

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A DATA-DRIVEN MULTIPROCESSOR

ARCHITECTURE FOR HIGH THROUGHPUT

DIGITAL SIGNAL PROCESSING

by

Kwok Wan Yeung

Memorandum No. UCB/ERL M95/54

10 July 1995

A DATA-DRIVEN MULTIPROCESSOR

ARCHITECTURE FOR HIGH THROUGHPUT

DIGITAL SIGNAL PROCESSING

by

Kwok Wan Yeung

Memorandum No. UCB/ERL M95/54

10 July 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

A Data-driven Multiprocessor Architecture for High
Throughput Digital Signal Processing

by

Kwok Wah Yeung

Doctor of Philosophy in Engineering -
Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Jan M. Rabaey, Chair

A data-driven multiprocessor architecture called PADDI-2 specially designed for

rapid prototyping of high throughput digital signal processing algorithms is presented.

Characteristics of typical high speed DSP systems were examined and the efficiencies

and deficiencies of existing traditional architectures were studied to establish the archi

tectural requirements, and to guide the architectural design. The proposed PADDI-2

architecture is a highly scalable and modular, multiple-instruction stream multiple-data

stream (MIMD) architecture. It consists of a large number of fine-grain processing ele

ments called nanoprocessors interconnected by a flexible and high-bandwidth commu

nication network. The basic idea is that a data flow graph representing a DSP algorithm

is directly mapped onto a network of nanoprocessors. The algorithm is executed by the

nanoprocessors executing the operations associated with the assigned data flow nodes

in a data-driven manner. High computation power is achieved by using multiple nano

processors to exploit the large amount of fine-grain parallelism inherent in the target

algorithms. Programming flexibility is provided by the MIMD control strategy and the

flexible interconnection network which can be reconfigured to handle a wide range of

DSP algorithms, including those with heterogeneous communication patterns.

As a proof of concept, a single-chip multiprocessor integrated circuit containing

48 16-bit nanoprocessors was designed and fabricated in a 2-metal 1-um CMOS tech-

2

nology. A 2-level, area-efficient communication network occupying only 17% of the

core area provides flexible and high-bandwidth inter-processor communications. Run

ning at 50 MHz, the chip achieves 2.4 GOPS peak performance and 800 MBytes per

second I/O bandwidth. An integrated development system including an assembler, a

VHDL-base system simulator, and a demonstration board has been developed for

PADDI-2 program development and demonstration.

The benchmark results based on a variety of DSP algorithms in video processing,

digital communication, digital filtering, and speech recognition confirm the perfor

mance, efficiency and generality of the architecture. Moreover, when compared with

several competitive architectures that target the same application domain, PADDI-2 is

in general about 2 to 3 times better in terms of hardware efficiency.

an M. Rabaey
Committee Chairman

To my loving family

in

iv

Table of Contents

1. Introduction...^

1.1 Perspective 1

1.2 Goals and Contributions 3

1.3 Overview 6

2. High Speed Digital Signal Processing...8
2.1 Viterbi Detector 9

2.2 Hidden Surface Processor for 3-Dimensions Graphics 12

2.3 High-Definition Digital Camera Processor 14
2.4 Summary 17

3. Hardware Prototyping Approaches•.............•••.•.......•....••.••....•...19
3.1 Traditional Breadboarding 19
3.2 Application-Specific Integrated Circuits 21

3.3 Programmable Multiprocessors 22

3.3.1 Architectural Classification 23

3.3.2 Programmable (Multi-)Processor Architectures 27

3.4 Summary 45

4. PADDI-2: Architectural Design 48
4.1 Architectural Requirements for Rapid Prototyping 48
4.2 PADDI-2 Control Structure 49

4.2.1 Comparisons 49
4.2.2 Distributed Data-Driven Architecture 55

4.2.3 Address Generator Example 63
4.3 Processing Element Architecture 64

4.3.1 Homogeneous vs. Heterogeneous 64

4.3.2 Processing Element Complexity 66
4.3.3 Instruction Set Architecture 69

4.4 Communication Network 71

4.5 Memory Architecture 77
4.6 I/O Architecture 79

5. PADDI-2: VLSI Circuit Design 83

5.1 48-Nanoprocessor Prototype Chip 83

5.2 Nanoprocessor Design 86

5.3 Communication Network 91

5.4 Scan Unit 97

6. PADDI-2: Development System 99
6.1 PADDI-2 Programming Model 99

6.2 PADDI-2 Assembler Language 102
6.3 PADDI-2 Application Development System 105

6.4 PADDI-2 DSP Prototyping Hardware System 107

6.5 Multi-PADDI-2 Board 110

6.6 Mapping of DSP Algorithms onto PADDI-2 112

6.6.1 Hidden Surface Processor 112

6.6.2 Viterbi Detector 114

6.7 Benchmark Results 118

6.7.1 Comparisons 121

7. Conclusions...l24

Appendix..127
A.l 48-Nanoprocessor PADDI-2 Chip Pin-List 127
A.2 PADDI-2 Instruction Mnemonics 133

A.3 BoardController Registers 134
A.4 Layout of PADDI-2 VME Board 135
A.5 Nanoprocessor AssemblerPrograms for Hidden Surface Processors 136
A.6 Nanoprocessor AssemblerPrograms for Viterbi Detector 139

Bibliography..142

VI

List of Figures

Figure 2-1: Block Diagram of PRML andEPRML Viterbi Detector. 9

Figure 2-2: (a) Equalizer implemented as7-Tap Transversal Filter. 10

Figure 2-2: (b) Block Diagram of Viterbi Detector. 10

Figure 2-3: 256-Pixel Hidden Surface Pixel Processing System 13

Figure 2-4: HDTV Digital Camera Processor. 15

Figure 2-5: Dynamic Contrast Compression 15

Figure 2-6: Edge Enhancement System 16

Figure2-7: Adaptive Horizontal Contours 16

Figure 3-1: Architectural Classification based on Control/Arithmetic Ratio 24

Figure 3-2: Architectural Classification based on Processor Granularity 26

Figure 3-3: Simplified Block Diagram of NECVideo Signal Processor. 31

Figure 3-4: Block Diagram of a 16-Processor DataWave Chip 33

Figure 3-5: Block Diagram of a DataWave Processing Element 34

Figure 3-6: Video Signal Processor Architecture 36

Figure 3-7: Block Diagram of the Data-Driven VLSI Array Processors 38

Figure 3-8: Mapping of a Data Flow Graph onto a Hexagonally Connected Array 39

Figure 3-9: Simplified Block Diagram of the Processing Element of the VLSI Array 39

Figure 3-10: Block Diagram of PADDI Architecture 41

Figure 3-11: Basic Structure of XC4000 FPGA 44

Figure 3-12: Simplified Block Diagram of XC4000 Configurable Logic Block 45

Figure 4-1: Comparison of 3 Control Structures 50

Figure4-2: Direct Execution of Data Flow Graph using a network of Nanoprocessors 55

Figure 4-3: MIMD PADDI-2 Architecture Model 56

Figure 4-4: Static Data Flow Model 58

Figure 4-5: Minimal Nanoprocessor. 61

Figure4-6: 2-dimensional Space Address Generator using 3 Nanoprocessors 63

Figure 4-7: Examples of data flow graphs with fine-grain and coarse-grain parallelisms 66

Figure 4-8: Examples of data communication patterns 73

Figure 4-9: Channel type distribution for a set high throughput DSP algorithms [27] 74

Figure 4-10: Examples of Dynamic Interconnection patterns implemented using SELECT and

SWITCH operators 75

vu

Figure 4-11: Basic Structure of the 2-level PADDI-2 Communication Network 77

Figure 4-12: Memory in the Static Data Flow Model 78

Figure 4-13: PADDI-2 Architecture Model with Memory Elements (ME) 79

Figure 4-14: PADDI-2 I/O Architectures 82

Figure 5-1: BlockDiagram of 48-Nanoprocessor PADDI-2 Chip 84

Figure 5-2: Micrograph of 48-Nanoprocessor PADDI-2 Chip 85

Figure 5-3: Block Diagram of PADDI-2 Nanoprocessor. 86

Figure 5-4: Block Diagram of Nanoprocessor Execution Unit 88

Figure 5-5: Block Diagram of 16-bit Carry-Select Adder. 89

Figure 5-6: SPICE Critical Path Simulation of 16-bit Carry-Select Adder. 90

Figure 5-7: An example of pipelined implementation of multiplication 91

Figure 5-8: Level-1 Communication Network 93

Figure 5-9: Switch Matrix between Level-1 and Level-2 Communication Network 94

Figure 5-10: Dynamic WIRE-AND Handshake Circuit supporting Broadcasting 95

Figure 5-11: SPICE simulation of the propagation delay of the PADDI-2 communication
network 96

Figure 6-1: Programming Resources of Nanoprocessor. 100

Figure 6-2: Program Structure of aPADDI-2 Assembler Program 102

Figure 6-3: Sample PADDI-2 Assembler Code implementing acounter. 104

Figure 6-4: PADDI-2 Software Development System 106
Figure 6-5: Viewlogic Schematic of the Hidden Surface Processor 107

Figure 6-6: PADDI2 DSP Prototyping Hardware System 108

Figure 6-7: PADDI2 VME Board 109
Figure 6-8: Block Diagram of the Multi-Paddi2 Board 111
Figure 6-9: Z-buffer algorithm for Hidden Surface Elimination 113
Figure 6-10: Logical Mapping ofHidden Surface Processor onto PADDI-2 114
Figure 6-11: Physical Mapping ofHidden Surface Processor onto PADDI-2 Chip 115
Figure 6-12: Block Diagram of4-state Viterbi Detector. 116
Figure 6-13: Logical Mapping of4-state Viterbi Detector onto PADDI-2 117
Figure 6-14: Physical Mapping of4-state Viterbi Detector onto PADDI-2 Chip 117
Figure 6-15: 2-D 8x8 Discrete Cosine Transform at 25 MHz sampling rate using 50

nanoprocessors 120
Figure A-l: Layout ofPADDI-2 VME Board 135

viii

List of Tables

Table 3-1

Table 6-1

Table 6-2

Table 6-3

Table 6-4

Table A.l-1

Table A.2-1

Table A.3-1

Table A.3-2

Single-chip Programmable (Multi-)ProcessorArchitectures 28

Listing of Directives 103

Benchmark Results 118

Important IC parameters 122

Comparison of Hardware Requirements 123

PADDI-2 Chip Pin-List 127

PADDI-2 Instructions 133

Board Controller Registers 134

Board Control Register 134

IX

Acknowledgments

First, I would like to thank my advisor, ProfessorJan Rabaey.The PADDI-2 project would not

be possible without his vision, leadership, support, and patience. His vision and guidance was

instrumental in the definition of this project and in every stage of its development. He is truly a

great teacher and an exceptional researcher.

Professors John Wawrzynek, David Aldous, and Bernhard Boser all provided early guidance

for my research as members of my Qualifying Exam Committee. Professors Wawrzynek and

Aldous went above and beyond the call of duty by also serving on my dissertation committee and

reviewing this thesis. ProfessorWayrzynek's comments and suggestions have greatly improved

the presentation of the benchmark results in this thesis.

I would like to thank a number of my coworkers who have contributed to the PADDI-2

project. Besides being a supportive office-mate, ArthurAbnous did a superb job in developing the

assembler and the VHDL model of the PADDI-2 system. Nelson Chow and Stas Frumkin helped

tremendously in debugging the PADDI-2chip and in mapping the first couple of algorithms onto

the chip. My sincere thanks to Matt Power who endured the tedious task of designing the test

board on Racal. Stephen Okelo-odongo simulated the controller functions on the test board. Dev

Chen, who designed the first-generation PADDI architecture, gave me valuable advice on research

and life. I would also like to thank the other members of Jan's research group - Ole Bentz, Lisa

Guerra, Sean Huang, Paul Landman, My Le, Seungjun Lee, David Lidsky, Renu Mehra, Miodrag

Potkonjak, Roy Sutton, Ingrid Verbauwhede, and Engling Yeo - for providing an enjoyable

research environment.

I would alsolike to express my gratitude to Sam Sheng, Kevin Zimmerman, Sue Mellers, and

Brian Richards for supporting the computers, laboratory equipments, and CAD tools. On the

administrative side, I would like to thankTom Boot, Peggy Brown, andCorey Schafer.

My thanks also go out to Tom Burd, Andy Burstein, Anantha Chandrakasan, Phu Hoang,

Timothy Hu, Gani Jusuf, Timothy Kam, Wook Koh, Monte Mar, Shankar Narayanaswamy, Eric

Ng, Mani Srivastava, LarsThon, Jane Sun, GregUehara, Scarlett Wu, and Robert Yu. They made

the past couple of years in Cory so much more bearable. I specially would like to thank my

coworker Cormac Conroy. Besides solving many of my technical problems, he has also corrected

the zillions of grammatical errors in the draft of this thesis.

Lastly, I would like to recognize the members of my family. My sisters Winnie, Mindy and

Cheryl have encouraged me every step of the way.To my parents, I owe more to you than I could

ever repay. Thank you for your unconditional love and support.

And to my fiancee, Marlisa. Thank you for your love and warmth that keep me going through

both good and bad time.

CHAPTER 1

Introduction

Leave thebeaten track occasionally, anddiveinto thewoods. You will be certain tofind something that
you have never seen before.

Alexander Graham Bell

1.1 Perspective

Because of the numerous advantages in processing signals in digital form as opposed to

analog form, e.g., accuracy, stability and repeatability, digital signal processing (DSP) hasbecome

and will remain a dominant force in signal processing and communications [73]. Impacts can be

seen in practically every field, for example, consumer and home electronics, digital

communications, medical, manufacturing, and defense. Typical applications are digital audio [5,

68], high definition digital television [53, 87], digital image andvideo processing [42], computer

graphics [79, 81], speech recognition and synthesis [7, 82], mobile communications [44, 70],

personal communications systems [15], robotics and electro-mechanical control, machine vision

[11], sonar and radar [80], smart weapons, and target discrimination and tracking [65].

After identifying a new market, the designers of modern DSP systems are faced with two key

problems: optimizing the performance and cost of the system, and shortening the design cycle.

The lattercanbe equally if not more important thanthe former. Becauseof the inertiaofcustomers

againstadopting new products and the continual shortening of product life cycles, short time-to-

market is critical in order to capture market shareof any products.

A design process typically goes through many iterations of the design-simulate-evaluate cycle.

Traditional simulation methodology is based on software modellingof the system at variouslevels

of abstraction. However, as the customer's demands on higher performance and DSP algorithms

become more and more complex, software-based simulation can be the bottleneck in the design

process.

Even with rapid advances in computer technology and high-level system modelling, software

simulation cannot meet the throughput requirement of complex systems, especially real-time

systems. For example, to simulate the high-definition colordigital camera [60] on a 10-second

video script requires a throughput on the order of GOPS. Furthermore, if the simulation is too slow

for real-time playback, Giga-bytes of memories are needed to store the video for later playback.

Very often, subjectiveand perceptual measures, the so-called "golden-eyes and golden-ears", as

opposed to deterministic measures, e.g., signal-to-noise ratio and mean-square-error, are used to

evaluate the quality of a design. Many hours of video scripts and tapes must be listened to and

watched throughout the design cycle. In thesecases, a real-time prototype is especially needed to

enhance the ability of the designers to fine-tune many design parameters and to explore new

design space.

In addition, it is not an easy task to model the behavior of the external world with which the

system interacts. For example, to test out a new communication protocol, the channel

characteristics under various traffic loads have to be modelled accurately. A hardware prototype

operating in real-time can be hooked up to the actual physical channel and can provide the

designers accurate performance metrics under realistic operating conditions. In many cases,

hardware prototypes are constructed solely to verify theoretical results with experimental data

[95].

Although a real-time hardware prototype is clearly an invaluable tool for shorteningthe design

cycle of complex DSP systems, previous approaches in hardware prototyping arenot satisfactory

and suffer from one or more of the following shortcomings: high development costs, insufficient

computation power, slow turnaround, susceptibility to errors, difficulty in testing and debugging,

inflexibility, limited scalability, restrictive programmability, and lack of compiler support. (More

of these approaches will be discussed in Chapter 3.) The problem is aggravated when handling

complex DSP algorithms with high sampling rates and heterogeneous data-flow patterns. This

motivates us to research a high throughput programmable multiprocessor architecture called

PADDI-2 that overcomes many of the aforementioned shortcomings and can handle rapid

prototyping of these types of algorithms.

1.2 Goals and Contributions

In this chapter, we have presented the needs for rapid prototyping in hardware that form the

motivation for this research. The main goal of our research is to study and define an architectural

template of a flexible field-programmable integrated circuit component thatcanbe applied to rapid

prototyping of a widerange of real-time high speed DSP systems. In addition to architectural level

design, another goal is to realize the proposed architecture in silicon to study the important

implementation-related issueswhich canhavemajorimpacton architectural choices.

The major contribution of this research is the design and implementation of a novel

multiprocessor architecture called PADDI-2 [113,114]. Characteristics of typical high speed DSP

systems were examined to establish the architectural requirements. Multiprocessor architectures

were classified based on the granularity of processing elements. The analysis of the classification

results lead to the investigation of multiprocessor architectures using fine-grain processing

elements. This class of architectures provides a nice balancebetween flexibility and high

computation power, both of which are essential for rapid prototyping of high throughput DSP

algorithms.

The proposed PADDI-2 architecture is a multiple-instruction stream multiple-data stream

(MIMD) multiprocessor architecture. It consists of a large number of simple processing elements

called nanoprocessors interconnected by a flexible and high-bandwidth communication network.

The basic idea is that a data flow graph representing a DSP algorithm is directly mapped onto a

network of nanoprocessors. The algorithm is executed by the nanoprocessors executing the

operations associated with the assigned data flow nodes in a data-driven manner. High

computation power is achieved by using multiple nanoprocessors to exploit the large amount of

fine-grain parallelism inherent in many target algorithms. Programming flexibility is provided by

the MIMD control strategy and the flexible interconnection network which can be reconfigured to

handle a wide range of DSP algorithms, including those with heterogeneous communication

patterns.

As a proof of concept, a single-chip multiprocessor integrated circuit was designed and

fabricated in a 2-metal 1-um CMOS technology [116]. It consists of 48 nanoprocessors organized

in 12 clusters of 4 each. A 2-level, area-efficient communication network occupying only 17% of

the core area provides flexible and high-bandwidth inter-processor communications. In additionto

the direct interconnections between neighboringnanoprocessors, a total of 7.2 GBytes per second

communication bandwidth is available in the Level-1 network for communications within the 12

clusters, and up to 4.8 GBytes per second bandwidth for inter-cluster communications can be

supported by the Level-2 network. Hardware mechanisms handle data-driven operations and inter-

processor synchronization. Running at 50 MHz, the chip achieves 2.4 GOPS peak performance

and 800 MBytes per second I/O bandwidth. The chip was tested functional on second silicon and

simple algorithms have been demonstrated. An integrated software environment which includes

an assembler and a VHDL-base system simulator has been developed to facilitate program

development and debugging onPADDI-2. An SBus-based board containing eight PADDI-2 chips

is being designed fordemonstration of morecomplex DSP systems.

Although the concepts of fine-grain processing elements and MIMD multiprocessing have

been around for a long time, we believe the idea of applying both concepts in our application

domain is original. Existing architectures typically apply single-instruction stream multiple-data

stream (SIMD) style of control for fine-grain processing elements and MIMD for coarser grain

processing elements. By targeting only high throughput DSPalgorithms with plenty of fine-grain

parallelism, we argued that a local program store of small capacity (less than 8 instructions in our

prototype chip) is sufficient and therefore the control overhead associated with the MIMD

approach can be significantly reduced. In addition, thanks to rapid advances in VLSI process

technology, device density has improved so much that area overhead due to MIMD control and

elaborate interconnect network can be tolerated to a much largerextent.

PADDI-2 is an experimental architecture developed to prove that it makes sense to use the

MIMD approach even for very fine-grain processing elements. The highly scalable MIMD

architecture, a clean programming paradigm based on the data flow concept and a flexible

interconnection network not only enhance programmability but also improve the computation

throughput by making it easier to utilize the large processing power provided by the fine-grain

processing elements.

Indeed, benchmark results based on a variety of DSP algorithms in image and video

processing, digital communications, digital filtering, and computer graphics verify the

performance and generality of the PADDI-2 architecture. Moreover, when compared with several

competitive architectures that also target the same application domain, PADDI-2 is in general

about2 to 3 times better in termsof hardware efficiency. The benchmarkresultswill be presented

in Section 6.7.

1.3 Overview

The following is a chapter by chapter outline of the remainder of this thesis.

Chapter 2 High Speed DigitalSignal Processing

Chapter 2 introduces the class of real-time high speed DSP algorithms targeted by this

research. Several typical applications in this class, including a Viterbi Detector for Disk-drives, a

video engine for hidden surface removal for 3-D computer graphics, and a high definition digital

color camera system, are examined. Their requirements on computation power, functional

operations, data flow patterns, I/O and memory bandwidth, control functions, granularity, and

amount of parallelism are discussed and summarized.

Chapter 3 Rapid Prototyping Platforms

Efficiencies, limitations and trade-offs of existing hardware prototyping approaches are first

discussed. It is then argued that approaches based on programmable, multiprocessing hardware

offer the most cost-efficient solution to satisfy the performance and flexibility requirements.

Programmable multiprocessor IC architectures for high throughput DSP are analyzed and

classified according to the granularity of the basic processing elements and the control/arithmetic

ratio. Representative architectures are cited and compared. Special attention is given to the

architectures thatexploit parallelism in DSPalgorithms usingvery fine-grain processing elements.

Chapter 4 PADDI2: Architectural Design

The PADDI-2 architecture is presented in Chapter 4. First, the architectural requirements for

rapid prototyping of DSP algorithms are summarized. Next, the control structure, processing

element architecture, communicationnetwork design, memory and I/O architecture of the PADDI-

2 architecture are described, and key design choices are explained. Various techniques used to

achieve high performance are discussed, and alternative architectures are suggested and discussed.

Chapter 5 PADDI-2: Hardware Design

In Chapter 5, the VLSI design of the key components of the PADDI-2 chip, the processing

elements, the communication network and the scan unit, are presented. Important circuit

simulation results and testing/debugging strategies are also described.

Chapter 6 PADDI-2: Development System

The programmer model of PADDI-2 is first reviewed in Chapter 6. We then describe the

development system of PADDI-2, which includes an assembler for low-level programming, a

VHDL-base system simulator for simulation and debugging support, and a VME board for

hardware demonstration and scan-testing. The architecture of a multi-PADDI-2 board currently

being designed is also covered. We next present examples of the mapping of practical DSP

algorithms onto the PADDI-2 architecture. The chapter is concluded by reporting and analyzing

benchmark results of practical DSP applications, and comparing the results with several

competitive architectures.

Chapter 7 Conclusions and Future Work

Chapter 7 concludes the dissertation. Alternative PADDI-style architectures are discussed and

future research directions are mentioned.

CHAPTER 2

High Speed Digital Signal

Processing

In this chapter, several real-time, high speed DSPapplications and their implementations in

the fields of communications, computer graphics, and video processing are used to illustrate the

application domain targeted by this research. Characteristics of the algorithms such as

computation power, functional operations, data flow patterns, I/O and memory bandwidth, control

functions, granularity and amount of parallelism are discussed. Typical features of the target

algorithms are summarized. These applications will be referred to when architectures are

evaluated and compared in the next chapter.

A common measure of the communication bandwidth requirement of an algorithm is the I/O

bandwidth of the whole algorithm. A more realistic and also meaningful measure of the

communication bandwidth requirement is the worst case I/O bandwidth of the whole system as

well as all the sub-systems. For instance, if the algorithm is to implemented by a multiprocessor

architecture, this measure defines the requirement on the inter-processor communication

bandwidth. However, the latter is heavily dependent on the implementation, specifically, the

hardware mapping of the algorithm.

In the following sections, the I/O bandwidth of the entire system, which is independent of the

implementation, is used to gauge the communication bandwidth requirement of the algorithms.

While the measure is simplistic, in many cases the measure correlates well with the actual

bandwidth requirement of the algorithms.

2.1 Viterbi Detector

In recent years there has been a wide interest in high speed implementations of the Viterbi

algorithm, which is an optimum algorithm for estimating the state sequence of a finite state

process given a set of noisy observations [11, 36]. Driving applications include convolutional

decoders for error correction, trellis code demodulation for communication channels, and digital

sequence detection for magnetic storagedevices in the presence of inter-symbol interference. In

this section, an integrated Viterbi detector for (extended) Class 4 Partial Response Maximum

Likelihood (EPRML and PRML) channels is described [95].

Figure 2-1 shows the block diagram of the Viterbi detector IC. It includes an equalizer

quantized
input

Equalizer Viterbi Detector

Square
Error

Calculator
(BMU)

8-State
Add

Compare
Select
(ACS)

output data
•

Figure 2-1: Block Diagram of PRML and EPRML Viterbi Detector.

input 1—»[d] I »[d] I »[p] i >[pj | »[d] i |[d] | *\d\

CO-HXl Cl-Jx| C2-Jxl C3-MXI C4-HXI C5-HXI C6-HXI

10

H + H + output

Figure 2-2: (a) Equalizer implemented as 7-Tap Transversal Filter.

