functions.

4.3.2 A self-tuning algorithm for model adaptation

Assume a set of new output datay*new is acquired from an experimental data-base,

that correspondsto input data {xik, x^} (k=\,..., q).The fuzzy inferencesystemwill learn

and fit these data by adjusting the parameters {au, a2j, w^, i=0, 1,..., m,j=Q, 1,..., n).

Namely, the system parameters {an, a2j, wy) will be decided based on a data set {xik, x^,

y*new>.

First, a cost function is first defined:
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r 1 r> (a new\

*=i

9

k = iv «./ y
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(4-5)

where Au and i427 are also functions ofxlk and x^ as shown in their definitions above. To

solve the ensuing optimization problem, thederivatives of £ need to be calculated, which

are shown as:

and,

where,

£.-i{h-yrW*2/
'j * = i

BE

da
11 y=o *=i v/ =/-i /

v/=;-l 'i = 0 it = 1

(4-6)

(4-7)

(4-8)
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u. =

'/-l

'i + i

and similarly,

V-i

V+i
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' "Ali'A2j
au-au-\

\ A • A

"hurl-tit

when flj i_i<x1 £au\

when au<Xl<ahi +1:

0, otherwise.

U-Ali-l)'A2j
a .La ' When flU-i<xi*flH;

1/ Mi,/-i

0,

^l.i +i —tfii

0,

otherwise.

when <!,.<*! £<iu+1;

otherwise.

< -AWA2j
a2j-ali-\

A\i'A2j
Q2J+l-a2j

0,

when ai,_ j <x2 < a2A

when a2j<x2<aXj+x.

otherwise.

^i/-(^^-i)
fl2y-fl2./-l

0,

a2,j*l'ay
0,

when a2 ._2<*2<a2.;

otherwise.

when a2y<*2-fl2,/+i;

otherwise.
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(4-9)

(4-10)

(4-11)

(4-12)

(4-13)

(4-14)
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The constraints of those parameters are:

(4-15)

fl20^21^ ^a2n'

There are many optimization techniques available to solve this problem. The BCAM

system's non-linear variable metric constraint optimization packageHanpal [4.8][4.9] is

used to obtain the (m + 1) x (n + 1) +q parameters {alh a2j, wy).

4.3.3 Simulation results for grain size prediction

The 12 data points in Figure 4.10 are past experimental result of X-ray-measured aver

age grain size of phosphorus-doped LPCVD polysilicon films. The first 9 representing

date points are used as training data to derive 9=3x3 rules for the inference system (i.e.

m=n=2, see previous section). By applying the fuzzy inference algorithm illustrated in

Section 4.3.1, the system interpolates all the data points for a 2-dimensional region of

input space (Td, Ta), as shown by the curves in Figure 4.10(a).
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Figure 4.10 X-ray Grain Size versus Annealing and Deposition Temperatures (LPCVD)

The remaining 3 data points are newly introduced data and the system tries to best fit

all the 12 data points by optimizing the cost function as defined in Eq. (4-5). Note that

while the number of rules does not change, the membership functions are modified by

changing the parameters {a 1/, a2j) and the corresponding output parameters n>y (ij =0,1,2

in this case). The total number of optimized parameters is 15 (= m+n+2+(m+\)x(n+\)).

The result is shown in Figure 4.10(b), where the curves are now fitting all of the 12 points.

For this example, the cost function had the initial value of 1.44xl05 and was reduced to

1.18xl04 in 28 iterations, as shown in Figure 4.11.
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Finally, the membership functions before and after the optimization process for repre

senting the two input linguistic variables (Td, Ta) are shown in Figure 4.12. The numerical

rules are shown below:

• 9 training data points:

'

580

«i = [au] = 600 a

<

64Q

170 270 290~
w = [w.j\ = 103 170 205

.50 70 90_

3 ne^ivdata points:

= [«„] =
900

950

1000

where i,j = 1,2,3.

(4-16)
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[*i,*2,;ynewJ =[[xlk], [x2k], [y™*])
620 900 75

620 950 95

620 1000 100

where k=l,2,3.

Chapter4

(4-17)

where the unit for temperature parameters a^ 02j ^d *u* x2k *s °C> and the unit for the

grain size parameter wy and the desirable output data points 3>*new is nm.

After the solution of the optimization problem, the 15 new parameters are:

a, =

w =

579.8 915.4

598.0 «2 = 947.4

_624.5_ _999.2

170.8 270.0 291.0

108.5 176.8 213.5 ♦

57.4 72.5 84.6

where i,j = 1,2,3.

as plotted in the lower parts of Figure 4.12(a) and Figure 4.12(b).

(4-18)
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Figure 4.12 Membership FunctionsBefore and After Learning

Our results show that the fuzzy logic based inference system can represent qualitative

knowledge well. Also, it can adaptively adjust the system parameters to accommodate

new data.

