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ABSTRACT

This paper presents a family of projected descent direction algorithms with inexact line search for
solving large-scale minimization problem subject to simple bounds on the decision variables. The global
convergence of algorithms in this family is ensured by conditions on the descent directions and line
search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neigh-
borhood of a local minimizer X satisfying standard second order sufficiency conditions, it gets trapped
and converges to this local minimizer. Furthermore, in this case, the active active constraint set at £ is
identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a
local minimizer, satisfying standard second order sufficiency conditions, depends only on the behavior of
the algorithm in the unconstrained subspace.

As a particular example, we present projected versions of the modified Polak-Ribiére conjugate gra-
dient method and of the limited-memory BFGS quasi-Newton method that retain the convergence proper-
ties associated with those algorithms applied to unconstrained problems.
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1. INTRODUCTION.

Consider the problem

P min f (x) subjectto x' 20, i=1,...,n,
x€ER

where f :IR" — R is continuously differentiable and x = (x!,x2,...,x").

Algorithms for solving problem P based on the projection of a descent direction were first proposed
by Goldstein [Gol.64] and Levitin and Polyak [LeP.65]. In [Ber.76], Bertsekas used the projection opera-
tor defined in [Gol.64, LeP.65] to construct a projected gradient descent algorithm with an Armijo step-
size rule for solving P. Whenever a sequence constructed by this algorithm enters a sufficiently small

neighborhood of a local minimizer £ satisfying standard second order sufficiency conditions, it gets

trapped and converges to this local minimizer. Furthermore, in this case, the active active constraint set

at £ is identified in a finite number of iterations. This fact was used in [Ber.82] to construct a modified
projected Newton method, again using the projection operator defined in [Gol.64, LeP.65], with a
modified Armijo step-size rule. The algorithm in [Ber.82] employs the Newton search direction only in
the estimated subspace of non-binding (inactive) variables, and uses the gradient direction in the
estimated subspace of binding (active) variables. Under reasonable assumptions, Bertsekas showed that
his projected modified Newton method for solving P is globally convergent with Q -quadratic rate. The
algorithm in [Ber.82] is easily extended to problems with simple bounds of the form b/ <x’ <b/,
i=1,...,n where b/ < b,f. Bertsekas also provides an extension for handling general linear constraints
of the form b; <Ax <b,. The Bertsekas projected Newton method was further extended to handle gen-
eral convex constraints in [Dun.88). In a similar vein, a globally convergence augmented Lagrangian
algorithm based on a projection operator for handling simple bounds is developed in [CGT.91]. The
efficiency of this family of algorithms derives from the fact that (a) the search direction computation is
simple, (b) any number of constraints can be added to or removed from the active constraint set at each
iteration, and (¢) under standard second order sufficiency condition the algorithms identify the correct
active constraint set after a finite number of iterations. This last fact implies that the rate of convergence
depends only on the rate of convergence of the algorithm in the subspace of decision variables that are
unconstrained at the solution.

Another example of a projection based algorithm for solving optimization problems with simple
bounds can be found in [QuD.74] where Quintana and Davison present a conceptual algorithm with exact
line search based upon a modified version of the Fletcher-Reeves conjugate gradient method in function
space combined with a projection operator. This algorithm was intended for the solution of optimal con-
trol problems with bounded controls. The soundness of the algorithm in [QuD.74] is not clear because

the proof of convergence assumes that there exists, at each iteration k, a step-size o, > 0 that causes a



decrease in function value. However, the authors do not show that such a positive step-size exists. Furth-
ermore, Quintana and Davison require an a posteriori assumption (their egn. (26)) that is not directly
related to the problem or the method under consideration.

In this paper, we extend the results in [Ber.82] by showing that the concept of Bertsekas’ projection
method can be used with any search direction and step size rules that satisfy general conditions similar to
those in [PSS.74]. In particular, we show that our version of the projection method can be used with
search directions that are determined by a conjugate gradient in the subspace of unconstrained decision
variables. The extension to conjugate-gradient methods is particularly valuable for solving large-scale
optimization problems with simple bound constraints, because conjugate-gradient methods do not require
much additional storage or computation beyond that required by the steepest descent method but, in prac-
tice, perform considerably better than steepest descent.

The remainder of this paper consists of three sections. In Section 2, we define the projection opera-
tor and state an algorithm model for a family of projected descent methods whose search direction are
required to satisfy certain conditions. We prove convergence of this algorithm model and the fact that it
identifies the correct active constraint set in a finite number of iterations under second order sufficiency
conditions. Several of our proofs are similar to those in [Ber.82]. As an example of the construction of
admissible search directions for our algorithm, we use the Polak-Ribiére conjugate gradient formula
which numerical experience has shown to be more effective than the Fletcher-Reeves formulation (an
explanation for this empirical result is given in [Pow.76]). We provide one example of the fact that stan-
dard rate of convergence results for the conjugate gradient method still hold for its projected version. To
conclude Section 2, we describe an extension of the algorithm model that handles simple bounds of the
form b/<x' <b;, i =1,...,n. In Section 3, we present numerical results obtained in solving an
optimal control problem with simple control bounds, using three implementations of our algorithm based
on steepest descent, conjugate gradient, and an implementation of the limited-memory quasi-Newton
method, L-BFGS (described in [Noc.80]) for the search direction computations. These numerical results
indicate that the projected conjugate gradient method and the project L-BFGS method perform
significantly better than the projected steepest descent method. Finally, in Section 4, we state our con-
cluding remarks.