8-State

Trellis
Interconnect

input reset

ACSO

jmL
bmO

bml

+HmM

+h[Nsml

ACSl

ACS2

ACS3

ACS4

ACS5

ACS6

ACS7

decisionfO]

decision! 11

decisional

decisionf31

decision[41

decision!51

decisional

decisionf71

8-Siate self-normalized
ACS Unit

d

decode output

REO

RE1 *

RE2 4

RE3 4

RE4

RE5 4

RE6 4

RE7

16-Stage Register-Exchange
Unit

Figure 2-2: (b) Block Diagram ofViterbi Detector.

implemented as a 7-tap transversal filter, and a Viterbi detector with an 8-state Add-Compare-

Select unit. Implementation examples of the equalizer block and the Viterbi detector block are

shown in Figures 2-2 (a) and (b), respectively. The branch metric unit (BMU) calculates the

branch metrics, which measure the likelihood of a state transition in the trellis diagram based on

the square of the error between the observed input and the expected input. Associated with each

11

state is a state metric which can be viewed as the accumulated metric along the most likely path

leading to that state. The state metrics of the two predecessor states of each state are added to the

two correspondingbranch metrics and then the minimum of the two sums, corresponding to the

more likely transition, is chosen to update the state metric for the next iteration. The decision is

sent to the trace-back unit.

A Register-exchange network is used for the trace-back unit because of its simplicity.

Associated with each state is a register which contains the survivor path leading to that state. In

every cycle, one of the two registers of the predecessor states is chosen depending on the decision

output from the ACS unit.The content of the register is then shiftedby one bit with the decision

output asthe shift input and stored for thenext iteration. The length of the register determines the

survivor path length, typically about 5 timesof the memorylength of the encoder process. The bit

shifted out from either one of the states, say stateO, is the decoder output.

The reported ASIC, implemented in0.8-um CMOS, achieves achannel decode rate of 48 Mb/

s running at 48 MHz. Because of the high speed, dedicated multipliers, adders are used for the

transversal filter and a parallel ACS architecture is used.

About4 GOPS of computation power is required. The dominant operations are multiplication,

addition, shift, compare and select. While communications between the functional blocks are

strictly feed-forward and systolic, very irregular communication patterns are needed inside the

Viterbi detector for implementing the connection pattern of an 8-state trellis. I/O bandwidth

requirement is acceptable as long as the ACSunit orthe Register-exchange unit fit into a single-

chip. Since a Register-exchange unit isused to implement the trace-back unit, no large memory is

needed. However, if a long survivor path length is desired, it is more economical to use memories

to buffer the decision outputs from the ACS unit for trace-back [11]. The control forthe algorithm

is very simplebecauseof the dedicated nature of the functional blocks.

Despite the complexity of the Viterbi algorithm, high speed implementation is achieved

12

because of the abundance of both spatial and temporal concurrencies. The equalizer is a feed

forward structureand can therefore be pipelined down to very low granularity. Performance is

mostly limited by the single-delayrecursion loops present in both ACS unit and the trace-back

unit. Algorithmic techniques such as lookahead techniques [9] and block precessing techniques

[10] can be appliedto the Viterbi algorithm to expose more parallelisms and improve speed.

2.2 Hidden Surface Processor for 3-Dimensions

Graphics

In 3-dimensional computer graphics, every polygon must be checked to determine whether it

is visible or hidden from the viewer. A video processor, which eliminates hidden portions of

surfaces using a Z-buffer algorithm on a raster scan-line basis, is described in this section [81].

A system block diagram of the hidden surface processing system describing the detailed

operations of each pixel processor is shown in Figure 2-3. Each pixel processor handles a single

pixel and 256 processors connected in a linear array are needed to process a 256-pixel scan-line.

Tokens of line segments are fed into one end of the array and processed systolically. A segment

token consists of:

X starting x-coordinate of the line segment.

AX length of the line segment.

Z z-coordinate at the starting x-coordinate.

AZ tilt of the line segment.

I intensity of the line segment.

Xi is decremented as it propagates through the array until it becomes zero. When Xi becomes

negative, HSPPj is at the beginning of the line segment. The subsequent HSPP's then decrement

AXi until AXi also becomes negative. This indicates that the end of the line segment is reached.

The enable flag, enable;, is asserted if it is within the line segment, i.e., when Xj is negative and

segment
token in

HSPP0 HSPPj HSPP2

— <0 W"^ 'enable; *-~/ sz
Zmin 4

X,+, AXi+1 Zi+i AZi+i

13

HSPP^s HSPP^g

^
Imin «

segment
token out

Hidden Surface

Pixel Processor

Ii+1 reseti+1

Figure 2-3: 256-Pixel Hidden Surface Pixel Processing System.

AXj is not.

Upon receiving the enable flag, the processor updates the locally stored Zmm by comparing

the incoming Z with Zmin. It also computes the new z-coordinate of the tilted line segment at the

next pixel by summing Z and AZ. If Zmin has been updated, a swap flag, swapj is asserted and

Imin is simply updated with the incoming I. After processing of all the segments in a scan line, a

special reset token is sent down the array. This triggers thescan-out of the stored I^n's and resets

Zm;n and Irain so that processing of the next scan-line can begin.

The implementation reported can process one line segment token every 4 clocks at a 20 MHz

rate for a 256-pixel scan line, corresponding to 5 millions linesegments per second. On the order

of 10GOPS computation bandwidth is required. Only simple arithmetic and minimum operations

14

areused. Data flow is predominantly systolic. High I/O bandwidth is needed because of the large

number of datums in each token. The requirement canbe relaxed by multiplexing severaldatums

onto the same bus. Control foreachHSSP is simplebecause allbranch instructions arereplaced by

conditional operations.

An interesting note is that the performance of the system can be improved by using branch

instructions. This is true because first, many operations can be skipped if the pixel processor is not

on the line segment, and second, the latency of the branch instruction can be hidden by careful

scheduling. On the other hand, if conditional operations areused, the same number of operations

are executed regardless of the location of the processor. The major problem associated with using

branch instructions is that multiple instruction streams are needed.

Plenty of parallelism exists in the algorithm as all the operations can be easily pipelined. The

tightest loop of the system only involves a minimum operation for the update of Zmjn. Higher

performance can be achieved by further pipelining in the expense of more hardware.

2.3 High-Definition Digital Camera Processor

In this section, a fully digital video processor for HDTV cameras [60] is presented. The

system block diagram of the video processor is shown in Figure 2-4. It has three 10-bit input and

output channels (R, G, B) at 74.25 MHz and uses as much as 16-bit precision for internal

calculations for higher accuracy. The processing functions include shading, aperturecorrection,

color balance, gamma correction, and dynamic range compression. Block diagrams of the

R

G

B

ADC and

Pre-filters

Video from

camera head

Black

Shading
Color

Balance

Level

Detector

Contrast

Compression
Gamma

Aperture
Adder

and Delay

Aperture Correction and
Contours Generation

Figure 2-4: HDTV Digital Camera Processor.

• ROUT

• GOUT

• BOUT

control

Figure 2-5: Dynamic Contrast Compression.

DAC

15

R

G

B

Analog
Video Out

functional blocks are shown in Figure 2-5, 2-6 and 2-7. All the filter blocks and aperture

processing blocks are transversal filters with a small number taps. The filter coefficientsare fixed

at run-time, but are important design parametersduring algorithmic development. This application

RIN

GIN

BIN

Non-Linear
Processing

Horizontal
Apertures

Horizontal
LP-Filter

Adaptive
H Contours

Vertical
HP-Filter

control

lKxlO
RAM

Figure 2-6: Edge Enhancement System.

n
Horizontal
Contour

Filter

V.

X
i?

MAX

s
Horizontal

Contour
Filter

«—•

R Uf

Horizontal
LP-Filter

Decision
Circuitry

lR-CI>ThmboW

Horizontal
LP-Filter

••ROUT

-•GOUT

-•BOUT

lKxlO
RAM

—z—

Contour

16

Figure 2-7: Adaptive Horizontal Contours.

is of particular interest because the types of processing performed are typical in many video

processing applications.

At the pixelrate of 74.25 MHz,tenth's of GOPS are needed for each color component. Typical

17

operations include multiplication, addition, maximum and minimum operations, and memory read

and write. Only simple branches are needed, some of which can be replaced by conditional

operations, e.g., select operations. Data communications are straightforward (almost systolic)

between functional blocks, but are heterogeneous inside the functional unit. I/O bandwidth

requirement is large becauseof the high data rate and multiple I/O channels. Shift operations may

be used to multiplex the three 10-bit color components onto two 16-bit I/O buses to save I/O

bandwidth.

Several small (a few kilobytes) random-access memories, used as lookup tables, e.g., for non

linear processing, are accessed in parallel at the high data rate, resulting in high memory

bandwidth requirement. A few large sequential-access memories (up to hundred's of megabytes)

are used as video frame delays and line delays. The implementation uses distributed parallel

memories to handle the memory bandwidth bottleneck. Again, control is very simple because of

the dedicated nature of the functional units. Control is needed mainly to distinguish the normal

data processing phase and the idle phase (the vertical blankingperiod), during which new system

parameters and lookup tables may be updated. As in the previous examples, plenty of fine grain

parallelism is available in the system and pipelining can be easily applied to boost the

performance.

2.4 Summary

In this section, common and pertinent characteristics of the algorithms discussed in the

previous sections are summarized and analyzed below. Although only 3 representative algorithms

are examined, the summary does give a general picture of the DSP algorithms in the application

domain targeted by this research as follows:

• high computation requirement, on the order of 10 to 100GOPS.

• moderate to high data rate, 10 to 100 MHz.

18

• high I/O bandwidth, 100to 500 MByte/sec.

• varied requirements on memory bandwidth and memory capacity.

• both regularand irregular data flow.

• simple control functions.

• plenty of fine grain concurrencies, bothtemporal and spatial.

In genera], the target DSP applications place tremendous demandon both computationand I/O

bandwidth requirements. High data rate is needed, especially in video applications. Requirements

on memory bandwidth and capacity vary depending on the individual applications. For instance,

while the first two applications do not utilize any memory, the HDTV Camera system makes

heavy use of memories, requiring up to a gigabyteper secondmemory bandwidth and hundreds of

megabytes of memory capacity. While regular data flow pattern is common, a significant amount

of heterogeneousdata flow is present in general. Most applications aredominated by computation,

requiring only simple looping and branching, and therefore simple control functions are sufficient.

Abundance of both temporal and spatial concurrencies in the algorithms can be exploited by

pipelining and parallelizingapproaches.

CHAPTER 3

Hardware Prototyping Approaches

In this chapter, efficiencies and limitations of existing hardware prototyping approaches are

first discussed, leading to the conclusion that an approach based on programmable,

multiprocessing hardware can satisfy the performance and flexibility requirements most cost-

efficiently. Programmable multiprocessor IC architectures for high throughput DSP targeted by

this research are then classified according to the granularity of the basic processing elements and

the control/arithmetic ratio. Representative architectures are cited, analyzed and compared.

Special attention is given to the architectural domain where the proposed PADDI-2 architecture

belongs.

3.1 Traditional Breadboarding

One of the mostly widely used hardware prototyping techniques is the traditional

breadboarding approach in which hardware prototypes are builtusingoff-the-shelfgeneric IC's.

These pre-fabricated IC's range in complexity from TTL/ECL bit-slices and arithmetic units, to

dedicated processors such as programmable transversal filter chips and videoengines for specific

19

20

applications [40, 86, 112], to high performance domain specific processors such as general

purpose video signal processors [45,101,102]. The main advantage of this approach is thatdesign

and testing of custom chips are not required. Good performance can be expected if the parts

needed for the specific application are available. Another important advantage is that

manufacturers of these generic parts very often accompany the hardware with software

development systems for the designers to ease systemdesign.

Despite its popularity, this approach suffers from many shortcomings. Perhaps the greatest

drawback of all is the lack of flexibility. The prototype, once built, cannot be easily changed to

handle other design alternatives. Although some degree of programmability is usually available

for the more complex application-specific processors, e. g., to configurethe number of taps of a

transversal filter chip, the programmability is usually too limited for the system designers,

especially if the type of processing is altered drastically. Anotherequally important problemis that

a complete system is usually built from chips of very different architectures and/or programming

paradigms. The heterogeneity makes programming a very tedious task, e.g., custom designed

hardware and software interfaces between chips are often needed. To implement systems that

require high speed operations, custom designed printed circuit boards are often needed, further

increasing the development cost and time.

As an example, the hardware prototype of the high-definition digital camera system described

in section 2.3 was designed using this approach. The prototypewas constructedusing mostly ECL

components to achieve real-time HDTV video processing. Despite the fact that the prototype was

specially designed to handle the processing functions of HDTV video, it still could not fulfil the

needs of the system designers who constantly desired more programmability and flexibility in

order to experiment with new sophisticated algorithms [30].

21

3.2 Application-Specific Integrated Circuits

In order to achieve high performance, or in the absence of pre-fabricated IC's suited for the

particular application in hand, some designers use application-specific integrated circuits (ASIC's)

for hardware rapid prototyping [81, 82, 95]. The main advantages of this approach are higher

performance and reduced chip count due to higher level of customization and integration. For

example, several ASIC's weredesigned to build a connected speech recognition system capable of

recognizing words out of a 60,000-word vocabulary [82]. Parts of the ASIC design may also be

reused when IC's for the final product aredeveloped.

Unlike the traditional breadboarding approach, the ASIC approach suffers from long turn

around time and high NRE costs mandated by the fabrication and design of custom IC's. Using

gate-arrays for ASIC fabrication can shorten the turn-around time somewhat, depending on the

process technology used, but some performance is sacrificed in general. ASIC's are more flexible

than off-the-shelf components because programmability needed for the specific application can be

designed in during chip design. However, the design still cannot be changed once the chip is

fabricated and modifications are both costly and time-consuming. Sometimes the algorithm may

change so drastically during system development that the ASIC can be rendered useless. In

addition to the usual risk inherent in the design of a new custom chip, the overhead in chip testing

and debugging always addsto the development time. Due to the custom IC design, special board-

level design tailored to a particular application is often required.

Because ASIC design offers good performance and potential for system integration, there are

widespread research activities aimed at improving the design time of ASIC's. Besides the

conventional computer aided design tools for IC design, a very promising approach is to

synthesize an ASIC from high-level design specifications [29, 31, 77, 83]. Not only is the design

time reduced drastically, chip testing and trouble-shooting arealso simplified because the circuits

generated by the synthesis tool are correctby construction. For example, the synthesis tool called

22

HYPER [77] accepts specifications of DSP algorithms in high-level languages such as SILAGE

[49] and VHDL [64], performs estimation, transformations, partitioning, assignment and

scheduling, and generates silicon layout as the final product. Many researchers are also interested

in extending the synthesis approach to the system level to achieverapid prototyping of a complete

system [96].

3.3 Programmable Multiprocessors

Perhaps the biggest drawbacks of the hardware prototyping approaches using generic IC's or

ASIC's are the long development time and large NRE costs due to the needs of custom printed

circuit boards and/or overhead associated with ASIC fabrication. To overcome these problems,

many system designers have turned to programmable hardware as their prototyping platforms [8,

56, 78, 85, 107]. As an example, the computation intensive speech recognition systems described

in [8, 85] achieve real-time capability by using parallel commercial processors such as the 8

MFLOP AT&T DSP32C floating point digital signal processor and the 10 MIPS Weitek XL-8032

processors. Using existing hardware, this approach minimizes NRE costs and avoids tedious

testing and debugging of hardware. Moreover, development time is reducedto the time needed for

programming the hardware. By migrating the tasks of prototype development from hardware to

software, flexibility, high reusability,modularity and ease of debugging areensured. It is clear that

compared to the breadboarding approach and the ASIC approach, programmable hardware

satisfies the stringent performance requirement and offers the needed flexibility most cost-

efficiently.

Even with rapid advances in processing technologies, a single chip is not able to deliver the

GOPS's of computationthroughput typically required by ourtarget DSP algorithms, andtherefore,

almost without exceptions, multiprocessing based systems are needed.The use of programmable

multiprocessorsystems for rapid prototyping of DSP systems presents many challenges, due to the

facts that the high computation requirement of the target DSP algorithms demands a large number

23

of processors, and that the high data rate puts tremendous pressure on inter-processor

communication bandwidth. Memory bandwidth can also be the bottleneck in someapplications.

How are large number of processing elements controlled and synchronized, SIMD or MIMD,

centralized or distributed? What communication mechanisms arid network topologies are

appropriate for differentclasses of algorithms? What programming models shouldbe used to ease

programming and compilation? These issues,and many more, arethe subjects of active researches

[50]. Some of these issues will be revisited in Chapter7, where the architecture of a system based

on the PADDI-2 single-chip multiprocessor is described.

In this research, the focus is on the architectural design of the basic single-chip processing

component, on top of which the complete multiprocessing system can be built cost effectively.

Although it is obvious that chip-level architectural design is heavily influenced by the overall

system architecture, there is still plenty of room for architectural innovations, since current IC

process technologies enable integration of millions of transistors onto a small die, and further

advancements can be expected.

We restrict our application scope to fixed-point DSP. Although floating-point DSP is much

superior to fix-point in terms of dynamic range, fixed-point DSP is widely used because fixed-

point hardware is both cheaper and faster than its floating-point counterpart. A good review of

fixed-point DSP vs. floating-point DSP can be found in [62]. In the following sections,

architectures of single-chip integer multiprocessors will be classified, analyzedandcompared.

3.3.1 Architectural Classification

"A good classification scheme should reveal why a particular architecture is likely to provide a
performance improvement."

David Skillicorn, A Taxonomy for Computer Architectures

24

DSP ARCHITECTURES

Control Flow
Driven

Microprocessors

General Purpose Signal Processors

/ \ Dedicated Signal Processors

Dedicated Multiprocessors

Processor

Granularity

Data Path Clusters

Bit-Serial V
Systolic

Data Flow

Driven

Figure 3-1: Architectural Classification based on Control/Arithmetic Ratio.

Besides understanding past accomplishments, classifying architectures helps reveal missing

gaps in thearchitectural spectrum that might not otherwise have occurred to a system designer.

Moreover, a good classification scheme should give strong hints why or why not a particular

architecture is likely to provide performance improvement overitscounterparts [91].

Many taxonomies for computer systems have been proposed: from the classical Flynn's

taxonomy based onparallelism within the instruction stream and data stream [35], to theelaborate

extension by Skillicom [91], to the taxonomy restricted to IC architectures suggested by Keutzer

[55]. A comprehensive review of taxonomy for DSP architectures can befound in Chen's thesis

[27]. We found that the classification scheme for DSP architectures described in[14] by Brodersen

and Rabaey is simple and yet very powerful and relevant to theclassification of single-chip

processor architectures.

In their classification scheme, DSP architectures are classified based on the amount of

operation sharing on an arithmetic unit, as shown in Figure 3-1. One end of the spectrum

represents the traditional microprocessor architecture, where all arithmetic operations are time-

multiplexed on a single general purpose ALU. This architecture is classified as control flow

25

driven, since the functionality of the programmed device is completely determined by the

contents of the control section. At the other end of the spectrumare architectures such as systolic

arrays (bit-parallel or bit-serial), where operations are mapped to separate dedicated hardware

unitsandseldom multiplexed. These architectures arecalled hard-wired or data-flow driven and

the control section is minimal or nonexistent. In between, a complete suite of architectures such as

dedicated processors and data path clusters can be found. One of the major challenges in

architecturaldesign is to strike the right balance between controland data path sectionsfor a

given application and a given throughput range [14].

This classification does not explicitly consider granularity of the processing elements.

However, it is included implicitly because as the control/arithmetic ratio decreases across the

spectrum, the complexity of the processing element can be expected to decrease also. Since we are

mostly interested in single-chip implementations, we can carry the inference one step further to

classify IC architectures based the number of on-chip processing elements (or execution units).

This classification scheme, which is, in fact, very similar to that of Brodersen and Rabaey's, is

illustrated qualitatively in Figure 3-2. Clearly, the absolute number of processing elements

depends strongly on the implementation, e.g., the process technology used and the design style.

However, the general trend is still valid as one goes from one architectural domain to another

across the spectrum.

In Figure 3-2, the rough trade-offs between performance and flexibility are shown. As the

number of processing elements increases, the performance can be expected to improve

accordingly. It is true that techniques such as pipelining can boost performance without increasing

the number ofprocessing elements1. However, the same techniques can conceivably be applied to

all the architectures across the spectrum, resulting in similar performance improvement and

therefore the general performance trend still holds. Another way to comprehend the trend is to

1. A detailed discussion of pipelines in single-chip DSP processors can be found in [33].

Overall

Performance

Flexibility

domain of

interests

Core Processor Complexity

>-200 PE's -100 PE's -50 PE's -10 PE's ~5 PE's

pa H mn
• n

1 1

Bit-level

Processors

Very fine-grain
Processors

Fine-grain
Processors

Dedicated

Signal
Processors

General

Purpose DSP
Processors

26

Figure 3-2: Architectural Classification based on Processor Granularity.

consider the complexity of the control section of the processing element. As the spectrum is

transversed in the direction of decreasing processor complexity, the control section of the

precessing elements become smaller and smaller. Eventually the control section can be eliminated

entirely when the system is completely hard-wired. Simplification of the control section results in

the availability of more silicon area for execution units and faster clock speed, and hence increased

performance.

Unfortunately, the trend in flexibility is the reverse of the performance trend. While a control

driven architecture such a microprocessor can be easily programmed for various tasks with the

help of high-level language compiler, the programming of the data flow driven architectures such

as a systolic processor array is much more involved. Not only do programs for a larger number of

27

processing elements need to be written, inter-processor communicationsand synchronization have

to be carefullyhandledbefore the processing elementscanwork in harmony to producethe correct

results. Sometimes the communication network between the processors can limit the application

scope of the architecture, e.g., systolic processorarrays, which only support communication

between neighboring processors, can only be applied to a certain class of algorithms [58,100].

The problemsare further aggravated if heterogeneous processing elements areused. The degreeof

inflexibility worsens as the relative size of the control section to the data path section decreases,

i.e., as the processor complexity is reduced.

The problem of rapid prototyping poses the interesting challenge of designing architectures

that can achieve the high performance of the data flow driven architectures and yet exhibit the

flexibility of the control driven architectures. As illustrated in the classification scheme in Figure

3-2, we conjecture that the overall optimum may lie in the middle of the architectural spectrum

where fine-grain processorelements areused. In the following section, representative architectures

in each region of the spectrum are analyzed to support our conjecture.

3.3.2 Programmable (Multi-)Processor Architectures

In this section, single-chip processor or multiprocessor architectures with various processor

complexity are studied. As the number of processing elements increases, the impact of the

communication network on the efficiency of the architecture becomes more and more significant,

and therefore architectures are further differentiated by the flexibility of their communication

networks. Representative architectures in each architectural domain, as tabulated in Table 3-1, are

chosen for detailed discussions. Using the algorithms described in Chapter 2 as the target

applications, these architectures are analyzed and evaluated, with special attention given to

architectures using fine-grain processing elements. This is by no means an elaborate list, however,

many of the arguments can be extended to similar architectures within the same domain. These

28

Processor Complexity Coarse

(-5 PE's)
Medium

(-10 PE's)
Fine

(-50 PE's)
Very-fine

(-100 PE's)
Ultra-fine

(>-200 PE's)

Local

Communications
- -

DataWave

[88,89]

Data-driven

Processor Array
[57]

-

Flexible

Communications

Commercial

DSP Processors

NEC VSP

[45]
VSP

[92,102]
PADDI

[26,27]
FPGA

[39]

Table 3-1: Single-chip Programmable (Multiprocessor Architectures.

case studies provide important lessons and hints on how to design a good architecture for rapid

prototyping.

Commercial DSP Processors

Since their introduction more than a decade ago, single-chipcommercial DSP processors have

remained the most dominant force in DSP. This is not at all surprising considering their good

programmability, low cost and rapid and consistent improvement in performance over the years.

Moreover, the conventional wisdom in the general-purpose processorbusiness that VLSI advances

are going to roll over everything is a very strong driving force. DSP processors, equipped with

special architectural features to facilitate the tasks of signal processing, usually have higher

performance than a general-purpose microprocessor in the DSP application domain. However, the

distinction between DSP processors and general-purpose microprocessors has blurred in recent

years, thanks to advances in both processing technology andarchitectures in the general-purpose

microprocessor arena. For example, the recently announced UltraSPARC is able to support real

time video compression (H.261) and decompression (MPEG-2), an application domain formerly

monopolized by DSP processors [93].

Perhaps the most celebrated feature of a DSP processor is the Multiply-Accumulate (MAC)

instruction, which is used heavily in DSP algorithms. Some people gauge the performance of a

29

DSP processor simply by its MAC time. Due to the high memory bandwidth requirement, DSP

processors usually adopt the classic Harvard architecture and use parallel on-chip and/or off-chip

memory banks. Instruction execution is typically pipelinedto boost clock speed and provisions are

made to enhance the efficiency of loop execution, for example, the REPEAT instruction provided

by some processors of the TMS320 family. Other important architectural features include rich

addressing modes, e.g., bit-reverse addressing for fast-fourier transform and modulo-mode

addressing for circular buffering, multiple dedicated address generation units, hardware I/O

support such as timers, DMA controllers, etc..

The performanceof a processor can be given by the averagenumber of instructions executed

perclock (IPC-6) multiplied by the clock frequency. Given that modern processors usually adopt

simple instructions and pipelined execution to increase clock frequency, the throughput is limited

by the small IPC. There are two reasons for the small IPC: first, there may not be enough

instruction level parallelism in the algorithm so that data dependencies and branch latency cause

stalls in the execution pipelines, and second, IPC is limited by the moderate number of execution

units in the processor. The latter is due to the fact that a general-purpose processor is primarily

designed for time-multiplexing operations on a few execution units. Valuable silicon area, which

could have been used for execution units to increase performance, is wasted on such

extraneousness as complex control logic and large instruction cache. As an example, if a processor

is dedicated to repeating the few instructions in a simple inner loop of analgorithm so as to satisfy

the computation requirement, an instruction cache is not needed.

The Viterbi detector described in Chapter 2 is a good example to demonstrate the inefficiency

of a DSP processor in exploiting fine-grain parallelism. About 80 instructions are executed to

produce one decoded bit. Even if we make the very aggressive assumptions that there are enough

2. To evaluateperformance of processors with differentinstruction sets, one must also considerthe average amountof
work performed by an instruction, i.e., complex instruction set vs. reduced instruction set.