The combined quantitative and qualitative models can be used for LPCVD recipe gen

eration and process control. The knowledge base may be further modified and enhanced

after taking into account actual processresponses. (See Figure4.13).
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Outcomes

(Recipes)

4.4 Summary

Due to the large number of process variables and their complex interactions in a semi

conductor manufacturing environment, the pertinent expert knowledge is mostly qualita

tive and incomplete. To build a computer-aided integrated system for future intelligent

manufacturing applications, fuzzy logic based qualitative models can be used to capture

qualitative human knowledge in a computer software simulation system. This fuzzy infer

ence system can be self-learning to accommodate updated expert knowledge.
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According to fuzzy logic methodology, the process parameters are first fuzzified into

linguistic variables before the inference rules are applied. These linguistic values of the

process parametersare then mapped to appropriate linguistic values of the output parame

ters. The mapping is implemented as a series of fuzzy set operations. The proper input-

output relationships arecaptured by means of designing the appropriate membership func

tions and inference rules through the existing training data. The output linguistic values

obtained from the fuzzy inference system are finally defuzzified into conventional numer

ical values.

When the new process data is obtained, the system automatically adjusts the member

ship functions and the corresponding fuzzy rule parameters to best fit the new data. This

self-learning algorithm has great potential in applications on real-time process control in a

computer-aided manufacturing environment.

Often, however, experimental data is scarce and noisy. In the next chapter, we will dis

cuss the application of formal statistics in dealing with such data before we use them for

the creation of a fuzzy inference system.
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Chapter 5 Using Categorical Analysis To Design A Fuzzy

Inference System

In this chapter wepropose asystematic method for designing a fuzzy inference system

through statistical data pre-processing. This approach is appropriate in modeling the qual

itative aspects of a semiconductor manufacturing process, when extensive training data

are often limited or difficult to collect due to the high cost of conducting experiments. In

view of the limited number of data sets from adesigned experiment, this system employs

the proper statistical analysis in order to highlight the significant effects. Simple fuzzy

inference rules are then created to capture input-output relationships and to initialize the

corresponding membership functions. The output process variable can be continuous or

categorical, and the fuzzy system can be further tuned to accommodate additional experi

mental data when they become available.

As shown in Chapter 4, in a fuzzy inference modeling system the process parameters

become linguistic variables and the qualitative relationships between input and output

parameters are represented by fuzzy inference rules. Such a systemcan be adapted by tun

ing the fuzzy membership functions to accommodate newly acquired experimental data.

However, the initial design of such a system requires the determination of the number of

rules as well as the number and initial form of the membership functions. This problem is

complicated by the large number of input factors, and by the high cost of acquiring exten

sive experimental data in a semiconductor manufacturing environment.

To solve this problem, a statistical data pre-processing method based on linear and
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logistic regression analysis can be used (see Chapter 2). Starting from the experimental

data obtained from statistically designed experiments, statistical analysis can screen out

insignificant input variables for a specific output response, thus reducing the complexity

of the problem. At the same time, the rules and initial membership functions of the infer

ence system can be extracted from theresults of thestatistical analysis. Thesystem can be

subsequently refined and adapted tonewly acquired experimental data byfurther tuning its

membership functions.

5.1 Knowledge Extraction from Designed Experiments

Asshown in Section 2.4, the following table gives anexample ofdata from a designed

experiment [5.1] for a dry develop process1.

Table 5.1 A Dry Develop Process

Power

(w)
Pressure

(P)

Oxygen Flow

(0?)
roughness

{smooth, fair, rough, roughest}
mouse bites

{good, fair, poor, worst)
1 -1 1 roughest poor

-1 0 -1 fair fan-

0 0 0 fair poor

... ... ... ... ...

-1 -1 0 smooth good
-1 1 -1 fair fan-

0 -1 -1 rough worst

0 0 0 rough fair

Starting from the datatable obtained from the 3-level factorial design shown, linear

regression analysis is used for interval variables (e.g. theaverage line width Iw) and logis

tic regression analysis is applied for categorical variables (e.g. mouse bites). Only the sta-

1. Input values have been normalized.
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tistically significant input(s) are then considered for building the fuzzy inference system

for each output variable. To simplify the explanation of such a fuzzy system building pro

cess, weconsider first one input variable for each output response. In this way, we will

illustrate our fuzzy system design method through the examples ofmodeling acontinuous

output variable (e.g. line-width Iw) vs. an input variable (e.g. power w), and acategorical

output variable (e.g. mouse bites) vs. an input variable (e.g. pressure p). Multi-input situa

tions will be discussed afterwards.

Assume that the linear fitting curve for Iw vs. w from the linear regression analysis is

as shown in Figure 5.1,

a line-width

Figure 5.1 LinearRegression Model

A. Akwhere w}, w2 and w3 are the input settings (i.e. =-1,0, 1in this case), and l}, /2 and /3

are their corresponding output values predicted by the linear regression model of the form

shown in Eq. (2-1) in Chapter 2. The model parameters are extracted from the data using

themethod of least squares [5.1]. The proposed fuzzy rules are then:

• IF w=w( THEN Iw =Iwj. (/wt are fuzzified linguistic values corresponding to ?).

The corresponding membership functions are chosen in the simplest linear form, or the tri

angular shapes, as shown in Figure 5.2:
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i

1 0

> /&*y/ lw3

wx w2 w3 w

Iw: Fuzzy linguistic variable

/W|-: Fuzzy linguistic values

(i=l,2,3 in this case)

Figure 5.2 Initial Input Membership Functions for Continuous Output Variables

For the categorical variable mouse bites, on the other hand, the initial membership

functions of p are derived from the logistic regression probability functions (Figure 5.3).

