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ABSTRACT

This paper presents a family of projected descent direction algorithms with inexact line search for

solving large-scale minimization problem subject to simple bounds on the decision variables. The global
convergence of algorithms in this family is ensured by conditions on the descent directions and line

search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neigh

borhood ofa local minimizer x satisfying standard second order sufficiency conditions, it gets trapped

and converges to this local minimizer. Furthermore, in this case, the active active constraint set at x is

identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a
local minimizer, satisfying standard second order sufficiency conditions, depends only on the behavior of
the algorithm in the unconstrained subspace.

As a particular example, we present projected versions ofthe modified Polak-Ribiere conjugate gra
dient method and of the limited-memory BFGS quasi-Newton method that retain the convergence proper
ties associated with those algorithms applied to unconstrained problems.
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1. INTRODUCTION.

Consider the problem

min fix) subject to *' £0, / = 1,... ,n ,
*€ R"

where/ :R" -»IR is continuously differentiable andjc = (x\x2 jc").

Algorithms for solvingproblem P based on the projection of a descent direction were first proposed

by Goldstein [Gol.64] and Levitin andPolyak [LeP.65]. In [Ber.76], Bertsekas used the projection opera

tor defined in [Gol.64, LeP.65] to construct a projected gradient descent algorithm with an Armijo step-

size rule for solving P. Whenever a sequence constructed by this algorithm enters a sufficiently small

neighborhood of a local minimizer x satisfying standard second order sufficiency conditions, it gets

trapped and converges to this local minimizer. Furthermore, in this case, the active active constraint set

at £ is identified in a finite number of iterations. This fact was used in [Ber.82] to construct a modified

projected Newton method, again using the projection operator defined in [Gol.64, LeP.65], with a

modified Armijo step-size rule. The algorithm in [Ber.82] employs the Newton search direction only in

the estimated subspace of non-binding (inactive) variables, and uses the gradient direction in the

estimated subspace of binding (active) variables. Under reasonable assumptions, Bertsekas showed that

his projected modified Newton method for solving P is globally convergent with Q -quadratic rate. The

algorithm in [Ber.82] is easily extended to problems with simple bounds of the form bj&x* £b'u,

i = 1,... ,n where b\ <> blu. Bertsekas also provides an extension for handling general linear constraints

of the form bt £Ax <.bu. The Bertsekas projected Newton method was further extended to handle gen

eral convex constraints in [Dun.88]. In a similar vein, a globally convergence augmented Lagrangian

algorithm based on a projection operator for handling simple bounds is developed in [CGT.91]. The

efficiency of this family of algorithms derives from the fact that (a) the search direction computation is

simple, (b) any number of constraints can be added to or removed from the active constraint set at each

iteration, and (c) under standard second order sufficiency condition the algorithms identify the correct

active constraint set after a finite number of iterations. This last fact implies that the rate of convergence

depends only on the rate of convergence of the algorithm in the subspace of decision variables that are

unconstrained at the solution.

Another example of a projection based algorithm for solving optimization problems with simple

bounds can be found in [QuD.74] where Quintanaand Davison present a conceptual algorithm with exact

line search based upon a modified version of the Fletcher-Reeves conjugate gradient method in function

space combined with a projection operator. This algorithm was intended for the solution of optimal con

trol problems with bounded controls. The soundness of the algorithm in [QuD.74] is not clear because

the proof of convergence assumes that there exists, at each iteration k, a step-size ak > 0 that causes a



decrease in function value. However, the authors do not show that such apositive step-size exists. Furth
ermore, Quintana and Davison require an a posteriori assumption (their eqn. (26)) that is not directly
related to the problem or the method under consideration.

In this paper, we extend the results in [Ber.82] by showing that the concept ofBertsekas' projection
method can be used with any search direction and step size rules that satisfy general conditions similar to
those in [PSS.74]. In particular, we show that our version of the projection method can be used with
search directions that are determined by a conjugate gradient in the subspace of unconstrained decision

variables. The extension to conjugate-gradient methods is particularly valuable for solving large-scale
optimization problems with simple bound constraints, because conjugate-gradient methods do not require
much additional storage or computation beyond that required by the steepest descent method but, in prac
tice, perform considerably better than steepest descent.

The remainder of this paper consists of three sections. In Section 2, we define the projection opera
tor and state an algorithm model for a family of projected descent methods whose search direction are

required to satisfy certain conditions. We prove convergence of this algorithm model and the fact that it

identifies the correct active constraint set in a finite number of iterations under second order sufficiency
conditions. Several of our proofs are similar to those in [Ber.82]. As an example of the construction of

admissible search directions for our algorithm, we use the Polak-Ribiere conjugate gradient formula

which numerical experience has shown to be more effective than the Fletcher-Reeves formulation (an

explanation for this empirical result is given in [Pow.76]). We provide oneexample of the fact that stan

dard rate of convergence results for the conjugate gradient method still hold for its projected version. To

conclude Section 2, we describe an extension of the algorithm model that handles simple bounds of the

form bj£x' <.blu, i =1,... ,n. In Section 3, we present numerical results obtained in solving an

optimal control problem with simple control bounds, using three implementations of our algorithm based

on steepest descent, conjugate gradient, and an implementation of the limited-memory quasi-Newton

method, L-BFGS (described in [Noc.80]) for the search direction computations. These numerical results

indicate that the projected conjugate gradient method and the project L-BFGS method perform

significantly better than the projected steepest descent method. Finally, in Section 4, we state our con

cluding remarks.



2. ALGORITHM MODEL FOR MINIMIZATION SUBJECT TO SIMPLE BOUNDS.

The algorithm to be presented is described with the help of the following notation: for any z e IRn,

the projection operator [•]+ is given by

and

[z]J
maxfO.z1}

max {0,zn }

and, for any search direction d € R", x € R" and step-size X€ IR+,

x(Kd)£[x+\d)+. (2.1b)

For any index set / <= {1 n } andjt.y e IR", we define {x,y)j =£,•£/*'/, and Q*Q/2 =(*.*>/•

Without subscripts, {•,•) and H denote the Euclidean inner product and norm, respectively, on IR".