2. ALGORITHM MODEL FOR MINIMIZATION SUBJECT TO SIMPLE BOUNDS.

The algorithm to be presented is described with the help of the following notation: for any z € R",
the projection operator [‘], is given by

max {0,z!}
2], 8 5 : (2.12)
max {0,z" }
and, for any search directiond € IR",x € R" and step-size A € R,
x(Ad)8 [x + ], . (2.1b)

For any index set / © {1,...,n} and x,y € R", we define {x,y); 8 ¥, ¢ ;x'y’, and lx1? 8 (x,x),.
Without subscripts, {-,) and 'l denote the Euclidean inner product and norm, respectively, on IR".
Finally, we will let

FA{xeR"1x' 20, i=1,...,n) (2.1¢)
denote the feasible set for problem P.

Definition 2.1. A point £ € ¥ is said to be a stationary point for the problem P if its directional
derivative is non-decreasing in all feasible directions:

df (£ ;x-%)20, Vx € F, (2.2a)
or equivalently, fori =1,...,n,
) yo, ana LR _gi2i50. (2.2b)
ox' ox’
a

Active and almost active bounds.  The projected descent algorithm model (Algorithm Model PD)
which we will present requires, for each iterate x;, the definition of sets I, =1(x;) < {1,2,...,n } and
Ay =A(g) < {1,2,...,n}. Theset A, contains the indices of the "active" or "almost active" bounds
at iteration k and the set /; is the complement of A, in {1,...,n }. With g(x) = Vf (x), we deﬁne'r

w@) Al - [x —g ()10, (2.3a)
and

e(x)8min{ew()} , (2.3b)

where € > 0 is a parameter in Algorithm Model PD. We can see that €(x) = 0 if and only if x € F is a
stationary point because the requirement that x €  and that (2.2b) hold is equivalent to the requirement

U More generally, w(x) can be defined as w (x) Apx - [x — Dg(x)),} where D is a positive definite diagonal matrix.
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that
max {-g‘(x),-x'} =0, i=1,...,n (2.3¢)

which, upon addition of x, i = 1,...,n, to both sides, yields [x — g (x)], = x, i.e. that w(x) = 0. Next,
forx € F, we define

A& {iet,...,nl0sx <ex), g'(x)>0}, (2.42)

and
I8 {ie1,....nlieam)}={iel,....nlx" >erx)or g'(x)<0}. (2.4b)

To understand the logic behind the definition of the active constraint index set A (x), first consider the
situation corresponding to & = 0. In this case, if i € A (x), x' =0and g'(x)>0. Thus, x' is at its bound
and, moreover, any movement in ¥ away from that bound will cause an increase in the objective func-
tion, hence our algorithm will leave x; unchanged. When &> 0, as we will set in Algorithm Model PD,
the set A (x) also includes indices of variables that are almost at their bounds and, because g'(x) > 0, are
likely to hit their bounds during the line search. Thus, given x € ¥, the set A (x) tends to identify the
active constraints at a ‘‘nearby’’ stationary point.

Note that in Algorithm Model PD, below, the search directions are specified only to the extent that
they satisfy three conditions (stated in (2.5a,b,c)). It is clear that the direction of steepest descent, and
more generally, any direction of the form d; = —~D, g, where D, is a symmetric, positive definite matrix
that is diagonal with respect to indices i € A; and has eigenvalues bounded from above and away from
zero, satisfies these conditions. In the sequel we will show how d, satisfying these conditions can be con-
structed using a conjugate gradient formula.

The most important property of Algorithm Model PD is that it identifies the correct active constraint
set in a finite number of iterations. Once the correct active constraint set is identified, the active variables
%; Temain at the value of zero while on the orthogonal *‘unconstrained’’ subspace Algorithm Model PD
behaves as an unconstrained optimization algorithm. Because of this, the rate of convergence of Algo-
rithm Model PD is that associated with whatever method is used to determine the components of the
search direction d; in the ‘‘unconstrained”’ subspace.



Algorithm Model PD:
Data:  a,B€ (0,1),M € N,6,€ (0,1),0, € (1,),g € (0,0),x9 € ¥.
Step 0: Setk =0.

Step 1: Compute g; = Vf (x;) and set A, =A(x;), I = I(x,). If Bgyl, =0and x{ =0 forall i € A,
stop.

Step 2:  Select scalars m{,i € A, and a search direction d, satisfying the following conditions:

di =-migl , oysmi<o,, Vi€ A, (2.52)
CAAPESTATATS (2.5b)
ldk Blt < Gzﬂgk ﬂ,‘ . (2.5¢)

Step 3:  Compute the step-size A, = ™ where m is the smallest integer greater than —M such that A,

satisfies the Armijo-like rule:
F g, dp) = f (%) < a{ Melgerdi )y, = {8k, %y —xk(}‘k’dk))m} : (2.6a)
Set
X1 = X (A dy) =[x + M d) ), (2.6b)
Step 4: Replace k by k+1 and go to Step 1. O

Note that in (2.5a) one can choose mj = 1, for all i € A,, in which case the search direction in the sub-

space of active constraints is the steepest descent direction.
Remark 2.2. It is easy to see that the the right-hand side of (2.6a) is non-positive. The first term of the
bracketed expression is non-positive because (g ,dy );, < —o,lg; ,f by (2.5b). The second term is non-

negative:
(gk,xk -xk(?»k,dk))m 2 0, (2.7)
because forall i € Ay, g{ >0andd] = —mjg{ <—o,g} <0 and hence x{—x/(A,d,) 20forallA>20. O

Remark 2.3. The requirements in (2.5a,b,c) are the similar to those used in the Polak-Sargent-
Sebastian Theorem of convergence for abstract, iterative minimization processes [PSS.74]: they ensure
that dj is bounded from above and below and that d; does not become orthogonal to g;. To wit. let 6, be

the angle between the vectors d; and —g,. From (2.5a,b) we have that



(de.g1) =0y lg ], +(dp,8);, S-0ylg, 12, (2.82)
and from (2.5a,c)
1d, 1? < 0f1g, 12, + 1,17 < olg, 2. (2.8b)
Thus, lg, I 2 (1/o,)ld, Ig, I. Using this expression in (2.8a) we see that

cosd, =
k7 i ligt < o,

>0. (2.8¢)
O

Remark 2.4. The convergence result in Theorems 2.7 and 2.9, given below, hold for any bounded
"r 20 such that f (x; () < f (% (A, di)) where A, satisfies the Armijo rule in (2.6a). O

Before proving convergence, we will show that the step-size rule is well defined and that the stop-
ping criterion in Step 3 of Algorithm Model PD is satisfied by a point X, if and only if x; is a stationary
point.

