

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

ENCODING PROBLEMS IN LOGIC SYNTHESIS

by

Tiziano Villa

Memorandum No. UCB/ERL M95/41

5 June 1995

ENCODING PROBLEMS IN LOGIC SYNTHESIS

by

Tiziano Villa

Memorandum No. UCB/ERL M95/41

5 June 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Encoding Problems in Logic Synthesis

by

Hziano Villa

Doctor of Philosophy in Engineering:

Electrical Engineering and Computer Sciences

University of Califomia at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

A key step in the implementation of a digital system is to map a given symbolic repre

sentation into an implementable representation with two-valued logic variables. This step is called

encoding and it impacts area, speed, testability and power consumption of the realized circuit.

I focus on algorithms to encode symbolic input and output variablesof finitestatemachines

(FSM's) represented by state transitiongraphs (STG's) or state transition tables (STT's), when the

cost function is minimiun two-level area. Various techniques developed here were applied or are

applicable also to encoding problems with different cost functions and objectives. The technical

contributions can be divided into two parts: algorithms based on heuristic symbolic minimization

and algorithms based on minimization of generalized prime implicants (GPI's).

I presenttwo main results about symbolicminimization: a new procedureto find minimal

two-level symbolic covers,under face, dominance and disjunctiveconstraints, and a unified frame

to check encodeability of encoding constraints and find codes of minimum length that satisfy

them. This frame has been used for various types of encoding constraints arising in problems that

range from encoding for minimum multi-level representation to race-free encoding ofasynchronous

FSM's. Experiments for different applications are reported.

Then I present two main results on symbolic minimization using GPI's: an implicit

procedure to compute minimum or minimal encodeable covers of GPI's, and an implicit algorithm

to solve table covering problems. The implicit procedure to find minimum encodeable covers of

GPI's features an implicit algorithm to check encodeability of encoding constraints, and it uses the

implicit table solver. The latter algorithm is a general binate table solver and as such it is applicable

to a variety of other applications. It has been applied also to select implicitly minimum contained

behaviors in FSM state minimization. In the second part of the thesis the emphasis is on design

of algorithms based on the manipulation of binary decision diagrams (BDD's). The reason is that

symbolic minimization requires the construction and manipulation of very large sets that can be

often constructed efficiently with BDD's.

Professor Alberto L. Sangiovanni-Vincentelli
Dissertation Committee Chairman

A mia madre, Marta Ricorda, e a mio padre, Franco Villa,

e in memoria dei miei nonni, Cleonice e Giuseppe, Melania e Valente

To my mother, Marta Ricorda, and to my father. Franco Villa,

and in memory of my grandparents, Cleonice and Giuseppe, Melania and Valente

Ill

IV

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Logic Synthesis of Sequential Behaviors 1
1.2 The Encoding Problem: from Symbolic to Boolean domain 3
1.3 Thesis Overview 7

2 Definitions 11

2.1 Sequential Functions and their Representation 11
2.2 Finite State Machines 11

2.3 Taxonomy of Encoding Problems 17
2.4 Behavior vs. Structure in Encoding Problems 19
2.5 Boolean Algebras and Boolean Functions 21
2.6 Discrete Functions as Boolean Functions 22

2.7 Two-level Minimization of Multi-Valued Functions 26

2.8 Multi-level Minimization of Multi-Valued Functions 29

2.9 Multiple-Valued Relations 30
2.10 Binary Decision Diagrams 31

3 Complexity Issues 33
3.1 Computational Complexity 33
3.2 Counting State Assignments 42

4 Previous and Related Work 45

4.1 Algorithms for Optimal Encoding 45
4.1.1 Early Contributions 46
4.1.2 Encoding for Two-levellmplementation 48
4.1.3 Encoding for Multi-levellmplementation 54
4.1.4 Experimental Results 62

4.2 Relation of State Assignment to Other Optimization Steps 67
4.2.1 State Assignment and State Minimization 67
4.2.2 State Assignment and State Minimization 69

CONTENTS V

4.2.3 State Assignment and Testability 70

5 Symbolic Minimization 71

5.1 Introduction 71

5.2 Encoding for Two-levellmplementations 73
5.2.1 Multi-valued Minimization 73

5.2.2 Symbolic Minimization 74
5.2.3 Complemess of Encoding Constraints 76

5.3 A New Symbolic Minimization Algorithm 78
5.3.1 Stmcture of the Algorithm 78
5.3.2 Slice Minimization and Induced Face and Dominance Constraints 83

5.4 Symbolic Reduction 83

5.5 Symbolic Oring 88
5.6 Ordering of Symbolic Minimization 91
5.7 Satisfaction of Encoding Constraints 92
5.8 Symbolic Minimization by Example 93

5.8.1 The Oring Effect in Two-level Logic 93
5.8.2 A Worked-out Example of Symbolic Minimization 95

5.9 Experimental Results 102
5.10 Conclusions 107

6 Encoding Constraints 109
6.1 Introduction 109

6.2 Statement and Complexity of the Encoding Problems Ill
6.3 Definitions 113

6.4 Abstraction of the Problem 114

6.5 Input Constraint Satisfaction 116
6.5.1 Efficient Generation of Prime Dichotomies 117

6.6 Input and Output Constraint Satisfaction 119
6.6.1 Output Encoding Constraints 119
6.6.2 Satisfiability of Input and Output Constraints 122
6.6.3 Exact Encoding of Input and Output Constraints 127

6.7 Bounded Length Encoding 129
6.7.1 Heuristic Algorithm for Input Constraints 132

6.8 Other Applications 135
6.8.1 Input Encoding Don't Cares 135
6.8.2 Distance-2 Constraints 136

6.8.3 Asynchronous State Assignment 137
6.8.4 Logic Decomposition 137

6.8.5 Logic Partitioning 137
6.8.6 Limitations of Dichotomy-based Techniques 138

6.9 Results 138

6.10 Conclusions 142

vi CONTENTS

7 Generalized Prime Implicants 145
7.1 Introduction 145

7.2 Basic Definitions 147

7.2.1 Finite State Machines 147

7.2.2 Multi-valued Functions 148

7.3 Generalized Prime Implicants 150
7.3.1 Definition of Generalized Prime Implicants 150
7.3.2 Generalized Prime Implicants by Consensus Operation 153
7.3.3 Encodeability of Generalized Prime Implicants 155
7.3.4 Sufficiency of GPI's 157

7.4 Reduction of GPI's Computation to MV Primes Computation 158
7.4.1 An Example 159
7.4.2 Definition of the Transformation 160

7.4.3 Correctness of the Transformation 161

7.4.4 Definitionof a Max-Min Family ofTransformations 168
7.5 Relation between GPI's and Primes of Encoded FSM's 169

7.5.1 Minimum Cover of Encoded FSM and Minimum Cover ofEncoded GPI's 169

7.5.2 Primes ofEncoded FSM vs. Primes of Encoded GPI's 170

7.5.3 An Analysis Procedure 177

8 Minimization of GPI's 179

8.1 Reduction of GPI Minimization to Unate Covering 179
8.1.1 Exact Selection of an Encodeable Cover of GPI's 190

8.1.2 Approximate Selection of an Encodeable Cover of GPI's 193
8.2 Reduction of GPI Minimization to Binate Covering 194
8.3 GPI's and Non-Determinism 198

8.3.1 Symbolic Don't Cares and Beyond 198
8.3.2 GPI's for Decomposition 203

9 Encodeability of GPI's 209
9.1 ATheory of Encodeability of GPI's 209

9.1.1 Efficient Encodeability Check of GPI's 209
9.1.2 Encoding of a Set of Encodeable GPI's 215
9.1.3 Updating Sets and Raising Graphs 217
9.1.4 Choice of a Branching Column 224
9.1.5 Computation of a Lower Bound 226

10 Binate Covering 229
10.1 Introduction 229

10.2 Relation to 0-1 Integer Linear Programming 233
10.3 Branch-and-Bound as a General Technique 234
10.4 A Branch-and-Bound Algorithm for Minimum Cost Binate Covering 235

10.4.1 The Binary Recursion Procedure 237
10.4.2 AT-way Partitioning 240
10.4.3 Maximal Independent Set 241

CONTENTS vii

10.4.4 Selection of a Branching Column 242
10.5 Reduction Techniques 243

10.5.1 Row Dominance 243

10.5.2 Row Consensus 245

10.5.3 Column a-Dominance 246

10.5.4 Column/3-Dominance 247
10.5.5 Column Dominance 248

10.5.6 Column Mutual Dominance 248

10.5.7 Essential Column 249

10.5.8 Unacceptable Column 249
10.5.9 Unnecessary Column 250
10.5.10 Trial Rule 250

10.5.11 InfeasibleSubproblem 251
10.5.12 Gimpel's Reduction Step 251

10.6 Implicit Binate Covering 253
10.7 Implicit Table Generation 255
10.8 Implicit Reduction Techniques 256

10.8.1 Duplicated Columns 258
10.8.2 Duplicated Rows 259
10.8.3 Column Dominance 260

10.8.4 Row Dominance 261

10.8.5 Essential Columns 262

10.8.6 Unacceptable Columns 263
10.8.7 Unnecessary Columns 264

10.9 Other Implicit Covering Table Manipulations 264
10.9.1 Selection of Columns with Maximum Number of I's 264

10.9.2 Implicit Selection of a Branching Column 266
10.9.3 ImplicitSelectionof a Maximal Independent Set of Rows 268
10.9.4 Implicit Covering Table Partitioning 268

10.lOImplicit Two-level Logic Minimization 270

11 Implicit Minimization of GPI's 279
11.1 Implicit Representations and Manipulations 279

11.1.1 Implicit FSM Representation 279
11.1.2 Positional-set Representation 280
11.1.3 Operations on Positional-sets 280
11.1.4 Relations for Implicit Encodeability of GPPs 282

11.2 Implicit Generation of GPI's and Minteims 283
11.2.1 Implicit Generation of GPI's 283
11.2.2 Reduced Representation of GPI's and Minterms 285
11.2.3 Pruning ofPrimes 286

11.3 Implicit Selection of GPI's 286
11.3.1 Implicit Selection of a Cover of GPI's 286
11.3.2 Implicit Computations for Encodeability 288
11.3.3 Implicit Encoding of an Encodeable Set of GPI's 298

viii CONTENTS

11.3.4 Approximate Implicit Selection of an Encodeable Cover of GPI's 299
11.4 A Worked Example 299
11.5 Verification of Correcmess 302

11.6 Implementation Issues 304
11.6.1 Order of BDD Variables 304

11.6.2 Computation of Set-Minimal 306
11.6.3 The Filtering Heuristic 306

11.7 Experiments 307
11.7.1 Analysis of the Experiments 308
11.7.2 Evaluation of the Experiments 312

11.8 Conclusions 313

12 Conclusions 319

Bibliography 322

IX

List of Figures

1.1 Views of a sequential circuit 3
1.2 Hardware description language representation of traffic light controller 4
1.3 STG of traffic light controller example 5

4.1 Original and minimized symbolic cover of an FSM 49
4.2 Codes satisfying input constraints 50
4.3 Two-level implementation of encoded FSM 50
4.4 Initial and 1-hot encoded covers of FSM-1 51

4.5 Expanded and reduced minimized covers of FSM-1 52
4.6 Expanded and reduced implicants and don't care face constraints of FSM-1 52
4.7 Initial cover, GPI's.encodable selection of GPI's and encoded cover of OUT-1 . . 55

5.1 Covers ofFSM-2 before and after symbolic minimization 75
5.2 Encoded cover of FSM-2 76

5.3 Old Symbolic Minimization Scheme 79
5.4 New Symbolic Minimization Scheme 82
5.5 Derivation of face and dominance constraints 84

5.6 Symbolic reduction - Parti 86
5.7 Symbolic reduction - Part2 87
5.8 Symbolicoring 90
5.9 First scheme to compute the gain 92
5.10 Second scheme to compute the gain 93
5.11 Ordering of symbolic minimization 94

6.1 Satisfaction of encoding constraints using binate covering 116
6.2 Efficient generation of prime dichotomies 120
6.3 Input encoding example 121
6.4 Example of feasibility check with input and output constraints 123
6.5 Removal of invalid dichotomies 124

6.6 Maximal raising of dichotomies 125
6.7 Feasibility check of input and output constraints 126
6.8 Exact encoding constraint satisfaction 129
6.9 Example of exact encoding with input and output constraints 130
6.10 Example of cost fimction evaluation 132

LISTOFHGURES

7.1 Covers of FSM/eoncmo 159

7.2 GPI'sofFSM/gond/K) before post-processing 162
7.3 The circle of encodings 171
7.4 The circle of primes 172

8.1 MinteraisofFSM/eortdno 180

8.2 Extended representation of the minterms of FSM/eortd/io 181
8.3 GPI's ofFSM/gondno 182

8.4 Covering table of FSM/eortd/w? 183
8.5 Output covering table of FSM/ec>ndrto 185
8.6 Next-state covering table of FSM leoncino 186
8.7 Exact selection of GPI's 192

8.8 Approximate selection of GPFs 194
8.9 Primes of the symbolic relation 202

9.1 Encodeability check 211
9.2 Detection of invalid dichotomies 212

9.3 Raising of dichotomies 212
9.4 Exact encoding of constraints 216

10.1 Transformation from linear inequality to Boolean expression 234
10.2 Structure of branch-and-bound 236

10.3 Detailed branch-and-bound algorithm 239
10.4 AT-way partitioning 241
10.5 Flow of reduction rules 244

10.6 Implicit branch-and-bound algorithm 253
10.7 Implicit reduction loop 257
10.8 Pseudo-code for Lmax 265

10.9 BDD of F(r, c) to illustrate the routineLmax 267
10.lOImplicit n-way partitioning of a covering table 269
10.1 IRecursive computation of maxcTg {Q) 274
10.12Recursivecomputation of maxcjp (P) 276

11.1 Implicit computation of prime implicants 285
11.2 Implicit encodeability computations 290
11.3 Implicit encodeability computations 295
11.4 Computation of codes satisfying a selection of GPI's 298
11.5 Approximate implicit selection of GPI's - Detailed view 300
11.6 Computation of minimized encoded covers and correctness check 303

XI

List of Tables

4.1 Comparison of FSM's encoding for two-level implementation 64
4.2 Experiments on FSM's encoding for two and multi-level implementation 66
4.3 Multi-level input encoding comparison 68

5.1 Statistics of FSM's 103

5.2 Results of esp_sa with different ordering heuristics 104
5.3 Measured parameters of ESP_SA 105
5.4 Comparisonof FSM's encodings for two-level implementation 106

11.1 GPI's of small examples from the MCNC benchmark and others 310
11.2 GPI's of medium examples from the MCNC benchmark and others 311
11.3 Selection of a minimal encodeable GPI cover 315

11.4 Selection of a minimal encodeable GPI cover 316

11.5 Final solutions and comparison with NOVA 317
11.6 Final solutions and comparison with NOVA 318

Acknowledgements

I am very grateful to Prof. Alberto Sangiovanni-Vincentelli, who has been my research

advisor throughout all the years in graduate school and has made me possible to pursue higher

education in Beikeley, by associating me to a very distinguished research group that he, more than

anybody else, contributed to create. I hope to continue my association with him and to carry on his

vision of rigorous mathematical modelling applied to relevant engineering problems.

Prof. Robert Brayton has been a constant source of scientific inspiration and has followed

closely my progress, contributing with advice to most of my research activities. He has been a

model of dedication to scholarship and gentleman's style.

Prof. Shmuel Oren kindly agreed to be in my Thesis Committee. He was part also of my

Qualifying Committee, together with Prof. Jan Rabaey.

I was honoured to embark, 3 years ago, on a joint research project, SILK, with Timothy

Kam. The results of this common endeavor are documented in many chapters of this dissertation

and in published papers. Hm has always been a source of ingenious ideas, effective solutions and

an example of personal and scholarly integrity. I will count him always as a great fiiend and a

precious work colleague.

Since my early time in Berkeley I shared personal friendship and work cooperation with

Luciano Lavagno and Alex Saldanha. I carried on fruitful research with Alex presented also in

some chapters of this dissertation. I met Luciano as a colleague in Italy and since then we have

been faithful friends and co-workers. I looked often for Rajeev Murgai to discuss a hard technical

point or share a personal discussion, relying on his keen mind and human wisdom.

Among those with whom I interacted in the group a special mention goes to Arlindo

De Oliveira, with whom I hope to continue a Southem European research connection, Yosinori

Watanabe, Felice Balarin, William Lam, Huey-Yih Wang, Yuji Kukimoto, Rick McGeer, Gitanjali

Swamy who contributed efficient software for a prototype of mine, and Tom Shiple. They were

always available for discussing sticky points, sharing an impressive knowledge in their fields of

expertise.

Among established professors and researchers outside, Fabio Somenzi, Ney Calazans,

Sharad Malik, Giovanni De Micheli, Srinivas Devadas, Pranav Ashar, Bruce Holmer, and Kurt

Keutzer were available to discuss technical questions and share literature. I thank Kurt for sending

me a draft of a paper on computational complexity oflogic synthesis. Prof. Eugene Goldberg ofthe

Academy of Sciences of Belams has been recently in contact with me, updating me on his progress

in topics of common interest. I look forward to intensify our cooperation.

The Berkeley CAD group has been a lively place thanks to the many outstanding students

that are (or have been) part of it: Krishnan Sriram, Jagesh Sanghavi, Chris Lennard, Cho Moon,

Serdar Tasiran, Szu-Tsung Cheng, Stephen Edwards, Vigyan Singhal, Adnan Aziz, Desmond

Kiikpatrick, Mark Beardslee, Paul Stephan, Sunil Khatri, Harry Hsieh, AmitNarayan, Luca Carloni.

A special acknowledgement goes to my wife, Maria De Nigris, who has been a blessing

for me since when we met and then started a family, enriched four years ago by the birth of Marta

(and soon to be increased by a new member). Maria and Marta put up with me putting work duties

above family duties. I am looking forward to long years of joyful life in common. I hope to prove

to Maria that it was worthy for her to leave her secure life in Italy to join me here.

No words would be enough to thank my mother, Marta Ricorda, and father. Franco, for

having nurtured me throughout the years, and always supported me in any possible way. Given that

I was in a far away country during the last years, I was almost never to the side of my mother who

has been fighting an uphill battle against illness. May the God of life give her strength and some

more time to spend with us. To them, and to the grandparents, I dedicate this humble achievement

as a token of gratitude.

Chapter 1

Introduction

1.1 Logic Synthesis of Sequential Behaviors

The task oflogic synthesis is to produce a circuit that realizes a given behavior. We will be

concerned with sequential behaviors, that can be defined as mappings of sequences ofinput vectors

to sequences of output vectors. When the mapping of an input vector does not depend on the input

vectors previously seen in the current input sequence, the behavior is said to be combinational. The

original specification may be described in ways ranging from natural languages to formal hardware

description languages or algorithmic formalisms. Often the wanted behavior is specified only on a

subset of the input sequences, leaving the rest as a don't care condition to be freely exploited by the

implementor, or the specification may admit some possible behaviors as equally acceptable. These

situations are referred also as non-determinism of the specification. A given specification (or set of

specifications, if we interpret nondeterminism as expressing a set of behaviors, out of which one is

implemented) may be realized by a large variety of circuits all reproducing the wanted sequential

behavior, but very different in terms of structure and characteristics.

An automatic way of synthesizing digital circuits is to input a description of the behavior

in textual or graph format to an high-level synthesis system, that will perform scheduling and

allocation and produce a register-transfer level description of the synthesized design, that consists

of a controller and a data path. A controller captures the dynamics of a sequential behavior, while

the data path operates on the data under the supervision of the controller. This KTL description can

then be optimized by means of logic synthesis.

A controller can be produced by an high-level synthesis tool, or it can be provided directly

by the designer or extracted from an already existing circuit. A controller is usually specified by

2 CHAPTER!. INTRODUCTION

means of finite state machine (FSM)^that is a discrete dynamical system translating sequences of

input vectors into sequences of output vectors. FSM's are a fonnalism growing from the theory of

finite automata in computer science. An FSM has a set of states and of transitions between states;

the transitions are triggered by input vectors and produce output vectors. The states can be seen as

recording the past input sequence, so that when the next input is seen a transition can be taken based

on the information of the past history. If a system is such that there is no need to look into past

history to decide what output to produce, it has only one state and therefore it yields a combinational

circuit. From the other side, systems whose past history cannot be condensed in a finite number

of states are not physically realizable. FSM's are usually represented by state transition graphs

(STG's) and state transition tables (STTs), that are equivalent ways of enumerating all transitions

as edges of a graph or rows of a table. They can be seen as symbolic two-level representations,

because they map naturally into two-level logic after encoding the states (and any other symbolic

variables) with binary vectors. In the other words, the edges of the graph (rows of the table) can be

interpreted as symbolic representations of and-or logic.

A typical logic synthesis procedure includes FSM restructuring, like state minimization,

followed by a state assignment step to obtain a logic description that can be mapped optimally

into a taiget technology. Often optimization is done first on a representation independent from the

technology, as in the multi-level synthesis system sis, where the number of literals of a Boolean

netwoik is minimized first, and then the Boolean network is mapped using the cells ofa given library.

Optimization and mapping depend not only on the taiget technology (PLA's, custom IC's, Standard

Cells, Field Programmable Gate Arrays), but also on the cost functions: besides area, speed and

power consumption are of growing importance. Moreover,issues like testing and verificabilityplay

an important role. At the end oflogic synthesis a sequential behavior is represented by a set of logic

gates. Views of a sequential behavior are shown in Fig. 1.1.

Given a system, the overall theoretical objective is to synthesize a circuit that optimizes

a cost function involving area, delay, power and testability. It is very difficult to come up with

mathematical models that capture the problem in its generality. Furthermore, only for very limited

domains, e.g., two-level logic implementations, there is a clearly defined notion of optimality and

algorithms to achieve optimality. Moreover, with complex cost functions and a very large solution

space, a good model must not only be "exact", but also amenable to efficientsynthesis algorithms on

problemsinstancesofpracticalinterest. A wayto copewithcomplexityis to pursuethe optimization

objectiveby breakingdownthe globalprobleminto independentsteps,each havinga restrictedcost

function, at the expense ofjeopardizing global optimality. For instance it is customary to minimize

s

§*

13^

1.2. THE ENCODING PROBLEM: FROM SYMBOLIC TO BOOLEAN DOMAIN

Present State Next State
—

Registers and Latches

out 1

a
a.

3

•n

—in

State Transition Graph

Figure 1.1: Views of a sequential circuit

the states of an FSM before encoding it: there is no theoretical guarantee that a state-minimized

FSM is always a better starting point for state assignment than an FSM that has not been state-

minimized [55], yet in practice this approach leads to good solutions, because it couples a step of

behavioral optimization on the state transition graph (STG) with an encoding step on a reduced

STG, so that the complexity of the latter's task is alleviated.

1.2 The Encoding Problem: from Symbolic to Boolean domain

The specification of a sequential behavior may include binary and symbolic variables.

As an example, consider the well-known Mead-Conway traffic light controller [90]. Figure 1.2

presents a description in the bds language fix)m [127], as slightly modified in [84] to highlight the

symbolic nature of the variables. An STG and STT representation of the FSM denoted by the bds

description is shown in Fig. 1.3.

The specific syntax and semantics of bds are unimportant here: it suffices to say that

they express naturally the evolution of the traffic light controller. Let us focus on the use of

symbolic variables, i.e. variables that take on values fi"om a set of symbols. For instance, the

CHAPTER 1. INTRODUCTION

MODEL traffic_light
hi, fl ! control for highway and farm lights

st<0>, ! to start the interval timer

nextState =

c<0>, ! indicating a car on the farm road

ts<0>, tl<0> ! timeout of short and long interval timers

presentState ;

ROUTINE traffic_light_controller;
nextState = presentState; st = 0;
SELECT presentState FROM

[HG]: BEGIN

hi = GREEN; fl = RED;

IF c AND tl THEN BEGIN

nextState = HY; st = 1;

END;

END;

[HY]:BEGIN

hi = YELLOW; fl = RED;

IF ts THEN BEGIN

nextState = FG; st = 1;

END;

END;

[FG]: BEGIN

hi = RED; fl = GREEN;

IF NOT c or tl THEN BEGIN

nextState = FY; st = 1;

END;

END;

[FY]:BEGIN

hi = RED; fl = YELLOW;

IF ts THEN BEGIN

nextState = HG; st = 1;

END;

END;

ENDSELECT;

ENDROUTINE;

ENDMODEL;

Figure 1.2: Hardware description language representation of traffic light controller

1.2. THE ENCODING PROBLEM: FROM SYMBOLIC TO BOOLEAN DOMAIN

not(c and t1)/
hi = GREEN; fl = RED; st = 0

ts/
hi = RED; fl= YELLOW; St = 0

c and t1/
hi = GREEN; fl = RED; st = 1

not(ts)/
hi = RED; fl = YELLOW; st = 0

not(ts)/
hi = YELLOW; fl = RED; st = 0

not(c) orti/
hi = RED; fl = GREEN, st = 1 hi = YELLOW; fl = RED; st = 1

not(not(c) or t1)/
hi = RED; fl = GREEN; st = 0

State Transition Graph: Exampie

PS IN NS OUT

HG (not(c and t1) HG hi = GREEN; fl = RED; st = 0

HG c and t1 HY hi = GREEN; fi = RED; st = 1

HY not(ts) HY hi = YELLOW; fl = RED; st = 0

HY ts FG hi = YELLOW; fl = RED;st=1

FG not(not(c) or t1) FG hi = RED; fi = GREEN; st = 0

FG not(c) or t1 FY hi = RED; fi = GREEN; st = 1

FY not(ts) FY hi = RED; fi = YELLOW; st = 0

FY ts HG hi = RED; fi = YELLOW; st=1

State Transition Table: Example

Figure 1.3: STG of traffic light controller example

6 CHAPTER!. INTRODUCTION

variablerepresenting the state of the traffic lights is represented in symbolicform and can take on

four possiblevalues. Similarly, the output variables representing the highwayand farm lights are

symbolic and can take on three values. Because there are symbolic variables, we say that this is a

symbolic specification.

Currentdigital circuits can only storeone of two values,since available storageelements

are bistable circuits (eventhough experimentalmultistable circuitshavebeen investigatedand built).

Thereforeone says that symbolicvariablesneed to be encoded,i.e., each symbolicvariablemust be

replaced by a set of binary-valued (or two-valued) variables, to map an abstract specification onto

a physical circuit. Let us examinemore carefully the last statement.

Notice that also two-valued variables need to be encoded, for instance, given a variable

C with values {green^ red) one might map green to 0 and red to 1, or vice-versa. In this case,

given a two-valued variable, one assigns to each of the two symbolic values one of the values of a

variable defined on theBoolean algebra {0,1} (called a logic variable) ^ Problems likeoptimal

phase assignment of two-level logic attest that even the encoding of a two-valued variable may

affect considerably the size of the final representation.

Therefore, rigorously speaking, encoding is the process of assigning to each value of a

symbolicvariableX a uniquecombinationof valuesof a set of logic variables defined on {0,1}".

To haveenoughcodes,it is necessary that log n > \X\, where |X| is the cardinality of X. Then the

values of the encoding logic variables are mapped into stable levels of circuit signals. These subtle

distinctions are often ignored in common parlance, so that one simply says that encoding is a map

from values of symbolic variables to values of sets of binary variables.

When variables are defined on Boolean algebras, it is possible to use the formalism of the

latter in the manipulation oflogic circuits, as was discovered independentlyby Nakasima, Shestakov

and Shannon [15].

For example, in the case of the traffic light controller, the four state values HG, HY, FG,

FYmay be represented as the bit patterns 00,01,10,11 on two binary-valuedencoding variables.

The resulting logic depends on the chosen encoding and so do area, performance and testability

of the circuit. This gives rise to the encoding problem in logic synthesis wherein an encoding

needs to be determined for a symbolic variable such that the resulting logic is optimal under some

metric. The versions of the problem where the symbolic variables are inputs or outputs of the

combinational logic are referred to as the input and output encoding problems respectively. An

^Alternatively, onecould encode C with two logic variables, mapping, say, green to01 and red to 10.

1.3. THESIS OVERVIEW 1

FSM has a symbolic variable, the state, that appears both as input (present state) and output (next

state) variable. The encoding problem for FSM's is referred to as the state assignment problem and

is a case of input-outputencoding, with the constraint that the values of the present state must be

given the same codes as the values of the next states. This taxonomy was first introduced in [91].

1.3 Thesis Overview

This thesis focusses on algorithms to encode symbolic input and output variables of

sequential behaviors represented by STG's or STT's, when the cost function is minimum two-level

area. Various techniques developed here were applied or are applicable also to encoding problems

with different cost functions and objectives.

We can divide the technical contributions into two parts: algorithms based on heuristic

symbolic minimization (Chapters 5 and 6) and algorithms based on minimization of generalized

prime implicants (Chapters 7, 8, 9 and 11). Minimization of GPTs required the development of

implicit techniques developed in Chapters 11 and 10.