Finally, we will let

7k {*€IRW \xi! 7>0, i = l,...,n } (2.1c)

denote the feasible set for problem P.

Definition 2.1. A point x e J is said to be a stationary point for the problem P if its directional

derivative is non-decreasing in all feasible directions:

rf/(£;*-J?);>0, Vjref, (2.2a)

or equivalently, for i = 1,..., n,

itcii^o. and i£4! =0ifr->o. (2.2b)
ox' dx'

•

Active and almost active bounds. The projected descent algorithm model (Algorithm Model PD)

which we will present requires, for each iterate xk, the definition ofsets Ik = / (xk) c {1,2,..., n } and

Ak = A (**) c {1,2,...,«}. The set Ak contains the indices of the "active" or "almost active" bounds

at iteration kand the set Ik is the complement ofAk in {1,..., n}. With g(x) =V/ (x), we define^

(2.1a)

w(x)£hc-[x-g(x)]J, (2.3a)

e(*)£min{e,u>(*)} , (2.3b)

where e > 0 is a parameter in Algorithm Model PD. We can see that e(x) = 0 if and only if a- € 7 is a
stationary point because the requirement that x e 7 and that (2.2b) hold is equivalent to the requirement

More generally, w(x) can be defined as w(x) £lx-[x-Dg (x)]+l where D is apositive definite diagonal matrix.



that

max {-£'"(* ),-*'* } =0, / = 1,...,« (2.3c)

which, upon addition ofx*, / =1,...,«, to both sides, yields [x - g(x)]+ =x, i.e. that w(x) =0. Next,
for* € jF, we define

A(x)& {i € l,...,/i |0£*'£e(x), g'(;c)>0} , (2.4a)

and

/(*)£ {/€ l,...,n |i Ci4(*)} ={/€ l,...,n |jc'>e(;t)or gl(x)<L0} . (2.4b)

To understand the logic behind the definition of the active constraint index set A(*), first consider the

situation corresponding toe =0. In this case, if i € A(x),x{ =0andgi(x)>0. Thus,*' is at its bound
and, moreover, any movement in 7 away from that bound will cause an increase in the objective func
tion, hence our algorithm will leave xt unchanged. When e>0, as we will set in Algorithm Model PD,
the set A{x) also includes indices ofvariables that are almost at their bounds and, because g*(x) >0, are
likely to hit their bounds during the Une search. Thus, given x € 7, the set A(x) tends to identify the
active constraints ata "nearby" stationary point.

Note that in Algorithm Model PD, below, the search directions are specified only to the extent that
they satisfy three conditions (stated in (2.5a,b,c)). It is clear that the direction of steepest descent, and
more generally, any direction of the form dk =-Dkgk where Dk is asymmetric, positive definite matrix
that is diagonal with respect to indices / e Ak and has eigenvalues bounded from above and away from
zero, satisfies these conditions. In the sequel we will show how dk satisfying these conditions can be con
structedusing a conjugate gradient formula.

The most important property ofAlgorithm Model PD is that it identifies the correct active constraint
set in a finite number ofiterations. Once the correct active constraint set is identified, the active variables
xt remain at the value of zero while on the orthogonal "unconstrained" subspace Algorithm Model PD
behaves as an unconstrained optimization algorithm. Because of this, the rate of convergence of Algo
rithm Model PD is that associated with whatever method is used to determine the components of the
search direction dk in the "unconstrained" subspace.



Algorithm Model PD:

Data: a,p€ (0,1), Af e N.^e (0, l),a2e (l,°°),ee (0,*>),x0e 7.

Step 0: Set k = 0.

Step 7: Compute & = Vf(xk) and set Ak =A(xk),Ik =I(xk). If |&|#t =0 and*/ =0 for all i € Akt
stop.

Step 2: Select scalars mk\ i € Ak, and a search direction </* satisfying the following conditions:

4 = -mkgk , a^m/soj , VieAk, (2.5a)

Wk>gk)it £-o}Vigktfk, (2.5b)

W*Bi,£oitatl,4. (2.5c)

Step 5: Compute the step-size X* = f3m where m is the smallest integer greater than -M such that Xk
satisfies the Armijo-like rule:

f(xk(Xk,dk))-f(xk) <; a\ Xk{gk,dk)Ik - {gk,xk -xk(Xk,dk))A . (2.6a)

Set

**+i =xk(Xk,dk) = [x* + A*rfJ+. (2.6b)

Step 4: Replace k by £+1 and go to Step 1. D

Note that in (2.5a) one can choose mk = 1, for all i € Akl in which case the search direction in the sub-

space of active constraints is the steepest descent direction.

Remark 2.2. It is easy to see that the the right-hand sideof (2.6a) is non-positive. The first term of the

bracketed expression is non-positive because {gk,dk)Jt z-oflg^fi by (2.5b). The second term is non-
negative:

(8k>xk-xk(Xk,dk))At £0, (2.7)

because for all i € Ak, g(k >0 and d[ = -m[gl £ -axglk <0 and hencexk*-xlk(X,dk) £ 0 for all X£ 0. •

Remark 2.3. The requirements in (2.5a,b,c) are the similar to those used in the Polak-Sargent-

Sebastian Theorem of convergence for abstract, iterative minimization processes [PSS.74]: they ensure

that dk is bounded from above and below and that dk doesnot become orthogonal to gk. To wit. let 6* be

the angle between the vectors dk and -gk. From (2.5a,b) we have that
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{dk,gk) <.-o,to ft +(dk,gk)ltZ-o,teO2 , (2.8a)

and from (2.5a,c)

idk f Zo2*gk 02 +|rf4 fl 2<; a22to B2. (2.8b)

Thus, to I2 ^ (l/o2)l^ BtoD- Using this expression in (2.8a) we see that

a -idk>8k) ^l „
cos0* = m biu n ^ — >° • (2.8c)MkHgki a2 ^

Remark 2.4. The convergence result in Theorems 2.7 and 2.9, given below, hold for any bounded
X'k 2> 0 such that / (xk (X'k ))£f (xk (Xk, dk)) where X* satisfies the Armijo rule in (2.6a). •

Before proving convergence, we will show that the step-size rule is well defined and that the stop
ping criterion in Step 3ofAlgorithm Model PD is satisfied by a point jc* if and only ifxk is a stationary
point.

