

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

RENESTING SINGLE APPEARANCE SCHEDULES

TO MINIMIZE BUFFER MEMORY

by

Shuvra S. Bhattacharyya, Praveen K. Murthy, and
Edward A. Lee

Memorandum No. UCB/ERL M95/43

1 April 1995

RENESTING SINGLE APPEARANCE SCHEDULES

TO MINIMIZE BUFFER MEMORY

by

Shuvra S. Bhattacharyya, Praveen K. Murthy, and
Edward A. Lee

Memorandum No. UCB/ERL M95/43

1 April 1995

RENESTING SINGLE APPEARANCE SCHEDULES

TO MINIMIZE BUFFER MEMORY

by

Shuvra S. Bhattacharyya, Praveen K. Murthy, and
Edward A. Lee

Memorandum No. UCB/ERL M95/43

1 April 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Renesting Single Appearance Schedules to Minimize Buffer Memory

Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee

April 1, 1995

ABSTRACT

Minimizing memory requirements for program and data are critical objectives when syn
thesizing software for embedded DSP applications. In priorwork, it has been demonstrated that
for graphical DSP programs based on the widely-used synchronous dataflow model, an important
class of minimum code size implementations can beviewed asparenthesizations of lexical order-
ings ofthe computational blocks. Such aparenthesization corresponds to the hierarchy ofloops in
the software implementation. In this paper, we present a dynamic programming technique for
constructing a parenthesization that minimizes data memory cost from agiven lexical ordering of
a synchronous dataflow graph. For graphs that do not contain delays on the edges, this technique
always constructs aparenthesization that has minimum data memory cost from among all paren
thesizations for the given lexical ordering. When delays are present, the technique may make
refinements to the lexical ordering while it is computing the parenthesization, and thedata mem
ory cost of the result isguaranteed to be less than or equal to the data memory cost of all valid
parenthesizations for the initial (input) lexical ordering.

Thus, our dynamic programming technique can be used to post-optimize the output for
any algorithm that schedules SDF graphs into minimum code size loop hierarchies. On several
practical examples, we demonstrate that significant improvement can be gained by such post-opti
mization when applied to two scheduling techniques that have been developed earlier. That is, the
result ofeach scheduling algorithm combined with the post-optimization often requires signifi
cantly less data memory than the result ofthe scheduling algorithm without post-optimization. We
also present an adaptation ofour dynamic programming technique for post-optimizing an arbi
trary (not necessarily minimum code size) schedule to optimally reduce the code size.

Aportion ofthis research was undertaken as part ofthe Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U. S. Air Force (under the RASSP program, contract
F33615-93-C-1317), Semiconductor Research Corporation (project 94-DC-008), National Science Foun
dation (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State of Cali
fornia MICRO program, and the following companies: Bell Northern Research, Dolby, Hitachi, Mentor
Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 201
East Tasman Drive, San Jose, California 95134, USA.

P. K. Murthy and E. A. Lee are with the Dept. ofElectrical Engineering and Computer Sciences,
University of California at Berkeley, California 94720, USA.

1. Background

This paper develops a dynamic programming technique for reducing memory require

ments when synthesizing software from graphical DSP programs that are based on the synchro

nous dataflow (SDF) model [10]. Numerous DSP design environments, including a number of

commercial tools, support SDF or closely related models [9, 14, 13, 15, 16]. In SDF1, aprogram

is represented by a directed graph in which each vertex (actor) represents a computation, an edge

specifies a FIFO communication channel, and each actor produces (consumes) a fixed number of

data values (tokens) onto (from) each output (input) edge per invocation.

Fig. 1 shows an SDF graph. Each edge is annotated with the number of tokens produced

(consumed) by its source (sink) actor, and the "D" on the edge from A to B specifies a unit delay.

Given an SDF edge e, we denote the source and sink actors by src (e) and snk (e) , and we

denote the delay by delay (e) . Each unit of delay is implemented as an initial token on the edge.

Also, prod (e) and cons (e) denote the number of tokens produced by src (e) , and consumed

bysnk(e) .

The first step in compiling an SDF graph is to construct a valid schedule, which is a

sequence of actor invocations that invokes each actor at least once, does not deadlock, and pro

duces no net change in the number of tokens queued on each edge. For each actor in the valid

schedule, a corresponding code block, obtained from a library of predefined actors, is instantiated.