The functions were discussed in detail in Chapter 2.

Figure 5.3 Initial Input Membership Functions for Categorical Output Variables

Then the corresponding fuzzy rules would be:

• IFP =Po> THEN mouse bites =class mwith membership |H/(p0), for /=1,2,...,m.

From Eqs. (2-2), (2-3) and (2-4) in Chapter 2, amaximum value for each probability

function can be derived for when / = 2,..., m-\:
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max p.(or.) =p.(jrj>) =tanhf ' A,"1J,
4 (5-1)

when bxf =- ' "1 ,

where*is the input variable1. It is easy to see that these probability functions p.(x;) are

symmetrical around xf :

p{(xf+x) =Pi(xf-x) , (5-2)

Thus, the fuzzy rules for categorical variables can also be written as:

IF X = xf , THEN Y = Yif , (5-3)

where X and Y are the (fuzzified) input and output linguistic variables, and Yt stands for

linguistic/categorical value "class f'). These pi (*,) will be the initial membership func

tions for categorical variable such as mouse bites. For the boundary cases i = 1 and j = m

cases, the fuzzy rules become:

IF X = smallest, THEN Y = YY , (5-4)

and,

IF X = /argert , THEN Y = Ym . (5-5)

Hence, an initial fuzzy inference system can be automatically created from the values

of the input recipe settings such as w andp to infer the output parameter values, such as Iw

1.The discussion in this section can be easily generalized to multi-input case by substitutingx for
the input vector x. and b x for bT»x.
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and mouse bites. To make the system self-learning to accommodate newly acquired data,

however, we need to define a "cost function" which measures the difference between the

experimental data and the model predicted data, as indicated in Chapter 4. Since such a

cost function would depend on the membership parameters, an optimization can be carried

out to tune the membership functions in the process of self-learning.

For an interval (continuous) variable such as line-width, the definition of a cost func

tion is the same as that in Chapter 4 [see Eq. (4-5)], where a self-learning fuzzy inference

system was built for the continuous output variables of the semiconductor process. For a

categorical output such as mouse bites, the corresponding cost function would still be of

the same form as for the interval variable:

However, instead of numerical values, the model predicted output y;- and the measured

experimental data y™eas will be two sets of probability values, corresponding to the cate

gory values / = 1,2,..., m, from the fuzzy inference and from the new experimental data,

respectively.

To optimize the system and to accommodate newly acquired experimental data, the

membership parameters will be changed to minimize the cost function. These adjustable

parameters are the centers and widths of triangular membership functions for the interval/

continuous variables, and likewise a-% and bjof the exponential membership functions for

the categorical variables.
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In Chapter 2, we discussed in detail how to screen out the insignificant input variables

based on their corresponding effective test in the statistical regression analysis. After

applying this statistical screening [5.2], each output variable is modelled only through the

few statistically significant input variables. The corresponding linear regression fitting

lines and the logistic regression probability functions can be used to define the initial

membership functions of the fuzzy inference system.

input

Figure 5.4 Membership Functions

In summary, as shown in Figure 5.4, the membership functions for line-width are designed

with simple triangular shapes, and they are extracted from the linear regression model. For

the ordinal variable mouse bites, however, the membership functions have the exponential

forms used in the logistic regression model. Such an inference system can incorporate

both interval and categorical process responses in the same adaptive set of fuzzy rules.

This system will now be described in some detail.

5.2 The Initial Fuzzy System

From the statistical regression analysis, the following rule table is deduced for the data
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in Table 5.1

Using Categorical Analysis ToDesign AFuzzy Inference System

Table 5.2 Statistical Pre-processing

w P o7
Iw - (T 0

rough + 0+ 0

bite + 0+ 0

Chapter 5

where "+" means output increases when input increases, "-" means output decreases

when input increases, and "0" means the output does not show significant dependence on

the input, as we explained in Chapter 2. The symbols "0+" and "0"" denote slight trends

much smaller than the ones denoted by "+" and "-".

After the fuzzy rules are extracted, their corresponding initial membership functions

should also bechosen. These membership functions arequite different for interval and for

categorical output variables.

5.2.1 Fuzzy inference for interval output variables

Forinterval variables such as Iw, thesimple triangular membership functions are used.

The output values corresponding to the peaks of membership functions areobtained from

the linear regression line fitting for singular input variable (Figure 5.5). After the initial

rules and membership functions are created, the inference procedure will be the same as

those in Chapter 4. Figure 5.6 shows the result of such an inference process when both

input variables, power w and pressurep, are considered.
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Figure 5.5 Linear Regression Fitting
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Figure 5.6 Line-width vs. w for Different p
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As shown in these figures, line-width depends to alarge extent on w and is only

slightly dependent on p.
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5.2.2 Fuzzy inference for categorical output variables

For the categorical variables roughness and mouse bites, the probability functions

from the logistic regression model are used asthe initial membership functions, with their

corresponding outputvalues to be the original categorical values. Figure 5.7 shows the

probability functions of outputmouse-bite versus input w, after applying the logistic

regression analysis.