Let us clarify briefly the two approaches. Qassical logic minimization aims to find a min

imum sum-of-products ^expression ofbinary-valued inputs binary-valued outputs functions [87].

It was extended to functions with multi-valued inputs and binary-valued outputs in [139,114,112],

as multi-valued minimization.

This extensioninspired a solutionto the input encodingproblemin [92], that was applied

to encoding the present states of an FSM, and to other problems in combinational synthesis.

The solution consists of performing a multi-valued minimization of the given function and then

converting the result to a two-valued sum-of-products by satisfying certain conditions on the

codes of the states that are called input or face constraints. For any group of face constraints there

is a satisfying encoding, but one wants to find codes of minimum code-length that satusfy the

face constraints. We call encoding constraints any types of conditions imposed on the codes of a

set of symbols. We call encodeable a symbolic sum-of-products whose encoding constraints are

satisfiable.

When there are multi-valued output variables, we call symbolic minimization^ according

to the terminology established in [91, 147], the problem of finding a minimum symbolic sum-

of-products that can be converted into a two-valued sum-of-products of the same cardinality. A

sum-of-product is ako called a cover of product-terms.
Âlso called anencoded sum-of-products.

8 CHAPTER 1. INTRODUCTION

procedure for symbolicminimizationis completeif it can yield at least a minimum encodedsum-

of-products. A procedure for symbolic minimization has a part to construct a cover of symbolic

product-terms and a part to satisfy encoding constraints ^ that let transform the symbolic cover

into an equivalent encoded cover. The encoding constraints required for a complete symbolic

minimization procedure involve newtypesof conditionson the codesof the states, thatgo imderthe

name of dominance, disjunctive and disjunctive-conjunctive constraints. In [91, 147] algorithms

for symbolicminimization were proposedthat used only face and dominance constraints.

The first part of this dissertationcontains two main results on symbolicminimization: a

new procedure to find minimal two-level symboliccovers, under face, dominance and disjimctive

constraints (Chapter 5), and a unified frame to check encodeability of encoding constraints and

find codes of minimum length that satisfy them (Chapter 6). This frame has been used for various

types of encoding constraints arising in problems that range from encoding for minimum multi

level representation ^torace-free encoding ofasynchronous FSM's [74]. Experiments for different

applications are reported.

The procedure for symbolic minimizationpresented in Chapter 5 is not complete because

it is not able to explore all possible symbolic cubes needed to build minimum symbolic covers.

Moreover, it does not use disjunctive-conjunctive constraints, that are required for complemess

in some cases. This is why it is described also as heuristic symbolic minimization, and it is

reminiscent of the heuristic mode for classical minimization of two-valued logic. A complete

symbolic minimization algorithm was proposed in [39]. It extends to the symbolic case the two

main features ofexact classic two-level minimization: generation ofa set ofproduct-terms sufficient

to find at least a minimum cover, i.e. the prime implicants, and computation of a minimum cover as

solution of a set coveringproblem, represented as a table covering problem [87]. Tohandle symbolic

minimization, in [39] the notion of prime implicants is extended to the notion ofgeneralized prime

implicants (GPI's) and the set covering problem is extended to a constrained set coveringproblem,

because it is not sufficient to find a minimiun symbolic cover, but one must find a minimum

encodeable symbolic cover, i.e., a minimum symbolic cover whose associated encoding constraints

are satisfiable so that it can be mapped into an equivalent encoded cover. We will refer to this exact

algorithm for symbolic minimization as minimization of GPI's.

The second part of this dissertation contains two main results on symbolic minimization

'̂ More precisely, onemust check satisfiability ofsets ofencoding constraints, and, if they are satisfiable, find codes of
minimum length that satisfy them.

^Theory and algorithms for multi-level minimization of multi-valued input functions were presented in [85] and
applied to the encoding of the present state of an FSM for minimum multi-level literals.

1.3. THESIS OVERVIEW 9

usingGPI's: a noveltheoryof encodeability of GPI's (Chapter9), an implicitprocedure to compute

minimum or minimal encodeablecovers of GPI's (Chapter 11), and an implicit algorithmto solve

table covering problems (Chapter 10) The implicit procedure to findminimum encodeable covers

of GPI's features an implicit algorithm to check encodeability of encodingconstraints, and it uses

as a key subroutinethe implicit algorithmto solve coveringproblems describedin Chapter 10. The

latter algorithm is a general binate table solver ^ and as such it is applicable to a variety of other

applications. Indeed it was originally developed to select implicitly minimum contained behaviors

in FSM minimization [66].

In the second part ofthe thesis the emphasis is on design ofimplicitalgorithms. The reason

is that symbolic minimization requires the construction and manipulation ofvery laige sets (the set

of GPI's, the set of encoding constraints and many others). Implicit techniques have been shown to

outperform traditional methods in the task of computing the primes of logic functions [27,53] and

of solving unate covering tables [53, 29]. Therefore, we deemed our application to be the perfect

challenge for implicit techniques and we did not save efforts to extend their capabilities.

We stress that GPI minimization is harder than standard logic minimization:

1. The number ofGPI's is much larger than the number ofprimes offunctions with multi-valued

inputs binary-valued outputs.

2. Choosing a minimum cover of GPI's is not sufficient. The cover must be also encodeable,

i.e. it must be possible to find encoding functions such that the chosen sjmibolic primes

can be converted into two-valued primes. A consequence is that some of the traditional

simplificationsthat can be applied to unate tables are disallowed

In otherwords,potentiallywe areexploringall possibleprimesof all possibleencodings. GPI's can

be seen as templates of primes of encoded representations, by means of the existenceof encodings

that map symboliccubes into two-valued cubes. Experimental results are reported that assess the

progress made and the bottlenecks still remaining.

This thesis contains 10 main chapters. In Chapter 2 basic definitions regarding FSM's,

Boolean logic, multi-valued minimization and Boolean networks are provided.

^We say that an algorithm is implicit if it represents and manipulates sets and functions using binary decision
diagrams [16] as data structure.

binate table represents general product-of-sums expressions, while a unate table represents product-of-sums
expressions with only positive literals

^Constrained binate covering appears also indifferent problems, likefinding minimum containedbehaviors ofnonde-
terministic FSM's that can be composed with a given FSM [63].

10 CHAPTER 1. INTRODUCTION

In Qiapter 3 thecomputational complexity of somekey problems in logicminimization

and state assignment is demonstrated.

In Chapter 4 a survey of previous approaches to state assignment and other encoding

problems is presented. Special attention is given to the techniques based on symbolic minimization

that are at the heart of the technical contributions reported in this dissertation.

In Chapter5 wepresenta newalgorithm for encoding input-output symbolic variables for

two-level implementations, hi particular thecaseof state assignments of FSM's is considered. The

new algorithmis based on an extensionof the scheme of symbolicminimizationpresentedin [91]

and obtains better results than previously known through state-of-art tools [147].

In Chapter 6 we present comprehensive algorithms to check encodeability of sets of

encoding constraints, including face, dominance, disjunctive, conjunctive-disjunctive constraints.

Ifa set ofencoding constraints is encodeable, it is shown how to find codes ofminimum code-length

that satisfy them. These algorithms have been already used in various applications, including our

symbolic minimization scheme, that motivated first their development.

In Chapters 7 and 8 a theory ofGPI minimization is presented. The theory is an exact frame

to solve input and output encoding problems taigetting optimal two-level area implementations.

The paradygm is based on extending the traditional notion of prime implicants to generalized prime

implicants. Optimum state assignmentfor two-level implementationis solved by findinga minimum

encodeable cover of GPI's. The theory of encodeability of GPI's is established in Chapter 9, with

an host of new results based on the notions of raising graphs and updating sets.

In Chapter 10 an implicit solution of table covering problems and other implicit compu

tations needed to solve implicit GPI minimization are presented. The algorithms described here

may solve exactly binate table covering problems occurring in various phases of logic synthesis.

In Chapter 11 implicit algorithms to generate and compute minimum encodeable sets of GPI's are

presented. Results of a prototype implementation are discussed.

Finally Chapter 12 summarizes what has been achieved and what is left to be done.

11

Chapter 2

Definitions

2.1 Sequential Functions and their Representation

Sequential functions ^transform inputsequences intooutputsequences. A sequence is a

function from the set of natural numbers to any set. Here we are interested only to finite sets and

to "well-behaved" or "regular" sequential functions: those such that at any stage the output symbol

depends only on the sequence of input symbols which have been already received and such that they

can "hold" only a certain amount of the information received, i.e., they cannot always make use of

all the information contained in that portion of the input sequence which has been received. Such

sequential functions have been called retrospectivefinitary sequential functions by Raney [49]. A

sequential fimction can be represented in many possible ways. A naive representation would be to

give a collection of pairs of input and output sequences. Since these sequences are of unbounded

length, this would not be a practical way. For the class of regular functions mentioned above it is

possible to derive a finite state representation, that corresponds to the usual notion of finite state

machine (FSM)

2.2 Finite State Machines

Retrospective finitary functions admit of a finite state representation. We are now going

to define formally FSM's, that are the most common way of representing a finite state system. We

'Called also sequential machines or mathematical machines. A sequential machine receives input symbols in a
sequence, works on this sequence in some way, and yields a sequence of output symbols.

^We notethatthenotion ofstate isusually introduced at thestructural level, butit canbedone also at thefunction (or
behavioral level) as shown by Raney [49].

12 CHAPTER 2. DEFINITIONS

will see that an FSM represents a "behavior",i.e., a regular sequential function and that collections

of behaviors can be represented by adding non-determinism to the FSM, that so becomes a non-

deterministic FSM (NDFSM). The same behaviorofcourse may have many different representations.

Wewill see that the chosen representation(or the one that happens to be available)affects the quality

of the implemention derived by an encoding step.

Definition 2.2.1 A non-deterministic FSM (NDFSM), or singly an FSM, is defined as a 5-tuple

M = (5, /, O, T, R) where S represents thefinite state space, I represents thefinite input space

and O represents the finite output space. T is the transition relation defined as a characteristic

function T:IxSxSxO-^B. On an input i, the NDFSM at present state p can transit to a

nextstate n and outputo ifand onlyifT(i, p, n, o) = 1 (i.e., (i, p, n, o)is a transition). There exists

one or more transitionsfor each combination ofpresent state p and input i. RC S represents the

set ofreset states.

In this and subsequent definitions, the state space 5, the input space I and the output

space O can be generic discrete spaces and so 5, / and O can assume symbolic values [32,114]. A

special case is when S, I and O are the Cartesianproduct of copies of the space B = {0,1}, i.e.,

they are binary variables.

The above is the most general definition of an FSM and it contains, as special cases,

different well-known classes of FSM's. An FSM can be specified by a state transition table (STT)

which is a tabular list of the transitions in T. An FSM defines a transition structure that can also be

described by a state transition graph (STG). By an edge p n, the FSM transits from state p on

input i to state n with output o.

Definition 2.2.2 Given an FSMM = (5, /, O, T, R), thestate transition grtyjh of M, STG(M)

= (F, E), is a labeleddirectedgraph where eachstate s e S corresponds to a vertex in V labeled

s and each transition (i, p, n, o) 6 T correspondsto a directededge in Efrom vertex p to vertex q,

and the edge is labeled by the input!outputpair i/o.

To capture flexibility in the next state n and/or the output o from a state p at an input

i, one can specify one or more transitions (i, p, n, o) G T. As said above, we assume that the

state transition relations T is complete with respect to i and p, i.e., there is always at least one

transition fiom each state on each input. This differs from the situation in formal verification where

incomplete automata are considered.

22. FINITE STATE MACHINES 13

Relational representation of T allows non-detenninistic transitions with respect to next

states and/or outputs, and also allows correlations between next states and outputs. More specialized

forms of FSM's are derived by restricting the type of transitions allowed in T. FSM's can be

categorized by answering the following questions:

Qassical texts usually describe the Mealy and Moore model ofFSM's. For completeness,

they are also defined here as subclasses of NDFSM. A Mealy NDFSM is an NDFSM where there

exists anext state relation^ A:IxSxS-^B and anoutput relation'̂ A: IxS xO B such that

for all (i,p, n, o) GIxS xSx O, r(«,p, n, o) = 1if andonlyif A(i,p, n) = 1andA(z,p, o) = 1.

Definition 223 A Mealy NDFSM is a 6-tuple M = (5, /, O, A,A, f2). 5 represents the finite

state space, I represents thefinite input space and 0 represents thefinite output space. A is the next

state relation defined as a characteristicfunction A :IxSxS-^B where each combination of

input andpresent state is related to a non-empty set ofnext states. A is the output relation defined

as a characteristicfunction A : I xS xO B where each combination ofinput andpresent state

is related to a non-emptyset ofoutputs. RC S represents the set of reset states.

A Moore NDFSM is an NDFSM where there exists a next state relation A: IxS xS B

andanoutputrelation A : SxO -¥ B suchthatforall (i,p^n,o) e I xSxSxO, T(i^pj n, o) = 1

if and only if A(i, p, n) = 1 and A(p, o) = 1.

Definition 2.2.4 A Moore NDFSM is a 6-tuple M = (5, /, O, A,A, R). S represents the finite

state space, I represents thefinite input space and O represents thefinite outputspace. A is the next

state relation defined as a characteristicfunction A :IxSxS-¥B where each combination of

input andpresent state is related to a non-emptyset of next states. A is the output relation defined

as a characteristicfunction A: S xO B where each present state is related to a non-empty set

ofoutputs. R C S represents the set ofreset states.

As a special case of Mealy machine, Moore machines have its output depends on its present state

only (but not on the input).

The definition of Moore machine presented here is the one given by Moore itself in [96]

and followed by other authors [148]. The key fact is that the output is associated with the present

state. In other words, the common output associated to a given state, goes on all edges that leave

canbeviewed asa function A: / x 5 2^, and n GA(t, p) if and only if n isapossible nextstate of state p on
input i.

canbeviewed as a function A: I x S iP, and o € A(t,p) if and only if o is a possible output of state p on
input i.

14 CHAPTER 2. DEFINITIONS

that state. This is a reasonable assumption when modeling an hardware system. However, it is

common to find in textbooks [70, 58] a "dual" definition where the output is associated with the

next state. In other words, the common output associated to a given state is on all edges that go into

that state, while edges leaving a given state may carry different outputs.

This second definition has the advantage that it is always possible to convert a Mealy

machine into a Moore machine. Instead with the first definition there are Mealy machines that have

no Moore equivalent. For example a wire can be consider a Mealy machine with one state and with

its input connecting directly to its output. It does not have an equivalent Moore machine.

An NDFSM is an incompletely specified FSM (ISFSM) if and only if for each pair

(i, p) 6 / X5 such that T{i, p, n, o) = 1, (1) the machinecan transit to a unique next state n or to

any next state, and (2) the machine can produce a unique output o or produce any output.

Definition 22S An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M =

(5, /, O, A,A, R). S represents thefinite state space, I represents the finite input space and O

represents the finite output space. A is the next state relation defined as a characteristicfunction

A :IxSxS->B where each combination of input and present state is related to a single next

state or to all states. A is the output relation defined as a characteristicfunction A: I xS xO B

where each combination of input and present state is related to a single output or to all outputs.

RC S represents the set ofreset states.

Incomplete specification is used here to express don't cares in the next states and/or

outputs. We warn that even though "incompletely specified" is established terminology in the logic

synthesis literature, it conflicts with the fact that ISFSM's have a transition relation T that is actually

completely specified with respect to present state p and input i, because there is at least one transition

for each (i, p) pair in T.

Other classes of NDFSM's have been recently characterized in logic synthesis applica

tions. Most noticeable are pseudo non-deterministic FSM's (PNDFSM's) that are such that for each

triple (i,p, o) e / x 5 x O, there is a unique state n such that r(z,p, n,o) = I Since these

machines are not ofdirect interest to the investigations reported in this dissertation we will not give

a formal taxonomy.

A deterministic FSM (DFSM) or completely specified FSM (CSFSM) is an NDFSM

where for each pair (i, p) € / x S, there is a unique next state n and a unique output a such that

They are called "pseudo" non-deteiministic because their underlying finite automaton is deterministic.

2.2. FINITE STATE MACHINES 15

T(i,pyn,o) = 1, i.e., thereis a uniquetransition fiom (i^p). In addition, R containsa uniquereset

state.

Definition 2.2.6 A deterministic FSM (DFSM) or completely specified FSM (CSFSM) can be

defined as a 6-tuple M = {3,1,0^6,X,r). S represents thefinite state space, I represents the

finite input space and O represents thefinite output space. S is the next statefunction defined as

5 : I XS -i- S where n e S is the next state ofpresent state p ^ S on input i £ I if and only if

n = ^(i, p). Xis the outputfunction defined as X: I x S O whereo ^ O is the outputofpresent

state p e S on input i e I if and only ifo=X(i,p).reS represents the unique reset state.

A MooreDFSMis a MooreNDFSMwherefor each pair (i, p) € / x 5, there is a unique

next state n and for each p 6 5 a imiqueoutput o such that T(i, p, n, o) = 1. In addition, R contains

a unique reset state.

Definition 12,1 A Moore DFSM can be defined as a 6-tuple M = {3,1^0,5, X,r). 3 represents

thefinite state space, I represents thefinite input space and O represents thefinite output space. 6

is the next statefunction defined as S : I x 3 3 where n £ 3 is the next state ofpresent state

p ^ 3 on input i e I if and only ifn = <5(2, p). Ais the outputfunction definedas X: 3 ->0 where

o eO is the output ofpresent state pe. 3 if and only if a = X(p). r e 3 represents the reset state.

We now show that a DFSM realizes a behaviorwhile an NDFSM realizes a set ofbehaviors.

Definition 2.2.8 Given a finite set ofinputs I and a finite set ofoutputs O, a trace between I and

O is a pair of inputand outputsequences (cTj, <To) where <t, g /*, (Tq^O* and \(Ti\ = |cro|.

Definition 2.2.9 A trace set is simply a set oftraces.

Definition 2.2.10 AnNDFSM M = (3,I,0, T, R) realizes a trace set between I and Ofrom state

So e 3, denoted by C(M\sq) iffor every trace ({io, , •••, ij}, {oq, oi,..., Oj}) in the trace set,

there exists a statesequence si, S2,..., Sj+i suchthat"ik : 0 < k < j, T(ik, Sk, s/j+i, ojb) = 1.

Definition 2.2.11 An ISFSM M = (5, /, O, A,A, R) realizes a trace set between I and O from

state so G 3, denotedby C(M\sq), iffor every trace ({io, {oq, oi,..., Oj}) in the trace

set, there existsa state sequence 5i, 52> •••iSj+\ such that ^k :0 < k < j.

®If theNDFSM M isviewed asa NFA Awhich alphabet isZ = / x O, the trace setof M from astate so corresponds
to the language of A from so, and both will be denotedby C{M\«o).

16 CHAPTER 2. DEFINITIONS

• Sk+i € A{ik,Sk),and

• Ok e A{ik,Sk).

The trace set realized by a deterministic FSM with inputs I and outputs O is called a

behavior between the inputs I and the outputs O. A formal definition follows.

Definition 2.2.12 Given a finite set ofinputs I and a finite set ofoutputs O, a behavior between I

and O is a trace set, B = {(<7,-, ctq) | |(7,| = |o"o|}, which satisfies thefollowing conditions:

1. Completeness:

For an arbitrary sequence a,- on I, there exists a unique pair in B whose input sequence is

equal to Oi.

2. Regularity:

There exists a DFSM M = (5, /, 0,A, 5o) suchthat,for each ((io,..., ij), (oi,..., Oj)) 6

B, there is a sequence ofstates si, 52j •••>Sj+i with theproperty that Sk+i = S{ik, s&) and

Ok = A(u, Sk) for every k:Q <k < j.

For each state in a deterministic FSM, each input sequence corresponds to exactly one

possible output sequence. Given an initial state, a deterministic FSM realizes a unique input-output

behavior. But given a behavior, there can be (possibly infinitely) many DFSM's that realize the

behavior. Thus, the mapping between behaviors and DFSM realizations is a one-to-many relation.

Any other kinds of FSM's, on the other hand, can represent a set of behaviors because

by different choices of next states and/or outputs, more than one output sequence can be associated

with an input sequence. Moreover, multiple reset states allow alternative trace sets be specified;

depending on the choice of the reset state, a behavior within the trace set from the chosen reset state

can be implemented. Therefore, while a DFSM represents a single behavior, a non-deterministic

FSM (NDFSM) can be viewed as representing a set ofbehaviors. Each such behavior within its trace

set is called a contained behavior of the NDFSM. Then an NDFSM expresses handily flexibilities

in sequential synthesis. Using an NDFSM, a user can specify that one of a set of behaviors is to

be implemented. The choice of a particular behavior for implementation is based on some cost

function such as the number of states.

2.3. TAXONOMY OFENCODING PROBLEMS 17

2.3 Taxonomy of Encoding Problems

Synthesis of an FSM is the process of producing an implementation starting from a

behavioral specification of a sequential function. In our case we suppose that the starting point is

an STG or an STT. Combinational functions are FSM's with only one state. It was mentioned in the

introduction that we assume the usual paradigm ofstate minimization followed by state assignment,

even though our encoding techniques do not depend on it.

The step that translates a representation where some variables are symbolic into one where

they are all binary-valued is called encoding. An encoding must at least be correct, which means

that the encoded representation must behave as the symbolic representation (usually an encoding

must establish an injection from symbols to codes), but more interestingly it is often required that

the encoded implementation satisfies some further condition or optimality criterion. For instance,

suppose that the encoded representation must be implemented with two-level logic, then a definition

of optimum encoding may be that the encoded implementation after two-level minimization has

smallest area, or smallest number of product-terms. Also an encoding can be used to enforce a

structural property, like testability, of the encoded representation, i.e. that it is possibile to find

sequences of input vectors that distinguish a good and a faulty physical realization of the encoded

representation.

It should be noticed that also the choice of the memory element (JK or RS or T or D

flip-flop) matters since an encoding can be optimal with one type of bistable, but not with another

one. We will assume that unless otherwise stated memory elements are of type D, i.e., they simply

transfer the input to the output at the appropriate time.

There is almost no end to the variations of optimality objectives that can be imposed,

according to different applications. We will review later a number of them.

Definition 23.1 Given the sets ofsymbols Si = {si^, Sjj?"" >̂ ip} = {soi j •••,

and a Booleanfunction:

/:{0,l,2rx5i^5oX{0,l,2r,

an input-output encoding is given by a pair of integers ki^ ko and a pair of injective functions

Ci:Si {0,1} '̂ and : Si {0,1}*^°. The encoded representation off, i.e. the representation

of f where the symbolsare replaced byBoolean vectors in Bk^ and Bk^,according to e,- and Co , is

denoted by fei,eo-

18 CHAPTER 2. DEFINITIONS

Notice that the case of more than one symbolic variable in the input or output part can be treated

similarly

The definition of encoding can be specialized if symbolic variables appear only as input

or output variables. For instance, if symbolic variables appear only as input variables, one has an

input encoding problem:

Definition 23J2 Given a set of symbols Si = {si, sz? •**>̂ p} and a Booleanfunction:

/:{0,ir x5.-^{0,l,2r,

an input encoding is given by an integer ki and an injective function e,- : Si -> {0, l}'̂ ^ The

encoded representation off, i.e. the representation off where the symbolsare replaced by Boolean

vectors in Bki, according to ci, is denoted by fei.

If symbolic variables appear only as output variables, one has an output encoding problem:

Definition133 Given a set of symbols So = {si, •**>5^} and a Booleanfunction:

/:{0,ir ^5.x{0,l,2r,

an outputencoding is given by an integer ko andan injectivefunction Cq : So {0,1}^°. The

encoded representation off, i.e. the representation off where the symbolsare replaced byBoolean

vectors in Bk^,according to So, is denoted by fe^.

Since e is an injective function, different symbols are mapped into different codes and so

the encoded representation behaves as the symbolic representation.

Definition 23A Given an operator O an encoding e is optimal with respect to O if

0(fe) = Opto(0(fo)).

As an example, O can be the cardinality of a two-level minimized encoded cover of fe and opt the

minimum.

Definition 23,5 Given a decision operator O an encoding e satisfies O if:

o(h)

is true.

'Let V\ and Vi be two symbolic variables taking values from sets Svy and Sv^ respectively. These may bereplaced
by a single symbolic variable V taking values from 5v, x Svi. This is in fact potentially better than considering 14 and
V2 separately since the encoding for V takes into account the interactions between Vi and Vi.

2.4. BEHAVIOR VS. STRUCTURE IN ENCODING PROBLEMS 19

As an example, O can be a testability procedure that given an encoded cover returns true if it is

testable, false otherwise.

Someencodingproblemsmay havevarioussets of symbolicvariableswith mutualdepen

dencies. A well-knownone is the problem of assigningcodes to the states of FSM's, where the state

variable appears both as inputvariable (present state) andoutputvariable (next state). Therefore a

commonvalue must be assigned to the same symbol in the presentstate and next state variable. We

are going to repeat the definitionfor the state encodingor state assignment problem,since it is one

of the most widely studied encoding problems.

Definition 23.6 Given the sets of symbols S = {si, S2» *••>Sp} an FSM with transition

function:

/:{0,l,2rx5-^5x{0,l,2}"^,

a state assignment or state encoding is givenby an integer k and an injectivefunctions e : S

{0,1}*'. The encoded representation of f, i.e. the representation of f where the symbols are

replaced by Boolean vectors in Bk, according to e, is denoted by /g.

The optimality criteria investigated for state assignment have been more commonly the best two-

level or multi-level area of the encoded circuit. Attention has been paid also to state assignment of

asynchronouscircuits, where one must guarantee correctness, for instance that the change of the

state of the circuit does not depend on races among the transitions of signal values. Some woik

has been done on state assignment for testability. Little work has been done on state assignment to

improveperformance. Recently state assignmentfor low-powerhas received some attention,likely

to grow in the near future.

2.4 Behavior vs. Structure in Encoding Problems

Some issues deserve discussion at this point. Does the encoding always need to be a

function or can it be a mapping that assigns more than one code to a state (still preserving the

fact that a code cannot be assigned to more than one symbol) ? The answer is that in general it is

possible to derive c as a mapping that is not a function. Given n symbols to encode, one needs at

least k = logn bits todistinguish them. Thedifference n-2^ gives thenumberof spare codes that

are available and could be used to assign more than one code to a state. Therefore one could replace

"function e" with "relation e" in the previous definitions. An intermediate degree of freedom would

be to define e as a function into the set {0,1, *}, where * denotes for output encoding a don't care

20 CHAPTER 2. DEFINITIONS

condition, for input encoding both 0 and 1. One must say that rarely existing encoding algorithms

are able to exploit directly this degree offreedom, so we choose the more restrictive definition where

/ is a function, unless otherwise specified

Does the encoding function need to be always injective or two different symbols can be

given the same code ? The answer is that in general injectivity is necessary, unless in a given

application one has an equivalence relation among the symbols such that symbols in the same class

of the equivalence relation do not need to be distinguished. We will see later such examples, as for

instance equivalent states of a CSFSM.

It is important to underline that the optimality of an encoding can only be guaranteed

with respect to the starting symbolic representation. To be more specific, consider optimal state

assignment. If we start with a given symbolic cover of a CSFSM and try, say in an exhaustive way,

all possible encodings and choose the best according to a given cost function, we cannot rule out

that a different symbolic cover representing the same behavior can produce, after encoding, a better

result. The fact is that a CSFSM represents a behavior and that many different representations can

be given of the same behavior. We do not know how to explore all possible representations of a

behavior, for instance all possible STG's So we restrict our notion of optimality to the best that

can be done starting from a given representation.

The situation is even more complex with state assignment of ISFSM's. An ISFSM

represents a collection of behaviors. We will see that optimal state assignment procedures for two-

level implementations have a limited capability of exploring different behaviors by the flexibility

of choosing how to implement the don't care transitions (edges not specified or partially specified

in the description). But they cannot explore all possible contained behaviors as for instance it is

done by computing closed covers of compatible sets of states (a set of states is compatible if for

every sequence there is at least one output sequence that all the states in the set can produce).

Therefore when doing state assignment of an ISFSM (or another type of FSM that contains more

than one behavior), one must gauge the optimality of state assignment against the fact that neither

all behaviors nor all representations ofthe same behavior can be explored (unless otherwise shown).

Some proposals to use more behavioral information when encoding CSFSM's (equivalent states)

and ISFSM's (compatible states) will be seen later.

^Unused codes are usually given as don't careconditions when the smallest areaof an encoded representation is
obtained.

^Ofcourse itmaynotbenecessary toexplore allpossibleSTG's representing agiven behavior, oneshouldcharacterize
the class of interesting STG's with respect to a certain notion of optimal encoding.

2.5. BOOLEAN ALGEBRAS AND BOOLEAN FUNCTIONS 21

2.5 Boolean Algebras and Boolean Functions

This section provides a brief reviewof the backgroundmaterial on Boolean algebras and

Boolean functions. There are many classical expositions of it. We refer to [15, 32] for a complete

treatment.