The resulting sequence of code blocks is encapsulated within an infinite loop to generate a soft

ware implementation of the SDF graph [8].

In [10], efficient algorithms are presented to determine whether or not a given SDF graph

has a valid schedule, and to determine the minimum number of times that each actor must be fired

in a valid schedule. We represent these minimum numbers of firings by a vector qG, indexed by

B
2 d ^\zs^ s

Figure 1. A simple SDF graph.

1. This should not be confused with the use of "synchronous" in synchronous languages [1].

the actors in G. We refer to qG as the repetitions vector of G. Given an edge e in G, we define

TNSE (e) s qG (src (e)) xprod(e) = qG (snk (e)) x cons (e) . (1)

Thus, TNSE (e) is the total number oftokens produced onto (consumed from) e inone period of

a valid schedule. The equality ofthe two products in (1) follows from the definition ofthe repeti

tions vector. ForFig. 1, q (A, B, C) = (3,6,2), and TNSE ((A, B)) = TNSE ((5, C)) = 6.

Onevalid schedule for Fig. 1 is B (2AB) CA (3B)C. Here, a parenthesized term

(nSxS2 ••-Sk) specifies n successive firings ofthe "subschedule" 5X52.. .Sk, and we may trans

late such a term intoa loop in the target code. This notation naturally accommodates therepresen

tation ofnested loops. We refer toeach parenthesized term (nSxS2 ...Sk) as a schedule loop. A

looped schedule is a finite sequence Vx V2...Vk, where each Vi iseither an actor ora schedule

loop.

A more compact valid schedule for Fig. 1 is (3A) (2 (35) C) . We call this schedule a

singleappearanceschedulesinceit contains only onelexical appearance of eachactor. Toa

good firstapproximation, any validsingleappearance schedule gives theminimum code size cost

for in-line codegeneration. This approximation neglects second order affects such as loop over

head andthe efficiency of data transfers between actors. Systematic synthesis of single appear

ance schedules is described in [3].

Given an SDFgraph G, a valid schedule S, and an edge e in G, maxjokens (e, 5)

denotes the maximum number of tokens that are queued on e during an execution of S. For

example, if for Fig. 1,SX = (34) (65) (2C) and 52 = (3/1(25)) (2C) ,then

maxjokens ((A, 5), Sj) =7 and maxjokens ({A, B)yS2) = 3. We define the buffermem

ory requirement of a schedule S by bufferjnemory (5) s V maxjokens (e, S), where the

summation is over all edges in G. Thus, bufferjnemory (52) = 7 + 6 = 13, and

bufferjnemory (S2) = 3 + 6 = 9.

The lexical ordering of a singleappearance schedule S, denoted lexorder (5), is the

sequence ofactors (Av A2,..., An) such that each At ispreceded lexically by Av Av ...iAi_l.

Thus, lexorder ((2 (35) (5C)) (1A)) = (5, C,A) . Given an SDFgraph, an order-optimal

schedule is a singleappearance schedule that hasminimum buffer memory requirement from

among the valid single appearance schedules that have a given lexical ordering

In the model of buffering implied by our "buffer memory requirement" measure, each

buffer is mapped to an independent contiguous block ofmemory. Although perfectly valid target

programs can be generated without this restriction, it can be shown that having a separate buffer

on each edge is advantageous because it permits full exploitation of the memory savings attain

able from nested loops, and it accommodates delays without complication [11]. Another advan

tage of this model is that by favoring the generation of nested loops, the model also favors

schedules that have lower latency thansingle appearance schedules that are constructed to opti

mize various alternativecost measures [11]. Combining the analysis and techniques that we

develop in this paper with methodsfor sharing storageamong multiplebuffers is a usefuldirec

tion for further study.