30

instruction level parallelism inthecode, i.e., there are nostalls due to data dependencies orbranch

latency, and that the processor can execute 4 instructions per cycleat the clock frequency of 100

MHz, it will still take 20 cycles to process one sample, resulting in a decoderate of a mere 5 Mb/s.

To achieve higher performance, designers must resort to multiprocessing. Some modern DSP

processors have special architectural features to aid multiprocessing. For example, the TMS320-

C40 from Texas Instruments Inc., are equipped with 6 high-speed serial links such that many

common network topologies, e.g., hexagonal array, can be easily realized. However, the major

bottleneck for developing systems using parallel DSP processors is often the lack of system-level

software support. One exception is the transputer developed by Inmos, Inc. [51]. The entire

transputer system architecture, from processor architecture, to instruction set, to programming

language, is specially designed for multiprocessing. Using a concurrent language called Occam,

which is based on the concept of communicating sequential processes, designers can easily

program a set of processes to run on different transputers andto communicate with each othervia

channels, supported in both hardwareand software.

NEC VSP: a Dedicated Signal Processor

Next in the spectrum is a classof dedicated DSP processors. Strictly speaking, these dedicated

processors are not general-purpose processors because they are generally designed specially for a

certain application domain, e.g., video processing. However, these processors are so flexible in

terms of programmability that they can be applied to a wide range of algorithms within the

application domain. Hence they are also known as application-specific processors. By focusing on

an specific application domain, architectural features such as data path, memory organization and

word width can be optimized more than a general-purpose processor. Consequently, a dedicated

processor typically contains a higher number of processing elements or execution units, thus

providing higherperformance than a comparable general-purpose DSP processor.

A good example of a dedicated DSP processor is the super-high-speed video signal processor

Current Preceding
Frame Data Frame Data

Output

Figure 3-3: Simplified Block Diagram of NEC Video Signal Processor.

31

(VSP) from NEC Corporation [45], which contains many architectural features typical of

dedicated processors such as a large numberof execution units, optimized data paths, parallel

memories, and microprogram based control. As shown in the block diagram in Figure 3-3, the

NEC VSP contains two main execution units: a convolver/multiplierand a data path consisting of

dual ALU's, a barrel shifter and a minimum/maximum value detector optimized for video signal

processing such as inter-frame difference and motion compensation. Seven on-chipdata RAM's,

most of which are dual-ported, are used to sustain high data bandwidth to and from the speedy

execution units. A total of twelve address generators, one for each port of the RAM's, run

independently in co-processor mode to reduce instruction bandwidth from the central

microprogram based sequencer.

32

Using a 0.8-u.m triple-metal BiCMOS process, the chip runs at a 250 MHz internal clock

frequency, and achieves 500 MOPS for convolution and 250 MOPS for multiplication and other

arithmetic operations. For example, an 8x8 2-dimensional DCT can be performed using a single

chip in 16.8 jis, equivalent to a pixel rateof 3.8 MHz.

Although the performance of dedicated signal processors is generally superior to that of

general-purpose DSP processors, it is still notenough to satisfy the throughput requirement of our

target algorithms. Dueto the typical useof concurrently operating hardware units,programming is

not easy because thorough understanding of the architecture is needed in order to orchestrate the

units to work together correctly and efficiently. Moreover, because of the restrictive application

scope, the manufacturers are likely to allocate less resources to compiler development, making

programming evenmore difficult. The programming issue is further aggravated if multiprocessing

is applied to improve performance. Another problem with using dedicated signal processors for

rapid prototyping is that sinceit is optimized for a specific application domain, the processor may

not be efficient for general DSP algorithms. For example, it is not clearhow well the NEC VSP

can handle the many branch instructions needed in the Viterbi detector and hidden surface

processor described in Chapter 2.

DataWave: a Data-driven Array Processor

The DataWave [88, 89] belongs to a class of multiprocessor architectures called Wavefront

Array Processors proposed by S.Y. Kung [58]. The wavefront array is an extension of thesystolic

array originally proposed by H. T. Kung [37]. Both systolic array processor and wavefront array

processor achieve high performance through parallelism and pipelining using regularly, locally

interconnected processing elements. However, the application is limited to a certain class of

algorithms, such as regularly iterative algorithms [84] orthe more general piecewise regular

algorithms [100]. Examples are common in the areas of signal and image processing such as

vector and matrix operations, sorting, and pattern recognition.

J12 >12

Figure 3-4: Block Diagram of a 16-Processor DataWave Chip.

The key difference between the two is that while all the operations in a systolic array are

synchronized by a global clock, the wavefront array is asynchronous in that only the correct

sequencing, not timing, is required. Hence, higher performance can potentially be achieved by the

wavefront array by taking advantage of the differences in speed of the operations in the array. A

serious problem with these array architectures, which is often overlooked by the designer, is that

specially designed I/O units are often needed to provide enough data bandwidth to sustain the high

performance [105].

As shown in the block diagram in Figure 3-4, a DataWave chip consists of 16 mesh-connected

processing elements. Each processorindependently executes a program stored locally, propagating

data through the array in a wavefront-like manner. Instruction execution is data-driven, i.e., it is

halted if any operands required are not available or if any inter-processor communications are

blocked. Processing elements on the edge of the chip can communicate with another DataWave

chip via the bus switch by time-multiplexing.

12

12

33

i
ex

o

t 4
| OUT FIFO | IN FIFO

* A " * 1

i
fa

Z
-*

Y Y

-*

?

r

Regfile
16w

Program
RAM
64 x 48b

T ^
ir 1

„ 4 „ I

IF1fa

E
D
o

MAC ALU/Shift

*-

<-
4- - i 1

t
i

T + ir 4
IN FIFO OUTFIFO |

Figure 3-5: Block Diagram of a DataWave Processing Element.

34

Each processing element consists of a 4-port 16-word register file, an ALU, a multiply-

accumulate unit, a 64x48b program store, and eight 8-deep FIFO's interconnected by three ring

buses (Figure 3-4). Data path width is 16 bits with the exception of the accumulator which is 29-

bit wide. A 5-stage pipeline is used to achieve a fast internal clock rate of 125 MHz in a 0.8-jim 2-

metal CMOS process technology. An ALU operation and a MAC operation can be launched every

cycle, resulting in a total peak performanceof 4 GOPS. Due to the deep pipeline, branch latency is

3 cycles. The input FIFO and output FIFO on each side of the cell smooth out data transmission

between cells and implement an asynchronous interface to eliminate a global clock and the

associated clock skew problems. A complete software environment including a compiler for static

data flow programs and a graphical simulator was developed for the architecture to ease

programming.

35

This architecture is of particular interest to us because the architecture, though developed

independently, shared many commonalities with our proposed architecture, e.g., the use of

homogeneous fine-grain processing elements for high throughput, data-driven execution andstatic

data flow programming paradigm. Anotherinteresting feature of this architecture is the use of

asynchronous interprocessor communications to achieve scalability both physically and

architecturally.

Although the DataWave has the appearance of aWavefront Array Processor and can certainly

function like one, it is intended for a wider range of video applications, not limited to the

traditional application scope of a Wavefront Array Processor. For instance, non-local

communications canbe realized by routing data through the PE's, which can perform arithmetic

operations and at the same timemovedata from an input FIFO to an output FIFO. Nonetheless,

whentackling algorithms with irregular data flow, many PE's, which are fairly complex, are likely

to be under utilized. Moreover, the long latency due to data propagation through processing

elements may not be acceptable especially for applications with tight recursive loops .

For example, while the mesh array topology can perform reasonably well for the hidden

surface processor in section 2.2, it isnot clear how well it can handle themany branch instructions

and heterogeneous communications required in the Viterbi detector described in Section 2.1.

Furthermore long latency is bound to hurt performance because of the single-delay recursive loop

in the Add-Compare-Select unit. Finally, the DataWave architecture implements a computation

array without any memory elements except for the small local register file. It will be interesting to

see how memories are integrated intothe system for memory intensiveDSP applications.

3. Sometimes algorithmic transformation techniques such as the block processing technique can beapplied torelief the
recursive bottleneck [75].

36

Philips Video Signal Processor

The Video Signal Processor (VSP),developed by Philips ResearchLaboratories, is a general-

purpose, programmable processor specially designed for efficient processing of real-time video

signals using parallel, fine-grain processing elements [92,102]. As shown in the block diagram in

Figure 3-6, a VSP contains a total of 28 parallel processing elements: twelve Arithmetic Logic

Elements (ALE's), four Memory Elements (ME's), six Buffer Elements (BE's) and six Output

Elements (OE's), all of which are interconnected by a 28 by 60 by 12-bit crossbar switch matrix.

Each processing element is connected to the switch matrix by one or more programmable-delay

registers called silos. Implemented as 32 by 12-bit dual-port memories, the silos can realize

sample delays, equalize pipeline delays, and are essential for achieving efficient cyclo-static

program schedules.

6

Inputs' i
*»-

X X

ITT
ALE

Prog

12 ALE's

Serial
Interface

CROSSBAR SWITCH

X X

u
• •• • ME SHF • •

Prog Prog i e
• •

4 ME's 6 BE's 6 Outputs (OE's)

Figure 3-6: Video Signal Processor Architecture.

37

Using the cyclo-static scheduling algorithm, the execution of instructions in the parallel

processing elements can be scheduled to satisfy certain criteria such as optimal processor

utilization. Overhead of multiprocessing such as synchronization is minimized because each

processing element simply cyclically executesthe instructions stored in its local 32-wordprogram

memory according to the schedule. Hence the VSP is conceptually a Very-Long-Instruction-Word

(VLIW) processor. Conditional execution is provided to replace data dependent branch

instructions, which are not allowed.

An ALE consists of 3 silos, 3 barrel shifters and a 12-bit ALU, and is capable of performing

arithmetic, logic, compare and shift operations. Multiplication is implemented sequentially by the

partial multiplication operations based on Booth encoding. The ME contains a 2k by 12-bit two-

port SRAM, 3 silos and some logic for address calculation, and can perform a read and a write

operation concurrently every clock cycle. A BE,consisting of a siloand a barrel shifter, is mainly

used afloating silo in series with any other processing element when longer length of the silo is

needed. In addition, the BE can perform shift operations thereby freeing an ALE. Running at a

clock frequency of 54 MHz, the chip provide 1.5 GIPS peak, and the six OE and six input buses

provide a combined I/O bandwidth of 7.7 Gb/sec.

The VSP architecture is very interesting in that instead of developing a compiler for an

architecture, the architecture is specially designed for the cyclo-static scheduling algorithm and

many features such as the silos are included solely to enhance the efficiency of the compiler.

Although cyclo-static scheduling allows multiprocessing with little overhead, the exclusion of

data dependent operations may betoo restrictive in general. For example, as discussed in Section

2.2, the performance of the hidden surface processor can be increased if branch operations are

used instead of conditional execution. Moreover in orderto obtain afeasible cyclo-static schedule,

a large number of delays may be needed, resulting in the large number of silos and BE's totaling

23 Kb of two-port memory.

38

9
a

9
a

•**

9

o

£
9

9
a

9

o

Communication

Buses ^T
-»l 1 1 1 1 1 1 1 1 w

^s.

^

.

£i-+
J-?"*
\ / ^s-tzu^ ^ Aprocessing element

^^* connected to six
neighbors

Figure 3-7: Block Diagram of the Data-Driven VLSI Array Processors.

Data-driven Processor Array

In this section, we will examine a data-driven VLSI array developed at the University of

Massachusetts at Amherst [57]. The architecture also belongs to the class of wavefront array

processors and bears many resemblances to the DataWave architecture discussed before. The key

differences are that the data-driven VLSIarray is specially designed for arbitrary algorithms and

that it utilizes processing elements of much finer grain.

Figure 3-7shows the block diagram of theprocessor array chip, which consists of an array of

hexagonally connected arrays supplemented by several global communication buses. The basic

idea is to map an arbitrary algorithm represented by a data flow graph to the processor array as

shown in Figure 3-8. Using very simple processing elements, spatial as well as temporal

concurrencies in the algorithms can be exploited through parallelism and pipelining to achieve

high throughput.

The simplified block diagram of a basic processing element (PE) is shown in Figure 3-9. It

contains six communication registers, an execution unit, a communication control block, a flag

A B

Figure 3-8: Mapping of a Data Flow Graph onto a Hexagonally Connected Array.

rRpn i~R<ri

Communication

Control

Flag Array |

Execution

Unit

3

Microprogram

Control

Instruction

Memory

R3 Communication Busus

^ A
Rl I i I R6

i

Figure 3-9: Simplified Block Diagram of the Processing Element of the VLSI Array,

39

40

array, a very small instruction memory and a microprogram control block. The communication

registers, positioned in the periphery of the PE, buffer communications to the six neighboring

PE's. The execution unit comprises a shift-register and an arithmetic logic unit capable of

executing all common boolean and arithmetic operations. Shift, multiplication and division

operations are performed sequentially. A carry bit is generated to allow multi-byte operations. The

microprogram control block decodes instructions stored in the 6-word instruction memory into

sequences of control signals. The flag array monitors the presence of operands to control data-

driven operationof the PE.The width of all data paths and buses are8 bits.

It is not clear if an operating chip has been designed, but the authors in [57] estimated that a

chip containing about 100 PE's is practical in today's VLSI technology. Noteworthy architectural

features include the global communication buses to facilitate I/O, especially to the middle of the

array, and the use of PE's for routing to handle irregular data flow pattern. To reduce the overhead

of data routing, the data-driven array, like the DataWave, uses long instruction words to allow

execution of operations in parallel with data movement between ports. Because of the simpler

PE's used, the inefficiency due to dataroutingby PE's is relatively less compared to the DataWave

architecture.

Despite the use of global buses to enhance I/O, the local communication between PE's

seriouslydegrades the efficiency of the architecture, asevident in the low average PEutilizationof

27% or 38% reported, depending on the algorithms used to map algorithms to the array [71].

Similar to the DataWave architecture, the architecture can suffer when tackling algorithms

consistingof recursions, due to the longcommunication latency. Anotherimportant problem is the

low throughput of the frequently used multiplication operation due to the sequential execution.

Furthermore, there is no provision to increase throughput, e.g., by executing multiplication in a

pipelined fashion among several PE's.

Global
Instruction Bus

Off-chip

Control

Chip Boundary

EXU

I

O
u

T3

• • • • EXU

u

Communication Network

EXU o
u

I

• • • • EXU O

•a

J

Figure 3-10: Block Diagram of PADDI Architecture.

PADDI

41

I/O

PADDI, an acronym for Programmable ArithmeticDevice for Digital signal processing, is an

architecture previously developed by Chen of U.C. Berkeley for rapid prototyping of DSP [25,

27]. Its main target is high speed data paths for DSP using fine-grain processing elements. An

understanding of the efficiencies and limitations of the architecture influenced many early ideas of

this research.

As shown in the block diagram in Figure 3-10, a PADDI chip contains many fine-grain

execution units interconnected by a flexible, dynamically configured communication network.

Each execution unit has a local decoder that decodes a global 3-bit instruction broadcasted by an

off-chip controller. The architecture is therefore basically a single-instruction stream multiple-data

stream (SIMD) architecture with a very long instruction word (VLIW).

The PADDI instruction set includes shift and arithmetic operations, but logic instructions are

not implemented. While variable-and-variable multiplication is not directly supported, variable-

42

and-constant multiplication is realized efficiently by shift-and-add operation. Data path widthis 16

bit andtwo execution unitscan be linked to provide 32bitoperation attheexpense of slowerclock

rate. Another interesting feature is that the 8-word register file of the execution unit can also be

configured as a variable-length delay line for easy handling of sample delays in DSP algorithms.

Runningat 25 MHz, the prototype PADDI chipconsisting ofeightexecutionunitscan provide200

MOPS using a 1.2-|im 2-metal CMOS process technology. More details about the PADDI

architecture can be found in Chen's thesis [25].

From our experiences with the PADDI architecture, we found that the centralized control

strategy employed in PADDI can sometimes berather restrictive. For example, it isdifficult to deal

with several concurrently operating units with a single control thread, especially when data

dependent operations are involved. The global control also makes it hard to scale the architecture

to tacklemorecomplex problem. Ontheother hand, theuseof very fine-grain processing elements

and flexible communication shows very good potential in achieving high performance for a wide

range of DSP algorithms.

Field-Programmable Gate Array

Inrecent years, there has been atremendous growth inanewbreed of devices knownasField-

Programmable Gate Arrays (FPGA's) [39]. Formerly inthe supporting role of saving glue logic in

the earlier days of their existence, FPGA's are now both powerful and cost efficient enough for

system applications, thanks to rapid advances in IC processing technology and innovations in

FPGA architectures. Usable gate counts up to 20,000 and systemclock rates up to 100 MHz are

possible with the current generation of FPGA's and higher density and speed can beexpected in

the future generations.

The device provides a new computing paradigm in that hardware can be reconfigured to

execute an algorithm in itsmostnatural form instead of the indirect process of first translating the

algorithm to a format (machine code) understood by thehardware, and then interpreting the format

programmable
interconnect

routing channels^

switch matrices*

nnnn

uuuu

44

na

CLB's

IOB's

Figure 3-11: Basic Structure of XC4000 FPGA.

improve silicon utilization and usable gate count. Anti-fuse technology and channel-less routing

can be applied to increase routability and density, and to shorten propagation delay of

interconnect. Other innovations include the use of lookup tables in CLB's as small random-access

memories and support for wide and fast decoders.

By providing reconflgurable hardware, flexible interconnect, and field-programmable ability,

FPGA's offer excellent flexibility and quick turn-around time and are widely used for rapid

prototyping of DSP and computer systems [18,46, 47]. Note that many of these architectural

features are also supported by our proposed architecture. However, becauseof FPGA'sbit oriented

architecture, its granularity may be too low for efficient implementationof wide data paths. When

used to implement algorithms dominated by word-parallel operations, as is the usualcase for DSP,

an FPGA is likely to suffer from area inefficiency and speed degradation, compared to

architectures tailoredfor word-parallel operations, given the same process technology and design

style. Moreover, with limited routing resources, FPGA's can run into congestion problems when

43

by hardware such as a processor to execute the algorithm. In short, the device provides the

designers a programmable approach to design custom hardwiredVLSI circuits. The hardware

configurability can provide not only flexibility but also potential performance improvement, e.g.,

in a project at the Super-computing Research Center, an FPGA-based coprocessor called Splash

beat a Cray-2 super computer by a factor of 330 on a DNA sequencing application [16].

The popularity of the device has fueled many research efforts in the areas of reconfigurable

architectures, synthesis, logic optimization and mapping for FPGA's and applications [47]. New

workshops have been established to facilitate exchanges of ideas and publication of results4. A

good overview of the technology, architecture and CAD tools for programmable logic devices can

be found in [17].

A typical FPGA architecture is examplified by the XC4000 architecture, one of the most

popularFPGA families from Xilinx, Inc. [110]. As depicted in Figure 3-11, the basic structure of

the XC4000 FPGA contains an array of configurable logic blocks (CLB's) and peripheral input/

output blocks (IOB's) interconnected by programmable interconnect in the form of routing

channels and switch matrices. Figure 3-12 shows a simplified block diagram of an XC4000 CLB,

which consists mainly of three lookup tables (or function generators), two flip-flops and several

multiplexors. With thirteen inputsand four outputs, theCLB canbe configured to implement fairly

complex logic, e.g., a 2-bit full adder can be builtusing just oneCLB. The IOB serves as interface

between the internal logic and the external world and can be configured, e.g., as an input, output or

tri-state pad, among the many options. The functionality of the FPGA is defined by the

configurations in the CLB's and IOB's, and the interconnect setting, all of which are initialized at

system start-up and stored in SRAM cells.

The architecture of FPGA is evolving rapidly. New devices may have simpler CLB's to

4. Examples are the ACM International Workshop on Field-Programmable Gate Arrays and the IEEE Workshop on
Reconfigurable Architectures.

45

CI C2 C3 C4

i—i-i—i

Clock

Figure 3-12: Simplified Block Diagram of XC4000 Configurable Logic

routing wide buses, hence jeopardizing CLB utilization and increasing propagation delay of the

interconnect. More limitations of FPGA's for bus oriented applications are discussed in [25].

3.4 Summary

The traditional breadboard prototyping approach of putting together a system using off-the-

shelf parts relies on the availability of chips with the desired functionality and performance. The

resulting systems are often limited in programmability and inflexibleto modification.Worst of all,

the use of chips with heterogeneous architectures and programming paradigms makes

programmingand interfacedesign a verytedioustask. The ASIC approach allows high integration

and improved performance, but suffers from long turn-around time, high NRE costs, and the risk

of chip failures.

46

Hardware prototyping using a programmable multiprocessor provides the most attractive

solution of all by eliminating error-prone hardware designs and offering low development cost,

high flexibility, reusability, modularity, and ease of debugging (in software). Representative

architectures of single-chip multiprocessors, classified according to the granularity of the basic

processing elements, were presentedand analyzed earlierin this chapter.

Von Neumann style general purpose microprocessors and DSP processors are flexible and

easy to program because of the availability of high-level language compiler. However, these

processors are limited by the heavy investment in control functions to enable hardware sharing,

and thereforethey are not efficient forexploiting fine-grain parallelism and cannot satisfy the high

throughput requirement of our target algorithms. Multiprocessing using these processors can

improve throughput, but the lack of software and/or hardware support canbe the Archilles's Heel

in the development of such systems. Moreover, the resulting system is still not cost-effective

because a large numberof chips are stillneeded to meet the throughput requirement.

Dedicated signal processors ordomain-specific processors often achieve superior performance

compared to the general purpose DSP processors by optimizing the architecture for a specific

application domain. Unfortunately, the highly parallel architecture commonly used sacrifices ease

of programming and compiler support is often limited, especially for multiprocessor development.

Furthermore, the optimized architecture can jeopardize theefficiency of the processors for general

DSP applications.

The DataWave architecture achieves veryhigh performance usingheavilypipelined fine-grain

processor elements, but the inflexibility of the local communication networks degrades its

efficiency for applications that require irregular data flow. A very similar approach, except for the

finer granularity of the basic processor element, is taken by the Data-driven VSLI array and

therefore it also suffers from the same inefficiencies as the DataWave architecture. Based on the

cyclo-static scheduling algorithm, the Philips VSP enables multiprocessing with very little

47

overhead, but cannot handle data dependent operations in general. The PADDI architecture has

many interesting architectural features that enhances the performance for a wide range of DSP

algorithms. However, the centralized single-instruction stream multiple-data stream (SIMD)

control strategy limits the scalability and flexibility of the architecture.

Field-Programmable Gate Arrays (FPGA's) achieve quick around-time and excellent

flexibility by offering field-programmability down to the gate level, but their bit-oriented

architectures are area-inefficient and slow for implementing wide data paths commonly used for

DSP applications.

Based on the arguments in this chapter, it is clearthatno existing architecture can provide both

the flexibility and the performance needed for rapid prototyping of our target DSP algorithms in a

cost-efficient manner. In the next chapter, we propose an improved architecture called PADDI-2

specially designed to satisfy these requirements.

CHAPTER 4

PADDI-2: Architectural Design

In this chapter, a single-chip multiprocessor architecture called PADDI-2, which targets the

rapid prototyping of high throughput DSP applications, is described. First, we summarize the

architectural requirements for handling the target DSP algorithms described in Chapter 2. In the

following sections, the control structure, processing element architecture, communication network

design, memory and I/O architecture of the PADDI-2 architecture are presented, key design

choices are explained and the various techniques used toachieve high performance are discussed.

Alternative architectures are suggested and discussed. Here, we focus on the high level

architectural ideas of PADDI-2. In the next chapter, the detailed hardware design of the

architecture will be presented.

4.1 Architectural Requirements for Rapid Prototyping

The target architecture must be able to provide the high computation throughput of the order

of 10 to 100 GOPS required by high performance DSP algorithms. Moreover, the architecture

must be able provide high memory bandwidth and I/O bandwidth (hundreds of MBytes per

48

49

second) in order to sustain the high computation throughput. In addition, the architecture mustbe

generic and flexible enough to handle a wide range of algorithms, especially those with

heterogeneous data communications. Emphasis is puton easeof programming andcompilation in

order to achieve rapid prototyping. Equally important is the scalability and modularity of the

architecture. The architecture must be easily extended to tackle more complex problems, and to

keep pace with the rapid advances in technology without radical redesign. Field-programmability

is desired to reduce turn-around time and cut costs.

4.2 PADDI-2 Control Structure

4.2.1 Comparisons

The control structure is perhaps the most important aspect of a multiprocessor architecture.

Not only does it dictate the programmability of the architecture, it also has tremendous effects on

the efficiency of the system by handling the interactions between various components of the

architecture. In this section, three canonical control structures, namely, centralized, distributed,

and hierarchical,as illustrated in Figure4-1, arediscussed and compared.

Centralized Control

The centralized control structure uses a single global controller to control all the execution

units (Figure 4-1(a)) and is often used for tightly coupled multiprocessor systems, e.g., the

processor array for image processing in [38, 111]. The key advantage of this control strategy is its

conceptual simplicity, which eases compiler development. Centralized control simplifies

implementation of global program jumps, e.g., task swapping and context switches. By putting all

resources under the control of a single program, dynamic resource sharing can be easily managed

and implemented to enhance the efficiency of the architecture.

The centralized control structure works very well when all the processing elements of the

Execution

units

Global Ctrl
| i |

EXU EXU ••• EXU

1 1 1
Communication Network

Ctrl Ctrl Ctrl

i • • • • i

EXU EXU EXU

1
Communication Network

Ctrl-N

CtrI-2 Ctrl-2

Ctrl-1 Ctrl-l Ctrl-l

i i • • • i

EXU EXU EXU

1 1
Communication Network

50

(a) Centralized.

(b) Distributed.

(c) Hierarchical.