Definition 2.5.1 Considera quintuple (B, +, •,0,1) in which B is a set, called the carrier, + and

• are birmryoperations on B, and 0 and 1 are distinct members of B. The algebraic systemso

defined is a Boolean algebra provided thefollowing postulates are satisfied:

1. Commutative Laws. For all a, be B:

a + 6 = 6 + a

a-b = 6•a

2. Distributive Laws. For all a,b,ce B:

3. Identities. For all a e B:

a + (6•c) = (a + 6) • (a + c)

a • (6+ c) = (a •6) + (a •c)

0 + a = a

1 ' a = a

4. Complements. For any a e B, there is a uniqueelement a' e B such that:

a-\-a' = 1

a - a' = 0

Useful identities can be derived from the axioms. Of very common use are De Morgan's laws.

Definition 2.5J Given a Boolean algebra B, the set of Boolean formulas on the n symbols

XI, a:2) • • •) is defined by thefollowing rules:

1. The elements of B are Booleanformulas.

2. The symbols xi, X2,..., Xn are Booleanformulas.

22 CHAPTER 2. DEFINrriONS

3. Ifg and h are Booleanformulas, then so are:

(a) (g) + (h)

(b) {g)' {h)

(c) {gY

4. Astring is a Booleanformula ifandonly if its being sofollowsfromfinitely many applications

ofthe rules above.

Definition 2S3 An n-variablefunction f \ ^ B is called a Booleanfunction if and only if it

can be expressed as an n-variable Booleanformula.

2.6 Discrete Functions as Boolean Functions

Many functions needed to specify the behavior of digital systems are binary-valued

functions of binary-valued variables ({0,1}" i-)- {0,1}). These are also referred to as switching

functions [15]. The fact that all switching functions are also Boolean functions [15] enables all

properties of Boolean functions to be directly applied to switching functions.

However not all functions that arise in the context of circuit specification and design are

switching functions. We are especially interested here to those functions, like the transition function

of an FSM, that are usually given as symbolic functions. These symbolic or discrete functions are

in the most general case multiple-valued functions of multiple-valued variables, It would be very

useful if discrete functions would be Boolean functions, as switching functions are. Apparently

this is not the case, or at least one should check case by case if the requirements for being Boolean

functions are satisfied. Fortunately one can associate to a discrete function a Boolean hmction

which can be used to represent and manipulate the discrete function, capitalizing on all the niceties

of Boolean algebra, including compactness of representation. This association can be done both if

one takes the relational or functional view of a discrete function. This section is heavily indebted to

the exposition in [84].

Let / : Pq XFi x ... x Pn-i Pn be a discrete function with Pj = {0,1,..., pj-i}.

Let P = {Po XPi X... XP„ }. / is not a Booleanfunctionsince it doesnot meet theconditionthat

/ : P" P for some Boolean algebra P. Corresponding to / there is the relation RC P defined

in thenatural way as thesetof points in P consistent with /. Let P = 2^, thepower setof P, i.e.

2.6. DISCRETE FUNCTIONS AS BOOLEAN FUNCTIONS 23

the setof all subsets of P. B is a Boolean algebra described by (2^,U, fi, <^, P). Let ^ : B B

be defined as:

^(a;) = i2na; x^B (2.1)

P n a; is a Booleanformulaandhence^ is a Booleanfunction. Equation2.1 is the mintermcanonical

form for this function.

Letm e {Po XFi X... XPn-i} and V'(m) = {m} x P„. ip(m) is thesetof n + 1-tuples

corresponding to the n-tuple m thathave all possible values in thelast field. ^ corresponds to /

in the sensethatgiven any m, f(m) maybe computed by ^ as follows, is a singleton set

containingthe tuple in R with the first n fields the same as that of m. Field n + 1 in this tuple is

/(m).

Example 2.6,1 Theswitchingfunction corresponding to an AND gate is used to illustrate theabove.

Here / : {0,1}^ {0,1}. Consider m = (0,1).

R = {(0,0,0), (0,1,0), (1,0,0), (1,1,1)}

i)(m) = {(0,1)} X{0,1}

= {(0,1,0), (0,1,1)}

^Wm)) = {(0,0,0), (0,1,0), (1,0,0),(l,l,l)}n {(0,1,0), (0,1,1)}

= {(0,1,0)}

/(m) is the lastfield of the n + 1-tuple (0,1,0), i.e. f(m) = 0.

Example 2.6.2 Each person in a certain university town in to be classified as being one of {

good, bad, ugly} (abbreviatedas {</, 6, u}). This classification is to be done based on theperson's

occupationwhich is one of {professor, teaching assistant, outlaw} (abbreviated as {p, t, o}) and

their naturewhich is one o/{honest, selfish, cruel}(abbreviated as {h, s, c}). To be goodyou have

to be a professor or be honest and not an outlaw. Cruel outlaws are ugly. Everyone else is just bad.

The classification function is a discretefunction f : {p,t,o} x {/i, s, c} {g,b,u].

Consider m —(t, c).

R = {(p,h,g), (p, s, g), (p, c,g),(t,h,g), {t,s, 6), (i, c, b), (o,h, b), (o,s, b), (o,c,u)}

= {(t,c)}x{g,b,u}

^(^(m)) = Rnil}{m)

= {(^iC,6)}

24 CHAPTER 2. DEFINITIONS

f(m) is the lastfield of the n + 1-tuple {t,c, b),i.e. f(m) = b.

By clustering points in the domain one can get a more compact representation of /. Let

B = 2^ and m e P. Let 7n[j] be the value of field j in m. One natural way tocluster points in

P is to group all points with the same value of Tn[j] (for some given j) together and refer to them

collectively. Let xf =PoX...x Pj-\ xSj xPj+i x... xF„. Thus, Xj^ has all points for which
m\j] e Sj. For Example 2.6.2 is the set of all points for which mp] = p. Note that xf ^B

J Sj Pj—Sj
andXj'=Xj •

Theorem 2.6.1 Let x = {x/ li ^ {0,1,••., n}, Sj C Pj]. Let be B. bcan be expressed interms

ofa Boolean expression restricted to elements ofx-

Proof: The statement needs to be proven only for the atoms of B, the singleton sets, since any other

elementof B can be obtained by a union of the atoms. Let {a} be an atom and o[i]be field i of a,

then a = Hi •

An immediate corollary of this result is that R can be expressed as a Boolean expression restricted

to elements of x- Thus the Boolean formula in Equation 2.1 can be re-written by expressing F as a

Boolean expression restricted to the elements of x- In practice Theorem 2.6.1 is not used to re-write

F, but rather R is derived directly from some description of the function.

Example 2.63 Consider f in Example 2.6.2. R is derived directlyfrom the conditions specified

asfollows. The set ofpoints in P that representprofessors or honestpeople who are not outlaws is

naturally expressed as:

Xo^^ u nxo"^)
This can be simplified to:

u (xi''̂ nxo^^)
Similarly the set ofpoints that represent cruel outlaws is: Xo'̂ ^ n The rest of the people are
obviously expressed as:

Xo^^ u (xf''̂ nxo*^) u (xj°^ nxi''̂)
This can be simplified to:

(xi^>nx{->)u(x^^>nx^>)
Thus, R can be expressed as:

2.6. DISCRETE FUNCTIONS AS BOOLEAN FUNCTIONS 25

In conclusion, taking the relationalviewofadiscrete function, we have associated a Boolean function

to a discrete function and described how the Boolean formula corresponding to this Boolean function

can be represented compactly. This enables to apply any Boolean identity to simplify the Boolean

expression.

Instead of the relational view, we can manipulate discrete functions taking the functional

view. Suppose that the domain is partitioned based on the value of the function. Let 11 =

{ttq, TTi,..., TTp^-i} be a partition of Po x Pi x ... x P„_i such that: f(m) = i. For

the switching function / inExample 2.6.1, ttq = {(0,0), (0,1), (1,0)} and tti = {(1,1)}.

Each TT,- may be described by its characteristic function /,• defined as follows.

/i: Po X Pi X ... X P„_i 1-^ {0,1} i € Pn

/i(m) = <
(0 otherwise

fi tests for membership in tt,; it evaluates to 1 for exactly the points in tt,. The following

representation has been commonly used to describe the /,• in the literature. Let Sj C Pj and
5.

Xj be a pj-valued variable. X- ^ is termed a literal of Xj and is defined as:

y 0 otherwise

defined as the logical AND of X^^^ and X '̂̂ . Similarly, X^^^ X^"^ is defined as
the logical orof X^^^ and The complement of aliteral Xp is denoted as Xp and defined
as X^^ = . In this way sum-of-products (SOP's) and factored forms (recursive products
and sums of SOP forms) are constructed.

Example 2.6.4 For f in Example 2.6.1 thefollowing is the SOP representation ofthe f:

/, =4'>x/"

Example 2.6.5 For f in Example2.6.2 thefollowing is the SOP representationfor fg and fu.

L =

26 CHAPTER 2. DEFINITIONS

However, there seems to be no direct way to obtain fi, since these expressions are not Boolean and

De Morgan's identities cannot be directly applied in this case, and if they do apply, it must be proven

separately for each expression. This is a limitation of this representation.

Along the lines of the previous derivation of the Boolean function ^ from the relation R,

one can obtain ^ from the expressions representing the characteristic functions ofthe partitions. First

one derives a Boolean formula for each factored form expression. Then these Boolean formulas are

combined to give ^(x). So all properties for Booleanformulas hold for factored form expressions

and they need not be proven separately. We refer to [84] for a detailed derivation, that we simply

demonstrate on an example.

Example 2.6.6 For the switchingfunction in Example 2.6.1:

xf^ = {(0,0,0), (0,0,1), (0,1,0), (0,1,1)}
xP' = {(0,0,0),(0,0,1),(1,0,0),(1,0,1)}
xj'' = {(1,0,0),(1,0,1),(1,1,0),(1,1,1)}

x{" = {(0,1,0), (0,1,1), (1,1,0), (1,1,1)}
xf^ = {(0,0,0), (0,1,0), (1,0,0), (1,1,0)}
xP = {(0,0,1), (0,1,1), (1,0,1), (1,1,1)}

= ((xo°^ uXi"') na; nxf^) u((xj'' nxf) n«nxl'̂)
= {(0,0,0),(0,1,0), (1,0,0), (l,l,l)}na:

This, as expected, is the same as that derived in Example 2.6.1.

2.7 Two-level Minimization of Multi-Valued Functions

We review basic definitions oftwo-level multi-valued minimization. For a more complete

treatment the reader is referred to [114].

Definition 2.7.1 Let pi^i = be positive integers. Define Pi = {0,..., p,- - 1}for i =

1,..., n, and B = {0,1, *}. Amultiple-valuedinput, binary-valued outputfunction, f, is afunction

f : Pi X P2 X • •' X PnB

The function / has n multiple-valued inputs. Each input variable i assumes one of the p, values in

Pi. The value * e Bis used when the function value is unspecified (i.e., it is allowed to be either 0

or 1).

2.7. TWO-LEVEL MINIMIZATION OF MULTI-VALUED FUNCTIONS 27

Ann-input, m-output switching function canberepresented byamultiple-valuedfunction

of n 1 variables where p,= 2 for i = 1,..., n, and pn+i = The minimizationproblem for

multiple-output functions is equivalent to the minimization of a multiple-valued function of this

form [119].

Definition 2.7.2 Let Xi be a variable taking a valuefrom the set Pi, and let Si be a subset of Pi.

Xf' represents the Booleanfunction

0 ifXiiSi

' \ 1 ifXi GSi
xf* iscalled a literal ofvariable Xi. If Si = 0, then the value ofthe literal is always 0, and the
literal is called empty. If Si = Pi, then the value of the literal is always 1, and the literal is called

fuU.

Two-valued (or binary) functions are a special case of multi-valued functions where

Pi = {0,1} for i = 1,..., n. In the case of a two-valued single-output function, somenotational

simplification is then possible. A cube may be written as a vector on a set of variables with each

position representing a distinct variable. The values taken by each position are 1, 0 or 2 (same as

don't-care), signifying the true form, negated form or both of the variable corresponding to that

position. A minterm is a cube with only 0 and 1 entries. Cubes can be classified based on the

number of 2 entries. A cube with k entries or bits which take the value 2 is called a fc-cube. A

minterm thus is a 0-cube.

A product term (or cube) is a Boolean product (AND) of literals. A minterm or 0-cube

is a product-term in which the sets ofvalues of all literals are singletons. If a product term evaluates

to 1 for a given minterm, the product term is said to contain (or cover) the minterm.

A sum-of-products (or cover) is a Boolean sum (OR) of product terms. If any product

term in the sum-of-products evaluates to 1 for a given minterm, then the sum-of-products is said to

contain the minterm. If a literal in a product-term is empty, the product term contains no minterms,

and is called the null product (written 0). The on-set of a function is the set of minterms for which

the function value is 1. Likewise, the off-set is the set of minterms for which the function value is

0, and the DC-set is the set of minterms for which the function value is unspecified.

In the definitions which follow, S = Xf^X^ ••• and T = xf^X^^ •••Xj" repre
sent product terms.

The product term S contains the product term T (T C S) if Ti C 5,- for« = 1... n. The

complement ofthe literal xf' (written xf*) isthe literal . The complement ofthe product

28 CHAPTER 2. DEFINITIONS

tenii S (S) is the sum-of-products U?=i

The intersection of product terms S and T (5 n T) is the product term

ji^SioTi ^^0X2 _, .^5„nTn

If Si n Tt = 0 for some i, then 5 DT = 0 and 5 and T are said to be disjoint. The intersection of

covers F and G is the union of / n 5 for all / e F and g e G. The distance between S and T

(distanc€{S,T)) is |{i|5,-n T,- = 0}|.

The consensus of S and T (cons€nsus(S, T)) is the sum-of-products

t=l

If distance{S, T) >2 then cons€nsus(S, T) = 0. If distance{S, T) = I and Si n Ti = 0, then

consensus{S, T) isthe single product term •••Xf'̂ '̂ ••• Ifdistance{S^ T)= 0
then consensus{S, T) is a coverof n terms. If the consensusof S and T is nonempty, it is the setof

maximal product terms (ordered by containment) which are contained in 5 U T and which contain

mintermsof both S and T. The consensus of two covers F and G is the union of consensus{f, g)

for all / € F and € G.

The cofactor (or cube restriction) of S with respect to T {St) is empty if S and T are

disjoint. Otherwise, the cofactor is the product term

y-SiUTi ... vS„uT„
Ai "-^2

The cofactorof a cover F with respect to a product term S is the union of fs for all / e F.

An implicant of a function is a product term which does not contain any mintemi in the

off-set of the function. A prime implicant of a function is an implicant which is not contained

by any other implicant of the function. An essential prime implicant is a prime implicant which

contains a minterm which is not covered by any other prime implicant.

The product term S can be represented in positional cube notation as a binary vector in

the following form:

c?cj...c[^"^ -

where cj = 0 if j ^ Si, and cj = 1if j GSi. In other words, a symbolic variable that can
take values from a set of cardinality n is represented in positional cube notation by an n-bit vector

to denote a literal of that variable such that each position in the vector corresponds to a specific

element of the set. A 1 in a position in the vector signifies the presence of an element in the literal

2.S. MULTI-LEVEL MINIMIZATION OF MULTI-VALUED FUNCTIONS 29

while a 0 signifiesthe absence. This method of representation is commonlyknown as one-hot. By

complementingthe n-bit vector that represents the one-hot encoding of a symbolic variable, one

gets a representation called complemented one-hot.

Up to now we have introduced multi-valued inputs and binary outputs functions, rep

resented by multiple-valued functions where the set of binary outputs is treated as one more

multi-valued input variable. Positional cube notation allows also to represent any function with

multi-valued input and multi-valued output variables. This is commonly done in programs like

ESPRESSO-MV, when a function with symbolic inputs and outpus (e.g., an FSM) is 1-hot encoded

and then minimized. But the minimizationproblem for functions with multi-valued input and output

variables is not known to be equivalent to the minimizationof a multiple-valuedfunction of this

form. After 1-hot encoding the onsets of the minterms (values) of a symbolic output are treated as

disjoint and so are minimized separately. To handle the minimization problem of functions with

multi-valued input and multi-valued output variables the concept of generalized prime implicants

will be introduced later.

2.8 Multi-level Minimization of Multi-Valued Functions

We now introduce multi-level networks with multi-valued inputvariables. By convention,

in this section we will we use upper case letters for multi-valued variables and lower-case letters for

binary-valued variables.

A swn-of-products (so?) is a Booleansum (or) ofproduct terms. For example:

isacube and 2/2+2^^^^1/22/3 isan so?. Afunctionfmay berepresented byanso?expression
/. hi addition f may be represented as a factored form. A factored form is defined recursively as

follows.

Definition 2.8.1 An SOP expression is a factoredform. A sum of twofactoredforms is a factored

form. A product oftwofactoredforms is a factoredform.

2/1 + ^2/3) isa factored form for the SOP expression given above.
A logic circuit with a multiple-valued input is represented as an MV-network. An MV-

network r), is a directed acyclic graph (DAG) such that for each node ui in tj there is associated a

binary-valued, MV input function fj, expressed in SOP form, and a binary-valued variable 2/i which

represents the output of this node. There is an edge fiom n, to Uj in rj if fj explicitly depends

on 2/i. Further, some of the variables in 7/ may be classified as primary inputs or primary outputs.

30 CHAPTER 2. DEFINITIONS

These are the inputs and outputs (respectively) of the MV-network. The MV-network is an extension

of the well-known Boolean network [12] to pennit MV input variables; in fact the latter reduces to

the former when all variables have binary values. Since each node in the network has a binary-

valuedoutput, the non-binary(MV) inputs to any node must be primary inputs to the network. The

MV-netwoik computes logical functions in the natural way. Each node in the dag computes some

function, the result of which is used in all the nodes to which an edge exists from this node.

The cost of a boolean network is typically estimated as the sum over all nodes of the

number of literals in a minimum (i.e. one with a least number of literals) factored form of the node

function. This cost estimation has a good correlation with the cost of an implementation of the

network in various technologies, e.g. standard cells or CMOS gate matrix.

2.9 Multiple-Valued Relations

Definition 2.9.1 A multiple-valued relation R is a subset of D x B^. D is called the input set

ofR and is the Cartesian product ofn sets D\ x •••x where Di = {0,..., Pi - 1}and Pi is a

positive integer. Di provides the setofvalues that the i-th variable ofD can assume. designates

a Boolean space spanned by m variables, each ofwhich can assume either 0 or 1. B"^ is called

the output set of R. If Pi is 2for all i's, then R is called a Boolean relation. The variables ofthe

input set and the output set are called the input variables and the output variables respectively.

R is well-defined iffor every\e D, there exists y G B"^ such that (x,y) € R.

We represent a relation R by its characteristic function R : D x B^ B such that

i2(x, y) = 1 if and only if (x, y) G R. In the implementation, we represent a characteristic

function by using a multi-valued decision diagram (MDD, see [64, 136]). An MDD is a data

structure to represent a function with multiple-valued input variables and a single binary output,

which employs a BDD [16] as the intemal data structure.

An incompletely specified function is a special case of a relation, in the sense that for a

given incompletely specified function f : D B^, a relation F C Dx B^ can be defined so that

(x,y) GF if and only if for each output j, the value of the j-th output in y is equal to /^-^^(x),

unless Xisadon'tcare minterm for the output, where f^^^ designates the j-th output function of /.

We may refer to the relation F as the characteristicfunction of /.

Definition 2.9.2 Fora given relation R anda subset AC D, the imageofA by R is a setofminterms

y G B^for which thereexists a mintermx G Asuchthat (x,y) G R,i.e. {y | 3x G A : (x,y) G F}.

2. JO. BINARY DEaSION DIAGRAMS 31

The image is denoted by r(>l). r (A) may be empty.

Definition 2,93 For a given relation R C D x B^, a multiple-valuedfunction f : D is

compatiblewith R, denoted by f < R, iffor every minterm x e D, f{x) e r(x). Otherwise f is

incompatiblewith R. Clearly, f < R existsif and only if R is well-defined.

2.10 Binary Decision Diagrams

Definition 2.10.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each

nonterminal vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs,

childo(v) and child\(v). Each terminal vertex u is labeledOor 1.

Each vertex in a BDD represents a binary input binary output function and all vertices are roots.

The terminal vertices represent the constants (functions) 0 and 1. For each nonterminal vertex v

representing a function F, its child vertex childo(v) represents the function Fu and its other child

vertex childi (u) represents the function Fy. i.e., F = v - Fy-\-v - Fy.

For a given assignment to the variables, the value yielded by the function is determined

by tracing a decision path from the root to a terminal vertex, following the branches indicated by

the values assigned to the variables. The function value is then given by the terminal vertex label.

Definition 2.10.2 A BDD is ordered if there is a total order •< over the set of variables such

thatfor every nonterminal vertex v, var{v) -< var{childo(v)) if childo(v) is nonterminal, and

var(v) •< var(childi{v)) ifchild\(v) is nonterminal.

Definition 2.10J A BDD is reduced if

1. it contains no vertex v such that childo(v) = childi{v), and

2. it does not contain two distinct vertices v and v such that the subgraphs rooted at v and v

are isomorphic.

Definition 2.10.4 A reduced ordered binary decision diagram (ROBDD) is an BDD which is

both reduced and ordered.

32 CHAPTER 2. rmwrriONS

33

Chapter 3

Complexity Issues

3.1 Computational Complexity

In this section we will present some results on the computational complexity of state

assignment for minimum area. We refer to [46, 104, 9] as standard references on computational

complexity and the theory of ATP-completness in particular. Computational complexity of logic

optimization problems has been discussed in [69], from which we will draw results.

An instance of a problem is encoded as a string (or word) of a language. So the solution

of a problem is equivalent to decide whether a given string (an instance of the problem) is in that

language or not. A decision algorithm is usually given by means of a Ihring machine, that is a

universal computational device. The game is to find out how much of space and time resources

a Thring machine must use to recognize words in the language. The resources taken by a TYiring

machine are polynomially related to those of the other commonly used computational mechanisms

(for instance a C program running on a VonNeumann computer). Ofcourse there are also insolvable

problems, but they are not of interest here.

Let L C Z* be a language. The complement of L, denoted L, is the language Z* - L, i.e.,

the set of aU strings in the appropriate alphabet that are not in L. The complement of a decision

problem A (sometimes denoted A COMPLEMENT), is the decision problem whose answer is "yes"

whenever A answers "no" and viceversa.

Example 3.1.1 SATis the problem ofdeciding ifa given Boolean expression in conjunctive normal

form (CNF) has a satisfying assignment. Given a reasonable rule to encode any CNF expression, the

language SATwill contain all strings that encode instances ofCNF ejqyressions that are satisfiable.

34 CHAPTERS. COMPLEXITY ISSUES

Then given any string one can construct an algorithm thatfirst checks whether the string encodes

a CNF expression and then finds if a satisfying assignment exists. SAT COMPLEMENT is the

problem: given a CNF, is it unsatisfiable ? Strictly speaking the languages corresponding to the

problems SATand SATCOMPLEMENTare not the complements ofone another, since their union

is not L* but rather the set ofall strings that encode CNF's.

A set of languages (representing decision problems) recognizable with the same amoimt

of computational resources and/or the same computational mode (for instance, deterministic vs.

non-deterministic) are said to be a complexity class. For instance, P is the class of problems for

which polynomial time is sufficient. NP is the class of problems that can be solved by a non-

deterministic Turing machine in polynomial time. Another characterization of iVP is the class of

problems whose solution can be verified in polynomial time. As an example SATis in NP because

it takes linear time to verify if an assignment satisfies a CNF expression, but it seems hard to decide

whether a satisfying assignment exists and it is not known whether SAT is in P. If NP is the class

of problems that have succinct certificates, co - NP contains those problems that have succinct

disqualifications. That is a "no" instance of a problem in co - NP has a short proof if its being a

"no" instance; and only "no instances" have a short proof. Alternatively, co - NP is the class of

problems whose complement is in NP. In general for any complexity class C,co-C denotes the

class {L : L € C).

Example 3.1^ VALIDITY of Boolean expressions is in co —NP. We are a given a Boolean

expression <f>, and we are asked whether it is valid, i.e. satisfiable by all truth assignments. If <f>

is not a validformula, then it can be disqualified very succinctly, by providing a truth assignment

that does not sati^ it. No validformula has such a disqualification. Also VALIDITY of restricted

Boolean expressions in sum-of-product forms (SOP) is in co - NP. VALIDITY is also called

TAUTOLOGY.

Problems as hard as any in NP are called iVP-hard. Problem A is at least as hard as

problem B if B reduces to A. B reduces to A if there is a transformation R that, for eveiy input x

of By produces an input R{x) of A, such that the answer to R{x) as input to A is the same as the

answer to x as input to B. In other words, to solve B on input x it is sufficient to compute R(x)

andsolve A on P(a;). Of course R shouldbe reasonably simpleto compute: oftenone requires that

R is computable by a deterministicTbring machine in space (!)(log n). More simply one wants a

reduction R that can be computed in polynomial time.

3.1. COMPUTATIONAL COMPLEXITY 35

A fundamental result due to Cook [46] shows that SAT is as hard as any problem in iVP,

i.e. knowinghowto solve SAT efficiently (in polynomial time)wouldenableus to solveefficiently

anyotherproblem in N P. By transitivity, to showthat a problem is ATP-hard it is enoughto show

that it is as hard as SAT. Any language L in co - NP is reducibleto VALIDITY. Indeed, if L is in

CO - NP, then L is in NP, and thus there is a reduction R from L to SAT. For any string x,x e L

iffR(x) is satisfiable. Thereduction from L to VALIDITY is R'(x) = ->R.

ATP-complete problems are the iVP-hard problems that are also in NP. In general if

C is complexity class and L is a language in C, L is C-complete if any language L' e C can be

reducedto L. No AT P-complete problemis knownto be in P, but no super-polynomial lowerbound

is known either.

A problem as hard as any in co —NP is called co —ATP-hard, which means that its

complement is ATP-hard, i.e. as hard as any problem in NP. co - ATP-complete problems are

the CO - ATP-hard problems that are also in co - NP, i.e. whose complementary problem is NP-

complete. In general if L is ATP-complete, then its complementL = 1.* - L is co- ATP-complete.

It is not known whether co - ATP-complete are harder than ATP-complete ones. Still

CO - ATP-complete seem harder than ATP-complete ones: e.g., deciding VALIDITY intuitively

requires checking whether all assignments satisfy a Boolean expression, while SATcan be answered

as soon as a satisfying assignment is found. So, unless a theoretical breakthrough proves that the

two classes coincide, it is useful to classify precisely a problem as belonging into one vs. the other,

as it is recommended in [69], reacting against sloppy statements in the literature on algorithms for

computer-aided design.

Beyond P and ATP there is a whole world of complexity classes. We are going to

introduce the rudiments of the polynomial hierarchy because they are needed to classify correctly

some versions of state assignment.

Say that a Turing machine is equipped with an oracle, when it has available a subroutine

tha charges one unit of computation to give an answer, e.g., an oracle could be a subroutine that

decides whether a word is in SAT. Forinstance, onenames as p-^^^ theclass of problems thatcan

be solved in polynomial time by a deterministic Turing machine augmented with a SAT oracle. In

general, if C is any complexity class, is the class of languages decided by machines as those

that decide the languages of C, only that they are also equipped with oracle A.

Example 3.13 Let {E, k) be an instanceof theproblemEQUNALENT FORMULAS, which con

sists of deciding whether boolean expression E {we will use Boolean expression and Boolean

36 CHAPTERS. COMPLEXITY ISSUES

formula as synonyms) admitsan equivalentformula E' including, at most, k occurrences of literals,

where two Booleanformulas are equivalent iffor any assignment of values E is satisfied iff E' is

satisfied.

Theorem 3.1.1 SATISFIABILITY can be solved in polynomial time by a deterministic Turing ma

chine with oracle EQUIVALENT FORMULAS.

Proof: There are only two types of formulas equivalent to a formula including 0 occurrences of

literals, that is, a formula consisting only of Boolean constants: those equivalent to true, also called

tautologies, that are satisfied by all possible assignments of values, and those equivalent to false

which cannot be satisfied by any assignment of values.

Let ^ be a formula in CNF fonn. To decide whether E is satisfiable it is sufficient to check

first whether E is a tautology. If so, E is satisfiable; otherwise, we have only to check whether E is

equivalent to a formula containing 0 occurrences of literals. If this is the case, E is not satisfiable,

otherwise it is satisfiable. The first check can be done in polynomial time on a CNF; the second

can also be done in polynomial time by querying the oracle EQUIVALENT FORMULAS with the

word < 0 >. If the oracle answers positively, E is not satisfiable, otherwise it is satisfiable. •

No construction is known in the opposite direction: no deterministic Turing machine having an

NP-complete language as oracle and deciding EQUIVALENT FORMULAS in polynomial time has

been found. It is however possible to define a nondetenninistic TXiring machine having the above

characteristics.

Theorem 3.1.2 EQUIVALENTFORMULAS can be solved inpolynomial time by a nondeterministic

Turing machine with oracle SAT.