In this paperwe presenta dynamic programming technique for post-processing a single

appearance schedule with the goal of generatinga modified single appearance schedule that has a

significantly lower buffer memory requirement. The technique is anextension of thealgorithm

developed in [12] for constructing single appearance schedules forchain-structured SDF graphs,

and a basic version of this technique, called DynamicProgrammingPost Optimization

(DPPO), thatapplies todelayless, acyclic graphs was outlined in [12]. In this paper, wegive a

detailed specification of DPPO, wegeneralize DPPO tohandle delays and arbitrary topologies,

andweshowthatwhile DPPO always preserves thelexical ordering of the inputschedule, our

generalization ofDPPO, called GDPPO, may change the lexical ordering (for a graph that has

delays) and thus, that it may compute a schedule that has lower buffer memory requirement than

allsingle appearance schedules thathave the same lexical ordering as theinput schedule. Since

theintroduction of thebasic version ofDPPO in [12], we have also developed and implemented

two heuristics, called APGAN and RPMC, forefficiently constructing single appearance sched

ules that have low buffer memory requirement [2,11] for acyclic graphs. Inthis paper, we present

experimental results thatdemonstrate theability ofGDPPO tosignificantly improve theschedules

constructed by APGAN and RPMC for practicalSDF systems.

A distinguishing characteristic of this work, as compared toother work on memory opti

mizations for SDFandrelated models, is thatit focuses on thejointreduction of both code and

data memory requirements for uniprocessor implementations. Incontrast, Govindarajan, Gao, and

Desai havedeveloped scheduling algorithms to minimize data memoryrequirements, without

considering codesize, in a parallel processing context [7]. Also, Lauwereins, Wauters, Ade, and

Peperstraete have proposed anextension to SDF called cyclostatic dataflow, which allows an

important class of applications to bedescribed in such awaythat significantly less tokentraffic is

required than thebufferactivity that would result from thecorresponding pure-SDF implementa

tions [4]. However, theimpact of this model oncode sizehas notbeen explored in depth, nor have

codesize optimizations been developed that exploit theunique features of cyclostatic dataflow.

In [17], Ritz, Willems, and Meyr present techniques for minimizing the memory require

ments of a class of single appearance schedules that rninimize the rate of context-switches

between actors. Theseschedules are called flat schedules since theydo not apply anynested

loops. As implied above, the memory requirements associated with flat schedules are often signif

icantly larger than the nested-loop schedules that wediscuss in this paper, even if techniques are

applied to share memory among multiple buffers for the flat schedules [11]. For example for the

mobile satellite receiver example discussed in [17], an optimum single appearance schedule under

the criterion of Ritz,Willem and Meyr requires 1920 units of memory. In contrast, we have found

that the minimum achievable buffer memory requirement over all (not necessarily flat) single

appearance schedules is 1542 for this example, and this minimum value is achieved by the

APGAN heuristic, which is discussed in [2].

When there is enough memory to accommodate the minimum context-switch schedules of

[17], it is possible that these schedules will result in somewhat higher throughput than the sched

ules discussed in this paper, although the difference incontext-switch overhead can often be sig

nificantly mitigated by the techniques described in [15]. However, when memory constraints are

severe, the techniques discussed in this paper are superior.

The basic structure of the dynamic programming techniques developed in this paper and

in [12] was inspired byGodbole's dynamic programming algorithm for matrix-chain multiplica
tion, which is presented in [6].

2. Dynamic Programming Post Optimization

Suppose that G is a connected, delayless, acyclic SDFgraph, S is valid single appearance

schedule for G, lexorder (S) = (Av A2 An) , and S00 is an order-optimal schedule for

(G, lexorder (S)) . If G contains at least two actors, then it can be shown [2] that there exists a

valid schedule of the form SR = (iLBL) (iRBR) such that

bufferjnemory (SR) = bufferjnemory (S00) and for some p G {1, 2, ...,(/*- 1) } ,

lexorder(BL) = (Al,A2...,Ap) and lexorder (BR) = (Ap+vA 2, ..., An) .Furthermore,
from the order-optimality of SQ0, clearly, (iLBL) and (iRBR) must also be order-optimal.

From this observation, we can efficiently compute an order-optimal schedule for G if we

aregiven an order-optimal schedule Sa b for the subgraph corresponding to each proper subse

quence Aa, Aa+V ...,Ab of lexorder (S) such that (1). {b - a) <, (n - 2) and (2). a = 1 or

b = n . Given these schedules, an order-optimal schedule for G can be derived from a value of

x, 1 <,x<n that minimizes

bufferjnemory (Sx x) + bufferjnemory (Sx+l n) + Y TNSE (e) , where
eek,

Es= {e\(src{e)e {AVA2, ...,AX} and snk(e) € {Ax+1,Ax+2, ...,An})} isthesetof

edges that "cross the split" if the schedule parenthesization is split between Ax and A , .