Proposition 2.5. Let xk, dk be any iterate and corresponding search direction constructed by Algorithm
Model PD, i.e., dk satisfies the conditions in (2.5a,b,c). Then

(a) xk is a stationary point forproblem P if and only ifxk (X, dk) = xk forallXZ0;

(b) xk isa stationary point for problem Pifand only if to ht = 0and */ =0for all i € Ak;

(c) if xk is not a stationary point for problemP then there exists X> 0 such that

f(xk(X,dk))-f(xk) <, a\ X{gk,dk)It - (gk,xk -xk(X,dk))A , \/Xe [0,X), (2.9)

i.e., the step-size rule (2.6a) is well defined atxk and will be satisfied with Xk £ min {$~M, $X }.

Proof, (a) Suppose that xk is a stationary point. Then (2.2b) implies that g[ =0 for all i € Ik.
Hence, d/= 0 for all / € /*, since Mklh <;o2Vgk0V Hence xl(X,dk) = [jc^.+Xd[)+ =*/ for all XzO,
i € Ik. Now, if i e Ak, then gk >0 and, since xk is stationary, it follows from (2.2b) that xk = 0. Hence
for all / e Ak,xl(X,dk) =[-Xmjcgi]+ =0=xki foralU^O. Thus,xk(X,dk) =[xk]+ =xk foralUSrO.

Next, suppose that xk(X,dk)=xk for all Xk0. Then d[ =0 ifx[ >0 and <# £0 ifa:/ =0. Let the
index setsI\{xk), I2(xk) be defined by

7i(**)= {i elk\x[>0] , I2(xk)& {iel(xk)\xl=0} , (2.10a)

so that Ik =71(*Jt)u72(xJt). It follows from the above that if i € I}(xk), then d'k = 0, and if i 6 72(**),
then d'k <> 0, and also g[ £ 0 (by definition ofIk since xl = 0). Thus,

(8k^k)h ={gk>dk)ll(Xk) +{gkld)l2iXt)=:{gk,dk)l2(Xk)^0. (2.10b)



But, from (2.5b), {gk,dk)h zt-oflg^j?. Therefore, toD/» =0 and hence gk =0 for all / G Ik. For

/ G Ak,dk = -mkgk < 0. Since ^(X,dk)=xk, for all X£ 0, this implies that xk = 0. Thus we have that

for all i G7*, gk =0 and for all / e Ak, g/ >0 and xk =0. Consequently, xk isa stationary point.

(b) Suppose that xk is a stationary point. If / € Ak then, because gk > 0 for all * € Ak, it follows from

(2.2b), that xl =0. If / G7*, then g/ =0 since g/ £ 0 for all / € Ik and gl 2> 0 by (2.2b) for all / such

that xk =0. To complete the proof, suppose that to "/* =0 and */ =0 for all / GAk. Hence, since */ £ 0

for all / G Ik and, since gl > 0 for all / GAk, it follows that (2.2b) holds for all /.

(c) Let g =gk. Suppose that xk is not a stationary point. Define the index sets

h(xk)» ^4(**).A \(xk)» A2{xk) as follows:

I3(xk)& {i€lk U/>0, or (4=0 and dl>0)} , I4(xk)k {i e Ik \xl =0 , dl £0}, (2.11a)

At(xk)& {i EAk \xl>0} , A2(xk)& {i EAk\xl=0] . (2.11b)

First note that /3(^)u>l,(^)* <b. To see this, suppose that / G I4(xk)vA2(xk) for all i = 1 n.

Then xk'=0 and dlk<.0 (since dl = -mlgl<0 for / GA2(xk)) which implies that

xk(X, dk) = [xk + Xdk]+ =0 =xk for all 1. Consequently, by part (a) of this proposition, xk must be a sta

tionary point, This is a contradiction. Now, let

Xj =sup {X Ixl+Xdl> 0 , / G73(^) } , (2.12a)

X2 = sup{X\xl+Xdl*0, ieAfa)}. (2.12b)

Clearly Xj >0 (possibly infinite) and X2 >0. If 73^) is empty let X, = «> or, if A }(xk) is empty, let

X2 =°°. Now, if iel4(xk), xl(X,dk) = [Xdl]+ =0 =xl for all X^0. Similarly, if i GA2(xk),
xl(X,dk) = [-Xmlgl]+ =0 =xl for all X^0. On the other hand, if / 6 73(**) and XG [O.Xj), then
jr/(X, dk) =xl +Xdl and if / GAx(xk) and XG[0, Xrf, then xl(X, dk) =xl - Xmlgl. Therefore, with

_. (dl ifi€/3Cx4)Ui4,C**)
d =-1 1 - 1 n (2.13a)°k 1 0 otherwise , 1 -l,...,n ,

it follows that

xk(X,dk) = [xk+Xdk]+ = xk+Mk , VXG [0,min{X,,X2}). (2.13b)

Next, from (2.13a), we obtain

(dk,gk) ={dk,gk)h{Xk+{dk,gk)Ai{Xk). (2.14a)