Proof: Non-determinism can be exploited to generate all possible formulas E' including, at most, k

occurrences of literals and to query the oracle to detennine whether E' is not equivalent to E, that

is, if y E) A (-^EVE')) is satisfiable. If this last fonnula is not satisfiable, then E' is the

required fc-literal formula. Conversely, if all ^-literal formulas E' are not equivalent to E, then the

instance{E, k) doesnot belongto EQUIVALENT FORMULAS . •

Given a class of languages C define the class as

pC ^ y pL
L&C

and NF^ as

NP^ = U NP^
Lec

3.1. COMPUTATIONAL COMPLEXITY 37

where and NF^ denote the classes F and NF augmented withoracleL.

Itfollows that the problemSATISFIABILITY belongs totheclass pEQUivalent formulas
while EQUIVALENT FORMULAS belongs to By iterating the previous definitions, one

gets the polynomial hierarchy. The polynomial hierarchy is aninfinite set{Ej,11^, Aj : k > 0}of

classes of languages such that

1.5:g = nj,Aj = p.

2. = NP '̂, = coLl^i and with fc >0.

Theinfinite union ofallE '̂s (orof all11 '̂s orof aU is denoted as FH.

An alternate characterization of the polynomial hierarchy is as follows.

Theorem 3.13 Foreach k>0,a language Lbelongs toE^ iffa language Ae F andapolynomial

p exist such that

xeL<r^ {3y\){^y2)---(QyK)[(x,yu-'-,yk) € A]

where \yi\ < p(\x\)with I <i < kandwherethesequenceofquantifiersconsistsofan alternation

ofexistential and universal quantifiers (Q is 3 or^ if k is odd or even).

Similarly, for each k > 0, a language L belongs to 11^ iffa language A e F and a

polynomial p exist such that

xeLir^ {'^y\){3y2)'"{QyK)[{x,yu-'-,yk) € A]

where \yi\ < p{\x\)with 1 < i < kandwherethesequenceofquantifiersconsistsofan alternation

ofuniversal and existential quantifiers (Q is "i or 3 if k is odd or even).

A word (a;, I) belongs to the language associatedwith EQUIVALENT FORMULAS iff a

formula y\ exists such that, for all possiblepossibleassignments of values y2, ((a;, A;), j/i, ?^) G A

holds,wherethelanguage A € P is defined as: {{x^k)^y\,yi) € Aiff is an assignmentof values

which satisfiesthe formula (-•a; Vyi) A (-«yi V a;) where y\ denotes a foraiula which includes, at

most, k occurrences of literals. SoEQUIVALENT FORMULAS is in E^.

Very few interesting problems have been shown to be complete with respect to a given level

of the polynomial hierarchy. For example, it is not known whether EQUIVALENT FORMULAS is

E^-complete.

LetP bea Boolean formula built ona setofBoolean variables uf X, where Xi = {aj^j:

1 < i < with mi positive integer. The problem A;-QBF consists of deciding whether the

38 CHAPTERS. COMPLEXITY ISSUES

formula

is true, where (3Xt) reads as "there exists an assignmentof values to the variables 3:^, •••, Xi^.

and (VXj) reads as "for all assignments of values to the variables ajjj, •••, Xi^.". For all fc > 1,

A;-QBF is -complete (and thus fc-QBF is oneof thehardest problems in L^).

Of the classes in the polynomial hierarchy we will need soon the class of problems

solvable in polynomial time by a non-deterministic TXiring machine augmented with an oracle in

NP. To strengthen the intuition, let us say that a problem in Zj is such that not only finding a

solution requires the power of non-determinism, but also checking it, while for iVF-complete ones

only the first task requires the power of non-determinism and the second one is easy. So the fact

thata problem is in Zj not in a lower complexity class is a valuable information also for the

algorithm developer.

Now we have the setting to state and prove the results related to some versions of state

assignment problems. State assignment for area has the goal to find an encoded FSM that gives the

best two-level or multi-level implementation (another taiget could be some specific Programmable

Gate Array architecture). At the core one must minimize a logic function and produce the best

two-level or multi-level representation.

Definition 3.1.1 Given a representation ofa Booleanfunction F by means of the minterms of the

onset andpositive integers k and I, MIN-SOP-1 is the problem "is there a SOP representation ofF

with k orfewer product-terms and I orfewer literals ?".

Theorem 3.1.4 MIN-SOP-1 is in NF-complete.

Proof: MIN-SOP-1 is in NP. A non-deterministic Turing machines can guess a SOP representation

G with k or fewer product-terms and I or fewer literals, then it must check whether G is equivalent

to F. The check can be done by replacing each product-term in G with the minterms that it covers.

Given that F is available as a sum-of-minterms it is easy to verify whether the minterms contained

in the representation of G are all and only the minterms that describe F.

MIN-SOP-1 is A^F-hard. Let us show that MINIMUM COVER ^ reduces to MIN-SOP-1.

Consider an instance of MINIMUM COVER, we suppose for conveniency that the subsets in G

^MINIMUM COVER: Given acollection C ofsubsets ofa finite setS anda positive integer k < |C|, does C contain
acoverfor5 ofsize < fc,i.e. asubsetC C Cwith \C'\ < A: suchthatevery elementof 5 belongs toatleastonemember
of C ? It shownto be NP-cogiplete in [46].

3.L COMPUTATIONAL COMPLEXITY 39

and the set 5 are specified by a matrix whosecolumnsare the subsets in C and whose rows are the

elementsof 5, such that entry («, j) is a 1 iff element i is in subset j and0 otherwise. Say that there

are n rows and m columns. It has been shown by Gimpel [47] that one can build an incompletely

specified Booleanfunctionon the set of variablesa:i, a;2, ••*, Xm+n- Its onsethas as manyminterms

as rowsand a genericminterm rrij is given by:

Tflj — X\X2 ' ' ' Xj—\~*XjXj^\^ Xffi^ji.

Let the primesof the functionbe as manyas the columnsof the original table,with a prime Pi given

by:

Pi —Xfi^i Xj
jeFi

where Fi = {j \ aij = 0}. The minterms of the dcsetare the vertices contained in the primesthat

arenot minterms of the onset. Since minterm rrij is in prime Pi iff entry («, j) in the tableis 1, it

follows that an instance of MINIMUM COVER has answer "yes" iff the corresponding instance of

MIN-SOP-1 has answer "yes" (same k used in both cases, I is not needed). •

Definition 3.1^ Given a sum-of-products (SOP) representation ofa Booleanfunction F andposi

tiveintegers k and I,MlN-SOP-2is theproblem "is therea SOP representationofF with k orfewer

product-terms and I orfewer literals ?".

Theorem 3.1.5 [69] MIN-SOP-2 is in co - NP-hard (lower bound).

Proof: We show that VALIDITY for SOP forms reduces to MIN-SOP-2. We already stated the

well-known result that VALIDITY is co - NP-hard (precisely it is co - NP-complete). Consider

an instance of VALIDITY, i.e. a SOP form V. It is easy to check whether V has at least one

satisfying assignment, otherwise the answer to VALIDITY of V is no. Suppose that V is satisfiable.

Let a: by a Boolean variable that does not appear in V and multiply it by the expression V, obtaining

W = V.x. One can have W in SOP form, by multiplying x by each product of V. In this way W is

in SOP form and therefore one can build an instance of MIN-SOP-2 where F is W and k = 1=1.

It is the case that this instance of MIN-SOP-2 has answer "yes" iff V has an answer "yes" for

VALIDITY, because every representation of W must have at least one product term and literal for

X, and V can be either a tautology or it must contribute at least one more literal to W (the case that

V is not satisfiable has been handled at the beginning). •

40 CHAPTERS. COMPLEXITY ISSUES

MIN-SOP-2 does not appear to be co- NP-easy, since it is not known yet whether having

an oracle for any problem in co - NF would enable to solve MIN-SOP-2 in polynomial time. The

next theorem shows that MIN-SOP-2 can be solved in polynomial time by a nondeterministic Thring

machine with an oracle in N P.

Theorem 3.1.6 [69]MIN-SOP-2 is in Zj (upper bound).

Proof: Consider a nondeterministicHiring machine equipped with SATas an oracle. Notice that we

need a version of SAT for general Boolean expressions (it is still in NP). Non-determinism can be

exploited to generate all possible SOP forms, with k or fewer product terms and I or fewer literals,

say G is a generic one, and to query the oracle to determine whether, say, G is not equivalent to F,

that is, if -•((-'G V F) A {->F V G)) is satishable. If this last formula is not satisfiable, then G is

the required POS with < k product terms and < / literals. Conversely, ifno POS with < k product

termsand < I literals is equivalentto F, then the instance (F, k, I) does not belongto MIN-SOP-2.

•

The previous results extend easily to the case ofminimum SOP forms ofencoded FSM's.

Notice that a symbolic cover is simply a two-level SOP representation of an FSM. An encoded

cover of an FSM is the symbolic cover after syntactic replacement of each state symbol with a

code, according to an encoding fimction e. Basically the previous theorems can be all be rephrased

having symbolic covers instead than two-valued covers and adding the requirement that an encoding

ftmction be guessed nondeterministically.

First we get an equivalent of MEN-SOP-1. For that we introduce the notion of minterm

symbolic cover, that is a symbolic cover of an FSM where each proper input and proper output is a

minterm. One can take a symbolic cover and obtain easily a minterm symbolic cover, by replacing

each symbolic cube by a set of symbolic cubes which are minterms in the input and output space

and add up to the original cube.

Definition 3.U Given a minterm symbolic representation ofan FSM M and positive integers k

and I, SA-MIN-SOP-1 is the problem "is there an encoding e that produces an encoded cover Mg

that has a SOP representation with k orfewer product-terms and I orfewer literals ?".

Theorem 3.1.7 MIN-SA-SOP-1 is in NP-complete.

Proof: MIN-SA-SOP-1 is in NF-hard. Restrict MIN-SA-SOP-1 to MIN-SOP-1, by noticing that

a Boolean function is an FSM with no state variable in its representation.

3J. COMPUTATIONAL COMPLEXITY 41

MIN-SA-SOP-1 is in N P. By nondetenninismone can guess an encoding functione and

a minimized encoded SOP form N. Me is the SOP fonn obtained from M by replacing syntactically

states with codes. Each product-term of Me is a minterm. Wemust prove that Me is equivalent to

N. Replace each product-term in TV by all minterms that it covers, and call it Nminterms- Since

both Me and Nminterms contain only minterms, their equality can be checked in time polynomial

in the original representation. •

Definition3.1.4 Given a symbolic representation of an FSM M and positive integers k and I,

SA-MIN-SOP-2 is theproblem "is there an encoding e that produces an encoded cover Me that has

a SOP representation with k orfewer product-terms and I orfewer literals ?".

Theorem 3.1.8 MIN-SA-SOP-2 is co - NF-hard (lower bound).

Proof: Restrict MIN-SA-SOP-2 to MIN-SOP-2, by noticing that a Boolean function is an FSM

with no state variable in its representation. •

Theorem 3.1.9 MIN-SA-SOP-2 is in2^ (upper bound).

Proof: As in the proof that MIN-SOP-2 is in Thanks to nondeterminism one guesses an

encoding e and a minimized encoded SOP fonn N. Me is the SOP form obtained ftom M by

replacing syntactically states with codes. We must prove that the SOP form Me is equivalent to the

SOP form N. This is exactly what was done with SAT as an oracle for MIN-SOP-2. •

This classification lumps together, for instance, MIN-SOP-2 and SA-MIN-SOP-2, and

therefore is not satisfactory with respect to the experimental fact that the latter problem is much

harder that the former. This is in part due to the lack of fine tuning of the complexity classes of the

polynomial hierarchy. It would be worthy to see if a finer classification can be achieved looking

into approximation complexity classes [46,104,9].

Similar results could be obtained for other optimizationobjectives, like minimum number

of literals ofmulti-level implementations [69]. Also the introduction of don't care conditions in the

original representations, allowing for choices in the encoded implementations, can be handled with

minor variant of the previous techniques.

42 CHAPTERS. COMPLEXITY ISSUES

3.2 Counting State Assignments

Supposethat there are v symbols to encode and 2" codes, with n > flogu]. There are

2" \ / 2" \
I v! possible assignments, since there are | I ways toselect vdistinct state codes and

V J \ V J
v! ways to permute them.

Suppose that a state assignment is given by a matrix, whose i-th column carries the

i-th encoding bit of every symbol and each row is the code of a symbol. One can introduce an

equivalence relation on the set of state encodings, lumping in the same equivalence class all state

encodings that produce the "same" encoded representation. The "same" means that the encoded

representation are not intrinsically different. For instance if we permute columns of an encoding

it is intuitively obvious that the encoded Boolean function does not change, except that variables

have been renamed. What happens if we complement a column of an encoding ? In case of state

assignment things depend on the chosen memory element. If one uses D flip-flops, then the size

of a minimal encoded representation is strongly affected by the chosen phase. Instead, with other

types of flip-flops, state encodings that differ only by complementation of some columns can be

considered equivalent.

The number ofequivalence classes of state assignments, where equivalence is by permu

tation and complementation ofcolumns, and 2""^ < u < 2", was computed in [88] as:

am = P"- D'

The number ofequivalence classes of state assignments, where equivalence is only by permutation

ofcolimms, and 2"~^ < u < 2", was computed in [149] as:

f2"]!

^ (2»-u)!n!'

The fact that A(v) is correct for SR, JK and T flip-flops was pointed out first in [110]. This

does not extend to D flip-flops, for which B(v) is the correct formula, because in a D flip-flop the

excitation expression for the complemented state variable is the complement of the expression for

the uncomplemented state variable.

Theformulas for the general case, i.e., where v is not restricted to 2"~^ < u < 2", were

published by Harrison and Parchman ([109,106]). They introduced the definition of degenerate

state assignments, i.e., those where a column is constant or two or more columns are equal. Let the

following definitions hold:

3.2. COUNTING STATE ASSIGNMENTS 43

1. T(n, u) is thenumber of nonequivalent stateassignments withrespect to permutations of the

columns;

2. R{n, v) is the number of non degenerate state assignments with respect to permutations of

the columns;

3. T*(n, u) is the number of nonequivalent stateassignments withrespect to permutations and

complementations of the columns;

4. R*(n, v) is the numberof nondegenerate stateassignments with respectto permutations and

complementations of the columns.

Then the followingidentitieshold, where s(u, j) are the Stirlingnumbers of the firstkind:

1.

3.

j=i V ^ /

R{n,v) = I ^ ^1 s(vj)
i=i \ n

V / — 1

They have been obtained with non-elementary combinatorial tools.

44 CHAPTER 3. COMPLEXTTYISSUES

45

Chapter 4

Previous and Related Work

4.1 Algorithms for Optimal Encoding

The following optimal encoding problems may be defined:

(A) Optimal encoding of inputs of a logic function. A problem in class A is the optimal assignment

of opcodes for a microprocessor,

(B) Optimal encoding of outputs of a logic function.

(C) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function.

(D) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function, where the encoding of the inputs (or some inputs) is the same as the encoding of the

outputs (or some outputs). Encoding the states of a finite state machine (FSM) is a problem

in class D since the state variables appear both as input (present state) and output (next state)

variables. Another problem in class D is the encoding of the signals connecting two (or more)

combinational circuits.

Optimality may be defined in various ways. A common objective is minimum area of

the encoded implementation. Each taiget implementation has a different cost function. The cost

of a two-level implementation is the number of product-terms or the area of a programmable logic

array (PLA). A commonly used cost of a multi-level implementation is the number of literals of

a technology-independent representation of the logic. Another cost function is the complexity of

an implementation with field programmable gate arrays (FPGA's). Other optimization objectives

46 CHAPTER 4. PREVIOUS AND RELATED WORK

may have to do with power consumption, speed, testability or any combination of the above. In

some cases the objective is the satisfaction of a correcmess requirement like in state assignment of

asynchronous FSM's, where it is required that it be race-free.

Here we will describe various approaches to the problem of optimal encoding from the

classical papers of the 60's to the more recent research dating from the mid 80's. We will devote

more space to state assignment for minimum area: "state assignment" because in some sense it

subsumes the other encoding problems, and "minimum area" because it has been the most studied

objective, even though wewill survey also contributions forotherproblems and objectives ^

4.1.1 Early Contributions

A well-written survey of early literature on state assignment can be found in [75]. Here

we will review the key contributions.

Among the first to define input and output encoding problems for combinational networks

were [33] and [100]. The former based his theory of input encoding on partitions and set systems.

The latter tried to minimize the variable dependency ofthe output functions and studied the problem

of the minimum number of variables required for a good encoding.

In [3] Armstrong described one of the first programmed algorithms to assign internal

codes to FSM's, with the goal of obtaining economical realizations of the combinational logic of

an FSM. The key idea of the method is to insure that as many vertices as possible in the onset and

offset of each next state and output function are pairwise adjacent, so that they can be clustered in

subcubes. This may be achieved by examining the rows and columns of the state table for state

pairs that can be given adjacent codes and so directly yield simplified Boolean equations for the

next state and output variables in terms of the present state and input variables. Various adjacency

conditions were derived based on the relations between states. Then the problem was reduced to a

graph embedding problem, where a graph represents adjacency relations between the codes of the

states, to be preserved by a subgraph isomorphism on the encoding cube. The method was then

refined in [2].

As a partial solution to the fact that enumerating all encodings and measuring their cost is

not a practical solution, Dolotta and McQuskey in [41] proposed a method based on the concept of

codable columns, that are fewer in number than the possible codes, and whose combinations give

the actual encodings. The codable columns for a state table are represented by a base matrix that

^We must mention that there is a rich literature onstate assigiunent authored byresearchers of the former Soviet
Union, but we are not in a position to survey it here.

4.1. ALGORITHMS FOR OPTIMAL ENCODING 47

represents the mapping of codable columns into the next state columns; the rows of a base matrix

correspond to states and the columns correspondto codable columns. By examining each column

mapping in turn and evaluating the result in terms of some minimizationobjectiveone determines

a best coding. A "scoring procedure" was defined requiring the comparison of each base entry

column with the next state entries on a coliunn-by-column basis and allocating a score according to

givencriteria. Armstrong argued in [2] that the scoring array of [41] could be read in the framework

that he proposed.

Story, Harrison et al. [141,138] proposed algorithms to derive minimal-cost assignments

based on the lower-bound approach first described by Davis [33] and extending the technique to

find the cost of an assignment proposed by Tomg [141]. A set of columns, each composed of

a binary element for each row of a partially assigned state table, is derived. From this matrix it

is possible to generate all possible distinct state assignments. Input equations for JK bistables

are derived from the matrix based on single column partial state assignments (PSA's), and then a

minimum number (MN), which represents a lower bound on the cost, is selected for each column.

The best state assignment is then found by comparing the sets of MN's with corresponding actual

cost numbers for complete encodings consisting of a set of PSA's. Notice that MN is calculated

for a particular column by applying the column to the given state table as if the column were a

complete state assignment and then deriving the input equations for, say, a J/C bistable in the

usual way. For instance the expression of the J input of a JK bistable includes all total states

(proper input and present state) with present to next state transitions of 0 1, and, as a don't

care, those of the transitions 1 -^0, l-> l,0->^ -,1 Then the resulting combinational

equations must be minimized, in such a way to guarantee a lower bound (notice that we still do not

have a complete encoding); this is done by a "modified map" method where any subset of states is

considered to be in a subcube in the encoding space, so that the cost of the implementation cannot

be decreased in any actual coding. A lower bound for an encoding is the sum of MN's associated

with its columns (MNS), because in the cost one does not consider sharing of logic among next

state functions. The actual cost number (AN) of an assignment is the number of actual (not lower

bound) AND-OR inputs for each bistable input equation minimized separately. The values of MN

and AN are compared for each PSA combination to determine the best encoding. The algorithm

has an exhaustive nature mitigated by lower bounding. It does not guarantee optimality (contrary

to the claim in the tide) of an encoded FSM because it disregards multiple-output minimization,

since the cost is defined to be the sum of the AND-OR inputs needed to realize each next state

transition separately - so it does not account for output encoding - and proper output logic is not

48 CHAPTER 4. PREVIOUS AND RELATED WORK

taken into consideration in the optimization procedure. This work was refined and commented by

other contributions [101,102,103].

Others, as [54,137, 67], proposed algebraic methods based on the algebra of partitions

and on the criterion of reduced dependency. In these methods the state assignment is made in a

such a way that each binary variable describing a next state depends on as few variables of the

present state as possible, hi general reduced dependency has various advantages that included better

testability features, but suffers from a weak connection with the logic optimization steps after the

encoding.

More recent approaches [124,125] rely on local optimization rules defined on a control

flowgraph. There rules are expressed as constraints on the codes of the internal variables and an

encoding algorithm tries to satisfy most of these constraints.

4.1.2 Encoding for Two-level Implementation

Reduction of Input Encoding to Multiple-Valued Minimization

A major step towards an exact solution of encoding problems was the reduction of input

encoding to multiple-valued minimization followed by input constraints satisfaction [92]. Efficient

algorithms have been devised both for multiple-valued minimization [114] and input constraints

satisfaction [92,145,116].

Even though state encoding is an input-output encoding problem it can be approximated

as an input encoding problem [92] and solved by a two-step process. In the first step, a tabular

representation of the FSM is optimized at the symbolic level, e.g., using the program espresso by

Rudell. Multiple-valued minimization generates constraints on the codes that can be assigned to

the states, hi the second step, states are encoded in such a way that the constraints are satisfied.

The goal in deriving constraints ftom the minimized symbolic cover is to encode the states in such

a way that the cardinality of the resulting two-level Boolean implementation is no greater than the

cardinality of the minimized symbolic cover. A sufficient condition to preserve the cardinality of

the minimized symbolic cover after encoding is to ensure that each multiple-valued input literal

in the minimized symbolic cover translates into a single cube in the Boolean domain, hi other

words, given a multiple-valued literal, the states present in it should form a face (in the Boolean

encoding space) that does not include the states absent from the same multiple-valued literal. Such

constraints are called face or input constraints and finding codes that satisfy them is the face

^Moreover the same symbols appear both in the input andin theoutput part.

4.1. ALGORITHMS FOR OPTIMAL ENCODING 49

Osl s21
Isl s40
Os2 s21 0(sl,s2,s4) s21
ls2sll I(s2,s4) sll
0 s3 s3 0 1 (si, s3) s4 0
ls3 s40 0(s3) s3 0
Os4 s21
1 s4 sll

(a) (b)

Figure 4.1: Original and minimized symbolic cover of an FSM

embedding problem.

An example from [4] of a tabular representation of an FSM is shown in Figure 4.1(a).

Multiple-valued minimization of this FSM - where the states are the possible values of a multiple-

valued variable - yields the cover shown in Figure 4.1(b). This can be done by representing the

symbolic variables using the positional cube notation [139, 114], and then invoking a multiple-

valued minimizer, such as [114]. The minimized cover is output disjoint and all the reduction

in the cardinality of the symbolic cover is due to the input part, i.e. due to the fact that some

present states fan out to the same next state for certain primary inputs. To get a compatible boolean

representation, one must assign each of the groups of present states obtained by multi-valued

minimization, to subcubes of a boolean fc-cube, for a minimum k, in a way that each subcube

contains all and only all the codes of the states included in the face constraint. Codes satisfying the

face-embedding constraints implied by the minimized symbolic cover of Figure 4.1(b) are shown

in Figure 4.2(a). Three binary variables are necessary and sufficient to satisfy the face-embedding

constraints. Figure 4.2(b) shows these codes in the Boolean 3-space. The cover obtained after

substitutionofthe state codes in the symbolic cover and a successive two-level Booleanminimization

is shown in Figure 4.3.

It is worth mentioning that the face constraints obtained through straightforward symbolic

minimization are sufficient, but not necessary to find a two-valued implementation matching the

upper bound of the multi-valued minimized cover. As it was already pointed out in [91], for each

implicant of a minimal (or minimum) multi-valued cover, one can compute an expanded implicant,

whose literals have maximal (maximum) cardinality and a reduced implicant whose literals have

minimal (minimum) cardinality. By bit-wise comparing the corresponding expanded and reduced

implicant, one gets don't cares in the input constraint, namely, in the bit positions where the

expanded implicant has a 1 and the reduced implicant has a 0. The face embedding problem

50

si = 001
s2 = 000
S3 = 011
s4 = 100

(a)

CHAPTER 4. PREVIOUS AND RELATED WORK

si

s2

y /
^s3

/
s4

(b)

Figure 4.2: Codes satisfying input constraints

0-1- 0110
1—1 1000
1 —0 0011
0-0- 0001

Figure 4.3: Two-level implementation of encoded FSM

with don't cares becomes one of finding a cube of minimum dimension k, where, for every face

constraint, one can assign the states asserted to vertices ofa subcube that does not include any state

not asserted, whereas the don't care states can be put inside or outside of that subcube. One can

build examples where the presence of don't cares allows to satisfy the input constraints in a cube

of smaller dimension, than it would be possible otherwise. Consider the state table of an FSM

and its 1-hot encoded representation shown in Figure 4.4. In Figure 4.5 the expanded and reduced

minimized multi-valued covers of the FSM ofFigure 4.4 are shown. Figure 4.6 shows the expanded

and reduced present state literals of the same FSM and the don't care face constraints.

A novel observation is that by choosing another minimum multi-valued cover, a different

set of face embedding constraints (with don't cares, if any) could be generated and they might be

satisfiable with a smaller k than the one required by the previous minimum cover.

Symbolic Minimization

Any encoding problem, where the symbolic variables appear only in the input part, can

be solved by setting up a multiple-valued minimization followed by satisfaction of the induced face

constraints. However, the problem of state assignment of PMS's is only partially solved by this

scheme, because the encoding of the symbolic output variables is not taken into account (e.g., the

4.1. ALGORITHMS FOR OPTIMAL ENCODmO

00 stO StO 0 00 10000000000 10000000000 0

10 stO stl - 10 10000000000 01000000000 -

01 StO st2 - 01 10000000000 00100000000 -

10 stl stl 1 10 01000000000 01000000000 1

00 stl st3 1 00 01000000000 00010000000 1

11 stl st5 1 11 01000000000 00000100000 1

01 st2 st2 1 01 00100000000 00100000000 1

00 st2 st7 1 00 00100000000 00000001000 1

11 st2 st9 1 11 00100000000 00000000010 1

00 st3 st3 1 00 00010000000 00010000000 1

01 st3 st4 1 01 00010000000 00001000000 1

01 st4 st4 1 01 00001000000 00001000000 1

00 st4 StO - 00 00001000000 10000000000 -

11 st5 st5 1 11 00000100000 00000100000 1

01 st5 st6 1 01 00000100000 00000010000 1

01 st6 st6 1 01 00000010000 00000010000 1

00 st6 StO - 00 00000010000 10000000000 -

00 st7 st7 1 00 00000001000 00000001000 1

10 st7 st8 1 10 00000001000 00000000100 1

10 st8 st8 1 10 00000000100 00000000100 1

00 st8 StO - 00 00000000100 10000000000 -

11 st9 st9 1 11 00000000010 00000000010 1

10 st9 StlO 1 10 00000000010 00000000001 1

10 stlO StlO 1 10 00000000001 00000000001 1

00 stlO stO - 00 00000000001 10000000000 -

Figure 4.4: Initial and 1-hot encoded covers of FSM-1

51

52 CHAPTER 4. PREVIOUS AND RELATED WORK

01 01010111011 000000010001 01 00010001000 000000010001

01 01001110111 000000001001 01 00001000100 000000001001

10 00111101110 000000000101 10 00000100010 000000000101

10 00111011101 000000000011 10 00000010001 000000000011

00 01011010000 000100000001 00 01010000000 000100000001

11 11011101111 000010000001 11 01001000000 000010000001

00 00101110000 000001000001 00 00100100000 000001000001

11 10110111111 000000100001 11 00100010000 000000100001

10 11111001100 010000000001 10 11000000000 010000000001

01 11100110011 001000000001 01 10100000000 001000000001

00 10001011111 100000000000 00 10000001111 100000000000

Figure 4.5: Expanded and reduced minimized covers of FSM-1

01010111011 00010001000 0-010—10—

01001110111 00001000100 0-001—01—

00111101110 00000100010 00 10—10

00111011101 00000010001 00 01—01

01011010000 01010000000 0101-0-0000

11011101111 01001000000

1

1

1

1

o
1

rH
1

0
rH

1

00101110000 00100100000 0010-1-0000

10110111111 00100010000

1

1

1

1

rH
1

0
1

rH
o

1

11111001100 11000000000 11 00—00

11100110011 10100000000 1-100—00—

10001011111 10000001111 1000-0-1111

Figure 4.6: Expanded and reduced implicants and don't care face constraints of FSM-1

4.1. ALGORITHMS FOR OPTIMAL ENCODING 53

next state variable). Simple multiple-valued minimization disjointly minimizes each of the on-sets

of the symbolic output hmctions, and therefore disregards the sharing among the different output

functions taking place when they are implemented by two-valued logic. Sharing of logic is crucial

to obtain minimum encoded two-level implementations.

Therefore extensions of multiple-valued minimization have been proposed in [91,147].

