Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A DATA-DRIVEN MULTIPROCESSOR
ARCHITECTURE FOR HIGH THROUGHPUT
DIGITAL SIGNAL PROCESSING

by

Kwok Wah Yeung

Memorandum No. UCB/ERL M95/54
10 July 1995

A DATA-DRIVEN MULTIPROCESSOR
ARCHITECTURE FOR HIGH THROUGHPUT
DIGITAL SIGNAL PROCESSING

by

Kwok Wah Yeung

Memorandum No. UCB/ERL M95/54
10 July 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

A Data-driven Multiprocessor Architecture for High
Throughput Digital Signal Processing

by

Kwok Wah Yeung

Doctor of Philosophy in Engineering -
Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Jan M. Rabaey, Chair

A data-driven multiprocessor architecture called PADDI-2 specially designed for
rapid prototyping of high throughput digital signal processing algorithms is presented.
Characteristics of typical high speed DSP systems were examined and the efficiencies
and deficiencies of existing traditional architectures were studied to establish the archi-
tectural requirements, and to guide the architectural design. The proposed PADDI-2
architecture is a highly scalable and modular, multiple-instruction stream multiple-data
stream (MIMD) architecture. It consists of a large number of fine-grain processing ele-
ments called nanoprocessors interconnected by a flexible and high-bandwidth commu-
nication network. The basic idea is that a data flow graph representing a DSP algorithm
is directly mapped onto a network of nanoprocessors. The algorithm is executed by the
nanoprocessors executing the operations associated with the assigned data flow nodes
in a data-driven manner. High computation power is achieved by using multiple nano-
processors to exploit the large amount of fine-grain parallelism inherent in the target
algorithms. Programming flexibility is provided by the MIMD control strategy and the
flexible interconnection network which can be reconfigured to handle a wide range of

DSP algorithms, including those with heterogeneous communication patterns.

As a proof of concept, a single-chip multiprocessor integrated circuit containing

48 16-bit nanoprocessors was designed and fabricated in a 2-metal 1-pm CMOS tech-

2
nology. A 2-level, area-efficient communication network occupying only 17% of the
core area provides flexible and high-bandwidth inter-processor communications. Run-
ning at 50 MHz, the chip achieves 2.4 GOPS peak performance and 800 MBytes per
second .I/O bandwidth. An integrated development system including an assembler, a
VHDL-base system simulator, and a demonstration board has been developed for

PADDI-2 program development and demonstration.

The benchmark results based on a variety of DSP algorithms in video processing,
digital communication, digital filtering, and speech recog'nition confirm the perfor-
mance, efficiency and generality of the architecture. Moreover, when compared with
several competitive architectures that target the same application domain, PADDI-2 is

in general about 2 to 3 times better in terms of hardware efficiency.

=

/' an M. Rabaey
Committee Chairman

To my loving family

iv

Table of Contents

1. Introduction 1

L1 PeISPECHIVE...cciuiveierccueicenseesicassessssassssnsassssssssesssesessesssssnsssessossessssasonsansessssnsanass 1

1.2 Goals and ContribUtiONScccovveeeenrnsisnccrnenssesessissisessessssessessessssssssssensasensss 3

1.3 Overview.................. e eeseesse e sessessseesesesessssesssesssesemaesena 1 6

2. High Speed Digital Signal Processing 8
2.1 Viterbi DELECLOTceceeetreerrcrrensessiisissccsnessssenssissessasssassasssnssnsssnesssesnessssssassssssess 9

2.2 Hidden Surface Processor for 3-Dimensions Graphicsceceeueveerenvevenncnen. 12

2.3 High-Definition Digital Camera ProCessor..........ccoceurueresrnereruereruerisassesessasencs 14

2.4 SUMMATY....cccovrirniiirieinsiiesiesssissesessissesssssssssssssessssssassssessassessasssssnessssssssossse 17

3. Hardware Prototyping Approaches 19
3.1 Traditional Breadboarding...........ccccooevivuriinininseisieninnrenerensinesenenenessenaennes 19

3.2 Application-Specific Integrated CirCuitsccceverererrererereerererneesesesseesens 21

3.3 Programmable MUultiproCeSSOrScccueueruriinsussessesnernnsnnsnnssnssensessessassessesnessnoses 22

3.3.1 Architectural ClassifiCation.........cccecervervesucrnernesunsensuessessesnessesnssnessnansases 23

3.3.2 Programmable (Multi-)Processor ArchiteCturescoeeeuveveserensasresnens 27

3.4 SUMIMATY ...cccooerrrinirierisnsesiessesisssssissssismesisssssssssessssessssasssssessasessessossssesssssssases 45

4. PADDI-2: Architectural Design 48
4.1 Architectural Requirements for Rapid Prototyping..........cceceeveeevenvncrnccraensas 48

4.2 PADDI-2 CONtrol StrUCIULEcccovivnrerienrisinserinssessesessresnssnessesnsssssaessssnssasessss 49

4.2.1 COMPATISONS.....cocvrrrireriririsisireressisesesessossrsssssnsassssssessessssssassssssasassssssssssss 49

4.2.2 Distributed Data-Driven Architecture.........ccoceeuevvervenniveenenesesncnennne 55

4.2.3 Address Generator EXampleccocevuiveruennrneensnnenessennnsesssnsassassssees 63

4.3 Processing Element ArchiteCture.........ocvveeuermereriensensensenseesennnessesnesaesasssssssaneed 64

4.3.1 Homogeneous vs. HEtETOZENEOUSccceerverernernssesnennressessesssascnscssesnss 64

4.3.2 Processing Element COMPIEXILYcccocirierirncresnernsaesnesisessnsnensosessesesnss 66

4.3.3 Instruction Set ATChIitECTUIEccceverreierreseisucsnersissensnssnssessesseessaessasnnses 69

4.4 Communication NEtWOIK........cececrsuecrsesensrcnissrsuesuessssaesnosnssassnssssssesssessanssssases 71

4.5 MemoOry ATCHItECIUTE.......ccoiiecrinscrucsisessssensnsesnessessessessessesnessesasssssssssssscsssans 77

4.6 T/O ATCRILECIUTE......c.ceeereereciereieesnssssisisssesnssessnsscssessessesnessessassessassasassnssasssss 79

5. PADDI-2: VLSI Circuit Design 83

5.1 48-Nanoprocessor Prototype Chip.......c.ccecemrunesuiressinniseisencsucsansassncsesessesnenes 83

5.2 Nanoprocessor DESIgNcccevrerereenionsercasunstsseceresssssssansiesssssssesasssssssssesesseses 86

5.3 Communication NetWOIK.........cccevcruruirnsrirerisinsesresensissisissessesesscssesnossssessessenes 91

54 SCAN UNIL ...ccucuneerirecieicnersnnsenensnesssasssssessssssssssssssssnsassssessassascssssascsmessassssesses 97

6. PADDI-2: Development System 99
6.1 PADDI-2 Programming Model.........cccecuresnrunrisunrernsnnnisnnesusnessenesnesessesnssssesanns 99

6.2 PADDI-2 Assembler Languagecccoceuveencresnsncessesnssesessessssesessssesnssssnesnensas 102

6.3 PADDI-2 Application Development SyStem........coceerueruesrcsessuernessnssaesnnssens 105

6.4 PADDI-2 DSP Prototyping Hardware SyStemc.ccevreereerverecsennsnncncnae 107

6.5 Multi-PADDI-2 BOId..........cccomsisirnrirnsesnisesnisnsnssessssnssssesssssssssssnsassnssssssnsas 110

6.6 Mapping of DSP Algorithms onto PADDI-2............ccouerivrnenvrnereneennene. 112

6.6.1 Hidden Surface ProCessor......cccveuereecreeccencsesensinsessessssensessisssssessessone 112

6.6.2 Viterbi DELeCIOr.....ccccevivurirurririnrinrcnisrissessessussussnisssssessnenesssssessassaesnes 114

6.7 Benchmark ResSultscccooiveviemririnininersenininininissinncnnessessssassessessesssssessens 118

6.7.1 COMPATISONS.....cceeevrsinsversrsserssessnsssesssressanessasssssessassssasssasssssnssssassssese 121

7. Conclusions 124
Appendix 127
A.1 48-Nanoprocessor PADDI-2 Chip Pin-LiSt.......ccccccecuneerernernennrerarunsansnasennnns 127

A.2 PADDI-2 Instruction MNEMONICS.......cccevirreerimsunsvesresrinsnisenssesseseesassnssaesaassenn 133

A.3 Board Controller REZISIErS.....cccccvicuinureerrecrensersecsensrenensessissressessessnssssssnssessesns 134

A.4 Layout of PADDI-2 VME Board.........c.cececvvnninesvnsenessssisinsesissnsensssssaessssennes 135

A.5 Nanoprocessor Assembler Programs for Hidden Surface Processors 136

A.6 Nanoprocessor Assembler Programs for Viterbi Detectorccccvvveeevenenene 139

Bibliography 142

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:

Block Diagram of PRML and EPRML Viterbi Detector. 9
(a) Equalizer implemented as 7-Tap Transversal Filter. 10
(b) Block Diagram of Viterbi Detector. 10
256-Pixel Hidden Surface Pixel Processing System. 13
HDTV Digital Camera Processor. w15
Dynamic Contrast Compression. . . R b
Edge Enhancement System..... 16
Adaptive Horizontal COMLOUTS.cccceurerereessreesssesessessssseessssssssesssessasssosessasssses 16
Architectural Classification based on Control/Arithmetic Ratio.ccoouereeeeersucnse 24
Architectural Classification based on Processor Granularity. 26
Simplified Block Diagram of NEC Video Signal Processor. 31
Block Diagram of a 16-Processor DataWave Chip. crosesassusonsses ...33
Block Diagram of a DataWave Processing Element.ccccouvecnnnecnnsssncnnssonaens 34
Video Signal Processor Architecture. 36
Block Diagram of the Data-Driven VLSI Array Processors. ...38
Mapping of a Data Flow Graph onto a Hexagonally Connected Array. 39
Simplified Block Diagram of the Processing Element of the VLSI Array. 39
Block Diagram of PADDI ArChiteCture.........c.ecerereeeneresesseressrsessesssssesassasssasassesneses 4]
Basic Structure of XC4000 FPGA............ceocceue. 44
Simplified Block Diagram of XC4000 Configurable Logic Block.cccsveesuincnes 45
Comparison of 3 CONMrOl SIUCLUTES.ccerveererrreneacrsesresssrensresrssssaessassasensasensssssoes 50
Direct Execution of Data Flow Graph using a network of Nanoprocessors............ 55
MIMD PADDI-2 Architecture Model.ccocevrrensasnsucases ... 56
Static Data FIOW MOGELccccieciinniimsnsnonsescssssssssassssssosssssssasnssasasassssssssssssasess 58
Minimal Nanoprocessor..........coeeeesecsesesessenes 61
2-dimensional Space Address Generator using 3 Nanoprocessors 63
Examples of data flow graphs with fine-grain and coarse-grain parallelisms. 66
Examples of data communication patterns. .73
Channel type distribution for a set high throughput DSP algorithms [27]. 74

Examples of Dynamic Interconnection patterns implemented using SELECT and
SWITCH 0perators.coeeeerenernenes . sresesrssressssasassasenes 75

Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 5-10:
Figure 5-11:

Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:
Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:
Figure 6-14:
Figure 6-15:

Figure A-1:

Basic Structure of the 2-level PADDI-2 Communication Network.cc....ossoseee 77
Memory in the Static Data Flow Model.uooeerinnneiitnnnicieenecnessecsssssnsnes 78
PADDI-2 Architecture Model with Memory Elements (ME). 79
PADDI-2 /O ArChiteCtures.cecousueesssurnensrerersresesnassnnes .82
Block Diagram of 48-Nanoprocessor PADDI-2 Chip. .. “ . .84
Micrograph of 48-Nanoprocessor PADDI-2 Chip. 85
Block Diagram of PADDI-2 NaNOPrOCESSOT. .cocesrrrsnesnsnsnsasasssaasasssases 86
Block Diagram of Nanoprocessor Execution Unit. . 88
Block Diagram of 16-bit Carry-Select Adder... 89
SPICE Critical Path Simulation of 16-bit Carry-Select Adder..........cccccoeveeeeverennnce. 90
An example of pipelined implementation of multiplication.ccccececcvcnierunne. 91
Level-1 Communication Network. reeressensstssessensntasiasaserens 93
Switch Matrix between Level-1 and Level-2 Communication Network................. 94
Dynamic WIRE-AND Handshake Circuit supporting Broadcasting.c.ceceeueu. 95
SPICE simulation of the propagation delay of the PADDI-2 communication
MEIWOTK. c.veteiereneereresreernrnenseessesessssessssessessasesnsssssessssssasssessessessassasassestesssssssssssssssoness 96
Programming Resources of NanOpProCessor.c.ccuuereresesnsusansesesnsscscsuncnsnsasacsnesens 100
Program Structure of a PADDI-2 Assembler Program........ccccoceeiecvcvincnnninsnsnncnns 102
Sample PADDI-2 Assembler Code implementing @ COUNter.cccocuerurencueusennns 104
PADDI-2 Software Development SYStem.ccouvererereresssnreerensassssossssssssesesesnsnas 106
Viewlogic Schematic of the Hidden Surface Processorcccccovvcececceniincnnnns 107
PADDI2 DSP Prototyping Hardware SyStem.........cceeeevecierenesesissssnsecsssscsscnnsanans 108
PADDI2 VME BOATI......cccoveeienrererseeenesissssssssssescstsassssesesssssssssessonsassssssassasssssss 109
Block Diagram of the Multi-Paddi2 Board.ccoceeeuencecnne. . 111
Z-buffer algorithm for Hidden Surface Elimination.c.ccceeeveersiscsicinininnsensnne 113
Logical Mapping of Hidden Surface Processor onto PADDI-2.ccocceeuiuneunnn. 114
Physical Mapping of Hidden Surface Processor onto PADDI-2 Chip verenersasaeeses 115
Block Diagram of 4-state Viterbi DEteCtor.ccoceerrrerenseecnccsssususssssssscsesesesensnans 116
Logical Mapping of 4-state Viterbi Detector onto PADDI-2. 117
Physical Mapping of 4-state Viterbi Detector onto PADDI-2 Chipcccoeuuee. 117
2-D 8x8 Discrete Cosine Transform at 25 MHz sampling rate using 50
Nanoprocessors........... cevevesvetsssisianteansnserEsPserasasssnRanar Rt satesensers 120
Layout of PADDI-2 VME Board............ creerseessossonssterasaes 135

List'of Tables'

Table 3-1:
Table 6-1 :
Table 6-2 :
Table 6-3 :
Table 64 :

Table A.1-1:
Table A.2-1:
Table A.3-1:
Table A.3-2:

Single-chip Programmable (Multi-)Processor Architectures..............cu.u... 28
LiSting Of DITECLIVES.cceterererrerereenerenssessarssssensressessssessesesssesesssssessesens 103
Benchmark ReSULLS.coeeeerureeeneenensesssesnseseessssesssnsasassssssssssassssssseses 118
Important IC Parameters.ccovueecreesessesssssscencesssnssossssssssnssesssesesssessses 122
Comparison of Hardware ReqUIirements..........coceeereceesvensaosessesasassasansaes 123
PADDI-2 Chip Pin-LiSt.c.ccecceveesinnnnncrnsenesscsssseesessssssensasassssacsssssssesssss 127
PADDI-2 INStIUCHIONS. ...voveriunrereerennsaeresssssessosassssosessesssssssssnssnnassnssssassasess 133
Board Controller REZISIErS.covvureeveureirceriresisverescssisesssessesessanssesssasssss 134

Board Control REISLET.ccccerrrrceresaerercsrssssssnsansssseesaensasssasassasassass 134

Acknowledgments

First, I would like to thank my advisor, Professor Jan Rabaey. The PADDI-2 project would not
be possible without his vision, leadership, support, and patience. His vision and guidance was
instrumental in the definition of this project and in every stage of its development. He is truly a

great teacher and an exceptional researcher.

Professors John Wawrzynek, David Aldous, and Bernhard Boser all provided early guidance
for my research as members of my Qualifying Exam Committee. Professors Wawrzynek and
Aldous went above and beyond the call of duty by also serving on my dissertation committee and
reviewing this thesis. Professor Wayrzynek’s comments and suggestions have greatly improved

the presentation of the benchmark results in this thesis.

I would like to thank a number of my coworkers who have contributed to the PADDI-2
project. Besides being a supportive office-mate, Arthur Abnous did a superb job in developing the
assembler and the VHDL model of the PADDI-2 system. Nelson Chow and Stas Frumkin helped
tremendously in debugging the PADDI-2 chip and in mapping the first couple of algorithms onto
the chip. My sincere thanks to Matt Power who endured the tedious task of designing the test
board on Racal. Stephen Okelo-odongo simulated the controller functions on the test board. Dev
Chen, who designed the first-generation PADDI architecture, gave me valuable advice on research
and life. I would also like to thank the other members of Jan’s research group - Ole Bentz, Lisa
Guerra, Sean Huang, Paul Landman, My Le, Seungjun Lee, David Lidsky, Renu Mehra, Miodrag
Potkonjak, Roy Sutton, Ingrid Verbauwhede, and Engling Yeo - for providing an enjoyable

research environment.

I would also like to express my gratitude to Sam Sheng, Kevin Zimmerman, Sue Mellers, and

Brian Richards for supporting the computers, laboratory equipments, and CAD tools. On the

administrative side, I would like to thank Tom Boot, Peggy Brown, and Corey Schafer.

My thanks also go out to Tom Burd, Andy Burstein, Anantha Chandrakasan, Phu Hoang,
Timothy Hu, Gani Jusuf, Timothy K@, Wook Koh, Monte Mar, Shankar Narayanaswamy, Eric
Ng, Mani Srivastava, Lars Thon, Jane Sun, Greg Uehara, Scarlett Wu, and Robert Yu. They made
the past couple of years in Cory so much more bearable. I specially would like to thank my
coworker Cormac Conroy. Besides solving many of my technical problems, he has also corrected

the zillions of grammatical errors in the draft of this thesis.

Lastly, I would like to recognize the members of my family. My sisters Winnie, Mindy and
Cheryl have encouraged me every step of the way. To my parents, I owe more to you than I could

ever repay. Thank you for your unconditional love and support.

And to my fiancee, Marlisa. Thank you for your love and warmth that keep me going through

both good and bad time.

CHAPTER 1

Introduction

Leave the beaten track occasionally, and dive into the woods. You will be certain to find something that
you have never seen before.

Alexander Graham Bell

1.1 Perspective

Because of the numerous advantages in processing signals in digital form as opposed to
analog form, e.g., accuracy, stability and repeatability, digital signal processing (DSP) has become
and will remain a dominant force in signal processing and communications [73]. Impacts can be
seen in practically every field, for example, con.sumer and home electronics, digital
communications, medical, manufacturing, and defense. Typical applications are digital audio (5,
68], high definition digital television [53, 87], digital image and video processing [42], computer
graphics [79, 81], speech recognition and synthesis [7, 82], mobile communications [44, 70],
personal communications systems [15], robotics and electro-mechanical control, machine vision

[11), sonar and radar [80], smart weapons, and target discrimination and tracking [65].

After identifying a new market, the désigners of modern DSP systems are faced with two key
problems: optimizing the performance and cost of the system, and shortening the design cycle.
The latter can be equally if not more important than the former. Because of the inertia of customers
against adopting new products and the continual shortening of product life cycles, short time-to-

market is critical in order to capture market share of any products.

A design process typically goes through many iterations of the design-simulate-evaluate cycle.
Traditional simulation methodology is based on software modelling of the system at various levels
of abstraction. However, as the customer’s demands on higher performance and DSP algorithms
become more and more complex, software-based simulation can be the bottleneck in the design

process.

Even with rapid advances in computer technology and high-level system modelling, software
simulation cannot meet the throughput requirement of complex systems, especially real-time
systems. For example, to simulate the high-definition color digital camera [60] on a 10-second
video script requires a throughput on the order of GOPS. Furthermore, if the simulation is too slow
for real-time playback, Giga-bytes of memories are needed to store the video for later playback.
Very often, subjective and perceptual measures, the so-called “golden-eyes and golden-ears”, as
opposed to deterministic measures, e.g., signal-to-noise ratio and mean-square-error, are used to
evaluate the quality of a design. Many hours of video scripts and tapes must be listened to and
watched throughout the design cycle. In these cases, a real-time prototype is especially needed to
enhance the ability of the designers to fine-tune many design parameters and to explore new

design space.

In addition, it is not an easy task to model the behavior of the external world with which the
system interacts. For example, to test out a new communication protocol, the channel
characteristics under various traffic loads have to be modelled accurately. A hardware prototype

operating in real-time can be hooked up to the actual physical channel and can provide the

3

designers accurate performance metrics under realistic operating conditions. In many cases,
hardware prototypes are constructed solely to verify theoretical results with experimental data

[95].

Although a real-time hardware prototype is clearly an invaluable tool for shortening the design
cycle of complex DSP systems, previous approaches in hardware prototyping are not satisfactory
and suffer from one or more of the following shortcomings: high development costs, insufficient
computation power, slow turnaround, susceptibility to errors, difficulty in testing and debugging,
inflexibility, limited scalability, restrictive programmability, and lack of compiler support. (More
of these approaches will be discussed in Chapter 3.) The problem is aggravated when handling
complex DSP algorithms with high sampling rates and heterogeneous data-flow patterns. This
motivates us to research a high throughput programmable multiprocessor architecture called
PADDI-2 that overcomes many of the aforementioned shortcomings and can handle rapid

prototyping of these types of algorithms.

1.2 Goals and Contributions

In this chapter, we have presented the needs for rapid prototyping in hardware that form the
motivation for this research. The main goal of our research is to study and define an architectural
template of a fiexible field-programmable integrated circuit component that can be applied to rapid
prototyping of a wide range of real-time high speed DSP systems. In addition to architectural level
design, another goal is to realize the proposed architecture in silicon to study the important

implementation-related issues which can have major impact on architectural choices.

The major contribution of this research is the design and implementation of a novel
multiprocessor architecture called PADDI-2 [113, 114]. Characteristics of typical high speed DSP
systems were examined to establish the architectural requirements. Multiprocessor architectures

were classified based on the granularity of processing elements. The analysis of the classification

results lead to the investigation of multiprocessor architectures using fine-grain processing
elements. This class of architectures provides a nice balance between flexibility and high
computation power, both of which are essential for rapid prototyping of high throughput DSP

algorithms.

The proposed PADDI-2 architecture is a multiple-instruction stream multiple-data stream
(MIMD) multiprocessor architecture. It consists of a large number of simple processing elements
called nanoprocessors interconnected by a flexible and high-bandwidth communication network.
The basic idea is that a data flow graph representing a DSP algorithm is directly mapped onto a
network of nanoprocessors. The algorithm is executed by the nanoprocessors executing the
operations associated with the assigned data flow nodes in a data-driven manner. High
computation power is achieved by using multiple nanoprocessors to exploit the large amount of
fine-grain parallelism inherent in many target algorithms. Programming flexibility is provided by
the MIMD control strategy and the flexible interconnection network which can be reconfigured to
handle a wide range of DSP algorithms, including those with heterogeneous communication

patterns.

As a proof of concept, a single-chip multiprocessor integrated circuit was designed and
fabricated in a 2-metal 1-pm CMOS technology [116]. It consists of 48 nanoprocessors organized
in 12 clusters of 4 each. A 2-level, area-efficient communication network occupying only 17% of
the core area provides flexible and high-bandwidth inter-processor communications. In addition to
the direct interconnections between neighboring nanoprocessors, a total of 7.2 GBytes per second
communication bandwidth is available in the Level-1 network for communications within the 12
clusters, and up to 4.8 GBytes per second bandwidth for inter-cluster communications can be
supported by the Level-2 network. Hardware mechanisms handle data-driven operations and inter-
processor synchronization. Running at 50 MHz, the chip achieves 2.4 GOPS peak performance
and 800 MBytes per second I/O bandwidth. The chip was tested functional on second silicon and

simple algorithms have been demonstrated. An integrated software environment which includes

an assembler and a VHDL-base system simulator has been developed to facilitate program
development and debugging on PADDI-2. An SBus-based board containing eight PADDI-2 chips

is being designed for demonstration of more complex DSP systems.

Although the concepts of fine-grain processing elements and MIMD multiprocessing have
been around for a long time, we believe the idea of applying both concepts in our application
domain is original. Existing architectures typically apply single-instruction stream multiple-data
stream (SIMD) style of control for fine-grain processing elements and MIMD for coarser grain
processing elements. By targeting only high throughput DSP algorithms with plenty of fine-grain
parallelism, we argued that a local program store of small capacity (less than 8 instructions in our
prototype chip) is sufficient and therefore the control overhead associated with the MIMD
approach can be significantly reduced. In addition, thanks to rapid advances in VLSI process
technology, device density has improved so much that area overhead due to MIMD control and

elaborate interconnect network can be tolerated to a much larger extent.

PADDI-2 is an experimental architecture developed to prove that it makes sense to use the
MIMD approach even for very fine-grain processing elements. The highly scalable MIMD
architecture, a clean programming paradigm based on the data flow concept and a flexible
interconnection network not only enhance programmability but also improve the computation
throughput by making it easier to utilize the large processing power provided by the fine-grain

processing elements.

Indeed, benchmark results based on a variety of DSP algorithms in image and video
processing, digital communications, digital filtering, and computer graphics verify the
performance and generality of the PADDI-2 architecture. Moreover, when compared with several
competitive architectures that also target the same application domain, PADDI-2 is in general
about 2 to 3 times better in terms of hardware efficiency. The benchmark results will be presented

in Section 6.7.

1.3 Overview

The following is a chapter by chapter outline of the remainder of this thesis.

Chapter 2 High Speed Digital Signal Processing

Chapter 2 introduces the class of real-time high speed DSP algorithms targeted by this
research. Several typical applications in this class, including a Viterbi Detector for Disk-drives, a
video engine for hidden surface removal for 3-D computer graphics, and a high definition digital
color camera system, are examined. Their requirements on computation power, functional
operations, data flow patterns, /O and memory bandwidth, control functions, granularity, and

amount of parallelism are discussed and summarized.

Chapter 3 Rapid Prototyping Platforms

Efficiencies, limitations and trade-offs of existing hardware prototyping approaches are first
discussed. It is then argued that approaches based on programmable, multiprocessing hardware
offer the most cost-efficient solution to satisfy the performance and flexibility requirements.
Programmable multiprocessor IC architectures for high throughput DSP are analyzed and
classified according to the granularity of the basic processing elements and the control/arithmetic
ratio. Representative architectures are cited and compared. Special attention is given to the

architectures that exploit parallelism in DSP algorithms using very fine-grain processing elements.