Now, from (2.5b), (dk,gk)h = {dk,gk)h{Xt) +{dk,gk)UXk)^-a^gk^2. But, for 1G I4(xk), dl <;0 and

g/<;0, so {dk,gk)j4(Xk)>0. Thus, {dk,gk)hiXk)^-c^gk^k2. This, together with (2.5a) and (2.14a),



implies that

{dk,gk) £-a,tol£ -^toftfe) • (2-14b)

Since xk is not a stationary point, there exists at least one / 6 Ik uA 2 such that gl * 0. Hence
Wk>8k) <0> i-e- dk is a feasible descent direction. Next, it follows from (2.13b) that, for all

XG [0,min {Xl,h1}), the Armijo-like step-size rule in (2.6a) is equivalent to the following requirement
onX,

f(xk+)Jk)-f(xk)zto^{gk,dk)AkUli{Xk) +ca(gk,dk)Uxk). (2.14c)

But for all i GI4(xk), g/ £0 and dl £0. Therefore the last term in the (2.14c) is non-negative. Hence
(2.14c) is satisfied if the following, harder, conditionis satisfied,

f(xk+xZk)-fk <.aX{gk,dk) . (2.14d)

But this is the usual Armijo ruleapplied to an unconstrained problem which canalways be satisfied with

a positive step-size when {gk, dk) < 0. Hence, there exists 0 < X£ min {Xv X2 } such that (2.9) holds. D

We will now show that Algorithm Model PD produces a sequence of iterates whose accumulation

points are stationary points. The following assumption will be used:

Assumption 2.6

Thegradient V/ (•) is Lipschitz continuous on bounded subsets of 7\ *.«.» given anybounded setS <= 7,
there exist a scalar L < «> such that

IV/(jr)-V/(y)0£Lllx-3>l, Vjt.yGS. (2.15)

D

Theorem 2.7. Suppose that Assumption 2.6 is satisfied. Then every accumulation point of a sequence

{xk }, generatedby Algorithm ModelPD, is a stationary pointof problem P.

Proof. First suppose {xk } is a finite sequence with final index k =kf. Then by Lemma 2.5(b), xk is

a stationary point. If {xk } is an infinite sequence then by Lemma 2.5(b), it contains no stationary

points. We will show by contradiction that, in this case, every accumulation of {xk } is a stationary

point.

For each k, f(xk+1) £f(xk) since the right hand side of (2.6a) is non-positive (c/. Remark 2.2).

Additionally, / (•) is continuous and xk -> St. Thus,

/C**)-/C**+i)->0. (2.16a)

Since the bracketed expression on the right-hand side of (2.6a) is the difference of a non-negative term

and a non-positive term (cf. Remark 2.2), (2.16a) implies that
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We will use this to show that

**<**.*>/,->0, (2.16b)

(gk>*k -xk(Xk,dk))Ak^0. (2.16c)

liminfX^O. (2.i7)

Since x is not a stationary point, there must exist an index j such that either

Jc''>0 and &&-*0 (2.18a)
dxJ

or

Jt'=0 and &&-<0. (2.18b)
dxJ

If j G Ik for an infinite number of k G K, then (2.17) follows immediately from (2.5b), (2.16b) and

(2.18a,b). On the other hand, if j GAk for an infinite number of k GK, then we must have that g{ >0

for all of these k, so (2.18b) cannot hold. Hence, from (2.18a),

&>0 and &&->0, (2.18c)
dxJ

and since 9/ (•) / dxj iscontinuous, there exists k2 GK such that for all k G£ and * £*2, g/ >0. Since
we alsohave that, for all k G K for which j € Ak,

igk'Xk-xk(Xk,dk))Ak^gi[xi-xi(Xk,dk)]^0, (2.19)

it follows from (2.16c) and the fact that g/>0 for k 2k2 that lim* €K[x{ -xi{Xktdk)} =0. Finally,
because xl>0and dl =- mlgl <0 for all k £/:2 such that y GA*, we see that (2.17) holds.

The proof will now be completed by showing the {X* } is bounded away from zero, thereby con-

tradicting (2.17). Since xk ->x, the subsequence {xk }k€K is bounded and, by (2.5a,c) and continuity

of V/ (•), {dk }k€K is also bounded. This implies that {xk (Xk, dk)}k€K, Xk G [0, P"M ], is bounded.
Thus, by Assumption 2.6 we have that for i€[0,l],

*gk -Vf(*k ~s[xk -xk(X,dk)])\2ttsLbck -xk(X,dk)li, k G K . (2.20)

Expanding theleft-hand side of (2.6a), we have for k G K and XG [0, $~M ],
l

f(xk(X,dk))-f(xk) =(gk,xk(X,dk)-xk)+lo{Vf(xk-s[xk-xk(X,dk)])-gk,xk(X,dk)-xk)ds
l

£(8k*Xk(Kdk)-xk)+lxk(\,dk)-xkl^sLlxk(k,dk)-xklds



= (gk,xk(X,dk)-xk) + -fok(X,dk)-xkf. (2.21)

Now, fori 6 Ak,xl(X,dk) =W* -Xm/g/]+;>*/ -Xm/g/ so that*/ -xl(X,dk)£Xmlgl. Thus,

\ £ "%'&'W -**a<**)) *•*» -**(X,*)i£. (2 22)

Now consider the sets I5tk& {i G7* lgi>0} and 76>Jt ^ {/ G7* Ig/sO). If / GI5tk then xl >ek

(for otherwise i e Ak). Since xk ->jc and Ax - [Jc - V/(j?)]+I >0, we must have that

lim inf* e Kw(xk) >0. This implies that there exists e >0 such that e(xk) £ e for all k G K. Let A <*>

be such that flg^ £A for all k G A". Then, from (2.5c), ldkHIk£o2A. So, for XG [0,e/a2A] and

i G75Jt, jc/(X,^)=xl + Xdl. Thus,

E gl[xl-xl(X,dk)] =-X(gk,dk)lyk , VXC [0,e"/a2A]. (223a)

Next, for all Xk 0, */ - xl (X, dk) £ -Xdl, and since g/ £0 for / G76Jt, we have that