These extensions replace a single multiple-valued minimization of the whole symbolic cover by a

sequence of minimization operations on parts of the symbolic cover in such a way as to recognize

sharing oflogic among next states, ifsome constraints on their codes are satisfied. These extensions

of multiple-valued minimization have been called symbolic minimization. In [91, 147] symbolic

minimization was introduced to exploit bit-wise dominance relations between the binary codes

assigned to different values of a symbolic output variable. The fact is that the input cubes of a

dominating code can be used as don't cares for covering the input cubes of a dominated code. The

core of the approach is a procedure to find useful dominance (called also covering) constraints

between the codes of output states. The translation of a cover obtained by symbolic minimization

into a compatibleboolean representationdefines simultaneously a face embeddingproblem and an

output dominance satisfactionproblem. Any output encoding problem can be solved by symbolic

minimization. Symbolic minimization was applied also in [115], where a particular form of PLA

partitioning is examined, by whichthe outputsareencoded to createa reduced PLAthat is cascaded

with a decoder.

However, to mimic the full powerof two-valued logic minimization, another fact must

be taken into account. When the code of a symbolic output is the bit-wise disjunction of the

codes of two or more other symbolic outputs, the on-set of the former can be minimized by using

the on-sets of the latter outputs, by redistributing the implementation of somecubes. Anextended

scheme ofsymbolicminimizationcantherefore bedefined to find usefuldominance anddisjunctive

relationsbetween the codes of the symbolicoutputs. This will be thoroughlyinvestigated in a later

chapter of the thesis. The translation of a cover obtained by extended symbolic minimization

into a compatibleboolean representationinduces a face embedding,output dominance and output

disjunction satisfaction problem.

A varietyof other applicationsmay also generatesimilarconstraintssatisfactionproblems,

as in the case ofsynthesis for sequential testability [35], andoptimal re-encodingand decomposition

of PLA's [40, 21, 122, 120, 119, 121, 123]. Given a PLA, it is possible to group the inputs into

pairs and replace the input buffers with two-bit decoders to yield a bit-paired PLA with the same

number of columns and no more product-terms than the original PLA. In a more general case, a

54 CHAPTER 4. PREVIOUS AND RELATED WORK

single PLA is decomposed into two levels of cascaded PLA's. A subset of inputs is selected such

that the cardinality of the multiple-valued cover, produced by representing all combinations ofthese

inputs as different values of a single multiple-valued variable, is smaller than the cardinality of the

original binary cover. The encoding problem consistsof findingthe codesof the signals between the

PLA's, so that the constraints imposed by the multiple-valued cover are satisfied. This problem is

usually approximated as an input encoding problem [40,21], but in its generality is an input-output

encoding problem referred in [39] as four-level Boolean minimization.

Exact Encoding with Generalized Prime Implicants

An exact procedure for output encoding has been reported in [39]. A notion ofgeneralized

prime implicants (GPI's), as an extension of prime implicants defined in [87], is introduced, and

appropriate rules of cancellation are given. Each GPI carries a tag with some output symbols. If

a GPI is accepted in a cover, it asserts as output the intersection (bit-wise and) of the codes of the

symbols in the tag. To maintain functionality, the coded output asserted by each minterm must be

equal to the bit-wise or of the outputs asserted by each selected GPI covering that minterm. Given a

selection of GPI's, each minterm yields a boolean equation constraining the codes of the symbolic

values. If an encoding can be found that satisfies the system ofboolean equations, then the selection

of GPI's is encodable. We will devote some later chapters to GPI's and explain in detail the notion

of encodabilities of GPI's. Given all the GPI's, one must select a minimum subset of them that

covers all the minterms and forms an encodable cover. This can be achieved by solving repeated

covering problems that return minimum covers of increasing cardinality, until an encodable cover

is found, i.e. the minimum cover that is also encodable. Figure 4.7 shows output encoding based

on GPI's with a simple example taken from [39].

4.1.3 Encoding for Multi-level Implementation

Automatic multi-level logic synthesis programs are now available to the logic designer

[52,12, 8]), since sometimes a PLA implementation of the circuit does not satisfy the area/timing

specifications.

A two-level encoding program, such as those described in the previous sections, can

often give a good result when multi-level realization is required, but in order to get the maximum

advantages fiom multi-level logic synthesis we need a specialized approach.

This section describes such approaches, giving some information on the relative strengths

4.1. ALGORITHMS FOR OPTIMAL ENCODING 55

1101 outl 1101 (outl) 110- (outl,out2) 110- 01

1100 out2 1100 (out2) 11-1 (outl,out3) 11-1 10

1111 out3 1111 (out3) 000- (out4) 000- 00

0000 out4 110- (outl,out2)

0001 out4 11-1

000-

(outl,out3)

(out4)

Figure 4.7: Initial cover, GPI's, encodable selection of GPI's and encoded cover of OUT-1

and weaknesses.

There are two main classes of multi-level encoding algorithms:

1. Estimation-based algorithms, that define a distance measure between symbols, such that if

"close" symbols are assigned "close" (in terms of Hamming distance) codes it is likely that

multi-levelsynthesis will give good results. Programs such as mustang [36], jedi [77] and

PESTO [57] belong to this class.

2. Synthesis-based algorithms, that use the resultof a multi-level optimizationon the unencoded

or one-hot encoded symbolic cover to drive the encoding process. Programs such as Mis-MV

[85] and muse [42] belong to this class.

Mustang

MUSTANG uses the state transition graph to assign a weight to each pair of symbols. This

weight measures the desirability of giving the two symbols codes that are "as close as possible".

MUSTANG has two distinct algorithms to assign the weights, one ofthem ("fanoutoriented")

takes into account the next state symbols, while the other one ("fanin oriented") takes into account

the present state symbols. Such a pair of algorithms is common to most multi-level encoding

programs, namely mustang, jedi and muse.

The fanout oriented algorithm is as follows:

1. For each output o build a set 0° of the present states where o can be asserted. Each state p in

the set has a weight 0W° that is equal to the number of times that o is asserted in p.

56 CHAPTER 4. PREVIOUS AND RELATED WORK

2. For each next state n build a set of the present states that have n as next state. Again

each state p in thesethasa weight NW^ thatis equal to thenumber of times that ra is a next

state of p (each cube under which a transition can happen appears as a separate edge in the

state transition graph) multiplied by the number of state bits (the number of output bits that

the next state symbol generates).

3. For each pair of states A;, / let the weightof the edge joining them in the weight graph be

EnG5 NWJ: X NWr 4-Eoeo OW^ x OWf.

This algorithm gives a high weight to present state pairs that have a high degree of similarity,

measured as the number of common outputs asserted by the pair.

The fanin oriented algorithm (almost symmetric with the previous one) is as follows:

1. For each input i build a set OiV* of the next states that can be reached when i is 1, and a set

OFF' of the next states that can be reached when i is 0. Each state n in ON* has a weight

ONWn that is equal to the number of times that n can be reached when Hs 1, and each state

n in OFF* has a weight OFFW^ that is equal to the number of times that n can be reached

when i is 0.

2. For each present state p build a set of the next states that have p as present state. Again

each state n in the set has a weight PWl^ that is equal to the number of times that n is a next

state of p multiplied by the nmnber of state bits.

3. For each pair of states A;, / let the weight of the edge joining them in the weight graph be

EpesPWl XPWf + JlieiONWi x ONW} + OFFWi x OFFWj.

This algorithm tries to maximize the number ofcommon cubes in the next state function, since next

states that have similar functions will be assigned close codes.

The embedding algorithm identifies clusters of nodes (states) that are joined by maximal

weight edges, and greedily assigns to them minimally distant codes. It tries to minimize the sum

over all pairs of symbols of the product of the weighted distance among the codes.

The major limitation of mustang is that its heuristics are only distantly related with the

final minimization objective. It also models only common cube extraction, among all possible

multiple-level optimization operations ([12]).

4.1. ALGORITHMS FOR OPTIMAL ENCODING 57

Jedi

JEDi is aimed at generic symbol encoding rather than at state assignment, and it applies

a set of heuristics that is similar to mustang's to define a set of weights among pairs of symbols.

Then it uses either a simulated annealing algorithm or a greedy assignment algorithm to perform

the embedding.

The proximity of two cubes in a symbolic cover is defined as the number of non-empty

literals in the intersection of the cubes. It is the "opposite" of the Hamming distance between two

cubes, definedas the numberof empty literals in their intersection. For example,cubes abc and cde

have proximity 4, because their intersection has four non-empty literals (a, 6, d and e), and distance

1, because their intersection has an empty literal (c n c).

Each pair of symbols (s,-, Sj) has a weight that is the sum over all pairs of cubes in the

two-level symbolic cover, where s, appears in one cube and Sj appears in the second one, of the

proximity between the two cubes.

The cost fimction of the simulated annealing algorithm is the sum over all symbol pairs

of the weighted distance among the codes.

The greedy embedding algorithm chooses at each step the symbol that has the strongest

weight connection with already assigned symbols, and assigns to it a code that minimizes the above

cost function.

Pesto

PESTO [57] is a new tool that resembles JEDI with respect to the basic model, but by

means of very skilled algorithmic engineering obtains codes that produce often (as of today) the

best starting points for multi-level implementations.

The model starts form the observation, justified in [144], that if x and y are two binary

input vectors, f{x) is a singleoutput boolean function, and

P = {(a;,y) | hamming-distance(x,y) = 1 and f(x) = f(y)},

then, within a class of "related" functions, the larger the size of P, the simpler the implementation

off.

An adjacency matrix is constructed and a metric that is a function of the matrix and of the

state encodings is maximized by means of simulated annealing. For problems like state assignment

58 CHAPTER 4. PREVIOUS AND RELATED WORK

the adjancency matrix is a weighted stun of an input adjacency matrix and an output adjacency

matrix.

Binary vectors are considered adjacent when they have Hamming distance one. For each

pair of states there is an entry in the input adjacency matrix set to the number of pairs of 1's in the

outputs that would be adjacent if that present state pair were adjacent. Adjacent outputs means that

the input vectors for the two outputs differ only in one bit position, i.e., the codes of the present

states are at Hamming distance one and the proper inputs are equal. For the proper outputs this

information is easily known. For the next state outputs this information is obviously imavailable, so

an average number of times that pairs of next states have 1's in the same bit positions is computed

by generating random encodings.

For each pair of states there is an entry in the output adjacency matrix set to the number

of times it has adjacent inputs. The inputs can be adjacent when the proper inputs are adjacent and

the present states are identical or the proper inputs are identical and the present states are adjacent.

The former situation is easily known. In the latter situation the information about present states is

obviously unavailable, so an average of times that pairs of present states are adjacent is computed

by generating random encodings.

The goal is to find a state assignment that maximizes a weighted sum ofthe contributions of

the input and output adjacency matrices. Given a state assignment, an adjacency matrix contributes

the sum of pairs of adjacent states weighted by the coefficient of the corresponding entry.

A careful study is made of the relative importance of the weighting factor of the input

and output matrices, the number of repeated experiments (since simulated annealing is used to find

the maximizing codes), the importance of using information on input don't cares, the parameters

of simulated armealing and others. One of the lessons that the implementation of pesto teaches

is that even a simple model, if all algorithmic choices are carefully evaluated, can produce high-

quality results. In this case from the experiments pesto seems to enjoy a noticeable advantage over

its competitors jedi and muse especially in the case of large examples, that are those where the

robustness of an heuristic is tested and the quality of the result matters more.

Muse

MUSE uses a multi-level representation of the finite state machine to derive the set of

weights that are used in the encoding problem.

Its algorithm is as follows:

4.1. ALGORITHMS FOR OPTIMAL ENCODING 59

1. Encode symbolic inputs and outputs with one-hot codes.

2. Use MisII ([12]) to generate an optimized boolean network.

3. Computea weightfor each symbol pair (see below).

4. Use a greedy embedding algorithm trying to minimize the sum over all state pairs of the

weighted distance among the codes.

5. Encode the symbolic cover, and run MisII again.

The weightassignmentalgorithm examineseach node function(in sum-of-product form)

to see if any of the followingcases applies(5,- denotes a state symbol, Sidenotes the corresponding

one-hot present state variable, other variables denote primary inputs):

1. s\ab-\- S2ab if Si and S2 are assigned adjacent codes, then the cubes can be simplified

to a single cube, and we obtain a saving in the encoded network cost.

2. Siab -1- S2abc if 5i and S2 are assigned adjacent codes, then the cubes can be simplified

(even though they will remain distinct cubes, due to the appearance of c only in the second

one) and a common cube (the common state bits and ab) can be extracted. For example, if

Si is encoded as cqci^ and S2 is encoded as co^c2, the expression above can be simplified

as CQCiabc-|- CQCi^ab.

3. Siabc 4-S2abd4-...: same as above,but only a common cube (the common state bits and ab)

can be extracted.

For each occurrence of the above cases the weight of the state pair is increased by an

amount that is proportional to the estimated gain if the two states are assigned adjacent codes. For

example, if abc is extracted from / = abed, g = aftce, (cost 8 literals) then we obtain / = ftrf,

g = he, h = abc (cost 7 literals), and the gain obtained extracting his I.

Each gain is also multiplied by the number of distinct paths from the node to a network

output. This heuristic gives a higher gain to common subexpressions that are used in many places

in the network, so that their extraction gives a high reduction in the network cost. If the codes

in the pair are assigned adjacent codes, then hopefully misII will be able to extract again useful

subexpressions after the encoding.

60 CHAPTER 4. PREVIOUS AND RELATED WORK

The algorithm described above takes into account only present state symbols. Another

heuristic algorithm is used to estimate the "similarity" among the next state functions. This "next-

stateoriented" algorithm addsto theweightofeachpairof statesthegainofcommonsubexpressions

that can be extracted from the functions generating that pair of next states in the one-hot encoded

network. For example, if n, denotes a one-hotnext state variableand Ni the corresponding state

symbol, n\ = abed and ni = abce have a common subexpression aba of gain 1 (see above), so the

weight of the (A^i, N2) pair is incremented by 1 due to this subexpression.

The embedding algorithm, using the weights computed above, chooses the unencoded

state that has a maximum weight connection with the already encoded states and assigns to it a code

that has the minimum weighted distance from the already encoded states.

MUSE uses a cost function that is a closer representation ofreality with respect to mustang

and JEDI, but there is no guarantee that the optimizations performed on the one-hot encoded network

are the best ones for all possible encodings, and that MisII will choose to perform the same

optimizations when it is run on the encoded network.

Mis-mv

In order to have a satisfactory solution of the multi-level encoding problem we must have

a closer view of the real cost function, the number of literals in the encoded network. The weight

matrix is rather far from giving a complete picture of what happens to this cost function whenever

an encoding decision is made.

Following the pattern outlined in the previous sections for the two-level case, we should

perform a multi-level symbolic minimization, and derive constraints that, if satisfied, can guarantee

some degree of minimality of the encoded network.

MIS-MV, unlike the previous programs, performs a full multi-level multiple-valued mini

mization of a network with a symbolic input. Its algorithms are an extension to the multiple-valued

case of those used by MisII (the interested reader is referred to [85] for a detailed explanation of

these algorithms).

Its overall strategy is as follows:

1. Read the symbolic cover. The symbolic output is encoded one-hot, the symbolic input is left

as a multiple-valued variable.

2. Perform multi-level optimization (simplification, common subexpression extraction, decom

position) of the multiple-valued network.

4.1. ALGORITHMS FOR OPTIMAL ENCODING 61

3. Encx)de the symbolicinput so that the total numberof literals in the encodednetworkis mini

mal (simulated annealing is used for this purpose,whileextensions ofconstrainedembedding

algorithms from the two level case are being studied).

Asetof theorems,provedin [73],guaranteesthat step2ofthe abovealgorithmis complete,

i.e. that all possibleoptimizations in all possibleencodings can be performed in multiple-valued

mode provided that the appropriate costfunction is available.

The last observationis a key to understandboth strengths and limits ofthis approach: the

cost function that Mis-MV minimizes is only an approximate lower bound on the number of literals

that the encoded network will have (much in the same spirit as what happens in the two-level case

with symbolicminimization). This lowerboimdcan be reachedif and only if all the face constraints

fix)m all the nodes in the multiple-valued network can be simultaneouslysatisfied in a minimum

length encoding, which is not possible in general (each node has a multiple-valuedfunction, so

the constraints can be extracted as described in Section 4.1.2). This lower boimd is approximate

because further optimizations on the encoded network can still reduce the number of literals.

In order to take this limitation into account, Mis-MV computes at each step the currently

optimal encoding, and uses it as an estimate of the cost of each multiple-valued node.

For example, ifone denotes by 5^^ amultiple-valued literal representing the boolean
function that is true when variable S has value 1,2,3 or 4, the estimated cost of with the

codes:

e(S''t^^) = C1C2C3, = ci^C3, = c\C2^, 6(5^"^^) = QC2C3, e(S"f^^) = e(5^^^)
= C1QC3

would be 1, since the minimum sum of products expression for -|- ci^C3 -H c\C2^ -[- ^C2C3

with the don't cares (unused codes) ciC2^ + C1C2C3 is c\.

Currently Mis-MV does not handle the output encoding problem. Its approach, though,

can be extended to handle a symbolic minimization procedure similar to what is explained in

section 4.1.2, and therefore to obtain a solution also to this problem.

Comparison of Different Methods

Programs such as mustang, jedi and pesto rely only on the two-level representation

of the symbolic cover to extract a similarity measure between the context in which each pair of

symbols appear. This measure is used to drive a greedy embedding algorithm that tries to keep

similar symbols close in the encoded boolean space. This has clearly only a weak relation with

62 CHAPTER 4. PREVIOUS AND RELATED WORK

the final objective (minimum cost implementation of a boolean network), and it makes an exact

analysis of the algorithm performance on benchmark examples hard. Still it must be said that the

implementationof pesto standsout as a very skillfiilone, to point that this programis currentlythe

best achiever especially on laige examples.

Some improvement can be seen in muse, that uses a one-hot encoding for both input and

output symbols, and then performs a multi-level optimization. In this way at least some of the

actual potentialoptimizationscan be evaluated, and their gain can be used to guide the embedding,

but there is no guarantee of optimality in this approach, and the output encoding problem is again

solved with a similarity measure.

Full multi-level multiple-valued optimization (mis-mv) brings us closer to our final ob

jective, because all potential optimizations can in principle be evaluated. The complexity of the

problem, though, limits this potentiality to an almost greedy search, as in MisII.

Still we do not have a complete solution to the encoding problem for multi-level imple

mentation because:

1. We need to improve our estimate of the final cost to be used in multi-level multiple-valued

optimization.

2. The problem of optimal output encoding must be addressed directly.

The algorithms described in this section, though, can and have been successfiiUyused,

and the path towards an optimal solution is at least clearer than before.

4.1.4 Experimental Results

We report some comparisons among available state assignment programs based on the

techniques discussed in the previous sections. For the experiments we used the MCNC '89 set of

benchmark FSM's.

The Two-level Case

We report one set of experiments that compare programs for two-level state assignments.

Table 4.1 summarizes the results obtained running the algorithms ofnova [147], kiss [92]

and random state assignments. The results of nova were obtained running espresso [114] to obtain

the input constraints and the symbolic minimizer of nova built on top of espresso to obtain the

mixed input/output constraints, nova to satisfy the constraints on the codes of the states and of the

4.1. ALGORITHMS FOR OPTIMAL ENCODING 63

symbolic inputs(if any), andespresso againto obtainthe final areaof theencoded FSM. The best

resultof the different optionsof nova was shownin the table. The results of kiss were obtained

running ESPRESSO to obtain the input constraints, Kiss to satisfy the constraints on the codes of

the states and of the symbolic inputs (if any), and espresso again to obtain the final area of the

encoded FSM, The areas under random assignments are the best and the average of a statistical

average of a number of different (number of states of the FSM + number of symbolic inputs, if

any) random state assignmentson each example. The final areas obtained by the best solution of

NOVA average 20% less than those obtained by Kiss, and 30% less than the best of a number of

random state assignments, nova can use any number of encoding bits greater than or equal to

the minimum. The best results of nova on the benchmark of Table 4.1 have been obtained with

a minimum encoding length, but this is not always the case. Kiss uses a code-length sufficient to

satisfy all input constraints. Since it satisfies the constraints by an heuristic algorithm it does not

always achieve the minimum necessary code-length.

Notice that the lower bound provided by symbolic minimization is often larger than the

best upper bound achieved by encoding the FSM's, even though the available programs model only

partially the effects of output encoding. This means that output encoding is more important than

input encoding on the quality of final results.

Comparisons for some of the approaches mentioned above [124,39] have not been carried

out for the lack of an available implementation.

The Multi-level Case

We report a set of experiments that correlate good two-level state assignment to the

corresponding multi-level logic implementation, comparing against an estimation-based multi-level

encoding algorithm.

Table 4.2 reports the number of literals after running through the standard boolean opti

mization script in the multi-level logic synthesis system Misn [12] with encodings obtained by nova,

MUSTANG [36], JEDi [77] and random state assignments. In the case of NOVA only the best minimum

code-length two-level result was given to MisII. mustang was run with -p, -n, -pr, -nt options and

minimum code-length. JEDI was run with all available options and minimum code-length [76]. In

all cases espresso was run before misII. The final literal counts in a factored form of the logic

encoded by nova average 30% less than the literal counts of the best of a number of random state

assignments. The best (minimum code-length) two-level results of mustang, and JEDI versus the

64 CHAPTER 4. PREVIOUS AND RELATED WORK

example random KISS NOVA

b-area a-area #bits #cubes area #bits #cubes area

bbara 616 649 5 26 650 4 24 528

bbsse 1089 1144 6 27 1053 4 29 957

bbtas 165 215 3 13 195 3 8 120

beecoimt 285 293 4 11 242 3 10 190

cse 1947 2087 6 45 1756 4 45 1485

dkl4 720 809 9 24 550 6 25 500

dkl5 357 376 6 17 391 5 17 289

dkl6 1826 1994 12 55 2035 7 54 1188

dkl7 320 368 6 19 361 5 17 272

dk27 143 143 4 9 117 4 7 91

dk512 374 418 7 18 414 5 17 289

donfile 1200 1360 12 24 984 5 28 560

exl 3120 3317 7 42 2436 6 37 2035

ex2 798 912 6 31 744 5 27 567

ex3 342 387 6 18 432 4 17 306

ex5 324 358 5 15 315 4 14 252

ex6 810 850 5 24 792 3 25 675

iofsm 560 579 4 16 448 4 15 420

keyb 3069 3416 8 47 1880 5 48 1488

maikl 760 782 5 19 779 4 17 646

physrec 1677 1741 5 34 1564 4 33 1419

planet 4896 5249 6 89 4539 6 86 4386

si 3441 3733 5 81 2997 5 63 2331

sand 4278 4933 6 95 4655 6 89 4361

scf 19650 21278 8 140 18760 7 137 17947

scud 2262 2533 6 71 2698 3 62 1798

shiftreg 132 132 3 6 72 3 4 48

styr 5031 5591 6 91 4186 5 94 4042

tbk 5040 6114 na na na 5 57 1710

trainll 221 241 6 10 230 4 9 153

TOTAL 65453 72002 na 51053

% 100 110 na 77

Table 4.1: Comparison of FSM's encoding for two-level implementation

4,1. ALGORITHMS FOR OPTIMAL ENCODING 65

best (minimum code-length) two-level results of nova are also reported. Noticethat in the case of

MUSTANG and JEDI the run that achieved the minimum number of cubes is not necessarily the same

that achieved the minimum number of literals. In the case of nova only the best two-level result

was fed into MisII, so the data reported refer to the same minimizedcover. Even though nova was

notdesigned as a multi-level state-assignmentprogram, its performances compare successftilly with

MUSTANG. Among the three programs, the best literal counts are often givenby jedi. These data

show that a state assignmentthat gives a good two-level implementation provides a good starting

point for a multi-level implementation, but it does not match the quality reached by algorithms

specialized for multi-level implementations. Early claims in [151, 152, 150] that two-level tools

were good enough also for multi-levelimplementationsreflected mainly a temporary lack of good

tools for multi-level implementations.

We report two kinds of experiments to verify the validity of Mis-MV as input encoder.

• Compare the relative importance of the various multi-valued optimization steps.

• Comparemis-mvwithsomeexistingstate assignmentprograms,such as jedi [77],muse [42],

MUSTANG [36] and nova [147]. Notice that we want to compare only the input encoding

algorithms of these programs and so we need to "shut off' all effectsdue to the encodingof

the output part, captured by purpose (these programs embody also heuristics for the output

encoding problem) or by chance. Therefore we replaced the codes returned by each program

in the present state only, while the next state was simply replaced by one-hot codes.

The experiments were conducted as follows:

• A single simplified boolean script (using simplifyonly once) was used both for multi-valued

and binary valued optimization.

• The script was run twice in all cases.

• MIS-MV:

1. ESPRESSO was run on the unencoded machine.

2. All or part of the first script was run in Mis-MV's multi-valued mode.

3. The inputs were encoded, using the simulated annealing algorithm.

4. The remaining part of the first script and the second script were run in binary-valued

mode.

66 CHAPTER 4. PREVIOUS AND RELATED WORK

example JEDI MUSTANG NOVA JEDI MUSTANG NOVA random

#cubes #cubes #cubes #lit #lit #lit #lit

bbara 24 25 24 57 64 61 84

bbsse 30 31 29 111 106 132 149

bbtas 9 10 8 21 25 21 31

beecount 12 12 10 39 45 40 59

cse 52 48 45 200 206 190 274

dkl4x 29 32 26 106 117 98 164

dkl5x 19 19 17 67 69 65 73

dkl6x 64 71 52 225 259 246 402

donfile 33 49 28 76 160 88 193

exl 48 55 44 250 280 215 313

ex2 35 36 27 122 119 96 162

ex3 19 19 17 66 71 76 83

keyb 52 58 48 140 167 200 256

markl 17 19 17 66 76 86 116

physrcc 39 37 33 132 159 150 178

planet 93 97 86 547 544 560 576

si 57 69 63 152 183 265 444

sand 105 108 96 549 535 533 462

scf 147 148 137 812 791 839 890

scud 57 83 62 127 286 182 222

shiftreg 4 4 4 0 2 0 16

styr 100 112 94 508 546 511 591

tbk 57 136 57 278 547 289 625

trainll 11 10 9 27 37 43 44

TOTAL 1113 1288 1033 4678 5394 4986 6407

% 107 124 100 93 108 100 130

Table 4.2: Experiments on FSM's encoding for two and multi-level implementation

4.2. RELATION OF STATE ASSIGNMENT TO OTHER OPTIMIZATION STEPS 67

• JEDI, MUSE, MUSTANG and NOVA:

1. Each program was run in input oriented mode ("-e i" for JEDI, "-e p" for MUSE, "-pc" for

MUSTANG and "-e ih" for nova) to generate the codes.

2. The symbolic input was encoded.

3. ESPRESSO was mn again, using the invalid states as don't cares.

4. The script was executed twice.

We performed seven experiments on each machine, four using JEDI, MUSE, mustang and

NOVA, and three using mis-mv. The experiments on mis-mv differed in the point of the script where

the symbolic inputs were encoded (mis-mv can carry on the multi-level optimizing operations on a

multiple-valued network or on the encoded binary-valued network):

1. At the beginning. At this point, both mis-mv and nova extract the same face constraints

by multiple-valued minimization. The two programs get different results because of the

different face constraints satisfaction strategies. Mis-MV satisfies the face constraints with a

simulated armealing algorithm that minimizes the literal count ofa two-level implementation.

The cost function is computed by calling espresso and counting the literals, nova satisfies

the input constraints with a heuristic deterministic algorithm that minimizes the number of

product-terms of a two-level implementation.

2. After simplify^ to verify multiple-valued boolean resubstitution.

3. After algebraic optimization {gkx, gcx,...), to verify the full power of Mis-MV.

Table 4.3 contains the results, expressed as factored form literals.

4.2 Relation of State Assignment to Other Optimization Steps

In this section we mention very briefly some issues in the interaction of state assignment

(and encoding in general) to other steps of sequential synthesis.