(a) Logistic fitting curves of cumulative probability

1 0 1

(b) Probability and initial membership functions

a1 =(-3.74, -1.38, 0.63); fc = -4.16

Figure 5.7 Mouse Bites vs. w

w

Even though these curves are the sameas those in Chapter 2, in the context of the

fuzzy inference system they take a new meaning. Namely, instead ofprobability functions,

they now play the role of the initial membership functions. These membership functions
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can be used for inference and can be tuned later to accommodate new data. Similarly, Fig

ure 5.8 plots the initial membership functions of roughness for all three input variables.

Guided by the initial statistical analysis, the effect of the 02 flow rate isinsignificant while

the effect of the pressure p is less significant than that of power w.
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(a) roughness vs. w

(b) roughness vs. p

Figure 5.8 Roughness vs. w, p and 02 Flow Rate

roughest

1.5

Chapter 5

w

O,

After creating the initial fuzzy inference system, we can apply the fuzzy inference

mechanism described in Chapter 4 to derive the output probabilities for roughness and

mouse biteswith different inputvalues of power w and pressure p. The output probability

values against input w at various values of p are plotted in Figure 5.9 and Figure 5.10,
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respectively for roughness and mouse bites.

Prob(roughness) rougher
1

0

0 .X XZX^E.
1 "

'"x xt p=1.2

-1 0

Figure 5.9 Roughness vs. w for Different Values ofp

Prob(mouse-bite) worse •

Figure 5.10 Mouse Bites vs. w for Different Values ofp

73

w
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Note that the curves in Figure 5.9 and Figure 5.10 can be interpretedas probability values

as well as the membership values of the output variable, as they are the results from the

fuzzy inference process for different input value combinations for w and p.

5.3 Model Adaptation

To take full advantage of a fuzzy inference system, a self-learning algorithm similar as

the one described in Chapter 4 can be used for model adaptation. When applying such a

fuzzy inference system designed through categorical data analysis, the shape of the mem

bership functions can be tuned byminimizing the cost function shown in Eq. (5-6).

Figure 5.11 shows the results from such amembership tuning process. We used two

different sets (16 data sets for each) ofdata extracted from the original experiment as our

"new" experiment data to tune the system membership parameters. Since the system

parameters before tuning are principally based on existing knowledge on aspecific pro

cess, they should not be changed drastically just to accommodate newly acquired experi

mental data. Therefore, amodified formula is used in obtaining the results showing in this

section.

^i£(^^^!1p£(v^ (5-7)

where yy is the system output prior to the tuning. The modification consists of adding a

weighted term to constrain the system not moving too far away from the original state. By

minimizing the cost function E, we obtain the updated fuzzy inference system, as shown
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in Figure 5.11.

Prob(mouse-bite)

C—r

Prob(mouse-bite)

worse

worse

Figure 5.11 Mouse Bite vs. w for Different/? (Fitted to Data Set A and to Data Set B)
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For data set A, we see that the 16 new data points introduced agree quite well with the

original system, thus the membership functions show only minor changes. For data set B,
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however, the middle two categories ("fair" and "poor") are now merged, indicating a

rather drastic change during the learning. The cost function vs. the number of iterations in

the optimization process are plotted in Figure 4.11. The same optimization tool is

employed as in Chapter 4 [5.3][5.4].
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Figure 5.12 Cost Function vs. the Number of Iteration (with data set A and data set B)

Updating the fuzzy model parameters for interval output variables, such as line-width,

is the same as shown in Chapter 4. Therefore, the complete system has the additional

advantage of integrating interval and categorical output variables.
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5.4 A Qualitative Modeling Framework

An object-oriented framework is being built to facilitate both inference system design

and system usage. As shown in Figure5.13, in the system usage period, the fuzzy mem

bership functions will be tuned to accommodate newly acquired experimental data. Such a

membership tuning technique is a direct generalization from the methodology in Chapter

4, where only the continuous output variables wereconsidered. A more detailed software

implementation of such a framework isdiscussed in the next chapter.

r
Designed

Experiment

K.

' Newly Acquired *

^
ExperimentalData

1
Membership

Tuning

Recipe Generation ^-

User Specifications —

System Setup

System Update

r

Statistical

Data Pre

processing

Fuzzy
Rules

Memb.
Funct

^ Knowledge Base

System Usage

Fuzzy Inference

>i

Model Outputs n Output Specs

Figure 5.13 Creating, Tuning and Using the Fuzzy Inference System
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5.5 Summary

Byemploying formal statistical data preprocessing, asystematic approach iscreated to

extract fuzzy rules and membership functions toinitiate a fuzzy inference system. The sta

tistical regression analysis simplifies the input-output relationships and identifies signifi

cant effects in view of experimental noise. This system can accommodate both interval/

continuous and categorical/discrete process variables in an integrated format. In addition,

it is possible to tune the system to accommodate newly acquired experimental data in a

self-learning fashion.

This systematic data pre-processing procedure offers not only better membership

functions, but also better fuzzy inference rules extracted from the designed experiments.

This is because the system effectively screens out the experimental noise using formal sta

tistical tests. This fuzzy system design approach is well suited to a semiconductor manu

facturing environment where process variability and measurement resolution are often

comparable to the quantity being monitored.
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Chapter 6 Software Implementation

In today's semiconductor manufacturing field, software is becoming more and more

important both for design and processing. For the target of computer integration of semi

conductor manufacturing, we need to develop user-friendly software systemto model the

semiconductor processing equipment. This is a major objective of the Berkeley Computer

Integrated Manufacturing (BCAM) System [6.1][6.2].