Z gk[xl-xl(X,dk)]Z-X{gk,dk)l6k , VX^O. (223b)

Combining these last two expressions gives us

(gk,xk-xk(X,dk))IkZ-X(gk,dk)iz]k, VXG [0.6/02*]. (2.23c)

Finally, from (2.5b,c) we have that -{dk,gk)lk ^o$gktfk ^a^alfl^B/2, and since, for all i and X^O,

\xl -xl(X) I £ XI dl I,wehave that

tok -xk(X,dk)tfkZX2MktfkZ-X2—{dk,gk)Ik . (2.24)
°"i

Thus, from (2.23c), we see that

(gk,xk(X,dk)-xk) =-{gk,xk-xk(X,dk))Ak-{gk,xk-xk(.X,dk))Ik

*-(gk>xk -xk(X,dk))Ak+X{gk,dk)Ik , (2.25a)

and, from (2.22) and (2.24),

±bck(X,dk)-xk* =̂ lxk{Kdk)-xkll +±Uk<to-xk\l

*—jr(gk.xk-xk(X,dk))Ak-X2—{gk,dk)lk , VXG [0,e/a2A]. (2.25b)

Substitutingthe expressions (2.25a,b) into (2.21), we obtain that for all XG [0, e / a2A],
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2» <\ j

f(xk(X,dk))-f(xk)^X(\-X^)(gktdk)Ik +(-^--\){gk,xk(X,dk)-xk)At. (2.26)

Comparing this with (2.6a), and notingfrom (2.5b) and (2.7) that {gk ,dk)Jk£0 and {gk,xk(X) -xk )Ak £ 0,

we see that the Armijo-like rule is satisfied for any X£ 0 such that X£ e/ a2A, X-X2Lo2/ 2ox £ aX and

Xo2L /2-1 £-a. Since 06 (0,1) and the step-size rule requires the smallest m such that X= $m

satisfies (2.6a), we see that for all k G K,

a2A' ct^L
X, *min^ —-, ,p* \ >0. (2.27)

This contradicts (2.17) and proves the result. D

Next, we proceed towards a proof that under suitable conditions, after a finite number of iterations,

Algorithm Model PD reverts to an unconstrained optimization algorithm on the subspace defined by the

non-binding variables at a strict local minimizer limit point. LetB{x) denote the set of all binding con
straints at x, i.e.,

B(x)A {i \x! =0}, V*;>0. (2.28)

We will use the following alternative statement of the standard second order sufficiency condition with

strict complementary slackness for apoint x to be astrict local minimizer for problem P*

zTV2f($)z>0, VzG {z GIR" \zl =0, V/€*(*)) , (2.29a)

and

•^Tp->0. V/G5(Jc). (2.29b)
ox'

•

In Lemma 2.8, below, and in the proof of Theorem 2.9, to follow, let

$(x,p)= {x eJR" ll*-£fl£p} denote the closed ball ofradius p around x. The script <B used here
should notbeconfused with the B used in (2.28) todefine the binding constraint set.

Lemma 2.8. Suppose that / (•) is twice continuously differentiable and that {xk }£<,, xk G7, is a

sequence with an accumulation point x which satisfies the sufficient condition (2.29a,b). Let £ be the

radius of attraction for £, i.e. f(x) </(*) for all x G 0(£,£), **£. If there exists a £ >0 such that

&**+i ~xk0< p forany k such that xk G $0c ,£), then xk -»$ ask -> «>.

See, for example, [Lue.84], pp. 316-317: viz., equation (2.2b) holds and the Hessian ofthe Lagrangian L{x)kf{x)-\iTx is positive
definite on the subspace {z € R" I z' =0 , / € B(x)} and the multipliers \i' =df(.x)/dx' are positive for all i e B(x) and zero for all
i €B(x).

•11



Proof Let p=min {p,p }. Since x is a strict local minimizer and p£ p, there exists an c >/ (Jc)

such that the level set Lc &{x c 7 If{x)<.c } satisfies Lc n <B{x ,2p) c 5(Jc\p). Since Jc is an
accumulation point of {xk}, there exists N <«> such that xN e Lc n<B(x ,p). Since p<p,

H%+i-%Q<P, thus, %+1G 2(*,2p). But since /(%+])</(%), we see that xN+1e Lc. Hence,

%+i € ^c n ^{x ,p). This argument can be repeated indefinitely to show that xk G £(Jc,p) for all

k^N. Finally, since {/(**)} is monotone decreasing and has an accumulation point /(Jc),

/(**)-»/(*) as * -*«>. Now, since xk G#(Jc,p) for all k ZN, all of the accumulation points of

{xk } must be in <B(x ,f>), and furthermore, ifx*x is an accumulation point of {jc* } then we must have

that /(*)=/(£). But this is a contradiction since f(x)<f(x) for all x G #(£,£) such that **Jc.

Thus, ** -> Jc as k -> «>. •

Theorem 2.9. Suppose Assumptions 2.6holds and/(-) is twice continuously differentiable. Consider

a sequence {xk } produced by Algorithm Model PD. If {xk } has an accumulation points Jc such that

(2.29a,b) hold, then xk -> Jc and

Ak =B(xk)=B(x), \/k>N + l. (2.30)

Proof. Because x is a local minimizer, it follows from (2.2b) and the definition of w (x) in (2.3a), that

w(x) = 0. It is also clear that w(-) is continuous. Thus, there exists a Pi>0 such that

e(*) ^ min {e, w(x)} =w(* )for all jc G2(Jc ,pj). Since g(•) ^ V/(•) is continuous, we have by (2.29b)

that for x sufficiently close toJc, g' (x)£ jc'' for all i Gfl(Jc). Thus, there exists p2 G (0, pj] such that for

all* G #(Jc,p2)

W-gj(x)]+ = 0, V/Gfltf) (2.31a)

gi(x)>0, VieB(x). (2.31b)

From (2.31a) it follows that for* G £3(Jc, p2),

e2(x) =w2(x) =te-[x-g(x))+f= £ 0c')2 + £ (*''-[*''-g]+)2* £ (*'')2.