4.2.1 State Assignment and State Minimization

State assignment interacts with the other traditional steps of sequential synthesis. Con

sider FSM decomposition, i.e., the process of replacing an FSM by a network of interconnected

68 CHAPTER 4. PREVIOUS AND RELATED WORK

example JEDI MUSE MUSTANG NOVA best

MIS-MV

beginning simplify algebraic
optimization

bbara 96 99 96 106 84 84 84 85

bbsse 125 126 148 151 131 130 132 131

bbtas 34 36 37 32 31 35 31 31

beecount 56 60 65 70 56 62 56 58

cse 189 192 208 214 195 191 199 195

dkl4 96 102 108 98 79 97 79 81

dkl5 65 65 65 65 68 65 68 69

dkl6 254 244 314 351 247 225 247 261

dkl7 63 58 69 58 62 58 62 64

dk27 30 29 34 38 27 27 27 27

dk512 73 73 78 93 68 70 68 69

donfile 132 131 195 186 123 127 123 123

exl 256 239 252 246 232 240 232 237

ex2 176 169 197 167 144 143 144 154

ex3 87 96 98 98 82 82 86 82

ex4 71 72 73 84 72 90 74 72

ex5 79 79 80 83 69 67 69 69

ex6 93 92 90 98 84 85 85 84

ex7 87 84 100 94 78 89 79 78

keyb 186 180 203 195 146 186 172 146

lion 16 16 14 16 16 16 16 16

lion9 55 55 61 43 38 40 38 38

maikl 94 92 89 105 92 90 94 92

mc 32 30 30 32 30 35 30 30

modulo12 58 72 77 71 71 71 71 71

opus 83 70 88 90 70 87 70 74

planet 453 511 538 551 466 512 466 473

si 339 291 377 345 249 335 253 251

sla 262 195 264 253 214 217 214 225

s8 50 52 47 48 48 52 48 48

sand 556 498 519 542 509 523 509 529

shiftreg 24 25 34 35 24 24 24 24

styr 427 418 460 501 438 442 438 473

tav 27 27 27 27 27 27 27 27

TOTAL 4724 4578 5135 5186 4370 4624 4415 4487

Table 4.3: Multi-level input encoding comparison

4.2. RELATION OF STATE ASSIGNMENT TO OTHER OPTIMIZATION STEPS 69

FSM's, preserving the sequential behavior. One can see state assignment as producing an FSM

decomposition: there is a componentFSM of two states (1 memoryelement)for each encodingbit,

and each componentFSM dependson the the state of the othercomponents. Connections between

state assignmentand FSM decompositionhave been consideredin [34,37,6,5].

4.2.2 State Assignment and State Minimization

A sequentialbehaviormay be represented by many different STG's, and differentSTG's

of the same behavior may lead to different logical implementations. This makes elusive the goal of

obtainingthe best implementationofa givensequentialbehavior. Wedemonstratewith an example

the problem.

Consider FSM's Mi (left) and M2 (right):

0 si s2 1 0 si s2 1

1 si s3 0 1 si s2 0

- s2 s4 1 - s2 s4 1

- s3 s4 1 - s4 si 0

- s4 si 1

FSM M2 is a state minimizedversion ofFSM Mi. An encoding ofM2 is: si = 00, S2 = 01,53 = 10

and a corresponding minimum encoded implementation of M2 is:

000 oil

100 010

-01 101

-10 000

This implementation could not have been obtained by encoding Mi, it was necessary instead to

obtain first a different STG representation of the same behavior by means of state minimization. So

one could think that by doing state minimization and then state assignment the best implementation

could be obtained. It is not always so, as it was recognized long ago by Hartmanis and Steams,

who gave in [55] an example of an FSM whose best implementation has fewer product-terms than

the best implementation obtained after state minimization of the original machine. Therefore in

order to get a minimum implementation one should merge the steps of state minimization and state

assignment. We will see, when discussing generalized prime implicants, how the introduction of

symbolic Boolean relations allows doing the two steps at the same time, for CSFSM's. Even this last

technique will not allow to explore all possible STG representations of a given sequential behavior,

but if the original STG is redundant it allows to choose a reduced STG in such a way to optimize

the state assignment step.

70 CHAPTER 4. PREVIOUS AND RELATED WORK

Wewill mentionlater that by using symbolic relations some cases ofthe interactionofstate

minimizationand state assignmentcan be modeled exactly,but with little hope of practical solutions.

Recently Calazans [17] proposed an heuristic algorithm to use information about compatible states

of ISFSM's while doing state assigrmient.

4.2.3 State Assignment and Testability

Unate state assignments to guarantee testability by constmction were proposed first

in [140]. The logic to compute the outputs and the encoding of the next state is said to be

unate in a given state variable, if the output and next state functions can be expressed as sums of

products where the given variable appears either uncomplemented or complemented, but not both.

In [111] a case was made for a variation of unate encoding called half-hot encoding that may allow

sometimes savings in the number of columns of the encoded PLA. Half-hot encodings have exactly

half the total number of state variables set to 1. The penalty on the number of necessary product

terms was not addressed. The issue of encoding for testable implementations of small area using

(k, p) codes was addressed recently in [83]. (Ar, p) codes have length p with exactly k bits set to

1 and they result in unate realizations of the encoded FSM. Information on compatibility between

states was also used in the state assignment phase.

71

Chapter 5

Symbolic Minimization

5.1 Introduction

The optimization of logic functions performed on the Boolean representation depends

heavily on the encoding chosen to represent the symbolic variables.

The cost function that estimates the area optimality of an encoding depends on the taiget

implementation: two-levelor multi-levelor field-programmable gate arrays (FPGA's). The cost of

a two-level implementation is the number of product-terms or the area of a programmable logic

array (PLA). A commonly used cost of a multi-level implementation is the number of literals of a

technology-independent representation of the logic. FPGA's come in different architectures with

associated costs. Other optimization objectives may be related to power consumption, speed and

testability. It may even be the case that the objective is a correcmess requirement, as is race-fteeness

in state assignment of asynchronous circuits.

The following optimal encoding problems may be defined:

(A) Optimal encoding of inputs of a logic function. A problem in class A is the optimal assignment

of opcodes for a microprocessor

(B) Optimal encoding ofoutputs of a logic function.

(C) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function.

(D) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic

function, where the encoding of the inputs (or some inputs) is the same as the encoding ofthe

72 CHAPTERS. SYMBOLIC MINIMIZATION

outputs (or some outputs). Encoding the states of a finite state machine (FSM) is a problem

in class D since the state variables appear both as input (present state) and output (next state)

variables. Another problem in class D is the encoding of the signals connecting two (or more)

combinational circuits.

Here we concentrate on problems in class D for optimal two-level implementations. In

particular we will refer mostly to the problem ofencoding FSM's, since there is no loss ofgenerality

and they are of great practical interest.

We wiU build on the paradigm started by [92]. It involves optimizing the symbolic

representation (symbolic minimization), and then transforming the optimized symbolic description

into a compatible two-valued representation, by satisfying encoding constraints (bit-wise logic

relations) imposed on the binary codes that replace the symbols. This approach guarantees an

upper bound on the size of the encoded symbolic function provided all the encoding constraints

are satisfied. Encoding via symbolic minimization may be considered a three step process. The

first phase consists ofmultiple-valued optimization. The second step is to extract constraints on the

codes of the symbolic variables, which, if satisfied, guarantee the existence ofa compatible Boolean

implementation. The third step is assigning to the symbols codes of minimum length that satisfy

these constraints, if the latter imply a set of non-contradictory bit-wise logic relations.

When the target implementationis two-level logic, the first step may consist ofone or more

calls [92,91] to a multiple-valued minimizer [114], after representing the symbolic variables with

positional cube notation [139, 114]. Then constraints are extracted and a constraints satisfaction

problem is set up.

Using the paradigm of symbolic minimization followed by constraints satisfaction, the

most common types of constraints that may be generated [92, 91, 39, 116] are four. The first

type, generated by the input variables, dxtface-embedding constraints. The three types generated

by the output variables are dominance, disjunctive and disjunctive-conjunctive constraints. Each

face-embedding constraint specifies that a set of symbols is to be assigned to ontface of a binary

n-dimensional cube and no other symbol should be in that same face. Dominance constraints require

that the code ofa symbol covers bit-wise the code of another symbol. Disjunctive constraints specify

that the code of a symbol must be expressed as the bit-wise disjunction (oring) of the codes of two

or more other symbols. Disjunctive-conjunctive constraints specify that the code of a symbol must

be expressed as the bit-wise disjunction ipring) of the bit-wise conjunction (anding) of the codes of

two or more other symbols.

5.2. ENCODING FOR TWO-LEVEL IMPLEMENTATIONS 73

The presentation is oiganized as follows. In Section 5.2 we present the encoding problem

for optimal two-levelimplementations. In Section 5.3 the new symbolic minimizationalgorithm is

described, whileproceduresfor symbolic reductionand symbolicoring are explained, respectively,

in Section 5.4 and in Section 5.5. Section 5.6 analyzes some ordering schemes. In Section 5.7

mention is made of the algorithms used for checking encodeability. An example is demonstrated

in Section 5.8, and experiments are reported in Section 5.9, with final conclusions drawn in Sec

tion 5.10.

5.2 Encoding for Two-level Implementations

5.2.1 Multi-valued Minimization

Advances in the state assignment problem, reported in [93,11,92], made a key connection

to multiple-valued logic minimization, by representing the states of a FSM as the set of possible

values of a single multiple-valued variable. A multiple-valued minimizer, such as [114], can

be invoked on the symbolic representation of the FSM. This can be done by representing the

symbolic variables using the positional cube notation [139, 114]. The effect of multiple-valued

logic minimization is to group together the states that are mapped by some input into the same

next-state and assert the same output. To get a compatible boolean representation, one must assign

each of the groups of states obtained by MV minimization, (called face or input constraints) to

subcubes of a boolean A;-cube, for a minimum k, in a way that each subcube contains all and only

all the codes of the states included in the face constraint. This problem is called face embedding

problem.

It is worth mentioning that the face constraints obtained through straightforward symbolic

minimization are sufficient, but not necessary to find a two-valued implementation matching the

upper bound of the multi-valued minimized cover. As it was already pointed out in [91], for each

implicant of a minimal (or minimum) multi-valued cover, one can compute an aqjanded implicanU

whose literals have maximal (maximum) cardinality and a reduced implicant whose literals have

minimal (minimum) cardinality. By bit-wise comparing the corresponding expanded and reduced

implicant, one gets don't cares in the input constraint, namely, in the bit positions where the

expanded implicant has a 1 and the reduced implicant has a 0. The face embedding problem

with don't cares becomes one of finding a cube of minimum dimension k, where, for every face

constraint, one can assign the states asserted to vertices of a subcube that does not include any state

74 CHAPTERS. SYMBOLIC MINIMIZATION

not asserted, whereas the don't care states can be put inside or outside of that subcube. One can

build examples where the presence of don't cares allows to satisfy the input constraints in a cube of

smaller dimension, than it would be possible otherwise.

5.2.2 Symbolic Minimization

Any encoding problem, where the symbolic variables only appear in the input part, can be

solved by setting up a multiple-valuedminimization problem followed by satisfaction of the induced

face constraints. However, the problem of state assignmentof FMS's is only partiallysolved by this

scheme, because the encoding of the symbolic output variables is not taken into account (e.g. the

next state variable). Simple multiple-valued minimization disjointly minimizes each of the on-sets

of the symbolic output functions, and therefore disregards the sharing among the different output

functions taking often place when they are implemented by two-valued logic. We will see now

more powerful schemes to deal with both input and output encoding.

In [91, 147] a new scheme was proposed, called symbolic minimization. Symbolic

minimization was introduced to exploit bit-wise dominance relations between the binary codes

assigned to different values of a symbolic output variable. The fact is that the input cubes of the

onset of a dominating code can be used as don't cares for covering the input cubes of the onset

of a dominated code. The core of the approach is a procedure to find useful dominance (called

also covering) constraints between the codes of output states. The translation of a cover obtained

by symbolic minimization into a compatible boolean representation defines simultaneously a face

embedding problem and an outputdominance satisfaction problem. Notice that any output encoding

problem can be solved by symbolicminimization. Symbolic minimizationwas applied also in [115],

where a particular form ofPLA partitioning is examined, by which the outputs are encoded to create

a reduced PLA that is cascaded with a decoder.

However, to mimic the fiill power of two-valued logic minimization, another fact must

be taken into account. When the code of a symbolic output is the bit-wise disjunction of the codes

of two or more other symbolic outputs, the on-set of the former can be minimized by using the

on-sets of the latter outputs, by "redistributing" the task of implementing some cubes. An extended

scheme ofsymbolic minimization can therefore be defined to find useful dominance and disjunctive

relations between the codes ofthe symbolic outputs. The translation ofa cover obtained by extended

symbolic minimization into a compatible boolean representation induces a face embedding, output

dominance and output disjunction satisfaction problem.

5.2. ENCODING FOR TWO-LEVEL IMPLEMENTATIONS

(1) 10 stl st2 11 (1') -0 stl,st2 st2 11

(2) 00 st2 st2 11 (2') 0- st2,st3 st2 00

(3) 01 st2 st2 GO (3') 10 st2,st3 stl 11

(4) 00 st3 st2 00 (4') 00 stl stl

(5) 10 st2 stl 11 (5') 01 st3 StO 00

(6) 10 st3 stl 11 (6') 11 stl,stO stl 10

(7) 00 stl stl (7') 11 st0,st3 st3 01

(8) 01 st3 StO 00

(9) 11 stl stl 10

(10) 11 st3 st3 01

(11) 11 stO StO 11

Figure 5.1: Covers of FSM-2 before and after symbolic minimization

75

In Figure 5.1, we show the initialdescriptionof a FSM and an equivalentsymboliccover

returned by an extended symbolic minimization procedure.

The reduced cover is equivalent to the original one ifwe impose the following constraints

on the codes of the states.

Product tenns (1'). (3') and (4') are consistent with the original product terms (5) and (7)

if we impose code(stl) > code{st2). In a similar way, product terms (2') and (5') are consistent

with the original product term (8) if we impose code{stO) > code{st2). The product terms (1') and

(2') yield also the faceconstraints face{stl, st2) and face{st2, st3), meaningthat the codesof stl

and st2 {st2 and stT) span a face of a cube, to which the code of no other state can be assigned. The

previous face and dominance constraints together allow to represent the four original transitions (1),

(2), (3), (4) by two product terais (1') and (2').

Product term (3') is equivalent to the original transitions (5) and (6) and yields the face

constraint face(st2, st3). This saving is due to a pure input encodingjoin effect.

Finally the product tenns (6'). (7') represent the original transitions (9), (10) and (11).

The next state of (11) is stO, that does not appear in (6') and (7*). But, if we impose the disjunctive

constraint code{stO) = cod€{stl) V cod€{st3), i.e., we force the code of stO to be the bit-wise

or of the codes of stl and $t3, we can redistribute the transition (11) between the product terms

(6') and (7*). The product tenns (6') and (7') yield also the face constraints face{stl^stO) and

76 CHAPTERS. SYMBOLIC MINIMIZATION

d") -0 0- 00 11

(2") 0- -0 00 00

(3") 10 -0 01 11

(4") 00 01 01

(5") 01 10 11 00

(6") 11 -1 01 10

(7") 11 1- 10 01

Figure 5.2: Encoded cover of FSM-2

face(stO, st3); together with the previous disjunctiveconstraint they allow the redistributionof

transition (11).

Wepoint out that if we perform a simple MV minimization on the original description we

save only one product term, by the join effect taking place in transition (3'),

An encoding satisfying all constraints can be found and the minimum code length is two.

A solution is given by sfo = H, st\ = 01, = 00, sts = 10. If we replace the states by the

codes in the minimized symbolic cover, we obtain an equivalent Boolean representation that can be

implemented with a PLA, as shown in Figure 5.2. Note that we replace the groups of states in the

present state field with the unique face assigned to them and that product term (2") is not needed,

because it asserts only zero outputs. Therefore the final cover has only six product terms.

5.2.3 Completness of Encoding Constraints

An importantquestion is whether the constraints described earlier are sufficient to explore

the space of all encodings. More precisely, the question is: find the class of encoding constraints

such that by exploring all ofthem one is guaranteed to produce a minimum encoded implementation.

Ofcourse exploring all the encoding constraints ofa given class may be impractical, but ifthe answer

to the previous question is affirmative, one has characterized a complete class that can lead in line-

of-principle to an optimal solution. This would make more attractive an heuristic that explores the

codes satisfying the constraints of such a class.

5.2. ENCODING FOR TWO-LEVEL IMPLEMENTATIONS 77

Theorem 5^.1 Face and disjunctive constraintsare sufficient to obtain a minimum two-level im

plementationofa state-minimizedFSMiftheminimum implementationhas as manyhardwarestates

as there are symbolic states.

Proof: Consider an FSM F. Let the codes that produce a minimum implementation of the

FSM be given, together with the best implementation C (here minimum or best refers to the

smallest cardinality of a two-level cover). Suppose that the product-terms of the minimum encoded

implementation C are all prime implicants. Consider each cube of C. Its present state part will

contain the codes of one or more states and it will translate into a face constraint. Its next state part

will correspond to the code ofa symbolic state (using the hypothesis that there are as many hardware

states as symbolic states). Consider now each minterm of the original FSM F. It will be covered in

the input part (proper input and present state) by one or more cubes of C; this will translate into a

disjunctive constraint whose parent is the next state of the minterm and whose children are the next

states of the covering cubes of C.

The face constraints and disjunctive constraints so obtained are necessary for a set of

codes to produce such a minimum implementation, when they are replaced in the original cover and

then the cover is minimized. But are they sufficient ? There may be many sets of codes that satisfy

these constraints. Is any such set sufficient to obtain a minimum cover ? The answer if yes, if after

that the set of codes is replaced in the original FSM, an exact logic minimizer is used. Indeed, if

this set of codes satisfies the encoding constraints, by construction they make possible to represent

the mintemis of the original FSM cover by the cubes of the minimum cover C. Therefore an exact

logic minimizer will produce either C or a different cover of thesame cardinality as C ^ •

Theorem 522 Face and disjunctive-conjunctive constraints are sufficient to obtain a minimum

two-level implementation ofa state-minimizedFSM.

Proof: If there are as many hardware states as there are symbolic states the previous result applies.

If the best implementation has more hardware states than symbolic states, one must introduce

disjunctive-conjunctive constraints. The reason is that it is not anymore always true that the next

state of a cube c e C corresponds to the code of a symbolic state. Suppose that the next state of

a cube c is not the code of a symbolic state, c cannot be a mintenn in the input part, otherwise,

since we suppose that C contains only prime implicants, the next state of c must be exactly the code

^The hypothesis that the FSM is state-minimized guarantees that the minimum implementation does nothave fewer
hardware states than there are symbolic states.

78 CHAPTERS, SYMBOLIC MINIMIZATION

of the state of the symbolic minteim in F to which c corresponds. So c must contain more than

one minterm in the input part, say w.Lo.g. that c contains exactly two minterms mi and m2, each

corresponding to a symbolic minterm of the care set of F. If the symbolic minterms corresponding

in F to ci and C2 assert next states s\ and S2» the next state of c must be the intersection of the codes

of Si and S2 (for sure the next state of c must be dominated by the intersection of the codes of si

and S2, but we suppose that c is a prime implicant and that it contains exactly minterms mi and m2

of the care set, so we can say that the next state of c is exactly the intersection of the codes of si

and S2).

Therefore for each symbolic minterm m^ in F one defines a disjunctive-conjunctive

constraint enforcing that the code of the next state of m^ is a disjunction of conjunctions, where

each disjunct is contributed by one of the cubes of C that contain the input part of the minterm

corresponding to m^, and for each such cube Cms the conjimcts are the codes of the next states

asserted by all the care set minterms that Cm^ contains. The rest of the reasoning goes as in the

previous theorem. •

Disjunctive-conjunctive constraints were introduced for the first time in [39], as the

constraints induced by generalized prime implicants. Our derivation shows that they arise naturally

when one wants to find a complete class of encoding constraints. In our symbolic minimization

algorithm we used as the class ofencoding constraints face constraints, dominance constraints and

disjunctive constraints. Dominance constraints are not necessary, but they have been considered

useful in developing an heuristic search strategy. We did not use disjunctive-conjunctive constraints

in the heuristic procedure presented here.

5.3 A New Symbolic Minimization Algorithm

5.3.1 Structure of the Algorithm

In this section a new more powerful paradigm ofsymbolic minimization is presented. An

intuitive explanation of symbolic minimization as proposed in [91] and enhanced in [147] has been

given in Section 5.2. To help in highlighting the differences of the two schemes, the one in [147] is

summarized in Figure 5.3.

The new scheme of symbolic minimization features the following novelties.

• Symbolic oring. Disjunctive constraints are generated corresponding to the case of transi

tions of the initial cover implicitly expressed by other transitions in the encoded two-level

5.3. A NEW SYMBOLIC MINIMIZATION ALGORITHM 79

1. Input data cover C with q symbolic outputs,

optional binary outputs,

empty acyclic graph G,

and empty cover FinalP

Output is the graph G and the minimal cover FinalP

2. Ouk = on-set implicants of fc-th output symbol

with the corresponding binary outputs unchanged

3. Repeat Steps 4 through 9 q times

4. i = select a symbol

5. Dci = uOrij,

for all j for which there is no path from vertex i

to vertex j in G

6. Offi = uOnj,

for all j for which there is a path from vertex i

to vertex j in G

7. MBi = minimizeCOn,-, Dci, Offi)

8. Mi = implicants of MBi

that are in the on-set of symbol i

9. G = Gu{ {j, i) suchthat M,- intersects Orij}

P = PuMBi

10. FinalP = minimize(F)

Figure 5.3: Old Symbolic Minimization Scheme

80 CHAPTERS. SYMBOLIC MINIMIZATION

representation, because of the oring effects in the output part.

• Implementability. Product-terms are accepted in the symbolic cover, only when they yield

satisiiable encoding constraints.

• Symbolic reduction. Symbolic minimization is iterated until an implementable cover is

produced. A symbolic reduction procedure guarantees that this always happens.

At last, codes satisfying the given encoding constraints are generated. The accuracy of

the synthesis procedure can be measured by the fact that the cardinality of the symbolic minimized

cover is very close to the cardinality of the original encoded FSM minimized by espresso [11].

This will be shown in the section of results.

We introduce the following abbreviations useful in the description of the algorithm:

• IniCov = (Fc, Dc, Rc) is the initial cover of a 1-hotencoded FSM, where Fc, Dc and Rc

are, respectively, the on-set, dc-set and off-set of the 1-hot encoded FSM.

• Ns is the set of next states of a FSM. Fcns, Dcns and Rcna are the set of product-terms

asserting ns, respectively, in Fc, Dc and Rc, Vns e Ns.

• Ouns, Dcarcns and O/fns are, respectively, the on-set, dc-set and off-set of next state ns,

Vns G Ns, Onns.

• Onbo, Dcbo and Offbo are, respectively, the on-set, dc-set and off-set of the binary output

functions.

• FartCov = {OnCov, DcCov, OffCov) is the coverof a fragmentof a 1-hotencodedFSM,

where OnCov, DcCov and OffCov are, respectively, the on-set, dc-set and off-set of the

given fragment.

• Consns is the set of input and output constraints yielded by symbolic minimization of Fc„s,

\/ns e Ns. The sets Consns are cumulated in Cons.

• ExpCovns and RedCovns are, respectively, a maximally expanded and a maximally reduced

minimized cover of Fc„s, Vns G Ns. The sets ExpCovns and RedCovns are cumulated,

respectively, in ExpCov and RedCov.

At the each step of the symbolic minimization loop a new next state ns is chosen by

the procedure SelectState, described in Section 5.6. The goal is to determine a smaU set of

5.3. A NEW SYMBOLIC MINIMIZATION ALGORITHM 81

multiple-valued product-terms that represent the transitions of Fc„s. The procedure SymbOring,

described in Section 5.5, determines Or„5, the transitions of Fcns that can be realized by expanding

some product-terms in the current RedCov andchoosing the expansions in the interval {RedCov,

ExpCov). This expansion operation yields updated encoding constraints (here also disjunctive

constraints are generated) that must be imposed to derive an equivalenttwo-levelimplementation.

The rest of Fcns is minimized, putting in its off-set the on-sets of all states selected previously

The minimization is done calling espresso, without the final makesparse step. This produces

ExpCovnsi a maximally expanded minimized cover. Calling the espresso procedure rnvj^educe

on produces RedCovns, a maximally reducedminimized cover. The reduced minimized

cover RedCovns yields new encoding constraints Consns-

If it turns out that the constraints in Consns are not compatible with the constraints

already in Cons, a SymbReduce procedure is invoked to redo the minimizations of Fcns and

produce covers that yield encoding constraints compatible with those currently accepted in Cons.

In Section 5.4, where symb-reduce is described, it is shown that this always happens, i.e. this

symbolic reduction step always produces an implementable symbolic minimized cover of Fcna-

The compatible constraints Consns are added to Cons and the new accepted covers ExpCovns and

RedCovns are added, respectively, to ExpCov and RedCov. Finally, codes satisfying the encoding

constraints in Cons are found and replaced in the reduced symbolic minimized cover RedCov.

The resulting encoded minimized cover EncRedCov is usually ofthe same cardinality as the cover

obtained by replacing the codes in the original symbolic cover and then minimizingit with espresso.

EncRedCov can be minimized again using espresso to produce a cover MinEncRedCov, that

rarely has fewer product-terms than EncRedCov. These statements will be supported by results

in the experimental section. To check the correcmess of this complex procedure a verification is

made of MinEncRedCov against EncIniCov. A non-equivalence of them signals an error in the

implementation.

The outlined procedure is shown in Figure 5.4. The routines with initial letter in the lower

case are directly available in espresso (not necessarily with the same name and syntactical usage),

while the routines with initial letter in the upper case are new and will be described in the following

sections.

Proposition 5J.l The algorithm ofFigure 5.4 generates an implementable symbolic cover.

Proof: By construction a product temi is added to the symbolic cover, only if it carries constraints

^This isnotrequired: one should putonly those states that ns covers.

82 CHAPTERS. SYMBOLIC MINIMIZATION

procedure symbolic(Fc, Dc, Rc) {

do { /* repeatuntil all next states are selected*/

/* Sel is a set of currently selected states */

ns = SelectState(iVs —Sel); Sel = Sel U ns

/* Ovns are the transitions of Fc„s expressed by oring */

(Or„s, ExpCov, RedCov, Cons)

= Syw^^xmg{In%Cov,Ex'pCov,RedCoVyCons)

/* OnCov are the transitions to be covered */

OnCoV - FCns - OVna

/* add the on-sets of states previously selected to the off-set */

0//Coo = U,€Sel-n.O»i
/* add binary output off-set */

OffCov = OffCov U O/Zio

/* everything else (including Or„s) is in dc-set */

DcCov = complement(OnCou,0//Cov)

/* invoke espresso with no makesparse */

ExpCovns = espTQSSo(PnCoVjDcCov,0f fCov)

RedCovns = nivjeduce(Fa;pCou„s,FcCou)

Cousns = ConstraintsC/niCoUjFa^pCounsjFedCoUna)

if (ConstraintsCompatible(Coras,Cons„5) fails)

(ExpCovns,RedCovns,Consns) =

SymbReduce(/niCov,PartCov,ExpC0Vns,RedCovnsjCons,Consns)

ExpCov = ExpCov U ExpCoVns

RedCov = RedCov U RedCoVns

Cons = Cons U ConSns

} while (at least one state in Ns - Sel)

Codes = EncodeConstraints(Cons)

EncRedCov = Encode{RedCov, Codes) /* encode symbolic min. cover */

MinEncRedCov = mimmiz&(EncRedCov)

EncIniCov = Encode(/niCou, Codes) /* encode initial FSM */

MinEncIniCov = minimize(F7ic/niCou)

if (verify(MmFnci2edCou, EncIniCov) fails) ERROR

}

Figure 5.4: New Symbolic Minimization Scheme

5.4. SYMBOLIC REDUCTION 83

on the codes that are compatible with the constraints of all the symbolic cubes cumulated up to

then. Therefore one guarantees that the symbolic cover is alwaysimplementableat any stage of its

construction. •

5.3.2 Slice Minimization and Induced Face and Dominance Constraints

The procedure Constraints computes the face and dominance constraints induced by a

pair of minimizedcovers (RedCovns, ExpCovns) with respectto the originalcover Fc. For each

product-term pexp e ExpCovns there is a companion product-term pred e RedCovns obtained

from pexp by applying to it the multiple-valued reduce routine of espresso. For each pair of

product-terms (pred^pexp) 6 {RedCovnstExpCoVns) one gets the implied face constraint by

considering the 1-hot representation of the input part. For each position k in the input part of the

1-hot representation of pred and pexp, opposite bits yield a don't care in the face constraint and

equal bits yield the common care bit in the face constraint Face constraints are generated for all

symbolic input variables, including proper symbolic inputs, if any.

Dominance constraints are computed by determining, for each product-term pred e

RedCov, the transitions of the original cover Fc that pred intersects in the input part. The next

states that these transitions assert must cover the next state of pred, for the functionality of the FSM

to be maintained. Notice that currently we compute only the dominance constraints implied by the

product-terms in RedCov. Computing them both for RedCov and ExpCov (as we do in the case

of input face constraints with the notion of don't care input constraints), would allow to explore a

laiger part of the solution space. This is not currently done, because it would make the constraint

satisfaction problem more complex.

Oring constraints are generated only in the SymbOring procedure described in Section 5.5.

In Figure 5.5 the pseudo-code of Constraints is shown.