Figure 4-1: Comparison of 3 Control Structures.

system execute an identical or similar instruction thread. However, many loosely-coupled

concurrently operating units are often used in the processing ofcomplex DSP algorithms. In such

a case, the centralized control can become very inefficient. For example, suppose there are two

execution units, each controlled by a local controller, and Nl and N2 instructions are needed,

respectively. In the case where the control flow ofthe two local controllers are independent ofeach

other, upto Nl x N2 instructions are required if we are touse a single global controller for both

execution units. Moreover the global controller mustalso examine two sets of status from the

execution units and perform multi-way branches. It is clearthat the complexity of the global

51

controller is more than the total complexity of the two local controllers, and the same argument

can be extended to higher number of execution units. Interestingly, this is very similar to the

common observation that it is often possible to decompose a complex finite-state machine (FSM)

into several simple interacting FSM's to save hardware.

Another inefficiency of the centralized controller is the long branch latency. Compared to a

local controller, a centralized controller has to be located further away from the execution units

both in physical distance on the chipand in hierarchy. This incurs higher branch penalty because it

takes longer before the controller receives the status of the execution units and changes the

program flow. For example, the use of an off-chip global controller in the first generation PADDI

architecture results in multiple-cycle branch latency. The extra branch penalty can be reduced by

substituting branch instructions with conditionally executed instructions [102], or by the use of

special branch handling hardware such as the loop controller in [34]. However, in general, these

features cannot be applied to all program jumps and it is not clear if a compiler can make effective

use of them.

Even the application of the centralized control strategy to a moderate number of processors

would require a very long instruction word, of the order of hundreds of bits [59]. This results in

tremendous instruction bandwidth requirements, high costs in silicon area for instruction routing,

and high I/O bandwidth requirements if the instructions have to come from off-chip sources. The

use of local instruction buffers or decoders has been proposedto relieve the problem of instruction

bandwidth bottleneck [27, 34]. However, these approaches are likely to add to the branch penalty

further by introducing yet another level of control hierarchy. Except for single-instruction stream

multiple-data stream (SIMD) systems, a purely centralized control structure is not practical for

large systems due to technology constraints. Consequently, systems adopting the centralized

control structure suffer from limited scalability.

52

Distributed Control

In a distributed control structure, each execution unit is equipped with a local controller

(Figure 4-1(b)). The most important advantage of the distributed approach over its centralized

counterpart is the excellent scalabilityof the system. More processorelements can be easily and

seamlessly integrated into the system to tackle more complex problems. The scalability issue is

going to be more and more crucial as technologies continue to advanceand millions of transistors

can be expected on a single die, and billions with wafer-scale system integration [99].

With the distributed control strategy, clusters of processing elements canwork together on the

same task or independently take ondifferent tasks. Without theartificial boundary imposed by the

control structure, complexsystemcan be partitioned intosub-systems in the most natural manner.

This facilitates the divide-and-conquer approach, promotes modularity and eases programming.

Furthermore, by keeping the controller local, the instruction bandwidth bottleneck is eliminated

and branch latency is shortened.

In a distributedenvironment, a local controller must somehow be able to co-ordinateits action

with another local controller, e.g., by sending or receiving control information via the

communication network. A shortcoming of distributed control is theoverhead dueto theexchange

of the control information between the local controllers. An important kind of control information

is the synchronization signal which directs the processing elements when a task can start. Correct

system operation isensured by synchronizing all the processing elements inthe system to perform

their tasks in the correct timing sequence. This form of control overhead is often called

synchronization overhead. Synchronization issues can seriously impact system performance,

especially in large-scale parallel systems, and therefore it is an area of very active research [24].

Another example of the control information is ifiag sent by one processing element to another to

control the latter to perform a specific task.

In general, programming using a distributed control structure is more tedious than using a

53

global control structure because resources are managed by multiple independent controllers.

Resource sharing and interactions between controllers mustbe carefully and explicitly handled by

the programmer in order to achieve correct andefficientoperation.

Another shortcoming of the distributed control structure is the limited capacity of the local

program memory due to area constraints. However, it turns out this is not a very serious problem

because by targeting high throughput DSP algorithms, the opportunity for multiplexing many

operations onto the same processing element is limited, and therefore a simple controller with a

small program memory is usually sufficient. Moreover it is always possible to reduce the demand

on capacity by reassigning the operations to more processing elements at the expense of some

inefficiencies. Furtherdiscussion on this subject will be given when the controller architecture of

the PADDI-2 processing element is presented in Section 4.3.2.

Hierarchical Control

The hierarchical control structure is a compromise between the centralized approach at one

end of the scale and the distributed approach at the other end. As implied by the name, this control

structure is hierarchical: a group of controllers arecontrolled by a higher level controller,which in

turn is controlled by yet another higher level controller. This control structure is very interesting in

that it improves the system scalability of the centralized control and, at the same time, has less of

the control overhead of the distributed approach. This control structure is particular attractive if

the control hierarchy also matches the hierarchical partition of an algorithm.

The greatest drawback of the hierarchical control structure is its complexity. The multi-level

control hierarchy makes automatic compilation of algorithms difficult. Moreover, the controllers

on various levels are likely to have different requirements and hence different designs. The

introduction of a variety of components into the architecture can complicate hardware design by

degrading the regularity of the system.

54

If we focus the scope of our discussions to single-chip multiprocessor system, a control

hierarchy with many levels is not practical. A particular interesting choice is a 2-level control

structure that functions similarly to a typical host-coprocessor system. A very useful feature

supported by such a control structure is task switching. While the low-level controllers are busy

executinginstructions stored locally, the top-level controller can prepare fora new task by writing

new instructions to the program memories of the low-level controllers. Operation of the current

task needs not be interrupted if instructions of the current task and those of the new task reside in

different sectionsof the program memory. The top-levelcontroller monitorsthe statusinformation

provided by the low-level controller to determine completion of the current task and then issues

signals to the low-level controllers to switch to thenew task. This feature is very useful especially

for handling algorithms that consist of multiple distinct phases of computations. Besides task

switching, this feature can be easily modifiedto accommodate exception handling and context

switching as required in a multiprogramming environment.

Conclusions

From the above discussions, it is clear that the centralized control structure is a poor choice

because of its limited scalability. Both thedistributed and the hierarchical control structure offer

attractive features. We finally decide to adopt the distributed approach for PADDI-2 mainly

because the development of an efficient compiler, which is essential to rapid prototyping, is more

straightforward for the distributed case. Moreover, the uniform control structure also enhances

regularity of the architecture and therefore simplifies hardware design.

Nonetheless thecapability to switch task without interruption, as described in the previous

section, is a very desirable feature for the implementation of exception handling and context

switches, etc.. Future generations of this architecture are likely to use control structures that

support this feature.

As explained previously, programming on adistributed control structure can bedifficult and

•A I —_ _|~ ——J fc .

out

55

out in2inl

Interconnection

Network

i

v.

f"V
I f
[1

^t r i r

EXU I I EXU I I EXU

Ctrl Ctrl Ctrl

nano-1 nano-2 nano-3

Figure 4-2: Direct Execution of Data Flow Graph using a network of Nanoprocessors.

tedious. In the next section, we will suggest a simple strategy to map algorithms onto distributed

processing elements to ease the programming task.

4.2.2 Distributed Data-Driven Architecture

Basic Idea

In this section, the basic idea of the distributed data-driven PADDI-2 architecture is presented.

Having decided on the distributed control structure, the key question is how to map algorithms

onto processing elements controlled in a distributed manner while minimizingcontrol overhead

such as processor synchronization. The solution we propose is to directly execute a data flow

graph by mapping nodes in the graph onto simple processing elements, called nanoprocessors,

interconnectedby a communication network, as illustrated in Figure4-2.

A nanoprocessor is simply a hardware realization of a node or an encapsulation of several

nodes. Similar to their data flow counterparts, nanoprocessors communicate with each other via

communication channels (arcs in the graph). Execution of an operation (firing of a node) by a

EXU

5

f^r*
EXU

5

£| EXU

|fsm|4

S

EXU

COMMUNICATION NETWORK

—z

FSM 4

I

fr

EXU

|FSM [4

2
EXU

IFSM [4

s
EXU

Ed

EXU

56

Figure 4-3: MIMD PADDI-2 Architecture Model.

nanoprocessor is data-driven, i.e., execution depends on the availability of the requiredoperands.

This implies that some form of handshake protocol is needed for any data transfer.

Each nanoprocessor independentlyexecutes instructions stored in its local program memory.

The only way for a nanoprocessor to affect another nanoprocessor is by explicitly sending a

message (token) to the latter via the communication network. This eliminates any side-effects the

operation of onenanoprocessor may have onanother, and is thekey to ease of programming and

good scalability. In essence, the architecture is very much like a multiple-instruction stream

multiple-data stream (MIMD) message-passing multicomputer system, which is considered to be

the most scalable multiprocessing system of all [13], except that very simple computers and

communication network are used here. The MIMD PADDI-2 architecture model is shown in

Figure 4-3.

There are several important advantages for the architecture to support data flow semantics. It

57

is widelyaccepted that a data flow graph is anatural, or perhaps the best, representation for signal

processing algorithms [63]. Real signals are naturally represented by the data streams used

implicitly by the data flow model. Moreover data flow graphs can easily expose very fine-grain

parallelism in the DSP algorithms, whichwe needto exploit in orderto achievehigh performance.

Finally since our architecture directly supports the semantics of data flow, the essential task of

developing an efficient compiler for our architecture is greatly simplified.

The application of the data-driven approach to DSP is not entirely new. Many researchers have

also discovered the elegance of this approach. In addition to the data-driven architectures

discussed in Chapter 3, a highly modular and flexible DSP processor architecture consisting of

multiple data-driven functional units was presented by Fellman in [34]. Another interesting recent

example is the data flow processor for multi-standard video codec in [61] which is equipped with a

flow graph programming tool. What distinguishes the PADDI-2 architecture most from these other

architectures is the fine granularity of the data-driven processing elements and the use of a very

flexible interconnection network.

Static Data Flow

Before discussing the PADDI-2 architecture further, the staticdata flow model the architecture

based on is first explained in this section. The discussions leadto the general definition of the basic

structure of a minimalnanoprocessorwhich can be interconnected to implement any algorithms.

Among the many variations of data flow models [1], we adopt Dennis* classic static data flow

model [28]. A data flow program is described by a directed graph where the nodes denote

operations and the arcs denote data dependencies. Dynamic behavior due to data-dependent

iterations and conditionals is handled by the SWITCH and SELECT operators. Figure 4-4(a)

showsexamplesof the basic data-flow operators. The numbernext to anarc denotes the numberof

tokens consumed or produced on each firing and is omitted for clarity if it equals one. The nodes

are enabled to fire when the required tokens are available on the input arcs. After firing, the input

WW

ENABLED FIRED

U SWITCH J pf SWITCH J

• T T •

ENABLED FIRED

x sl
T • F^\ /T F\
SELECT J •(SELECT J

ENABLED FIRED

(a) Examples of data flow operators.

(b) Data flow graph with dynamic
behavior: a while-loop.

4 3 2 1 f *V
>f ^SHUFFLEy

ENABLED

(c) Three equivalent Data-flow graph
representations.

(d) SHUFFLE operator.

CN. 14 2 3

SHUFFLE J # # » # •

FIRED

Figure 4-4: Static Data Flow Model.

58

59

tokens areconsumed and a number of resulttokens areproduced on the output arc.As an example,

the SWITCH node steers the input token to either one of its output channels depending on the

value of the booleancontrol token. In Figure 4-4(b), a while-loop implemented using the SWITCH

and SELECT nodes is shown as an example of a data flow graph with dynamic behavior.

The arcsgoing in and out of the nodes represent physicalconnections called channels between

the nanoprocessors. To simplify the implementation of channels, the First-In-First-Out (FIFO)

schema is enforced on the arcs, i.e., the arcsare simply FIFO queues of bounded capacity and the

tokens must be processed in order. If improperly programmed, the dynamic behavior and the

bound capacity requirement can cause deadlocks. A detailed review of the properties of data flow

graphs related to deadlocks can be found in [63].

A very important reason for the adoption of the staticdata flow model and the FIFO scheme is

their simplicity. Simple hardware support such as first-in-first-out buffers and straight forward

handshake circuits are sufficient for implementing the model. By contrast, in the more general

dynamic data flow models, tokens can be processed out of order in order to expose more

parallelism. A direct consequence of this generalization is that each token must be somehow

tagged for properidentification and the hardware costs in storing, manipulating and matching of

the tagged tokens can be overwhelming. In fact, this is one of the most serious problems that

doomed the many general data flow machines proposed in the 70's and 80's [1].

Since data flow nodes communicate with each other exclusively using streams which are

simply ordered sequences of tokens, all data structures have to be represented as such. Some

examples of data structures commonly used in signal processing are the infinite stream (e.g.,

continuous speech) and the 2-dimensional matrix (e.g., an image block). More complex data

structures can be represented using multiple streams. Stream manipulations such as merging or

splitting can be handled by simple data flow nodes such asthe SELECTnode or SWITCH node,

e.g., to partition a frame of pixels into multipleblocks for parallel processing.

60

We further divide streams into two kinds: data streams and control streams. Data streams carry

data tokens, which generally represent certain signal characteristics, whereas control streams are

used for control tokens, which contain boolean-type information, e.g., the select input to a

SELECT data flow node. While the two are identical semantically, their implementations can

differ significantly. Forexample, compared to the control streams, more bits are likely to be used

for the communication channels carrying data streams.

A pure data-flow node does not have internal state. By allowing self-loops, a pure node can be

extended to include internal states to represent an encapsulation of several nodes. Figure 4-4(c)

shows the equivalence of the three representations. A cluster of nodes simply denotes a number of

primitive operations executed in a specific order. Thus data-flow nodes can be implemented either

spatially by a network of nanoprocessors, or temporally by executing a sequence of instructions on

a single nanoprocessor. In the latter case, the nanoprocessor functions just like a traditional Von

Neumann machine.

The FIFO schema dictates tokens be processed in order. To change the order, a SHUFFLE

node as shown in Figure 4-4(d) can be used. In the simple case, the SHUFFLE node can be

implemented using a single nanoprocessor by first storingthe data in its internalbuffer and reading

them out in the desired order. In general, the data has to be first stored into memory and then read

out in the desired order.

Any algorithm can be described by using only the three basic data flow nodes shown in Figure

4-4(a) [28]. Figure 4-5(a) shows the basic structures of three simple nanoprocessors, each of which

can implement one of the three basic data-flow nodes. By coalescing the three structures into one,

a minimal nanoprocessor is obtained which can implement all three basic data-flow nodes (Figure

4-S(b)). Therefore by interconnecting multiple such minimal nanoprocessors, any algorithms can

be implemented. The implementation is, however, most efficient for algorithms that are

computation intensive and require simple control, and these are precisely the characteristicsof our

EXU<\u 1

r-1 i

(select)*- I EXU

I |_ o
(g™g>- [EXU

J

ft*
(a) Basic nanoprocessor structures to
implement the 3 basic data flow nodes

(b) without time-
multiplexing support.

(c) with time-multiplexing support.

Figure 4-5: Minimal Nanoprocessor.

61

target applications. Sometimes efficiency can be gained by time multiplexing of several nodes

onto a single nanoprocessor. To support time multiplexing, a small program store is added to the

minimal nanoprocessor as shown in Figure 4-5(c). The minimal nanoprocessor is important

because it defines the simplest nanoprocessorthat can support the execution of data flow nodes.

Discussion

The advantages and disadvantages of the distributed data-driven control strategy used in

PADDI-2 are summarized in this section. A very important advantage of the data-driven control

strategy is its simplicity; theonly requirements arethehandshakes during communications andthe

checking of theavailability of operands bythenanoprocessors. Synchronization of anynumber of

nanoprocessors is handled automatically and gracefully by the data-driven principle of execution.

The simplicity of this control strategy also simplifies the development of a compiler for the

architecture.

62

As already mentioned at the beginning of this section, execution of a program in one

nanoprocessor has no side-effect on the others.By eliminating a global controller and side-effects,

good scalability and modularity of the architecture are ensured. Moreover the data-driven

handshake protocol provides a uniform interface between all the components of the architecture

which can be as simple as a single nanoprocessor or as complicated as a large sub-system.

Consequently, several sub-systems can simply be connectedtogether to build a complex system

that is guaranteed to work as long as all the sub-systemsarealso functional. Scalability is excellent

as nanoprocessors can be integrated easily and seamlessly into a system to tackle more complex

problem.

Another important advantage is that the programming task is greatly simplified because

programmers no longer need to worry about side-effects and synchronization is handled implicitly

by the data-driven execution. Finally the control strategy keeps the controller of the nanoprocessor

local. This relieves potential instruction bandwidth bottlenecks and allows the use of long and

fully decoded instructions, resulting in a fast cycle time and a powerful instruction set. In addition,

zero-cycle branch latency as well as multi-way branching can be achieved with very little speed

penalty.

Unfortunately all the benefits mentioned above do not come for free. There is a significant cost

in hardware to implement the handshake protocol andcontrol functions for data-driven execution.

For example, based on the prototype PADDI-2 chip to be presented in the next chapter, it is

estimated that about 18% of a nanoprocessor in terms of area is devoted to these functions. Since

the penalty is to a large extent independent of the width of the data path, obviouslythe area penalty

is going to decrease if the implementation usesa widedata path. A big challenge in architectural

design is to minimize the hardware overhead associated with the distributed data-driven control

strategy while retaining most of its benefits. Some hardware techniques used to reduce such

hardware overhead will be explained when the hardware design of a prototypePADDI-2 chip is

described in the next chapter.

63

Frame Memory

out

Figure 4-6: 2-dimensional Space Address Generator using 3 Nanoprocessors.

4.2.3 Address Generator Example

Figure 4-6 is a simple example that illustrates the mapping of data flow graph to several

nanoprocessors. A two-dimensional space address generator [101] commonly used in video

applications to read out a block of pixels from the memory is implemented using three

nanoprocessors.

The data flow graph representing the address generator can be divided into 2 identicalblocks:

one for the y-direction and another for the x-direction. Each block consists of a periodic counter,

counter(N), and an incrementer, inc(D).The parametersN and D correspond to the counter period

and the increment, respectively. The X-counter (Y-counter)counts and generates a reset signal

when the end of the line (block) is reached. The incrementor keeps incrementing the previous

address by D until it receives a reset signal from the counter, at which point it resets the address to

64

the input it receives and repeats the process again. To provide a throughput of one address per

cycle, the counter (NAN02) and inc (NAN03) for the x-direction have to operate every cycle, but

the corresponding blocks for the y-directioncan be run at a much lower rateand therefore they can

be implemented using a single nanoprocessor (NANOl).

Using only three nanoprocessors, a programmable and generic 2-dimensional space address

generator is implemented. Both the dimensions of the addressed block as well as the address

increment can be variedas parameters. Moreover, a new address block can be generated simply by

changing the input starting address (SA).

4.3 Processing Element Architecture

4.3.1 Homogeneous vs. Heterogeneous

In this section the trade-offs between homogeneous processing elements and heterogeneous

processing elements areexamined. In a DSP algorithm, a variety of operations such as additions

and multiplications are typically needed. By allowing heterogenous processing elements, they can

be optimized by targeting one or a specific set of operations, e.g., a fast parallel multiplier can be

included in processing elements that handle the multiplication operations. The solution is

especially efficient if the numbers of the different types of processing elements match the exact

requirements of the algorithms. In this case, both hardware saving as well as performance

improvement can be achieved.

Unfortunately many of these advantages are easily offset by the disadvantages. In general the

relative proportions of the different operation types vary considerably overa wide range of DSP

algorithms and therefore, more often than not, processing elements dedicated to a particular

operation will be under-utilized. For example,considering the three DSP systems described in

Chapter 2, a processing element equipped with a parallel multiplier can handlethe many filtering

65

operations in the HDTV digital camera very well but the multipliers will be completely idle in the

other two applications!

In view of the rapid advances in VLSI process technology, millions of transistors can be

expected on a small die by the turn of the century and therefore the saving in silicon area, achieved

by using dedicated functions compared to general regular programmable functions, is diminishing.

Moreover the regular structure obtained by using homogeneous processing elements is much

easier to design and test than irregular structures. The ease of designing structured hardware also

implies that the designer can afford more time in optimizing the various aspects of the design, such

as speed, area and power consumption.

Furthermore, it is more efficient to dedicate hardware at run time, rather than at design time,

because program changes can be made much faster than hardware changes. Another problem is

the difficulty in designing a flexible high bandwidth communication network interconnecting

heterogeneous processing elements. Last but not least, heterogeneous architectures are nightmares

for compiler designers because it is much more difficult to conceptualize and capture the

architectural model into the compilation algorithms. Many more issues, such as the hardware

mapping and the physical placement of the various kinds of processing elements, have to be

considered.

To conclude, unless the application scope is well defined and fairly specialized, there is much

to lose but little to gain by using heterogeneous processing elements and therefore we decided to

use homogeneous nanoprocessors for the PADDI-2 architecture.The next step is to determine the

appropriate complexity of the nanoprocessors. The design considerations will be discussed in the

next section.

66

4.3.2 Processing Element Complexity

To satisfy the high throughput requirement, our architecture must be able to take advantage of

the parallelism inherent in most of the target algorithms, down to a very fine-grain level. Before

we discuss the right granularity for a nanoprocessor, we would first compare coarse-grain

parallelism with fine-grain parallelismand discuss the features of the processing elements needed

to exploit each kind of parallelism.

Fine-grain vs. Coarse-grain Parallelism

Two hypothetical data flow graphs, DFG1 and DFG2, are shown in Figure 4-7 to illustrate the

differences between fine-grain parallelism and coarse-grain parallelism. Both data flow graphs

implement the same algorithm consisting of N operations. DFG1 contains very fine-grain

' © jre,<N>

(a)DFGl
(fine-grain parallelism)

(b)DFG2
(coarse-grain parallelism)

Figure 4-7: Examples of data flow graphs with fine-grain and coarse-grain parallelisms.

67

parallelism because the graph can be pipelined down to a single operation. Suppose a processor

can perform one operation per cycle. Using N processors (PEl's), one for each operation, a

computation throughput of N operations percycle is achieved.

On the other hand, due to the single delay in the recursive loops in DFG2, the smallest unit of

parallelism onecan exploit profitably is N operations. In other words, DFG2 contains coarse-grain

parallelism. However, if all N recursions can be processed independently as shown, again a

computation throughput of N operations per cycle can be achieved by using N processors (PE2's),

one for each loop.

Despite the identical throughput performances, the architectural requirements of PEl

exploiting fine-grain parallelism are very different from those of PE2 dealing with coarse-grain

parallelism. The control unit of PEl can be minimal since it is dedicated to a single operation

whereas PE2 must have fairly a complex control unit to execute the N operations sequentially.

Moreover, the execution unit of PE2 must be powerful enough to perform all N operations, which

may be of a large variety. At first glance, it seems that a similar requirement is imposed on the

execution unit of PEl if heterogeneous processing elements are not allowed. However, if the

complex operations can be decomposed into simple operations and processed in a pipelined

fashion by using several processing elements, the same throughput can still be achieved by using

PETs equipped with a very simple execution unit. Although more PEl's are needed, the

complexity of PEl can be much less than PE2 and the overall hardware saving can be tremendous

especially if the majority of the operationsare simple.

In short, both the control unit and the execution unit of PEl can be simpler than those of PE2

without performance degradation. We can therefore conclude from this example that a fine-grain

processing element is more appropriate for exploiting fine-grain parallelism, and vice versa.

68

Simple Nanoprocessor

In multiprocessing, the choice of the complexity of the processing elements has a big impact

on the efficiency of the architecture. If the processing element is overly simple, more of them are

needed to achieve a certain throughput and more pressure is put on the interconnection network

design. On the other hand, if the processing element is too complex, a good portion of it may be

under-utilized, wasting valuable silicon area andoften resulting in a slower processor becauseof

the overhead. Obviously, the ideal processing element depends heavily on the particular

application at hand. One compromising solution is to use heterogeneous processing elements.

However, as pointed out in Section 4.3.1, the problems associated with the heterogeneous

resources are likely to more than offset the advantages.

To achieve high performance, our architecture must be able to take advantage of the

abundance of fine-grain parallelism inherent in the target DSP algorithms. As wehave discussed in

the previous section, fine-grain processing elements are more suited for exploiting fine-grain

parallelism. Asan example, let us consider an algorithm consisting of roughly the same number of

multiply operations and add operations. The following assumptions are made:

• The size of a processingelement with an adder is 1 unit area.

• The sizeof a processing element with a parallel multiplier and an adder is 2 area units.

• A multiplication operation can beperformed using four adders inapipelined manner, achieving

the same throughput.

Suppose there are N multiply and N add operations. A total of 2(N +N) =4N area units is

needed using processing elements with parallel multipliers, versus (4N +N) =5Narea units when

using processing elements with adders only. This example shows that even for algorithms with a

large proportion of multiply operations, a system built from processing elements with parallel

multipliers is only slightly more efficient, in terms of area, than a system consisting of simple

processing elements. However, even in algorithms dominated by multiply operations, many

69

miscellaneous operations such as address generation, data routing and simple arithmetic

operations are still needed. Moreover, many algorithms require none or avery small number of

multiply operations. In these cases, the simple processing element will surpass its more

complicated counterpart in terms of area efficiency because the built-in parallel multipliers are

mostlywasted. Therefore, in general, systems using simple processing elements asbasic building

blocks are likely to be more area-efficient.

We thus believe that more efficient use of hardware and flexibility are achieved by defining a

simple homogeneous nanoprocessor architecture. More complex functions can then be performed

by configuring these basic units to work in parallel. In addition, by keeping the nanoprocessor

simple, both cycle time and layout density can be improved.