The BCAM software system is a framework built to facilitate the experimentation

with various CAM applications. It features an interactive userinterface thatoperates in the

UNIX X-Window environment and interfaces with various commercial statistical pack

ages and a relational database. The system currently supports real-rime monitoring, real

time SPC, diagnosis, recipe generation, equipment modeling, etc. Most of the existing

models, however, cannotcapture the qualitative features of a process.

To adequately model a manufacturing sequence, one has to consider the important

qualitative aspects of the process. Only a combination of the qualitative and quantitative

modeling approaches can produce an effective modeling system which meets modern

semiconductormanufacturing requirements.

This chapter will summarize the prototype software implementation of the qualitative

modeling approaches presented in previous chapters. They are currently stand-alone soft

ware systems in the user account: raymond@radon.eecs.berkeley.edu:~raymondl. The

final goal, however, is to incorporate these software programs into the BCAM system.
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6.1 Self-Learning Fuzzy System — Linear Membership Functions

This software package is written in C language and named "selfJearn". The source

files are in the directory: ~raymond/programs/learning_demo/. It is a direct software

implementation ofalgorithms developed in Chapter 4. It also interacts with the Hanpal

optimizer package, which also serves as the optimizer for the whole BCAM system. Fig

ure 6.1 isthe flowchart ofthe system, where each block represents amajor program which

carries out the fuzzy inference procedures. More details are given inthe source code docu

mentation and in the README file in the directory.

poly_grain_size. in
poly_line_width.in

input data files

learning.c

main program

iteration

Hanpal optimizer

memb.c
membership functions

inferences

inference rules

functc
cost function definition

draw.c

plotting

Figure 6.1 Flowchart for Simple Self-Learning Fuzzy System ("selfjearn")

There are two types of input files. Filepolyjgrain_size.in contains the information for

the grain size prediction model discussed in Chapter 4, while polyJine_width.in is for the

numerical output (e.g. polysilicon line width Iw) inference model designed with linear



82 Software Implementation Chapter6

regression analysis (see Chapter 5). All the data for training and tuning the system are

stored in the same input file. If applied to a real world problem, however, the tumng data

should come from the on-line machine for model adaptation.

6.2 Improved User Interface with C++ and X-Window Programming

These softwarepackages are writtenin C++ anduse the X-toolkit. The source files are

in the two directories: ~raymond/programs/inference_demo_c++/ and ~raymond/pro-

grams/inference_demo_Xt/. These two packages can only do inference, but they are more

flexible and user friendly. The systems accept multiple input factors and multiple output

variables. They also allow users to experiment with different shapes of membership func

tions, such as linear versus exponential. The flowcharts for these two systems are shown in

Figure 6.2 and Figure 6.3, respectively.

rule.in

input data files

Draw.in

plotting specs

Initialize.cc
read in the input data file

I
ruleClass.cc

main program

I
Draw.cc, DrawPoint.cc

plotting results

Inferencexc

fuzzy inference

I
MemberRange.ee

membership func.

Figure 6.2 Flowchart for ~lprogramslinference_demo_c++1.
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There are two class objects defined in these two packages, i.e. class ruleBase, which

includes all the fuzzy rules and membership functions, and class drawData, which con

tains the plotting specs for drawing the inference relationships between the model output

variable and input factors. The package "inference_demo_Xt" is similar to

"inference_demo_c++", except it has an X-window interface.

rule.in

input data files

XtDraw.cc

Plotting Widget
plotting results

I
Inference.cc

Fuzzy inference

Initialize.ee
read in the input data file

XtRules.ee

Rule Base Widget
may change rule base

MemberRange.ee

membership func.

Figure 6.3 Flowchart for ~lprogramslinference_demo_Xtl.

ruleClass.cc

main program

I
XtTopLevelcc

Top Level Widget
choose model types

6.3 Fuzzy System Designed with Categorical Data Analysis

One of the main contributions of this project is the combination of fuzzy inference sys

tem with the categorical regression analysis, as explained in Chapter 5. There are three

steps to realize an adaptive (or self-learning) fuzzy inference system designed with the

logit regression model. First, the logistic regression analysis is carried out through the

JMP software on Macintosh. The inference part is implemented in the software package
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-raymondlprogramsllogitjtemol and lastly, the model adaptation programs are in "ray

mondlprogramsllogitJearningjiemol. This software package is named "logitJearn" and

its flowcharts are in Figure 6.4, which uses themouse bites model as an example.

.1dotaldata.in

input data files

.1dotaldraw.bite

model parameters

(from logistic regression)

functc
cost function definition

JsrclinputData.cc
read in the input data file

initialize the rule base

I
Jsrcldraw.ee

main program
fuzzy inference
plotting results

Hanpal optimizer

"logit_demo"

.lsrclmembership.ee
membership func.