5.4 Symbolic Reduction

The procedure SymbReduce is invoked to set up a series ofnew minimizations that produce

an implementable minimized cover of OnCov. This is required when a set of constraints Consns

incompatible with those in Cons are obtained at a certain iteration in the loop of symbolic. When

this happens, it means that we cannot minimize the current OnCov (with the current DcCov) in one

shot, because the minimization process would meige multiple-valued product-terms in such a way

84 CHAPTERS. SYMBOLIC MINIMIZATION

/* face and dominanceconstraints inducedby (RedCovns, ExpCovns) */

Constr2an\s(IniCoVtExpCovnsM^dCovns) {

foreach (pair of product-terms (pred^pexp) e {RedCovns, ExpCovns)) {

foreach (position k in the 1-hot representation) {

if (I(pred)[k] and I{pexp)[k] are opposite bits) face[k] = dc

else /ace[A:] = I{pr€d)[k]

}

foreach (transition t e Fc) {

/* don't intersect if t and pred assert same next state */

if (t and pred assert differentnext states) {

if (distance(/(pred),/(i)) = 0) {

create coveringconstraint (nxst(t) > nxst(pred))

}

}

}

}

Figure 5.5: Derivation of face and dominance constraints

5.4. SYMBOLIC REDUCTION 85

thatincompatible constraints aregenerated. Instead wecanminimize OnCov byblocks andcontrol

the allowed companion dc-sets so that only compatible constraints are generated. It is evidentthat

in the worst-case, if only one transitionof OnCov is minimizedat a time, with an empty dc-set, we

always obtain implementableproduct-terms. This is equivalent to perform no minimizationat all.

In SymbReduce, the transitionsof OnCov are partitioned into maximal sets of transitions that can be

minimized together. Maximal companion dc-sets are found for each previous on-set of transitions.

The routine SymbReduce is divided in two steps. In the first step, a maximal subset of

Consns is sought that is compatible with Cons. The rationale is that the companion product-terms

of ExpCovns and RedCovns are an acceptable cover for a subset of OnCov. This is done in a

greedy fashion. The constraints of CouSns compatible with Cons are saved into AConsTmp. A

new constraintofConsns is checked for compatibility with ConsUAConsTmp. If it is compatible,

it is added to AConsTmp, otherwise the product-term companion to the constraint is deleted from

both ExpCovns and RedCoVns. The transitions ofOnCov not covered by the resulting RedCovns

are the new cover that must be minimized in such a way that only implementable multiple-valued

product-terms are found. The transitions ofOnCov covered by the resulting RedCovna are instead

added to the dc-set.

hi the second part, the current OnCov (i.e. the part of the initial OnCov left uncovered by

the previous step) is minimized. The transitions ofOnCov that can be minimized together are saved

into OnCovTmp. A new transition t ofOnCov is minimized together with OnCovTmp to retum

both ExpCovTMp and RedCovTmp. The implied constraints are computed in AConsTmp. If

they are compatible with Cons, t is added to OnCovTmp. In this way one determines sets of

transitions that can be minimized together. The dc-set ofeach such set of transitions is enlarged in a

similar greedy fashion. The rationale is that one may obtain more expanded resulting product-terms

useful in later stages of the algorithm. Then ExpCovnsj RedCovns and Consns are updated,

respectively, with the saved accepted sets ExpCovTmp, RedCovTmp and AConsTmp. This is

iterated until all transitions of OnCov are minimized.

The outlined procedure is shown in Figures 5.6 and 5.7. The routines with initial letter in

the lower case are directly available in espresso (not necessarily with the same name and syntactic

usage), while the routines with initial letter in the upper case are new.

86 CHAPTERS. SYMBOLIC MINIMIZATION

/* PartCov is the triple {OnCov,DcCov,0f fCov) */

procedure SymbReducePartl(/niCoi;,PartCov,£^a;pCou„5,jRedCou„s,Cons,Cons„s) {

/* choose greedily a maximal subset of compatible constraints */

/* pt{c) is a product-term companionto constraintc */

AConsTmp is empty

foreach (constraint c € Consns) {

if (ConstraintsCompatible(Cons,ACorasTmp,c)succeeds) {

AConsTmp = AconsTmp U c

} else {

ExpCoVna = ExpCoVns —pt(c) /* l>t(c) € ExpCoVns */

RedCovns = RedCoVns —pt(c) /* pt{c) G RedCoVns */

}

}

CouSns - CouSns U AcousTmp

foreach (transition t in OnCov) {

/* if the product-terms in RedCoVnScover t */

if (sharp(^ RedCovns) returnsempty) {

OnCov = OnCov — t

DcCov = DcCov -}-1

}

}

}

Figure 5.6: Symbolic reduction - Parti

5.4. SYMBOLIC REDUCTION 87

procedure SymbReducePart2(/niCou,Par<Cot;,£'a:pCot;„ayRedCovnsyConSyConsm) {

do { /* piece-wise minimizations of what left in OnCov */

OnCovTmp = 0; DcCovTmp = 0

/* choose greedily a maximal on-set */

foreach (transition <in OnCov) {

OffCovTmp = complement(OnCowTmp U <, DcCovTmp)

/* invokeespresso with no makesparse*/

ExpCovTmp = espresso(OnCovTmp Ut,DcCovTmp,OffCovTmp)

RedCovTmp = mv_reduce(Pa;pCouTmp,£)cCot;Tmp)

AConsTmp = Constraints(/niCov, ExpCovTmp, RedCovTmp)

if (ConstraintsCompatible(Cons,AConsTmp) succeeds) {

OnCovTmp = OnCovTmp U t

OnCov = OnCov — t

SaveExpCovTmp = ExpCovTmp; SaveRedCovTmp = RedCovTmp

SaveAConsTmp = AConsTmp

}

}
/* choose greedily a maximal dc-set of previous on-set */

foreach(transitiont in DcCov) {

OffCovTmp = complement(On(7ovTmp, DcCovTmp U <)

/* invoke espresso with no makesparse */

ExpCovTmp = QspxGSSQ{OnCovTmp,DcCovTmp U t,OffCovTmp)

RedCovTmp = mv_reduce(PxpCowTmp,DcCovTmp)

AConsTmp = Constraints(/n2Cot;, ExpCovTmp, RedCovTmp)

if (ConstraintsCompatible(Cons,AConsrmp) succeeds) {

DcCovTmp - DcCovTmp U t

SaveExpCovTmp = ExpCovTmp; SaveRedCovTmp = RedCovTmp

SaveAConsTmp = AConsTmp

}

}

Consns = Cons„, U SaveAConsTmp

ExpCoVna = ExpCovna U SaveExpCovTmp;

RedCovna - RedCoVna U SaveRedCovTmp

} while (at least one transitionin OnCov)

)

Figure 5.7: Symbolic reduction - Part2

88 CHAPTERS. SYMBOLIC MINIMIZATION

5.5 Symbolic Oring

In two-level logic minimizationofmulti-output functions the fact of sharing cubes among

single outputs reduces the cardinality of the cover. When minimizing symbolic logic to obtain

minimal encodable two-level implementations, one should detect the most profitable disjunctive

constraints so that - after encoding - sharing of cubes is maximized. In Section 5.3 an example

was given where oring in the output part accounts for most savings in the minimum cover. In the

symbolic minimization loop presented in Section 5.3, SymbOring is invoked to that purpose.

The goal ofthe procedureSymbOring is to determine a subset (if it exists) of the transitions

of Fcns that can be realized using the product-terms of the partial minimized symbolic cover

(Ex-pCov., RedCov). If so, that subset is moved from the on-set to the dc-set of the cover to

minimize in the current step. The procedure is heuristic because it handles a transition of Fcns

at a time and it introduces some approximations with respect to an exact computation. For each

transition t of Fcns the following algorithm decides whether t can be realized using or modifying

product-terms in RedCov. Here we present the main features, leaving out minor design choices.

At a certain step of the procedure symbolic a pair of partial covers {ExpCov^RedCov)

is available. For each cube pexp e ExpCov there is a companion cube pred 6 RedCov (and

viceversa) such that pred is obtained by pexp by applying to it the multiple-valued reduce routine

of ESPRESSO. A cube pred € RedCov potentially useful to espress implicitly t must satisfy the

conditions that its inputpart (denoted I (pred)) has non-empty intersection with I (t) and the output

partof t (denoted 0(t)) covers 0(pred). All suchcubesarecollected in thecoverInter(t). It may

happen thatI (pred) doesnot intersect I (f), butthat I (pexp) intersects I (t), because inpred thebit

of the present state of t is lowered, while in pexp it is raised. If so, one may raise temptatively also

the bit in pred to obtain another potentially useful cube that is added to Inter (t). The product-term

pred raisedin the presentstateof t is denoted by raised(pred)t

The set OrNstates(Inter(t)) of next states of cubes in Inter(t) is computed. Define

Inter(t)s as the set of transitions of Inter(t) with next state included in set S. In order that a

disjunctiveeffect occurs it is necessary that, for at least two next states si and s2,1(t) is covered

bothby the unionof the input parts of all cubesin Inter(t)s\ and by the unionof the input partsof

all cubes in Inter(t)s2' Here covering is meant to be restricted to the next state function assumed

^In thecurrent implementation p isnotadded to Inter(t) if /(p) is covered by theinput partofanother cubealready
in Inter(t). Therationale is thatproduct-terms whitha moreexpanded inputpart arepreferred, because theyaremore
likely to coverother traitsitions in the future. An exact algorithm shoulddefinethe notion of don't-care intersecting
product-terms, if one knowshow to handle conditionaldominanceconstraints.

5.5. SYMBOLIC ORING 89

as a single output. Suppose that OrNstates has at least two elements. We determinethe states

s of OvNstates such that the union of the input parts of the cubes in Inter(t)s covers /(f), and

discard the others. Moreover, in order that a disjunctive effect occurs it is necessary that, for all

binary output functions, I(t) is covered by the union of the input parts of allcubes in Infer (f). If

all previous tests are not satisfied, the attempt of expressing f by symbolic oring fails.

If the previous necessary conditions are satisfied, all subsets of elements in the set

OvNstates are computed in Subset{OrNstates). Each such subset, denoted by or, is an or

ing pattem potentially usefiil to espress implicitly the transition f. For each oring pattern or, the

procedure OringCover retumsOrCov(f), a subsetof transitions of Inter (f)oru<f> (it means Inter(f)

restricted to next states in or or empty next state) that cover f, both in the next state output space

and in the binary output spaces. Notice that OringCover may fail to find a cover even if it exists,

because while the input space of the binary output functions can be covered by considering the

whole Infer(f), only a subsetof it (Infer(f)oru^) is considered by OringCover. Noticealso that

there may be many possible such covers, but only one is found. This may penalize the quality of

the final results, because the computed cover may yield uncompatible constraints, while there is

another cover that yields compatible constraints. We do not give the details of OringCover^ that is

based on a greedy strategy.

If a cover OrCov(t) is found, one considers the modified partial minimized cover

RedCovTmp, obtained from RedCov by raising the present state bits according to what done

in the generationof Infer(f). Then the constraints implied by the modified cover are derived and

checked for compatibility with the oring constraint or (since some product-terms of RedCov have

been raised in the present state, there are raised face constraints and by consequence dominance

constraints mustbe recomputed). If the answer is positive, the transition f is implementable by oring

andboth RedCov andCons areupdated. Otherwise a neworingpattemfrom Subset{OrNstates)

is considered. When they have been aUexhausted, a new transition of Fc„s is taken into consider

ation.

The outlined procedure is shown in Figures 5.8. The routines with initial letter in the

lower case are directly available in espresso (not necessarily with the same name and syntactic

usage), while the routines with initial letter in the upper case are new.

better alternative would be to check for constraints compatibility while building OrCov{t): do not add a new
product-termto the subset of OrCov{t) cuirently accepted, if together with it, it yields infeasibleconstraints.

90 CHAPTERS. SYMBOLIC MINIMIZATION

procedure SymbOnng{IniCov,ExpCov,RedCov,Cons) {

foreach(transitiont e Fcm) {

foreach (pairof product-terms {pred,pexp) G {RedCov, ExpCov)) {

if (I{pred) n I{t) non-emptyand 0{t) D 0{pred)) {

Inter{t) = Inter{t) Upred

} else {

if (I{pexp) n I{t) non-empty and 0{t) D 0{pexp)) {

Inter{t) = Inter{t) U raised{pred)t

}

}

}
computeOrNstates{Inter{t))

if (at least two states in OrNstates) {

foreach (next state s € OrNstates)

if(Upe/nter(t). Hp) 1 OrNstates =OrNstates - s
foreach (binary output function)

if(Upe/nter(0 (̂p) 1 (̂0) OrNstatesempty
}
if (at least two states in OrNstates) {

generate Subset{OrNstates)

foreach (element or of Subset) {

OrCov{t) = OnngCo\QT{Inter{t)orij<i>ti>ExpCov,RedCov)

if (OrCov{t) is not empty) {

RedCovTmp = R2USit{RedCov,Inter{t)d)

ConsTmp = Cons\i2ants{IniCoVyExpCov,RedCovTmp)

if (ConstraintsCompatible(C*onsrmp,or) succeeds) {

Orns = Or„, U t

RedCov = RedCovTmp

Cons = ConsTmp U or

goto outer foreach loop

}

}

Figure 5.8: Symbolic oring

5.6. ORDERING OFSYMBOLIC MINIMIZATION 91

5.6 Ordering of Symbolic Minimization

In the procedure symbolic described in Section 5.3, at each cycleof the symbolic mini

mization loop,states arepartitioned in twosets: those selected inprevious iterations (5el) andthose

still unselected {Ns —Set). At the start of a new cycle, a new state ns is selected by the procedure

SelectState from Ns - Sel and the state partition is updated.

The transitions of the FSM are partitioned, accordingly, in the transitions asserting the

states in Sel and already minimized and the transitions asserting the states in Ns- Sel and not yet

minimized. We observe the following facts:

1. When a new state ns is selected, the transitions asserting it cannot be used later to minimize

the transitions asserting states in Ns —Sel - ns. Therefore if one measures how much an

unselectedstatecan help in minimizing the otherunselectedstates bydominance(DomGain),

the state of minimum gain should be selected first.

2. When a new state ns is selected, the transitions asserting it cannot be espressed later using

the transitions asserting states in Ns - Sel - ns. Therefore if one measures how much

the minimization of an unselected state is helped by the other unselected states by oring

(OrGain), the state of minimum gain should be selected first.

Summarizing, the problem of the best selection of a new state can be reduced to one of

measuring the dominance and oring gains and then choosing the state that minimizes their sum

(TotGain = DomGain + OrGain).

As anexample, consider that ATs = stO, stl, st2^ st3, si4,5^5, st6. Suppose that currently

stO, st5, st6 have been already selected and that a new state must be chosen among stl, st2, st3,

st4y by computing their gain and choosing the minimum. We have devised two slightly different

schemes for computing the gain of a state. In the first scheme, the gain of a state, for instance stl,

can be computed by setting up a minimization as shown in Figure 5.9 (in the figure the covers are

shown for the next state functions asserted by the unselected states). After the minimization, the

difference in cardinality between the resulting and original covers gives one component of the gain,

JDomGam (associated to the dominance constraints: sfl > st2,stl > st3,stl > st4). The second

component of the gain, OrGain (associated to the disjunctive constraints: stl = st2 V st3 V st4,

stl = st2 V sfS, stl = st2 V st4, stl = st3 V st4), is found by computing, for each transition

asserting stl, whether its input part is covered by the input parts of the transitions asserting at least

two other unselected states, for the related next state functions and aUbinary output functions.

92 CHAPTERS. SYMBOLIC MINIMIZATION

OnCov:

on-set of st2 0010000

on-set of st3 0001000

on-set of st4 0000100

OffCov:

on-set of st2 0001100

on-set of st3 0010100

on-set of st4 0011000

on-set of stO 0011100

on-set of st5 0011100

on-set of st6 0011100

DcCov:

on-set of stl 0011100

Figure 5.9: First scheme to compute the gain

In the second scheme, the gain of a state can be computed by setting up a minimization as

shown in Figure 5.10 (referring again to stl in the previous example). After the minimization, the

difference in cardinality between the resulting and original covers gives the overall gain TotGain,

inclusive of both the dominance and disjunctive components.

The pseudo-code in Figure 5.11 shows the first scheme to compute the gain. The sec

ond one is simpler, since it does not include explicitly the covering check to measure the oring

contribution (that is implicitly taken into account by the minimization process) and it is not shown

here.

5.7 Satisfaction of Encoding Constraints

The described procedures require algorithms to check satisfiability of a set of face, dom

inance and disjunctive constraints, and to find minimum codes that satisfy them. We used the

algorithms reported in [116], to which we refer for a complete description. They are based on

the notion of encoding dichotomies that are candidate encoding columns. The notion of encoding

dichotomy was pioneered in [143] and the connection with satisfaction of face constraints was

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 93

OnCov:

on-set of st2 0010000

on-set of st3 0001000

on-set of st4 0000100

on-set of stl 0011100

OffCov:

on-set of st2 0001100

on-set of st3 0010100

on-set of st4 0011000

on-set of stO 0011100

on-set of st5 0011100

on-set of st6 0011100

Figure 5.10: Second scheme to compute the gain

established in [154]. Other contributions on the subject can be found in [126,20] and more recently

in [44,45].

5.8 Symbolic Minimization by Example

In this section we clarify with an example the mechanics by which the oiing effects plays

an important role in the minimization of symbolic logic. Then we demonstrate our algorithm for

symbolic minimization on a simple example.

5.8.1 The Oring Effect in Two-level Logic

In two-level logic minimization ofmulti-outputfunctions the fact ofsharing cubes among

single outputs reduces the cardinality of the cover. As an example, consider the following cover of

a logic function of four input and four output variables:

1000 0100

0100 0001

1100 0101

0001 1000

1001 1100

94 CHAPTERS. SYMBOLIC MINIMIZATION

procedure SelectState(i/n5e/) {

foreach (state st e UnSel) {

gain(st) - ComputeGain(st,C/n5e/)

}
sel = st e UnSel withminimumgain(st)

}

procedure ComputcGdmiIniCov,st,UnSel) {

/* measure potential gains by dominance */

OnCov = Ui€(t/n5e;-»l) fc;

OldCard = ^(OnCov)

foreach (state j G UnSel - st)

OffCoVj = \JieUnSel-3-st ^ieNs-UnSel

OffCoV = (Ui€C/nSe/-5< OffCoVj) UOffbo

DcCov = complement(OnCou,0//Cov)

/* invoke espresso with no makesparse */

OnCov = espresso(OnCou„Z)cCou,0/fCov)

DomGain = OldCard —#(OnCov)

/* measure potential gains by oring */

foreach (transition t e Fcst) {

foreach (state i e UnSel - st) {

OnCovi = product-terms of OnCov asserting next state i

if (f(0 ^ I{OnCovi) for nextstateand binaryoutputfunctions) {

increment OrCount

if {OrCount > 1) { /* t can be expressedby oring */

increment OrOain

goto outer foreach loop

}

}

}

}
TotGain = DomGain OrGain

Figure 5.11: Ordering of symbolic minimization

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 95

0101 1001

1101 1101

0010 0010

1010 0110

0110 0011

1110 0111

0011 1010

1011 1110

0111 1011

1111 1111

and an equivalent minimum cover, as found by espresso:

1 1000

1 0100

-1- 0010

-1— 0001.

Consider the product term 1001 1100 that appears in the original cover, hi the minimum

cover, when the input cube 1001 is true, the first two product tenns of the minimum cover are

excited and the output part 1100 is asserted. Therefore the product temi 10011100 is implemented

by means of the product tenns 1 1000 and 1 0100. Notice that two product terms

must be in any cover to realize the following product terms of the original cover 1(X)0 0100 and

0001 1000. Therefore a net saving of one product term (the one needed to realize 1001 1100) has

been achieved in the minimum cover. We say that the product term 1001 1100 has been realized by

oring or disjunctive effect (due to the semantics of the output part of a two-level implementation)

or that it has been redistributed through the two product terms 1 1000 and 1 0100.

The oring effect accounts for most savings in the minimum cover of this example.

5.8.2 A Worked-out Example of Symbolic Minimization

This subsection contains an example of symbolic minimization. The example is shiftreg

from the MCNC suite. The symbolic cover of shiftreg^using the syntax of espresso, is:

.mv 4 1 -8 -8 1

.type fr

.kiss

0 stO stO 0

1 StO st4 0

0 stl StO 1

1 stl st4 1

96 CHAPTERS. SYMBOLIC MINIMIZATION

0 st2 stl 0

1 st2 st5 0

0 st3 stl 1

1 st3 st5 1

0 st4 st2 0

1 st4 st6 0

0 st5 st2 1

1 st5 st6 1

0 st6 st3 0

1 st6 st7 0

0 st7 st3 1

1 st7 st7 1

Suppose that the ordering routine returned stO, st4, stl, stl, st5, st3, st6, stl as the order in which

the slices of next states must be minimized. Let each position in the 1-hot encoded notation

correspond respectively to the states stO, st4, stl, stl, st5, st3, st6, stl. For instance 10000000

represents stO, while 01000000 represents st4. Slices including all the transitions that have the

same next state are minimized in the given order. The result of each minimization is a set of

symbolic cubes which realize the slice. A dc-set as specified by the theory is provided in each

minimization. If terms of the dc-set having a different next state are used in a minimization, then

covering constraints are introduced, together with companion face constraints (face constraints not

related to output constraints can be introduced also, when transitions having the same next state

are merged). Before each minimization, the algorithm figures out whether some transitions of the

given slice can be realized by symbolic cubes already in the partial minimized symbolic cover,

when a satisfiable oring constraint is imposed. Only the remaining transitions are kept in the onset

of the slice under minimization. Whenever symbolic cubes that impose constraints on the codes

are added to the cover, their consistency with respect to the constraints cumulated up to then is

verified. As long as the consistency verification fails, different symbolic cubes are tried; eventually

an encodeable symbolic cover is constructed. At the end codes of minimum code-length that satisfy

the constraints are found and the codes are replaced in the symbolic cover and in the original FSM

(it is not necessary, but convenient to do both, because don't cares can be used differently, producing

covers not of the same cardinality). A final step of two-valued minimization produces a minimal

encoded FSM.

• Minimization of the slice of next state stO.

The onset is:

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 97

0 10000000 100000000

0 00100000 100000001

The dcset is:

1 11000000 100000000

- 01010010 100000000

1 00100000 111111111

- 00001101 111111111

- 11111111 011111110

The minimized expanded cover is:

- 11111111 111111110

- 00101101 111111111

The minimized reduced cover is:

- 11111111 100000000

- 00100000 000000001

The constraints code{st4) > code(stO)t code{stl) > code(stO)y code(st2) > code{stO)^

code(st5) > code{stO)t code{st3) > code{stO), code{st6) > code(8t0) and code{stl) >

code(stQ) are introduced. The companion face constraints are trivial.

• Minimization of the slice of next state stA.

The onset is:

1 10000000 010000000

1 00100000 010000001

The dcset is:

- 01010010 010000000

0 00100000 000000001

- 00001101 111111111

- 11111111 101111110

The minimized expanded cover is:

- 00101101 101111111

1 11111111 111111110

98 CHAPTERS. SYMBOLIC MINIMIZATION

The minimized reduced cover is:

- 00100000 000000001

1 11111111 010000000

The constraints coc?e(st5) > code(st4)j code(st6) > code{st4) and code{stl) > code(st4)

are introduced. The companion face constraints are trivial.

• Minimization of the slice of next state st\.

The onset is:

0 00010000 001000000

0 00000100 001000001

The dcset is:

- 01000010 001000000

- 00100000 000000001

1 00010110 001000000

1 00000100 111111111

- 00001001 111111111

- 11111111 110111110

The minimized expanded cover is:

- 00101101 110111111

- 01011111 111111110

The minimized reduced cover is:

- 00000100 000000001

- 00010100 001000000

The constraints code(st5) > code{stl) and face{st2, st3) are introduced.

• Minimization of the slice of next state stl.

The onset is:

onset

0 01000000 000100000

0 00001000 000100001

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 99

The dcset is:

1 01011110 000100000

- 00100100 000000001

1 00001100 111111111

- 00000010 000100000

- 00000001 111111111

- 11111111 111011110

The minimized expanded cover is:

- 00101101 111011111

- 01001011 111111110

The minimized reduced cover is:

- 00001000 000000001

- 01001000 000100000

The constraints co(ie(5i6) > code{st2) and face(st4, st5) are introduced.

• Minimization of the slice of next state st5.

The transitions of this slice are realized by oring symbolic cubes previously added to the

cover, if one introduces the constraint cod€{st5) = code{st4) Vcode{stl).

• Minimization of the slice of next state st3.

One of the two transitions of this slice is realized by oring symbolic cubes previously added

to the cover, if one introduces the constraint code(st3) = code{stl) V code(st2). Consider

the remaining transition.

The onset is:

0 00000001 000001001

The dcset is:

1 01000011 000001000

- 00101100 000000001

1 00001001 111111111

- 00000010 000001000

- 11111111 111110110

The minimized expanded cover is:

100 CHAPTERS. SYMBOLIC MINIMIZATION

- 00000001 111111111

The minimized reduced cover is:

- 00000001 000001001

The constraintco</e(5^7) > cod€(st3) is introduced.

• Minimization of the slice of next state st6.

The transitions of this slice are realized by oring symbolic cubes previously added to the

cover, if one introduces the constraint code(st6) = code(st4) Vcode(st2).

• Minimization of the slice of next state stl.

One of the two transitions of this slice is realized by oring symbolic cubes previously added

to thecover, if oneintroduces the constraint code(stl) = code(st4)Vcode{stl) Vcode{st2).

Consider the remaining transition.

The onset is:

onset

1 00000010 000000010

The dcset is:

- 00101101 000000001

1 00000001 111111111

- 11111111 111111100

The minimized expanded cover is:

1 00000011 111111110

The minimized reduced cover is:

1 00000010 000000010

No other constraint is introduced.

• Minimization of the slice of the proper binary outputs.

The onset is:

5.8. SYMBOLIC MINIMIZATION BY EXAMPLE 101

- 00101101 000000001

- 00100000 000000001

- 00000100 000000001

- 00001000 000000001

The dcset is:

- 11111111 111111110

The minimized expanded cover is:

- 00101101 111111111

The minimized reduced cover is:

- 00101101 000000001

The constraint face(stl,st5, st3^st7) is introduced.

• The final symbolic cover is:

- 11111111 100000000

1 11111111 010000000

- 00010111 001000000

- 01001011 000100000

- 00000001 000001001

1 00000010 000000010

- 00101101 000000001

Codes of the states that satisfy the previousconstraintsare: code(stO) = 000, code(st4) =

010, code(stl) = 100, code(st2) = 001, code{st5) = 110,code(st3) = 101, code(st6) =

011, code(stl) = 111. The minimizedencoded symboliccover is:

1 1000

1 0100

__1_ 0010

-1-- 0001

The minimized encoded FSM is:

1 1000

1 0100

-1- 0010

-1~ 0001

102 CHAPTERS. SYMBOLIC MINIMIZATION

5.9 Experimental Results

The algorithms described have been implemented in a program, called esp_sa, that is

built on top of espresso. We report one set of experiments that compare the results of performing

state assignments of FSM's with esp_sa and nova, a state-of-art tool. The FSM's come from the

MCNC suite and other benchmarks. The experiments were run on a DEC 3100 work-station. Our

program esp_sa uses a library of routines described in [116] to check encodeability of constraints

and produce minimum-length codes that satisfy them. Table 5.1 shows the statistics of the FSM's

used. The statistics include the number of states, proper inputs and proper outputs, together with

the number of symbolic produc-terms ("#cubes") of the original FSM description, the cardinality

of a minimized 1-hot encoded cover of the FSM ("#l-hot") and the number of bits for an encoding

of minimum length ("#bits").

In Table 5.2, data are reported for runs of esp_sa with three different ordering options

C'ordl", "ord2", "ord2n"). For each run, "#scubes" indicates the number of cubes of the cover of

symboliccubes obtained by esp_sa, after encoding with the codes found by esp_sa and minimization

with espresso; "#cubes" indicates the number of cubes after encoding the original cover with the

codes found by esp_sa and minimization with espresso; "#bits" indicates the length of the codes

found by ESP_SA.

In Table 5.3, some data related to the best of the three previous runs are reported. Under

"cover", "#incomp" gives the number of pairwise incompatibilities in the final step of computing

codes the satisfy the encoding constraints, and "size" gives the number of prime dichotomies.

Under "calls", "#esp" gives the number of calls to espresso and "#check" gives the number of

encodeability checks. Under "CPU times(sec.)", "order" gives the time in seconds for the ordering

routine, "symb" gives the time for symbolic minimization, not including the time spent by the

encodeability routines that is reported under "constr(enc)" ("enc" is the time spent for finding the

codes satisfying the constraints at the end), while "total" sums up all the contributions.

Table 5.4 compares the results ofESP_SAwith those ofNOVA, a state-of-art state assignment

tool, providing the niunber ofcubes of the minimized encoded FSM ("#cubes") and the code-length

("#bits"). Of the results by nova, it is reported the one the minimizes the final cover cardinality

(under the heading "NOVA(min.#cubes)") and the one that minimizes the final cover cardinality, if

the code-length is kept to the minimum one, i e. to the logarithm of the number of states (under the

heading "NOVA(min.#bits)").