Hence,

(2.32a)

*'<;e(jc), V/Gfi(Jc)and* G (8(Jc,p2). (2.32b)

Also, since (x)'' >0 for all / €B(Jc) and e(Jc) = w(x) = 0, there exist scalars e >0 and p3 G(0, p2] such
that
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xl >£>£(*), V/c#(Jc)and;c G2(Jc,p3). (2.33)

Thus, we see from (2.31b), (2.32b), (2.33)and the definition of A(x) given in (2.4a), that

A(x) = B$), V*c 3(Jc\p3). (2.34)

Now for any k,i such that xk G <B{x, p3) and / GAk we have by, definition ofAk, that d*k = -m/g/ <0

and xl £e(xk) and by (2.34), i GB(x). Thus, from (2.29b), the continuity of V/() and the fact that
X* £X for all k, where Xis given by (2.27), there exists a p4G (0,p3] such that for any i GAk and

xke<B(x, p4), 0£xl+1 = [xl - Xkmlgk% <; [xl - X/n/g/]* =0, which implies that i GB(xk+1). On the

other hand, for any k, i such that xk G $(x, p4) and / €Ak, we have from (2.34) that i €B (Jc) and hence,

by (2.33), x'k >e. Since x is a local minimum, we see from (2.2b) that df(x)/dxi=0 for all i GB(x).
Also, X* is bounded, e(-) is continuous, and by (2.5c), Mklh <a2BgJt0/l. Therefore, since
1**+i ~xk II £ Uk+i - xk lAt + hck+l - xk D/4 £ e(xk) +a2Ilg* B/t is arbitrarily small for xk sufficiently close to

*, there exists p5G (0,p4] such that ifxk G<B($ ,p5), then (i) xk+l 6 0(Jc\p4), (//; jc/+1 >e(xk+1) for
/ €Ak which implies that/ €Ak^,and(iii) bck+1 -xkl £p. Itfollows from these arguments that

B(xk+1) =Ak+1 =Ak=B(x), Vk such that xk G2(Jc, p5), (2.35)

and from Lemma 2.8, xk ->x. Thus, there exists N <« such that xk G#(Jc, p5) for all it k# and there
fore (2.30) holds for all * £ N +1. D

Remark 2.10. In [Ber.82], the search directions are given by dk =-Dkgk where the Dk are sym
metric, positive definite matrices, with elements D*, that are diagonal with respect to the indices / GAk,
i.e.,

D^Dfj =0 , Vi GAk , j =1,2 n , j+i , (2.36a)

and are required to satisfy

y1wllfofzzTDkz Zi2wknz\2, Vz GR", (2.36b)

where yx and y2 are positive scalars and ql and q2 are non-negative integers. It is easy to see that in the
case qx =q2 =0, with y1 6 (0,1) and y2 G(1,°°), dk =-Dkgk will satisfy the conditions required by
(2.5a,b,c). If we replace the constants o2 and a2 by o^wf and o2wf-, respectively, in (2.5a,b,c), the
Bertsekas search directions satisfy these tests for all non-negative, integer qxand q2. •

It follows from Theorem 2.9 that, under the conditions stated, Algorithm Model PD will identify the
constrained components ofthe solution x after a finite number ofiterations N. Hence, for all A: £N+1,

x'k =0ifi CB(x) and x[ >0ifi €B (x). Consequently, for all k 7> N+1, Algorithm Model PD reduces
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to an unconstrained optimization algorithm on the subspace {x G IR" Ix' =0, Vi GB(x)} and its
rate of convergence is governed entirely by the rules used in the construction of the components dl,
i 6 Ik, of the search direction.

This fact is reflected in Corollary 2.11 which deals with the rate of convergence of an implementa
tion of Algorithm Model PD that uses the Polak-Ribiere conjugate gradient rule for constructing the com

ponents dk,i G Ik, of the search direction dk. The corollary states that Algorithm Model PD, with search

directions dk given by (2.37a,b,c), exact line searches and restarts imposed every m+1 iterations, has

iterates that converge m+1-step linearly with a root rate constant that depends on only the smallest

n-r-m eigenvalues of the Hessian at the solution restricted to the unconstrained subspace where

r = \B(x)\ is the number of constraints binding at the solution. Since it follows from the interlacing

eigenvalue property of symmetric matrices [GoL.89, Cor. 8.1.4] that the condition of the restricted Hes

sianis no worse than that of the Hessian itself, the presence of bounds on the decision variables canonly

serve to reduce the convergence rate constant. For problems that include penalty functions, if m is taken

to be the number of penalized constraints then Corollary 2.11 shows that the m+l-step convergenceroot

rate constant is independent of the size of the penalty constant (see [Lue.71]).

Corollary 2.11. Suppose that

(a) in problem P, / (•) is three times continuously differentiable with positive definite HessianH (x) and

that x, the unique global minimizer of P, satisfies the sufficient conditions (2.29a,b)', and that

B(x)= [n -r + 1,... ,n }, with 1 £ r £ n (achieved by renumbering the variables, if necessary).

(b) {xk } is a sequence produced by Algorithm Model PD with searchdirections dk determined as fol

lows (with cLi = 0 G IR"):

-,- . . _ . (8k>8k-8k-i)it
dk=-8k +M*-i. ' e Ik , where \ik = —- , (2.37a)

kkK

dl if (dk,gk)IkZ-o1HgkW?k and lrf*l/t £o2l&l,,
, V/G/,, (2.37b)

-gk otherwise *

dl=-mlgl , V/GA, , (2.37c)

and with the step size X* determined by an exact line search, and with restarts imposed every

m+\ ttn -r iterations.