Chapter 4 PADDI2: Architectural Design

The PADDI-2 architecture is presented in Chapter 4. First, the architectural requirements for
rapid prototyping of DSP algorithms are summarized. Next, the control structure, processing
element architecture, communication network design, memory and I/O architecture of the PADDI-
2 architecture are described, and key design choices are explained. Various techniques used to

achieve high performance are discussed, and alternative architectures are suggested and discussed.

Chapter § PADDI-2: Hafdware Design

In Chapter 5, the VLSI design of the key components of the PADDI-2 chip, the processing
elements, the communication network and the scan unit, are presented. Important circuit

simulation results and testing/debugging strategies are also described.

Chapter 6 PADDI-2: Development System

The programmer model of PADDI-2 is first reviewed in Chapter 6. We then describe the
development system of PADDI-2, which includes an assembler for low-level programming, a
VHDL-base system simulator for simulation and debugging support, and a VME board for
hardware demonstration and scan-testing. The architecture of a multi-PADDI-2 board currently
being designed is also covered. We next present examples of the mapping of practical DSP
algorithms onto the PADDI-2 architecture. The chapter is concluded by reporting and analyzing
benchmark results of practical DSP applications, and comparing the results with several

competitive architectures.

Chapter 7 Conclusions and Future Work

Chapter 7 concludes the dissertation. Alternative PADDI-style architectures are discussed and

future research directions are mentioned.

CHAPTER 2

High Speed Digital Signal

Processing

In this chapter, several real-time, high speed DSP applications and their implementations in
the fields of communications, computer graphics, and video processing are used to illustrate the
application domain targeted by this research. Characteristics of the algorithms such as
computation power, functional operations, data flow patterns, /O and memory bandwidth, control
functions, granularity and amount of parallelism are discussed. Typical features of the target
algorithms are summarized. These applications will be referred to when architectures are

evaluated and compared in the next chapter.

A common measure of the communication bandwidth requirement of an algorithm is the /O
bandwidth of the whole algorithm. A more realistic and also meaningful measure of the
communication bandwidth requirement is the worst case I/O bandwidth of the whole system as
well as all the sub-systems. For instance, if the algorithm is to implemented by a multiprocessor
architecture, this measure defines the requirement on the inter-processor communication
bandwidth. However, the latter is heavily dependent on the implementation, specifically, the

hardware mapping of the algorithm.

In the following sections, the I/O bandwidth of the entire system, which is independent of the
implementation, is used to gauge the communication bandwidth requirement of the algorithms.
While the measure is simplistic, in many cases the measure correlates well with the actual

bandwidth requirement of the algorithms.

2.1 Viterbi Detector.

In recent years there has been a wide interest in high speed implementations of the Viterbi
algorithm, which is an optimum algorithm for estimating the state sequence of a finite state
process given a set of noisy observations [11, 36). Driving applications include convolutional
decoders for error correction, trellis code demodulation for communication channels, and digital
sequence detection for magnetic storage devices in the presence of inter-symbol interference. In
this section, an integrated Viterbi detector for (extended) Class 4 Partial Response Maximum

Likelihood (EPRML and PRML) channels is described [95].

Figure 2-1 shows the block diagram of the Viterbi detector IC. It includes an equalizer

1) !
+_Equalizer Viterbi Detector '
| :
' '
! '
' '
' '

'
quantized ; 7-Tap Square Sfctladte Trace- | output data
input ——Lp! Transversal » Error —» Compare [~ Back + »

' Filter Calculator Selg:‘t Unit H
E (BMU) (ACS) '
' :
! '
! '
: '
' H

Figure 2-1: Block Diagram of PRML and EPRML Viterbi Detector.

10

Figure 2-2: (a) Equalizer implemented as 7-Tap Transversal Filter.

8-State
Trellis
Interconnect

input

A

rr ‘vl ‘vl A 4 17&

reset decodeloutput
REO
decision[O]. %
L
ACS1 pdecision[]) lulzl .
ACS2 decision?) ! RE2 >
Acsy |decsiondlyl g3 >
ACS4 decision{4] » RE4
ACSS decision(5) » RES
ACS6 decision[6) » RE6 a
ACS7 decision([7] » RE7
8-State self-normalized 16-Stage Register-Exchange
ACS Unit Unit

Figure 2-2: (b) Block Diagram of Viterbi Detector.

implemented as a 7-tap transversal filter, and a Viterbi detector with an 8-state Add-Compare-

Select unit. Implementation examples of the equalizer block and the Viterbi detector block are

shown in Figures 2-2 (a) and (b), respectively. The branch metric unit (BMU) calculates the

branch metrics, which measure the likelihood of a state transition in the trellis diagram based on

the square of the error between the observed input and the expected input. Associated with each

11

state is a state metric which can be viewed as the accumulated metric along the most likely path
leading to that state. The state metrics of the two predecessor states of each state are added to the
two corresponding branch metrics and then the minimum of the two sums, corresponding to the
more likely transition, is chosen to update the state metric for the next iteration. The decision is

sent to the trace-back unit.

A Register-exchange network is used for the trace-back unit because of its simplicity.
Associated with each state is a register which contains the survivor path leading to that state. In
every cycle, one of the two registers of the predecessor states is chosen depending on the decision
output from the ACS unit. The content of the register is then shifted by one bit with the decision
output as the shift input and stored for the next iteration. The length of the register determines the
survivor path length, typically about 5 times of the memory length of the encoder process. The bit

shifted out from either one of the states, say state0, is the decoder output.

The reported ASIC, implemented in 0.8-pm CMOS, achieves a channel decode rate of 48 Mb/
s running at 48 MHz. Because of the high speed, dedicated multipliers, adders are used for the

transversal filter and a parallel ACS architecture is used.

About 4 GOPS of computation power is required. The dominant operations are multiplication,
addition, shift, compare and select. While communications between the functional blocks are
strictly feed-forward and systolic, very irregular communication patterns are needed inside the
Viterbi detector for implementing the connection pattern of an 8-state trellis. I/O bandwidth
requirement is acceptable as long as the ACS unit or the Register-exchange unit fit into a single-
chip. Since a Register-exchange unit is used to implement the trace-back unit, no large memory is
needed. However, if a long survivor path length is desired, it is more economical to use memories
to buffer the decision outputs from the ACS unit for trace-back [11]. The control for the algorithm

is very simple because of the dedicated nature of the functional blocks.

Despite the complexity of the Viterbi algorithm, high speed implementation is achieved

12

because of the abundance of both spa'tial.and temporal concurrencies. The equalizer is a feed-
forward structure and can therefore be pipelined down to very low granularity. Performance is
mostly limited by the single-delay recursion loops present in both ACS unit and the trace-back
unit. Algorithmic techniques such as lookahead techniques [9] and block precessing techniques

{10] can be applied to the Viterbi algorithm to expose more parallelisms and improve speed.

2.2 Hidden Surface Processor for 3-Dimensions
Graphics

In 3-dimensional computer graphics, every polygon must be checked to determine whether it
is visible or hidden from the viewer. A video processor, which eliminates hidden portions of

surfaces using a Z-buffer algorithm on a raster scan-line basis, is described in this section [81].

A system block diagram of the hidden surface processing system describing the detailed
operations of each pixel processor is shown in Figure 2-3. Each pixel processor handles a single
pixel and 256 processors connected in a linear array are needed to process a 256-pixel scan-line.
Tokens of line segments are fed into one end of the array and processed systolically. A segment

token consists of:

e X starting x-coordinate of the line segment.
length of the line segment.

2-coordinate at the starting x-coordinate.

R ¥ K

tilt of the line segment.

* I intensity of the line segment.

Xi is decremented as it propagates through the array until it becomes zero. When Xi becomes
negative, HSPP; is at the beginning of the line segment. The subsequent HSPP’s then decrement
AXi until AXi also becomes negative. This indicates that the end of the line segment is reached.

The enable flag, enable;, is asserted if it is within the line segment, i.e., when X; is negative and

13

HSPP, HSPP, HSPP, HSPP,;s HSPP,5¢
segmept segment
token in token out
Hidden Surface

Pixel Processor

Lo

X X Z,, AZ;, Ijy; resetj,;

Figure 2-3: 256-Pixel Hidden Surface Pixel Processing System.

AX; is not.

Upon receiving the enable flag, the processor updates the locally stored Zpy;, by comparing
the incoming Z with Z_;. It also computes the new z-coordinate of the tilted line segment at the
next pixel by summing Z and AZ. If Z_;,, has been updated, a swap flag, swap,; is asserted and
I is simply updated with the incoming I. After processing of all the segments in a scan line, a
special reset token is sent down the array. This triggers the scan-out of the stored Iy;,’s and resets

Z in and I so that processing of the next scan-line can begin.

The implementation reported can process one line segment token every 4 clocks at a 20 MHz
rate for a 256-pixel scan line, corresponding to 5 millions line segments per second. On the order

of 10 GOPS computation bandwidth is required. Only simple arithmetic and minimum operations

14

are used. Data flow is predominantly systolic. High /O bandwidth is needed because of the large
number of datums in each token. The requirement can be relaxed by multiplexing several datums
onto the same bus. Control for each HSSP is simple because all branch instructions are replaced by

conditional operations.

An interesting note is that the petformance of the system can be improved by using branch
instructions. This is true because first, many operations can be skipped if the pixel processor is not
on the line segment, and second, the latency of the branch instruction can be hidden by careful
scheduling. On the other hand, if conditional operations are used, the same number of operations
are executed regardless of the location of the processor. The major problem associated with using

branch instructions is that multiple instruction streams are needed.

Plenty of parallelism exists in the algorithm as all the operations can be easily pipelined. The
tightest loop of the system only involves a minimum operation for the update of Z,;,. Higher

performance can be achieved by further pipelining in the expense of more hardware.

2.3 High-Definition Digital Camera Processor

In this section, a fully digital video processor for HDTV cameras [60] is presented. The
system block diagram of the video processor is shown in Figure 2-4. It has three 10-bit input and
output channels (R, G, B) at 74.25 MHz and uses as much as 16-bit precision for internal
calculations for higher accuracy. The processing functions include shading, aperture correction,

color balance, gamma correction, and dynamic range compression. Block diagrams of the

15

! Aperture §
ADCand y Black Color Contrast Gamma Adder t DAC
Pre-filters : Shading Balance Compression and Delay :
R L | : > > : — R
G —pi : » . _’.l > > > : > ,__’ G
B —» — — > > > > |—B
' r 3 '
Video from ' [Analog
camera head : : Video Out
[J [
] [}
' . G '
< > '
' R '
] d [
: Level Aperture Correction and :
' Detector Contours Generation '
[J U

Figure 2-4: HDTYV Digital Camera Processor.

RIN » R OUT

GIN -+ G OUT

B IN » B OUT
control

Figure 2-5: Dynamic Contrast Compression.

functional blocks are shown in Figure 2-5, 2-6 and 2-7. All the filter blocks and aperture
processing blocks are transversal filters with a small number taps. The filter coefficients are fixed

at run-time, but are important design parameters during algorithmic development. This application

16

RIN > Non-Li > F_ —p R OUT
on-Linear
B IN —» B OUT
.| Horizontal N
Apertures g B

Horizontal N Vertical
LP-Filter HP-Filter

» Adaptive 1Kx10
»{H Contours RAM
h
control
Figure 2-6: Edge Enhancement System.
Horizontal
G # Contour >
Filter be
=] Contour
H 1 » =
orizonta
R Contour > MAX "
Filter
.| Horizontal R
LP-Filter e Y
Decision
Circuitry
| Horizontal
”| LP-Filter " 1R-G1> Threshotd

Figure 2-7: Adaptive Horizontal Contours.

is of particular interest because the types of processing performed are typical in many video

processing applications.

At the pixel rate of 74.25 MHz, tenth’s of GOPS are needed for each color component. Typical

17

operatioﬁs include multiplication, addition, maximum and minimum operations, and memory read
and write. Only simple branches are needed, some of which can be replaced by conditional
operations, e.g., select operations. Data communications are straightforward (almost systolic)
between functional blocks, but are heterogeneous inside the functional unit. I/O bandwidth
requirement is large because of the high data rate and multiple /O channels. Shift operations may
be used to multiplex the three 10-bit color components onto two 16-bit /O buses to save I/O

bandwidth.

Several small (a few kilobytes) random-access memories, used as lookup tables, e.g., for non-
linear processing, are accessed in parallel at the high data rate, resulting in high memory
bandwidth requirement. A few large sequential-access memories (up to hundred’s of megabytes)
are used as video frame delays and line delays. The implementation uses distributed parallel
memories to handle the memory bandwidth bottleneck. Again, control is very simple because of
the dedicated nature of the functional units. Control is needed mainly to distinguish the normal
data processing phase and the idle phase (the vertical blanking period), during which new system
parameters and lookup tables may be updated. As in the previous examples, plenty of fine grain
parallelism is available in the system and pipelining can be easily applied to boost the

performance.

2.4 Summary

In this section, common and pertinent characteristics of the algorithms discussed in the
previous sections are summarized and analyzed below. Although only 3 representative algorithms
are examined, the summary does give a general picture of the DSP algorithms in the application

domain targeted by this research as follows:

* high computation requirement, on the order of 10 to 100 GOPS.

¢ moderate to high data rate, 10 to 100 MHz.

18

« high VO bandwidth, 100 to 500 MByte/sec.

* varied requirements on memory bandwidth and memory capacity.
* both regular and irregular data flow.

* simple control functions.

* plenty of fine grain concurrencies, both temporal and spatial.

In general, the target DSP applications place tremendous demand on both computation and I/O
bandwidth requirements. High data rate is needed, especially in video applications. Requirements
on memory bandwidth and capacity vary depending on the individual applications. For instance,
while the first two applications do not utilize any memory, the HDTV Camera system makes
heavy use of memories, requiring up to a gigabyte per second memory bandwidth and hundreds of
megabytes of memory capacity. While regular data flow pattern is common, a significant amount
of heterogeneous data flow is present in general. Most applications are dominated by computation,
requiring only simple looping and branching, and therefore simple control functions are sufficient.
Abundance of both temporal and spatial concurrencies in the algorithms can be exploited by

pipelining and parallelizing approaches.

CHAPTER 3

Hardware Prototyping Approaches

In this chapter, efficiencies and limitations of existing hardware prototyping approaches are
first discussed, leading to the conclusion that an approach based on programmable,
multiprocessing hardware can satisfy the performance and flexibility requirements most cost-
efficiently. Programmable multiprocessor IC architectures for high throughput DSP targeted by
this research are then classified according to the granularity of the basic processing elements and
the control/arithmetic ratio. Representative architectures are cited, analyzed and compared.
Special attention is given to the architectural domain where the proposed PADDI-2 architecture

belongs.

3.1 Traditional Breadboarding

One of the mostly widely used hardware prototyping techniques is the traditional
breadboarding approach in which hardware prototypes are built using off-the-shelf generic ICs.
These pre-fabricated IC’s range in complexity from TTL/ECL bit-slices and arithmetic units, to

dedicated processors such as programmable transversal filter chips and video engines for specific

19

20

applications [40, 86, 112], to high performance domain specific processors such as general
purpose video signal processors [45, IOi , 102]. The main advantage of this approach is that design
and testing of custom chips are not required. Good performance can be expected if the parts
needed for the specific application are available. Another important advantage is that
manufacturers of these generic parts very often accompany the hardware with software

development systems for the designers to ease system design.

Despite its popularity, this approach suffers from many shortcomings. Perhaps the greatest
drawback of all is the lack of flexibility. The prototype, once built, cannot be easily changed to
handle other design alternatives. Although some degree of programmability is usually available
for the more complex application-specific processors, e. g., to configure the number of taps of a
transversal filter chip, the programmability is usually too limited for the system designers,
especially if the type of processing is altered drastically. Another equally important problem is that
a complete system is usually built from chips of very different architectures and/or programming
paradigms. The heterogeneity makes programming a very tedious task, e.g., custom designed
hardware and software interfaces between chips are often needed. To implement systems that
require high speed operations, custom designed printed circuit boards are often needed, further

increasing the development cost and time.

As an example, the hardware prototype of the high-definition digital camera system described
in section 2.3 was designed using this approach. The prototype was constructed using mostly ECL
components to achieve real-time HDTV video processing. Despite the fact that the prototype was
specially designed to handle the processing functions of HDTV video, it still could not fulfil the
needs of the system designers who constantly desired more programmability and flexibility in

order to experiment with new sophisticated algorithms [30].

21

3.2 Application-Specific Integrated Circuits

In. order to achieve high performance, or in the absence of pre-fabricated IC’s suited for the
particular application in hand, some designers use application-specific integrated circuits (ASIC’s)
for hardware rapid prototyping {81, 82, 95]. The main advantages of this approach are higher
performance and reduced chib count due to higher level of customization and integration. For
example, several ASIC’s were designed to build a connected speech recognition system capable of
recognizing words out of a 60,000-word vocabulary [82]. Parts of the ASIC design may also be

reused when IC’s for the final product are developed.

Unlike the traditional breadboarding approach, the ASIC approach suffers from long turn-
around time and high NRE costs mandated by the fabrication and design of custom IC’s. Using
gate-arrays for ASIC fabrication can shorten the turn-around time somewhat, depending on the
process technology used, but some performance is sacrificed in general. ASIC’s are more flexible
than off-the-shelf components because programmability needed for the specific application can be
designed in during chip design. However, the design still cannot be changed once the chip is
fabricated and modifications are both costly and time-consuming. Sometimes the algorithm may
change so drastically during system development that the ASIC can be rendered useless. In
addition to the usual risk inherent in the design of a new custom chip, the overhead in chip testing
and debugging always adds to the development time. Due to the custom IC design, special board-

level design tailored to a particular application is often required.

Because ASIC design offers good performance and potential for system integration, there are
widespread research activities aimed at improving the design time of ASIC’s. Besides the
conventional computer aided design tools for IC design, a very promising approach is to
synthesize an ASIC from high-level design specifications [29, 31, 77, 83]. Not only is the design
time reduced drastically, chip testing and trouble-shooting are also simplified because the circuits

generated by the synthesis tool are correct by construction. For example, the synthesis tool called

22

HYPER [77] accepts specifications of DSP algorithms in high-level languages such as SILAGE
[49] and VHDL [64], performs estimafion, transformations, partitioning, assignment and
scheduling, and generates silicon layout as the final product. Many researchers are also interested
in extending the synthesis approach to the system level to achieve rapid prototyping of a complete

system [96].

3.3 Programmable Multiprocessors

Perhaps the biggest drawbacks of the hardware prototyping approaches using generic IC’s or
ASIC’s are the long development time and large NRE costs due to the needs of custom printed
circuit boards and/or overhead associated with ASIC fabrication. To overcome these problems,
many system designers have turned to programmable hardware as their prototyping platforms [8,
56, 78, 85, 107]. As an example, the computation intensive speech recognition systems described
in [8, 85] achieve real-time capability by using parallel commercial processors such as the 8
MFLOP AT&T DSP32C floating point digital signal processor and the 10 MIPS Weitek X1.-8032
processors. Using existing hardware, this approach minimizes NRE costs and avoids tedious
testing and debugging of hardware. Moreover, development time is reduced to the time needed for
programming the hardware. By migrating the tasks of prototype development from hardware to
software, flexibility, high reusability, modularity and ease of debugging are ensured. It is clear that
compared to the breadboarding approach and the ASIC approach, programmable hardware
satisfies the stringent performance requirement and offers the needed flexibility most cost-

efficiently.

Even with rapid advances in processing technologies, a single chip is not able to deliver the
GOPS’s of computation throughput typically required by our target DSP algorithms, and therefore,
almost without exceptions, multiprocessing based systems are needed. The use of programmable
multiprocessor systems for rapid prototyping of DSP systems presents many challenges, due to the

facts that the high computation requirement of the target DSP algorithms demands a large number

23

of processors, and that the high data rate puts tremendous pressure on inter-processor

communication bandwidth. Memory bandwidth can also be the bottleneck in some applications.

How are large number of processing elements controlled and synchronized, SIMD or MIMD,
centralized or distributed? What communication mechanisms and network topologies are
appropriate for different classes of algorithms? What programming models should be used to ease
programming and compilation? These issues, and many more, are the subjects of active researches
[50]. Some of these issues will be revisited in Chapter 7, where the architecture of a system based

on the PADDI-2 single-chip multiprocessor is described.

In this research, the focus is on the architectural design of the basic single-chip processing
component, on top of which the complete multiprocessing system can be built cost effectively.
Although it is obvious that chip-level architectural design is heavily influenced by the overall
system architecture, there is still plenty of room for architectural innovations, since current IC
process technologies enable integration of millions of transistors onto a small die, and further

advancements can be expected.

We restrict our application scope to fixed-point DSP. Although floating-point DSP is much
superior to fix-point in terms of dynamic range, fixed-point DSP is widely used because fixed-
point hardware is both cheaper and faster than its floating-point counterpart. A good review of
fixed-point DSP vs. floating-point DSP can be found in [62]. In the following sections,

architectures of single-chip integer multiprocessors will be classified, analyzed and compared.

3.3.1 Architectural Classification

“A good classification scheme should reveal why a particular architecture is likely to provide a
performance improvement.”

David Skillicorn, A Taxonomy for Computer Architectures

DSP ARCHITECTURES

Contrc_;l Flow Microprocessors
Driven :

/\ General Purpose Signal Processors
Dedicated Signal Processors Processor

Granularity
Dedicated Multiprocessors

Data Path Clusters v
Bit-Serial
Data Flow
Systolic Driven

Figure 3-1: Architectural Classification based on Control/Arithmetic Ratio.

Besides understanding past accomplishments, classifying architectures helps reveal missing
gaps in the architectural spectrum that might not otherwise have occurred to a system designer.
Moreover, a good classification scheme should give strong hints why or why not a particular

architecture is likely to provide performance improvement over its counterparts [91].

Many taxonomies for computer systems have been proposed: from the classical Flynn’s
taxonomy based on parallelism within the instruction stream and data stream [35], to the elaborate
extension by Skillicorn [91], to the taxonomy restricted to IC architectures suggested by Keutzer
[55]. A comprehensive review of taxonomy for DSP architectures can be found in Chen’s thesis
[27]). We found that the classification scheme for DSP architectures described in [14] by Brodersen
and Rabaey is simple and yet very powerful and relevant to the classification of single-chip

processor architectures.

In their classification scheme, DSP architectures are classified based on the amount of
operation sharing on an arithmetic unit, as shown in Figure 3-1. One end of the spectrum
represents the traditional microprocessor architecture, where all arithmetic operations are time-

multiplexed on a single general purpose ALU. This architecture is classified as control flow

25

driven, since the functionality of the programmed device is completely determined by the
contents of the control section. At the other end of the spectrum are architectures such as systolic
arrays (bit-parallel or bit-serial), where operations are mapped to separate dedicated hardware
units and seldom multiplexed. These architectures are called hard-wired or data-flow driven and
the control section is minimal or nonexistent. In between, a complete suite of architectures such as
dedicated processors and data path clusters can be found. One of the major challenges in
architectural design is 1o strike the right balance between control and data path sections for a

given application and a given throughput range [14].

This classification does not explicitly consider granularity of the processing elements.
However, it is included implicitly because as the control/arithmetic ratio decreases across the
spectrum, the complexity of the processing element can be expected to decrease also. Since we are
mostly interested in single-chip implementations, we can carry the inference one step further to
classify IC architectures based the number of on-chip processing elements (or execution units).
This classification scheme, which is, in fact, very similar to that of Brodersen and Rabaey’s, is
illustrated qualitatively in Figure 3-2. Clearly, the absolute number of processing elements
depends strongly on the implementation, e.g., the process technology used and the design style.
However, the general trend is still valid as one goes from one architectural domain to another

across the spectrum.

In Figure 3-2, the rough trade-offs between performance and flexibility are shown. As the
number of processing elements increases, the performance can be expected to improve
accordingly. It is true that techniques such as pipelining can boost performance without increasing
the number of processing elements'. However, the same techniques can conceivably be applied to
all the architectures across the spectrum, resulting in similar performance improvement and

therefore the general performance trend still holds. Another way to comprehend the trend is to

1. A detailed discussion of pipelines in single-chip DSP processors can be found in [33].

A domain of
J1—" interests
M \
Performance =~~~ ===--~___

Flexibility

o
Core Processor Complexity
>~200 PE’s ~100 PE's ~50 PE’s ~10PE’s ~5PE's
CEES) I: =l
Bit-level Very fine-grain Fine-grain Dedicated General
Processors Processors Processors Signal Purpose DSP
Processors Processors

Figure 3-2: Architectural Classification based on Processor Granularity.

consider the complexity of the control section of the processing element. As the spectrum is
transversed in the direction of decreasing processor complexity, the control section of the
precessing elements become smaller and smaller. Eventually the control section can be eliminated
entirely when the system is completely hard-wired. Simplification of the control section results in
the availability of more silicon area for execution units and faster clock speed, and hence increased

performance.

Unfortunately, the trend in flexibility is the reverse of the performance trend. While a control
driven architecture such a microprocessor can be easily programmed for various tasks with the
help of high-level language compiler, the programming of the data flow driven architectures such

as a systolic processor array is much more involved. Not only do programs for a larger number of

27

processing elements need to be written, inter—ﬁrocessor communications and synchronization have
to be carefully handled before the processing elements can work in harmony to produce the correct
results. Sometimes the communication network between the processors can limit the application
scope of the architecture, e.g., systolic processor arrays, which only support communication
between neighboring processors, can only be applied to a certain class of algorithms [58, 100].
The problems are further aggravated if heterogeneous processing elements are used. The degree of
inflexibility worsens as the relative size of the control section to the data path section decreases,

1.e., as the processor complexity is reduced.

The problem of rapid prototyping poses the interesting challenge of designing architectures
that can achieve the high performance of the data flow driven architectures and yet exhibit the
flexibility of the control driven architectures. As illustrated in the classification scheme in Figure
3-2, we conjecture that the overall optimum may lie in the middle of the architectural spectrum
where fine-grain processor elements are used. In the following section, representative architectures

in each region of the spectrum are analyzed to support our conjecture.

3.3.2 Programmable (Multi-)Processor Architectures

In this section, single-chip processor or multiprocessor architectures with various processor
complexity are studied. As the number of processing elements increases, the impact of the
communication network on the efficiency of the architecture becomes more and more significant,
and therefore architectures are further differentiated by the flexibility of their communication
networks. Representative architectures in each architectural domain, as tabulated in Table 3-1, are
chosen for detailed discussions. Using the algorithms described in Chapter 2 as the target
applications, these architectures are analyzed and evaluated, with special attention given to
architectures using fine-grain processing elements. This is by no means an elaborate list, however,

many of the arguments can be extended to similar architectures within the same domain. These

Processor Complexity

Coarse
(~5PE’s)

Medium
(~10PE’s)

Fine
(~S50 PE’s)

Very-fine
(~100 PE’s)

Ultra-fine
(> ~200 PE’s)

Data-driven

Local DataWave
Communications - - (88, 89] meslss‘;’]my -
Flexible Commercial NEC VSP VSP PADDI FPGA
Communications DSP Processors [45] 92, 102] (26, 27] [39]

Table 3-1 : Single-chip Programmable (Multi-)Processor Architectures.

case studies provide important lessons and hints on how to design a good architecture for rapid

prototyping.