4.3.3 Instruction Set Architecture

The instruction set architecture of PADDI-2 is presented in this section. The availability of a

local instructionstore has a stronginfluenceon the design of the instruction set architecture. Since

bandwidth for instruction fetching is no longer an issue with a local store, a long instruction word

can be used instead of multi-word instructions, which hurt performance. Moreover, a horizontally

decoded instruction format can alsoimprove speedby simplifying instruction decoding.Thanks to

the small size of the instruction store, the decoded instruction format can also save area by

eliminating some decode logic.

Our design philosophy is to follow the very popular idea based on Reduced Instruction Set

Computer (RISC). Only simple instructions that take one cycle to execute are provided. Complex

instructionsareexcluded becausethey eitherdemandexpensive hardwaresupport in the execution

unit, or require multiple cycles to execute, degrading the performance.

A rich and powerful instruction set for PADDI-2 is obtained using a 40-bit long instruction.

The PADDI-2 instruction set includes all the basic arithmetic instructions and logic instructions.

70

Extension to multiple-word operands is handled by arithmetic instructions with carry. In addition,

a Select instruction is provided to speed uptheMaximum (MAX) and Minimum (MIN)operations

frequently used in DSP algorithms such that the MAX/MIN operation can be executed by a

Subtract-Select instruction pair in two cycles. An alternative is to add hardware to the execution

unit to perform the MAX and MIN operations in a single cycle. Although the hardware cost is

small (just a multiplexor), the modification is likely to impact the cycle time because the result of

the comparison used to control the multiplexor is usually on the critical path.

Since multiplications arise very frequently in DSP algorithms, especially in filtering

applications, performance can oftenbe improved by providing some form of hardware support for

multiplication. However, providing a multiplication instruction requires a parallel multiplier. As

we have argued in the previous section, a complex nanoprocessor is less efficient in terms of

hardware utilization and flexibility than a simple nanoprocessor. Moreover, in many applications

suchas filtering and low-level image processing, the coefficients are often setup in sucha way that

a simple execution unit with support for add-shift operation suffices. In situations where the

execution of the multiplication operation is not time-critical, it can also be performed iteratively

by simple add-and-shift operations. Chen has collected and analyzed the operator statistics of a

suiteof high throughput DSPalgorithms in his thesis and found that, indeed, the parallel multiply

operations, which are necessary for performance, account for less than 10% of the total operations

[27].

As a compromise, we provide two instructions: Mstart and Mstep, to enhance multiplication

throughput. The Mstart and Mstep instructions implement a single iteration of the sequential

second-order booth multiplication algorithm such that a 16b x 16b multiplication can be

implemented iteratively in 8 cycles using a processor.

In an effort to simplify the execution unit, only a 2-bit bi-directional shift operation is

supported. However, in some applications shifting of morebits is useful, e.g., to multiplex two 8-

71

bit pixels onto an I/O bus to reduce bus bandwidth.

It is important to point out that even though only primitive instructions are provided for

multiple-word arithmetic, MAX/MIN operations, multiplication and multiple-bit shifting, all these

operations can be pipelined to achieve a throughput of oneoperation per cycle by using more

nanoprocessors.

A PADDI-2instruction consistsof 5 fields, eachof which is orthogonal and controlsthe action

of a different hardware unit. For example, the next program counter field (NPC) is in charge of

resolving conditional branches and the generation of the next program counter. A complete list of

the PADDI-2 instructions, instruction encoding and their mnemonics can be found in Appendix

A.2 and detailed descriptions of the PADDI-2 instructions will be given in Section 6.2 when the

PADDI-2 assembler language is introduced.

The PADDI-2 instruction set is much more general and versatile than that of the first

generation PADDI-1 [27], especially in the handling of logic operations, multiplications and

branching. Nonetheless, some enhancements are worth considering such as support for sign-

magnitude operations, multiple-bit shift, and higher order Booth multiplication step. These

instructions will improve performance, but atthe expense of hardware complexity.

4.4 Communication Network

In order to exploit the fine-grain parallelism available in many DSP algorithms, a large

number of processing elements have to be used and interconnected by a high bandwidth

communication network. The large cost in area dictated by the bandwidth requirement presents a

formidable challenge in the design of the communicationnetwork for PADDI-2.

In an effort to reduce the area overhead, many array architectures provide rather restrictive

interconnection networks such as a mesh network, which only allows neighborhood connections.

72

As we have already discussed in Section 3.3.2 where several array architectures were analyzed,

the restrictive communication network limits the scope of the application. The lack of a flexible

communication network also put a tremendous burden on the compiler to generate a good

processor placement scheme.

Some array architectures implement non-local communications by routing the data

successively through processing elements. A direct consequence of this approach is that the

compilation process is complicated because the communication latency can vary a lot depending

on the placement of the communicating processing elements. For algorithms with irregular

communication patterns, this approach usually results in very long communication latency and

poor processor usage. For systems with recursive structures, the long communication latency can

lead to performance degradation. Furthermore, I/O to the interior of an array can be very

inefficient.

Flexible Static Network

To overcome the above inefficiencies, our architecture provides a flexible high bandwidth

communication network that can be reconfigured to match the communication patternsof a wide

range of algorithms. Some examples of data communication patterns such as pipelined

communication, mesh communication, broadcast communications, and etc., are shown in Figure

4-8. Sometimes, even though the intrinsic communication pattern of an algorithm is simple, the

implementation may still demand a more flexible communication network. For example, if the

linear system in Figure 4-8(a) involves multiple-word operations which areassigned to multiple

processors, a mesh communication pattern as shown in Figure 4-8(b) is needed.

Motivated by the static interconnection used in connecting nodes in data flow graphs, we

provide simple static point-to-point communications between nanoprocessors called channels,

which are configured at system start-up and remain fixed at run-time. The point-to-point

communication eliminates hardware overhead to support data routing. The run-time static design

PMP^P
(a) Pipelined communication.

(b) Mesh communication.

Processor p

—®-

(c) Broadcast communication.

(d) General communication.

Figure 4-8: Examples of data communication patterns.

73

can also improve speed of the network because the large transistors typically used in implementing

switches in the network do not have to switched every cycle as in a dynamic network. By keeping

the communication network simple, valuable siliconarea can be devoted to provide more channels

to increase the communication bandwidth.

The lack of dynamic interconnection does not impose serious restrictions on the architecture.

As we have pointed out in Section 4.2, nanoprocessors are usually dedicated to the processing of a

few operations. Therefore channels are likely to be saturated with data and the opportunity for

channel sharing is limited, especially for algorithms with high data rate. This inference is

confirmed by a study on the interconnection patterns of a set of high throughput, high sampling

rate DSP algorithms by Chen [27]. The results are shown in the bar chart in Figure 4-9, which

80%

Channel Type Distribution

1:1 1:2 1:3 1:4 1:5 2:1 1:6 4:1

Channel Types
(#source processors : #destination processors)

Figure 4-9: Channel type distribution for a set high throughput DSP algorithms [27].

74

records the frequency of occurrences for different channel types. The channel type is represented

by N:M, where N is the number of source processors and M is the number of destination

processors sharing a channel. Any channel types other than the 1:1 type are shared channels. The

results show that almost 80% of the channels are not shared.

Moreover, as will be shown in the next chapter, a nanoprocessor in our prototype PADDI-2

chip has a fan-in of 3 and a fan-out of 2 and therefore any channel type N:M with N less than 3 and

M less than 2 can be handled by a single nanoprocessor. More complex channels which account

for less than a few percents of the total can be emulated by programming nanoprocessors to

implement the SWITCH and SELECT nodes. Figure 4-10 shows examples of several complex

dynamic interconnect patterns realized by the SWITCH and SELECT operators.

The run-time static network design is chosen because it optimizes the network design for the

majority of cases where channels are not shared and suffers from some inefficiencies only in the

control

\3
•out

75

c>i

inl

in2

c

e
o
o

c
o
u

2 c
o
o

A -*H3V •••
UJ U UJ

U.UJ
-J

r. UJ a. S3
^ •^ kivinl out

(a)2-to-l stream-merger.

control

in-

out!

out2

(c) l-to-2 stream-splitter.

in

(b) N-to-1 stream-merger.

CM

I - s
©

4> • ••

(d) 1-to-N stream-splitter.

2

8 §

^
^

outN
—•

Figure 4-10: Examples of Dynamic Interconnection patterns
implemented using SELECT and SWITCH operators.

infrequent cases where dynamic interconnections have to be emulated.

To enhance the efficiency of the communication network, data broadcasting, which is

frequently used for data distribution when exploiting spatial concurrency, is supported. This

feature also helps to eliminate the need for some dynamic interconnection patterns.

Hierarchical Network

To supply high bandwidth and flexible interconnect, many multiprocessor architectures, such

as the Philips VSP and PADDI-1 described in Section 3.3.2,use a cross-barnetwork or variantsof

76

it. Although full connectivity is provided between any inputs and any outputs, the area complexity

of a cross-barnetwork, which growsquadratically with the number of processingelements, is very

large. For example, about as much as 18% and one-third of the die areaare consumed by the cross

barnetworks in the VSP chip andthe PADDI-1 chip,respectively, even thoughthese chips contain

only a moderate number of processing elements. More importantly, the quadratic growth seriously

limits the scalability of the network.

To reduce the area cost, we exploit the locality of communications inherent in the DSP

algorithms. Even though hardware mapping and processor placement are very difficult problems

for compilers, it is fair to assume that a reasonable compiler will be able to placecommunicating

nanoprocessors physically close to each other most of the time. Consequently, local

communications between nanoprocessors are far more frequent than distantcommunications.

To exploit this fact, a 2-level hierarchical communication network is proposed forPADDI-2 as

a compromise between interconnect flexibility and area cost. The basic structure of the network

design is shown in Figure 4-11.The level-1 networktakes care of communicationswithin a cluster

containing several nanoprocessors and communications between the clusters arehandled by the

level-2 network. While the level-1 network can efficiently handle pipelined processors and local

communications, the level-2 network can be used for generally irregularcommunications between

nanoprocessor clusters. Compared to a cross-bar design, the hierarchical design is more area

efficient with only a small penalty in interconnect flexibility. Moreover the design is highly

scalable as more levels of network can be easily added to accommodate more nanoprocessors.

Detailed descriptions of the VLSI design of the communication networkwill be given in the next

chapter.

a cluster containing 4
nanoprocessors

nanoprocessors

Level-1 Networks

Figure 4-11: Basic Structure of the 2-level PADDI-2 Communication Network.

4.5 Memory Architecture

77

By allowing internal states in the data flow nodes, memories can be easily incorporated into

the static data flow model and subsequently the PADDI-2 architecture. A memory node is just like

any other data flow node except that it has a very large number of internal states. Hence a clean

programming paradigm is preserved as every component of the architecture has a corresponding

representation in the data flow domain.

As shown in Figure 4-12(a), a memory node consumes an address token and a control token

specifying either a read or write operation. For a read operation, it generates an output token

representing data stored at the location pointed to by the address token. For a write operation, it

consumes an additional input data token and simply updates its internal states by writing the input

data to the memory location addressed.

r/w-

wrdata addr

LA
Dl A

r/S MEM
DO

T
rddaia

(a) A memory node.

wr data wr addr rdaddr

f SWITCH)4-(SELECT j4~(SELECT J4-

1 £
iO/w$-+|c£; MEM-0

DO

rl/wf-Ht^ MEM-1
po

n—tNf SELECT \4

rddaia

(b) Swapping memory banks.

Figure 4-12: Memory in the Static Data Flow Model.

bank

select

78

Memory nodes, together with theSWITCH and SELECT operators, cancreate many powerful

shared memory structures. An example is the swapping memory banks shown in Figure 4-12(b).

Depending on the bank select input, data can be written into onememory bank using oneaddress

sequence while data are being read from another memory bank using anotheraddress sequence.

After all the data are written or read, the bank select input is toggled to switch the role of the two

memory banks. This memory organization is often used in video processing, e.g., to buffer

successive pixel frames.

Figure 4-13 shows the PADDI-2 architectural model incorporating memory elements (ME's)

that are connected directly to the communication network and follow the same data-driven

handshakes protocol as the nanoprocessors. To simplify the design, an ME is dedicated

exclusively to memory read and write operations and therefore does not require an instruction

memory. Any computations associated with memory access such as address generation are

handled by the nanoprocessors.

79

S

|fsm|«

EXU • • • • • • •

COMMUNICATION NETWORK

|fsm|«

s
EXU • • • • • • •

Figure 4-13: PADDI-2 Architecture Model with Memory Elements

4.6 I/O Architecture

To achieve high overall performance, a system must balance the computation power and the 1/

O bandwidth of the system to prevent either one from being the performance bottleneck. To

sustain high throughput, the PADDI-2 architecture must be able to provide high I/O bandwidth to

feed data into and retrieve results from the many fine-grain nanoprocessors on-chip. Besides

performance, the understanding of the I/O requirement is very important because I/O bandwidth is

very costly in terms of packaging and high speed I/O design is a very difficult problem especially

on the board level [52].

The exact I/O bandwidth requirement varies depending on the system partitioning and the

nature of the DSP algorithms. In general, the I/O requirement is more stringent for high data rate

80

applications such as the high pixel rate HDTV digital color camera system described in Section

2.3. Chen in his thesis [27] examined the relationbetween the computation requirements and the 1/

Orequirements ofaset ofhigh throughput DSP algorithms1. A geometric mean ofabout 4MOPS/

MByte/sec was reported. As will be discussed in the next chapter, a prototype PADDI-2 chip with

48 nanoprocessors can provide 2400MOPS peak performance at the clock frequency of 50 MHz.

According to Chen's findings, an I/O bandwidthof about600 MByte/sec is needed. Using a 208-

pin package, our PADDI-2 chip provideseight I/O buses of 16 bits width at the I/O rate of 50

MHz. This is equivalent to an I/O bandwidth of 800 MByte/sec, one-third more than the

requirement obtained by Chen.

It is clear that as VLSI process technology advances, more nanoprocessors and therefore

higher computation power will be available from a single silicon die. In order to prevent I/O

bandwidth from limiting the performance, techniques on all levels such as communication-based

hardware partition, multi-chipmodule packaging, and high-speed interchip signaling [69] must be

applied.

In additionto the eight data I/O buses,a PADDI-2 chip also provideseight companion control

I/O buses. The only difference between a control I/O bus and a data I/O bus is that the control bus

is only 1 bit wide as opposed to 16bits for the data bus. The control bus can be used to transfer

boolean information between chips. As anexample, a control bus can be connected to an off-chip

static memory as read/write control.

Because the data-driven principle of execution is used throughout the architecture,

interconnection between all architectural components, such as nanoprocessors, memories or

PADDI-2 chips, are all handled consistently by the samedata-driven handshake protocol. The

uniform interface greatly simplifies I/O design.

1. This is the same benchmark set used in the study of the interconnectcharacteristics discussed in Section 4.4.

81

Two alternativeI/O designs as depicted in Figure 4-14 areconsidered.The first design handles

I/O using specialized I/O processors called IOP's (Figure 4-14(a)). An IOP functions as the

middleman handling communications between the on-chip nanoprocessors and an off-chip

component which, for example, canbe an IOPon another PADDIchip or a memory module. Data

are first sent to the IOPvia the on-chip communication network before being transferred off-chip.

The IOP manages the buffering of data and the handshake interface signals.The advantageof this

design is that it is very general. All IOP's are accessible by all nanoprocessors via the

communication network. The disadvantage is the long off-chip communication latency; data sent

from a nanoprocessor have to go through two IOP's before reaching another nanoprocessor on

another chip. Although the role of an IOP is very dedicated and therefore its design can be simple,

it still requires significant design effort and consumes area.

The second design eliminates the need for a specialized IOP by modifying an ordinary

nanoprocessor slightly to handle I/O functions. These augmented nanoprocessors called NIOP's

are typically assigned to nanoprocessors locatednear the corners of the arrayas shown in Figure 4-

14(b). The greatest advantage of this approach is its simplicity. Only minor modifications are

needed for the NIOP's to make the handshakelogic for on-chip communications work for off-chip

communications as well. Moreover, latency of off-chip communications is reduced substantially

by eliminating the intermediate IOP's. Unfortunately the introduction of NIOP degrades the

homogeneity of the nanoprocessor array. Despite its resemblance to a regular nanoprocessor, an

NIOP is very different as far as I/O functions are concerned. Processor placement is also more

complicated because only the NIOP's can perform I/O.

Both approaches have their pros and cons. We finally decide to adopt the NIOP approach

because it improves the off-chip communication latency and requires very little design effort.

nanoprocessors + + Level-1 Network

(a) Use Dedicated I/O Processors OOP).

i i
NIOP NIOP

NIOP NIOP

1 I
(b) Use Augmented Nanoprocessors (NIOP).

i i
NIOP NIOP

NIOP NIOP

T T

Figure 4-14: PADDI-2 I/O Architectures.

82

CHAPTER 5

PADDI-2: VLSI Circuit Design

The architectural design of the PADDI-2 architecture was presented in Chapter 4. As a proof

of concept and to verify the effectiveness of the architecture, a prototype PADDI-2 chip with 48

nanoprocessors was implemented. The hardware design of the prototype chip will be discussed in

a top-down manner in this chapter.

5,1 48-Nanoprocessor Prototype Chip

A block diagram of the 48-nanoprocessor prototype chip is shown in Figure 5-1. The chip

contains 48 16-bit nanoprocessor interconnected by a 2-level high bandwidth communication

network. The nanoprocessors are organized in two arrays, each of which contains six clusters of

four nanoprocessors. As described in Section 4.6, the eight nanoprocessors at the corners of the

nanoprocessorarray can also serve as I/O processors to handle off-chip communications with

either other PADDI-2 chips or staticRAM's without any external glue logic. The eight 16-bit I/O

ports provide large bandwidth needed for sustaining the high computation throughput. Two ports

can be parallelized to provide 32-bit I/O if necessary.

83

6 x16b

Level-2
Network«
16 x 16b

I/O I/O

t t

I/O I/O

16x6 switch matrix
I/O I/O

P17 P21
P18 P22

P19 P23 1
P20 P24 /

—1 ^ r ,./
-ff
w z:::::z
«* - -

* :!!!=!=
«! I -

i - -

U =:::::=
« z:::::z

8 =:=;:==
a

-j t
P41 P45
P42 P46 .
P43 P47 '
P44 P48

I/O I/O

4-PE Cluster

^LH fzd^ \^p

>4£

4f ^ ^
>4(

^P
•rwr-

>47

"^ "3JT "V

»4S
l . 1

V"'

J

Level-1 Network

84

Figure 5-1: Block Diagram of 48-Nanoprocessor PADDI-2 Chip.

The chip has 208 pins including 170 utility pins and 38 supply pins. It contains 600K

transistors and measures 12 mm by 12 mm and is packaged in a 208-pin ceramic pin-grid-array

package. Running at 50 MHz, the prototype chip provides 2.4 GOPS peak performance and 800

MBytes per second I/O bandwidth. The micrograph of the prototype chip is shown in Figure 5-2

and a complete pin list can be found in Appendix A.l.

The chip was implemented using a 3-metal 1-um CMOS process technologybut only 2 layers

of metal were used in the design in order to maintain compatibility with other process

technologies. Being a scalable CMOS process, the design rules for the interconnect layers are very

conservative. This has a big impact on the layoutdensity of the chip because the design is mostly

interconnect-limited. It is clear that utilizingthe third layer metal not only can enhance the design

of the communication network but also greatly increase the layout density of the chip. On the

bright side, the process offers fast devices with effective channel lengths in the 0.8 u.m range.

85

nsa^nauat$y^*j aagg "riV3 ^^W 3 : .^jft ^# i«W:«»«Bg

^?:qsaBBBatnHctt su& m - • •*4' ttttfc t&fct itkujnTp*",.

Figure 5-2: Micrograph of 48-Nanoprocessor PADDI-2 Chip.

86

5.2 Nanoprocessor Design

Figure 5-3 shows the block diagram of a nanoprocessor consisting of an execution unit and a

control unit. The execution unit contains a 16-bit ALU which performs arithmetic and logic

operations and one 2-word data buffer (DQS) for each of the three inputs.

Data path widths of 12-bit, 16-bit and 32-bit were considered. If the precision is not needed, a

large width can potentially worsen performance by slowing down the cycle time and degrade

hardware utilization. On the other hand, if the width is too small, a single operation has to be

broken up into multiple operations, thus lowering throughput and/or increasing hardware demand.

While a width of 12-bit is sufficient for most image and video algorithms, given the usual 8-bit

representation of video data [43], 24-bit precision is typically required for quality audio

applications [107]. We finally decided upon a 16-bit architecture as a compromise. Higher

©

z;
03

scan chain

1 I
C

IE ra Eq] Ctrl Unitl

Figure 5-3: Block Diagram of PADDI-2 Nanoprocessor.

u
o

Z

«7

precision operations are performed using more nanoprocessors. Performance is not necessarily

sacrificed if the multi-word operation canbe pipelined and it is not part of a recursivebottleneck.

A detailed block diagramof the execution unit is shown in Figure 5-4. The ALU can execute a

Conditional-Select instruction to speed up the MAXIMUM and MINIMUM operations often used

in signal processing. Moreover, it is equipped with a Booth decoder to handle a modified Booth

multiplication step instruction such that a 16-bit by 16-bit multiplication operation can be

performed in eight cycles iteratively using one nanoprocessor or at 50 MHz rate by pipelining

using eight nanoprocessors. The ALU is based on a fast and area-efficient carry-select adder with

optimized block sizes. As shown in Figure 5-5, the block sizes of 3,3,4,6 are chosen to minimize

the total propagation delay by matchingthe propagation delay of the carryoutput of the individual

block with the propagation delay of the global carry signal.The polarities of the inputs at each bit

position are carefully chosen and dual complementary carry chains are used to avoid unnecessary

signal inversion in the critical path to furtherenhance speed. The results of the critical path SPICE

simulation of the carry select adder are shown in Figure 5-6. The worst case propagationdelay of

the carry output signal and the sum output signal are 5.3 ns and 6.3 ns, respectively.

The databuffer can be configured as a simple data queue or as a small random-accessregister

file. When configured as a queue, the data buffer functions like a 2-word First-In-First-Out (FIFO)

buffer. Data from the communication network arewritten to the tail of the queue and an instruction

specifying the queue as its source operand will dequeue the data from the FIFO. An instruction can

also use the FIFO as source operand but keep the data in the FIFO for reuse by the subsequent

instruction. Hardware pointers automatically keep track of the status of the FIFO's. The

enqueueing and dequeueing operations are stalled when the FIFO becomes full or empty,

respectively. Inputs to the data bufferscanbe controlled by the scan chainto preset the contentsof

the registers, e.g., iterationbounds or filter coefficients, at system start-up.When used as a register

file, each of the two registers in the buffer can be specified as source operand by an instruction.

o

w
z,

o

sa
u

2

O
U

W
>

a

88

Figure 5-4: Block Diagram of Nanoprocessor Execution Unit.

a<> b0

0—
I

It—

-t>

a, b,

rii
a, b,

->

89

a, b, a« b4

>-r

cany,
in

xor muxl> xor mux2> xor muxl> xor mux. xor muxl>

l-X_.__i_X.__. _X__7____I T
s4

a, bj

>-r

>-

H>

•xor mux2>

a

flio b,(

-t>

•xor

_:i

s, s, s,

a* b6 a, b7 a» b, a, b9

>-

xor muxl>

&n b„

xor muxl>

xor mux2> xor

rx.i.rr
s, s,

muxl>

Li
au b„

xor

Z
s,

mux2x

au b,4

;-U
>-r

xor mux2>

I
S,2

xor muxl>

I
s»

>

xor mux:

J.
S,4

Figure 5-5: Block Diagram of 16-bit Carry-Select Adder.

dual carry
chains

fli$ b,j

xor
Jcairy

out
muxl w

ADDER CRITICAL PATH SIMULATION
96/03/27 17:18i32

"•7S°r PI / i [1/ 1 1 joui
*.25 0 = /• !-i / i\ \ i i -_j ^

«... =-••••/ ;•• 4 •!• \\ > ! -|
».«•!--/ r{ / R \ n i i
3-so =-•••/ r •(—? H [J! i i

3.250 i""J u...|..../ ;..\ \ |.j -; -=

? ..^:}±:::::::::::::[:::]:::/:::::::::::j±:z
2.250=--/ -•••I •f •:• ••\ r• •••(• •4 •: -5

»-750 i-' ! |T]""\ \- \-\ j -|
i.so=-» i H \ \ ?•••• -i •! -2

1.250 H !••••!! -: \ \....\...\ i -|
••'I i I : [-] 1 1750. OM f- f 11 \ :'"1 V 1

500 . OH f- j\ -V >•••/ \ -\ ~2
250. oh |- .' V^ •: I ?•••»• \- -: -s

o to_.-_.—.-•_.-•.—J..-J...,...rrr!r---i~*— i i i i •/• • • —.• —i - • i • • jfc
u- 5 . ON 1 0 . ON IB. ON 20. ON ^..ffB.ON

0 . TIME (LIN) 25 . ON

Figure 5-6: SPICE Critical Path Simulation of 16-bit Carry-Select Adder.

90

Three output connections to the Level-1 communication network are provided: two output

connections are needed in order to implement the SWITCH node and the third connection is

specifically provided to support pipelined implementation of the multiplication operation using

multiple nanoprocessors as described in Figure 5-7. To facilitate neighboring communication and

reduce network bandwidth demand* direct connections between neighbors are implemented

without access to the Level-1 network.

The local controller contains a 40-bit by 8-instruction program store, a 3-bit program counter,

twocontrol queues for buffering thecontrol streams andgluelogic fordecoding of control signals.

Similar to the data buffers, the instruction store is initialized using the scan chain at start-up. The

40-bit horizontally decoded instruction simplifies the decode logicand improves cycle time. The

programcounterpoints to the next instruction to be fetched and can be modified depending on the

status of the ALU or the control streams (CQj) to implement two-way branch with zero-cycle

latency. The nanoprocessor is stalled if any of the required operands (data or control tokens) are

0 B

LA
partial_sumO

partial_suml

partial_sum2

EXUO

B

EXU1

B

EXU2

B

EXU3

A = BxC

shiftedCO

shiftedCl

fted C2shi

Refer to Figure 5-4
for details.