Proposition 2.5. Let x,,d, be any iterate and corresponding search direction constructed by Algorithm
Model PD, i.e., d; satisfies the conditions in (2.5a,b,c). Then

(a) X is a stationary point for problem P if and only if x; (A, d; ) = x, for all A > 0;
(b) x; is a stationary point for problem P if and only if lig, I, =0andx; =Oforalli € A;

(c) if x, is not a stationary point for problem P then there exists A > 0 such that
FOAde ) =f(x) < a{ Mg di)i, — (8k, % _xk(}‘v»dk))A,} . VAE [0,A), (2.9)

L.e., the step-size rule (2.6a) is well defined at x; and will be satisfied with A, 2 min { B, [37; }.

Proof. (a) Suppose that x, is a stationary point. Then (2.2b) implies that gi=0forallic€l.
Hence, di =0 for all i € I, since Id,l;, < oplgl,. Hence x/(A,d;) = [x} +Ad}], = x} for all A >0,
i € I,. Now, if i € Ay, then g{ >0 and, since x; is stationary, it follows from (2.2b) that x{ = 0. Hence
foralli € Ay, x((A.dy) = [-Am{g’], = 0 =x{ forall A>0. Thus, x,(A.d;) = [x,], = x, forall A >0.

Next, suppose that x; (A,dy) = x; forall A20. Thendf =0 if x; >0 and df <O if xj = 0. Let the
index sets I1(x; ), 15(x; ) be defined by

L8 {iel x>0}, Ll {icia)lxi=0}, (2.10a)

so that I, =1,(x; )l 5(x;). It follows from the above that if i € I,(x;), then d{ =0, and if i € I 20Xz ),
then d{ <0, and also g{ < 0 (by definition of /, since x{ = 0). Thus,

(8k»dids, =8k di ) 1ix) +(8k. ) 1) = {8k i) 1r) 20 . (2.10b)



But, from (2.5b), (g.dy),, <—o,lg, 0,2 Therefore, Ig;l;, =0 and hence gi =0 for all i € I,. For
i € Ay, df =-mjg| <0. Since x{(A,d,) = x{, for all A 20, this implies that x{ = 0. Thus we have that
foralli € I, g{ =Oandforalli € A,, g{ >0andx{ = 0. Consequently, , is a stationary point.

(b) Suppose that x; is a stationary point. If i € A, then, because g} >0 for all i € A,, it follows from
(2.2b), that x{ =0. If i € I, then g/ = 0 since g{ <O for all i € I, and g} >0 by (2.2b) for all i such
that x{ = 0. To complete the proof, suppose that lg;l;, = 0and x{ = 0 forall i € A,. Hence, since x{ 20
foralli € I; and, since gf >0 forall i € A,, it follows that (2.2b) holds for all ;.

(c) Let g égk. Suppose that x; is not a stationary point. Define the index sets
130x), T4(x), A 1(xy), Ag(xy) as follows:

L)@ {i €L |x{>0,0r { =0 and d[>0)}, Ix)8 {i el |xf=0,di<0}, (2.11a)
A8 {iea x>0}, A8 {iealxi=0}). (2.11b)
First note that /5(x;) U A (x;) # ©. To see this, suppose that i € I4(x;) UAy(x;) foralli =1,...,n.

Then x{=0 and d{<0 (since di=-mjigl<0 for i€ Ay(x,)) which implies that
x{(Ady) =[x} + Ad]], = 0 = x| for all i. Consequently, by part (a) of this proposition, x, must be a sta-
tionary point, This is a contradiction. Now, let

M=sup {Alxf+Adf20, i €l3x)}, (2.12a)

Ay=sup {A|xf +Adf 20, i€ Aix) ]} . (2.12b)

Clearly A; >0 (possibly infinite) and A, >0. If I5(x;) is empty let A, = o or, if A,(x;) is empty, let
M=, Now, if i € I,(x), x{(A.d;)=[Adf],=0=x for all A20. Similarly, if i € Ay(x;).
x{(A,dy) = [-Amjg{),=0=x] for all A20. On the other hand, if i € /5(x;) and A € [0.A,). then
x{(\,d) =x{ + A} and if i € A (x,) and A € [0,A,), then x/(A,d,) = x/ — Am| g}. Therefore, with

i e
it follows that
X\ dy) =[x, + M ], =x +Ady, VA€ [O,min{A,0}). (2.13b)
Next, from (2.13a), we obtain
(dy,8) ={dr, 8k ) 13, + (k2 8k ) A ) - (2.14a)

NOW, from (2.5b), (dk » 8k )lk = (dk ' 8k )lz(xz) + (dk ' 8k )l‘(x.) < -G]“gk 1‘2. But, for i € ]4(xk ). d‘i <0 and
8l <0, so {(dy,g) Ix) 20. Thus, (dy,8;) s,y S—0ylgil2. This, together with (2.5a) and (2.14a),
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implies that
(dy.8¢) S—0ylg,I? - o1lge 13 ¢y - (2.14b)