Commercial DSP Processors

Since their introduction more than a decade ago, single-chip commercial DSP processors have
remained the most dominant force in DSP. This is not at all surprising considering their good
programmability, low cost and rapid and consistent improvement in performance over the years.
Moreover, the conventional wisdom in the general-purpose processor business that VLSI advances
are going to roll over everything is a very strong driving force. DSP processors, equipped with
special architectural features to facilitate the tasks of signal processing, usually have higher
performance than a general-purpose microprocessor in the DSP application domain. However, the
distinction between DSP processors and general-purpose microprocessors has blurred in recent
years, thanks to advances in both processing technology and architectures in the general-purpose
microprocessor arena. For example, the recently announced UltraSPARC is able to support real-
time video compression (H.261) and decompression (MPEG-2), an application domain formerly

monopolized by DSP processors [93].

Perhaps the most celebrated feature of a DSP processor is the Multiply-Accumulate (MAC)

instruction, which is used heavily in DSP algorithms. Some people gauge the performance of a

29

DSP processor simply by its MAC time. Due to the high memory bandwidth requirement, DSP
processors usually adopt the classic Harvard architecture and use parallel on-chip and/or off-chip
memory banks. Instruction execution is typically pipelined to boost clock speed and provisions are
made to enhance the efficiency of loop execution, for example, the REPEAT instruction provided
by some processors of the TMS320 family. Other important architectural features include rich
addressing modes, e.g., bit-reverse addressing for fast-fourier transform and modulo-mode
addressing for circular buffering, multiple dedicated address generation units, hardware /O

support such as timers, DMA controllers, etc..

The performance of a processor can be given by the average number of instructions executed
per clock (IPC?) multiplied by the clock frequency. Given that modern processors usually adopt
simple instructions and pipelined execution to increase clock frequency, the throughput is limited
by the small IPC. There are two reasons for the small IPC: first, there may not be enough
instruction level parallelism in the algorithm so that data dependencies and branch latency cause
stalls in the execution pipelines, and second, IPC is limited by the moderate number of execution
units in the processor. The latter is due to the fact that a general-purpose processor is primarily
designed for time-multiplexing operations on a few execution units. Valuable silicon area, which
could have been used for execution units to increase performance, is wasted on such
extraneousness as complex control logic and large instruction cache. As an example, if a processor
is dedicated to repeating the few instructions in a simple inner loop of an algorithm so as to satisfy

the computation requirement, an instruction cache is not needed.

The Viterbi detector described in Chapter 2 is a good example to demonstrate the inefficiency
of a DSP processor in exploiting fine-grain parallelism. About 80 instructions are executed to

produce one decoded bit. Even if we make the very aggressive assumptions that there are enough

2. To evaluate performance of processors with different instruction sets, one must also consider the average amount of
work performed by an instruction, i.e., complex instruction set vs. reduced instruction set.

30

instruction level parallelism in the code, i.e., there are no stalls due to data dependencies or branch
latency, and that the processor can execute 4 instructions per cycle at the clock frequency of 100

MHz, it will still take 20 cycles to process one sample, resulting in a decode rate of a mere 5 Mb/s.

To achieve higher performance, designers must resort to multiprocessing. Some modern DSP
processors have special architec':tura'I features to aid multiprocessing. For example, the TMS320-
C40 from Texas Instruments Inc., are equipped with 6 high-speed serial links such that many
common network topologies, e.g., hexagonal array, can be easily realized. However, the major
bottleneck for developing systems using parallel DSP processors is often the lack of system-level
software support. One exception is the transputer developed by Inmos, Inc. [51]. The entire
transputer system architecture, from processor architecture, to instruction set, to programming
language, is specially designed for multiprocessing. Using a concurrent language called Occam,
which is based on the concept of communicating sequential processes, designers can easily
program a set of processes to run on different transputers and to communicate with each other via

channels, supported in both hardware and software.

NEC VSP: a Dedicated Signal Processor

Next in the spectrum is a class of dedicated DSP processors. Strictly speaking, these dedicated
processors are not general-purpose processors because they are generally designed specially for a
certain application domain, e.g., video processing. However, these processors are so flexible in
terms of programmability that they can be applied to a wide range of algorithms within the
application domain. Hence they are also known as application-specific processors. By focusing on
an specific application domain, architectural features such as data path, memory organization and
word width can be optimized more than a general-purpose processor. Consequently, a dedicated
processor typically contains a higher number of processing elements or execution units, thus

providing higher performance than a comparable general-purpose DSP processor.

A good example of a dedicated DSP processor is the super-high-speed video signal processor

31

Current Preceding
Frame Data Frame Data

RAM RAM RAM RAM
1kw x 16b 2kw x 16b 1kw x 16b 0.5kw x 16b

RAM RAM
<ACC-?- l 64w x 16b 0.8kw x 16b

control signals

1ttt

1k ggb
RAM ==
0.5kw x 16b SEQ CONT

Output

Figure 3-3: Simplified Block Diagram of NEC Video Signal Processor.

(VSP) from NEC Corporation [45], which contains many architectural features typical of
dedicated processors such as a large number of execution units, optimized data paths, parallel
memories, and microprogram based control. As shown in the block diagram in Figure 3-3, the
NEC VSP contains two main execution units: a convolver/multiplier and a data path consisting of
dual ALU’s, a barrel shifter and a minimum/maximum value detector optimized for video signal
processing such as inter-frame difference and motion compensation. Seven on-chip data RAM’s,
most of which are dual-ported, are used to sustain high data bandwidth to and from the speedy
execution units. A total of twelve address generators, one for each port of the RAM’s, runr
independently in co-processor mode to reduce instruction bandwidth from the central

microprogram based sequencer.

32

Using a 0.8-um triple-metal BiCMOS process, the chip runs at a 250 MHz internal clock
frequency, and achieves 500 MOPS for convolution and 250 MOPS for multiplication and other
arithmetic operations. For example, an 8x8 2-dimensional DCT can be performed using a single

chip in 16.8 ps, equivalent to a pixel rate of 3.8 MHz.

Although the performance of de&icated signal processors is generally superior to that of
general-purpose DSP processors, it is still not enough to satisfy the throughput requirement of our
target algorithms. Due to the typical use of concurrently operating hardware units, programming is
not easy because thorough understanding of the architecture is needed in order to orchestrate the
units to work together correctly and efficiently. Moreover, because of the restrictive application
scope, the manufacturers are likely to allocate less resources to compiler development, making
programming even more difficult. The programming issue is further aggravated if multiprocessing
is applied to improve performance. Another problem with using dedicated signal processors for
rapid prototyping is that since it is optimized for a specific application domain, the processor may
not be efficient for general DSP algorithms. For example, it is not clear how well the NEC VSP
can handle the many branch instructions needed in the Viterbi detector and hidden surface

processor described in Chapter 2.

DataWave: a Data-driven Array Processor

The DataWave [88, 89] belongs to a class of multiprocessor architectures called Wavefront
Array Processors proposed by S.Y. Kung [58]. The wavefront array is an extension of the systolic
array originally proposed by H. T. Kung [37]. Both systolic array processor and wavefront array
processor achieve high performance through parallelism and pipelining using regularly, locally
interconnected processing elements. However, the application is limited to a certain class of
algorithms, such as regularly iterative algorithms [84] or the more general piecewise regular
algorithms [100). Examples are common in the areas of signal and image processing such as

vector and matrix operations, sorting, and pattern recognition.

3

b 1.

Bus Switch

Switch]

‘Bus

| Bus Switch |

1

Figure 3-4: Block Diagram of a 16-Processor DataWave Chip.

The key difference between the two is that while all the operations in a systolic array are
synchronized by a global clock, the wavefront array is asynchronous in that only the correct
sequencing, not timing, is required. Hence, higher performance can potentially be achieved by the
wavefront array by taking advantage of the differences in speed of the operations in the array. A
serious problem with these array architectures, which is often overlooked by the designer, is that
specially designed I/O units are often needed to provide enough data bandwidth to sustain the high

performance [105].

As shown in the block diagram in Figure 3-4, a DataWave chip consists of 16 mesh-connected
processing elements. Each processor independently executes a program stored locally, propagating
data through the array in a wavefront-like manner. Instruction execution is data-driven, i.e., it is
halted if any operands required are not available or if any inter-processor communications are
blocked. Processing elements on the edge of the chip can communicate with another DataWave

chip via the bus switch by time-multiplexing.

OUT FIFO

Figure 3-S: Block Diagram of a DataWave Processing Element.

Each processing element consists of a 4-port 16-word register file, an ALU, a multiply-
accumulate unit, a 64x48b program store, and eight 8-deep FIFO’s interconnected by three ring
buses (Figure 3-4). Data path width is 16 bits with the exception of the accumulator which is 29-
bit wide. A 5-stage pipeline is used to achieve a fast internal clock rate of 125 MHz in a 0.8-um 2-
metal CMOS process technology. An ALU operation and a MAC operation can be launched every
cycle, resulting in a total peak performance of 4 GOPS. Due to the deep pipeline, branch latency is
3 cycles. The input FIFO and output FIFO on each side of the cell smooth out data transmission
between cells and implement an asynchronous interface to eliminate a global clock and the
associated clock skew problems. A complete software environment including a compiler for static
data flow programs and a graphical simulator was developed for the architecture to ease

programming.

35

This architecture is of particular interest to us because the architecture, though developed
independently, shared many commonalitiés with our proposed architecture, e.g., the use of
homogeneous fine-grain processing elements for high throughput, data-driven execution and static
data flow programming paradigm. Another interesting feature of this architecture is the use of
asynchronous interprocessor communications to achieve scalability both physically and

architecturally.

Although the DataWave has the appearance of a Wavefront Array Processor and can certainly
function like one, it is intended for a wider range of video applications, not limited to the
traditional application scope of a Wavefront Array Processor. For instance, non-local
communications can be realized by routing data through the PE’s, which can perform arithmetic
operations and at the same time move data from an input FIFO to an output FIFO. Nonetheless,
when tackling algorithms with irregular data flow, many PE’s, which are fairly complex, are likely
to be under utilized. Moreover, the long latency due to data propagation through processing

elements may not be acceptable especially for applications with tight recursive loops>.

For example, while the mesh array topology can perform reasonably well for the hidden
surface processor in section 2.2, it is not clear how well it can handle the many branch instructions
and heterogeneous communications required in the Viterbi detector described in Section 2.1.
Furthermore long latency is bound to hurt performance because of the single-delay recursive loop
in the Add-Compare-Select unit. Finally, the DataWave architecture implements a computation
array without any memory elements except for the small local register file. It will be interesting to

see how memories are integrated into the system for memory intensive DSP applications.

3. Sometimes algorithmic transformation techniques such as the block processing technique can be applied to relief the
recursive bottleneck [75].

Philips Video Signal Processor

The Video Signal Processor (VSP), developed by Philips Research Laboratories, is a general-

purpose, programmable processor specially designed for efficient processing of real-time video

signals using parallel, fine-grain processing elements [92, 102]. As shown in the block diagram in

Figure 3-6, a VSP contains a total of 28 parallel processing elements: twelve Arithmetic Logic

Elements (ALE’s), four Memory Elements (ME’s), six Buffer Elements (BE’s) and six Output

Elements (OE’s), all of which are interconnected by a 28 by 60 by 12-bit crossbar switch matrix.

Each processing element is connected to the switch matrix by one or more programmable-delay

registers called silos. Implemented as 32 by 12-bit dual-port memories, the silos can realize

sample delays, equalize pipeline delays, and are essential for achieving efficient cyclo-static

program schedules.

6
Inpu

CROSSBAR _SWITCH

------ e~ --—-- P mpm mpmmpmmpmmp--y
" " " : s Y

i + y y -+ +
-

— T A2 -

g

> : ——
LI N - NI I M
'ZF‘:""[' LA"!"!' ;Zi'""' 'ZL"""" ""' e Y N i i
s| Is] Is s| s s s||1Isl{1Isl|1Is||ls ?
i| i [i il |i i i i i i i
>l b b | i 1 1 Pl Pl Pl Pt P
ol lo] lo o| lo 0 ol | lo] | o] | lo] | o] | |o
,..’ ALE 0000 _’ME [X N X] SHF..
e R H R I v v -v- v v v
T ~ v s
: 12 ALE’s 4 ME's 6BE's 6 Outputs (OE’s)
'
Serial
Interface

Figure 3-6: Video Signal Processor Architecture.

37

Using the cyclo-static schedul.ing-algorithm, the execution of instructions in the parallel
processing elements can be scheduled to satisfy certain criteria such as optimal processor
utilization. Overhead of multiprocessing such as synchronization is minimized because each
processing element simply cyclically executes the instructions stored in its local 32-word program
memory according to the schedule. Hence the VSP is conceptually a Very-Long-Instruction-Word
(VLIW) processor. Conditional execution is provided to replace data dependent branch

mstructions, which are not allowed.

An ALE consists of 3 silos, 3 barrel shifters and a 12-bit ALU, and is capable of performing
arithmetic, logic, compare and shift operations. Multiplication is implemented sequentially by the
partial multiplication operations based on Booth encoding. The ME contains a 2k by 12-bit two-
port SRAM, 3 silos and some logic for address calculation, and can perform a read and a write
operation concurrently every clock cycle. A BE, consisting of a silo and a barrel shifter, is mainly
used a floating silo in series with any other processing element when longer length of the silo is
needed. In addition, the BE can perform shift operations thereby freeing an ALE. Running at a
clock frequency of 54 MHz, the chip provide 1.5 GIPS peak, and the six OE and six input buses
provide a combined I/O bandwidth of 7.7 Gb/sec.

The VSP architecture is very interesting in that instead of developing a compiler for an
architecture, the architecture is specially designed for the cyclo-static scheduling algorithm and
many features such as the silos are included solely to enhance the efficiency of the compiler.
Although cyclo-static scheduling allows multiprocessing with little overhead, the exclusion of
data dependent operations may be too restrictive in general. For example, as discussed in Section
2.2, the performance of the hidden surface processor can be increased if branch operations are
used instead of conditional execution. Moreover in order to obtain a feasible cyclo-static schedule,
a large number of delays may be needed, resulting in the large number of silos and BE’s totaling

23 Kb of two-port memory.

|

Communication

Buses< Illllllll

Output Buffers /

/ Output Buffers

N~ A processing element
connected to six

_|||||||||| neighbors

Figure 3-7: Block Diagram of the Data-Driven VLSI Array Processors.

Data-driven Processor Array

In this section, we will examine a data-driven VLSI array developed at the University of
Massachusetts at Amherst [57]. The architecture also belongs to the class of wavefront array
processors and bears many resemblances to the DataWave architecture discussed before. The key
differences are that the data-driven VLSI array is specially designed for arbitrary algorithms and

that it utilizes processing elements of much finer grain.

Figure 3-7 shows the block diagram of the processor array chip, which consists of an array of
hexagonally connected arrays supplemented by several global communication buses. The basic
idea is to map an arbitrary algorithm represented by a data flow graph to the processor array as
shown in Figure 3-8. Using very simple processing elements, spatial as well as temporal
concurrencies in the algorithms can be exploited through parallelism and pipelining to achieve

high throughput.

The simplified block diagram of a basic processing element (PE) is shown in Figure 3-9. It

contains six communication registers, an execution unit, a communication control block, a flag

39

Mlcoplosnm!
Control

E ' E
Instruction | ||

Figure 3-9: Simplified Block Diagram of the Processing Element of the VLSI Array.

40

array, a very small instruction memory and a microprogram control block. The communication
registers, positioned in the periphery of the PE, buffer communications to the six neighboring
PE’s. The execution unit comprises a shift-register and an arithmetic logic unit capable of
executing all common boolean and arithmetic operations. Shift, multiplication and division
operations are performed sequentially. A carry bit is generated to allow multi-byte operations. The
microprogram control block decodes instructions stored in the 6-word instruction memory into
sequences of control signals. The flag array monitors the presence of operands to control data-

driven operation of the PE. The width of all data paths and buses are 8 bits.

It is not clear if an operating chip has been designed, but the authors in [57] esﬁrr;ated that a
chip containing about 100 PE’s is practical in today's VLSI technology. Noteworthy architectural
features include the global communication buses to facilitate I/O, especially to the middle of the
array, and the use of PE’s for routing to handle irregular data flow pattern. To reduce the overhead
of data routing, the data-driven array, like the DataWave, uses long instruction words to allow
execution of operations in parallel with data movement between ports. Because of the simpler
PE’s used, the inefficiency due to data routing by PE’s is relatively less compared to the DataWave

architecture.

Despite the use of global buses to enhance 1/0, the local communication between PE’s
seriously degrades the efficiency of the architecture, as evident in the low average PE utilization of
27% or 38% reported, depending on the algorithms used to map algorithms to the array [71].
Similar to the DataWave architecture, the architecture can suffer when tackling algorithms
consisting of recursions, due to the long communication latency. Another important problem is the
low throughput of the frequently used multiplication operation due to the sequential execution.
Furthermore, there is no provision to increase throughput, e.g., by executing multiplication in a

pipelined fashion among several PE’s.

41

[pitdededededetatadetuiedetatetatttdd it

Global : 3 : 3 |

Instruction Bus | g gl

| [EXUE| *°ee [EXUHE] !

\ : 3 3|

34 1 '

Off-chip| 4+ | ;
Control E Communication Network |[+—1/0

| —

| g g|!

P [EXUHE| *°°° [EXUHE]!

! 3 g

' £ L

Chip Boundary “---cccmmmmcmceeeees X

Figure 3-10: Block Diagram of PADDI Architecture.

PADDI

PADDI, an acronym for Programmable Arithmetic Device for Dlgital signal processing, is an
architecture previously developed by Chen of U.C. Berkeley for rapid prototyping of DSP [25,
27]. Its main target is high speed data paths for DSP using fine-grain processing elements. An
understanding of the efficiencies and limitations of the architecture influenced many early ideas of

this research.

As shown in the block diagram in Figure 3-10, a PADDI chip contains many fine-grain
execution units interconnected by a flexible, dynamically configured communication network.
Each execution unit has a local decoder that decodes a global 3-bit instruction broadcasted by an
off-chip controller. The architecture is therefore basically a single-instruction stream multiple-data

stream (SIMD) architecture with a very long instruction word (VLIW).

The PADDI instruction set includes shift and arithmetic operations, but logic instructions are

not implemented. While variable-and-variable multiplication is not directly supported, variable-

42

and-constant multiplication is realized efficiently by shift-and-add operation. Data path width is 16
bit and two execution units can be linked to provide 32 bit operation at the expense of slower clock
rate. Another inieresting feature is that the 8-word register file of the execution unit can also be
configured as a variable-length delay line for easy handling of sample delays in DSP algorithms.
Running at 25 MHz, the prototype PADDI chip consisting of eight execution units can provide 200
MOPS using a 1.2-pm 2-metal CMOS process technology. More details about the PADDI

architecture can be found in Chen’s thesis [25].

From our experiences with the PADDI architecture, we found that the centralized control
strategy employed in PADDI can sometimes be rather restrictive. For example, it is difficult to deal
with several concurrently operating units with a single control thread, especially when data
dependent operations are involved. The global control also makes it hard to scale the architecture
to tackle more complex problem. On the other hand, the use of very fine-grain processing elements
and flexible communication shows very good potential in achieving high performance for a wide

range of DSP algorithms.

Field-Programmable Gate Array

In recent years, there has been a tremendous growth in a new breed of devices known as Field-
Programmable Gate Arrays (FPGA’s) [39]. Formerly in the supporting role of saving glue logic in
the earlier days of their existence, FPGA’s are now both powerful and cost efficient enough for
system applications, thanks to rapid advances in IC processing technology and innovations in
FPGA architectures. Usable gate counts up to 20,000 and system clock rates up to 100 MHz are
possible with the current generation of FPGA’s and higher density and speed can be expected in

the future generations.

The device provides a new computing paradigm in that hardware can be reconfigured to
execute an algorithm in its most natural form instead of the indirect process of first translating the

algorithm to a format (machine code) understood by the hardware, and then interpreting the format

_"_I'_"_|0.0‘Oolooooooo.. DI_

programmable
interconnect :l

routing channels

0
b
w

switch matrices:

Dl:'ooooooooooo oo UL

IOB’s

v

L_-"_”_”_Joooooooooooooo L_IL_

Figure 3-11: Basic Structure of XC4000 FPGA.

improve silicon utilization and usable gate count. Anti-fuse technology and channel-less routing
can be applied to increase routability and density, and to shorten propagation delay of
interconnect. Other innovations include the use of lookup tables in CLB’s as small random-access

memories and support for wide and fast decoders.

By providing reconfigurable hardware, flexible interconnect, and field-programmable ability,
FPGA’s offer excellent flexibility and quick turn-around time and are widely used for rapid
prototyping of DSP and computer systems [18, 46, 47]. Note that many of these architectural
features are also supported by our proposed architecture. However, because of FPGA’s bit oriented
architecture, its granularity may be too low for efficient implementation of wide data paths. When
used to implement algorithms dominated by word-parallel operations, as is the usual case for DSP,
an FPGA is likely to suffer from area inefficiency and speed degradation, compared to
architectures tailored for word-parallel operations, given the same process technology and design

style. Moreover, with limited routing resources, FPGA’s can run into congestion problems when

43

by hardware such as a processor fo e;(ecute the algorithm. In short, the device provides the
designers a programmable approach to design custom hardwired VLSI circuits. The hardware
configurability can provide not only flexibility but also potential performance improvement, e.g.,
in a project at the Super-computing Research Center, an FPGA-based coprocessor called Splash

beat a Cray-2 super computer by a factor of 330 on a DNA sequencing application [16].

The popularity of the device has fueled many research efforts in the areas of reconfigurable
architectures, synthesis, logic optimization and mapping for FPGA's and applications [47]. New
workshops have been established to facilitate exchanges of ideas and publication of results. A
good overview of the technology, architecture and CAD tools for programmable logic devices can

be found in [17].

A typical FPGA architecture is examplified by the XC4000 architecture, one of the most
popular FPGA families from Xilinx, Inc. [110). As depicted in Figure 3-11, the basic structure of
the XC4000 FPGA contains an array of configurable logic blocks (CLB’s) and peripheral input/
output blocks (IOB’s) interconnected by programmable interconnect in the form of routing
channels and switch matrices. Figure 3-12 shows a simplified block diagram of an XC4000 CLB,
which consists mainly of three lookup tables (or function generators), two flip-flops and several
multiplexors. With thirteen inputs and four outputs, the CLB can be configured to implement fairly
complex logic, e.g., a 2-bit full adder can be built using just one CLB. The IOB serves as interface
between the internal logic and the external world and can be configured, e.g., as an input, output or
tri-state pad, among the many options. The functfonality of the FPGA is defined by the
configurations in the CLB’s and IOB’s, and the interconnect setting, all of which are initialized at

system start-up and stored in SRAM cells.

The architecture of FPGA is evolving rapidly. New devices may have simpler CLB’s to

4. Examples are the ACM International Workshop on Field-Programmable Gate Arrays and the JEEE Workshop on
Reconfigurable Architectures.

45

Cci @ G c4

: Selector | :
| LSIR Stalel |

G1 —Ly |

G2 —j»{Lookup =) N

G3

o1 —:" Table J $ F QL:—YQ
| | Hiookor] =p) Ly
| __| Table T |

Fi —Ly ' |

F2 —{»|Lookup - |

:3 —T?| Table —\I D |
r J 1D L QH—xQ
| 1_":D_E !
I _—D I x

Clock —1 l

Figure 3-12: Simplified Block Diagram of XC4000 Configurable Logic

routing wide buses, hence jeopardizing CLB utilization and increasing propagation delay of the

interconnect. More limitations of FPGA’s for bus oriented applications are discussed in [25].

3.4 Summary

The traditional breadboard prototyping approach of putting together a system using off-the-
shelf parts relies on the availability of chips with the desired functionality and performance. The
resulting systems are often limited in programmability and inflexible to modification. Worst of all,
the use of chips with heterogeneous architectures and programming paradigms makes
programming and interface design a very tedious task. The ASIC approach allows high integration
and improved performance, but suffers from long turn-around time, high NRE costs, and the risk

of chip failures.

46

Hardware prototyping using a programmable multiprocessor provides the most attractive
solution of all by eliminating error-prone' hardware designs and offering low development cost,
high flexibility, reusability, modularity, and ease of debugging (in software). Representative
architectures of single-chip multiprocessors, classified according to the granularity of the basic

processing elements, were presented and analyzed earlier in this chapter.

Von Neumann style general purpose microprocessors and DSP processors are flexible and
easy to program because of the availability of high-level language compiler. However, these
processors are limited by the heavy investment in control functions to enable hardware sharing,
and therefore they are not efficient for exploiting fine-grain parallelism and cannot satisfy the high
throughput requirement of our target algorithms. Multiprocessing using these processors can
improve throughput, but the lack of software and/or hardware support can be the Archilles’s Heel
in the development of such systems. Moreover, the resulting system is still not cost-effective

because a large number of chips are still needed to meet the throughput requirement.

Dedicated signal processors or domain-specific processors often achieve superior performance
compared to the general purpose DSP processors by optimizing the architecture for a specific
application domain. Unfortunately, the highly parallel architecture commonly used sacrifices ease
of programming and compiler support is often limited, especially for multiprocessor development.
Furthermore, the optimized architecture can jeopardize the efficiency of the processors for general

DSP applications.

The DataWave architecture achieves very high performance using heavily pipelined fine-grain
processor elements, but the inflexibility of the local communication networks degrades its
efficiency for applications that require irregular data flow. A very similar approach, except for the
finer granularity of the basic processor element, is taken by the Data-driven VSLI array and
therefore it also suffers from the same inefficiencies as the DataWave architecture. Based on the

cyclo-static scheduling algorithm, the Philips VSP enables multiprocessing with very little

47

overhead, but cannot handle data dependent operations in general. The PADDI architecture has
many interesting architectural features that enhances the performance for a wide range of DSP
algorithms. However, the centralized single-instruction stream multiple-data stream (SIMD)

control strategy limits the scalability and flexibility of the architecture.

Field-Programmable Gate Al:rays (FPGA's) achieve quick around-time and excellent
flexibility by offering field-programmability down to the gate level, but their bit-oriented
architectures are area-inefficient and slow for implementing wide data paths commonly used for

DSP applications.

Based on the arguments in this chapter, it is clear that no existing architecture can provide both
the flexibility and the performance needed for rapid prototyping of our target DSP algorithms in a
cost-efficient manner. In the next chapter, we propose an improved architecture called PADDI-2

specially designed to satisfy these requirements.