Figure 5-7: An example of pipelined implementation of multiplication.

91

not available or if any of the output channels areblocked.

A simple two-stage pipeline (Fetch and Execute) is used to speed up cycle time. The

instruction and operands are fetched from the instruction store and data buffers respectively in the

Fetch stage and the operandsare processedby the ALU in the Execute stage. All instructions take

one cycle to complete.

5.3 Communication Network

The hardware design of the communication network of the PADDI-2 prototype chip is

presented in this section. As discussed in Section 4.4, the design is very challenging due to the

high flexibility and high bandwidth requirements imposed by the architecture. To trade off

92

flexibility in interconnection with area cost and cycle time, and to exploit the locality of

communication, a design using a 2-level hierarchical network is adopted.

An overview of the basic structure of the two-level communication network has been shown

in Figure 5-1 and more detailed description of the Level-1 communication network is given in

Figure5-8. The Level-1 network consisting of six 16-bit data buses and four 1-bitcontrolbuses is

used for interconnecting 4 nanoprocessors within a nanoprocessor cluster. To save area, the

network is laid out directly on top of the execution unit of the nanoprocessoras data path feed-

throughs in second-layer metal. In the design of the prototype chip, the number of buses in the

Level-1 network is constrained by the width of the execution unit. If a process technology with

three routing layers was used, at least eightbusesin the Level-1 network could be accommodated

without expanding the width of the execution unit.

The basic structure of the 16x6 switch matrix in the Level-2 communication network is

shown in Figure 5-9. The level-2 communicationnetwork consists of 16 data buses and 8 control

buses and handles traffic between the 12 clusters. To take advantage of the fact that local

communications are far more frequent than distant communications, break-switches as shown in

Figure 5-1 can be opened to break up a bus (track) into a few buses of shorter lengths, hence

increasing the effective number of buses in the network without area penalty. To prevent the delay

in the communication network from dominating the cycle time, a channel can go through no more

than one closed break-switch in the Level-2 network. This design is similar to the area-efficient

interconnect matrix design in [107] except that the buses there are physically cut open,

Broadcasting is supported by the network to reduce demands on point-to-point

communication channels and to facilitate exploitation of data parallelism inherent in many DSP

algorithms. The broadcasting and the data-driven mechanism is efficiently supported by

implementingthe handshake signal (HS) associated with each bus as a dynamicWIRE-AND gate

as depicted in Figure 5-10. Data transfer is completed only if HS remains high at the end of the

.L
da

ta
bn

s5
^

.9 (W
*

e • op ST • o o 3 3 e 3 fi
9 o* 3 z o

..
_

d
a

ta
b

u
s4

-
._

d
a

ta
b

u
s3

d
a

ta
b

u
s
2

d
a

ta
b

u
s
l

2

d
a

ta
b

u
sO

ST <

-A
—

-
-

-

2
.

•

.I
n

"
-t

--
-

.•
£:

::
o

1—
J

4_
...

1—
J

J_
.._

J_
...

It
"

o

•
i

J— ft
J— ft

*
0

1
—

»

rt
o

U
--

J
ft

3 o
'

W o

U-
l

-d
=r

i
r

-G
=n

-

-a
=

ri

U-
l

-a
=

n
c
o

n
tr

o
l

b
u

sO

—
*

o ?
r

c
o

n
tr

o
l

b
u

s
l

c
o

n
tr

o
l

b
u

s?
c
o

n
tr

o
l

b
u

s3
>

5

8 x16b

data

To Level-1 Communication
A

Vw _,_,

i • <> <> <>

' /
1/k

8xlb ^
control

r •--

8 x16b

data
<

Programmable
switches

y

To Level-1 Communication

Figure 5-9: Switch Matrix between Level-1 and Level-2 Communication Network.

94

sender

Level-2 Network

/
Programmable switch

receivers

Figure 5-10: Dynamic WIRE-AND Handshake Circuit supporting

95

evaluation phase, i.e., the sender and all the receivers are ready. Special attention is given to the

spacing of the HS lines in the layout and detailed SPICE simulations were performed to prevent

capacitive coupling between neighboring HS lines from causing false discharge. A regenerative

buffer is inserted between the two levels of the interconnectnetwork to improve speed.

Switches in the network are implemented using N-channel devices only to save area and to

reduce capacitive loading on the bus. This results in a long low-to-high delay, which is addressed

by pre-conditioning the data buses to high before driving data onto the bus. Communications

through the network take 1 clock cycle uniformly regardless of the positions of the source

nanoprocessor and destination nanoprocessors).

Figure 5-11 shows the results of SPICE simulation of the propagation delay through the 2-

Level communication network. The transferred data propagates from a Level-1 network to the

Level-2 network before reaching the destination Level-1 network in another cluster. The total

96

86 -JAN91 8i61 I68

Level-1

(source)
Level-2 Level-1

(destination)

Figure 5-11: SPICE simulation of the propagation delay of the
PADDI-2 communication network.

CNET .TR 0
CLK

propagation delay is 10 ns which is fast enough for a transfer rate of 50 MHz using a 66% duty-

cycle clock.

Usinga compact layout style, the sizeof the Level-2 communication network is limited only

by the pitch of the second-layer metal. Theareaefficiency is evident from the fact that the Level-2

communication network takesup only 17% of the total coreareaon the PADDI-2 chip. Details of

the configuration of the communication network will be covered in Chapter6 whenexamples of

the mapping of several DSP algorithms onto the PADDI-2 chip are presented.

97

5.4 Scan Unit

The functionality of the PADDI-2 chip is not defined until the instruction stores of the

nanoprocessors are initialized and the communication networks areconfigured. The scan unit is

the on-chip hardware unit responsible for programming or configuring the PADDI-2 chip at

system start-up. Its primary functions are summarized as follows:

initializing the contents of the instruction memory of eachnanoprocessor,

establishing communication channelsbetween nanoprocessors by configuring the programma
ble switches in the communication network;

initializing the program counters that point to the first instructions to be executed by the nano
processor;

configuring the direction of data flow (input or output) for each I/O nanoprocessors (NIOP's);

configuring whether an I/O port is connected to another I/O port of a PADDI-2 chip or a mem
ory;

presetting the contents of the data buffers in each nanoprocessors;

facilitating testing and debugging by capturing the inputs to the data buffers of each nanopro
cessors, which can later be scanned out for observation.

The total length of the scan chain in the 48-nanoprocessor chip is 7464, with 143 scan flip-

flops in each of the 48 nanoprocessors, and 50 scan flip-flops in each of the twelve clusters for

configuring the communication patterns between the clusters and the Level-2 communication

network.

Since the PADDI-2 chip is programmed only once at start-up,a 4-bit serial scan bus is used to

conserve valuable pins for data I/O and reduce area overhead imposed by the routing of a parallel

programmable bus. The 4-bit serial bus interface is very similar to the IEEE PI149.1 JTAG serial

scan interface mechanism [54]. It consists of a bus enable signal, a mode control signal for

specifying the various modes of operation and an input data line and an output data line for

transferring data to and from the on-chip scan chain. Three modes of operation: SCAN, UPDATE

98

and SINGLE-STEP, are supported.

The SCAN operation is used to preset thecontents of the scan chain by serially shifting data

into the scan chain using the input data line. The same operation can also be used to shift out the

previous contents of the scan chain for testing and debugging.

Once the contents of the entire scan chain is set up, an UPDATE operation can be issued to

transfer the contents of the scan chain to the instruction stores and data buffers. The write

addresses of the instruction store and data buffers are specified in each nanoprocessor by the

program counter and the write pointers which are also parts of the scan chain. All together, eight

pairs of SCAN andUPDATE operations are needed to initialize the eight-word instruction store.

The SINGLE-STEP operation is implemented to assist the tedious tasks of testing and

debugging the complex PADDI-2 multiprocessor chip. After the PADDI-2 chip under test is

completely configured, it is put into a halt state by asserting an external HALT pin. The chip can

be enabled to run for exactly one cycle by issuinga SINGLE-STEP operation using the scan bus.

Inputs to each nanoprocessor in the cycleare captured in the scan chain andcanbe scanned out for

examination using a SCAN operation. In addition to the inputs, the program counter andthe full/

empty status of the data buffersof each nanoprocessors are alsoaccessible through the scan chain.

Thus by issuing pairs of SINGLE-STEP andSCAN operations, snapshots of the operation of the

PADDI-2 chip executinga complex program can be takenandexaminedeasily to aiddebugging.

A drawback of this scan bus design is the slow speed due to the serial nature of the bus

interface. Forexample, to fully configure the 48-nanoprocessor chip, at least 2 ms (plus any data

transfer overhead) is needed. Forthose applications involving several phasesof computations, the

chipcannot be quicklyreprogrammed to handle thedifferent tasks. Future versions of the PADDI-

2 chips with improved programming bus interface arebeing examined.

CHAPTER 6

PADDI-2: Development System

In this chapter, the programmer model and an assembler language for the PADDI-2

architecture are first reviewed. We then describe an application development system for PADDI-2

which includes an assembler, a VHDL-based simulator for system simulation and debugging, and

a VME board for hardware demonstration andtesting. The architecture of a multi-PADDI-2 board

currentlybeing designed will alsobe mentioned. The chapter is concluded by presenting examples

of the mappingof practical DSPalgorithms ontothe PADDI-2 architecture and some performance

benchmark results.

6.1 PADDI-2 Programming Model

To the programmer, a PADDI-2 system consists of many nanoprocessors and memories

interconnected by communication channels as discussed in Section 4.2.2. A nanoprocessor or a

memory can communicate with other nanoprocessors and memories by explicitly sending data or

control tokens via the channels. Each nanoprocessor executes an assigned program and is

independent of the other nanoprocessors. The programming resources for writing a nanoprocessor

99

=

Qi

Q2

RCO

CO

RO

IFO

OF

or | Rl | R2

or | R3 | R4

or | R5 | R6

RC1 RC2

CI C2

[Of] [PC]

IF1 |

100

Data Buffer Resources

Scratch-pad Registers

Data Output Channels

Miscellaneous Registers

Control Input Channels

Control Output Channel

Figure 6-1: Programming Resources of Nanoprocessor.

program are discussed in this section. In the next section, the usage of these resources will be

clarified when the syntax of the assembler language developed for PADDI-2 is explained.

As depicted in the nanoprocessorblock diagram in Figure 5-3, each nanoprocessoris equipped

with three data buffers: Q0, QI and Q2, two control token buffers: IFO and IF1, three data output

channels: CO, CI and C2, and one output control token channel:OF. As shown in Figure6-1, each

data buffer qi can be configured as a queue (Q) or a small register file (Ri's). When configured as a

queue (Qi's), the data buffer acts as an infinite sourceof data to the programmer.The datum can be

read either once and then discarded or the same datum can be read many times until it is discarded.

When used a register-file, a data buffer becomes a two-word random-access register-file. With

three data buffers, up to six registers, Rl to R6 areavailable.Unlike the queues, which can only be

used as source operands, these registers can be read and written to and therefore can be used as

101

both source operands anddestination operands. A dummy register, R0, which canonly be used as

a destination operand, is providedso that the result of the operation can be discarded when R0 is

specified as the destination operand.

Besides the above register resources, three scratch-pad registers, RCO, RC1 and RC2 are

provided. These scratch-pad registers can be viewed as the output ports of the ALU, i.e., the

outputs of the ALU areautomatically written into these registers aftereach instructioncycle. Since

their contents are already defined by the operation of the instruction, these scratch-pad registers

cannotbe used as destination operands. Although only one output is needed for most operations, 3

scratch-pad registers are provided to facilitate the pipelined implementation of the multiplication

operation using multiple nanoprocessors. In this case, RCO, RC1 and RC2 will contain the partial

sum, the multiplicand and the multiplier of the multiplication operation, respectively.

The data outputchannels Ci's are used whendata are communicated to another nanoprocessor

or memory usingthe communication channels. The Ci's can be considered as the entrances to the

communication channels. Data written into the communication channel will emerge in the same

order at the receiving end of the communication channel.

In addition to the register resources and I/O resources, an internal program counter, PC and a

condition code register, CC are provided. The PC points to the current instruction to be executed

and can be modified by a branch instruction. CC provides abufferfor the ALU condition codes or

control tokens and can be used to control a conditional branch.

The control input/output channels, IFO, IFland of are very similar to theirdata counterparts,

Qi's and Ci's except that the former handle control tokens for branching and the latter are used for

data.

102

6.2 PADDI-2 Assembler Language

To ease the task of writing a nanoprocessor program, an assembler language is specially

developed for the PADDI-2 architecture. In this section,the syntax of the assembler languagewill

be introduced and the usage is illustrated usinga code written for a counter. More information on

the mnemonics of the assembler language can be found in Appendix A.2.

As shown in Figure 6-2, a PADDI-2 assembler program consists of two main sections: the

initialization section and the program section. In the initialization section, there are one or more

directives starting with the key word .init.The directivesareused to specify the staticaspect of the

program. A complete listing of the directives defined is given in Table 6-1.

/* Beginning of Initialization Section */
.init pc=Label
[.init...]

[.init...]
/* End of Initialization Section */

/* Beginning of Program Section */
Label 1:

dest_operand = op_code(src_operandl,...,src_operandN), /* op_code field */
[cc = c/s/x], /* cc__code field */
[c0 = rcO], [cl = rcO/rcl], [c2= rc21, /* data output */
[of = 0/1/cc], /* control output */
next = Label 1; /* unconditional branch */ /* next PC field */
or

next = {cc/ifO/ifl}? Label 1 : Label2; /* conditional branch */ /* next PC field */

Label2:

/* End of Program Section */

Figure 6-2: Program Structure of a PADDI-2 Assembler Program.

103

Table 6-1: Listing of Directives.

Directive
Name

Value Remark
Mandatory/

Optional

PC Label Initial Program Counter Value Mandatory

q0,ql,q2 r/q Data Buffer Configuration Mandatory

R1-R6 constant Register initialization Optional

oena T/F Output Enable
(used by I/O nanoprocessors only)

Mandatory for I/O
nanoprocessor

mem_ena T/F Memory Enable
(used by I/O nanoprocessors only)

Mandatory for I/O
nanoprocessor.

The PC directive specifies the very first instruction to be executed by the nanoprocessor after

start-up. The q0-q2 directives set the configuration of the data buffers. The Ri's directives are used

to initialize the contents of the data buffers. In the case where the program is written for an I/O

nanoprocessor, the oena directive specifies the input/output direction of the I/O port and the

mem_ena directive controls whether the I/O port is connected to a memory or another PADDI I/O

port.

Following the initialization section is the main program section containing the nanoprocessor

instructions used in the program. Referring to Figure 6-2, each instruction can be identified by a

unique label and can be divided into five fields:

• op_code:

• cc__code:

• data output:

• control output:

• next PC:

operation code field

condition code field

data token output control field

control token output control field

next program counter field

104

/* Sample Assembler Code: COUNTER.s *

.init q0=r, q1=r, q2=r /* All 3 data buffers are configured as
register files */

.init M = 10 /* loop count */

.init r3 = 1 I* loop count decrement 7

.init pc = START I* pc initialization */

START: r2 = sub(r1 ,r3), ccO = s, next = ccO? START : LOOP;

LOOP: r2 = sub(r2,r3), ccO = s, next = ccO? START : LOOP;

Figure 6-3: Sample PADDI-2 Assembler Code implementing a counter.

The op__code field specifies the source operands, destination operand as well as the operation

to be performed. The cc_code field sets the cc register (cc) to the ALU condition code which can

either be the carry output of the ALU (c), the sign bit of the ALU result (s) or the sign change

signal of the ALU (x). The x condition code is provided to simplify the task of zero-detect. By

subtracting one from the source operand, x is assert if the source operand is zero before the

subtraction. The data and control output fields specify if data or control tokens are to be sent to

other nanoprocessors via the output channels: CO, CI, C2 or OF. Lastly, the next PC field handles

the control flow of the program. In the case of unconditional branch, the next PC is simply set to

the instruction label specified in the next PC field. In the case of conditional branch, the next PC

can be either one of the two instruction labels specified depending on the branch condition, which

is either the cc register or one of the two input control queues, IFO or IF1.

To illustrate the syntax of the PADDI-2 assembler language, the code for a down-counter is

shown in Figure 6-3. In this example, all three data buffers are configured as register files and the

starting PC points to the instruction labelled START. Rl is initialized to the counting period and

R3 is set to the count decrement. After executing the setup START instruction once, the program

proceeds to execute the LOOP instruction repetitively until the count becomes negative as

105

indicated by the sign bit. At that time, the program jumps back to instruction START and restarts

the counting sequence again.

6.3 PADDI-2 Application Development System

To speed up the task of developing and debugging applications on PADDI-2, a development

environment comprised of a software system and a PADDI-2 hardware system was developed. In

this section, the software development system based on an assembler and a VHDL simulator is

described.The design of the hardware prototyping system will be presented in the next section.

The major components of the PADDI-2 software development system are shown in Figure 6-

4. The entry point of the development system is a Viewlogic schematic [103] which consists of

four architectural components: nanoprocessors, memories, input ports and output ports. An

example of a Viewlogic schematic for the hidden surface processor application described in

Section 2.2 is given in Figure 6-5. Associated with each nanoprocessor in the schematic is a

pointer to a file containing the nanoprocessor assembler program to be executed by the

corresponding nanoprocessor. Similarly a file pointer is also associated with each input port or

output port and it specifies the file from which input data can be read or to which output data are

written. The schematic is parsedby a program called PGEN (an acronym for program generator)

to produce netlist information such as the number of nanoprocessors used and how they are

interconnected. Using the netlist information, an assembler compiles the user defined

nanoprocessor programs into PADDI-2 object code which is an intermediate code format used by

the VHDL nanoprocessor model. Besides user defined programs, users can also make use of pre

compiled programs such as counter, adder and multiplier stored in a library. Next a VHDL model

describing the system is created using the netlist information, nanoprocessor object codes and

VHDL models of the components.The system VHDL model can then be simulatedusing a VHDL

simulator, e.g., the Synopsis VHDL simulator [98], to verify the functionality.

nanoprocessor

program

library

Assembler

r VHDL

component

models

user

nanoprocessor

programs

(schematic)

PGEN

program netlist

object code
Makebit

PADDI-2

configuration bits

VHDL

Simulator
A i inputs j • VME Test

Board

expected output <2> observed output

Figure 6-4: PADDI-2 Software Development System.

106

Afterthe system is debugged andverified, themakebit program canbe called uponto generate

the configuration bit pattern for programming up a PADDI-2 chip. The configuration information

is then downloaded onto a PADDI-2 chip on a VME board to implementthe system in hardware.

As an added bonus, the same software system can also be used to develop test programs for

verifying the functionality ofPADDI-2 chip. A test program is first simulated using the VHDL

simulator to generate the expected output from the chip. The same program can then be

downloaded to the PADDI-2 chip under test and the outputs produced by the hardware can be

Y» >

EEZZ>

ET—~>

IFO OF

XF1 po-<
XPROC

IO OO

Ol

! OS

•€EEZZ> XFO OP

IFO

IF1

OF

P0_C1

ZPROC

XI Ol

12 02

IFO OF

IF1 »<>-c*
XPROC

10 OO

11 Ol

12 02

ti

r-t=s

> I

> _

J> _

XPROC

XO OO

Ol

02

XFO OF

ZPROC

XO OO

Ol

02

XFO OF

XF1 *1-CS
XPROC

XO OO

Ol

02

-JFX3

-EI

107

Figure 6-5: Viewlogic Schematic of the Hidden Surface Processor

easily observed by making use of the SCAN andSINGLE-STEP capabilities described in Section

5.4. The observed output can then be checked against the expected output to verity the

functionality of the test chip.

6.4 PADDI-2 DSP Prototyping Hardware System

To demonstrate the PADDI-2 architecture and to test the PADDI-2 prototype chip, a simple

hardware system as shown in Figure 6-6 isdeveloped. Thesystem consists of a hostworkstation, a

Heurikon single-board CPU [48] and several PADDI-2 board housed in a VME-cardcage. The

host is a SUN SPARC workstation and functions as a software development station and as a large

auxiliary data storage. It is connected to the CPU board intheVME-cardcage viaan ethernet. The

CPU board, based on a MC68000 microprocessor running the VxWork light-weight real-time

L

Host

Ethernet 7

/ Custom High B/W Interconnect /

VME CARD-CAGE

Figure 6-6: PADDI2 DSP Prototyping Hardware System.

108

kernel [108], serves as an interface between the host workstation and the PADDI-2 VME board.

The CPU board and the PADDI-2 boards are connected by a 32-bit VMEbus [104].

As shown in the block diagram in Figure6-7, the VME board includes a VME interface block,

a board controller, a PADDI-2 chip and a 64K x 16-bitmemory module. The VME interface block

consists of an address decoder and a VME2000 slave controller chip [76]. The address decoder

compares the address broadcasted on the VMEbus with an ID unique for each board. If matched,

the VME2000 chip which monitors and generates the necessary control interface signals with the

VMEbus will be enabled to handle the bus transaction. A Read (Write) bus transaction is

completedwhen the data is read from (written to) an internal registerof the board controller.

To simplify design changes and debugging of the board, an Xilinx 3090field-programmable

VMEbus

a a

' V

Address

Decode -¥ VME2000

VME Interface

"

Board Controller

Xilinx 3090
control reg

scan/data-out reg data-in reg

i i

-'16 -'16

/ h
Paddi2

Chip

<

•

do Memory
64K x 16b

A

DO

X4 '

i

1

i i i i i t k

t
r i ' i r i r

109

ribbon-cable connectors

Figure 6-7: PADDI2 VME Board.

gate array chip [110] isused to implement the board controller. On one side, the board controller is

hooked up to the VMEbus through which the internal registers of the board controllercan be

programmed. On the other side, the board controller isconnected to the PADDI-2 chip by a 4-bit

scan bus, a 16-bit input data bus and a 16-bit output data bus.

Three programmable registers: the control register, thescan/data-out register and thedata-in

register, are provided in the board controller. By setting or resetting bits in thecontrol register,

different operations, e.g., Scan-Enable and Write-Scan-Register, can be triggered from the host.

Thescan/data-out register is used for storing data to be scanned intoor outof the PADDI-2 chip

110

scan chain. Lastly, the data-in register is provided for temporary buffering of data received from

the PADDI-2 chip. More detailed descriptions of theseregisters aregiven in Appendix A.3.

The PADDI-2 chip can be programmed by the board controller usingthe 4-bit scan bus. Two

of the eight I/Obuses of the chip are connected to the board controller so that data can be directly

sent from or received by the host. Anotherthree I/O buses are connected to the data input port,

data output port and address port of the memory module. To simplify the I/O bus design, the

current PADDI-2 chipcan only interface withmemories with separate data I/O. With anenhanced

design of the I/O bus, future versions of the PADDI chipcan support memories with shared I/O to

reduce I/O bandwidth requirement. The remaining three I/O buses, as well as the I/O bus

connectedto the data input port of the memorymodule, are routed to four ribbon-cable connectors

to allow communication between PADDI-2 chips on different boards.

Including a 2.5 x 6 inch2 prototyping area, the board measures 10 x 11 inch2 and is

implemented usinga4-layer printed circuit board. A layout of the board canbe found in Appendix

A.4.

6.5 MuIti-PADDI-2 Board

The main functions of the PADDI-2 VME board described above are chip testing and

demonstration of simple DSP algorithms. Many boards are needed to provideenough processing

power for more complex algorithms. To improve the computation throughput and expand the

application scope of the system, a printed circuit board consisting of eight PADDI-2 chips is being

designed. The designof the board will be briefly described in this section.

As shown in the block diagram in Figure 6-8, the multi-PADDI-2 board contains an Sbus

interface [97], an video I/O block and a PADDI-2 array interconnected by a 16-bit local bus. The

L64853 Sbus controller chip from LSI Logic, Inc. [66] handles communication between the host

SUN workstation and the board using an Sbus. It is also responsible for the programming of the

video in

video out <#•

Video Decoder

Video Encoder M-

Video I/O

I

Sbus

i
Sbus-Interface

LSI 56000

2x4 Paddi2 Array

M
11 ad

do

64Kxl6

M
ad

do
P2

64Kxl6

M
11 ad

do
P4

64Kxl6

M
11 ad

do

64Kxl6

PI

P3

P7

M
ad1

do

64Kxl6

M
do

64Kxl6

I
M

64Kxl6

I
M

64Kxl6

Figure 6-8: Block Diagram of the Multi-Paddi2 Board.

Ill

112

PADDI-2 chip array. The video I/O block, consisting of a video encoder and a video decoder,

provides real-time video I/O capability for the system. Data can be easily transferred between the

controllerchip, the video I/O block andthe PADDI-2 array using the local bus.

Computation power is provided by thePADDI-2 array consisting of eightPADDI-2 chips and

eight 128-Kilobytememories. Using a 2x4 torus interconnection pattern, each PADDI-2chip can

communicate with each of its four immediate neighbors usingtwo I/O buses. A PADDI-2 chip can

also be configured to interface with a memory chip to cope with memory intensive applications.

Four buses at the edge of the array are hooked up to four connectors for connection to other

boards. Running at 50 MHz, each board can provide up to 20 Giga operations per seconds peak.

The design of the board is still in progress at the writing of this thesis.Further details of the board

architecture will be provided in future publications.

6.6 Mapping of DSP Algorithms onto PADDI-2

To illustrate the use of the PADDI-2 development system presented in the previous sections of

this chapter, detailed examples of the mapping of two practical DSPalgorithms onto the PADDI-2

architecture will be discussed in this section. The two algorithms used are the Hidden Surface

Processor and the Viterbi Detector, both of which have been explained and analyzed in Chapter 2

as target DSP algorithms of PADDI-2.