DPPO is based on repeatedly applying this idea in a bottom-upfashion to the given lexical

ordering lexorder (S) . First, all two actor subsequences (AVA2) , (A2, A3) , ..., (A VA)
are examined and the minimum buffer memory requirements for the edges contained in each sub

sequence are recorded. This information is then used to determine an optimal parenthesization

split and the minimum buffer memory requirementfor each three actor subsequence

(Ap Ai+ p Ai+2) »the minimum requirements for the two- and three-actor subsequences are used

to determine the optimal split and minimum buffermemory requirement for each four actor sub

sequence; and so on, until an optimal split is derived for the original n-actor sequence

lexorder (S) . An order-optimal schedule can easily beconstructed from a recursive, top-down

6

traversal of the optimal splits [11].

In the r th iteration of this bottom up approach, we have available the minimum buffer

memory requirement b [p, q] for each subsequence (A ,A v ».., A) that has less than or

equal to r members. To compute the minimum buffer memory requirement b [ij] associated

with an r+1-actor subchain (Ai$Ai+v ,.„Aj) , we determine avalue of
k € {/, i + 1,..., j - 1} that minimizes

b[i,k] +b[k+l,j] +citj[k] , (2)

where b[x, x] = 0 for all x and ci . [£] , the memory cost at the split if we split the subse

quence between AA and Ak+l is given by [2]1

TNSE(e)

citJ[k] =
gcd[{qG(Ax)\(i£x£j)}) (3)

where

Es= {e\[src(e)€ {AitAi+v ...tAk} and snk(e) €{^i +1MA.+2, ...My}l} (4)

is the set of edges that cross the split.

3. Extension to Arbitrary Topologies

DPPO can beextended toefficiently handle graphs that are not necessarily delayless,

although a few additional considerations arise. We refer to our extension as Generalized DPPO

(GDPPO). First, ifdelays are present, then lexorder (S) , the lexical ordering ofthe input sched

ule, is not necessarily a topological sort. As a consequence, generally not all parenthesizations of

the input schedule will be valid. For example, suppose that we aregiven the valid schedule

1. The symbol gcd denotes the greatest common divisor.

7

5= (6A) (5(2C) (3B)) for Fig. 2. Then lexorder (S) = (A,C,B) clearly is not atopologi

cal sort,andit is easilyverified thatthe schedule that corresponds to splitting the outermost paren

thesization between C and B — (2(3A) (5C)) (155) — is not a valid schedule since there is

not sufficient delay on the edge (5, C) to fire 10invocations of C before a single invocationof

B.

Thus, we seethat when delays are present, theset Es defined in (4) no longer generally

gives all of the edges that cross the parenthesization split.We must also examine the set of back

edges

Eb ={e\[snk(e) e{Ai,Auv...,Ak} andsrc(e) £{Ak+vAk+2t...,AJ}>j} . (5)

Each e € Eb must satisfy

, , , . . TNSE (e)delay (e) £ - ^ , (6)
gcd^{qG(Ax)\(i£x£j)}

otherwise the given parenthesization split will give a schedule that is not valid. To take into

account any nonzero delays onmembers in Es, and the memory cost of each of theback edges,

the cost expression of (2) for the given split gets replaced with

YTNSE(e)

b[i, k]+b[k+ ij] +— gt '̂ +y delay (*) +Y. del°y (*) • 0)gcd[{qG(Ax)\(i<.x£j)}j eek, ettb

Expression (7) gives the cost of spliting the subsequence (A., Ai+l,...t A) between Ak

& Kit 6D >©
Figure 2. An SDF graph used to illustrate GDPPO applied to SDF graphs that have
nonzero delay on one or more edges. Here q (A, B, C) = (6,15,10).