CHAPTER 4

PADDI-2: Architectural Design

In this chapter, a single-chip multiprocessor architecture called PADDI-2, which targets the
rapid prototyping of high throughput DSP applications, is described. First, we summarize the
architectural requirements for handling the target DSP algorithms described in Chapter 2. In the
following sections, the control structure, processing element architecture, communication network
design, memory and I/O architecture of the PADDI-2 architecture are presented, key design
choices are explained and the various techniques used to achieve high performance are discussed.
Alternative architectures are suggested and discussed. Here, we focus on the high level
architectural ideas of PADDI-2. In the next chapter, the detailed hardware design of the

architecture will be presented.

4.1 Architectural Requirements for Rapid Prototyping

The target architecture must be able to provide the high computation throughput of the order
of 10 to 100 GOPS required by high performance DSP algorithms. Moreover, the architecture
must be able provide high memory bandwidth and I/O bandwidth (hundreds of MBytes per

48

49

second) in order to sustain the high corﬁputation throughput. In addition, the architecture must be
generic and flexible enough to handle a wide range of algorithms, especially those with
heterogeneous data communications. Emphasis is put on ease of programming and compilation in
order to achieve rapid prototyping. Equally important is the scalability and modularity of the
architecture. The architecture must be easily extended to tackle more complex problems, and to
keep pace with the rapid advances in technology without radical redesign. Field-programmability

is desired to reduce turn-around time and cut costs.

4.2 PADDI-2 Control Structure

4.2.1 Comparisons

The control structure is perhaps the most important aspect of a multiprocessor architecture.
Not only does it dictate the programmability of the architecture, it also has tremendous effects on
the efficiency of the system by handling the interactions between various components of the
architecture. In this section, three canonical control structures, namely, centralized, distributed,

and hierarchical, as illustrated in Figure 4-1, are discussed and compared.

Centralized Control

The centralized control structure uses a single global controller to control all the execution
units (Figure 4-1(a)) and is often used for tightly coupled multiprocessor systems, e.g., the
processor array for image processing in [38, 111]). The key advantage of this control strategy is its
conceptual simplicity, which eases compiler development. Centralized control simplifies
implementation of global program jumps, e.g., task swapping and context switches. By putting all
resources under the control of a single program, dynamic resource sharing can be easily managed

and implemented to enhance the efficiency of the architecture.

The centralized control structure works very well when all the processing elements of the

Global Ctrl
| | |
EXU} |[EXU| e e e |EXU (a) Centralized.

Execution Communication Network
units
Ctrl Ctrl Ctrl
A 1 oo I
EXU| |[EXU EXU (b) Distributed.

| I |

Communication Network

Ctrl-N
e N\
)
Ctrl-2 Ctrl-2
Z AN N\
Ct:l-l CuI-I-l Ctrl-1 (c) Hierarchical.
oe0e0 1
EXU| {EXU EXU

Communication Network

Figure 4-1: Comparison of 3 Control Structures.

system execute an identical or similar instruction thread. However, many loosely-coupled
concurrently operating units are often used in the processing of complex DSP algorithms. In such
a case, the centralized control can become very inefficient. For example, suppose there are two
execution units, each controlled by a local controller, and N1 and N2 instructions are needed,
respectively. In the case where the control flow of the two local controllers are independent of each
other, up to N1 x N2 instructions are required if we are to use a single global controller for both
execution units. Moreover the global controller must also examine two sets of status from the

execution units and perform multi-way branches. It is clear that the complexity of the global

51

controller is more than the total complexity of the two local controllers, and the same argument
can be extended to higher number of execution units. Interestingly, this is very similar to the
common observation that it is often possible to decompose a complex finite-state machine (FSM)

into several simple interacting FSM’s to save hardware.

Another inefficiency of the centralized controller is the long branch latency. Compared to a
local controller, a centralized controller has to be located further away from the execution units
both in physical distance on the chip and in hierarchy. This incurs higher branch penalty because it
takes longer before the controller receives the status of the execution units and changes the
program flow. For example, the use of an off-chip global controller in the first generation PADDI
architecture results in multiple-cycle branch latency. The extra branch penalty can be reduced by
substituting branch instructions with conditionally executed instructions [102], or by the use of
special branch handling hardware such as the loop controller in [34]. However, in general, these
features cannot be applied to all program jumps and it is not clear if a compiler can make effective

use of them.

Even the application of the centralized control strategy to a moderate number of processors
would require a very long instruction word, of the order of hundreds of bits [59]. This results in
tremendous instruction bandwidth requirements, high costs in silicon area for instruction routing,
and high I/O bandwidth requirements if the instructions have to come from off-chip sources. The
use of local instruction buffers or decoders has been proposed to relieve the problem of instruction
bandwidth bottleneck [27, 34]. However, these approaches are likely to add to the branch penalty
further by introducing yet another level of control hierarchy. Except for single-instruction stream
multiple-data stream (SIMD) systems, a purely centralized control structure is not practical for
large systems due to technology constraints. Consequently, systems adopting the centralized

control structure suffer from limited scalability.

52

Distributed Control

In a distributed control structure, each execution unit is equipped with a local controller
(Figure 4-1(b)). The most important advantage of the distributed approach over its centralized
counterpart is the excellent scalability of the system. More processor. elements can be easily and
seamlessly integrated into the system to tackle more complex problems. The scalability issue is
going to be more and more crucial as technologies continue to advance and millions of transistors

can be expected on a single die, and billions with wafer-scale system integration [99].

With the distributed control strategy, clusters of processing elements can work together on the
same task or independently take on different tasks. Without the artificial boundary imposed by the
control structure, complex system can be partitioned into sub-systems in the most natural manner.
This facilitates the divide-and-conquer approach, promotes modularity and eases programming.
Furthermore, by keeping the controller local, the instruction bandwidth bottleneck is eliminated

and branch latency is shortened.

In a distributed environment, a local controller must somehow be able to co-ordinate its action
with another local controller, e.g., by sending or receiving control information via the
communication network. A shortcoming of distributed control is the overhead due to the exchange
of the control information between the local controllers. An important kind of control information
is the synchronization signal which directs the processing elements when a task can start. Correct
system operation is ensured by synchronizing all the processing elements in the system to perform
their tasks in the correct timing sequence. This form of control overhead is often called
synchronization overhead. Synchronization issues can seriously impact system performance,
especially in large-scale parallel systems, and therefore it is an area of very active research [24]).
Another example of the control information is a flag sent by one processing element to another to

control the latter to perform a specific task.

In general, programming using a distributed control structure is more tedious than using a

53

global control structure because resources are managed by multiple independent controllers.
Resource sharing and interactions between controllers must be carefully and explicitly handled by

the programmer in order to achieve correct and efficient operation.

Another shortcoming of the distributed control structure is the limited capacity of the local
program memory due to area cénstfaints. However, it turns out this is not a very serious problem
because by targeting high throughput DSP algorithms, the opportunity for multiplexing many
operations onto the same processing element is limited, and therefore a simple controller with a
small program memory is usually sufficient. Moreover it is always possible to reduce the demand
on capacity by reassigning the operations to more processing elements at the expense of some
inefficiencies. Further discussion on this subject will be given when the controller architecture of

the PADDI-2 processing element is presented in Section 4.3.2.

Hierarchical Control

The hierarchical control structure is a compromise between the centralized approach at one
end of the scale and the distributed approach at the other end. As implied by the name, this control
structure is hierarchical: a group of controllers are controlled by a higher level controller, which in
turn is controlled by yet another higher level controller. This control structure is very interesting in
that it improves the system scalability of the centralized control and, at the same time, has less of
the control overhead of the distributed approach. This control structure is particular attractive if

the control hierarchy also matches the hierarchical partition of an algorithm.

The greatest drawback of the hierarchical control structure is its complexity. The multi-level
control hierarchy makes automatic compilation of algorithms difficult. Moreover, the controllers
on various levels are likely to have different requirements and hence different designs. The
introduction of a variety of components into the architecture can complicate hardware design by

degrading the regularity of the system.

54

If we focus the scope of our disc.ussions to single-chip multiprocessor system, a control
hierarchy with many levels is not practical. A particular interesting choice is a 2-level control
structure that functions similarly to a typical host-coprocessor system. A very useful feature
supported by such a control structure is task switching. While the low-level controllers are busy
executing instructions stored locally, the top-level controller can prepare for a new task by writing
new instructions to the program memories of the low-level controllers. Operation of the current
task needs not be interrupted if instructions of the current task and those of the new task reside in
different sections of the program memory. The top-level controller monitors the status information
provided by the low-level controller to determine completion of the current task and then issues
signals to the low-level controllers to switch to the new task. This feature is very useful especially
for handling algorithms that consist of multiple distinct phases of computations. Besides task
switching, this feature can be easily modified to accommodate exception handling and context

switching as required in a multiprogramming environment.

Conclusions

From the above discussions, it is clear that the centralized control structure is a poor choice
because of its limited scalability. Both the distributed and the hierarchical control structure offer
attractive features. We finally decide to adopt the distributed approach for PADDI-2 mainly
because the development of an efficient compiler, which is essential to rapid prototyping, is more
straightforward for the distributed case. Moreover, the uniform control structure also enhances

regularity of the architecture and therefore simplifies hardware design.

Nonetheless the capability to switch task without interruption, as described in the previous
section, is a very desirable feature for the implementation of exception handling and context
switches, etc.. Future generations of this architecture are likely to use control structures that

support this feature.

As explained previously, programming on a distributed control structure can be difficult and

§5

inl in2 inl out in2
4
Interconnection

Network

+

Figure 4-2: Direct Execution of Data Flow Graph using a network of Nanoprocessors.

tedious. In the next section, we will suggest a simple strategy to map algorithms onto distributed

processing elements to ease the programming task.

4.2.2 Distributed Data-Driven Architecture
Basic Idea

In this section, the basic idea of the distributed data-driven PADDI-2 architecture is presented.
Having decided on the distributed control structure, the key question is how to map algorithms
onto processing elements controlled in a distributed manner while minimizing control overhead
such as processor synchronization. The solution we propose is to directly execute a data flow
graph by mapping nodes in the graph onto simple processing elements, called nanoprocessors,

interconnected by a communication network, as illustrated in Figure 4-2.

A nanoprocessor is simply a hardware realization of a node or an encapsulation of several
nodes. Similar to their data flow counterparts, nanoprocessors communicate with each other via

communication channels (arcs in the graph). Execution of an operation (firing of a node) by a

= S = =
= = 23]
L2 | |Exv E exu| L&]|exu| L[&]|Exv
FSM FSM FSM FSM
COMMUNICATION NETWORK
FSM ' FSM : FSM ’ FSM
1lExu| =lExv| =lExu| ElExu
23] = 23] 3]
= = £ P

Figure 4-3: MIMD PADDI-2 Architecture Model.

nanoprocessor is data-driven, i.e., execution depends on the availability of the required operands.

This implies that some form of handshake protocol is needed for any data transfer.

Each nanoprocessor independently executes instructions stored in its local program memory.
The only way for a nanoprocessor to affect another nanoprocessor is by explicitly sending a
message (token) to the latter via the communication network. This eliminates any side-effects the
operation of one nanoprocessor may have on another, and is the key to ease of programming and
good scalability. In essence, the architecture is very much like a multiple-instruction stream
multiple-data stream (MIMD) message-passing multicomputer system, which is considered to be
the most scalable multiprocessing system of all [13], except that very simple computers and
communication network are used here. The MIMD PADDI-2 architecture model is shown in

Figure 4-3.

There are several important advantages for the architecture to support data flow semantics. It

§7

is widely accepted that a data flow graph is a natural, or perhaps the best, representation for signal
processing algorithms [63]. Real signals are naturally represented by the data streams used
implicitly by the data flow model. Moreover data flow graphs can easily expose very fine-grain
parallelism in the DSP algorithms, which we need to exploit in order to achieve high performance.
Finally since our architecture directly supports the semantics of data flow, the essential task of

developing an efficient compiler for our architecture is greatly simplified.

The application of the data-driven approach to DSP is not entirely new. Many researchers have
also discovered the elegance of this approach. In addition to the data-driven architectures
discussed in Chapter 3, a highly modular and flexible DSP processor architecture consisting of
multiple data-driven functional units was presented by Fellman in [34]. Another interesting recent
example is the data flow processor for multi-standard video codec in [61] which is equipped with a
flow graph programming tool. What distinguishes the PADDI-2 architecture most from these other
architectures is the fine granularity of the data-driven processing elements and the use of a very

flexible interconnection network.

Static Data Flow

Before discussing the PADDI-2 architecture further, the static data flow model the architecture
based on is first explained in this section. The discussions lead to the general definition of the basic

structure of a minimal nanoprocessor which can be interconnected to implement any algorithms.

Among the many variations of data flow models [1], we adopt Dennis’ classic static data flow
model [28]. A data flow program is described by a directed graph where the nodes denote
operations and the arcs denote data dependencies. Dynamic behavior due to data-dependent
iterations and conditionals is handled by the SWITCH and SELECT operators. Figure 4-4(a)
shows examples of the basic data-flow operators. The number next to an arc denotes the number of
tokens consumed or produced on each firing and is omitted for clarity if it equals one. The nodes

are enabled to fire when the required tokens are available on the input arcs. After firing, the input

e

(a) Examples of data flow operators.

o

No Internal States With Internal States
(b) Data flow graph with dynamic (c) Three equivalent Data-flow graph
behavior: a while-loop. representations.

432]: :I423

ENABLED FIRED

(d) SHUFFLE operator.

Figure 4-4: Static Data Flow Model.

59

tokens are consumed and a number of result tokens are produced on the output arc. As an example,
the SWITCH node steers the input token to either one of its output channels depending on the
value of the boolean control token. In Figure 4-4(b), a while-loop implemented using the SWITCH

and SELECT nodes is shown as an example of a data flow graph with dynamic behavior.

The arcs going in and out ot; the nodes represent physical connections called channels between
the nanoprocessors. To simplify the implementation of channels, the First-In-First-Out (FIFO)
schema is enforced on the arcs, i.e., the arcs are simply FIFO queues of bounded capacity and the
tokens must be processed in order. If improperly programmed, the dynamic behavior and the
bound capacity requirement can cause deadlocks. A detailed review of the properties of data flow

graphs related to deadlocks can be found in [63].

A very important reason for the adoption of the static data flow model and the FIFO scheme is
their simplicity. Simple hardware support such as first-in-first-out buffers and straight forward
handshake circuits are sufficient for implementing the model. By contrast, in the more general
dynamic data flow models, tokens can be processed out of order in order to expose more
parallelism. A direct consequence of this generalization is that each token must be somehow
tagged for proper identification and the hardware costs in storing, manipulating and matching of
the tagged tokens can be overwhelming. In fact, this is one of the most serious problems that

doomed the many general data flow machines proposed in the 70’s and 80’s [1].

Since data flow nodes communicate with each other exclusively using streams which are
simply ordered sequences of tokens, all data structures have to be represented as such. Some
examples of data structures commonly used in signal processing are the infinite stream (e.g.,
continuous speech) and the 2-dimensional matrix (e.g., an image block). More complex data
structures can be represented using multiple streams. Stream manipulations such as merging or
splitting can be handled by simple data flow nodes such as the SELECT node or SWITCH node,

e.g., to partition a frame of pixels into multiple blocks for parallel processing.

60

We further divide streams into two kinds: data streams and control streams. Data streams carry
data tokens, which generally represent certain signal characteristics, whereas control streams are
used for control tokens, which contain boolean-type information, e.g., the select input to a
SELECT data flow node. While the two are identical semantically, their implementations can
differ significantly. For example, compared to the control streams, more bits are likely to be used

for the communication channels carrying data streams.

A pure data-flow node does not have internal state. By allowing self-loops, a pure node can be
extended to include internal states to represent an encapsulation of several nodes. Figure 4-4(c)
shows the equivalence of the three representations. A cluster of nodes simply denotes a number of
primitive operations executed in a specific order. Thus data-flow nodes can be implemented either
spatially by a network of nanoprocessors, or temporally by executing a sequence of instructions on
a single nanoprocessor. In the latter case, the nanoprocessor functions just like a traditional Von

Neumann machine.

The FIFO schema dictates tokens be processed in order. To change the order, a SHUFFLE
node as shown in Figure 4-4(d) can be used. In the simple case, the SHUFFLE node can be
implemented using a single nanoprocessor by first storing the data in its internal buffer and reading
them out in the desired order. In general, the data has to be first stored into memory and then read

out in the desired order.

Any algorithm can be described by using only the three basic data flow nodes shown in Figure
4-4(a) [28]. Figure 4-5(a) shows the basic structures of three simple nanoprocessors, each of which
can implement one of the three basic data-flow nodes. By coalescing the three structures into one,
a minimal nanoprocessor is obtained which can implement all three basic data-flow nodes (Figure
4-5(b)). Therefore by interconnecting multiple such minimal nanoprocessors, any algorithms can
be implemented. The implementation is, however, most efficient for algorithms that are

computation intensive and require simple control, and these are precisely the characteristics of our

61

(b) without time-

O multiplexing support.

(a) Basic nanoprocessor structures to
implement the 3 basic data flow nodes. (c) with time-multiplexing support.

Figure 4-5: Minimal Nanoprocessor.

target applications. Sometimes efficiency can be gained by time multiplexing of several nodes
onto a single nanoprocessor. To support time multiplexing, a small program store is added to the
minimal nanoprocessor as shown in Figure 4-5(c). The minimal nanoprocessor is important

because it defines the simplest nanoprocessor that can support the execution of data flow nodes.

Discussion

The advantages and disadvantages of the distributed data-driven control strategy used in
PADDI-2 are summarized in this section. A very important advantage of the data-driven control
strategy is its simplicity; the only requirements are the handshakes during communications and the
checking of the availability of operands by the nanoprocessors. Synchronization of any number of
nanoprocessors is handled automatically and gracefully by the data-driven principle of execution.
The simplicity of this control strategy also simplifies the development of a compiler for the

architecture.

62

As already mentioned at the begiﬁning of this section, execution of a program in one
nanoprocessor has no side-effect on the others. By eliminating a global controller and side-effects,
good scalability and modularity of the architecture are ensured. Moreover the data-driven
handshake protocol provides a uniform interface between all the components of the architecture
which can be as simple as a smgle nanoprocessor or as complicated as a large sub-system.
Consequently, several sub-systems can simply be connected together to build a complex system
that is guaranteed to work as long as all the sub-systems are also functional. Scalability is excellent
as nanoprocessors can be integrated easily and seamlessly into a system to tackle more complex

problem.

Another important advantage is that the programming task is greatly simplified because
programmers no longer need to worry about side-effects and synchronization is handled implicitly
by the data-driven execution. Finally the control strategy keeps the controller of the nanoprocessor
local. This relieves potential instruction bandwidth bottlenecks and allows the use of long and
fully decoded instructions, resulting in a fast cycle time and a powerful instruction set. In addition,
zero-cycle branch latency as well as multi-way branching can be achieved with very little speed

penalty.

Unfortunately all the benefits mentioned above do not come for free. There is a significant cost
in hardware to implement the handshake protocol and control functions for data-driven execution.
For example, based on the prototype PADDI-2 chip to be presented in the next chapter, it is
estimated that about 18% of a nanoprocessor in terms of area is devoted to these functions. Since
the penalty is to a large extent independent of the width of the data path, obviously the area penalty
is going to decrease if the implementation uses a wide data path. A big challenge in architectural
design is to minimize the hardware overhead associated with the distributed data-driven control
strategy while retaining most of its benefits. Some hardware techniques used to reduce such
hardware overhead will be explained when the hardware design of a prototype PADDI-2 chip is

described in the next chapter.

SA
Frame Memory — | :
. +DY
j \ <o Y.Bm
[\ = o
SA\ DX NANO1 : §:ﬁy-;,-“l '
DY} _.__|NANO3
INY
counter (NX) inc(DX)
out

Figure 4-6: 2-dimensional Space Address Generator using 3 Nanoprocessors.

4.2.3 Address Generator Example

Figure 4-6 is a simple example that illustrates the mapping of data flow graph to several
nanoprocessors. A two-dimensional space address generator [101] commonly used in video
applications to read out a block of pixels from the memory is implemented using three

Nanoprocessors.

The data flow graph representing the address generator can be divided into 2 identical blocks:
one for the y-direction and another for the x-direction. Each block consists of a periodic counter,
counter(N), and an incrementer, inc(D). The parameters N and D correspond to the counter period
and the increment, respectively. The X-counter (Y-counter) counts and generates a reset signal
when the end of the line (block) is reached. The incrementor keeps incrementing the previous

address by D until it receives a reset signal from the counter, at which point it resets the address to

64

the input it receives and repeats the process égain. To provide a throughput of one address per
cycle, the counter (NANO2) and inc (NANO3) for the x-direction have to operate every cycle, but
the corresponding blocks for the y-direction can be run at a much lower rate and therefore they can

be implemented using a single nanoprocessor (NANOI1).

Using only three nanoprocessors, a programmable and generic 2-dimensional space address
generator is implemented. Both the dimensions of the addressed block as well as the address
increment can be varied as parameters. Moreover, a new address block can be generated simply by

changing the input starting address (SA).

4.3 Processing Element Architecture

4.3.1 Homogeneous vs. Heterogeneous

In this section the trade-offs between homogeneous processing elements and heterogeneous
processing elements are examined. In a DSP algorithm, a variety of operations such as additions
and multiplications are typically needed. By allowing heterogenous processing elements, they can
be optimized by targeting one or a specific set of operations, e.g., a fast parallel multiplier can be
included in processing elements that handle the multiplication operations. The solution is
especially efficient if the numbers of the different types of processing elements match the exact
requirements of the algorithms. In this case, both hardware saving as well as performance

improvement can be achieved.

Unfortunately many of these advantages are easily offset by the disadvantages. In general the
relative proportions of the different operation types vary considerably over a wide range of DSP
algorithms and therefore, more often than not, processing elements dedicated to a particular
operation will be under-utilized. For example, considering the three DSP systems described in

Chapter 2, a processing element equipped with a parallel multiplier can handle the many filtering

65

operations in the HDTV digital camera very well but the multipliers will be completely idle in the

other two applications!

In view of the rapid advances in VLSI process technology, millions of transistors can be
expected on a small die by the turn of the century and therefore the saving in silicon area, achieved
by using dedicated functions compared to general regular programmable functions, is diminishing.
Moreover the regular structure obtained by using homogeneous processing elements is much
easier to design and test than irregular structures. The ease of designing structured hardware also
implies that the designer can afford more time in optimizing the various aspects of the design, such

as speed, area and power consumption.

Furthermore, it is more efficient to dedicate hardware at run time, rather than at design time,
because program changes can be made much faster than hardware changes. Another problem is
the difficulty in designing a flexible high bandwidth communication network interconnecting
heterogeneous processing elements. Last but not least, heterogeneous architectures are nightmares
for compiler designers because it is much more difficult to conceptualize and capture the
architectural model into the compilation algorithms. Many more issues, such as the hardware
mapping and the physical placement of the various kinds of processing elements, have to be

considered.

To conclude, unless the application scope is well defined and fairly specialized, there is much
to lose but little to gain by using heterogeneous processing elements and therefore we decided to
use homogeneous nanoprocessors for the PADDI-2 architecture. The next step is to determine the
appropriate complexity of the nanoprocessors. The design considerations will be discussed in the

next section.

4.3.2 Processing Element Complexity

To satisfy the high throughput requirement, our architecture must be able to take advantage of
the parallelism inherent in most of thé target algorithms, down to a very fine-grain level. Before
we discuss the right granularity for a nanoprocessor, we would first compare coarse-grain
parallelism with fine-grain parallelism and discuss the features of the processing elements needed

to exploit each kind of parallelism.

Fine-grain vs. Coarse-grain Parallelism

Two hypothetical data flow graphs, DFG1 and DFG2, are shown in Figure 4-7 to illustrate the
differences between fine-grain parallelism and coarse-grain parallelism. Both data flow graphs

implement the same algorithm consisting of N operations. DFG1 contains very fine-grain

- -y

L4 - -9 L

0 | ! ' PE2(N) |
' 1 1 1]
) ' ' 1 1
) ' 1 1 1
) ' ! ' '
) 1 ' 1 '
1) ') 1
' 1 1] '
!] | | '
(| ! i 1
! ! ' t)

delay delay delay

o v [Ea] v], v [Ea],
'e "oe) 'og '
' o | o 1 ' o]
1 e I o ' ' e i
1 ' ! ! '
1 ' ! 1 '
1 ' 1 1 '
' ' 1 1 '
') 1 1 !
' ! 1 ! 1
- - d 1 S - e e e b

(a) DFG1 (b) DFG2
(fine-grain parallelism) (coarse-grain parallelism)

Figure 4-7: Examples of data flow graphs with fine-grain and coarse-grain parallelisms.

67

parallelism because the graph can be pipelined down to a single operation. Suppose a processor
can perform one operation per cycle. Using N processors (PE1’s), one for each operation, a

computation throughput of N operations per cycle is achieved.

On the other hand, due to the single delay in the recursive loops in DFG2, the smallest unit of
parallelism one can exploit profitably is N operations. In other words, DFG2 contains coarse-grain
parallelism. However, if all N recursions can be processed independently as shown, again a
computation throughput of N operations per cycle can be achieved by using N processors (PE2’s),

one for each loop.

Despite the identical throughput performances, the architectural requirements of PEI
exploiting fine-grain parallelism are very different from those of PE2 dealing with coarse-grain
parallelism. The control unit of PE] can be minimal since it is dedicated to a single operation
whereas PE2 must have fairly a complex control unit to execute the N operations sequentially.
Moreover, the execution unit of PE2 must be powerful enough to perform all N operations, which
may be of a large variety. At first glance, it seems that a similar requirement is imposed on the
execution unit of PE1 if heterogeneous processing elements are not allowed. However, if the
complex operations can be decomposed into simple operations and processed in a pipelined
fashion by using several processing elements, the same throughput can still be achieved by using
PE!’s equipped with a very simple execution unit. Although more PE1’s are needed, the
complexity of PE1 can be much less than PE2 and the overall hardware saving can be tremendous

especially if the majority of the operations are simple.

In short, both the control unit and the execution unit of PE1 can be simpler than those of PE2
without performance degradation. We can therefore conclude from this example that a fine-grain

processing element is more appropriate for exploiting fine-grain parallelism, and vice versa.

Simple Nanoprocessor

In multiprocessing, the choice of the complexity of the processing elements has a big impact
on the efficiency of the architecture. If the processing element is overly simple, more of them are
needed to achieve a certain throughput and more pressure is put on the interconnection network
design. On the other hand, if the prgcqssing element is too complex, a good portion of it may be
under-utilized, wasting valuable silicon area and often resulting in a slower processor because of
the overhead. Obviously, the ideal processing element depends heavily on the particular
application at hand. One compromising solution is to use heterogeneous processing elements.
However, as pointed out in Section 4.3.1, the problems associated with the heterogeneous

resources are likely to more than offset the advantages.