Since x; is mot a stationary point, there exists at least one i € [; UA; such that gi #0. Hence
(Ek,gk) <0, ie. c_i; is a feasible descent direction. Next, it follows from (2.13b) that, for all
A € [0,min { A;,2, }), the Armijo-like step-size rule in (2.6a) is equivalent to the following requirement
ona,

f G +Ady) - f () < 00\(81:,‘71:>A.u1,(x,)+0l7t(8k»dk)1‘(x.)- (2.14c)

But for all i € I,(x;), g{ <0 and df <0. Therefore the last term in the (2.14c) is non-negative. Hence
(2.14c¢) is satisfied if the following, harder, condition is satisfied,

Oy +Ady) - fr Sorlg.dy) . (2.14d)

But this is the usual Armijo rule applied to an unconstrained problem which can always be satisfied with
a positive step-size when (g, , Ek ) <0. Hence, there exists 0 < A < min {A1, Ay} suchthat (2.9) holds. O

We will now show that Algorithm Model PD produces a sequence of iterates whose accumulation
points are stationary points. The following assumption will be used:

Assumption 2.6

The gradient V£ () is Lipschitz continuous on bounded subsets of ¥; i.e., given any bounded set S < #,
there exist a scalar L < oo such that

IVF(x)-Vf@N<sLlix-yl, vx,y €S . (2.15)
O

Theorem 2.7.  Suppose that Assumption 2.6 is satisfied. Then every accumulation point of a sequence
{x; }, generated by Algorithm Model PD, is a stationary point of problem P.

Proof.  First suppose {x; } is a finite sequence with final index k = ks . Then by Lemma 2.5(b), x; is
a stationary point. If {x; } is an infinite sequence then by Lemma 2.5(b), it contains no stationary
points. We will show by contradiction that, in this case, every accumulation of {x; } is a stationary
point.

For each k, f (xz41) < f (x;) since the right hand side of (2.6a) is non-positive (cf. Remark 2.2).
Additionally, f () is continuous and x; Kz, Thus,
FO)=f ) o0, (2.16a)

Since the bracketed expression on the right-hand side of (2.6a) is the difference of a non-negative term
and a non-positive term (¢f. Remark 2.2), (2.16a) implies that
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A8k, di)y, =0, (2.16b)

(gk » X —xk(lk,dk))m 0. (2.16C)
We will use this to show that
liminfA, =0.
i ellf(l k 2.17)

Since £ is not a stationary point, there must exist an index j such that either

2750 ana L&), (2.182)
ox/
or
£/ =0 and M <0. (2.18b)
ox’

If j € I for an infinite number of k € K, then (2.17) follows immediately from (2.5b), (2.16b) and
(2.18a,b). On the other hand, if j € A, for an infinite number of k¥ € K, then we must have that g/ >0
for all of these &, so (2.18b) cannot hold. Hence, from (2.18a),

£/ >0 and —af;(f.—)>0, (2.18¢)
ox’

and since 9f () / 9x/ is continuous, there exists k, € K such that forall k € K and k 2 k,, g{ >0. Since
we also have that, for all k € K for which j € A,

(8K Xk =Xk (Ap,di ) 4, 2 8 X = xf (A, d)] 20, (2.19)

it follows from (2.16c) and the fact that g/ >0 for k 2k, that lim, ¢ x [x{ = x{(A;,d;)] = O. Finally,
because x/ >0 and dj = —mjgJ <0 for all k 2k, such that j € A, , we see that (2.17) holds.

The proof will now be completed by showing the {2, } is bounded away from zero, thereby con-

K
tradicting (2.17). Since x; — £, the subsequence {x; }; ¢ x is bounded and, by (2.5a,c) and continuity
of Vf (), {d; } ¢ ek is also bounded. This implies that {x;(Ac,d;) } ¢ ¢ k. Ax € [0,F™], is bounded.
Thus, by Assumption 2.6 we have that for s € [0, 1],

Bge = Vf (x¢ —=s[xp =% A, d)Dh S sLbxy —x, (A, d)i, k€ K . (2.20)
Expanding the left-hand side of (2.6a), we have for k € K and A € [0, [3"" 1

1
O, d)=f (x) = (8, X (M) — xp) +L(Vf(xk =5k —x; (A, d)D) = gr . xx (A, dy ) —x;) ds

1
S(gk,xk(?»,dk) —xk) +ﬂxk(?s.,dk) —anLSlek(A,dk)—an ds



=(8k,xk(x,dk)—xk)+%|lxk(kdk)—xk2. 2.21)

Now, fori € Ay, x{(A,dy) = [x{ — Amjgf], > x} - Amjg] so that x} - x{(\, d;) < Am]g/. Thus,

A Y migilxl —xiAd )12y —x A, d I,
i €A (2.22)
Now consider the sets Isx & {i € I; 1 g/>0) and /g, 2 (i € I, 1 g/ <0}. If i € I5, then x} >¢,

(for otherwise i € Ay). Since x; -’Sf and I¥ -[£ -Vf(#))I>0, we must have that
lim inf, ¢ xw(x;) >0. This implies that there exists € > 0 such that e(x;)2eforall k € K. Let A<oo
be such that Bg,f, <A for all k € K. Then, from (2.5c), ld;l;, <So,A. So, for A€ [0,€/ o,A] and
i € I, x{(\,dy) = x{ +Ad}. Thus,

L silv - % (d)) =-Mg.dy)y,, . YAE [0,8/0A). (2.23a)

i€lss

Next, for all A 2 0, x{ - x{(A,d}) S —Ad}, and since g{ < Ofori € I¢ ,, we have that