"IogitJearning_demo'

biiel.data

new data sets

Figure 6.4 Self-Learning Fuzzy System Designed with Logistic Regression

After taking input data obtained from logistic regression analysis, the initial inference

system will be created and can be used to predict process output responses for any input

setting. When new data sets are added, "logit_learning_demo" will tune the membership

parameters through Hanpal optimizer and feed the parameters after tuning back to

"logit_demo" for re-run. Since the process output responses for this system are categorical

ordinal variables such asmouse bites or surface roughness, the model outputs are proba

bility distributions for those ordinal variables falling into different categories, asdiscussed

in the textand shown in the figures in Chapter 5.
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6.4 Summary

This chapter describes the general program structures for the software packages from

which most of the results in the previous chapters are obtained. As Table 6.1 shows, we

mainly presented three types ofmodeling systems, mostly discussed in Chapter 4 and

Chapter 5.

Table 6.1 Software Packages for Different Process Output Variables

Package
Name

Process

Output System Design System
Inference

Model

Adaptation

Self_Learn Grain Size human designated learning_demol learningjlemof

SelfJLeam Line-width statistical pre
processing

learningjlemof learningjlemof

LogitJLearn Mouse Bites statistical pre
processing

logitjlemol logitJearning^
demo/

More detailed programming informations are given in the Appendix in the disserta

tion, the README files in each software package, and comments included in individual

input data files and program files. Further improvements ofthe software implementations

arediscussed in the nextchapter.
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Chapter 7 Conclusions And Future Work

We have presented a systematic methodology as well as an implementation of the

algorithm that takes advantage of the qualitativeaspectsof the semiconductor manufactur

ing process. This work offers a novel approach to characterize and apply the important,

yet qualitative knowledge of a process. Within our modeling framework, categorical pro

cess output responses can be modeled along with quantitative responses. The conventional

application of statistical process control can be generalized for those qualitative process

variables. The main modeling approach, however, is a fuzzy inference system which cap

tures the human knowledge on the qualitative aspects of a process. Such a system can be

designed with the logistical regression analysis with categorical data, used with the fuzzy

logic base inference rules, and updated with a self-learning scheme by tuning the member

ship functions. Some actual semiconductor processes arechosen as test vehicles for such a

modeling framework, including the Low Pressure Chemical Vapor Deposition (LPCVD)

process and the Plasma Dry Etching process. The results show a promising future for such

a qualitative modeling methodology.

Our final goal is to establish, within the Berkeley Computer-Aided Manufacturing

(BCAM) system [7.1][7.2], a qualitative modeling module which extracts automatically

qualitative knowledge from designed experiments and updates the knowledge database for

newly acquired data. Such a module can be used for equipment and process simulation,

recipe generation, diagnosis, and control. Some discussions on the possible future work

based on this Ph.D. project are presented in this chapter.
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7.1 Possible Future Projects

7.1.1 Qualitative Knowledge Baseand Data Base

Additional qualitative models can be developed for more equipment and processes in

the future. When the fuzzy inference system becomes a BCAM module, it should share

the same database, collected from real processes, with other modules running within the

BCAM system [7.2]. There could be also adatabase for the fuzzy rules and other qualita

tive knowledge, available to the BCAM users. This will help the user to build new qualita

tive models for some specific processes orupdate the existing models.

7.1.2 Fuzzy Recipe Generation

The qualitative inference module can lead toa fuzzy recipe generation module, where

a manufacturing process recipe for input-settings will be generated from user specifica

tions of outputs [7.3]. Those outputs can bequalitative as well as quantitative in nature.

This recipe generation procedure isa reverse inference problem, since the manufacturing

process outputs (user specs) become the inputs of the fuzzy system, therefore both expo

nential shape (initialized from logistic regression) and triangular shape (initialized from

linear regression) ofmembership functions are tobeconsidered together at the same time.

In order to create appropriate membership functions, however, it isexpected to require a

greatamount of process data to build a reliable recipemodel.

7.1.3 Optimization Algorithm

Our results show that the fuzzy logic based inference system can well represent quali

tative knowledge and adaptively adjust the system parameters to fit new data. In a real-

world problem, however, the input variables are likely inter-dependent, and the member-
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ship tuning process might become too complicated to solve with a generic optimizer such

as the Hanpal used in this work [7.4][7.5]. Therefore, more investigation may be carried

out to find the best optimization tools for our fuzzy inference system. Some possible

approaches might include the Neural Network [7.6][7.7] and/or Genetic Algorithm

[7.8][7.9] methods.

7.1.4 Software Integration

As shown inTable 6.1, the current version ofsoftware implementation arestand-alone.

In order to integrate the software packages discussed in Chapter 6 under a single system

atic module framework, several improvements should be made [7.2][7.10]:

• to run the categorical analysis as well as the linear regression analysis in the UNIX

environment, then the results could automatically be used to create the initial fuzzy

inference system.

• to upgrade theHanpal optimizer with object-oriented C++ programming, so themodel

adaptation can be integrated with therestof thesystem.

• To integrate the fuzzy inference system with the rest of the BCAM system, including

sharing the same data base, libraryfunction, andX-window interface.