To achieve high performance, our architecture must be able to take advantage of the
abundance of fine-grain parallelism inherent in the target DSP algorithms. As we have discussed in
the previous section, fine-grain processing elements are more suited for exploiting fine-grain
parallelism. As an example, let us consider an algorithm consisting of roughly the same number of

multiply operations and add operations. The following assumptions are made:

* The size of a processing element with an adder is 1 unit area.
* The size of a processing element with a parallel multiplier and an adder is 2 area units.

* A multiplication operation can be performed using four adders in a pipélined manner, achieving

the same throughput.

Suppose there are N multiply and N add operations. A total of 2(N + N) = 4N area units is
needed using processing elements with parallel multipliers, versus (4N + N) = SN area units when
using processing elements with adders only. This example shows that even for algorithms with a
large proportion of multiply operations, a system built from processing elements with parallel
multipliers is only slightly more efficient, in terms of area, than a system consisting of simple

processing elements. However, even in algorithms dominated by multiply operations, many

69

miscellaneous operations such as Address generation, data routing and simple arithmetic
operations are still needed. Moreover, many algorithms require none or a very small number of
multiply operations. In these cases, the simple processing element will surpass its more
complicated counterpart in terms of area efficiency because the built-in parallel multipliers are
mostly wasted. Therefore, in general, systems using simple processing elements as basic building

blocks are likely to be more area-efficient.

We thus believe that more efficient use of hardware and flexibility are achieved by defining a
simple homogeneous nanoprocessor architecture. More complex functions can then be performed
by configuring these basic units to work in parallel. In addition, by keeping the nanoprocessor

simple, both cycle time and layout density can be improved.

4.3.3 Instruction Set Architecture

The instruction set architecture of PADDI-2 is presented in this section. The availability of a
local instruction store has a strong influence on the design of the instruction set architecture. Since
bandwidth for instruction fetching is no longer an issue with a local store, a long instruction word
can be used instead of multi-word instructions, which hurt performance. Moreover, a horizontally
decoded instruction format can also improve speed by simplifying instruction decoding. Thanks to
the small size of the instruction store, the decoded instruction format can also save area by

eliminating some decode logic.

Our design philosophy is to follow the very popular idea based on Reduced Instruction Set
Computer (RISC). Only simple instructions that take one cycle to execute are provided. Complex
instructions are excluded because they either demand expensive hardware support in the execution

unit, or require multiple cycles to execute, degrading the performance.

A rich and powerful instruction set for PADDI-2 is obtained using a 40-bit long instruction.

The PADDI-2 instruction set includes all the basic arithmetic instructions and logic instructions.

70

Extension to multiple-word operands is handled by arithmetic instructions with carry. In addition,
a Select instruction is provided to speed u§ the Maximum (MAX) and Minimum (MIN) operations
frequently used in DSP algorithms such that the MAX/MIN operation can be executed by a
Subtract-Select instruction pair in two cycles. An alternative is to add hardware to the execution
unit to perform the MAX and MIN operations in a single cycle. Although the hardware cost is
small (just a multiplexor), the modification is likely to impact the cycle time because the result of

the comparison used to control the multiplexor is usually on the critical path.

Since multiplications arise very frequently in DSP algorithms, especially in filtering
applications, performance can often be improved by providing some form of hardware support for
multiplication. However, providing a multiplication instruction requires a parallel multiplier. As
we have argued in the previous section, a complex nanoprocessor is less efficient in terms of
hardware utilization and flexibility than a simple nanoprocessor. Moreover, in many applications
such as filtering and low-level image processing, the coefficients are often set up in such a way that
a simple execution unit with support for add-shift operation suffices. In situations where the
execution of the multiplication operation is not time-critical, it can also be performed iteratively
by simple add-and-shift operations. Chen has collected and analyzed the operator statistics of a
suite of high throughput DSP algorithms in his thesis and found that, indeed, the parallel multiply
operations, which are necessary for performance, account for less than 10% of the total operations

[27].

As a compromise, we provide two instructions: Mstart and Mstep, to enhance multiplication
throughput. The Mstart and Mstep instructions implement a single iteration of the sequential
second-order booth multiplication algorithm such that a 16b x 16b multiplication can be

implemented iteratively in 8 cycles using a processor.

In an effort to simplify the execution unit, only a 2-bit bi-directional shift operation is

supported. However, in some applications shifting of more bits is useful, e.g., to multiplex two 8-

71

bit pixels onto an /O bus to reduce bus bandwidth.

It is important to point out that even though only primitive instructions are provided for
multiple-word arithmetic, MAX/MIN operations, multiplication and multiple-bit shifting, all these
operations can be pipelined to achieve a throughput of one operation per cycle by using more

Nanoprocessors.

A PADDI-2 instruction consists of 5 fields, each of which is orthogonal and controls the action
of a different hardware unit. For example, the next program counter field (NPC) is in charge of
resolving conditional branches and the generation of the next program counter. A complete list of
the PADDI-2 instructions, instruction encoding and their mnemonics can be found in Appendix
A.2 and detailed descriptions of the PADDI-2 instructions will be given in Section 6.2 when the

PADDI-2 assembler language is introduced.

The PADDI-2 instruction set is much more general and versatile than that of the first
generation PADDI-1 [27], especially in the handling of logic operations, multiplications and
branching. Nonetheless, some enhancements are worth considering such as support for sign-
magnitude operations, multiple-bit shift, and higher order Booth multiplication step. These

instructions will improve performance, but at the expense of hardware complexity.

4.4 Communication Network

In order to exploit the fine-grain parallelism available in many DSP algorithms, a large
number of processing elements have to be used and interconnected by a high bandwidth
communication network. The large cost in area dictated by the bandwidth requirement presents a

formidable challenge in the design of the communication network for PADDI-2.

In an effort to reduce the area overhead, many array architectures provide rather restrictive

interconnection networks such as a mesh network, which only allows neighborhood connections.

72

As we have already discussed in Section 3.3.2 where several array architectures were analyzed,
the restrictive communication network limits the scope of the application. The lack of a flexible
communication network also put a tremendous burden on the compiler to generate a good

processor placement scheme.

Some array architectures implement non-local communications by routing the data
successively through processing elements. A direct consequence of this approach is that the
compilation process is complicated because the communication latency can vary a lot depending
on the placement of the communicating processing elements. For algorithms with irregular
communication patterns, this approach usually results in very long communication latency and
poc;r processor usage. For systems with recursive structures, the long communication latency can
lead to performance degradation. Furthermore, I/O to the interior of an array can be very

inefficient.

Flexible Static Network

To overcome the above inefficiencies, our architecture provides a flexible high bandwidth
communication network that can be reconfigured to match the communication patterns of a wide
range of algorithms. Some examples of data communication patterns such as pipelined
communication, mesh communication, broadcast communications, and etc., are shown in Figure
4-8. Sometimes, even though the intrinsic communication pattern of an algorithm is simple, the
implementation may still demand a more flexible communication network. For example, if the
linear system in Figure 4-8(a) involves multiple-word operations which are assigned to multiple

processors, a mesh communication pattern as shown in Figure 4-8(b) is needed.

Motivated by the static interconnection used in connecting nodes in data flow graphs, we
provide simple static point-to-point communications between nanoprocessors called channels,
which are configured at system start-up and remain fixed at run-time. The point-to-point

communication eliminates hardware overhead to support data routing. The run-time static design

73

Processor (P)
®

(a) Pipelined communication. G

{c) Broadcast communication.

®
o
@)

(b) Mesh communication. (d) General communication.

Figure 4-8: Examples of data communication patterns.

can also improve speed of the network because the large transistors typically used in implementing
switches in the network do not have to switched every cycle as in a dynamic network. By keeping
the communication network simple, valuable silicon area can be devoted to provide more channels

to increase the communication bandwidth.

The lack of dynamic interconnection does not impose serious restrictions on the architecture.
As we have pointed out in Section 4.2, nanoprocessors are usually dedicated to the processing of a
few operations. Therefore channels are likely to be saturated with data and the opportunity for
channel sharing is limited, especially for algorithms with high data rate. This inference is
confirmed by a study on the interconnection patterns of a set of high throughput, high sampling

rate DSP algorithms by Chen [27]. The results are shown in the bar chart in Figure 4-9, which

74

Channel Type Distribution
80%

70% —
60%
50% —
40% —
30%
20%
10%

1112 13 T4 15 21 156 41
Channel Types

(#source processors : #destination processors)

Figure 4-9: Channel type distribution for a set high throughput DSP algorithms [27].

records the frequency of occurrences for different channel types. The channel type is represented
by N:M, where N is the number of source processors and M is the number of destination
processors sharing a channel. Any channel types other than the 1:1 type are shared channels. The

results show that almost 80% of the channels are not shared.

Moreover, as will be shown in the next chapter, a nanoprocessor in our prototype PADDI-2
chip has a fan-in of 3 and a fan-out of 2 and therefore any channel type N:M with N less than 3 and
M less than 2 can be handled by a single nanoprocessor. More complex channels which account
for less than a few percents of the total can be emulated by programming nanoprécessors to
implement the SWITCH and SELECT nodes. Figure 4-10 shows examples of several complex

dynamic interconnect patterns realized by the SWITCH and SELECT operators.

The run-time static network design is chosen because it optimizes the network design for the

majority of cases where channels are not shared and suffers from some inefficiencies only in the

75

= N 2
g g g
o~ § o g 4 g
conu—o] -E (3] -E (3] -E (]
inl —{-5 -5 -5
- out ‘a’ E
in2 —pi 2 inl ——p=8 w out

(a) 2-to-1 stream-merger. (b) N-to-1 stream-merger.

= a
[iy
: 3 ¢ E
<] ©
control j —T
T T)
SF— outl }_’" oF
in =) 5 § outN
%n-—b out2 In 7y 7Yy ‘ >

(c) 1-to-2 stream-splitter. (d) 1-to-N stream-splitter.

Figure 4-10: Examples of Dynamic Interconnection patterns
implemented using SELECT and SWITCH operators.

infrequent cases where dynamic interconnections have to be emulated.

To enhance the efficiency of the communication network, data broadcasting, which is

frequently used for data distribution when exploiting spatial concurrency, is supported. This

feature also helps to eliminate the need for some dynamic interconnection patterns.
Hierarchical Network

To supply high bandwidth and flexible interconnect, many multiprocessor architectures, such

as the Philips VSP and PADDI-1 described in Section 3.3.2, use a cross-bar network or variants of

76

it. Although full connectivity is provided between any inputs and any outputs, the area complexity
of a cross-bar network, which grows quadratically with the number of processing elements, is very
large. For example, about as much as 18% and one-third of the die area are consumed by the cross-
bar networks in the VSP chip and the PADDI-1 chip, respectively, even though these chips contain
only a moderate number of processing elements. More importantly, the quadratic growth seriously

limits the scalability of the network.

To reduce the area cost, we exploit the locality of communications inherent in the DSP
algorithms. Even though hardware mapping and processor placement are very difficult problems
for compilers, it is fair to assume that a reasonable compiler will be able to place communicating
nanoprocessors physically close to each other most of the time. Consequently, local

communications between nanoprocessors are far more frequent than distant communications.

To exploit this fact, a 2-level hierarchical communication network is proposed for PADDI-2 as
a compromise between interconnect flexibility and area cost. The basic structure of the network
design is shown in Figure 4-11. The level-1 network takes care of communications within a cluster
containing several nanoprocessors and communications between the clusters are handled by the
level-2 network. While the level-1 network can efficiently handle pipelined processors and local
communications, the level-2 network can be used for generally irregular communications between
nanoprocessor clusters. Compared to a cross-bar design, the hierarchical design is more area
efficient with only a small penalty in interconnect flexibility. Moreover the design is highly
scalable as more levels of network can be easily added to accommodate more nanoprocessors.
Detailed descriptions of the VLSI design of the communication network will be given in the next

chapter.

71

nanoprocessors

acluster containing 4
Nanoprocessors

Level-1 Networks

Figure 4-11: Basic Structure of the 2-level PADDI-2 Communication Network.

4.5 Memory Architecture

By allowing internal states in the data flow nodes, memories can be easily incorporated into
the static data flow model and subsequently the PADDI-2 architecture. A memory node is just like
any other data flow node except that it has a very large number of internal states. Hence a clean
programming paradigm is preserved as every component of the architecture has a corresponding

representation in the data flow domain.

As shown in Figure 4-12(a), a memory node consumes an address token and a control token
specifying either a read or write operation. For a read operation, it generates an output token
representing data stored at the location pointed to by the address token. For a write operation, it
consumes an additional input data token and simply updates its internal states by writing the input

data to the memory location addressed.

78

wr data wr addr rd addr
wrdata addr F T T _F
l l CSWI’TCH SELECT SELECT
/——. /e [+]] A
riw w MEM
Bo. 100-pl5 MEM.G | ri/wT—ls MEM-1" . bank
l) select
I
rd data
(a) A memory node. (b) Swapping memory banks.

Figure 4-12: Memory in the Static Data Flow Model.

Memory nodes, together with the SWITCH and SELECT operators, can create many powerful
shared memory structures. An example is the swapping memory banks shown in Figure 4-12(b).
Depending on the bank select input, data can be written into one memory bank using one address
sequence while data are being read from another memory bank using another address sequence.
After all the data are written or read, the bank select input is toggled to switch the role of the two
memory banks. This memory organization is often used in video processing, e.g., to buffer

successive pixel frames.

Figure 4-13 shows the PADDI-2 architectural model incorporating memory elements (ME’s)
that are connected directly to the communication network and follow the same data-driven
handshakes protocol as the nanoprocessors. To simplify the design, an ME is dedicated
exclusively to memory read and write operations and therefore does not require an instruction
memory. Any computations associated with memory access such as address generation are

handled by the nanoprocessors.

79

= P
= =
E EXU o000 E EXU ME 00 ME
FSM '
4 L 4 L 2

COMMUNICATION NETWORK

h

Y 4 y
FSM FSM

EXU| o000 |

EXU| | ME |eee| ME

IMEM

Figure 4-13: PADDI-2 Architecture Model with Memory Elements

4.6 1/0 Architecture

To achieve high overall performance, a system must balance the computation power and the I/
O bandwidth of the system to prevent either one from being the performance bottleneck. To
sustain high throughput, the PADDI-2 architecture must be able to provide high I/O bandwidth to
feed data into and retrieve results from the many fine-grain nanoprocessors on-chip. Besides
performance, the understanding of the I/O requirement is very important because /O bandwidth is
very costly in terms of packaging and high speed I/O design is a very difficult problem especially
on the board level [52].

The exact I/O bandwidth requirement varies depending on the system partitioning and the

nature of the DSP algorithms. In general, the I/O requirement is more stringent for high data rate

applications such as the high pixel rate HDTV digital color camera system described in Section
2.3. Chen in his thesis [27] examined the relation between the computation requirements and the I/
O requirements of a set of high throughput DSP algorithms!. A geometric mean of about 4 MOPS/
MByte/sec was reported. As will be discussed in the next chapter, a prototype PADDI-2 chip with
48 nanoprocessors can provide 2400 MOPS peak performance at the clock frequency of 50 MHz.
According to Chen’s findings, an /0 bandwidth of about 600 MByte/sec is needed. Using a 208-
pin package, our PADDI-2 chip provides eight /O buses of 16 bits width at the I/O rate of 50
MHz. This is equivalent to an I/O bandwidth of 800 MByte/sec, one-third more than the

requirement obtained by Chen.

It is clear that as VLSI process technology advances, more nanoprocessors and therefore
higher computation power will be available from a single silicon die. In order to prevent /O
bandwidth from limiting the performance, techniques on all levels such as communication-based
hardware partition, multi-chip module packaging, and high-speed interchip signaling [69] must be

applied.

In addition to the eight data /O buses, a PADDI-2 chip also provides eight companion control
1/0 buses. The only difference between a control /O bus and a data I/O bus is that the control bus
is only 1 bit wide as opposed to 16 bits for the data bus. The control bus can be used to transfer
boolean information between chips. As an example, a control bus can be connected to an off-chip

static memory as read/write control.

Because the data-driven principle of execution is used throughout the architecture,
interconnection between all architectural components, such as nanoprocessors, memories or
PADDI-2 chips, are all handled consistently by the same data-driven handshake protocol. The

uniform interface greatly simplifies I/O design.

1. This is the same benchmark set used in the study of the interconnect characteristics discussed in Section 4.4.

81

Two alternative /O designs as depicted in Figure 4-14 are considered. The first design handles
I/O using specialized I/O processors called IOP’s (Figure 4-14(a)). An IOP functions as the
middleman handling communications between the on-chip nanoprocessors and an off-chip
component which, for example, can be an IOP on another PADDI chip or a memory module. Data
are first sent to the IOP via the on-chip communication network before being transferred off-chip.
The IOP manages the buffering of data and the handshake interface signals. The advantage of this
design is that it is very general. All IOP’s are accessible by all nanoprocessors via the
communication network. The disadvantage is the long off-chip communication latency; data sent
from a nanoprocessor have to go through two IOP’s before reaching another nanoprocessor on
another chip. Although the role of an IOP is very dedicated and therefore its design can be simple,

it still requires significant design effort and consumes area.

The second design eliminates the need for a specialized IOP by modifying an ordinary
nanoprocessor slightly to handle /O functions. These augmented nanoprocessors called NIOP’s
are typically assigned to nanoprocessors located near the corners of the array as shown in Figure 4-
14(b). The greatest advantage of this approach is its simplicity. Only minor modifications are
needed for the NIOP’s to make the handshake logic for on-chip communications work for off-chip
communications as well. Moreover, latency of off-chip communications is reduced substantially
by eliminating the intermediate IOP’s. Unfortunately the introduction of NIOP degrades the
homogeneity of the nanoprocessor array. Despite its resemblance to a regular nanoprocessor, an
NIOP is very different as far as I/O functions are concerned. Processor placement is also more

complicated because only the NIOP's can perform I/O.

Both approaches have their pros and cons. We finally decide to adopt the NIOP approach

because it improves the off-chip communication latency and requires very little design effort.

82

10P 10P
4—»% § <—p>
PN :9_" ke—p>
A L
<
Ly
10P 10P
nanoprocessors I i Level-1 Network
(a) Use Dedicated I/O Processors (10P).
NIOP NIOP NIOP NIOP

NIOP NIOP NIOP NIOP

F R Pl

(b) Use Augmented Nanoprocessors (NIOP).

Figure 4-14: PADDI-2 /O Architectures.

CHAPTERSS

PADDI-2: VLSI Circuit Design

The architectural design of the PADDI-2 architecture was presented in Chapter 4. As a proof
of concept and to verify the effectiveness of the architecture, a prototype PADDI-2 chip with 48
nanoprocessors was implemented. The hardware design of the prototype chip will be discussed in

a top-down manner in this chapter.

5.1 48-Nanoprocessor Prototype Chip

A block diagram of the 48-nanoprocessor prototype chip is shown in Figure 5-1. The chip
contains 48 16-bit nanoprocessor interconnected by a 2-level high bandwidth communication
network. The nanoprocessors are organized in two arrays, each of which contains six clusters of
four nanoprocessors. As described in Section 4.6, the eight nanoprocessors at the corers of the
nanoprocessor array can also serve as I/O processors to handle off-chip communications with
either other PADDI-2 chips or static RAM’s without any external glue logic. The eight 16-bit /O
ports provide large bandwidth needed for sustaining the high computation throughput. Two ports

can be parallelized to provide 32-bit /O if necessary.

83

Uto I&O I’? Lo 16 x 6 switch matrix
P1 [P5]| [P9[Pi3] [P17] —P%l—
P2 | P6 | [Pi0[P14| [PI8|P22]) 4-PE Cluster
P3 [P7 | [PLL[PIS| [PI9|P23 5] [Ris
6x16b LPA 1 P8 | [P12[P16] [P20]|P24] P45
e M i BN SH|SK
g 2
Level-2 E E P44
etwor ¢ ¢
16 x 16b = <
x e RZ[AE

47

”1
¢
a
V-
+—>
[

il G

e B R |
30|) 42 | P46 ~
P27|P31| [P35[P39| [Pa3[Pa7|™ " | - Pt

28 | P32] [P36|P40] [P44|P48 L
_I;O 1/¢0 yto 1;0 Level-lvNetwork

Figure 5-1: Block Diagram of 48-Nanoprocessor PADDI-2 Chip.

The chip has 208 pins including 170 utility pins and 38 supply pins. It contains 600K
transistors and measures 12 mm by 12 mm and is packaged in a 208-pin ceramic pin-grid-array
package. Running at 50 MHz, the prototype chip provides 2.4 GOPS peak performance and 800
MBytes per second /O bandwidth. The micrograph of the prototype chip is shown in Figure 5-2

and a complete pin list can be found in Appendix A.1.

The chip was implemented using a 3-metal 1-um CMOS process technology but only 2 layers
of metal were used in the design in order to maintain compatibility with other process
technologies. Being a scalable CMOS process, the design rules for the interconnect layers are very
conservative. This has a big impact on the layout density of the chip because the design is mostly
interconnect-limited. It is clear that utilizing the third layer metal not only can enhance the design
of the communication network but also greatly increase the layout density of the chip. On the

bright side, the process offers fast devices with effective channel lengths in the 0.8 pum range.

(-

A -

R rreler

SR E rcei ey

EErEriEr eI SR r E R I

il v 1 B o B 1 e S Tt o I e B e B e B e T

dee

o

i
! g m
TR NN VG AT a S A wan ey ag s ol

Nanoprocessor PADDI-2 Chip.

Figure 5-2: Micrograph of 48

5.2 Nanoprocessor Design

Figure 5-3 shows the block diagram of a nanoprocessor consisting of an execution unit and a
control unit. The execution unit contains a 16-bit ALU which performs arithmetic and logic

operations and one 2-word data buffer (DQ;) for each of the three inputs.

Data path widths of 12-bit, 16-bit and 32-bit were considered. If the precision is not needed, a
large width can potentially worsen performance by slowing down the cycle time and degrade
hardware utilization. On the other hand, if the width is too small, a single operation has to be
broken up into multiple operations, thus lowering throughput and/or increasing hardware demand.
While a width of 12-bit is sufficient for most image and video algorithms, given the usual 8-bit
representation of video data [43], 24-bit precision is typically required for quality audio

applications [107]. We finally decided upon a 16-bit architecture as a compromise. Higher

scan chain

[}
1
1
]
]
!
}
1
N
1
1
[}
]
]
]
I
!
I
1
]
1
|
|
L}
|
1
|
|
|
1
1
~—~——
1
1

N s s U e o SR o L e e At A 1 DA 1 il AT T TR gw

Y - : =)
[DQy] |DQ, | [pQ,] :E‘% q] Ctrl Unlt

=
]
b

Ll >
=

’

- — e =

16b-ALU (8|l S | 3

Level-1 Data Network
Levei—l Ctrl Network

F— = = = = = ——
"
d

Figure 5-3: Block Diagram of PADDI-2 Nanoprocessor.

87

precision operations are performed using more nanoprocessors. Performance is not necessarily

sacrificed if the multi-word operation can be pipelined and it is not part of a recursive bottleneck.

A detailed block diagram of the execution unit is shown in Figure 5-4. The ALU can execute a
Conditional-Select instruction to speed up the MAXIMUM and MINIMUM operations often used
in signal processing. Moreover, it is equipped with a Booth decoder to handle a modified Booth
multiplication step instruction such that a 16-bit by 16-bit multiplication operation can be
performed in eight cycles iteratively using one nanoprocessor or at 50 MHz rate by pipelining
using eight nanoprocessors. The ALU is based on a fast and area-efficient carry-select adder with
optimized block sizes. As shown in Figure 5-5, the block sizes of 3, 3, 4, 6 are chosen to minimize
the total propagation delay by matching the propagation delay of the carry output of the individual
block with the propagation delay of the global carry signal. The polarities of the inputs at each bit
position are carefully chosen and dual complementary carry chains are used to avoid unnecessary
signal inversion in the critical path to further enhance speed. The results of the critical path SPICE
simulation of the carry select adder are shown in Figure 5-6. The worst case propagation delay of

the carry output signal and the sum output signal are 5.3 ns and 6.3 ns, respectively.

The data buffer can be configured as a simple data queue or as a small random-access register
file. When configured as a queue, the data buffer functions like a 2-word First-In-First-Out (FIFO)
buffer. Data from the communication network are written to the tail of the queue and an instruction
specifying the queue as its source operand will dequeue the data from the FIFO. An instruction can
also use the FIFO as source operand but keep the data in the FIFO for reuse by the subsequent
instruction. Hardware pointers automatically keep track of the status of the FIFO’s. The
enqueueing and dequeueing operations are stalled when the FIFO becomes full or empty,
respectively. Inputs to the data buffers can be controlled by the scan chain to preset the contents of
the registers, e.g., iteration bounds or filter coefficients, at system start-up. When used as a register

file, each of the two registers in the buffer can be specified as source operand by an instruction.

LEVEL-1 COMMUNICATION NETWORK

DO®

l y v l y l
DQg 7 DQ; J DQ; I
R1 R3 RS
R2 R4 R6
y l A h i y y r_
n_ / Y
F— 1 b 1]
‘a b 3LSB’s|
x| © .
EXU B
exu_out b_bypass a
F— 1 b] b |

VA VA VA

v v JV

Figure 5-4: Block Diagram of Nanoprocessor Execution Unit.

- s em e e e d

i +-{xor] [muxtp+—{ xor] [mucdo+—{ sor] [muxtp+—[xor] [moxg+—{ xor] [muxh+—

N DS S P L S DS S B S !
So S S S, S
as b a, b, a b a; by a by dual carry
B e e

:' ------------ 7- ittt Sty wiby (odiaddidl adind] il g (ol (el ddd -

00—l D- D D- D D—1—

l:—— C - C ° C . C D C *on ol

[QPR R

[}
+fmor] [muxd—] xor | [muxtp+—{ sor] [muxdb+—{ sor] [moxtp+—{ xor] [muxz~
[} [}

(S RS Sl SRS S DSOS S DS Sl U
S S, S, S S,
8, by a, b, a; b, ay by a,, by a5 bys
S O T O OO I OO I
4 1 1
00— D D F D D-
U
1— C D- C D- C D~ C D C D- C D—t—

-
! I
| !

.
! [}
! |
| |
[|

:
! |

4

y
! [
| [
! !

R L R R]

R QRN NETI [R
U (RN RN QDI N g

wor] [max3b4—{or] [mor [sor] [4—[ror][4
1

[}
..-.I...----.A.-- crrcrmdemdcccnndencdlaercrc b d e b a—a

slo sll sl? sl) sll sIS

>

Figure 5-5: Block Diagram of 16-bit Carry-Select Adder.

2= -ro<
w
o

Figure 5-6: SPICE Critical Path Simulation of 16-bit Carry-Select Adder.