Y 8ilxi —x{(hd)]2-Mgy . di)y,, » VA20. (2.23b)

i€lss

Combining these last two expressions gives us

(8r,Xx —x (A, dy ))1t 2=-Mg.dr) e L YAE [O,E/ o). (2.23¢)
Finally, from (2.5b,c) we have that —(d,, g;);, 2 olg;I? 2 0,/ 0fld, 17, and since, for all i and A 20,
Ixi =x{(A)| <Ald}|, we have that

2
(o]
ﬂxk _xk()"dk)“lzg S)deklll": S—A’2?2(dk ’gk)lg . (2.24)
1

Thus, from (2.23c), we see that

(8, XA dy) —xp) = =g, X, =X A A D 4, = {8k, Xk — X (A, )y,

S— {8k Xk =X (A, dp)) g, + M8k, d)y, (2.252)
and, from (2.22) and (2.24),
%nxk(x,dk)-xku - %uxk(x,dk)—xkn,%, + %lixk(?») Y
Aoyl ,O3L -
S —5 (80 % =g, =58 de)y, . VAE [0,/ 07A]. (2.25D)
1

Substituting the expressions (2.25a,b) into (2.21), we obtain that for all A € [O,E/ oAl
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AcsL
2

2L
F e d) - F ) <A1 -x;—zo—)(gk,d,,),, +(BE D) hd) -x)s, . (226)
1

Comparing this with (2.6a), and noting from (2.5b) and (2.7) that (g, ,d; );, S0 and {g;,x; (A) = x; )4, 20,
we see that the Armijo-like rule is satisfied for any A > 0 such that A <&/ 0,A, A-A%Lo#/20, 2 oA and
Ao,L /2-1<-o. Since B€ (0,1) and the step-size rule requires the smallest m such that A = "
satisfies (2.6a), we see that forall k € K,

T 20,(1-a)
A 2min{ ——, BMLs0. 227
§ 2m {ozA oIL p } (2.27)

This contradicts (2.17) and proves the result. O

Next, we proceed towards a proof that under suitable conditions, after a finite number of iterations,
Algorithm Model PD reverts to an unconstrained optimization algorithm on the subspace defined by the
non-binding variables at a strict local minimizer limit point. Let B (x) denote the set of all binding con-

straints at x, i.e.,
Bx)& {ilx' =0}, vx 0. (2.28)

We will use the following alternative statement of the standard second order sufficiency condition with

strict complementary slackness for a point £ to be a strict local minimizer for problem PT

TV (®)2>0, Vz€ {z€R" 12/ =0, Vie B&)}, (2.29a)
and
i’aL:)>o. Vi€ B®). (2.29b)
X
a

In Lemma 2.8, below, and in the proof of Theorem 29, to follow, let

BE,pA(xeR" I Ix -£1< P} denote the closed ball of radius p around £. The script B used here
should not be confused with the B used in (2.28) to define the binding constraint set.

Lemma 2.8. Suppose that f () is twice continuously differentiable and that {X Vkwr X € F,i5 2
sequence with an accumulation point £ which satisfies the sufficient condition (2.29a,b). Let P be the

radius of attraction for £, i.e. f (x) < f () for all x € B(£,p), x=£. If there exists a p >0 such that

x4y — x| <P for any k such thatx, € B(£,p), thenx, — £ ask — oo,

t See, for example, [Lue.84), pp. 316-317: viz., equation (2.2b) holds aud the Hessian of the Lagrangian L (x) 2 f (x) - 17 x is positive
definite on the subspace {z € R" 12/ =0, i € B(¥)] and the multipliers p' = 3 (f)/3x' are positive for all i € B() and zero for all
i €B(%).
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Proof. letp=min{p,p}. Since £ is a strict local minimizer and p <P, there exists an ¢ > &)
such that the level set L, a {x€ Flf(x)sc) satisfies L, N B(£,2p) < S(£,p). Since £ is an
accumulation point of {x; }, there exists N <o such that xy € L. N B(£,p). Since p<p,
Lyyy —xy0 <P, thus, xy,; € B(R,2p). But since f (xy,;) <f (xy), we see that Xy41 € L.. Hence,
Xy41 € L, N B(X,p). This argument can be repeated indefinitely to show that x, € B(X,p) for all
k2N. Finally, since {f(x,)} is monotone decreasing and has an accumulation point f@&),
f @) > f(X) as k = . Now, since x, € B(£,p) for all k >N, all of the accumulation points of
{x } mustbein B(%,p), and furthermore, if £ =% is an accumulation point of { x, } then we must have
that f () = f (£). But this is a contradiction since f (£) < f (x) for all x € B(£,p) such that x=%.
Thus, x, — % ask — o, O
Theorem 2.9. Suppose Assumptions 2.6 holds and f (*) is twice continuously differentiable. Consider
a sequence {x; } produced by Algorithm Model PD. If {x, } has an accumulation points £ such that
(2.29a,b) hold, then x; — £ and

Ay =B(x)=B(), Vk2N+1. (2.30)
Proof. Because £ is a local minimizer, it follows from (2.2b) and the definition of w (x) in (2.3a), that
w(X)=0. It is also clear that w(:) is continuous. Thus, there exists a p; >0 such that
e(x) A min {e,w(x)} =w(x)forall x € B(X,p;). Since g(*) a V£ (©) is continuous, we have by (2.29b)

that for x sufficiently close to £, g'(x) 2x' forall i € B(£). Thus, there exists p, € (0,p,] such that for
allx € B(%,p,)

x' -g'(x)),=0, Vi€ B(F) (2.31a)

g'(x)>0, Vie B(®). (2.31b)
From (2.31a) it follows that forx € B(%, p,),

Ex)=wix)=br -[x-g()P= ¥ )P+ ¥ &' -k -gll2 ¥ «')3.