8

and Ak+1 assuming that the subsequence (A.,Ai+v ...,Ak) precedes (Ak+vAk+2,...tAj) in
thelexical order of the schedule that willbe implemented. However, if (6) is satisfied for all"for

ward edges" e € E$y it may be advantageous to interchange thelexical order of

(At> Ai+ 2,..., Ak) and (Ak+ v Ak+2,.... Afl .Such areversal will be advantageous whenever
the reverse split cost defined by

y TNSE(e)

b[i,k] +b[k+l,j] + —££*fc _+ y delay(e) + y delay(e) (8)- t - + y delay (e) + V delay {<
gcd[{qG(Ax)\(i£x£j)}j eTkb eVk,

is less than the forward split cost computed from (7) — that is, whenever

y TNSE (e) < Y TNSE (e) . (9)
eeib ezks

The possibility for reverse splits introduces a fundamental difference between GDPPO

and DPPO: if one or more reverse splits are found to be advantageous, then GDPPO does not pre

servethe lexicalordering of the original schedule. This is not a problem sincein suchcases the

result computed by GDPPO will necessarily have abuffer memory requirement that is less than

that ofan order-optimal schedule for lexorder (S) .Onthe contrary, it suggests that GDPPO may

beapplied multiple times in succession to yield more benefit than asingle application — that is,

GDPPO can in general be applied iteratively, where the iterative application terminates when the

schedule produced byGDPPO produces no improvement over the schedule computed in the pre

vious iteration.

Fig. 3 shows anexamplewhere multiple applications of GDPPO are beneficial. Here

q (A, B, C) = (2,1,2), and theinitial schedule is S = (2/1) B (2C), so the initial lexical

ordering is (A, B, C) .Upon application of GDPPO, the minimum cost for the subsequence

(A, B) is found to be 2, and thermnimum cost for the subsequence (B, C) is found to occur

with areverse split that has acost of 2. The rmnimum cost for the "top-level" subsequence

(A, Bt C) is taken as the minimum cost over the cost if the parenthesization is split between A

and B, which is equal to 0 +2+5+0 = 7 from (8), and the minimum cost if the split occurs

between B and C, which is 2 +0 +7+0 = 9. Thus, the former split is taken, and theresult of

applying GDPPO once to S is the schedule S1 = (2A) (1 (2C) (IB)) , which has abuffer

memory requirement of 7, and a lexical ordering that is different from that of S.

Since lexorder (5X) * lexorder (S), it is conceivable that applying GDPPO to Sx can

further reduce the buffer memory requirement. Applying GDPPO to Sl, wegenerate aminimum

costof 1 — which corresponds to another reverse split — for (4, C) , and we generate amini

mum costof 2 for (C, B). Thus, we seethat splitting (At C,B) between A and C gives acost

of 0 + 2 + 5 +0 = 7, while splitting between C and £ gives a cost of 1+0 + 2 + 2 = 5. The

result of GDPPO is thus the schedule S2 = (2CA) B, and abuffer memory requirement of 5 . It

iseasily verified that application ofGDPPO to S2 yields no further improvement, and thus itera

tive application of GDPPO terminates after three iterations.

Although the iterative application of GDPPO is conceptually interesting, we havefound

that for all of the practical SDF graphs that wehave applied it to, termination occurred after only

2 iterations, which means that no further improvement was ever generated by a second applica

tion of GDPPO. This suggests that when compile-time efficiency is asignificant issue, it maybe

preferable to bypass iterative application of GDPPO, and immediately accept the schedule pro

duced by the first application.

GDPPO can be implementedefficiently by updating forward and reverse costs incremen

tally. If weare examining the splits ofthe subsequence (Ait A.+v ...,A) , and we have com

puted the forward and reverse split costs Fk and Rk associated with the split between Ak and

Figure 3. An illustration of iterativeapplication of GDPPO.

10

Ak+1»i'^ k< U- 1) »then the splits costs Fk+l andRk+1 associated with the split between

Ak+1 and Ak+2 can easily be derived by examining the output and input edges ofAk+x. To

ensure that weignore reverse splits (forward splits) that fail tosatisfy (6) for all e € E (e e £.)

acost of Ms[1+£ (77VS£ (e) +<fe/fly (e))) is added to the reverse (forward) split cost for

any input edge (output edge) eofAk+1 whose source (sink) is amember of

(^*+2' ^*+3» •••» i4 •), and that does not satisfy (6). Similarly, for each output (input) edge e of

Ak+1 whose sink (source) is contained in (Ait Ai+V ..., Ak),and that does not satisfy (6), M is

subtracted from Rk+1 (Fk+ x) since such an edge nolonger prevents thesplit from being valid.