Three output connections to the Level-1 communication network are provided: two output
connections are needed in order to implement the SWITCH node and the third connection is
specifically provided to support pipelined implementation of the multiplication operation using
multiple nanoprocessors as described in Figure 5-7. To facilitate neighboring communication and
reduce network bandwidth demand, direct connections between neighbors are implemented

without access to the Level-1 network.

The local controller contains a 40-bit by 8-instruction program store, a 3-bit program counter,
two control queues for buffering the control streams and glue logic for decoding of control signals.
Similar to the data buffers, the instruction store is initialized using the scan chain at start-up. The
40-bit horizontally decoded instruction simplifies the decode logic and improves cycle time. The
program counter points to the next instruction to be fetched and can be modified depending on the
status of the ALU or the control streams (CQ;) to implement two-way branch with zero-cycle

latency. The nanoprocessor is stalled if any of the required operands (data or control tokens) are

91

EXUO
partial_sumO B shifted_CO
EXU1
partial_sum!l B shifted_Cl1
EXU2
partial_sum2 B shifted_C2
EXU3
1 Refer to Figure 5-4
for details.
A=BxC

Figure 5-7: An example of pipelined implementation of multiplication.

not available or if any of the output channels are blocked.

A simple two-stage pipeline (Fetch and Execute) is used to speed up cycle time. The
instruction and operands are fetched from the instruction store and data buffers respectively in the
Fetch stage and the operands are processed by the ALU in the Execute stage. All instructions take

one cycle to complete.

5.3 Communication Network

The hardware design of the communication network of the PADDI-2 prototype chip is
presented in this section. As discussed in Section 4.4, the design is very challenging due to the

high flexibility and high bandwidth requirements imposed by the architecture. To trade off

92

flexibility in interconnection with area cost and cycle time, and to exploit the locality of

communication, a design using a 2-level hierarchical network is adopted.

An overview of the basic structure of the two-level communication network has been shown
in Figure 5-1 and more detailed description of the Level-1 communication network is given in
Figure 5-8. The Level-1 network consisting of six 16-bit data buses and four 1-bit control buses is
used for interconnecting 4 nanoprocessors within a nanoprocessor cluster. To save area, the
network is laid out directly on top of the execution unit of the nanoprocessor as data path feed-
throughs in second-layer metal. In the design of the prototype chip, the number of buses in the
Level-1 network is constrained by the width of the execution unit. If a process technology with
three routing layers was used, at least eight buses in the Level-1 network could be accommodated

without expanding the width of the execution unit.

The basic structure of the 16 x 6 switch matrix in the Level-2 communication network is
shown in Figure 5-9. The level-2 communication network consists of 16 data buses and 8 control
buses and handles traffic between the 12 clusters. To take advantage of the fact that local
communications are far more frequent than distant communications, break-switches as shown in
Figure 5-1 can be opened to break up a bus (track) into a few buses of shorter lengths, hence
increasing the effective number of buses in the network without area penalty. To prevent the delay
in the communication network from dominating the cycle time, a channel can go through no more
than one closed break-switch in the Level-2 network. This design is similar to the area-efficient

interconnect matrix design in [107] except that the buses there are physically cut opén.

Broadcasting is supported by the network to reduce demands on point-to-point
communication channels and to facilitate exploitation of data parallelism inherent in many DSP
algorithms. The broadcasting and the data-driven mechanism is efficiently supported by
implementing the handshake signal (HS) associated with each bus as a dynamic WIRE-AND gate

as depicted in Figure 5-10. Data transfer is completed only if HS remains high at the end of the

93

To Level-2 Communication Network

r £SNQ_[0NIU0D
7snq [onuod
|snq” jonuod
osnq” jonuod

osnq ejep
|snq ejep
7snq eep
£snq ejep
pysnq eep

. gsnq ejep

PO

Pl

P2

i i i A

P3

Figure 5-8: Level-1 Communication Network.

To Level-1 Communication

it L 4 l 4L - -

- ol <9 -
A :

8x - ¢ -
dalt:b) .- ? . 4 % l — -
--—— *— --

-- *—o -—9 --

\ - ——— *—e --

,-- *-—--

.-_. ”H _-..-

SR S X K 8
™
) P, ._?_.._

-- —— ;
ce——t 1 —e --
st’l‘alt:b < -:..._' -9 1 ’ 4 T -:-
+—4 4 + -

AT T }

To Level-1 Communication

Programmable
switches

Figure 5-9: Switch Matrix between Level-1 and Level-2 Communication Network.

95

e sender e receivers

')
! .

B s
1 ena ~ |- coa :
: send_readyB - |- ena |- recv_readyB1 :
I AU a2 N RS SN S :

Regener{tive Buffer ! s
]

Level-2 Network

Programmable switch |- ena |- recv_readyBN

Figure 5-10: Dynamic WIRE-AND Handshake Circuit supporting

evaluation phase, i.e., the sender and all the receivers are ready. Special attention is given to the
spacing of the HS lines in the layout and detailed SPICE simulations were performed to prevent
capacitive coupling between neighboring HS lines from causing false discharge. A regenerative

buffer is inserted between the two levels of the interconnect network to improve speed.

Switches in the network are implemented using N-channel devices only to save area and to
reduce capacitive loading on the bus. This results in a long low-to-high delay, which is addressed
by pre-conditioning the data buses to high before driving data onto the bus. Communications
through the network take 1 clock cycle uniformly regardless of the positions of the source

nanoprocessor and destination nanoprocessor(s).

Figure 5-11 shows the results of SPICE simulation of the propagation delay through the 2-
Level communication network. The transferred data propagates from a Level-1 network to the

Level-2 network before reaching the destination Level-1 network in another cluster. The total

EPICE SIMULATION OF COMMUNICATION NETWORK 26-JANDY B8:51':68

6.0
4.780
4.50
4.250
9.0
3.760
3.850
32.250
3.0
2.750
2.50
2.260

Z=T" =ro<

CK Level-! Level-2 Level-1
(source) (destination)

Figure 5-11: SPICE simulation of the propagation delay of the
PADDI-2 communication network.

propagation delay is 10 ns which is fast enough for a transfer rate of 50 MHz using a 66% duty-

cycle clock.

Using a compact layout style, the size of the Level-2 communication network is limited only
by the pitch of the second-layer metal. The area efficiency is evident from the fact that the Level-2
communication network takes up only 17% of the total core area on the PADDI-2 chip. Details of
the configuration of the communication network will be covered in Chapter 6 when examples of

the mapping of several DSP algorithms onto the PADDI-2 chip are presented.

97

5.4 Scan Unit

The functionality of the PADDI-2 chip is not defined until the instruction stores of the
nanoprocessors are initialized and the communication networks are configured. The scan unit is
the on-chip hardware unit responsible for programming or configuring the PADDI-2 chip at

system start-up. Its primary functions are summarized as follows:

* initializing the contents of the instruction memory of each nanoprocessor;

* establishing communication channels between nanoprocessors by configuring the programma-
ble switches in the communication network;

* initializing the program counters that point to the first instructions to be executed by the nano-
processor;

* configuring the direction of data flow (input or output) for each I/O nanoprocessors (NIOP’s);

¢ configuring whether an I/O port is connected to another 1/O port of a PADDI-2 chip or a mem-
ory;
¢ presetting the contents of the data buffers in each nanoprocessors;

¢ facilitating testing and debugging by capturing the inputs to the data buffers of each nanopro-
cessors, which can later be scanned out for observation.

The total length of the scan chain in the 48-nanoprocessor chip is 7464, with 143 scan flip-
flops in each of the 48 nanoprocessors, and 50 scan flip-flops in each of the twelve clusters for
configuring the communication patterns between the clusters and the Level-2 communication

network.

Since the PADDI-2 chip is programmed only once at start-up, a 4-bit serial scan bus is used to
conserve valuable pins for data /O and reduce area overhead imposed by the routing of a parallel
programmable bus. The 4-bit serial bus interface is very similar to the IEEE P1149.1 JTAG serial
scan interface mechanism [54]. It consists of a bus enable signal, a mode control signal for
specifying the various modes of operation and an input data line and an output data line for

transferring data to and from the on-chip scan chain. Three modes of operation: SCAN, UPDATE

98

and SINGLE-STEDP, are supported.

The SCAN operation is used to preset the contents of the scan chain by serially shifting data
into the scan chain using the input data line. The same operation can also be used to shift out the

previous contents of the scan chain for testing and debugging.

Once the contents of the entire scan chain is set up, an UPDATE operation can be issued to
transfer the contents of the scan chain to the instruction stores and data buffers. The write
addresses of the instruction store and data buffers are specified in each nanoprocessor by the
program counter and the write pointers which are also parts of the scan chain. All together, eight

pairs of SCAN and UPDATE operations are needed to initialize the eight-word instruction store.

The SINGLE-STEP operation is implemented to assist the tedious tasks of testing and
debugging the complex PADDI-2 multiprocessor chip. After the PADDI-2 chip under test is
completely configured, it is put into a halt state by asserting an external HALT pin. The chip can
be enabled to run for exactly one cycle by issuing a SINGLE-STEP operation using the scan bus.
Inputs to each nanoprocessor in the cycle are captured in the scan chain and can be scanned out for
examination using a SCAN operation. In addition to the inputs, the program counter and the full/
empty status of the data buffers of each nanoprocessors are also accessible through the scan chain.
Thus by issuing pairs of SINGLE-STEP and SCAN operations, snapshots of the operation of the

PADDI-2 chip executing a complex program can be taken and examined easily to aid debugging.

A drawback of this scan bus design is the slow speed due to the serial nature of the bus
interface. For example, to fully configure the 48-nanoprocessor chip, at least 2 ms (plus any data
transfer overhead) is needed. For those applications involving several phases of computations, the
chip cannot be quickly reprogrammed to handle the different tasks. Future versions of the PADDI-

2 chips with improved programming bus interface are being examined.

CHAPTER 6

PADDI-2: Development System

In this chapter, the programmer model and an assembler language for the PADDI-2
architecture are first reviewed. We then describe an application development system for PADDI-2
which includes an assembler, a VHDL-based simulator for system simulation and debugging, and
a VME board for hardware demonstration and testing. The architecture of a muiti-PADDI-2 board
currently being designed will also be mentioned. The chapter is concluded by presenting examples
of the mapping of practical DSP algorithms onto the PADDI-2 architecture and some performance

benchmark results.

6.1 PADDI-2 Programming Model

To the programmer, a PADDI-2 system consists of many nanoprocessors and memories
interconnected by communication channels as discussed in Section 4.2.2. A nanoprocessor or a
memory can communicate with other nanoprocessors and memories by explicitly sending data or
control tokens via the channels. Each nanoprocessor executes an assigned program and is

independent of the other nanoprocessors. The programming resources for writing a nanoprocessor

99

100

g
W

Data Buffer Resources
Q2 or 5 | R6 |
[RcO| |RCI] [RC2] Scratch-pad Registers
fco] [cr] [c2] Data Output Channels
[rRo| [cc| [Ppcl Miscellaneous Registers
o] [171 | Control Input Channels
Control Output Channel

Figure 6-1: Programming Resources of Nanoprocessor.

program are discussed in this section. In the next section, the usage of these resources will be

clarified when the syntax of the assembler language developed for PADDI-2 is explained.

As depicted in the nanoprocessor block diagram in Figure 5-3, each nanoprocessor is equipped
with three data buffers: Q0, Q1 and Q2, two control token buffers: IFO and IF1, three data output
channels: CO, C1 and C2, and one output contro! token channel: OF. As shown in Figure 6-1, each
data buffer gi can be configured as a queue (Q) or a small register file (Ri's). When configured as a
queue (Qi’s), the data buffer acts as an infinite source of data to the programmer. The datum can be
read either once and then discarded or the same datum can be read many times until it is discarded.
When used a register-file, a data buffer becomes a two-word random-access register-file. With
three data buffers, up to six registers, R1 to R6 are available. Unlike the queues, which can only be

used as source operands, these registers can be read and written to and therefore can be used as

101

both source operands and destination operands. A dummy register, RO, which can only be used as
a destination operand, is provided so that the result of the operation can be discarded when RO is

specified as the destination operand.

Besides the above register resources, three scratch-pad registers, RCO, RC1 and RC2 are
provided. These scratch-pad registers can be viewed as the output ports of the ALU, i.e., the
outputs of the ALU are automatically written into these registers after each instruction cycle. Since
their contents are already defined by the operation of the instruction, these scratch-pad registers
cannot be used as destination operands. Although only one output is needed for most operations, 3
scratch-pad registers are provided to facilitate the pipelined implementation of the multiplication
operation using multiple nanoprocessors. In this case, RCO, RC1 and RC2 will contain the partial

sum, the multiplicand and the multiplier of the multiplication operation, respectively.

The data output channels Ci’s are used when data are communicated to another nanoprocessor
or memory using the communication channels. The Ci’s can be considered as the entrances to the
communication channels. Data written into the communication channel will emerge in the same

order at the receiving end of the communication channel.

In addition to the register resources and /O resources, an internal program counter, PC and a
condition code register, CC are provided. The PC points to the current instruction to be executed
and can be modified by a branch instruction. CC provides a buffer for the ALU condition codes or

control tokens and can be used to control a conditional branch.

The control input/output channels, IF0, IF1and of are very similar to their data counterparts,
Qi’s and Ci’s except that the former handle control tokens for branching and the latter are used for

data.

102

6.2 PADDI-2 Assembler Language

To ease the task of writing a nanoprocessor program, an assembler language is specially
developed for the PADDI-2 architecture. In this section, the syntax of the assembler language will
be introduced and the usage is illustrated using a code written for a counter. More information on

the mnemonics of the assembler language can be found in Appendix A.2.

As shown in Figure 6-2, a PADDI-2 assembler program consists of two main sections: the
initialization section and the program section. In the initialization section, there are one or more
directives starting with the key word .init. The directives are used to specify the static aspect of the

program. A complete listing of the directives defined is given in Table 6-1.

/* Beginning of Initialization Section */
.nit pc=Label
[.init ...]

[.init ...]
/* End of Initialization Section */

/* Beginning of Program Section */

Labell:

dest_operand = op_code(src_operandl,...,src_operandN), /* op_code field */
[cc = c/s/x], /* cc_code field */
[cO =rc0], [c] = rcO/rcl], [c2 = rc2], /* data output */
[of = 0/1/cc], /* control output */
next = Labell; /* unconditional branch */ /* next PC field */
or

next = {cc/if0/if1}? Labell : Label2; /* conditional branch */ /* next PC field */

/* End of Program Section */

Figure 6-2: Program Structure of a PADDI-2 Assembler Program.

103

Table 6-1 : Listing of Directives.

Directive Mandatory/
Name Value Remark Optional

PC Label Initial Program Counter Value Mandatory

q0, ql1, q2 r/q Data Buffer Configuration Mandatory

R1-R6 constant Register initialization Optional

oena T/F Output Enable Mandatory for /O
(used by I/O nanoprocessors only) | nanoprocessor

mem_ena T/F Memory Enable Mandatory for /O
(used by I/O nanoprocessors only) | nanoprocessor.

The PC directive specifies the very first instruction to be executed by the nanoprocessor after

start-up. The q0-q2 directives set the configuration of the data buffers. The Ri’s directives are used

to initialize the contents of the data buffers. In the case where the program is written for an /O

nanoprocessor, the oena directive specifies the input/output direction of the I/O port and the

mem_ena directive controls whether the I/O port is connected to a memory or another PADDI /O

port.

Following the initialization section is the main program section containing the nanoprocessor

instructions used in the program. Referring to Figure 6-2, each instruction can be identified by a

unique label and can be divided into five fields:

* op_code:
e cc_code:
* data output:

¢ control output:

e next PC:

operation code field

condition code field

data token output control field
control token output control field
next program counter field

104

/* Sample Assembler Code: COUNTER.s *

.init q0=r, ql=r, q2=r /* All 3 data buffers are configured as
register files */

.initr1 =10 /* loop count */

nitr3 =1 /* loop count decrement */

.init pc = START /* pc initialization */

START: r2 = sub(r1,r3), cc0=s, next = cc0? START : LOOP;
LOOP: r2 = sub(r2,r3), cc0 =s, next =cc0? START : LOOP;

Figure 6-3: Sample PADDI-2 Assembler Code implementing a counter.

The op_code field specifies the source operands, destination operand as well as the operation
to be performed. The cc_code field sets the cc register (cc) to the ALU condition code which can
either be the carry output of the ALU (c), the sign bit of the ALU result (s) or the sign change
signal of the ALU (x). The x condition code is provided to simplify the task of zero-detect. By
subtracting one from the source operand, x is assert if the source operand is zero before the
subtraction. The data and control output fields specify if data or control tokens are to be sent to
other nanoprocessors via the output channels: C0, C1, C2 or OF. Lastly, the next PC field handles
the control flow of the program. In the case of unconditional branch, the next PC is simply set to
the instruction label specified in the next PC field. In the case of conditional branch, the next PC
can be either one of the two instruction labels specified depending on the branch condition, which

is either the cc register or one of the two input control queues, IFO or IF1.

To illustrate the syntax of the PADDI-2 assembler language, the code for a down-counter is
shown in Figure 6-3. In this example, all three data buffers are configured as register files and the
starting PC points to the instruction labelled START. R1 is initialized to the counting period and
R3 is set to the count decrement. After executing the setup START instruction once, the program

proceeds to execute the LOOP instruction repetitively until the count becomes negative as

105

indicated by the sign bit. At that time, the program jumps back to instruction START and restarts

the counting sequence again.

6.3 PADDI-2 Application Development System

To speed up the task of developing and debugging applications on PADDI-2, a development
environment comprised of a software system and a PADDI-2 hardware system was developed. In
this section, the software development system based on an assembler and a VHDL simulator is

described. The design of the hardware prototyping system will be presented in the next section.

The major components of the PADDI-2 software development system are shown in Figure 6-
4. The entry point of the development system is a Viewlogic schematic [103] which consists of
four architectural components: nanoprocessors, memories, input ports and output ports. An
example of a Viewlogic schematic for the hidden surface processor application described in
Section 2.2 is given in Figure 6-5. Associated with each nanoprocessor in the schematic is a
pointer to a file containing the nanoprocessor assembler program to be executed by the
corresponding nanoprocessor. Similarly a file pointer is also associated with each input port or
output port and it specifies the file from which input data can be read or to which output data are
written. The schematic is parsed by a program called PGEN (an acronym for program generator)
to produce netlist information such as the number of nanoprocessors used and how they are
interconnected. Using the netlist information, an assembler compiles the user defined
nanoprocessor programs into PADDI-2 object code which is an intermediate code format used by
the VHDL nanoprocessor model. Besides user defined programs, users can also make use of pre-
compiled programs such as counter, adder and multiplier stored in a library. Next a VHDL model
describing the system is created using the netlist information, nanoprocessor object codes and
VHDL models of the components. The system VHDL model can then be simulated using a VHDL

simulator, e.g., the Synopsis VHDL simulator [98], to verify the functionality.

106

nanoprocessor user
program nanoprocessor schematic
library programs .

A A

Assembler PGEN

program netlist

it
object code Makebi

»
L

PADDI-2
configuration bits

A 4

VHDL VME Test
Simulator Board

expected output 'U observed output

VHDL
component
models

Figure 6-4: PADDI-2 Software Development System.

After the system is debugged and verified, the makebit program can be called upon to generate
the configuration bit pattern for programming up a PADDI-2 chip. The configuration information

is then downloaded onto a PADDI-2 chip on a VME board to implement the system in hardware.

As an added bonus, the same software system can also be used to develop test programs for
verifying the functionality of PADDI-2 chip. A test program is first simulated using the VHDL
simulator to generate the expected output from the chip. The same program can then be

downloaded to the PADDI-2 chip under test and the outputs produced by the hardware can be

107

.y or-.-L) —~J1F0 orF _._E
] TF1 PO-C9 - IF1 Pi_CcOy
XPROC XPROC
D——_— Io ©0 z0 (-1 E: >
—{z1 01 | —{11 @ O1f—
—12 02| —z2 02—
.
I__ ro or|l—e@——FfF11 > l_ IFO0 OF __._ED
— zra Po-cy —lzra Pracy
zpROC zZPROC
D—__— I0 (-1 z0 oo Ez >
—z1 o1f— —11 o1{—
— 2 02 |— —{312 o2}
—Jdzpa Pocz] zF1 Pa-c3
1PROC IPROC
D__ 10 o0 10 oo Ez >
—l1a o1 |— —{12 o2}—
—Jz2 o2 f— —12 o2f{—

Figure 6-5: Viewlogic Schematic of the Hidden Surface Processor

easily observed by making use of the SCAN and SINGLE-STEP capabilities described in Section
5.4. The observed output can then be checked against the expected output to verity the

functionality of the test chip.

6.4 PADDI-2 DSP Prototyping Hardware System

To demonstrate the PADDI-2 architecture and to test the PADDI-2 prototype chip, a simple
hardware system as shown in Figure 6-6 is developed. The system consists of a host workstation, a
Heurikon single-board CPU [48] and several PADDI-2 board housed in a VME-cardcage. The
host is a SUN SPARC workstation and functions as a software development station and as a large
auxiliary data storage. It is connected to the CPU board in the VME-cardcage via an ethernet. The

CPU board, based on a MC68000 microprocessor running the VxWork light-weight real-time

108

/ Ethernet /

Host

/ VMEbus /
Board Board Board f§ °°°° Board

}
]
}
!
!
I
[}
: CPU PADDI-2 PADDI-2 PADDI-2
'
!
[}
!
!
!
]
}

/ Custom High B/W Interconnect I

VME CARD-CAGE

Figure 6-6: PADDI2 DSP Prototyping Hardware System.

kernel [108], serves as an interface between the host workstation and the PADDI-2 VME board.

The CPU board and the PADDI-2 boards are connected by a 32-bit VMEbus [104].

As shown in the block diagram in Figure 6-7, the VME board includes a VME interface block,
a board controller, a PADDI-2 chip and a 64K x 16-bit memory module. The VME interface block
consists of an address decoder and a VME2000 slave controller chip [76]. The address decoder
compares the address broadcasted on the VMEbus with an ID unique for each board. If matched,
the VME2000 chip which monitors and generates the necessary control interface signals with the
VMEbus will be enabled to handle the bus transaction. A Read (Write) bus transaction is

completed when the data is read from (written to) an internal register of the board controller.

To simplify design changes and debugging of the board, an Xilinx 3090 field-programmable

109

VMEbus
Y
y y
Address
Decode VME2000
VME Interface
y
Board Controller
Xilinx 3090
l control reg I
_.l scan/data-out reg I I data-in reg l
116 16
A
, Paddi2 oo x;mf’lfgb
” Chip \ *
DO

h 3 3 3 1

A 4 A 4 h 4 h 4

T

ribbon-cable connectors

Figure 6-7: PADDI2 VME Board.

gate array chip [110] is used to implement the board controller. On one side, the board controller is
hooked up to the VMEbus through which the internal registers of the board controller can be
programmed. On the other side, the board controller is connected to the PADDI-2 chip by a 4-bit

scan bus, a 16-bit input data bus and a 16-bit output data bus.

Three programmable registers: the control register, the scan/data-out register and the data-in
register, are provided in the board controller. By setting or resetting bits in the control register,
different operations, e.g., Scan-Enable and Write-Scan-Register, can be triggered from the host.

The scan/data-out register is used for storing data to be scanned into or out of the PADDI-2 chip

110

scan chain. Lastly, the data-in register is provided for temporary buffering of data received from

the PADDI-2 chip. More detailed descriptions of these registers are given in Appendix A.3.

The PADDI-2 chip can be programmed By the board controller using the 4-bit scan bus. Two
of the eight I/0 buses of the chip are connected to the board controller so that data can be directly
sent from or received by the host. Another three /O buses are connected to the data input port,
data output port and address port of the memory module. To simplify the I/O bus design, the
current PADDI-2 chip can only interface with memories with separate data I/O. With an enhanced
design of the I/O bus, future versions of the PADDI chip can support memories with shared I/O to
reduce 1/0 bandwidth requirement. The remaining three 1/O buses, as well as the 1/O bus
connected to the data input port of the memory module, are routed to four ribbon-cable connectors

to allow communication between PADDI-2 chips on different boards.

Includinga2.5x 6 inch? prototyping area, the board measures 10 x 11 inch? and is
implemented using a 4-layer printed circuit board. A layout of the board can be found in Appendix

A4

6.5 Multi-PADDI-2 Board

The main functions of the PADDI-2 VME board described above are chip testing and
demonstration of simple DSP algorithms. Many boards are needed to provide enough processing
power for more complex algorithms. To improve the computation throughput and expand the
application scope of the system, a printed circuit board consisting of eight PADDI-2 bcliips is being

designed. The design of the board will be briefly described in this section.

As shown in the block diagram in Figure 6-8, the multi-PADDI-2 board contains an Sbus
interface [97], an video /O block and a PADDI-2 array interconnected by a 16-bit local bus. The
164853 Sbus controller chip from LSI Logic, Inc. [66] handles communication between the host

SUN workstation and the board using an Sbus. It is also responsible for the programming of the

11

Sbus
r 3
y
. : R e | R
video in »] Video Decoder | Ei Sbus-Interface
video out < l' Video Encoder Lr Té > 15156000
Video /O -
2x4 Paddi2 Array
£
[1
[] 1}
] 1]
])
[} [}
d '
ai a l > < l adCI
Mo PO Pl do
64Kx16 L) < J 64Kx16
al a 1 > < 1 8'dCl
M 4 P2 P3 do M
64Kx16 | > <] 64Kx16
e
M P P4 P5 do
64Kx16 [> < J 64Kx16
- X |
Mo P6 F1 oM
64Kx16 [> < | 64Kx16

Figure 6-8: Block Diagram of the Multi-Paddi2 Board.

112

PADDI-2 chip array. The video /O block, consisting of a video encoder and a video decoder,
provides real-time video I/O capability for the system. Data can be easily transferred between the

controller chip, the video I/O block and the PADDI-2 array using the Jocal bus.

Computation power is provided by the PADDI-2 array consisting of eight PADDI-2 chips and
eight 128-Kilobyte memories. Using a 2x4 torus interconnection pattern, each PADDI-2 chip can
communicate with each of its four immediate neighbors using two I/O buses. A PADDI-2 chip can
also be configured to interface with a memory chip to cope with memory intensive applications.
Four buses at the edge of the array are hooked up to four connectors for connection to other
boards. Running at 50 MHz, each board can provide up to 20 Giga operations per seconds peak.
The design of the board is still in progress at the writing of this thesis. Further details of the board

architecture will be provided in future publications.

6.6 Mapping of DSP Algorithms onto PADDI-2

To illustrate the use of the PADDI-2 development system presented in the previous sections of
this chapter, detailed examples of the mapping of two practical DSP algorithms onto the PADDI-2
architecture will be discussed in this section. The two algorithms used are the Hidden Surface
Processor and the Viterbi Detector, both of which have been explained and analyzed in Chapter 2

as target DSP algorithms of PADDI-2.