(2.32a)
i€B() i €B(Y) i€ B()

Hence,
x' <e(x), Vie B®)andx € BE,p,). (2.32b)

Also, since (£)' >0 forall i ¢B(£) and &(f) = w(f) = 0, there exist scalars € >0 and p3 € (0,p,] such
that
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x'>e>ex), Vi eB(E)andx € B(E,ps). (2.33)

Thus, we see from (2.31b), (2.32b), (2.33) and the definition of A (x) given in (2.4a), that
A(x)=B(X), Vx € B(£,p;). (2.34)

Now for any &,i such that x, € B(%,p;) and i € A, we have by, definition of A;, that d} = -m,fg,ﬁ <0

and x{ <e(x) and by (2.34), i € B(£). Thus, from (2.29b), the continuity of Vf (-) and the fact that
A2 A for all k, where A is given by (2.27), there exists a p4 € (0, p;] such that for any i € A, and

Xy € BR,pg), 0<xfyy = [xf — Aemigfl, < [x{ - Amjgf], = 0, which implies that i € B (x;,,). On the
other hand, for any k,i such that x, € B(£,p4) and i € A,, we have from (2.34) that i ¢ B (£ ) and hence,
by (2.33), x{ >&. Since % is a local minimum, we see from (2.2b) that df ®)/ox' =0foralli € B(®).
Also, A, is bounded, &(*) is continuous, and by (2.5c), Id, I;, <oolgl;,. Therefore, since
Wepyr = X 0 < gy =g Uy, + gy — X 1, < €00 ) + O5llg, l;, is arbitrarily small for x, sufficiently close to
%, there exists ps € (0, p,] such that if x, € B(#,ps), then (i) x,,; € B(R,pg). (ii) xf,y >€(xp,;) for

i €A; which implies that i €A;,;, and (iii) lx;,, —x, 1 <p. It follows from these arguments that
B (xp41) = Agsy =Ar =B(E), Vk suchthatx, € B(E,ps), (2.35)

and from Lemma 2.8, x, — . Thus, there exists N < % such that x, € B(%,ps) for all k >N and there-
fore (2.30) holds forall k 2N +1. a

Remark 2.10. In [Ber.82], the search directions are given by d, = -D*g, where the D* are sym-
metric, positive definite matrices, with elements D,‘}, that are diagonal with respect to the indices i € A,
ie.,

Dfi=Df=0,Vi€A,,j=12,...,n,j*, (2.36a)
and are required to satisfy

1wz’ <zTD¥z <yw@izI?, vz € R, (2.36b)

where v, and vy, are positive scalars and q; and g, are non-negative integers. It is easy to see that in the
case g1 =¢92=0, with vy, € (0,1) and v, € (1,), d, =-D, g, will satisfy the conditions required by
(2.5a,b,c). If we replace the constants o, and o, by ow{' and o,w{’ respectively, in (2.5a,b,c), the
Bertsekas search directions satisfy these tests for all non-negative, integer g, and ¢,. O

It follows from Theorem 2.9 that, under the conditions stated, Algorithm Model PD will identify the
constrained components of the solution £ after a finite number of iterations N . Hence, forallk 2N +1,

x{=0ifi € B(f)andx{ >0ifi ¢B(%). Consequently, for all k 2 N +1, Algorithm Model PD reduces
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to an unconstrained optimization algorithm on the subspace {x € R" |x' =0, Vi € B(£)} and its
rate of convergence is governed entirely by the rules used in the construction of the components dj,
i € I, of the search direction.

This fact is reflected in Corollary 2.11 which deals with the rate of convergence of an implementa-
tion of Algorithm Model PD that uses the Polak-Ribitre conjugate gradient rule for constructing the com-
ponents d;, i € I, of the search direction dy,. The corollary states that Algorithm Model PD, with search
directions d, given by (2.37a,b,c), exact line searches and restarts imposed every m+1 iterations, has
iterates that converge m + 1-step linearly with a root rate constant that depends on only the smallest

n-r—m eigenvalues of the Hessian at the solution restricted to the unconstrained subspace where

r = IB(X)| is the number of constraints binding at the solution. Since it follows from the interlacing
eigenvalue property of symmetric matrices [GoL.89, Cor. 8.1.4] that the condition of the restricted Hes-
sian is no worse than that of the Hessian itself, the presence of bounds on the decision variables can only
serve to reduce the convergence rate constant. For problems that include penalty functions, if m is taken
to be the number of penalized constraints then Corollary 2.11 shows that the m+1-step convergence root
rate constant is independent of the size of the penalty constant (see [Lue.71]).

Corollary 2.11.  Suppose that

(a) in problem P, f (-) is three times continuously differentiable with positive definite Hessian H (x) and
that £, the unique global minimizer of P, satisfies the sufficient conditions (2.29a,b)T. and that
B®)4 {n=r+1,...,n},with 1 <r <n (achieved by renumbering the variables, if necessary).

(b) {x;} is asequence produced by Algorithm Model PD with search directions d; determined as fol-
lows (withd_; =0 € R"):

(8k+8k — 8k-1)1,

dj=-g +Wd, i €1, where W = 3 ' (2.37a)
Ug Uj;
di if (dy g, S—oylgl? and 1d 1, < olgh,
d=1 _ .  viel, (237
—8x otherwise
di =-migi , vVieA,, (2.37¢c)

and with the step size A, determined by an exact line search, and with restarts imposed every

m+1 £ n —r iterations.