Choosing M so large has the effect of"invalidating" any cost CM that has M added to it (without

a corresponding subtraction) since anyminimal valid schedule has a buffermemory requirement

less than M, and thus, any valid split will be chosen over asplit that has cost CM.

If forward andreverse costs areupdatedin this incremental fashion, then GDPPOattains a

time complexity of 0\ nv\l where nv is the number of actors, ifwe can assume that the number
of input and output edges of each actor is always bounded by some constant a. In the absenceof

such abound, GDPPO has time complexity that is o\ nenv) ,where ne is the number of edges in
the input graph.

4. Experimental Results

In [2], two heuristics, called APGAN and RPMC, are described for constructing single

appearance schedules thatminimize the buffer memoryrequirement. APGAN is a bottom-up

clustering technique thathas been found to perform well for graphs thathaveregular topological

structures and sample-rate changes. RPMC is a top-down techniquebased on a generalized mini-

1.Afunction f(x) hO(g (x)) iffor sufficiently laige x. /(*) isbounded above byapositive real multiple
ofg(x).

11

mum-cut operation that usually does not perform as well as APGAN on regular graphs, but often

significantly outperforms APGAN on graphs that have irregularstructure. Thus, APGAN and

RPMC are complementary, — when one of the techniques fails to construct a good schedule, the

other can be expected to be find one [2].

Fig. 4 shows a screendump from the Ptolemy prototypingenvironment [5] that containsan

SDF description of a four channel, nonuniform filter bank. The single appearance schedule

obtained by APGAN on this system is

(3(3k(3ab)cd(2e)h) (Inugj) (2/(2/))) (4/(2o)<?) (4mpr) (3(2(25)/) (3(2w)xv(3yzA))) ,

andthe resulting buffer memory requirement is 153. After post-processing the schedule with

GDPPO, we obtain the schedule

(3(3(3ab)cd(2e)kh) (2gnufj)) (4(3i)l(2o)qmpr(3s)) (3(2t) (3(2u>)jrv(3vz,4))) ,

which has a buffer memory requirement of 137 — a 10.5% improvement. Notice that in this

example, GDPPO haschanged the lexical ordering, and thus, one ormorereverse splits were

found to be beneficial.

The schedule returned by RPMChas abuffermemoryrequirement of 131, whichis lower

than that obtainedby the combination of APGAN andGDPPO. However,GDPPO is able to

improve the schedule obtained by RPMC even further. The result computed by GDPPO when

applied to the schedule derived by RPMC is

(3(3(3ab)dc) (2(3e)fgnj) (3kh)) (4(3i)mpl(2o)qr(3s)) (3(2tu(3w)) (3.rv(3vM))) ,

A Nonuniform fiiterbank.

The highpass component retains 1/3 of the
spectrum at each stage while the towpass

retains 2/3 of the spectrum

3c=l2 ° OrrJU
i r^®H>-^rSB

»i
8D

20D
—id

BlW
mw

AnttyBis sectem 8ynthMte Mcttorw

Figure 4. Non-uniform filterbank example. The SDF parameters have been
shown wherever they are different from unity.

12

which has a buffer memory requirement of 128.

Table 1 shows the results of applying GDPPO to the schedules generated by APGAN and

RPMCon several practical SDF systems. The columns labeled "% Impr." showthepercentage of

buffer memory reduction obtained by GDPPO. The QMF tree filter banks fall into a class of

graphs for which APGAN is guaranteed to produce optimalresults [2], and thus there is no room

for GDPPO to produce improvement when APGANis applied to these twoexamples. Overall, we

see thatGDPPO produces animprovement in 11 outof the 14heuristic/application combinations.

A "significant" (greater than 5%) improvement is obtainedin 9 of the 14 combinations; the mean

improvement over all 14 combinations is 9.9%; and from theCD-DAT and DAT-CD examples,

we see that it is possible to obtain very large reductions in the buffermemoryrequirement with

GDPPO.

Table 1. Performanceof GDPPOon several practical SDF systems.

Application
APGAN

only
APGAN

+DPPO

%

Impr.
RPMC

only
RPMC

+ DPPO

%

Impr.