6.6.1 Hidden Surface Processor

The Hidden Surface Processor uses the Z-buffer algorithm for elimination of hidden surfaces
in 3-D graphics on a raster scan-line basis. The operations involved in the algorithm are shown in

Figure 6-9 and further details of the algorithm can be found in Section 2.2.

The logical mapping of the algorithm onto an linear array of nanoprocessors is described in

Figure 6-10. Each pixel processor is implemented by three nanoprocessors, namely Xproc, Zproc

113

X1 =X;- 1
dXiyy =dX; - (X;4) <=0)
en; = (X, <= 0) & (dX;,, > 0)

en;

segment data structures

Z.dz,

Xie1. 6Xi4

Xiy2= Xiuy - |
dXi4p = dX;4) - (Xjs2<=0)
en,y) = (Xj,2 <= 0)&(dX;,2 >0)

CNie)

1Zig=EenNZ,+dZ,: Z;

dz;,) =dz;

P swap; = (Z; <Zm;) & en;

Zm; =swap,? Z; : Zm;

zi-fl‘dziH

A

Xis2, dXi02

\ 4

Ziyy=(eni Ny +
ie1:Zis)
dz;,,=dZ;,,

swapy) = (2, <

IWES

swap; |Im;=swap?];:Im;
ks
y
Ii02 = li
swapiy) | Imiy) = swapiy ? Ly Imyy)

Z;y2. 4Z;,,

]ioz

Figure 6-9: Z-buffer algorithm for Hidden Surface Elimination.

50 MHz clock.

and Iproc, and more pixel processors can be easily added to the system to handle longer scan-lines.
While data structures of the line segments transverse the array from one pixel to another, signal
flags are passed between the nanoprocessors in each pixel processor. For example, the Iproc only
updates the intensity of the pixel when the Zproc sends a swap flag to signal that the incoming line
segment is in front of the stored line segment in this pixel position. Detailed listings of the three
nanoprocessor assembler programs can be found in Appendix A.5. It can be derived from the
nanoprocessor programs that in the worst case, 4 cycles are required to handle one line-segment

data structure and therefore the system can process 12.5 million line segments per second using a

After the logical mapping, the system is implemented by mapping each logical nanoprocessor

114

XProc;

en;

segment data structures

Z;, 4z,

Xie1: 8Xi4)

A

XProci,

UM

ZProc;

swap;

Z;,y. 4Z;y,

Xis2. dXi42

Y

ZProc;

SWap;,)

IProc;

li+l

Ziy3. 4Z;42

IProc;,

lis2

Figure 6-10: Logical Mapping of Hidden Surface Processor onto PADDI-

to a physical nanoprocessor in a PADDI-2 chip. An example of the physical mapping of a 4-pixel

Hidden Surface Processor onto]2 nanoprocessors is shown in Figure 6-11. Because of the systolic

data flow pattern of the algorithm, the demand on communication network bandwidth is low. Most

of the communications between pixel processors can be handled by bypassing the data between

neighboring nanoprocessors without using the Level-1 communication network.

6.6.2 Viterbi Detector

To simplify the example, a 4-state Viterbi Detector is used as shown in Figure 6-12 but the

example can be easily extended to more states by simple change in the communication network.

Unlike the Hidden Surface Processor application, the data flow pattern of the Viterbi algorithm is

115

LG ; ZProc; IProc;
gt XProc;, =i ZProc;, T IProc;,
segment segment
data [| l i
structures | e e
i | | out
=7 XPrOCi+2 3% = ZPrOCi+2 el IPrOCi+2
> XPI'OCi+3 : w ‘ ZPI‘OCi+3 : -» IPFOCi+3

=== Data network =1 Level-1 communication network

Control network :I Level-2 communication network

Figure 6-11: Physical Mapping of Hidden Surface Processor onto PADDI-2 Chip

very irregular because of the trellis interconnection network between the ACS units and the

register-exchange units.

The logical mapping of the algorithm onto a network of nanoprocessors is shown in Figure 6-
13. The design is very modular; 3 nanoprocessors are used for each state: two for the ACS
operation (PEO and PE1) and one for the register-exchange operation (PE2), and the trellis
connection is handled by the communication network. All together, 12 nanoprocessors are needed

to implement the 4-state Viterbi detector. A complete listing of the three nanoprocessor assembler

116

output

¢ 4-state self-normalized Add- 16-Stage Register
Inpu Compare-Select (ACS) Unit Exchange Unit

ettt ° " in isi re resssss |
-’:(': ol smo0 ACS0 | decision0 REO re0 '! :‘J

) ' o sm1 sm rel ! '

IAN; | N\ /|

' '

" ' - ' ‘

] ' m let re | i
-’:\%: ol <m0 ACSI decision] REl re0| : :'J
r™ ! sml sm rel | '

A\s] Y |

' f

/ ' o 1 .

' ' ’lin - re i "

' : sm0 ACS2 | decision2 RE2 re0 : :.J
™ : »| sm1 sm —l rel fe '

; ! : ;

' '

/ ' - ' :

] [} m 'S re [}]

, é: iny ACs |decivions [el {). ']
|—.E ;_’ sml sm —l rel | : :
L ' '

broocoooo= ! e i

4-state trellis 4-state trellis

interconnect interconnect

Figure 6-12: Block Diagram of 4-state Viterbi Detector.

programs can be found in Appendix A.6. Since it takes 4 cycles to implement one iteration of the

ACS operation and the register-exchange operation, a decode rate of 12.5 Mbit is achieved using a

PADDI-2 chip running at 50 MHz.

The physical mapping of the Viterbi detector onto the PADDI-2 chip is shown in Figure 6-14.

In this 4-state example, the trellis connection is easily implemented by the Level-1 communication

network. For another Viterbi detector involving more states, a combination of Level-1 and Level-2

communication networks is needed.

117

input

output

v

A 4

input >
.| ACSO_PEO K decision0
ACS0_PEI REO_PE2
q . .
| ACSI_PED X decision]
"| Acsi_pEl RE1_PE2
* .
ACS2_PEO decision2
= "| acs2_pE1 RE2_PE2
* . .
ACS3_PEO decision3
i ACS3_PEI RE3_PE2

-

-

Figure 6-13: Logical Mapping of 4-state Viterbi Detector onto PADDI-2.

3 Acso_ro
Do ke
>acsor |

ACS1_PO

& BEE
ACS1_Pl &
]

output

#

smm=m= Data network

Control network

3 Level-1 communication network

D Level-2 communication network

Figure 6-14: Physical Mapping of 4-state Viterbi Detector onto PADDI-2 Chip

118

6.7 Benchmark Results

To justify the architectural choices and verify the performance and generality of the
architecture, a benchmark set consisting of algorithms in the areas of video processing, speech
recognition, digital communication, and digital filtering was anal)}zed. In this section, the
characteristics of the algorithms will be discussed and the performance data will be presented.

Comparisons with several competitive architectures described in Section 3.3.2 will be made.

Table 6-2 lists the number of core operations per data sample, the performance achieved and

Table 6-2 : Benchmark Results.

Core Operati Performance | Through-
ore Operations
Algorithms (Sampling- put Hardware
(per sample)
Rate) MOPS)
2nd-order 1IR flter [75]
1 (original) 5 mult, 4 add 8.3 MH:z 75 6 nano
2nd-order IIR filter [75)
2 (pipeline and multiplexed) 10 mult, 11 add 25MH: 525 27 nano
2nd-order IIR filter [75)
3 (pipeline) 10 mult, 11 add 50 MHz 1050 54 nano
2-dim space address a
4 generator [101] 2 add, 1 comp' 50 MHz 150 3 nano
5 | 3x3 sorting filter 15 comp & select 50 MHz 1500 30 nano
6 | Video Matrix conversion {30] | 4 1y 6 agd 50 MHz 500 |14 nano
(8b pixel)
2-dim 8x8 DCT 50 nano, 2
7 (8b pixel, multiplexed) 16 mult-add 25 MHz 800 memories
2-dim 8x8§ DCT 82 nano, 2
8 (8b pixel, non-multiplexed) 16 muh-add S0MHz 1600 memories
9 | 11-Tap 8-bit FIR 11 mult, 10 add 50 MHz 1050 | 56 nano
26 add, 8 shift, 8
10 | (E)PRML Viterbi Detector [95] comp, 16 select, 7 12.5 Mb/s 812 40 nano
mult
Motion Vector Estimation 64 sub, comp & 254 nano, 4
111 8x8 bk, 16x16 search blk) add 22MHz | 4224) emories
Hidden Surface Pixel Processor 3 comp, 3 add, 4 12.5M
12 [256-pixel line) [81] select segments/s | 2000 | 640nano

a. Compare operation.

119

the amount of on-chip hardware used for the benchmark algorithms. In an attempt to reflect the
complexity of the algorithms, only operations involved in actual algorithmic computation are
counted as core operations. Overhead operations and bookkeeping operations, which vary
significantly depending on the implementations are excluded. All operations are 16 bit unless
specified otherwise. Since most ggneral purpose DSP processors are equipped with parallel
multipliers, a multiplication is counted as only one operation in the throughput calculation for fair
comparison although eight nanoprocessor operations are actually executed. The throughput
requirements are very high in general and most algorithms require irregular communication

patterns.

The first three algorithms in the table are three different implementations of a second-order
infinite impulse response (IIR) filter and they demonstrate how algorithms with recursive
bottlenecks can sometimes be transformed to allow more parallelism (more pipeline stages). The

results show good correlation between performance gain and hardware cost.

Figure 6-15 shows the implementation of a 2-dimensional 8x8 Discrete Cosine Transform
(DCT) at a 25 MHz sampling rate using 50 nanoprocessors and two memory banks as transpose
buffers. The algorithm is decomposed into two one-dimensional DCT’s and a transpose operation.
The 8-bit by 16-bit multiplication is implemented in a pipeline fashion using two nanoprocessors.
The transform coefficients stored in the data buffers of the nanoprocessors are streamed into the
multiplication nanoprocessors together with the input pixels. The address generation unit (AG2),
which is very similar to the 2-dimensional space address generator described in Section 4.2.3,

produces the desired address sequence for the transpose operation.

As a comparison, a general purpose DSP processor such as the TMS320C2S5 can only achieve
a sampling rate of 250 KHz for the 2-dimensional 8x8 DCT with optimized code [74]. By further
pipelining of the multiplication operations, a sampling rate of 50 MHz can be achieved by using

82 nanoprocessors.

120

ICrg ICs6 Esv. [61_2

mull mull mull mull

Address Generation
mul2 mul2 mul2 mul2 AG1 le—

v !
M1
—*merge—*merg ergeg— Transpose

Buffer
M2
|C12 |C34]552 IC_78 i
y y y
mull mull mull mull AG2 [

mul2 mul2 mul2 mul2
Eafcafcalica

OUT «———merge¢—jmergef*—mergef——

Figure 6-15: 2-D 8x8 Discrete Cosine Transform at 25 MHz sampling rate using 50
Nanoprocessors.

The Viterbi benchmark implements the EPRML Viterbi detector described in Section 2.1
which includes a 7-tap transversal filter and an 8-state Viterbi detector. Due to the tight recursive
loop in the ACS unit, the decode rate of 12.5 Mb/s is only a quarter of the maximum clock
frequency (50 MHz). Performance can be improved by applying lookahead techniques [115] to

expose more parallelism in the ACS algorithm at the expense of hardware complexity.

Other benchmark algorithms include the Hidden Surface Processor described in the previous

121

section and the Motion Vector Estimator used in many video compression algorithms. Considering
that only core operations are counted, and that the performance of a typical commercial DSP
processor implemented in a technology similar to the one used by PADDI-2, is of the order of
several hundred’s of MOPS peak, the PADDI-2 architecture promises to be a high performance
architecture for high throughput DSP algorithms.

6.7.1 Comparisons

To further gauge the performance of the PADDI-2 architecture, several DSP algorithms in the
benchmark set are also implemented on two competitive architectures: the NEC Video Signal
Processor and the Philips Video Signal Multiprocessor. These two architectures are chosen for
comparisons because their approaches are very different from the PADDI-2’s even though all three
architectures target high throughput DSP algorithms. The NEC VSP achieves high performance by
pushing circuits and process technologies as evident by the fast clock rate. The Philips VSP, like
PADDI-2, provides high throughput using multi-processing. However, the granularity of the
processing elements and programming paradigm are very different from those of PADDI-2’s.
More details of the two architectures can be found in Section 3.3.2. Some pertinent characteristics

of the three integrated circuits are listed in Table 6-3 for reference.

Four DSP algorithms in the benchmark set are mapped to the three architectures for
comparisons. The amount of hardware in terms of the number of IC chips required to achieve a
certain performance is used as the figure of merits. Many subtle problems can arise when
comparing very different architectures such as the three under considerations. First, it is very
difficult to ensure that the implementations of the algorithms on the various architectures are all
optimized to the same degree. In some cases, a re-formulation of the algorithm can produce an
improved mapping onto an architecture. Moreover, some important details about the architecture
may not be sufficiently covered in the literature. Consequently, we may not be aware of useful

features that can boost performance, or architectural bottlenecks that can degrade performance.

122

PADDI-2 NEC VSP [45] Philips VSP [102]

_ e

Process Technology l'é'_nm(;?::)) S 0'8'*(1;1 'ggll;d 0S 0'8(';. :nnftahii)os

Die Size 144 mm? 202 mm? 156 mm?

Data Path Width 16-bit 16-bit 12-bit

Transistors 600 K 1130K 1150K

Pins 208 132 208

Clock Speed 50 MHz 250 MHz 50 MHZ?

Table 6-3 : Important IC parameters.

a. Since the Philips VSP uses a faster process compared to the PADDI-2 process, its clock speed is
adjusted slightly from the published rate of 54 MHz to 50 MHz (the PADDI-2 clock rate) to simplify
performance comparison [102].

To ensure that the performance of the two VSP architectures are not under-estimated, we made
many favorable assumptions in our evaluation. It is assumed that the peak processing power of the
two chips are always available, i.e., processing stalls due to control hazards, data dependencies,
hardware resource conflicts, etc., are ignored. In cases where more than one chip are needed to
deliver the performance, all the overhead associated with multiprocessing, such as communication
latency and 1O conflicts, are also neglected. In other words, we hope to make sure that the results
obtained for the two VSP architectures are based on the best-case scenario which may actually be

unrealistic in certain cases.

Let’s consider the 2-dimensional DCT algorithm discussed in the previous section as an
example. Sixteen multiply-accumulate operations are processed for each pixel at the 25 MHz rate.
When the algorithm is mapped onto the Philips VSP which executes four operations for each
multiply operation, a total of eighty operations are required for each pixel. Given that each of the
twelve arithmetic logic elements (ALE’s) on-chip can execute one operation at the 50 MHz rate, a

total of 40 ALE’s or 3.3 chips are needed to achieve the pixel-rate of 25 MHz. This figure is the

123

lower-bound on hardware requirement because many miscellaneous operations such as the
handling of filter coefficients and transpose buffering are not considered. Moreover, extra
hardware resources which may be needed in order to make the 3.3 chips work in tandem are also

neglected.

The hardware requirements and the normalized resuits of the three architectures are shown in
Table 6-3. While the PADDI-2 results were obtained by careful simulations, the results for the
other architectures were either derived from published results or estimated using the favorable
assumptions described above. In all cases, the PADDI-2 architecture out-performs the other two by
a factor of about 2 or 3. It is interesting to note that despite the facts that the NEC VSP contains a
high speed parallel multiplier and the PADDI-2 chip has none, the PADDI-2 chip is still more

efficient than the NEC VSP in implementing the first two algorithms which involve many multiply

operations.
sor s | o0tz [ecver T vsr
L . —
2-dim 3’(‘3513&;’2 ?‘b pixel 1 . omem'/1 | 66°/33 33/17
1 "('ggpﬁ'}'l’z?R 12/1 22/18 45138
(E)PRN(I%Z?‘CN;‘;;S‘))‘?‘3°‘°’ 08/1 24/3.0 15/19
(15,55&5::;2:;5/9 13.3/1 128/9.6¢ 42/32

Table 6-4 : Comparison of Hardware Requirements.

a. Two small external memories are counted as one IC.

b. Published result {45].

c. The hardware requirement is computed assuming that the exact algorithm as described in Sec-
tion 6.6.1 is used. The result can possibly be improved by reformulating the algorithm.

CHAPTER7

Conclusions

This dissertation has presented and described PADDI-2, adata-driven multiprocessor
architecture called PADDI-2 for rapid prototyping of complex DSP algorithms. The architecture is
based on direct execution of data-flow graphs. High computation bandwidth is achieved cost-
effectively by exploiting fine-grain parallelism inherent in the target algorithms using simple
processor elements called nanoprocessors. The flexible high bandwidth communication network
can accommodate a wide range of algorithms, including those with irregular data communication
patterns. The distributed control strategy and the data-driven principle of execution result in a
highly scalable and modular architecture that can be easily extended to tackle more complex
problems. The simplicity and homogeneity of the architecture, the consistent programming
paradigm, and the direct architectural support for the execution of data-flow graphs can facilitate

development of compiler and synthesis tools needed for rapid prototyping.

A 50 MHz PADDI-2 chip consisting of 48 nanoprocessors, a 2-level communication network,
and eight /O ports has been designed and reported in [116] as a proof of the architectural concept.

An application development system based on an assembler, a VHDL simulator, and a VME

124

125

demonstration/test board was developed to ease the task of programming and mapping practical

DSP systems onto the PADDI-2 hardware platform.

The benchmark results demonstrated that the PADDI-2 architecture is flexible and can satisfy
the high throughput requirement of a large variety of algorithms. Complex algorithms such as the
Hidden Surface Processor and the EPRML Viterbi detector can be implemented using a small

number of nanoprocessors.

While we are satisfied with the flexibility and performance of the PADDI-2 architecture, there
are many interesting alternatives and improvements worth researching. This dissertation will be

concluded by outlining some future research topics:

Enhanced Reconfigurability

Some problems related to the programming of the existing PADDI-2 chip are that
programming speed is slow because of the serial scan bus and that the chip can be reconfigured for
the next task only after the completion of the current task. By shortening the time needed for
reconfiguring the chip and/or allowing reconfiguration of chip to occur concurrently with
execution of the current task, the application scope of the architecture can be greatly extended,
especially for embedded-controller-type applications. A reconfigurable multiprocessor

architecture incorporating these capabilities has recently been proposed in [94].

Compromising SIMD and MIMD architectures

It has been discussed in Section 4.2 that the SIMD control strategy, though efficient in
hardware usage, is not scalable and rather constraining in handling algorithms with complex
control flow. On the other hand, the MIMD distributed control structure adopted by PADDI-2 is
very general and scalable but incurs hardware penalty, e.g., the hardware supported data-driven
mechanism. It is interesting to explore compromise architectures that can take advantage of both

the simplicity and hardware efficiency of the SIMD architecture and the generality and scalability

126

of the MIMD architecture. An example of such architectures is the XIMD architecture, which is an
extension to the VLIW architecture proposed by [109]. However, a very important pre-requisite of

this approach is that an efficient compiler for the architecture must also be developed.

On-chip Memories

Many DSP applications can benefit from on-chip memories which relieve I/O bandwidth and
reduce memory latency. As discussed in Section 4.5, memory modules can be easily incorporated
into the data-driven paradigm of PADDI-2 architecture. A natural and simple improvement of the

PADDI-2 chip is to include a few small memory modules on-chip.

127

Appendix

Appendix.1 48-Nanoprocessor PADDI-2 Chip Pin-List

Table A.1-1 : PADDI-2 Chip Pin-List.

Pin Name Pin Number # Pin Name Pin Number
=l GND | 145 " 2 d0_sb1 144
3 d0_sb2 160 I 4 d0_weN 193
5 do[o] 143 6 vdd 137
7 | do[1] 136 8 do[2) 176
9 do[3] 159 10 do[4) 135
11 GND 129 i 12 do[s] 128
13 do[6] 142 14 do[7} 127
15 do[8] 134 16 vdd 121
17 do[9] 120 18 do[10] - 126
19 do[11] 119 20 do[12] 118
21 GND 113 22 do[13] 112
23 do[14] 111 24 do[15] 110
25 tdi 103 [I 26 vdd 105
27 tdo 104 28 tms 102

128

Table A.1-1 : PADDI-2 Chip Pin-List.

Pin Name Pin Number # Pin Name Pin Number
29 ten 94 30 di[15] 95
31 GND 97 32 di[14] 96
33 di[13] 86 34 d1[12] 87
35 di[11] 717 I 36 di[10] 88
37 Vdd 89 38 d1[9] 69
39 d1[8) 78 40 d1[7) 52
4] di[e6) 79 42 GND 80
43 di[s) 35 44 d1{4] 70
45 d1[3] 18 46 di[2] 71
47 dif1] 53 I 48 vdd 72
49 d1[0) 36 50 dl_weN 54
51 d1_sb2 19 " 52 d1_sbl 37
53 GND 55 " 54 d2_sb1 38
55 d2_sb2 20 F 56 d2_weN 1
57 d2[0] 21 58 vdd 56
59 d2[1] 39 60 d2[2] 2
61 d2[3] 3 62 d2{4) 22
63 GND 57 64 d2[5] 40
65 d2[6) 4 66 d2[7] 23
67 d2[8] 5 68 vdd 58
69 d2[9] 41 70 d2[10) 6

129

Table A.1-1 : PADDI-2 Chip Pin-List.

Pin Name Pin Number || # Pin Name Pin Number
71 d2[11] 24 72 d2[12) 7
73 GND 59 74 d2[13) 42
75 d2(14] 25 76 d2(15] 8
77 vdd 26 78 vdd 60
79 GND 43 80 vdd 9
81 GND 10 82 d3[15] 27
83 GND 61 84 d3[14] 44
85 d3[13) n | s d3[12] 28
87 d3[11] 12 88 d3[10] 45
89 Vdd 62 | 90 d3[9) 13
91 d3(s] 29 | 92 d3[7) 14
93 ds[e] 46 94 GND 63
95 d3[5) 15 | 96 d3[4] 30
97 d3[3) 16 || 98 d3[2] 47
99 d3[1] 31 100 vdd 64
101 d3[0] 32 | 102 d3_weN 48
103 d3_sb2 33 104 d3_sbl 49
105 GND 65 " 106 d4_sbl 66
107 d4_sb2 50 108 d4_weN 17
109 dao) 67 | 10 Vdd 73
111 da[1] 74 " 112 d4[2] 34

130

Table A.1-1 : PADDI-2 Chip Pin-List.

Pin Name Pin Number # Pin Name Pin Number
[113 d4[3] . dd[4]
115 GND 82 116 d4[5] 83
117 d4[6] 68 118 d4[7] 84
119 d4[8] 76 120 Vdd 90
121 d4[9] 91 122 d4[10] 85
123 d4[11] 92 124 d4[12] 93
125 GND 98 126 d4[13] 99
127 d4[14] 100 128 d4[15] 101
129 Reserve 108 130 Vdd 106
131 ck 107 132 resetN 109
133 gstall 117 134 d5[15] 116
135 GND 114 136 ds[14] 115
137 d5[13] 125 138 ds[12] 124
139 ds[11] 133 140 ds[10] 123
141 Vdd 122 142 ds[9] 141
143 ds[8) 132 144 ds[7] 158
145 ds[e6) 131 146 GND 130
147 ds[5) 175 148 ds(4) 140
149 d5[3) 192 150 d5[2] 139
151 ds[1] 157 152 vdd 138
153 ds[0] 174 154 d5_weN 156

131

Table A.1-1 : PADDI-2 Chip Pin-List.

Pin Name Pin Number Pin Number
155 d5_sb1

157 GND 155 158 d6_sb1 172
159 d6_sb2 190 || 160 d6_weN 209
161 d6[0] 189 | 162 vdd 154
163 d6[1] 171 “ 164 d6[2) 208
165 d6[3] 207 166 d6[4] 188
167 GND 153 | 168 d6(5] 170
169 d616] 206 170 d6[7] 187
171 d6i8] 205 172 Vvdd 152
173 d6[9) 169 174 d6[10] 204
175 d6[11] 186 176 d6[12] 203
177 GND 151 178 dé[13] 168
179 d6[14] 185 180 d6[15] 202
181 Vdd 184 W 182 vdd 150
183 GND 167 184 vdd 201
185 GND 200 186 d7115] 183
187 GND 149 " 188 d7[14) 166
189 d7[13] 199 || 190 d7112) 182
191 d7111] 198 || 192 d7110] 165
193 Vdd 148 194 d719] 197
195 d7(8] 181 196 d7[7] 196

132

Table A.1-1 : PADDI-2 Chip Pin-List.

Pin Name Pin Number # Pin Name Pin Number
197 d7[6] 164 GND 147
199 d7(5] 195 d7(4] 180
201 d7(3] 194 d7(2] 163
203 d7(1] 179 Vdd 146
205 d7(0] 178 d7_weN 162
207 d7_sb2 177 " 208 d7_sbl 161

133

Appendix.2 PADDI-2 Instruction Mnemonics

Table A.2-1 : PADDI-2 Instructions.

Mnemonics® Instruction Result®

1 add(srcl, src2) 2’s complement addition srcl + src2

2 addcc(srcl, src2, cc) 2’s complement addition w/ cc srcl + src2 + cc

3 ads(srcl, n) arithmetic down-shift srcl >>n, n=0,1,2

4 and(srcl, src2) logical AND srcl & src2

5 aus(srcl,n) arithmetic up-shift srcl << n, n=2

6 inv(srcl) logical inverse ~srcl

7 mstart(srcl, src2) 2M_order modified booth mul- booth(srcl, src2)
tiplication step (zero partial
sum)

8 mstep(srcl, src2, src3) 2"_order modified booth mul- booth(srcl, src2) + src3
tiplication step

9 or(srcl, src2) logical OR srcl | src2

10 selce(srcl, src2) select on cc cc? srcl : src2

11 sub(srcl, src2) 2’s complement subtract srcl - src2

12 subcce(srcl, src2, cc) 2’s complement subtract w/cc srcl + ~srci +cc

13 xor(srcl, src2) logical exclusive-OR srcl 2 src2

a. srcN = q0/q0s/q1/q1s/q2/q2s/R1-R6, where gl means the datum is read and then
discarded from queue and qIs means the datum is read but still kept in queue.
b. In C-Language syntax.

Appendix.3 Board Controller Registers

Table A.3-1 : Board Controller Registers

Register Number Register Name Access Type
0 Control Regist;r= Read/Write
1 Scan/Data-Out Register | Read/Write
2 Data-In Register Read Only

Table A.3-2 : Board Control Register

Bit # Name

15 | ST (Stop)

14 | SS (Single-Step)

13 | CU (Capture/Update)

12 | SE (Scan-Enable)

11 SF (Scan-reg Full)

10 | DF (Data-In reg Full)

9-4 | Reserved

3-0 | CS[3:0]? (Chip-Select
[3:0D)

a. The 4 Chip-Select bits allow one
board controller chip to support up to
16 PADDI-2 chips.