6.6.1 Hidden Surface Processor

The Hidden Surface Processor uses the Z-buffer algorithm for elimination of hidden surfaces

in 3-D graphics on a raster scan-line basis. The operations involved in the algorithm are shown in

Figure 6-9 and further details of the algorithm can be found in Section 2.2.

The logical mapping of the algorithm onto an linear array of nanoprocessors is described in

Figure 6-10. Each pixel processor is implemented by three nanoprocessors, namely Xproc, Zproc

113

segment data structures

Xj.dXj

i r

Zi.dZi

1 r

Xj+i= Xj -1
dX^^dXi-Ot^j^O)
enj= (Xi+,<=0)&(dXj+1>0)

en, ' d-VjBdZj
swap, = (Zj < Zm,) & en,
ZiDj = swap,?Zj: Zm;

swapj Inij= swap;?Ij: Imj

i

Xj+j.dXj+j

t

Zj+,,dZ,+,

1 t

li+i

"

Xj+2 = Xj+i - 1
dXj+2 = dXi+,.(XM<=0)
en.+i-(Xi+2<=0)&(dXI^>0)

cni+i

Zi+2 = (enl+,?)Zi+| +

dZi+hZj+l
dZj+2 = dzi*l
swapj+, = (Zj+, <

swapi+l ^
^2 = Ii
Im*, = swapi+1? 1*,: Im^,

i

Xi+2« dXj+2

r 1

Zi+2- ^+2

Figure 6-9: Z-buffer algorithm for Hidden Surface Elimination.

and Iproc, and more pixel processors can be easily added to the system to handle longer scan-lines.

While data structures of the line segments transverse the array from one pixel to another, signal

flags are passed between the nanoprocessors in each pixel processor. For example, the Iproc only

updates the intensity of the pixel when the Zproc sends a swap flag to signal that the incoming line

segment is in front of the stored line segment in this pixel position. Detailed listings of the three

nanoprocessor assembler programs can be found in Appendix A.5. It can be derived from the

nanoprocessor programs that in the worst case, 4 cycles are required to handle one line-segment

data structure and therefore the systemcan process 12.5 million line segments per second using a

50 MHz clock.

After the logical mapping, the system is implemented by mapping each logical nanoprocessor

114

segment data structures

1

Xj, dX;

enj

ZpdZi

y r

swap;

y f

XProq ZProq IProCi

enj+i ^ swapj+, ^

i

Xj+i.dX^,

r

Zi+I. dZj+i

i r y r

XProci+1 ZProci+1 IProCi+1

^

X|+2« dXi*2

r '

Zj4>dZj+2

r

'i+2

y r

Figure 6-10: Logical Mapping of Hidden Surface Processor onto PADDI-

to a physical nanoprocessor ina PADDI-2 chip. An example of the physical mapping of a 4-pixel

Hidden Surface Processor ontol2 nanoprocessors is shown inFigure 6-11. Because of thesystolic

dataflow pattern of thealgorithm, the demand on communication network bandwidth is low. Most

of the communications between pixel processors can be handled by bypassing the data between

neighboring nanoprocessors without using theLevel-1 communication network.

6.6.2 Viterbi Detector

To simplify the example, a 4-state Viterbi Detector is used as shown inFigure 6-12 but the

example can beeasily extended to more states by simple change in the communication network.

Unlike the Hidden Surface Processor application, thedata flow pattern of the Viterbi algorithm is

Data network

Control network

Level-1 communication network

| | Level-2 communication network

Figure 6-11: Physical Mapping of Hidden Surface Processor onto PADDI-2 Chip

115

very irregular because of the trellis interconnection network between the ACS units and the

register-exchange units.

The logical mapping of the algorithm onto a network ofnanoprocessors is shown in Figure 6-

13. The design is very modular; 3 nanoprocessors are used for each state: two for the ACS

operation (PEO and PEl) and one for the register-exchange operation (PE2), and the trellis

connection is handled by the communication network. All together, 12 nanoprocessors are needed

to implement the 4-state Viterbi detector. A complete listing of the three nanoprocessor assembler

input

4-state trellis

interconnect

4-state self-normalized Add-

Compare-Select (ACS) Unit

decisionOm n ACSO
smO

sml sm

,n n ACS1
smO

sml sm

,n n ACS2
smO

sml sm

,n A ACS3
smO

sml sm

decision 1

decision2

3
decision3

a

16-Stage Register
Exchange Unit

re

REO reO
rel

re

RE1 reOk-
rel

re

RE2 reO
rel

re

RE3 reO
rel

4-state trellis

interconnect

Figure 6-12: Block Diagram of 4-state Viterbi Detector.

116

output

programscan be found in Appendix A.6. Since it takes 4 cycles to implement one iteration of the

ACS operation andthe register-exchange operation, a decode rate of 12.5Mbit is achieved using a

PADDI-2 chip running at 50 MHz.

The physical mapping of the Viterbi detector onto the PADDI-2 chip is shown in Figure 6-14.

In this 4-stateexample, the trellis connection is easily implemented by the Level-1 communication

network. ForanotherViterbi detector involving more states,a combination of Level-1 and Level-2

communication networks is needed.

input

inpu t

ACSO.PEO
output

—¥
ACS0.PE1

•
RE0_PE2

ACSl.PEO decision! i 1
-¥

ACS1.PE1
•

RE1_PE2

«

ACS2.PEO decision2 i 1
—¥

ACS2.PE1
•

RE2_PE2

4

—¥
ACS3.PE0 derision! i 1

•
ACS3.PE1

•
RE3.PE2

L

Figure 6-13: Logical Mapping of 4-state Viterbi Detector onto PADDI-2.

Data network

Control network

] Level-1 communication network

| | Level-2 communication network

Figure 6-14: Physical Mapping of 4-state Viterbi Detector onto PADDI-2 Chip

117

output

118

6.7 Benchmark Results

To justify the architectural choices and verify the performance and generality of the

architecture, a benchmark set consisting of algorithms in the areas of video processing, speech

recognition, digital communication, and digital filtering was analyzed. In this section, the

characteristics of the algorithms will be discussed and the performance data will be presented.

Comparisons with several competitive architectures described in Section3.3.2 will be made.

Table 6-2 lists the number of core operations per data sample, the performance achieved and

Table 6-2: Benchmark Results.

Algorithms
Core Operations

(per sample)

Performance

(Sampling-

Rate)

Through

put

(MOPS)

Hardware

1
2nd-order 1IR filter (75]
(original)

5 mult, 4 add 8.3 MHz 75 6nano

2
2nd-order IIR filter [75]
(pipeline and multiplexed)

10 mult, 11 add 25 MHz 525 27 nano

3
2nd-order IIR filter [75]
(pipeline)

10 mult, 11 add 50 MHz 1050 54nano

4
2-dim space address
generator [101]

2 add, 1compa 50 MHz 150 3 nano

5 3x3 sorting filter 15 comp& select 50 MHz 1500 30 nano

6
Video Matrix conversion [90]
(8b pixel)

4 mult, 6 add 50 MHz 500 14 nano

7
2-dim 8x8 DCT

(8b pixel, multiplexed)
16 mult-add 25 MHz 800

50 nano, 2

memories

8
2-dim 8x8 DCT

(8b pixel, non-multiplexed)
16 mult-add 50 MHz 1600

82 nano, 2

memories

9 11 -Tap 8-bit FIR 11 mult, 10 add 50 MHz 1050 56 nano

10 (E)PRML Viterbi Detector [95]
26 add, 8 shift, 8
comp, 16 select, 7
mult

12.5 Mb/s 812 40 nano

11
Motion Vector Estimation

(8x8 blk, 16x16 search blk)
64 sub, comp &
add

22 MHz 4224
254 nano, 4

memories

12
Hidden Surface Pixel Processor

(256-pixel line) [81]
3 comp, 3 add, 4
select

12.5M

segments/s
32000 640 nano

a. Compare operation.

119

the amount of on-chip hardware used for the benchmark algorithms. In an attempt to reflect the

complexity of the algorithms, only operations involved in actual algorithmic computation are

counted as core operations. Overhead operations and bookkeeping operations, which vary

significantly depending on the implementations are excluded. All operations are 16 bit unless

specified otherwise. Since most general purpose DSP processors are equipped with parallel

multipliers, a multiplication is counted asonly one operation in the throughput calculation for fair

comparison although eight nanoprocessor operations are actually executed. The throughput

requirements are very high in general and most algorithms require irregular communication

patterns.

The first three algorithms in the table are three different implementations of a second-order

infinite impulse response (IIR) filter and they demonstrate how algorithms with recursive

bottlenecks can sometimes be transformed to allow more parallelism (more pipeline stages). The

results show good correlation between performance gain and hardware cost.

Figure 6-15 shows the implementation of a 2-dimensional 8x8 Discrete Cosine Transform

(DCT) at a 25 MHz sampling rate using 50 nanoprocessors and two memory banks as transpose

buffers. The algorithm is decomposed into two one-dimensional DCT's and a transpose operation.

The 8-bit by 16-bit multiplication is implemented in a pipeline fashion using two nanoprocessors.

The transform coefficients stored in the data buffers of the nanoprocessors are streamed into the

multiplication nanoprocessors together with the input pixels. The address generation unit (AG2),

which is very similar to the 2-dimensional space address generator described in Section 4.2.3,

produces the desired address sequence for the transpose operation.

As a comparison, a general purpose DSP processor such as the TMS320C25 can only achieve

a sampling rate of 250 KHz for the 2-dimensional 8x8 DCT with optimized code [74]. By further

pipelining of the multiplication operations, a samplingrateof 50 MHz can be achieved by using

82 nanoprocessors.

120

TM \^LPi \

c

V y

78

V 1
6

v

c3

i
4

V 1
mul mull mull mull

Address Generation

mul2 mul2 mul2 mul2
AG1 «—1

V yr v 1
^4- + + +

Mlv v 1
rge—• merge

-*
merge •

9

me Transpose

M2

Buffer

c'12 c

)

'34 C-56 c'78

U V yr <r v yr

iL

AG2mull mull mull mull ♦—i

mulS mul2 mul2 mul2

4 1 i i '

+ + +
i i i

ni tt ^ . merge*— 4\J\J 1 ^ merge merge

Figure 6-15: 2-D 8x8 Discrete Cosine Transform at 25 MHz sampling rate using 50
nanoprocessors.

The Viterbi benchmark implements the EPRML Viterbi detector described in Section 2.1

which includes a 7-tap transversal filter and an 8-state Viterbi detector. Due to the tight recursive

loop in the ACS unit, the decode rate of 12.5 Mb/s is only a quarter of the maximum clock

frequency (50 MHz). Performance can be improved by applying lookahead techniques [115] to

expose more parallelism in the ACSalgorithm at the expenseof hardware complexity.

Other benchmark algorithms include the Hidden SurfaceProcessordescribed in the previous

121

section andthe Motion Vector Estimator usedinmanyvideocompression algorithms. Considering

that only core operations are counted, and that the performance of a typical commercial DSP

processor implemented in a technology similar to the one used by PADDI-2, is of the order of

several hundred's of MOPS peak, the PADDI-2 architecture promises to be a high performance

architecture for high throughputDSP algorithms.

6*7.1 Comparisons

To further gauge the performance of the PADDI-2 architecture, several DSP algorithms in the

benchmark set are also implemented on two competitive architectures: the NEC Video Signal

Processor and the Philips Video Signal Multiprocessor. These two architectures are chosen for

comparisons because their approaches arevery different from the PADDI-2's even though all three

architectures target high throughput DSPalgorithms. The NEC VSP achieves high performance by

pushing circuitsand process technologies as evident by the fast clock rate. The PhilipsVSP, like

PADDI-2, provides high throughput using multi-processing. However, the granularity of the

processing elements and programming paradigm are very different from those of PADDI-2's.

More details of the two architectures can be found in Section 3.3.2. Some pertinentcharacteristics

of the three integrated circuits are listed in Table 6-3 for reference.

Four DSP algorithms in the benchmark set are mapped to the three architectures for

comparisons. The amount of hardware in terms of the numberof IC chips required to achieve a

certain performance is used as the figure of merits. Many subtle problems can arise when

comparing very different architectures such as the three under considerations. First, it is very

difficult to ensure that the implementations of the algorithms on the various architectures are all

optimized to the same degree. In some cases, a re-formulation of the algorithm can produce an

improved mapping onto an architecture. Moreover, some important details about the architecture

may not be sufficiently covered in the literature. Consequently, we may not be aware of useful

features that can boost performance, or architectural bottlenecks that can degrade performance.

122

PADDI-2 NEC VSP [45] Philips VSP [102]

Process Technology
1-urn CMOS

(2-metal)
0.8-nm BiCMOS

(3-metal)
0.8-um CMOS

(2-metal)

Die Size 144 mm2 202 mm2 156 mm2

Data Path Width 16-bit 16-bit 12-bit

Transistors 600K 1130 K 1150K

#Pins 208 132 208

Clock Speed 50 MHz 250 MHz 50 MHza

Table 6-3: Important IC parameters.

a. Since the Philips VSP uses a faster process compared to the PADDI-2 process, its clock speed is
adjusted slightly from the published rate of 54 MHz to 50 MHz (the PADDI-2 clock rate) to simplify
performance comparison [102].

To ensure that the performance of the two VSP architectures are not under-estimated, we made

many favorable assumptions in our evaluation. It is assumed that the peak processing power of the

two chips are always available, i.e., processing stalls due to control hazards, data dependencies,

hardware resource conflicts, etc., are ignored. In cases where more than one chip are needed to

deliver the performance, all the overheadassociated with multiprocessing, such as communication

latency and I/O conflicts, are also neglected. In other words, we hope to make sure that the results

obtained for the two VSP architectures are based on the best-case scenario which may actually be

unrealistic in certain cases.

Let's consider the 2-dimensional DCT algorithm discussed in the previous section as an

example. Sixteen multiply-accumulate operations are processed for each pixel at the 25 MHz rate.

When the algorithm is mapped onto the Philips VSP which executes four operations for each

multiply operation, a total of eightyoperations are required for each pixel. Given that each of the

twelve arithmetic logic elements (ALE's) on-chip can execute one operation at the 50 MHz rate, a

total of 40 ALE's or 3.3 chips are needed to achieve the pixel-rate of 25 MHz. This figure is the

123

lower-bound on hardware requirement because many miscellaneous operations such as the

handling of filter coefficients and transpose buffering are not considered. Moreover, extra

hardware resources which may be needed in order to make the 3.3 chips work in tandem are also

neglected.

The hardware requirements and the normalized results of the three architectures are shown in

Table 6-3. While the PADDI-2 results were obtained by careful simulations, the results for the

other architectures were either derived from published results or estimated using the favorable

assumptions described above. In all cases, the PADDI-2 architecture out-performs the other two by

a factor of about 2 or 3. It is interesting to note that despite the facts that the NEC VSP contains a

high speed parallel multiplierand the PADDI-2 chip has none, the PADDI-2 chip is still more

efficient thanthe NEC VSPin implementing thefirst twoalgorithms which involve many multiply

operations.

DSP Algorithms PADDI-2
IC's / normalized

NEC VSP
IC's / normalized

Philips VSP
IC's / normalized

2-dim 8x8 DCT, 8-b pixel
(25 MHz)

1 + 2 mema /1 6.6b/3.3 3.3/1.7

11 -Tap 8-b FIR
(50 MHz)

1.2/1 2.2/1.8 4.5/3.8

(E)PRML Viterbi Detector
(12.5 Mb/s)

0.8/1 2.4/3.0 1.5/1.9

256-pixel HSPP
(12.5 M segments/s)

13.3/1 128/9.6C 42/3.2

Table 6-4: Comparison of Hardware Requirements.

a. Two small external memories are counted as one IC.
b. Published result [45].
c.The hardware requirement iscomputed assuming that theexact algorithm asdescribed inSec
tion6.6.1 is used. The result canpossibly be improved by reformulating the algorithm.

CHAPTER 7

Conclusions

This dissertation has presented and described PADDI-2, adata-driven multiprocessor

architecturecalled PADDI-2 for rapid prototypingof complex DSP algorithms. The architecture is

based on direct execution of data-flow graphs. High computation bandwidth is achieved cost-

effectively by exploiting fine-grain parallelism inherent in the target algorithms using simple

processor elements called nanoprocessors. The flexible high bandwidth communication network

can accommodate a wide range of algorithms, including those with irregular data communication

patterns. The distributed control strategy and the data-driven principle of execution result in a

highly scalable and modular architecture that can be easily extended to tackle more complex

problems. The simplicity and homogeneity of the architecture, the consistent programming

paradigm, and the direct architectural support for the execution of data-flow graphs can facilitate

development of compiler and synthesis tools needed for rapid prototyping.

A 50 MHz PADDI-2 chip consistingof 48 nanoprocessors, a 2-level communication network,

and eight I/O ports has been designed and reported in [116] as a proof of the architectural concept.

An application development system based on an assembler, a VHDL simulator, and a VME

124

125

demonstration/test board was developed to ease the task of programming and mapping practical

DSP systems onto the PADDI-2 hardware platform.

The benchmark results demonstrated that the PADDI-2 architecture is flexible and can satisfy

the high throughput requirementof a large variety of algorithms. Complex algorithms such as the

Hidden Surface Processor and the EPRML Viterbi detector can be implemented using a small

number of nanoprocessors.

While we are satisfied with the flexibility and performance of the PADDI-2 architecture, there

are many interesting alternatives and improvements worth researching. This dissertation will be

concluded by outlining some future research topics:

Enhanced Reconfigurability

Some problems related to the programming of the existing PADDI-2 chip are that

programming speed is slowbecause of the serial scan bus and that the chipcan be reconfigured for

the next task only after the completion of the current task. By shortening the time needed for

reconfiguring the chip and/or allowing reconfiguration of chip to occur concurrently with

execution of the current task, the application scope of the architecture can be greatly extended,

especially for embedded-controller-type applications. A reconfigurable multiprocessor

architecture incorporating these capabilities hasrecently been proposed in [94].

Compromising SIMD and MIMD architectures

It has been discussed in Section 4.2 that the SIMD control strategy, though efficient in

hardware usage, is not scalable and rather constraining in handling algorithms with complex

control flow. On the other hand, the MIMD distributed control structure adopted by PADDI-2 is

very general and scalable but incurs hardware penalty, e.g., the hardware supported data-driven

mechanism. It is interesting to explore compromise architectures thatcantake advantage of both

the simplicity and hardware efficiency of the SIMD architecture and the generality and scalability

126

of the MIMD architecture. An exampleof such architectures is the XIMD architecture, which is an

extension to the VLIW architecture proposed by [109]. However, a very important pre-requisite of

this approach is that an efficient compiler forthe architecture must alsobe developed.

On-chip Memories

Many DSPapplications can benefit from on-chip memories whichrelieve I/O bandwidth and

reduce memory latency. As discussed in Section 4.5, memory modules can be easily incorporated

into the data-driven paradigm of PADDI-2 architecture. A natural and simple improvementof the

PADDI-2 chip is to include a few small memory modules on-chip.

127

Appendix

Appendix.1 48-Nanoprocessor PADDI-2 Chip Pin-List

Table A.1-1: PADDI-2 Chip Pin-List.

Pin Name Pin Number # Pin Name Pin Number

1 GND 145 2 dO.sbl 144

3 d0_sb2 160 4 dO_weN 193

5 dO[0] 143 6 Vdd 137

7 dO[l] 136 8 d0[2] 176

9 dO[3] 159 10 d0[4] 135

11 GND 129 12 d0[5] 128

13 d0[6] 142 14 d0[7] 127

15 d0[8] 134 16 Vdd 121

17 d0[9] 120 18 d0[10] 126

19 dO[ll] 119 20 d0[12] 118

21 GND 113 22 d0[13] 112

23 d0[14] 111 24 d0[15] 110

25 tdi 103 26 Vdd 105

27 tdo 104 28 tms 102

9fotl3POLtfr[6l3P69

89PPA89S[8l3PL9

£3[_JcP99P[9l3P59

OPfcl3PWL9ONO£9

33M3P39£[£]3P19

Z[3l3P096£[H3P69

99PPA8S\Z[0l3PL9

IN3M-£p9S033qs"3P99

8£iqs~3P«99aNO£9

L£iqs'tpZ9613qs"ip\9

P9NOM"ip099€[OllP6V

ZLPPA8fr£SmipLP

\L[Z]IP9fr81[dip9P

OLMlPtt9£[slip£P

08CINDZv6L[9]ip\P

Z9[/.HPOvSL[81IP6£

69[61IP8£68PPAL£

88[OlllP9£LL[nlip9£

L%[3lllPt>£98[£lllP££

96[MllP3£Z.6ONO\£

96fclllP0£fr6U3J63

joqiunfsiuijduiBMUid#jsquinMuij31UBMu!d#

•jsn-ujddrqo3-iaaVd:WVWtt

831

129

Table A.1-1: PADDI-2 Chip Pin-List.

Pin Name Pin Number # Pin Name Pin Number

71 d2[ll] 24 72 d2[12] 7

73 GND 59 74 d2[13] 42

75 d2[14] 25 76 d2[15] 8

77 Vdd 26 78 Vdd 60

79 GND 43 80 Vdd 9

81 GND 10 82 d3[15] 27

83 GND 61 84 d3[14] 44

85 d3[13] 11 86 d3[12] 28

87 d3[ll] 12 88 d3[10] 45

89 Vdd 62 90 d3[9] 13

91 d3[8] 29 92 d3[7] 14

93 d3[6] 46 94 GND 63

95 d3[5] 15 96 d3[4] 30

97 d3[3] 16 98 d3[2] 47

99 d3[l] 31 100 Vdd 64

101 d3[0] 32 102 d3_weN 48

103 d3_sb2 33 104 d3_sbl 49

105 GND 65 106 d4_sbl 66

107 d4_sb2 50 108 d4_weN 17

109 d4[0] 67 110 Vdd 73

111 d4[l] 74 112 d4[2] 34

130

Table A.1-1: PADDI-2 Chip Pin-List.

Pin Name Pin Number # Pin Name Pin Number

113 d4[3] 51 114 d4[4] 75

115 GND 82 116 d4[5] 83

117 d4[6] 68 118 d4[7] 84

119 d4[8] 76 120 Vdd 90

121 d4[9] 91 122 d4[10] 85

123 d4[ll] 92 124 d4[12] 93

125 GND 98 126 d4[13] 99

127 d4[14] 100 128 d4[15] 101

129 Reserve 108 130 Vdd 106

131 ck 107 132 resetN 109

133 gstall 117 134 d5[15] 116

135 GND 114 136 d5[14] 115

137 d5[13] 125 138 d5[12] 124

139 d5[ll] 133 140 d5[10] 123

141 Vdd 122 142 d5[9] 141

143 d5[8] 132 144 d5[7] 158

145 d5[6] 131 146 GND 130

147 d5[5] 175 148 d5[4] 140

149 d5[3] 192 150 d5[2] 139

151 d5[l] 157 152 Vdd 138

153 d5[0] 174 154 d5_weN 156

131

Table A.1-1: PADDI-2 Chip Pin-List.

Pin Name Pin Number # Pin Name Pin Number

155 d5_sb2 191 156 d5_sbl 173

157 GND • 155 158 d6_sbl 172

159 d6_sb2 190 160 d6_weN 209

161 d6[0] 189 162 Vdd 154

163 d6[l] 171 164 d6[2] 208

165 d6[3] 207 166 d6[4] 188

167 GND 153 168 d6[5] 170

169 d6[6] 206 170 d6[7] 187

171 d6[8] 205 172 Vdd 152

173 d6[9] 169 174 d6[10] 204

175 d6[ll] 186 176 d6[12] 203

177 GND 151 178 d6[13] 168

179 d6[14] 185 180 d6[15] 202

181 Vdd 184 182 Vdd 150

183 GND 167 184 Vdd 201

185 GND 200 186 d7[15] 183

187 GND 149 188 d7[14] 166

189 d7[13] 199 190 d7[12] 182

191 d7[ll] 198 192 d7[10] 165

193 Vdd 148 194 d7[9] 197

195 d7[8] 181 196 d7[7] 196

132

Table A.1-1: PADDI-2 Chip Pin-List.

Pin Name Pin Number # Pin Name Pin Number

197 d7[6] 164 198 GND 147

199 d7[5] 195 200 d7[4] 180

201 d7[3] 194 202 d7[2] 163

203 d7[l] 179 204 Vdd 146

205 d7[0] 178 206 d7_weN 162

207 d7_sb2 177 208 d7_sbl 161

133

Appendix.2 PADDI-2 Instruction Mnemonics

Table A.2-1: PADDI-2 Instructions.

Mnemonics8 Instruction Result5

1 add(srcl, src2) 2's complement addition srcl +src2

2 addcc(srcl, src2, cc) 2's complement addition w/ cc srcl +src2 + cc

3 ads(srcl,n) arithmetic down-shift srcl »n, n=0,l,2

4 and(srcl,src2) logical AND srcl &src2

5 aus(srcl,n) arithmetic up-shift srcl «n, n=2

6 inv(srcl) logical inverse -srcl

7 mstart(srcl,src2) 2nd-order modified booth mul
tiplication step (zero partial
sum)

booth(srcl, src2)

8 mstep(srcl, src2, src3) 2nd-order modifiedbooth mul
tiplication step

booth(srcl, src2) + src3

9 or(srcl, src2) logical OR srcl i src2

10 selcc(srcl,src2) select on cc cc? srcl : src2

11 sub(srcl,src2) 2's complement subtract srcl -src2

12 subcc(srcl, src2, cc) 2's complement subtract w/ cc srcl + ~src2 + cc

13 xor(srcl,src2) logical exclusive-OR srcl Asrc2

a. srcN = qO/qOs/ql/qls/q2/q2s/Rl-R6, where qi means the datum is read and then
discarded from queue and qls means the datum is read but still kept in queue.

b. In C-Language syntax.