T The convexity of the constraint set and the strict convexity of the objective function guarantees that P has a unique global minimizer.
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Let H(X) denote the upper-left (n—r)x (n-r) diagonal block of H (%), and let a denote its
minimum eigenvalue and b its (m+1)-th largest ((n—m—-r)-th smallest) eigenvalue. If, in Algorithm
Model PD, o, 2 1 + b /a, then for any d > O there exists N <eo such that forallk 2N /(m +1),

“+6] n=012,... (2.38)

X (k4 )(ma1y = XN < Ck|: T

where ¢, is a bounded constant.

Proof.  Clearly f () satisfies Assumption 2.6. Hence, by Theorem 2.9, there exists N, < oo such that for
allk 2N,+1,B(x;)=B(&),i.e, forallk 2N,+1,x{ =0fori € B(X)andforalli €B(®),d] is deter-
mined by equations (2.36), (2.37a,b). Furthermore, it can be shown that with the choice for o, given in
the Corollary statement, the tests in (2.37a) will not fail for Xk > N,+1. Thus, the search direction
d ¢ =@ -dl), k 2N +1, is determined by the unconstrained, partial conjugate gradient method, with
restarts every m + 1 iterations, applied to the unconstrained subspace {x € R" | x' =0,i € B(®)}. It

follows from Corollary 5.1 in [Lue.71] that there exists a finite N > N | such that (2.38) holds. O

Remark 2.12.  In general, when exact line searches are not used, the tests in (2.37a), needed to ensure
global convergence, provide an automatic resetting mechanism for the conjugate gradient method. It is
possible to prove global convergence for a modified version of the PR conjugate gradient method without
requiring any restarts [GiN.92]. However, the step-size A, must then satisfy stronger conditions than the
Armijo-like rule. The accuracy of the line search also affects the conjugacy of the directions obtained by
conjugate gradient algorithms. It is therefore common practice to apply a criterion more stringent than
the Armijo rule for accepting a step-size (for instance, the step-size might also be required to satisfy the
strong Wolfe condition, see [GiN.92]). The convergence results of Theorems 2.7 and 2.9 will still hold

for more accurate line searches (cf. Remark 2.4). O

Extension to upper and lower bounds.  Algorithm Model PD can easily be extended to deal with

upper and lower bounds of the form b/ < x' < bl.i=1,...,n. Merely replace the projection operator
['], with the projection operator [-],, defined forz € R” andi = 1,...,n, by
bli lf Zf < bfi :
214819 21 if bi<zi <bi, (2.40)
bl . iflenl,

and replace the set A, = A (x;) with

A8 {ilbjsxi<bl+ex,) and g/ >0, or bi—e(x,)<xf<bl andg/ <0} . (2.41)

The set /; is defined, as before, as the complement of Apan { 1,2, ..., nj.
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3. COMPUTATIONAL RESULTS.

One source of large-scale optimization problems is discretizations of optimal control problems. An
optimal control problem can be discretized by replacing the differential equations describing the system
dynamics with a system of difference equations that describes some integration algorithm applied to the
differential equations, and by replacing the infinite dimensional function space of controls with a finite
dimensional subspace of parameterized controls. The result is a standard nonlinear programming prob-
lem whose decision variables are the control parameters. The number of decision variables in the non-

linear program is equal to the dimension of the approximating control subspace.

We used Algorithm Model PD to solve a discretization of the following optimal control problem:

2.5
. PP 2 2 2
OCP: ﬂuzn[glzzg] [ Cxi(25)+ L) xi(t)+u=(t)adt ]

subject to
xXy(t)=x5(t) ; x(0)=-5,

Xo(t) = —xy(1) +[1.4 = 0.14x 2 ()xy(t) + 4u(t) ; x50)=-5.

u(t)y=2-41t =151, vr € [0,2.5],
with C a parameter.

The discretization was carried out using a second order Runge-Kutta method (the explicit tra-
pezoidal rule) with u (*) restricted to the subspace of continuous, piecewise linear functions. Specifically,
the decision variable for the discretized problem are u = (% u!,...,u") € R" where u’ = u(t;) are the
values of u (") at the breakpoints #; = i(2.5/1000), i =0, ...,1000. Thus n = 1001. The use of Runge-
Kutta integration for discretization of optimal control problems is described in detail in [ScP.95] where
the discretized problems are shown to be ‘‘consistent approximations’’ to the original optimal control
problem. We utilized the natural coordinate transformation described in [ScP.95] associated with this
discretization in order to prevent unnecessary ill-conditioning. For this case, the transformation is given
by & = Mjfu where, due to continuity imposed at the breakpoints ¢,, My is an n xn diagonal matrix
with diagonal(M) = [%11 --- 11 %]/N.

In addition to the coordinate transformation required by the theory of consistent approximations, we
also pre-scale the problem by multiplying f () by the factor y, where y is defined by

T Other coordinate transformations are also sometimes useful. For example, a coordinate transformation for use with the conjugate gra-
dient method applied to optimal control problems with a special structure is discussed, and shown to be extremely effective, in [Ber.74). Another
possibility is to use the inverse of the diagonal of the Hessian. This matrix can be efficiently computed using a recursive algorithm similar to the
one described in [DuB.89). However, our experience indicates that this is not effective for optimal control problems discretized as described
above.
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S = (1+lugl.)/ (10018 gls) (3.1a)

Bu = [ug—Sgols » (3.1b)

1 (Ou,du);,
Y=7 ) (3.1¢)
2| f (uo+du)—f(ug)—(80,0u),

with [-], is given by (2.40). This pre-scaling makes it likely that a step-size of one is accepted in the first
iteration of the algorithm (y is the distance along the projected steepest descent direction, Su, to the
minimum of a quadratic fit to f(*)) and it acts as a normalization on the problem so that the tests in
(2.5a,b,c) and the numerical termination criterion are less scale sensitive.