135

Appendix.4 Layout of PADDI-2 VME Board

Figure A-1 : Layout of PADDI-2 VME Board.

136

Appendix.5 Nanoprocessor Assembler Programs for
Hidden Surface Processors

[dddkkokakkokokokdkokok ok ko ok ok kok ok kR okokokk ok f

/* XPROC.s notes:

I1*

/* 1) X, DX comes in on g0

Jnitg0=q
Jdnitql =r
dnitg2=r
dnitr6=1

Jdnitpc=0
0:

10 = sub(q0, r6),
cO=ra

ccO=s,
next=1;
l.

r3 = sub(qO, r6),
ccl =s,
next =cc0? 3:2

2:

r0 = add(r3, r6),
cO=ra,
fo_s=0,
next=0;

3:

r0 = ads(r3, 0),
cO=ra,

next=ccl? 5:4;

4:
fo_s=1,
next =0;

5:
fo_s=0,
next =0;

*/
*/
*/

/* output new X */

/* store value of DX-1inr3 */

/* output the original DX */

/* de-assert enable */

/* has reached beginning of segment */

/* output new DX */

/* within line segment */
/* assert enable */

/* no longer within line segment */
/* de-assert enable */

137

S ok ok koo ok ke ok ok o ok ok ok o ok o ok s ok ok ok ok ok o ok ok *f

/* ZPROC.s notes
1* '

/* 1) Z, reset come in on q0

*f
*
*/

/* 2) DZ is always implemented as constant */
/* 3) flag from XPROC comes in on f0 */

/* 4) 10 used as a scrap register

/* 5)r6used as Zmin

Jnitq0=q,ql =r,q2=r,pc=3

.init r6 = 10000
.init r5 = 10000
dnitr4 =3

3:

10 = sub(q0s,r6),
ccO=s,

next = f0? 1:0;
0:

10 = ads(q0,0),
c0=ra,

cc0 = s, next=2;

2:
next = cc0? 7:6;

7.

r6 = ads(r$5, 0),
next = 3;

] .

r0 = add(q0s,r4),
c0 =ra, next = cc0? 5:4;

S:
16 = ads(q0,0), next=6;

4.
10 = ads(q0,0), next=6;

6:
fo_s = cc0, next=3;

*/
*/

/* set Zmin to be a default distance */
/* this is the reset value for Zmin */
/* constant DZ value */

/* determine in advance if need to update Zmin */
/* s = 1 means update; s = 0 means don’t update */
/* test if within segment */

/* not within segment, so: */
/* pass original Z */
/* see if Z was -; if so, need to reset Zmin */

/* check if need to reset Zmin */

/* reset asserted, so set r6 to be Zmin */
/* also note that a reset will not put out a fo token */

/* pass Z+dZ */

/* update Zmin */

/* flush g0 queue */

/* set intensity flag to proper value */

138

J et o e ok ok e ke ok sk ke sk e ko o ke o e o o o o e ok ok ok ok ok */

/* IPROC.s notes:

1*

/* 1)1 comes in on q0
/* 2) SWAP comes in on f0

*/
*/
*/
*/

/* 3) EOF comes in on f1, leaves on fo */

/* 3) r6 used to keep Imax

dnitq0=gq
dnitql =r
dnitq2=r
dnitr6 =0
dnitr5=0
Jdnitpc =0
O.

r3 = ads(q0, 0),
c0=ra,

ccO=s,
next = 2;
2:

next = cc0? 5:4;

4:

next = f0? 1:0;
1:

r6 = ads(r3, 0),
next =0;

5:

r0 = ads(r6, 0),
cO=ra,

fo=1,

next = 6;

6:

r6 = ads(r5,0),
next = 0;

*/

/* set Imin to be background intensity */
/* this is the reset value for back. intens. */

/* check if lin <0, ie FLUSH */

/* output both Jout, FLUSH */

/* branch on FLUSH */

/* branch on SWAP */

/* replace Imax */

/* flush cycle for the 1st pixel processor */

/* send own Imax */
/* output EOF */

/* reset r6 */

139

Appendix.6 Nanoprocessor Assembler Programs for
Viterbi Detector

/* 3 ke 3 2k e o 3k 3 o e e 3k ok 3 o e o ok ok o ok ok ok o ok ok ke ok ok ok */

/* PO.s note */
* */
/* 1) Y comes in on q0 */
/* 2) SO comes in on ql */

/* 3) This is program for state 0,5,6 ACS */
/* 4) So need to calculate BM(-1) = 0.5+Y */
/* 5)BM@0)=0 */
/* 6) r6 used as a scrap register */

dnitq0=q,ql =q,q2=r
dnitr5=4 /* represent 0.5 with 3 decimals */
nitpc =0

0:

10 = add(r5,q0), /* calculate BM(-1) = 0.5+Y */
cO=ra, /* send it to the P1 processor */
next=1;

1:

10 = ads(q1,0), /* calculate BM(0)+S0 */
cO=ra,

next =0;

[e ook o o o ok ok ok o ok ok o ok ok ok ok ok o ok ok ok e ok ok ok */

/* Pl.s notes */
1* */
/* 1) BM(+1), then BM(+2)+S0 comes in on q0*/
/* 2)S1 comesinonql */

Jnitq0=q,ql =q,q2=r

dnitr6 =0, pc=0

0:

next = f0? 3:2; /* if reset, don’t absorb Q values */
2: /* no reset */

r5 = add(q0,q1), /* calculate BM(+1)+S1 */

140

next =4;

4:

10 = sub(q0s,r5),
ccO=s,
next=5;

5:
10 = sel(q0, r5, cc0),
cO=ra,

fo_s = cc0,
next = 0;

3:

r0 = ads(r6,0),
cO=ra,

next = 0;

/* compare BM(+2)+S0 and BM(+1)+S1 */

1* if cc0=0, r0=q0, else rO=r5 */
/* check this! */
/* set output flag */

/* reset enabled */

/* output 0 */

[ok kol ok ok ok e e sk o ok ke o ok ok ok ok ok ok sk ok ok ok ok ok ok k */

/* RE.s notes: */
/* 1) Inputs come in on q0,q1 */
/* 2) Decision comes in on f0, reset on f1 */
/* 3) Output is on c0 */
/* 4) Decode output is on fo */

initq0=q,ql =q,q2=r
dnitr5=0,16=1,pc=0

0:
next = f1? 3:2;

2:

next = f0? 5:4;
4;

r0 = aus(q0),
ccO=s,
c0=ra,

next = 6;

6:

I* if reset, don’t absorb Q values */

/* branch based on decison */

/* decision =0 */
/* shift appropriate input left by 1 bit */

141

r0 = ads(q1,0),
fo_s = cc0,
next =0;

5.
10 = aus(ql),
next=17;

7

10 = add(ra,r6),
ccO=s,
cO=ra,
next=1;

1:

10 = ads(q0,0),
fo_s =ccO0,
next =0;

3:

r0 = ads(r5,0),
cO=ra,

next =0;

/* flush q1 queue */

/* decision = 1 */
/* shift appropriate input left by 1 bit */

/* place decision bit into LSB */

/* so output is input shifted left by */
/* one bit, with the decision occupying the LSB */

/* flush the q0 queue */

/* reset enabled */
/* output 0 */

142

Bibliography

)]

[2)

(3]

(4]

(s

[6}

(8]

(sl

Arvind and D. Culler, “Dataflow Architectures,” Annual Reviews in Computer Sci-

ence, MIT, Laboratory for Computer Science, 1986.

Avenhaus, E., “On the design of digital filters with coefficients of limited word

length,” IEEE Trans. on Audio and Electroacoustics, vol. 20, pp. 206-212, 1972.

Baccarani, G., M. Wordeman and R. Dennard, “Generalized Scaling Theory and
its Application to 1/4 Micrometer MOSFET Design,” IEEE Transactions on Elec-
tron Devices, ED-31(4), p. 452, 1984.

Bakoglu, H., Circuits, Interconnections, and Packaging for VLSI, Addison-Wes-
ley, Menlo Park, CA, 1990.

Berkhout, P. and L. Eggermont, “Digital Audio Systems,” IEEE ASSP Magazine,
pp. 86-99, May 1989.

Bier, J., S. Sriram and E. Lee, “A Class of Multiprocessor Architectures for Real-
Time DSP,” VLSI Signal Processing IV, Nov. 1990.

Bisiani, R., “System Implementation Strategies for Speech,” Speech and Natural
Language Workshop, June 1990.

Bisiani, R., et al., “BEAM: An Accelerator for Speech Recognition,” International

Conference on Acoustics, Speech and Signal Processing, June 1989.

Black, P. and T. Meng, “A 140 Mb/s, 32-state, Radix-4 Viterbi Decoder,” IEEE J.
Solid-State Circuits, Vol. 27, pp. 1877-1885, Dec 1992.

143

[10]

L)

2]

3]

(4]

[15]

[16]

n7

[18]

9]

Black, P. and T. Meng, “A 1 Gb/s, 4-state, Sliding Block Viterbi Decoder,” Symp.

- on VLSI Circuits, Jan 1993.

Black, P., “Algorithms and Architectures for High Speed Viterbi Decoding,” PhD
thesis, Stanford University, CA, March 1993.

Blanz, W. E., et al., “Algorithms and Architectures for Machine Vision,” Hand-

book of Signal Processing, Marcell Decker, 1988.

Borkar, S, et al., “iWarp: An Integrated Solution to High-Speed Paralle] Comput-

ing,” Proceedings Supercomputing, Nov 1988.

Brodersen, R. W., and J. Rabaey, “Evolution of Microsystem Design,” ESS-
CIRC'89: Proceedings of the 15" European Solid State Circuits Conference, Sept.
1989.

Brodersen, R. W, et al., “Technologies for Personal Communications,” Proceed-

ings of the VLSI Symposium ‘91 Conference, Japan, pp. 5-9, 1991.

Brown, C., “The Programmable-Logic Assault,” Electronic Engineering Times,

Feb. 1993.

Brown, S., “An Overview of Technology, Architecture and CAD Tools for Pro-

grammable Logic Devices,” IEEE Custom Integrated Circuits Conference, 1994.

Brunvand, E., “Using FPGA’s to implement self-timed systems,” Journal of VLSI

Signal Processing, vol. 6, 1993.

Chandrakasan, A., A. Burstein and R. Brodersen, “A Low Power Chipset for Por-
table Multimedia Applications,” Proceedings of the International Solid-State Cir-

cuits Conference ‘94, San Francisco, CA, pp. 82-83, February 1994.

14

[20]

[21)

(22)

(23]

[24)

[25]

[26]

[27]

(28]

Chandrakasan, A., R. Allmon, A. Stratakos, and R. W. Brodersen, “Design of Por-
table Systems,” Proceedings of CICC ‘94, San Diego, May 1994,

Chandrakasan, A., S. Sheng, and R. W. Brodersen, “Low-Power Techniques for
Portable Real-Time DSP Applications,” VLSI Design ‘92, India, pp. 203-208,
1992.

Chandrakasan, A., S. Sheng, and R. W. Brodersen, “Low-Power CMOS Design,”
IEEE Journal of Solid-State Circuits, pp. 472-484, April 1992.

Chandrakasan, A., M. Potkonjak, J. Rabaey, and R. W. Brodersen, “Optimizing
Power Using Transformations,” submitted to JEEE Transactions on Computer-

Aided Design, May 1993.

Chen, D. K., Hong-Men Su, and Pen-Chung Yew, “The Impact of Synchronization
and Granularity on Parallel Systems,” International Symposium on Computer

Architecture, 1990.

Chen, D., L. Guerra, E. Ng, D. Schultz, and J. Rabaey, “A Field-Programmable
Architecture for High Speed Digital Signal Processing Application,” ACM Interna-
tional Workshop on Field-Programmable Gate Arrays, 1992.

Chen, D, and J. Rabaey, “A Reconfigurable Multiprocessor IC for Rapid Prototyping of
Real-Time Data Paths”, IEEE International Solid-State Circuits Conference, Feb.

1992.

Chen, D., “Programmable Arithmetic Devices for High Speed Digital Signal Processing”,
PhD thesis, University of California at Berkeley, May, 1992.

Dennis., J. B., “First Version Data Flow Procedure Language”, Technical Memo

MAC TM61, May 1975, MIT Laboratory for Computer Science.

145

[29]

[30]

[31)

[32]

[33]

[34]

(35]

(36]

(37

De Man, H., F. Catthoor, G. Goossens, J. Vanhoof, J. Van Meerbergen, S. Note,
and J. Huisken, “Architecture-Driven Synthesis Techniques for Mapping Digital
Signal Processing Algorithms into Silicon,” Proceedings of the IEEE, vol. 78, no.
2, pp. 319-335, Feb. 1990.

Devaney, P. of Matsushita Applied Research Laboratory, Personal Communica-

tion, Feb., 1994.

Duncan, P, et al., “Hi-PASS: A Computer-Aided Synthesis System for Maximally
Parallel Digital Signal Processing ASIC’s,” International Conference on Acous-

tics, Speech and Signal Processing, Mar. 1992.

Engels, M., R. Lauwereins, and J. Peperstraete, “Rapid Prototyping for DSP Sys-
tems with Multiprocessors,” IEEE Design & Test of Computers, June 1991.

Emst, R., “Long Pipelines in Single-Chip Digital Signal Processors: Concepts and

Case Study,” IEEFE Transactions on Circuits and Systems, Jan. 1991.

Fellman, R., “Design Issues and an Architecture for the Monolithic Implementa-
tion of a Parallel Digital Signal Processor,” IEEE Transactions on Acoustics,

Speech and Signal Processing, May 1990.

Flynn, M. J., “Some Computer Organizations and Their Effectiveness,” IEEE

Transactions on Computers, Sept. 1972.

Forney, G. D. Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3, pp. 268-278,
March 1973.

Fortes, J. A. B, and B. W. Wah, eds., “Special Issue on Systolic Arrays - From

Concept to Implementation,” Computer, July 1987.

146

[38]

[39]

[40)

[41]

[42]

(43]

[44)

[45)

[46)

(47}

Fountain, T. J., et al., “The CLIP7A Image Processor,” IEEE Transactions on Pat-
tern Analysis & Machine Intelligence, May, 1988.

Freeman, R., “User-programmable Gate Arrays,” IEEE Spectrum, Dec., 1988.

Fukushima, T, “A Survey of Image Processing LSI’s in Japan,” IEEE International

Conference on Pattern Recognition, 1990.

Geurts, W. and F. Catthoor, “DSP Applications suited for Lowly Multiplexed Architec-
tures”, ASICS Open Workshop on Synthesis Techniques for (Lowly) Multiplexed Datap-
aths, Aug. 1990.

Gharavi, H., P. Pirsch, and H. Yasuda, “Special Issue on VLSI Implementation For
Digital Image and Video Processing Applications,” IEEE Transactions on Circuits

and Systems, pp. 1259-1365, Oct. 1989.

Gonzalez, R. and R. Woods, Digital Image Processing, Addison-Wesley Publish-
ing Company, Inc., 1993.

Goodman, D., “Trends in Cellular and Cordless Communications,” IJEEE Commu-

nications Magazine, pp. 31-40, June 1991.

Goto, Junichi, et. al., “A 250 MHz 16b 1-Million Transistor BiICMOS Super-High-
Speed Video Signal Processor,” International Solid-State Circuits Conference,

1991.

He, S. and M. Torkelson, “FPGA Application in a SBus-based Rapid Prototyping
System for AS-DSP,” International Workshop on Field-Programmable Logic and
Applications, Aug. 1992.

He, S. and M. Torkelson, “FPGA Implementation of FIR Filters Using Pipelined

147

(48]

[49]

(50]

[s1]

[52]

(s3]

[54]

[55]

[56}

571

Bit-Serial Canonical Signed Digit Multipliers,” IEEE Custom Integrated Circuits
Conference, 1994.

Heurikon Corporation, 8310 Excelsior Drive, Madison, WI 53717.

Hilfinger, P., “A High-Level Language and Silicon Compiler for Digital Signal
Processing,” Proceedings of Custom Integrated Circuits Conference, Los Alami-

tos, CA, pp. 213-216, 1985.

Hoang, P. and J. M. Rabaey, “MsDAS: A Compiler for Multiprocessor DSP Imple-
mentation,” International Conference on Acoustics, Speech and Signal Processing,

Mar. 1992.
Homewood, M., et al., “The IMS T800 Transputer,” IEEE Micro, Oct. 1987.

Johnson, H. W. and M. Graham, High-Speed Digital Design, PTR Prentice-Hall,
Inc., 1993.

Jurgen, R. K., “The Challenges of Digital HDTV”, IEEE Spectrum, April, 1991.
IEEE P1149.1 JTAG Serial Scan Interface Specification, 1990.

Keutzer, K., “Three Competing Design Methodologies for ASIC’s: Architectural
Synthesis, Logic Synthesis and Module Generation,” ACM/IEEE Design Automa-
tion Conference, Feb. 1989.

Koh, W,, A. Yeung, P. Hoang and J. Rabaey, “A Configurable Multiprocessor Sys-
tem for DSP Behavioral Simulation,” IEEE International Symposium on Circuits

and Systems, 1989.

Koren, I, et al., “A Data-Driven VLSI Array for Arbitrary Algorithms,” Com-

148

(58]

[59]

[60]

[61]

[62]

[63]

[64)

[65]

[66)

(671

[68]

puter, Oct. 1988.

Kung, S. Y., et al., “Wavefront Array Processors - Concept to Implementation,”

Computer, July 1987.

Labrousse, J., et al., “A 50 MHz Microprocessor with a VLIW Architecture”,
ISSCC, 1990.

Leacock, T., et al., “HDTV Digital Camera Processor,” 135" SMPTE Technical
Conference, Oct., 1993.

Lee, B. W, et al., “Data Flow Processor for Multi-standard Video Codec,” IEEE

Custom Integrated Circuits Conference, 1994.

Lee, E. A., “Programmable DSP Architectures: Part 1,” JEEE ASSP Magazine,
Oct. 1988.

Lee, E. A, “Consistency in Dataflow Graphs,” IEEE Transactions on Parallel and

Distributed Systems, April, 1991.

Lipsett, R., C. Schaefer and C. Ussery, VHDL: Hardware Description and Design,
Kluwer Academic Publishers, 1989.

Little, M. J., et al., “3-D Computer for Advanced Fire Control,” First Annual Fire

Control Symposium, Oct. 1990.
LSI Logic, Inc., Data sheet: L64853 SBus DMA Controller, June, 1990.

Mao, W. and S. Y. Kung, “A Real Time Pipeline Interleaving approach for Image/
Video Signal Processing”, ICASSP, pp. 3046-3049, 1990.

McNally, G. W, “Digital Audio in Broadcasting,” IEEE ASSP Magazine, pp 26-

149

[69)

[70]

71]

72)

73]

74

[75]

[76]

44, Oct. 1985.

Meier, S, S. Perissakis, and J. Wawrzynek, “High-Speed CMOS Signaling,”
Research Summary, EECS/ERL, University of California at Berkeley, 1994.

Mello, J. and P. Wayner, “Wireless Mobile Communications,” Byte, vol. 18, no. 2,

pp. 146-153, Feb. 1993

Mendelson, B., and G. M. Silberman, “Mapping Data Flow Programs on a VLSI

Array of Processors,” International Symposium on Computer Architecture, 1987.

Minami, T, et al., “A 300 MOPS Video Signal Processor with a Parallel Architec-

ture,” Journal of Solid-State Circuits, Dec. 1991.

Oppenheim, A. V., and R. W. Schafer, Discrete-Time Signal Processing, Prentice
Hall, NJ, 1989.

Papamichalis, P., Digital Signal Processing Applications with the TMS320 Family,
Vol. 3, Prentice Hall, 1989.

Parhi, K. and D. Messerschmitt, “Pipeline Interleaving and Parallelism in
Recursive Digital Filters - Part I: Pipelining using Scattered Look-ahead
and Decomposition,” IEEE Transaction on Acoustics, Speech, and Signal Pro-

cessing, vol. 37, July 1989.

PLX Technology, Inc., Data Sheet: VMEbus Slave Module Interface Device, VME
2000, 1989.

Potkonjak, M. and J. Rabaey, “Exploring the Algorithmic Design Space using
High Level Synthesis,” VLSI Signal Processing VI, pp. 123-131, 1993.

150

[78]

[79]

(80]

(81)

(82)

[83]

[84]

(85]

[86)

(67

[88]

Putname, L. K., P. Lucht and J. Davis, “A High-Speed Architecture for Image
Computation,” SMPTE, June 1988.

Newman, W. M. ,and R. Sproull, Principles of Interactive Computer Graphics,

Second Edition, McGraw Hill, NY, 1979.
Nielsen, R. O., Sonar Signal Processing, Artech House Inc., 1991.

Nishizawa, T, et al., “A Hidden Surface Processor for 3-Dimension Graphics,”

International Solid-State Circuit Conference, Feb. 1988.

Rabaey, J. M., et al., “A Large Vocabulary Real-Time Continuous Speech Recog-
nition System,” VLSI Signal Processing III, pp. 62-74, IEEE Press, Nov., 1989.

Rabaey, J. M., C. Chu, P. Hoang, and M. Potkonjak, “Fast Prototyping of Datap-
ath-Intensive Architectures,” IEEE Design & Test of Computers, pp. 40-51, June
1991.

Rao, S. K., “Regular iterative algorithms and their implementation on processor

arrays,” Ph.D. thesis, Stanford University, 1985.

Roe, D., A. Gorin and P. Ramesh, “Incorporating Syntax into the Level-Building
Algorithm on a Tree-Structured Parallel Computer,” IEEE Transaction on Acous-

tics, Speech, and Signal Processing, 1989.

Ruetz, P. and R. Brodersen, “A Real-time Image Processing Chip Set,” Interna-

tional Solid-State Circuit Conference, Feb. 1986.
Sandbank, C. P. ed., Digital Television, John Wiley and Sons, 1990.

Schmidt, U., “Data-Wave: a Data Driven Video Signal Array Processor,” Hot

151

[89]

[80]

[91]

[92]

[93]

(4]

[95)

[96]

(97}

| Chips I1: A Symposium on Higtherformance Chips, Aug. 1990.

Schmidt, U., and S. Mehgardt, “Wavefront Array Processor for Video Applica-

tions,” International Conference on Computer Design, 1990.

Senn, P, et al., “A 27 MHz Digital-to-Analog Video Processor,” International
Solid-State Circuit Conference, Feb. 1988.

Skillicorn, D. B., “A Taxonomy for Computer Architectures,” IEEE Computer,
Nov. 1988.

Sluyter, R. J., et al., “A Programmable Video Signal Processor,” ICASSP, 1989,
Glaagow, U. K..

SPARC Technology Business, “Industry’s First Processor to offer On-chip Pro-
cessing Power for Real-time Multimedia Compression and Decompression,”

Announcement, Sept. 19, 1994.

Srini, V. P, “Low-Power Parallel DSP Chip for Multimedia Data and 3-D Image
Processing,” Small Business Technology Transfer Program Proposal (AF

94T0001), U.S. Department of Defense, 1994.

Sugawara, T., et al., “Viterbi Detector including PRML and EPRML,” IEEE

Transactions on Magnetics, Vol. 29, Nov. 1993.

Sun, J. S., M. B. Srivastava, and R. W. Brodersen, “SIERA: A CAD Environment
for Real-Time Systems,” Third IEEE/ACM Physical Design Workshop on Module

Generation and Silicon Compilation, May 1991.

Sun Microsystems, Inc., Sbus Application Notes, July, 1990.

152

(s8]

(99]

[100)

[101]

[102)

[103)

[104]

(105)

[106]

[107]

[108]

[109)

Synopsys, Inc., VHDL System Simulator Core Programs Manual, Dec. 1992.

Tewksbury, S. K. and L. A. Hornak, “Wafer Level System Integration: A Review,”
IEEE Circuits and Devices Magazine, Sept. 1989.

Thiele, L., “On the hierarchical design of VLSI processor arrays,” IEEE Symp. on

Circuits and Systems, 1988.

Toyokura, M., et al., “A Video Digital Signal Processor with a Vector-Pipeline
Architecture”, ISSCC, 1992.

Veendrick, H., et al., “A 1.5 GIPS Video Signal Processor (VSP),” IEEE Custom

Integrated Circuits Conference, 1994.
Viewlogic Systems, Inc., Workview User's Guide, 1991.
The VMEbus Specification C.1, Printex Publishing, 1984.

Volkers, H., et al., “Cache Memory Design for the Data Transport to Array Proces-
sors,” ICASSP, 1990.

Ward, J., et al., “Figures of Merit for VLSI Implementations of Digital Signal Pro-
cessing Algorithms,” Proceedings of the Institute of Electrical Engineers, vol. 131,

Part F, pp. 64-70, February 1984.

Wawrznyek, J., “A Reconfigurable Concurrent VLSI Architecture for Sound Syn-
thesis,” VLSI Signal Processing II, Nov. 1986.

Wind River Systems, Inc., VxWorks Reference Manual, 1989.

Wolfe, A and J. P. Shen, “A Variable Instruction Stream Extension to the VLIW

Architecture,” ASPLOS, 1991.

153

[110]

[111]

[112)

[113)

[(114]

[115]

[116)

Xilinx Inc., The Programmable Logic Data Book, 1994.

Yamashita, N., et al., “A 3.84GIPS Integrated Memory Array Processor LSI with 64
Processing Elements and 2 Mb SRAM”, IEEE International Solid-State Circuits Con-
Jerence, Feb. 1994,

Yang, K, et al., “A Flexible Motion-Vector Estimation Chip for Real-time Video
Codecs,” IEEE Custom Integrated Circuits Conference, 1990.

Yeung, A. K. and J. Rabaey, “A Data-driven Architecture for Rapid Prototyping of
High Throughput DSP Algorithms,” IEEE VLSI Signal Processing Workshop, Oct.
1992.

Yeung, A. K. and J. Rabaey, “A Reconfigurable Data-driven Multiprocessor Archi-
tecture for Rapid Prototyping of High Throughput DSP Algorithms,” Proceedings

of the 26" Annual Hawaii International Conference on System Sciences, 1993.

Yeung, A. K. and J. Rabaey, “A 210 Mb/s Radix-4 Bit-Level Pipelined Viterbi

Decoder,” International Solid-State Circuit Conference, Feb. 1995.

Yeung, A. K. and J. Rabaey, “A 2.4 GOPS Reconfigurable Data-Driven Multipro-

cessor IC for DSP,” International Solid-State Circuit Conference, Feb. 1995.

	Copyright notice 1995
	ERL-95-54