The convexity of the constraintset and the strictconvexity of the objective functionguarantees that P has a unique globalminimizer.
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Let Hltl(x) denote the upper-left (n-r)x(n-r) diagonal block of H(x), and let a denote its

minimum eigenvalue and b its (m + l)-th largest ((n-m-r)-ih smallest) eigenvalue. If, in Algorithm

Model PD, a2 ^ 1 + b Ia, then for any 5 > 0 there exists N < °° such that for all k ^ N I(m + 1),

"X0t+n)(m+l) —X\\^ Ck
b -a

b +a
+ 5 , n =0,1,2,... (2.38)

where ck is a bounded constant.

Proof. Clearly / (•) satisfies Assumption 2.6. Hence, by Theorem 2.9, there exists N j < °°such that for

all/: ZN)+ \, B(xk) = B(x), i.e., for all k ^N}+ \,xl =0for/ e B(x ) and for all i <LB(x),dl is deter

mined by equations (2.36), (2.37a,b). Furthermore, it can be shown that with the choice for a2 given in

the Corollary statement, the tests in (2.37a) will not fail for k ktfj + 1. Thus, the search direction

d k = (dk ' ' 'dk), k £ N + 1, is determined by the unconstrained, partial conjugate gradient method, with

restarts every m+ 1iterations, applied to the unconstrained subspace {x G R" I x'' = 0 , i € B(x)}. It

follows from Corollary 5.1 in [Lue.71] that there exists a finite N >Nj such that (2.38) holds. •

Remark 2.12. In general, when exact line searches are not used, the tests in (2.37a), needed to ensure

global convergence, provide an automatic resetting mechanism for the conjugate gradient method. It is
possible to prove global convergence for a modified version ofthe PR conjugate gradient method without

requiring any restarts [GiN.92]. However, the step-size X* must then satisfy stronger conditions than the

Armijo-like rule. The accuracy ofthe line search also affects the conjugacy ofthe directions obtained by
conjugate gradient algorithms. It is therefore common practice to apply a criterion more stringent than
the Armijo rule for accepting a step-size (for instance, the step-size might also be required to satisfy the
strong Wolfe condition, see [GiN.92]). The convergence results of Theorems 2.7 and 2.9 will still hold
for more accurate line searches (cf. Remark 2.4). •

Extension to upper and lower bounds. Algorithm Model PD can easily be extended to deal with
upper and lower bounds ofthe form bjzx' <,blu, i = 1,. .. ,n. Merely replace the projection operator
[•]+ with the projection operator [•]#, defined for z e IR" and / = 1,...,/?, by

V A

K

if z' <Lb\,

if bj<z'' <blu ,

if z^bl,

and replace the set Ak = A (xk) with

Ak 4 {/ \bj<,xik<,biu+E{xk) and g/ >0, or bj - z{xk) <, x[ <, bju and,g/<0} .
The set Ik is defined, as before, as the complement ofAk in {1,2 n }.
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3. COMPUTATIONAL RESULTS.

One source oflarge-scale optimization problems is discretizations ofoptimal control problems. An
optimal control problem can be discretized by replacing the differential equations describing the system
dynamics with a system ofdifference equations that describes some integration algorithm applied to the
differential equations, and by replacing the infinite dimensional function space of controls with a finite
dimensional subspace ofparameterized controls. The result is a standard nonlinear programming prob
lem whose decision variables are the control parameters. The number of decision variables in the non

linear program is equal to the dimension of the approximating control subspace.

We used Algorithm Model PD tosolve a discretization ofthe following optimal control problem:
r . 2.5 „ „ -i

OCP: minimize Cxf(2.5)+f xht) + u\t)dt
u e L2[0,2.5] L to 'J

subject to

x1(t) = x2(t) ; x1(0) = -5,

x2(t) = -x](t) + [lA-0.14x22(t)]x2(t) +4u(t) ; x2(0) =-5 .

k(0*-4I/-1.5I , V/ G [0,2.5],

with C a parameter.

The discretization was carried out using a second order Runge-Kutta method (the explicit tra

pezoidal rule) with u (•) restricted to the subspace of continuous, piecewiselinear functions. Specifically,

the decision variable for the discretized problem are u = (u°, u1,..., it") GIR" where u' = u(/,-) are the
values of «(•) at the breakpoints tt = / (2.5/1000), /' = 0 1000. Thus n = 1001. The use of Runge-

Kutta integration for discretization of optimal control problems is described in detail in [ScP.95] where

the discretized problems are shown to be "consistent approximations" to the original optimal control

problem. We utilized the natural coordinate transformation described in [ScP.95] associated with this

discretization in order to prevent unnecessary ill-conditioning. For this case, the transformation is given

by u =M$w where, due to continuity imposed at the breakpoints tk, MN is an nxn diagonal matrix
with diagonal(M) =[Vi 11 ••• 11 Vi]IN^.

In addition to the coordinate transformation required by the theory of consistent approximations, we

also pre-scale the problem by multiplying/ (•)by the factor y, where y is definedby

Other coordinate transformations are also sometimes useful. For example, a coordinate transformation for use withthe conjugate gra
dient method applied to optimal control problems withaspecial structure is discussed, and shown to beextremely effective,in [Ber.74]. Another
possibility is to use the inverse of the diagonal of the Hessian. This matrix can beefficiently computed usingarecursive algorithm similar to the
one described in [DuB.89]. However, our experience indicates that this is not effective for optimal control problems discretized as described
above.
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S=(1+0moU/(1OOI$oU (3.1a)

6m =[u0-Sg0]# , (3.1b)

y=2
{bu,bu)ic

f(u0 + bu)-f(uQ)-{gQ,ou)lo
(3.1c)

with [•]# is given by (2.40). This pre-scaling makes it likely that a step-size of one is acceptedin the first

iteration of the algorithm (y is the distance along the projected steepest descent direction, 6w, to the

minimum of a quadratic fit to / (•)) and it acts as a normalization on the problem so that the tests in

(2.5a,b,c) and the numerical teirnination criterion are less scale sensitive.