Nonuniform filter bank

(1/3,2/3 splits, 4 channels)
153 137 10.5 131 128 2.34

Nonuniform filter bank

(1/3,2/3 splits, 6 channels)
856 756 11.7 690 589 14.6

QMF tree filter bank
(8 channels)

78 78 0 92 87 5.43

QMF tree filter bank
(6 channels)

166 166 0 218 200 8.26

Two-stage fractional
decimation system

140 119 15.0 133 133 0

CD-DAT

sample rate conversion
396 382 3.54 535 400 25.2

DAT-CD

sample rate conversion
205 182 11.2 275 191 30.5

13

5. Adaptation to Minimize Code Size for Arbitrary Schedules

We have applied the basicconcept behind DPPO to derive an algorithm that computes an

optimally compact looped schedule (minimum code size) for an arbitrary sequence of actor fir

ings. For example, consider the SDFgraph in Fig. 5, and suppose that we are given the valid firing

sequence a = ABABCBC (this firing sequence minimizes the buffer memory requirement over

all valid schedules). If the code size cost (number of program memory words required) for a code

blockfor A is greater than the codesizecostfor C, then the optimally compact looped schedule

for a is (2AB) CBC, whereas ABA (2BC) is optimal if C has a greatercode size cost than A.

To understand how dynamic programming can be used to compute an optimally compact

loop structure, suppose that a = AlA2...An is the given firing sequence, and let

& - AiAi+l...Aj be any subsequence ofa (1 < i <j <. n). Ifthe optimal loop structures for all

0' - 0 -length subsequences of a are available, then we determine the optimal loop structure for

a' by first computing Ck • Z•k+Zk +x, for k6 {/,i+ 1,...,j - 1} , where Zx vdenotes the

minimum code size cost for the subsequence AX,AX+V ...,Av. The value ofk that minimizes Ck
gives an optimum point atwhich to "split" the subsequence ifAiAi +l.. .A- are not to be executed
through a single loop.

To compute the minimum cost attainable for a" ifA{A. j...A-are to be executed through

asingle loop, we first determine whether or not & = A.Ai...Ai.lf this holds, then o' can be exe

cuted through a single loop ((./' - i+ l)A^ , and the code size cost is taken to be the code size

cost of A{ plus the code size overhead CL ofa loop. If o' * AA....A•, we determine whether or

not & = AiAi+1AiAi+1...AiAi +1, and if so, then & can be implemented as

(((J - i + 1) /2) A.A.+]) , and the code size cost is taken to be the sum of CL and the costs of

•^ B j©
Figure 5. An SDF graph used to illustrate the problem of finding an optimally com
pact loop structure for an arbitrary firing sequence.

1.By afiring sequence, wesimply mean a schedule that contains no loops.

14

Ai and Ai+ j. Next, if a'*A.Ai...Ai and a'*AiA.+1AiA.+ l...AiAi+1, then we determine

whether ornot a' = A(A{+iAi+2...AiAi+lAi+2.Jf this holds then a' can be implemented as

((0'-' +1) /3) 5L (i4,.i4/+ xAi+2)) , where SL (AjAu }Ai+2) is an optimal loop structure for

AiAi+1Ai +2. Itiseasily seen that an optimal loop structure L for executing AiAi+1...A: through

asingle loop can bedetermined (if one exists) by iterating this procedure |_ 0' - i + 1)/2 J times,

where |_* J denotes the floor operator. If one or more loop structures exist for executing

AgAi+1.. .Aj through asingle loop, then the code size cost ofthe optimal loop structure L is com

pared to thermnimum value of Ck, i <> k<j, to determine an optimal loop structure for

AiAi +1.. .Aj; otherwise the optimal loop structure for A(A. +1.. .A. is taken to be that correspond
ingto theminimum value of Ck.

The time complexity of this technique for finding an optimal loop structure for the subse

quence A(Ai+ j...Aj,given optimal looping structures for all (J - i) -length subsequences, is

0\^(j-i+l) J,and time complexity of the overall algorithm is o\ nJ,where nis the number
of firings in the input firing sequence. Thus, the problem of determining an optimal looping struc

tureis of polynomial complexity when the size of aproblem instance is takento be the numberof

firings in the given firing sequence. However, it should benoted that there is nopolynomial func

tion P (m) such that the number of firings in a valid schedule (defined as the sum of the entries in

the repetitions vector) is guaranteed tobeless than P (m) for an arbitrary m-actor SDF graph.

Thus, unlike DPPO and GDPPO, the algorithm developed in this section is notof polynomial

complexity in the size of the given SDFgraph.