For purposes of comparison, we solved the discretized optimal control problem with a projected
steepest descent algorithm, a projected conjugate gradient method and a projected version of the limited
memory quasi-Newton algorithm (L-BFGS) presented in [Noc.80,LiN.89].

The projected steepest descent algorithm uses the search directions d;, = —g,.

For the projected conjugate gradient method we used the search directions given in equations
(2.37a,b,c) with m{ = 1 forall i € A,. After computing a step-size A, that satisfies the Armijo-like rule
in (2.6a), we construct a quadratic approximation g (A) to f (; (A, d; )) such that g (0) = f (), ¢’ (0) = g,
and g (A) = f (ux (A, dy)) and set A’ equal to the minimizer of this quadratic. If f (up (M) < f (up (Ap)),
then A’ is chosen as the next step-size. Otherwise A, is used. This procedure requires one extra function
evaluation per iteration and does not affect the convergence proofs (cf. Remark 2.12).

The L-BFGS algorithm computes an approximation G, to the inverse of the Hessian based on a lim-
ited number of applications of the BFGS quasi-Newton update formula. At each iteration, the algorithm
uses vectors s a U, —u_; and y; A 8k — 8k-1 stored over a fixed number of previous iterations. The
procedure is as follows: Let /4 =min {k,m —1}. Then, at iteration k, Gy is computed from M +1

BFGS updates applied to a starting estimate G,:O of the inverse Hessian (which can be different at each
iteration) according to

G =WVl )GV -~V
k=-m k-m
+ VT e T T V [P
P (V¥ Vk-n?+1 )Sk-n?sk—n? ( ki 41 Vi)
+ VT -oeyT T R
Pk k-n?+2)sk-n?sk-rﬁ (Vk—n?+2 Vi)
+pesi (3.2)

where p; = 1/ (%{s;), Vi =1 = pyy,sf. Here we use / (without any subscript) to denote the nxn identity
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matrix. As in [LiN.89], we let G2 =/ in the first iteration and during restarts, and on other iterations we
let G2 =7, I where Ye = kS )y, /e ,f is a self-scaling term demonstrated in [ShP.78] to markedly
improve the performance of quasi-Newton algorithms. An efficient, recursive procedure for computing
G, g, without explicitly forming any matrices is given in [Noc.80).

The L-BFGS algorithm has proven to be quite effective [ZNB.93]. We used this algorithm, with
M = 12, restricted to the unconstrained subspaces {x € R" | x' =0, i € A; }, to compute d}, i € .
In (2.5a), we chose m{ =, foralli € A,. We also added the following tests:
() Do not use current information y, and s, for Hessian updates if (y; ,s; );, <—0.001lg, ﬂ,f .
(ii) Restartif Id; 17 > 1000y, Ig, 17,
(iii) Restartif (dy,g);, >—0.2y, lgi1?,

With the tests (ii) and (iii), the search direction dj satisfies the conditions in (2.5a,b,c) and therefore this

method is convergent.

The data required by Algorithm Model PD were chosen as follows: a=1/2, B=3/5 M =20,
u)=0fori=1,...,n, and e =0.2 except, for the projected L-BFGS method, o= 1/3 was used to
ensure that a step-size of 1 would be excepted. The values for o, and o, are as given in the reseting tests
for the conjugate gradient method and the L-BFGS method. The minimization routine was terminated

when

(i) xi=O0foralli € A, ,

(ii) lgely, / || <eZ3,(1+ 1f ()),

(iii) f () = f (Up_q) < 10egaen(1 + 1f ()1),

(iv) Mg = tp_qloe < €2, (1 + gy )

where the machine precision, &p,c,%2.2204¢~16. Note that this is a very demanding termination cri-
terion.

With C =0, there were 171 binding constraints at the solution and these were identified after 8
iterations for projected conjugate gradient, after 7 iterations for the projected L-BFGS methods and after
18 iterations for the projected steepest descent method. With C = 100, there were 436 binding con-
straints at the solution and these were identified after 24, 33 and 241 iterations, respectively, for the three
methods.

The number of iterations, function evaluations and gradient evaluations required to reach termina-
tion for problem OCP with C = 0 are given in Table 1. The same information is provided in Table 2 for
problem OCP with C = 100. It is clear that the projected conjugate gradient and the projected L-BFGS
methods perform significantly better than the project steepest descent method.
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Method Function Evaluations Gradient evaluations Iterations
Conjugate Gradient 89 19 18
L-BFGS 45 14 13
Steepest Descent 143 30 30

Table 1: Work done to solve problem OCP with C = 0.

Method Function Evaluations Gradient evaluations Iterations
Conjugate Gradient 290 41 40
L-BFGS 247 46 45
Steepest Descent 1891 356 355

Table 2: Work done to solve problem OCP with C = 100.

The optimal solution, &, of the discretized problem with C = 100 is shown in figure 1.

4. CONCLUSION

We have presented an implementable projected descent algorithm model. Algorithm Model PD,
and proved its convergence for any search directions satisfying the conditions in equations (2.5a,b,c).
This algorithm model solves a common class of problems involving simple bounds on the decision vari-
ables. Furthermore, many problems with simple bounds on the decision variables as well as some addi-
tional general constraints can be converted into the form of problem P using quadratic penalty functions
or augmented Lagrangians. The Algorithm Model PD, when used in conjunction with a conjugate gra-
dient method or the limited-memory BFGS method for determining the unconstrained portion of the
search directions, has the advantage of requiring very little storage and work per iteration. Yet, the rate of
convergence can be expected to be the same as that of the unconstrained conjugate gradient or limited-

memory BFGS methods after a finite number of iterations.
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