And finally, to apply such a qualitative modeling methodology in the industry, a great

amount of work on testing and reliability investigations ought to be carried out, which

requires industry cooperation with the supply ofadditional process data and expertise.
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Appendix User's Guide for Software Packages

There are five software packages developed during this project. The computer user

account: raymond@radon.eecs.berkeley.edu:~raymandlprogramsl, contains a sub-direc

tory of -raymond/programs/ that includes a setof programs. There are README files in

each sub-directory which describes the purpose of the package and the steps toexecute the

programs. There are also aREAD.fileJist file for each package which lists the files in that

package. The name of each package is similar to that of the sub-directory that contains it

Some of the general notations for all packages are listed as follows:

• The first part ofall input files contains the values read by the program. The second part

contains the corresponding variable names in the programs for these input values.

• In each group ofdata values, the first line indicates the name for the variable (a charac

ter string), the second line is the number of values for that variable to be entered (the

length of a data array). What follows is the value of eachvariable.

• Variable names starting or ending with min, max, step in series are usually specs for

plotting, i.e. number ofsteps within the range [min_yalue, max_value\.

• Within the programs, the definition and the explanation ofavariable is given in the

header files, where the variable is first declared.

• Most output data files are plotting files for the UNIX command xgraph. Most of the

figures in this dissertation were imported from these xgraph plots.
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A.l Simple Fuzzy Inference and Adaptation — learningjiemo
("selfjearn")

This package is a simple self-learning fuzzy inference system. Here "simple" means

that the membership functions are triangular. It was used to produce the results discussed

in Chapter 4 (grain size model) and in Chapter 5 (line width model), using the two input

files: poly_grain_size.in and polyJinejvidthJn, respectively. For the grain size model, the

system reads in the experimental data sets directly from theinput files, and input values of

these experimental data sets are transformed directly to the membership parameters. For

the line width model, however, the input files contain results from the linear regression

analysis of the original experimental data, which are used to build the triangular member

ship functions. After building the membership functions, the system treats these two cases

identically for model inference and model adaptation.

The adaptation or self-learning part of the program is done with the Hanpal optimizer.

The Makefile first makes the object ftiefunct.o and the Hanpal library function libfunct.a

by combining the cost function definition funct.c with the rest of the Hanpal optimizer

package in userdirectory: ~spanos/prometheusl. The rest of the programs are mainly used

for fuzzy inference, and for plotting theresults withtheUNIX xgraph utility. The two pro

grams, random.c and systems.c, are testing programs created in the model development

process for verifying the inference algorithm, and they arenot needed during normal exe

cution. The file memb.cevaluates the membership function values and can be treated as

part of the main inference program: inference.c, which carries out the fuzzy inference

operation. The file drawjjoint.c is for drawing points on xgraph figures with different

styles, and should be treated as part of the main plotting program draw.c, which takes the
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plotting specs (input/output names, plotting ranges for inputs, plotting points for each

curve, etc.) from the input files grain_size.in or linearjegression.in. And finally, the pro

gram learning.c serves as the main program for reading in the input data, organizing dif

ferent subroutine programsand plotting outputs. The relevant output files are:

• optim.out — log file from the Hanpal optimization process.

• hanpal.inJ, hanpal.in2 — input parameter files for Hanpal optimizer.

• hanpaLdata, learning.output — output parameters from Hanpal.

• hanpal.plot — cost function versus the number of iteration, e.g. Figure 4.11.

• membership.plot—membership function plots before and after optimization, e.g. Fig

ure 4.12.

• systems.plot — system inference results plots, e.g. Figure 4.10.

A.2 Fuzzy Inference Systems Designed with Logistic Regression —
logitjiemo ("logitjearn")

The package contains a fuzzy inference system with membership functions designed

from logistic regression analysis for categorical data, such as mouse bites (see Chapter 5).

The programs are written in C++ object-oriented programming and are structured in sev

eral sub-directories: binl for all the object file and executable files (binary files), includel

for head files, srcl for all the C++ sourcecode, data/ for the input data files and outputi for

all the output files that can be plotted using xgraph.

In addition to the usual README, READ.fileJist and Makefile files in this package,
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there is an alias file called Runfile. It is designed for making the running of this software

package easier. The notes in the README file explain the alias names used for running

this softwarewith Runfile. For instance, "rund dr22" is analias name forUNIX shell com

mand "make -f~raymondlprograms/logitjlemofRunfile dr22"\ and then dr22 is an object

defined in that Runfile file.

There are two types of input files: data.in is the original experimental data table and

draw.<out> is the drawing specs and the membership parameters resulted from logistic

(as well as linear) regression analysis, where <out> is the name of process output vari

able, such as mouse bites. Another input file in that sub-directory data! is called

draw.<out>Jearning, which contains membership functions resulting from tuning with

the Hanpal optimizer (see Section A.3).