For purposes of comparison, we solved the discretized optimal control problem with a projected

steepest descent algorithm, a projected conjugate gradient method and a projected version of the limited

memory quasi-Newton algorithm (L-BFGS) presented in [Noc.80,LiN.89].

The projected steepest descent algorithm uses thesearch directions dk = -gk.

For the projected conjugate gradient method we used the search directions given in equations

(2.37a,b,c) with mk = 1 for all i 6 Ak. After computing a step-size Xk that satisfies the Armijo-like rule

in (2.6a), weconstruct aquadratic approximation q(X) to / (uk (X, dk)) such that q (0) =/ (uk), q'(0) =gk
and q(Xk) =/ (uk (Xk, dk)) and set X'k equal tothe minimizer of this quadratic. If/ (uk {X'k )<f(uk (Xk)),
then X'k is chosen as the next step-size. Otherwise Xk is used. This procedure requires one extra function

evaluation per iteration and does notaffect theconvergence proofs (cf Remark 2.12).

The L-BFGS algorithm computes an approximation Gk to the inverse of the Hessian based onalim

ited number of applications of the BFGS quasi-Newton update formula. At each iteration, the algorithm
uses vectors sk = uk -uk^ and yk £gk -gk^ stored over a fixed number of previous iterations. The

procedure is as follows: Let m =min{k,m -1 }. Then, at iteration k,Gk is computed from m +1

BFGS updates applied to a starting estimate Gk° of the inverse Hessian (which can be different at each
iteration) according to

VT ~)Gk°(V A
k-m k-m

vk)

K—m

k-m+l

+ pkskT,

*-m+l k-m k-m k-m+l

-vT. )s y av „
k-m+2 k-m k-m k-m+2

Vt)

vk)

(3.2)

where p* =1/ (y[sk), Vk =/ - pkyks[. Here we use / (without any subscript) to denote the nxn identity
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matrix. As in [LiN.89], we let Gk = / in the first iteration and during restarts, and on other iterations we

let Gk° =ykI where yk ={yk,sk)h/1yktft is a self-scaling term demonstrated in [ShP.78] to markedly
improve the performance of quasi-Newton algorithms. An efficient, recursive procedure for computing
Gkgk without explicitly forming any matrices is givenin [Noc.80].

The L-BFGS algorithm has proven to be quite effective [ZNB.93]. We used this algorithm, with

rfi = 12, restricted to the unconstrained subspaces {jc g IR" Ix* =0 , i GAk }, to compute dk% i G lk.
In (2.5a), wechose ml =yk for all / GAk. We also added the following tests:

(i) Do not use current informationyk and sk for Hessian updates if {yk ,sk)Ik< -0.001 Og*l2k .

(ii) Restart if \dk lfk > 1000ft lgk lfk ,

(Hi) Res\anif{dk,gk)lk>-0.2yk %gk\fk ,

With the tests (ii) and (Hi), the search direction dk satisfies the conditions in (2.5a,b,c) and therefore this

method is convergent.

The data required by Algorithm Model PD were chosen as follows: a = 1/ 2, p = 3 / 5, M = 20,

u'0 = 0 for i = 1,... ,n, and e = 0.2 except, for the projected L-BFGS method, a = 1/3 was used to

ensure that a step-size of 1 would be excepted. The values for aj and o2 areas given in the reseting tests

for the conjugate gradient method and the L-BFGS method. The minimization routine was terminated

when

(i) xl =0 for all / G Ak ,

(ii) Bg*0/4/l/tKc2gJI(l+l/(ii/t)l).

(Hi) /(Wi)-/(^_i)<10emach(l+ \f(uk)\),

(iv) Ou* - w^.jL<e^1+BU* U ,

where the machine precision, einacn«2.2204g-16. Note that this is a very demanding termination cri

terion.

With C = 0, there were 171 binding constraints at the solution and these were identified after 8

iterations for projected conjugate gradient, after 7 iterations for the projected L-BFGS methods and after

18 iterations for the projected steepest descent method. With C = 100, there were 436 binding con

straints at the solution and these were identified after 24, 33 and 241 iterations, respectively, for the three

methods.

The number of iterations, function evaluations and gradient evaluations required to reach termina

tion for problem OCP with C = 0 aregiven in Table 1. The same information is providedin Table 2 for

problem OCP with C = 100. It is clear that the projected conjugate gradient and the projected L-BFGS

methods perform significantly better than the project steepest descent method.
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Method Function Evaluations Gradient evaluations Iterations

Conjugate Gradient

L-BFGS

Steepest Descent

89

45

143

19

14

30

18

13

30

Table 1:Work done to solve problem OCP with C = 0.

Method Function Evaluations Gradient evaluations Iterations

Conjugate Gradient

L-BFGS

Steepest Descent

290

247

1891

41

46

356

40

45

355

Table 2: Work done to solve problem OCP with C = 100.

The optimal solution, u , of thediscretized problem with C = 100 is shown in figure 1.

4. CONCLUSION

We have presented an implementable projected descent algorithm model. Algorithm Model PD,

and proved its convergence for any search directions satisfying the conditions in equations (2.5a,b,c).

This algorithm model solves a common class of problems involving simple bounds on the decision vari

ables. Furthermore, many problems with simple bounds on the decision variables as well as some addi

tional general constraints can be converted into the form of problem P using quadratic penalty functions

or augmented Lagrangians. The Algorithm Model PD, when used in conjunction with a conjugate gra

dient method or the limited-memory BFGS method for detennining the unconstrained portion of the

search directions, has theadvantage of requiring very little storage and work per iteration. Yet, therate of

convergence can be expected to be the same as that of the unconstrained conjugate gradient or limited-

memory BFGS methods after a finite number of iterations.
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