Appendix.3 Board Controller Registers

Table A.3-1: Board Controller Registers

Register Number Register Name Access Type

0 Control Register Read/Write

1 Scan/Data-Out Register Read/Write

2 Data-in Register Read Only

Table A.3-2 : Board Control Register

Bit# Name

15 ST (Stop)

14 SS (Single-Step)

13 CU (Capture/Update)

12 SE (Scan-Enable)

11 SF (Scan-reg Full)

10 DF (Data-in reg Full)

9-4 Reserved

3-0 CS[3:0]a (Chip-Select
[3:0])

a. The 4 Chip-Select bits allow one
board controller chip to support up to
16 PADDI-2 chips.

134

135

Appendix.4 Layout of PADDI-2 VME Board

Figure A-1 : Layout of PADDI-2 VME Board.

136

Appendix.5 Nanoprocessor Assembler Programs for
Hidden Surface Processors

z******************************* ^

/* XPROC.s notes:

/*

/* 1) X, DX comes in on qO

.init qO= q

.init ql =r

.init q2 = r

.init r6 = 1

.init pc = 0

rO = sub(qO, r6),
cO = ra

ccO = s,

next = 1;

1:

r3 = sub(qO, r6),
ccl = s,

next = ccO? 3:2

2:

rO= add(r3, r6),

cO = ra,

fo_s = 0,

next = 0;

3:

rO= ads(r3,0),

cO = ra,

next = ccl? 5:4;

4:

fo_s= 1,

next = 0;

5:

fo_s = 0,

next = 0;

*/

*/

*/

/* output new X */

/* store value of DX-1 in r3 */

/* output the original DX */

/* de-assert enable */

/* has reached beginning of segment */

/* output new DX */

/* within line segment */
/* assert enable */

/* no longer within line segment */
/* de-assert enable */

137

/* ****************************** *^

/* ZPROC.s notes */

/* */

/* 1) Z, reset come in on qO */
/* 2) DZ is always implemented as constant */
/* 3) flag from XPROC comes in on ft) */
/* 4) rO used as a scrap register */
/* 5) r6 used as Zmin */

.init qO = q, ql = r, q2 = r, pc = 3

.init r6 = 10000 /* set Zmin to be a default distance */

.init r5 = 10000 /* this is the reset value for Zmin */

.init r4 = 3 /* constant DZ value */

3:

rO = sub(q0s,r6), /* determine in advance if need to updateZmin */
ccO = s, /* s = 1 means update; s = 0 means don't update */
next = fO? 1:0; /* test if within segment */

0:

rO = ads(q0,0), /* not within segment, so: */
cO = ra, /* pass originalZ */
ccO = s, next=2; /* see if Z was -; if so, need to reset Zmin */

2:

next = ccO? 7:6; /* check if need to reset Zmin */

7:

r6 = ads(r5,0), /* reset asserted, so set r6 to be Zmin */
next = 3; /* also note that a reset will not put out a fo token */

1:

rO = add(q0s,r4), /* pass Z+dZ */
cO = ra, next = ccO? 5:4;

5:

r6 = ads(q0,0), next=6; /* update Zmin */

4:

rO = ads(q0,0),next=6; /* flush qO queue */

6:

fo_s = ccO, next=3; /* set intensity flag to proper value */

/* ****************************** *#

/* IPROC.s notes: */

/* */

/* 1)1 comes in on qO */
/* 2) SWAP comes in on fO */

/* 3) EOF comes in on f 1, leaves on fo */
/* 3) r6 used to keep Imax */

.init qO = q

.init ql = r

.init q2 = r

.init r6 = 0 /* set Imin to be background intensity */

.init r5 = 0 /* this is the reset value for back, intens. */

.init pc = 0

0:

r3 = ads(qO, 0), /* check if Iin < 0, ie FLUSH */
cO= ra, /* output both lout, FLUSH */
ccO = s,

next = 2;

2:

next = ccO? 5:4; /* branch on FLUSH */

4:

next = fO? 1:0; /* branch on SWAP */

1:

r6 = ads(r3,0), /* replace Imax */
next = 0;

5: /* flush cycle for the 1st pixel processor*/
rO= ads(r6,0),

cO = ra, /* send own Imax */

fo=l, /* output EOF */
next = 6;

6:

r6 = ads(r5,0), /* reset r6 */

next = 0;

138

139

Appendix.6 Nanoprocessor Assembler Programs for
Viterbi Detector

z* ****************************** */

/* PO.s note */

/* */

/* 1) Y comes in on qO */
/* 2) SO comes in on ql */
/* 3) This is program for state0,5,6 ACS
/* 4) So need to calculate BM(-1) = 0.5+Y
/* 5)BM(0) = 0 */

/* 6) r6 used as a scrap register */

*/
*/

.init qO = q, ql = q, q2 = r

.init r5 = 4

.init pc = 0
/* represent 0.5 with 3 decimals */

0:

rO = add(r5,q0),
cO = ra,

next = 1;

1:

r0 = ads(ql,0),
cO = ra,

next = 0;

/* calculate BM(-l) = 0.5+Y */

/* send it to the PI processor */

/* calculate BM(0)+S0 */

y* ****************************** */

/* PI .s notes */
/* */

/* 1) BM(+1), then BM(+2)+S0 comes in on qO*/
/* 2) SI comes in on ql

.init qO= q, ql = q, q2 = r

.init r6 = 0, pc = 0

0:

next = fO? 3:2;

r5 = add(q0,ql),

•7

/* if reset, don't absorb Q values */

/* no reset */

/* calculate BM(+1)+S1 */

next = 4;

rO = sub(q0s,r5),
ccO = s,

next = 5;

rO = sel(qO, r5, ccO),
cO = ra,

fo_s = ccO,

next = 0;

rO = ads(r6,0),

cO = ra,

next = 0;

/* compare BM(+2)+S0 and BM(+1)+S1 */

/* if ccO=0, rO=qO, else rO=r5 */
/* check this! */

/* set output flag */

/* reset enabled */

/* output 0 */

/* ****************************** */

/* RE.s notes: */

/* 1) Inputs come in on qO,ql */
/* 2) Decision comes in on fO, reset on f1

/* 3) Output is on cO */
/* 4) Decode output is on fo */

.init qO = q, ql = q, q2 = r

.init r5 = 0, r6 = l,pc = 0

0:

next = fl? 3:2;

next = fO? 5:4;

4:

rO = aus(qO),
ccO = s,

cO = ra,

next = 6;

/* if reset, don't absorb Q values */

/* branch based on decison */

/* decision = 0 */

/* shift appropriate input left by 1 bit */

140

rO = ads(ql,0),
fo_s = ccO,

next = 0;

5:

rO = aus(ql),
next = 7;

rO = add(ra,r6),
ccO = s,

cO = ra,

next = 1;

1:

rO = ads(qO,0),
fo_s = ccO,

next = 0;

rO= ads(r5,0),

cO = ra,

next = 0;

/* flush ql queue */

/* decision = 1 */

/* shift appropriate input left by 1 bit */

/* place decision bit into LSB */

/* so output is input shifted left by */
/* one bit, with the decision occupying the LSB */

/* flush the qO queue */

/* reset enabled */

/* output 0 */

141

142

Bibliography

[11 Arvind and D. Culler, "Dataflow Architectures," Annual Reviews in Computer Sci

ence, MIT, Laboratory for Computer Science, 1986.

[2] Avenhaus, E., "On the design of digital filters with coefficients of limited word

length," IEEE Trans, on Audio and Electroacoustics, vol. 20, pp. 206-212, 1972.

[3] Baccarani, G., M. Wordeman and R. Dennard, "Generalized Scaling Theory and

its Application to 1/4 Micrometer MOSFET Design," IEEE Transactions on Elec

tron Devices, ED-31(4), p. 452, 1984.

[4] Bakoglu, H., Circuits, Interconnections, and Packaging for VLSI, Addison-Wes

ley, Menlo Park, CA, 1990.

[51 Berkhout, P. and L. Eggermont, "Digital Audio Systems," IEEEASSP Magazine,

pp. 86-99, May 1989.

[6] Bier, J., S. Sriram and E. Lee, "A Class of Multiprocessor Architectures for Real-

Time DSP," VLSISignal Processing IV, Nov. 1990.

[7] Bisiani, R., "System Implementation Strategies for Speech " Speech and Natural

Language Workshop, June 1990.

[8] Bisiani, R., et al., "BEAM: An Accelerator for Speech Recognition," International

Conference on Acoustics, Speech and Signal Processing, June 1989.

19] Black, P. and T. Meng, "A 140 Mb/s, 32-state, Radix-4 Viterbi Decoder," IEEE J.

Solid-State Circuits, Vol. 27, pp. 1877-1885, Dec 1992.

143

[10] Black, P. and T. Meng, "A 1 Gb/s, 4-state, Sliding Block Viterbi Decoder," Symp.

on VLSI Circuits, Jan 1993.

[11] Black, P., "Algorithms and Architectures for High Speed Viterbi Decoding," PhD

thesis, Stanford University, CA, March 1993.

[12] Blanz, W. E., et al., "Algorithms and Architectures for Machine Vision," Hand

book ofSignal Processing, Marcell Decker, 1988.

[13] Borkar, S., et al., "iWarp: An Integrated Solution to High-Speed Parallel Comput

ing," Proceedings Supercomputing, Nov 1988.

[14] Brodersen, R. W., and J. Rabaey, "Evolution of Microsystem Design," ESS-

CIRC'89: Proceedings ofthe 15th European Solid State Circuits Conference, Sept.

1989.

[15] Brodersen, R. W., et al., "Technologies for Personal Communications," Proceed

ings ofthe VLSI Symposium '91 Conference, Japan, pp. 5-9, 1991.

[16] Brown, C, "The Programmable-Logic Assault," Electronic Engineering Times,

Feb. 1993.

[17] Brown, S., "An Overview of Technology, Architecture and CAD Tools for Pro

grammable Logic Devices," IEEE Custom Integrated Circuits Conference, 1994.

[18] Brunvand, E., "Using FPGA's to implement self-timed systems," Journal of VLSI

Signal Processing, vol. 6,1993.

[19] Chandrakasan, A., A. Burstein and R. Brodersen, "A Low Power Chipset for Por

table Multimedia Applications," Proceedings of the International Solid-State Cir

cuits Conference '94, San Francisco, CA, pp. 82-83, February 1994.

144

[20] Chandrakasan, A., R. Allmon, A. Stratakos, and R. W. Brodersen, "Design of Por

table Systems," Proceedings ofCICC '94, San Diego, May 1994.

[21] Chandrakasan, A., S. Sheng, and R. W. Brodersen, "Low-Power Techniques for

Portable Real-Time DSP Applications," VLSI Design '92, India, pp. 203-208,

1992.

[22] Chandrakasan, A., S. Sheng, and R. W. Brodersen, "Low-Power CMOS Design,"

IEEEJournal ofSolid-State Circuits, pp. 472-484, April 1992.

[23] Chandrakasan, A., M. Potkonjak, J. Rabaey, and R. W. Brodersen, "Optimizing

Power Using Transformations," submitted to IEEE Transactions on Computer-

Aided Design, May 1993.

[24] Chen, D. K., Hong-Men Su, and Pen-Chung Yew, "The Impact of Synchronization

and Granularity on Parallel Systems," International Symposium on Computer

Architecture, 1990.

[25] Chen, D., L. Guerra, E. Ng, D. Schultz, and J. Rabaey, "A Field-Programmable

Architecture for High Speed Digital Signal Processing Application," ACMInterna

tional Workshop on Field-Programmable Gate Arrays, 1992.

[26] Chen, D., and J. Rabaey,"A Reconfigurable Multiprocessor IC for Rapid Prototyping of

Real-Time Data Paths", IEEE International Solid-State Circuits Conference, Feb.

1992.

[27] Chen, D., "Programmable Arithmetic Devices for High Speed Digital Signal Processing",

PhD thesis, University of California at Berkeley, May, 1992.

[28] Dennis., J. B., "First Version Data Flow Procedure Language", Technical Memo

MAC TM61, May 1975, MIT Laboratory for Computer Science.

145

[29] De Man, H., F. Catthoor, G. Goossens, J. Vanhoof, J. Van Meerbergen, S. Note,

and J. Huisken, "Architecture-Driven Synthesis Techniques for Mapping Digital

Signal Processing Algorithms into Silicon," Proceedings ofthe IEEE, vol. 78, no.

2, pp. 319-335, Feb. 1990.

[30] Devaney, P. of Matsushita Applied Research Laboratory, Personal Communica

tion, Feb., 1994.

[31] Duncan, P., et al., "Hi-PASS: A Computer-Aided Synthesis System for Maximally

Parallel Digital Signal Processing ASIC's," International Conference on Acous

tics, Speech and Signal Processing, Mar. 1992.

[32] Engels, M., R. Lauwereins, and J. Peperstraete, "Rapid Prototyping for DSP Sys

tems with Multiprocessors," IEEE Design & Test ofComputers, June 1991.

[33] Ernst, R., "Long Pipelines in Single-Chip Digital Signal Processors: Concepts and

Case Study," IEEE Transactions on Circuits and Systems, Jan. 1991.

[34] Fellman, R., "Design Issues and an Architecture for the Monolithic Implementa

tion of a Parallel Digital Signal Processor," IEEE Transactions on Acoustics,

Speech and Signal Processing, May 1990.

[35] Flynn, M. J., "Some Computer Organizations and Their Effectiveness," IEEE

Transactions on Computers, Sept. 1972.

[36] Forney, G. D. Jr., "The Viterbi algorithm," Proc. IEEE, vol. 61, no. 3, pp. 268-278,

March 1973.

[37] Fortes, J. A. B., and B. W. Wah, eds., "Special Issue on Systolic Arrays - From

Concept to Implementation," Computer, July 1987.

146

[38] Fountain, T. J., et al., "The CLIP7A Image Processor," IEEETransactions on Pat

tern Analysis & MachineIntelligence, May, 1988.

[39] Freeman, R., "User-programmable Gate Arrays,"IEEE Spectrum, Dec, 1988.

[40] Fukushima, T, "A Survey of Image Processing LSI's in Japan," IEEE International

Conference on Pattern Recognition, 1990.

[41] Geurts, W. and F. Catthoor, "DSP Applications suited for Lowly Multiplexed Architec

tures", ASICS Open Workshop on Synthesis Techniques for (Lowly) Multiplexed Datap

aths, Aug. 1990.

[42] Gharavi, H., P. Pirsch, and H. Yasuda, "Special Issue on VLSI Implementation For

Digital Image and Video Processing Applications,"IEEE Transactions on Circuits

and Systems, pp. 1259-1365, Oct. 1989.

[43] Gonzalez, R. and R. Woods, Digital Image Processing, Addison-Wesley Publish

ing Company, Inc., 1993.

[44] Goodman, D., "Trends in Cellular and Cordless Communications," IEEE Commu

nications Magazine, pp. 31-40, June 1991.

[45] Goto, Junichi, et. al., "A 250 MHz 16b 1-Million Transistor BiCMOS Super-High-

Speed Video Signal Processor," International Solid-State Circuits Conference,

1991.

[46] He, S. and M. Torkelson, "FPGA Application in a SBus-based Rapid Prototyping

System for AS-DSP," International Workshop on Field-Programmable Logic and

Applications, Aug. 1992.

[47] He, S. and M. Torkelson, "FPGA Implementation of FIR Filters Using Pipelined

147

Bit-Serial Canonical Signed Digit Multipliers," IEEE Custom Integrated Circuits

Conference, 1994.

[48] Heurikon Corporation, 8310 Excelsior Drive, Madison, WI53717.

[49] Hilfinger, P., "A High-Level Language and Silicon Compiler for Digital Signal

Processing," Proceedings of Custom Integrated Circuits Conference, Los Alami-

tos,CA, pp. 213-216,1985.

[50] Hoang, P. and J. M. Rabaey,"MsDAS: A Compiler for Multiprocessor DSP Imple

mentation," International Conference on Acoustics, Speech and Signal Processing,

Mar. 1992.

[51] Homewood, M., et al., "The IMS T800 Transputer," IEEE Micro, Oct. 1987.

[52] Johnson, H. W. and M. Graham, High-Speed Digital Design, PTR Prentice-Hall,

Inc., 1993.

[53] Jurgen, R. K., "The Challenges of Digital HDTV", IEEESpectrum, April, 1991.

[54] IEEE P1149.1 JTAG Serial Scan Interface Specification, 1990.

[55] Keutzer, K., "Three Competing Design Methodologies for ASIC's: Architectural

Synthesis, Logic Synthesis and Module Generation," ACM/IEEE Design Automa

tion Conference, Feb. 1989.

[56] Koh, W., A. Yeung, P. Hoang and J. Rabaey, "A Configurable Multiprocessor Sys

tem for DSP Behavioral Simulation," IEEE International Symposium on Circuits

and Systems, 1989.

[57] Koren, I., et al., "A Data-Driven VLSI Array for Arbitrary Algorithms," Com-

148

puter, Oct. 1988.

[58] Kung, S. Y., et al., "Wavefront Array Processors - Concept to Implementation,"

Computer, July 1987.

[59] Labrousse, J., et al., "A 50 MHz Microprocessor with a VLIW Architecture",

1SSCC, 1990.

[60] Leacock, T., et al., "HDTV Digital Camera Processor," 135th SMPTE Technical

Conference, Oct., 1993.

[61] Lee, B. W., et al., "Data Flow Processor for Multi-standard Video Codec," IEEE

Custom Integrated Circuits Conference, 1994.

[62] Lee, E. A., "Programmable DSP Architectures: Part I," IEEE ASSP Magazine,

Oct. 1988.

[63] Lee, E. A., "Consistency in Dataflow Graphs," IEEE Transactions on Parallel and

Distributed Systems, April, 1991.

[64] Lipsett, R., C. Schaefer and C. Ussery, VHDL: Hardware Description and Design,

Kluwer Academic Publishers, 1989.

[65] Little, M. J., et al., "3-D Computer for Advanced Fire Control," First Annual Fire

Control Symposium, Oct. 1990.

[66] LSI Logic, Inc., Data sheet: L64853 SBus DMA Controller, June, 1990.

[67] Mao, W. and S. Y. Kung, "A Real Time Pipeline Interleaving approach for Image/

Video Signal Processing", ICASSP, pp. 3046-3049,1990.

[68] McNally, G. W., "Digital Audio in Broadcasting," IEEE ASSPMagazine, pp 26-

149

44, Oct. 1985.

[69] Meier, S, S. Perissakis, and J. Wawrzynek, "High-Speed CMOS Signaling,"

Research Summary, EECS/ERL, University of California at Berkeley, 1994.

[70] Mello, J. and P. Wayrier, "Wireless Mobile Communications," Byte, vol. 18, no. 2,

pp. 146-153, Feb. 1993.

[71] Mendelson, B., and G. M. Silberman, "Mapping Data Flow Programs on a VLSI

Array of Processors," International Symposium on Computer Architecture, 1987.

[72] Minami, T., et al., "A 300 MOPS Video Signal Processor with a Parallel Architec

ture," Journal ofSolid-State Circuits, Dec. 1991.

[73] Oppenheim, A. V, and R. W. Schafer, Discrete-Time Signal Processing, Prentice

Hall, NJ, 1989.

[74] Papamichalis, P., Digital Signal Processing Applications with the TMS320 Family,

Vol. 3, Prentice Hall, 1989.

[75] Parhi, K. and D. Messerschmitt, "Pipeline Interleaving and Parallelism in

Recursive Digital Filters - Part I: Pipelining using Scattered Look-ahead

and Decomposition," IEEE Transaction on Acoustics, Speech, and Signal Pro

cessing, vol. 37, July 1989.

[76] PLX Technology, Inc., Data Sheet: VMEbus Slave Module Interface Device, VME

2000,1989.

[77] Potkonjak, M. and J. Rabaey, "Exploring the Algorithmic Design Space using

High Level Synthesis," VLSI Signal Processing VI, pp. 123-131,1993.

150

[78] Putname, L. K., P. Lucht and J. Davis, "A High-Speed Architecture for Image

Computation," SMPTE, June 1988.

[79] Newman, W. M. ,and R. Sproull, Principles of Interactive Computer Graphics,

Second Edition, McGraw Hill, NY, 1979.

[80] Nielsen, R. O., Sonar Signal Processing, Artech House Inc., 1991.

[81] Nishizawa, T., et al., "A Hidden Surface Processor for 3-Dimension Graphics,"

International Solid-State Circuit Conference, Feb. 1988.

[82] Rabaey, J. M., et al., "A Large Vocabulary Real-Time Continuous Speech Recog

nition System," VLSI Signal Processing III, pp. 62-74, IEEE Press, Nov., 1989.

[83] Rabaey, J. M., C. Chu, P. Hoang, and M. Potkonjak, "Fast Prototyping of Datap

ath-Intensive Architectures," IEEE Design & Test of Computers, pp. 40-51, June

1991.

[84] Rao, S. K., "Regular iterative algorithms and their implementation on processor

arrays," Ph.D. thesis, Stanford University, 1985.

[85] Roe, D., A. Gorin and P. Ramesh, "Incorporating Syntax into the Level-Building

Algorithm on a Tree-Structured Parallel Computer," IEEE Transaction on Acous

tics, Speech, and Signal Processing, 1989.

[86] Ruetz, P. and R. Brodersen, "A Real-time Image Processing Chip Set," Interna

tional Solid-State Circuit Conference, Feb. 1986.

[87] Sandbank, C. P. ed., Digital Television, John Wiley and Sons, 1990.

[88] Schmidt, U., "Data-Wave: a Data Driven Video Signal Array Processor," Hot

151

Chips II:A Symposium on High Performance Chips, Aug. 1990.

[89] Schmidt, U., and S. Mehgardt, "Wavefront Array Processor for Video Applica

tions," International Conference on Computer Design, 1990.

[90] Senn, P., et al., "A 27 MHz Digital-to-Analog Video Processor," International

Solid-State Circuit Conference, Feb. 1988.

[91] Skillicom, D. B., "A Taxonomy for Computer Architectures," IEEE Computer,

Nov. 1988.

[92] Sluyter, R. J., et al., "A Programmable Video Signal Processor," ICASSP, 1989,

Glaagow, U. K..

[93] SPARC Technology Business, "Industry's First Processor to offer On-chip Pro

cessing Power for Real-time Multimedia Compression and Decompression,"

Announcement, Sept. 19,1994.

[94] Srini, V. P., "Low-Power Parallel DSP Chip for Multimedia Data and 3-D Image

Processing," Small Business Technology Transfer Program Proposal (AF

94T0001), U.S. Department of Defense, 1994.

[95] Sugawara, T., et al., "Viterbi Detector including PRML and EPRML," IEEE

Transactions on Magnetics, Vol. 29, Nov. 1993.

[96] Sun, J. S., M. B. Srivastava, and R. W. Brodersen, "SIERA: A CAD Environment

for Real-Time Systems," Third IEEE/ACM Physical Design Workshop on Module

Generation and Silicon Compilation, May 1991.

[97] Sun Microsystems, Inc., Sbus Application Notes, July, 1990.

152

[98] Synopsys, Inc., VHDLSystem SimulatorCore Programs Manual, Dec. 1992.

[99] Tewksbury, S. K. and L. A. Hornak, "WaferLevel System Integration: A Review,"

IEEE Circuits and Devices Magazine, Sept. 1989.

[100] Thiele, L., "On the hierarchical design of VLSI processor arrays," IEEE Symp. on

Circuits and Systems, 1988.

[101] Toyokura, M., et al., "A Video Digital Signal Processor with a Vector-Pipeline

Architecture", ISSCC, 1992.

[102] Veendrick, H„ et al., "A 1.5 GIPS Video Signal Processor (VSP)," IEEE Custom

Integrated Circuits Conference, 1994.

[103] Viewlogic Systems, Inc., Workview User s Guide, 1991.

[104] The VMEbus Specification CI, Printex Publishing, 1984.

[105] Volkers, H., et al., "Cache Memory Design for the DataTransport to Array Proces

sors," ICASSP, 1990.

[106] Ward, J., et al., "Figures of Merit for VLSI Implementations of Digital Signal Pro

cessing Algorithms," Proceedings ofthe Institute ofElectrical Engineers, vol. 131,

Part F, pp. 64-70, February 1984.

[107] Wawrznyek, J., "A Reconfigurable Concurrent VLSI Architecture for Sound Syn

thesis," VLSI Signal ProcessingII, Nov. 1986.

[108] Wind River Systems, Inc., VxWorks Reference Manual, 1989.

[109] Wolfe, A and J. P. Shen, "A Variable Instruction Stream Extension to the VLIW

Architecture," ASPLOS, 1991.

153

[110] Xilinx Inc., The Programmable LogicData Book, 1994.

[111] Yamashita, N., et al., "A 3.84GIPS Integrated Memory Array Processor LSI with 64

Processing Elements and 2 Mb SRAM", IEEE International Solid-State Circuits Con

ference, Feb. 1994.

[112] Yang, K., et al., "A Flexible Motion-Vector Estimation Chip for Real-time Video

Codecs," IEEECustom Integrated Circuits Conference, 1990.

[113] Yeung, A. K. and J. Rabaey,"A Data-driven Architecture for Rapid Prototyping of

High Throughput DSP Algorithms," IEEE VLSI Signal Processing Workshop, Oct.

1992.

[114] Yeung, A. K. and J. Rabaey, "A Reconfigurable Data-driven Multiprocessor Archi

tecture for Rapid Prototyping of High Throughput DSP Algorithms," Proceedings

of the 26 Annual Hawaii International Conference on System Sciences, 1993.

[115] Yeung, A. K. and J. Rabaey, "A 210 Mb/s Radix-4 Bit-Level Pipelined Viterbi

Decoder," International Solid-State Circuit Conference, Feb. 1995.

[116] Yeung, A. K. and J. Rabaey, "A 2.4 GOPS Reconfigurable Data-Driven Multipro

cessor IC for DSP," International Solid-State Circuit Conference, Feb. 1995.

	Copyright notice 1995
	ERL-95-54