6. Conclusion

This paper has developed a dynamic programming postoptimization, called GDPPO, for

reducing the data memory cost of software implementations of synchronous dataflow graphs that

niinimize code size for in-line code generation. Wehave presented data on several practical exam

ples that shows that GDPPO can produce significant improvements when appended toeither of

15

two existing heuristics, APGAN and RPMC, for constructing minimum code size schedules.

Since these two heuristics are fundamentally different in structure — one is based on top-down

partitioning, and the other is based on bottom-up clustering— we expect that GDPPO can yield

similar benefits when used to improve the performance of alternative scheduling algorithms. We

have also presented an adaptation of GDPPO to minimize the code size of an arbitrary synchro

nous dataflow schedule.

References

[1] A. Benveniste and G. Berry, "The Synchronous Approach to Reactive and Real-Time Sys
tems," Proceedings of the IEEE, September, 1991.

[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Two Complementary Heuristicsfor Trans
lating Graphical DSP Programs into Minimum Memory Implementations, Memorandum No.
UCB/ERL M95/3, Electronics Research Laboratory, University of California at Berkeley, Janu
ary, 1995, WWW URL: http://ptolemy.eecs.berkeley.edu/papers/PganRpmcDppo.

[3] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, "A Scheduling Framework for Minimiz
ing Memory Requirements of Multirate DSP Systems Represented as Dataflow Graphs," VLSI
Signal Processing VI, IEEE Special Publications, 1993.

[4] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, "Static Scheduling of Multi-Rate
and Cyclo-Static DSP-Applications," VLSI SignalProcessing VII, IEEE Press, 1994.

[5] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systems," International Journal of Computer Simulation, April,
1994.

[6] S. S. Godbole, "On Efficient Computation of Matrix Chain Products," IEEE Transactions on
Computers, September, 1973.

[7] R. Govindarajan, G. R. Gao, and P. Desai, "Minimizing Memory Requirements in Rate-Opti
mal Schedules," Proceedings of theInternational Conference on Application Specific Array Pro
cessors, August, 1994.

[8] W. H. Ho, E. A. Lee, and D. G. Messerschmitt, "High Level Dataflow Programmingfor Digi
tal Signal Processing," VLSI Signal Processing III, IEEE Press, 1988.

[9] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren,
"GRAPE: A CASETool for DigitalSignalParallel Processing," IEEE ASSP Magazine, April,
1990.

[10] E. A. Lee and D. G. Messerschmitt, "StaticScheduling of Synchronous Dataflow Programs

16

for Digital Signal Processing," IEEE Transactions on Computers, February, 1987.

[11] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, Combined Code and Data Minimization for
Synchronous Dataflow Programs, Memorandum No. UCB/ERL M94/93, Electronics Research
Laboratory, University of California atBerkeley, November, 1994, WWW URL: http//
ptolemy.eecs.berkeley.edu/papers/jomtCodeDataMinirnize.

[12] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, "Minimizing Memory Requirements for
Chain-Structured Synchronous Dataflow Programs," Proceedings ofthe International Conference
on Acoustics,Speechand SignalProcessing, April, 1994.

[13] D.R. O'Hallaron, The Assign Parallel Program Generator, Memorandum CMU-CS-91-141,
School of Computer Science, Carnegie Mellon University, May, 1991.

[14] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, "Software Synthesis for DSP Using Ptolemy," Jour
nal ofVLSI SignalProcessing, January, 1995.

[15] D. B.Powell, E. A. Lee, and W. C. Newman, "Direct Synthesis of Optimized DSP Assembly
Code from Signal Flow BlockDiagrams," Proceedings ofthe International Conference on Acous
tics, Speech, and Signal Processing, March, 1992

[16] S.Ritz, M. Pankert, and H. Meyr, "High Level Software Synthesis for Signal Processing Sys
tems,"Proceedings of the International Conference on Application Specific Array Processors,
August, 1992.

[17] S. Ritz, M. Willems, and H. Meyr, "Scheduling for Optimum Data Memory Compaction in
Block Diagram Oriented Software Synthesis," Proceedings of the International Conference on
Acoustics, Speech and SignalProcessing, to appear, 1995.

17

	Copyright notice 1995
	ERL-95-43