There are also two kinds of output plotting files: <datajableJr>.<output>_<input>

contains the experimental data sets read in from the input file data.in, and

<datajableJt>-<output>_<input> are the results from the model inference, where

<datajablejt> stands for the label of the experimental data table (only data table #2 is

explained is this dissertation), <output> is the process output name (e.g. bite stands for

mouse bites), and <input> is theprocess input name (e.g. w stand for thepower w). Those

output plotting files are shown as Figure 5.5 to Figure 5.11 in Chapter 5. Note that this

system also includes an inference model for the numerical process output line-width. This

demonstrates that wecan incorporate both numerical and categorical output models in the

same fuzzy inference system.
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A.3 Model Adaptation for the Fuzzy Inference Systems Designed with
Logistic Regression — logitJearningjiemo ("logitJearn")

This software package is complementary to the package "logitjlemo", i.e. it tunes the

membership functions for the fuzzy inference system "logitjlemo" through minimizing a

cost function with the Hanpal optimizer. The cost function isdefined infunct.c, and fol

lows Eq. (5-7) in Section 5.3. The input file <out>.data (e.g. bite.data) contains the initial

membership parameters and the new experimental data sets with which the system isto be

optimized. The output membership parameters after tuning are written in the file called

draw.<out>Jearning, which will be copied in the input sub-directory for the software

package "logitjlemo" for re-running the inference model with the tuned membership

functions. Another output file, hanpal.plot, is the plotting file for the cost function values

versus iteration numbers (e.g. Figure 4.11).

There are two equivalent methods to compare the model results with the experimental

data shown as follows.

Suppose there are three model probabilities p, q, r, corresponding to the three catego

ries P, Q, R of a process output categorical variable, and p+q+r = 1. And the newly

acquired data sets are results are from k+m+n experimental runswith k, m, n times falling

in categories P,Q,R, respectively. Then we may have two methods in constructing the

cost functions. We can, for example, make the experimental probability data foreach cate

gory based on only one experimental run, i.e. either lor 0, depending whether or not the

output falls into that specific category. Therefore, the first choice of cost function would be

in the following format:
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• Ej= (p- if +(q- 0)2 + (r -0)2 —assume the first run falls in category P,

+ (p -0)2 + (q-lf + (r- Of — and another run falls in Q,

+ —and so on

=k(p-lf + (m +n)p2 +m(q-lf +(n +k)q2 +n(r-lf +(k +m)r2

=(k+m+n)(p2 + q2 + r2) -2(kp +mq +nr) + (k +m+ n)

On the other hand, since the model prediction of the probability values are numbers

between [0,1] for each category, we may also group together the experimental data having

the same input setting in order to have an input probability value between 0 and 1. There

fore, we may have an alternative definition of the cost function with the experimental

probability values are kl(k+m+n), m/(k+m+n), nf(k+m+n), for categories P, Q, R, respec

tively:

♦ E2= /p- kl(k+m+n)J2 +lq -m/(k+m+n)J2 +\r -nl(k+m+n)I2

= (p2 +q2 +r2)-2(kp +mq +nr)l(k+m+n) +(1c2 +m2 +n2)l(k+m+nf

Therefore, the difference between Ej and E2:

Ejl(k+m+n) - E2 =I - (]? + m2 + n2)/(k+m+nf

-2(km + mn + nk)l(k+m+nf

isaconstant, which means that these two methods are equivalent in optimization with the

minimization of the cost function. For the convenience of programing, we choose the

method in Ej as our cost function.

To make the Hanpal optimizer effective and convergent, we have to introduce several
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constraints which reflect the properties ofthe membership functions initially derived from

logistic modeling. These constraints are explained in the forms ofinequality functions

defined in the cost function definition Glefunct.c and are listed below:

• Three membership parameters o^, a2, a3 are originally the three intercepts of logit

model (see Chapter 3 and Chapter 5), hence they should be sequential invalue:

amin<a1<a2<a3<amax

where the optimization range [0^^, a^] should be given bythe program user.

• The maximum value point for the two middle membership functions represent the two

linguistic values (mouse bites model) fair and poor. They should still remain within

the original input range after tuning [see equations (5-1) to (5-5) inChapter 5].

• The membership parameters Pshould not change sign during the optimization, since

that would imply areversion in the direction ofdependency between the input and out

put variables.

A.4 Simple Fuzzy Inference Systems with C++ Objected-Oriented
Programming — inference_demojc++

This software package is an upgraded version of the inference part of package

"learningjlemo", with C++ objected-oriented programming and flexibility for multiple

inputs and outputs. There are two kinds of C++ class objects. The first one, ruleBase, is

used for storing fuzzy rules and membership functions, and the other one, drawData, is

used for storing the plotting specs. Similarly, input file rule.in inputs fuzzy rules and mem

bership functions to the system, and another input file Draw.in inputs the specifications for
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plotting the inference results. Output plotting files are in the form of system.plot_<in>,

where <in> stands for the main process input variable (e.g. deposition temperature Td for

the grain size model). The membership functions canbe chosenby the usersto be linearor

exponential, specified in Draw.in.

A.5 Simple Fuzzy Inference Systems with X-window Interface —
inferencejlemoJit

This software package is an upgrade from the package "inferencejlemoj++", with

the addition of UNIX X-window toolkit programming (Athena Widgets). The default

input date file rule.in inputs the original fuzzy rules and membership functions, which are

editable through the X-window interface widgets when programs are inrunning. The plot

ting specs can also be typed in through those widgets dynamically. The user can use a

number of different types of membership functions for better simulation results.

There are three levels of interface widgets, implemented with programs

XtTopLevel.cc, XtRules.cc and XtDraw.cc, respectively. The top level widget specifies the

input/output names and the types ofmembership functions to be used (e.g. linear or expo

nential). The second level widget, or the rule table widget, specifies the rule base along

with the membership function parameters. Finally, the last level widget is for plotting the

model inference results.
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