5.9. EXPERIMENTAL RESULTS

example #states #inputs #outputs #cubes #l-hot #bits

bbara 10 4 2 60 34 4

bbsse 16 7 7 56 30 4

bbtas 6 2 2 24 16 3

beecount 7 3 4 28 12 3

cse 16 7 7 91 55 4

dkl4 7 3 5 56 25 3

dkl5 4 3 5 32 17 2

dkl7 8 2 3 32 20 3

dk27 7 1 2 14 10 3

dk512 15 1 3 30 21 4

donfile 24 2 1 96 24 5

exl 20 9 19 138 44 5

ex2 19 2 2 72 38 5

ex3 10 2 2 36 21 4

ex4 14 6 9 21 21 4

ex5 9 2 2 32 19 4

ex6 8 5 8 34 23 3

ex7 10 2 2 36 20 4

keyb 19 7 2 179 77 5

kirkman 16 12 6 370 61 4

lion9 9 2 1 25 10 4

maincont 16 11 4 40 27 4

maikl 15 5 16 22 19 4

master 15 23 31 86 79 4

modulo12 12 1 1 24 24 4

opus 10 5 6 22 19 4

ricks 13 10 23 51 33 4

si 20 8 6 107 92 5

sla 20 8 6 107 92 5

s8 5 4 1 20 14 3

saucier 20 9 9 32 30 5

scud 8 7 6 127 8 3

shiftreg 8 1 1 16 9 3

slave 10 16 29 75 46 4

trainll 11 2 1 25 11 4

Table 5.1: Statistics of FSM's

103

104 CHAPTERS. SYMBOLIC MINIMIZATION

example ordl ord2 ord2n

#scubes #cubes #bits #scubes #cubes #bits #scubes #cubes #bits

bbara 27 27 5 31 28 6 24 23 5

bbsse 31 31 6 26 26 7 24 24 8

bbtas 10 9 3 10 10 4 11 11 4

beecount 10 10 4 12 12 6 10 10 4

cse 58 55 7 42 42 5 42 42 5

dkl4 26 27 4 27 27 4 26 26 4

dklS 17 17 4 17 17 4 17 17 4

dkl7 19 17 5 19 17 5 19 19 6

dk27 7 7 5 9 8 5 7 7 5

dk512 19 18 7 18 16 9 15 15 8

donfile 26 25 12 25 25 13 26 25 12

exl 37 36 9 42 40 9 42 40 9

ex2 34 35 10 36 32 12 30 31 9

ex3 20 18 6 21 18 7 17 17 6

ex4 14 14 5 15 15 5 14 14 5

ex5 17 16 9 18 18 6 14 13 4

ex6 25 25 4 26 25 4 26 25 4

ex7 20 20 8 20 18 4 15 15 5

keyb 75 65 9 45 46 6 47 47 5

kirkman 102 74 11 54 53 10 55 54 9

lion9 8 7 6 9 8 5 9 8 6

maincont 12 12 8 14 14 7 13 13 9

markl 17 18 6 17 17 6 17 17 6

master 69 68 5 70 68 5 70 69 5

modulo12 22 22 11 20 20 10 22 22 11

opus 15 15 4 15 15 4 15 15 4

ricks 29 29 4 30 30 4 30 30 4

si 62 59 6 49 44 7 49 44 7

sla 62 61 11 61 61 13 60 60 9

s8 11 9 4 11 10 4 11 10 4

saucier 24 23 6 25 24 8 22 22 6

scud 70 63 7 68 65 8 68 65 8

shiftreg 4 4 3 4 4 3 4 4 3

slave 39 39 5 35 35 4 35 35 4

trainll 10 9 5 13 12 6 10 9 5

Table 5.2: Results of esp_sa with different ordering heuristics

5.9. EXPERIMENTAL RESULTS 105

example cover calls CPU times (sec.)
#incomp size #esp #check order symb constr(enc) total

bbara 38 8 96 173 7.4 12.9 0.6(0.1) 20.8

bbsse 458 168 155 46 41.6 10.4 4.3(0.8) 56.4

bbtas 9 4 30 80 1.0 0.9 0.2(0.0) 2.1

beecount 104 15 66 55 2.5 1.7 0.3(0.0) 4.5

cse 1170 629 155 80 99.9 45.6 19.6(7.9) 145.1

dkl4 316 186 38 29 7.1 2.3 1.9(0.5) 11.3

dkl5 256 238 17 19 1.8 0.4 1.2(0.5) 3.4

dkl7 30 14 47 24 5.1 1.4 0.7(0.0) 7.2

dk27 1 2 38 30 0.9 0.6 0.1(0.0) 1.7

dk512 1 2 138 140 11.1 32.7 2.8(0.0) 46.6

donfile 17929 2701 432 1254 98.9 2044.0 143.4(117.1) 2286.3

exl 2282 815 410 542 794.8 759.0 39.0(10.8) 1592.7

ex2 3934 826 212 1161 37.3 1493.7 28.2(21.4) 1559.2

ex3 148 14 68 52 3.4 3.7 0.7(0.1) 7.8

ex4 1048 359 122 22 15.9 5.0 3.5(2.8) 24.4

ex5 285 27 57 46 3.1 2.7 0.4(0.1) 6.2

ex6 219 16 47 29 8.8 1.7 0.9(0.1) 11.4

ex7 352 34 68 43 6.5 3.4 0.8(0.2) 10.7

keyb 967 1094 212 71 129.9 76.7 32.3(27.6) 239.0

kiikman 716 84 155 1164 1385.8 1187.5 172.8(3.6) 2746.1

lion9 26 7 86 75 5.4 2.6 0.4(0.0) 8.4

maincont 363 55 194 196 34.5 48.6 2.5(0.5) 85.5

markl 443 112 247 155 44.7 42.8 2.1(0.8) 89.5

master 281 300 327 315 271.0 240.5 18.6(3.0) 530.1

modulol2 45 10 93 2358 4.8 227.2 1.3(0.2) 233.3

opus 312 151 68 18 6.4 1.7 0.9(0.6) 9.0

ricks 353 408 107 60 53.4 19.3 7.7(3.9) 80.4

si 969 288 233 92 253.1 126.9 10.9(4.8) 390.9

sla 225 67 317 639 151.3 661.8 13.0(2.8) 826.1

s8 6 4 46 103 1.7 1.3 0.3(0.0) 3.4

saucier 1401 3340 256 124 45.0 99.1 157.2(156.2) 301.3

scud 70 11 457 1011 59.4 228.9 12.3(0.3) 300.5

shiftreg 3 3 47 54 1.3 1.0 0.1(0.0) 2.5

slave 229 132 68 41 39.1 8.2 3.8(0.5) 51.1

trainll 156 23 105 86 9.5 5.2 0.4(0.1) 15.1

Table 5.3: Measured parameters of esp_sa

106 CHAPTERS. SYMBOLIC MINIMIZATION

example ESP_SA NOVA(min.#cubes) NOVA(min.#bits)
#cubes #bits #cubes #bits #cubes #bits

bbara 23 5 24 4 24 4

bbsse 24 8 27 5 29 4

bbtas 9 3 8 3 8 3

beecoimt 10 4 10 3 10 3

cse 42 5 44 5 45 4

dkl4 26 4 22 4 25 3

dkl5 17 4 16 3 17 2

dkl7 17 5 17 4 17 3

dk27 7 5 7 3 7 3

dk512 15 8 17 4 17 4

donfile 25 12 24 14 28 5

exl 36 9 37 6 44 5

ex2 31 9 26 6 27 5

ex3 17 6 17 4 17 4

ex4 14 5 14 4 14 4

ex5 13 4 14 4 14 4

ex6 25 4 23 4 25 3

ex7 15 5 15 4 15 4

keyb 46 6 47 6 48 5

kirionan 53 10 52 6 77 4

lion9 7 6 8 4 8 4

maincont 12 8 16 4 16 4

markl 17 6 17 4 17 4

master 68 5 71 4 71 4

modulol2 20 10 11 4 11 4

opus 15 4 15 4 15 4

ricks 29 4 39 4 30 4

si 44 7 63 5 63 5

sla 60 9 65 5 65 5

s8 9 4 9 3 9 3

saucier 22 6 25 5 25 5

scud 63 7 60 5 62 3

shiftreg 4 3 4 3 4 3

slave 35 4 35 4 35 4

trainll 9 5 9 4 9 4

Table 5.4: Comparison of FSM's encodings for two-level implementation

S.IO. CONCLUSIONS 107

5.10 Conclusions

We have presented a symbolic minimization procedure that advances theoryandpractice

withrespectto theseminalcontributionin [91]. Thealgorithm described hereiscapableofexploring

minimal symbolic covers by using face, dominance and disjunctive constraints to guarantee that

they can be mapped into encoded covers. The treatment of disjunctive constraints is a novelty

of this work. Conditions on the completness of sets of encoding constraints and a bridge to

disjunctive-conjunctiveconstraints (presented in [39]) are given.

A key feature of the algorithmis that it keeps as invariant the property that the minimal

symbolic cover under construction is encodeable, by means of efficient procedures that check

encodeability of the encoding constraints induced by a candidate cover. Therefore this synthesis

procedurehas predictivepowerthat precedenttools lacked, i.e. the cardinalityof the coverobtained

by symbolic minimization and of the cover obtained by replacing the codes in the initial cover

and then minimizing with espresso are very close. Experiments show cases where our procedure

improves on the best results of state-of-art tools.

A direction offuture investigationis to exploremore at large the solution space of symbolic

covers by escaping from local minima using some iterated expansion and reduction scheme, as it

is done in espresso. Currently the algorithm builds a minimal symbolic cover, exploring basically

a neighborhood of the original FSM cover. Another issue requiring more investigation is how

to predict somehow the final code-length while building a minimal symbolic cover, to trade-off

product-terms vs. encoding length.

108 CHAPTERS. SYMBOLIC MINIMIZATION

109

Chapter 6

Encoding Constraints

6.1 Introduction

The various techniques for exact and heuristic encoding based on multiple-valued or

symbolic minimizationof two-level and multi-level logic, reported in [92, 91, 115, 39, 85, 18],

producevarious types of encoding constraints. By encoding constraintswe mean requirementson

the codes to be assigned to the symbols.

A first type face-embedding constraintsgenerated by the multiple-valued input vari

ables{inputconstraints). These constraints specify that a set ofsymbols is to be assigned to one/ace

of a binary n-dimensional cube, without any other symbol sharing the same face. Given symbols

a, 6,c, d, e, an input constraintinvolving symbolsa, b and c is denoted by (a, 6,c). An encoding

satisfying (a, 6,c) is givenbya= 111,6 = 01l,c = 001. Vertex 101 caimot be assigned to any

other symbol.

Two other types are dominance and disjunctive constraints generated by the multiple-

valued output variables{outputconstraints). A dominance constraint, denoted by >, e.g., a > b

requires that the code of a symbol bit-wise covers the code of another symbol. A disjimctive

constraint specifies that the code of a symbol (the parent symbol) is the bit-wise disjunction,

denoted by V, e.g., a = 6 V c, of the codes of two or more other symbols (the children symbols).

The minimization procedure described in [39] produces disjunctive-conjunctive con

straints. They require that the code of a symbol is the bit-wise disjunction (denoted by V)

of the conjunctions, denoted by A), of the codes of two or more symbols. An example is:

(a A 6 A c) V (a A d A e) V (a A / A if) = a. An in-depth discussion of disjunctive-conjunctive

constraints is postponed to the chapter on encodeability of generalized prime implicants.

110 CHAPTER 6. ENCODING CONSTRAINTS

An example containing input, dominance and disjunctive constraints is: (6,c), (c, d),

(by a), (a, d), b > c, a > c, a = bWd. An encoding satisfying all constraints withminimum code

length of two is a = 11,6 = 01, c = GO, </ = 10.

In this chapter, we focus on the following problems. Given a set of encoding constraints:

P-1: Determine whether the constraints are satisfiable.

P-2: Determine the binary codes that use a minimum number ofbits and satisfy all the constraints.

P-3: Using a fixed number of code bits, minimize a cost function of the constraints that are not

satisfiable.

Previous work on encoding constraint satisfaction has dealt mostly, but not exclusively,

with input constraints. Exact algorithms and efficient heuristics (restricted to input and dominance

constraints) for solving problems P-2 and P-3 are reported in [147]. An approximate solution to P-3

for input constraints based on a theory of intersecting cubes is described in [126,43] and a solution

based on simulated annealing is reported in [81]. An exact solution to P-2 for input constraints

based on the notion of prime sections is described in [44,45]. This approach seems very promising

because of the claim that prime sections are fewer than prime dichotomies, the latter being the

building blocks of encodings in the theory that we are going to use in this chapter. An approximate

solution to P-2 and P-3 for input constraints based on a greedy strategy to find an encoding bit by

bit and on an iterative method to improve the obtained solution is reported in [129]. The answer

to Problem P-1 is always affirmative for input constraints only. A solution to P-1 and a heuristic

algorithm to solve P-3 when both input and output dominance constraints occur are provided in [91],

extending an algorithm for input constraints described in [92]. A solution to P-1, when both input

and output constraints (including disjunctive constraints) are present, is described in [39], and

corrected in [38]. A solution to problem P-2 based on compatible graph coloring is provided for

input constraints in [154] and extended to output constraints in [20]. To date, to the best of our

knowledge, no efficient algorithms exist for solving all three problems when all types ofconstraints

occur. In most previous contributions, techniques to generate constraints and to satisfy them were

intermixed. Instead, we concentrate only on the problem of satisfying encoding constraints.

Wepropose a framework and efficient algorithms to solve P-1, P-2 and P-3 for input and

output encoding constraints. A polynomial time algorithm to answer P-1, and, exact and heuristic

algorithms to solve P-2 and P-3 are provided. We solve P-3 with different cost functions, such

as the number of constraints satisfied and the number of cubes or literals required in the encoded

6.2, STATEMENT AND COMPLEXITY OF THE ENCODING PROBLEMS 111

implementation. These algorithms also handle encoding don't cares [91, 85] and can be easily

extended to other types of constraints. We also prove the NP-completeness of problems P-2 and

P-3. This result has not been shown previously, though it has been conjectured [91].

The approach used here is based on a formulation provided in [154], which in tum is

related to the state assignment technique employed by Tracey in 1966 [143]. We first demonstrate

the difficulty of finding codes that satisfy encoding constraints by proving it NP-complete in

Section 6.2. Section 6.3 provides some definitions, hi Section 6.4 an abstraction of the problem

is presented. In Section 6.5 we describe a new algorithm to satisfy input constraintsonly. This is

extended to handle input and output constraints in Section 6.6. This includes a polynomial time

algorithm for checking the satisfiability of a set of encoding constraints. A heuristic algorithm

is sketched in Section 6.7. Extensions of the framework to handle various types of constraints

and cost functions are discussed in Section 6.8. Experimental results are provided in Section 6.9.

Section 6.10 concludes the chapter.

6.2 Statement and Complexity of the Encoding Problems

In this section we formally state Problem P-2 both as a decision and an optimization

problem and show that the decision (optimization) version with input constraints alone is NP-

complete (NP-hard). We will show later that Problem P-1 can be solved by a polynomial time

algorithm.

A fewpreliminary definitions are required. An n-dimensional hypercube (or n-cube)is a

graphof 2" vertices labeleduniquely by the integers from 0 and 2" —1. Anedgejoins twovertices

whose binaryrepresentations of theirinteger labelsdifferby exactly onebit. The minimum fc-cube

that containsa givensubset of verticesof a n-cube (k < n) is the fc-face (or smallestface) spanned

by the given vertices.

Decision version of P-2:

Instance: Set of input and output constraintsdefined on a set of symbols 5, and a positive integer

k.

Question: Is there a function / from S to the vertices of a A:-cube such that:

1. symbols in the same input constraint are mapped to vertices spanning a face that does

not contain the image of any other symbol, and

112 CHAPTER 6. ENCODING CONSTRAINTS

2. the binary labels of the images of the symbols satisfy the output constraints?

Optimization version of P-2:

Instance: Set of input and output constraints defined on a set of symbols, S.

Objective: Find the minimum A;-cube and a function / from S to the vertices of the fc-cube such

that:

1. symbols in the same input constraint are mapped to vertices spanning a face that does

not contain the image of any other symbol, and

2. the binary labels of the images of the symbols satisfy the output constraints.

Answering the decision version for different dimensions repeatedly solves the optimiza

tion problem (with a polynomial number ofcalls to the decision procedure) and, of course, solving

the optimization problem answers the decision version for all dimensions. Qearly, by assigning a

weight of 1 to each constraint, P-2 can be seen as a special case ofP-3. Hence, P-3 is no easier than

P-2.

The decision version of P-2 with input constraints alone is defined as face hypercube

embedding. To prove that face hypercubeembedding is NP-completea few more preliminariesare

needed.

A given graph G = (V, E) is a subgraph of an n-cube if there is a function mapping

verticesof G into verticesof the n-cube that preservesthe adjacencyrelations. G can be embedded

in an n-cube if G is a subgraph of the n-cube. The problem of deciding whether a given graph

is embeddable into an arbitrary dimension hypercube has been shownto be NP-complete [71]. It

has also been proved that even the problem of deciding whether a graph can be embedded into a

fixed-size hypercube is NP-complete [31]. The proof in [31] actually shows that the problem of

determining whether agraph of2* nodes can be embedded ina fc-cube isNP-complete. This result

can be used to prove that face hypercube embedding is NP-complete.

Theorem 62.1 Face hypercube embedding is NP-complete.

Proof: Face hypercube embedding is in NP. Consider the set of positions P where all the codes in

a given constraint agree (this set must not be empty unless a constraint involves all symbols). The

codes of the symbols not in that constraint must differ in at least one position of P firom the codes

of the symbols in that constraint. This can checked in time linear in the product of the number of

constraints, number of symbols and integer k.

6.3. DEFINITIONS 113

Suppose k is the dimension of the hypercube into which the face constraints composedof

symbols from set 5 must be embedded. Let us restrict face hypercube embedding to the instances

where the symbols involved in the face constraints are 2^^ and each face constraint involves only

two symbols. For these instances it is possible to define a graph ^(V', E) induced by the face

constraints. The set of nodes V is in correspondence with the symbols in S and there is an edge

between two nodes when the two corresponding symbols are in the same face constraint. The set

of face constraints can be embedded into a &-cubeif and only if the companion graph is a subgraph

of a fc-cube. Notice that in this case the concept of face embedding reduces to the familiar notion

of graph adjacency. The problem of determining whether a graph of 2^ nodes is a subgraph of a

A;-cube is NP-complete by reduction from 3-partition [31]. Therefore the problem of determining

whether for2^ symbols a setof face constraints each with exactly two symbols can beembedded

into a fc-cube is NP-complete. But this is a restricted version of face hypercube embedding and

hence the latter is NP-complete. •

6.3 Definitions

An encoding dichotomy (or, more simply, dichotomy) is a 2-block partition of a subset

of the symbolsto be encoded. The symbolsin the left block are associatedwith the bit 0 whilethose

in the right block are associatedwith the bit i. If an dichotomy is used in generatingan encoding,

then one code bit of the symbols in the left block is assigned 0 while the same code bit is assigned

1 for the symbols in the right block.

For example, (so^i; is a dichotomy in which so and si are associated withthe bit 0

and S2 and S3 with the bit 1. This definition ofdichotomy differs from the one in [143,154], which

allows the left block of a dichotomy to assume either the encoding bit 0 or I, and it is equivalent to

the definition of fixed dichotomy given in [20].

A dichotomy is complete if each symbol appears in either block. A completion of a

dichotomy (/, r) is a dichotomy (/', r') such that I' 2 I, r' D r, and each symbol appears exactly

once in either I' or r'.

Two dichotomies di and d2 are compatible if the left block of di is disjoint from the right

block of d2 and the right block of di is disjoint from the left block of d2. Otherwise, d\ and ^2 are

incompatible. Note again that this definition differs finom the definition of compatibility described

in [143, 154]. The union of two compatible dichotomies, di and d2, is the dichotomy whose left

and right blocks are the union of the left and right blocks of di and ^2 respectively. The union

114 CHAPTER 6. ENCODING CONSTRAINTS

operation is not defined for incompatible dichotomies. A dichotomy di covers a dichotomy d2 if

the left and right blocks of d2 are subsets respectively either of the left and right blocks, or of the

right and left blocks of di. For example, (so; ^152) is covered by (sqss; S1S2S4) and (siS2S3; so)»

but not by (sqsi; 52)- A prime dichotomy of a givenset of dichotomies is one that is incompatible

with all dichotomies not covered by it.

A set of complete dichotomies generates an encoding as foUows. Each complete di

chotomy generates one column of the encoding, with symbols in the left (right) block assigned a 0

(7) in that column. For example,giventhe completedichotomies (sosi; S2S3) and (so^s; S1S2). the

imique encoding derived is so = 00, si = 01, S2 = 11, and S3 = 10.

A dichotomy violates an output constraint if the encoding bit generated for the symbols

in the dichotomy does not satisfy the bit-wise requirement for the output constraint. A valid

dichotomy is one that does not violateanyoutputconstraint. For example,the dichotomy(so; S1S2)

violates the constraint sq > si, since so is assigned bit 0 whereas si is assigned bit J by this

dichotomy. Hence, so does not cover si in this bit. The dichotomy (sosi; S2) does not violate this

constraint.

6.4 Abstraction of the Problem

Satisfaction of encoding constraints may be abstracted as a binate covering problem

(BCP) [113].

Suppose that a set 5 = {si,..., s„} is given. The cost of s, is c, where c, > 0. By

associating a binary variable xi to s,-,which is 1 if s, is selected and 0 otherwise, BCP can be defined

as finding S' CS that minimizes
n

Y^CiXi, (6.1)
i=i

subject to the constraint

A{xuX2,...,Xn) = I, (6.2)

where A is a Boolean function, sometimes called the constraint function. The constraint function

specifies a set of subsets of S that can be a solution. BCP is the problem of finding a solution of

minimumcost of the Booleanequation A(a;i,a;2,..., a^n) = 1-

If A is given in product-of-sums form, A can be written as an array of cubes (that form a

matrix withcoefficients from the set {0,1,2}). Each variable of A denotes a column,and each sum

6.4. ABSTRACTION OF THE PROBLEM 115

(or clause) denotes a row. The problem can be interpreted as one of finding a subset C of columns

of minimum cost, such that for every row r,-, either

1. 3j such that aij = 1 and Cj e C, or

2. 3j such that aij = 0 and Cj ^ C.

In other words, each clause must be satisfied by setting to 1 a variable appearing in it in the positive

phase or by setting to 0 a variable appearing in it in the negativephase. In a unate coveting problem,

the coefficients of A are restricted to the values 1 and 2 and only the first condition must hold.

Suppose that symbolsa, 6,c and three constraints (a, 6),6 > c, 6 = a V c are given. An

encoding column is a column vector whose i-th component is a bit (i.e. a 0 or 1) assigned to the

i-th symbol. All possible encodings can be represented as sets of encoding columns. The column

encodings for the example are: c\ —001, C2 = 010, C3 = 011,C4 = 100, C5 = 101,ce = 110,

where the order of symbols in a column is a, 6, Since each symbol in a column is either assigned

1 or 0, a columnpartitionsthe symbolsinto a 1-blockand a 0-block. For example,ce = 110places a

and 6in the 1-block and c in the 0-block. For each face constraint consider the encoding dichotomies

that havethe symbolsof the face constraint in one block,and haveone ofthe remainingsymbols in

the other block [154]. In the example, this is (ab\ c) or (c; ab). This means that by covering either

{ab; c) or (c;ab), the face constraint (a, b) is satisfied. Add the encoding dichotomies expressing

the uniqueness of the codes; these are (a; b) or (6; a), (a; c) or (c; a), (6; c)or (c; 6). Build a table

whosecolumns are the encodingcolumns and whose rowsare the encodingdichotomies. A column

covers a row representing an encoding dichotomy if the symbolsof each block of the dichotomy

are in the samepartition of the column. For example, eg = 110covers (c; a) since c is set to 0 and

a is set to 1, but does not cover (a; 6)becausea and 6 are both set to 1. Likewise eg = 110covers

(c;6). Put a 1 inentry (i, j) if columnj covers rowi. Foreachoutputconstraint, adda row foreach

encodingcolumnthat cannotbe chosen if that outputconstraintmustbe satisfied and put a 0 in the

corresponding entry. In the example, b > c yields two rows, one has a 0 in column ci, the other

has a 0 in column C5. One could imagine more complex types of constraints that add rows carrying

two or more O's and no 1's to denote that aUthe columns with a 0 in them cannot be simultaneously

selected. The binate table for the example is shown in Figure 6.1.

A minimum column cover of the given rows gives a minimum set of encoding columns

that satisfy aUgiven constraints. This requires the solution of a binate covering problem. However,

the problem reduces to a unate covering problem when only face constraints are present [143].

^000 and111areexcluded because theydonotcany useful information.

116 CHAPTER 6. ENCODING CONSTRAINTS

cl c2 c3 c4 c5 c6

ab;c c;ab

b=a+c

b=a+c

b=a+c

b=a+c

Figure 6.1: Satisfaction of encoding constraints using binate covering

Although BCP offers a unified framework for solving encoding constraints, the design of

efficient algorithms requires exploiting specific features of the problems at hand. In the sequel we

demonstrate this fact by developing exact and heuristic algorithms.

6.5 Input Constraint Satisfaction

We firstpresent a new algorithm for satisfying input encoding constraints that, compared

to previous approaches [147, 154], significantly improves the efficiency of the input encoding

process.

The encoding constraint satisfaction problem is a three-step process. The first is the

generation of the dichotomies that represent the face embedding constraints [154]. Each face

embedding constraint generates several dichotomies, called initial dichotomies. The symbols that

are to be on a face are placed in one block of each dichotomy representing that constraint, while

the other block contains one of the symbols not on the face. Thus, for n symbols si, S2,..., s„ and

a face embedding constraint that requires the I symbols si, S2, to be on one face, we generate

2 (n - I) dichotomies each with the symbols si,S2,in one block (either left or right) and

exactly one of the remaining n - I symbols in the other block. Notice that initial dichotomies are

generatedin pairs, for instance, given the symbols si, 52, ^3, S4 and the face constraint (si, 53), the

6.5. INPUT CONSTRAINT SATISFACTION 117

initial dichotomies (si,53; S2). (^2; sii S3), and (si, S3; 54), (54; si, S3) are generated. Sometimes

we say that dichotomy (s2; si, S3) is the dual of dichotomy (si, 53; 52) andviceversa.

These dichotomies exactly capture the face embedding constraints. We also require that

each symbol get a distinct code. This is represented by a dichotomy with one symbol in each block.

When there are n symbols and no encoding constraints, the number of uniqueness constraints is

- n; these would generate an exponential number (2" - 2) of prime dichotomies. We need to

add only those uniqueness constraints that are not covered by the dichotomies generated from the

face-embedding constraints, because any encoding that satisfies the covering dichotomy satisfies

also the covered dichotomy.

The second step ofencoding is the generation ofprime dichotomies from the dichotomies.

[143] describes an approach similar to the process of iterated consensus for prime generation in

two-level logic minimization [11]. However, the number of iterations required to generate all

the prime dichotomies may be formidable even for small problems. Using this approach, several

different compatible merges often yield the same prime dichotomy. This results in a substantial

waste of computation time [154]. In Section 6.5.1, we describe a method of generating all prime

dichotomies and demonstrate its effectiveness in determining an exact solution.

The final step of encoding is to obtain a cover of the initial dichotomies using a minimum

number of primes. This is a classical unate covering problem and efficient branch and bound

techniques, both for exact and heuristic solutions, are well known [113].

6.5.1 Efficient Generation of Prime Dichotomies

By definition, each prime dichotomy is a maximal compatible of the dichotomies since

it is not compatible with any dichotomy that it does not cover. As in [86], an incompatibility

between two dichotomies represented by the literals a and 6, is written as (a + 6). When the

product of the sum terms representing all the pairwise incompatibilities is written as an irredundant

sum-of-products expression, a maximal compatible is generated as the union of those dichotomies

whose literals are missing in any product term [86]. For example, assume that we wish to find

the maximal compatibles for five dichotomies, a, 6, c, d, e. Assiune that the incompatibilities are

(a -f 6)(a -1- c)(6-]- c)(c -|- d)(rf e). Thentheequivalent irredundant sum-of-products expression is

abd -I- acd + ace -f- bed-|- bee. The five primes are thenformed by the unionsof themissingliterals:

{c, e}, {6,e}, -{6, d}, {<1, e},{ct, <Z}.

The problem is how to efficientlyderive the equivalent sum-of-products expression from

118 CHAPTER 6. ENCODING CONSTRAINTS

the product-of-sums expression representing the incompatibilities. In the past, this has been per

formed using an approach based on Shannon decomposition [153]:

/(xi, •••, Xi, *••, Xji) —X{ ' f{xi, •••, 1, •••, Xji) Xj •/(xi, "••, 0, ' ••, a^n,)

Basically one splits on a variable at a time and generates recursively two subproblems. The

complexity of performing the recursive Shannon expansion is exponential since a binary tree is

constructed. We describe an algorithm that can generate all the primes, but only uses a linear

number ofoperations in the size of the output.

The product-of-sums expressions previously generated have two features:

1. Each clause has exactly two literals;

2. Literals appear only in the positive phase, i.e., the function is unate.

By exploiting these properties it is possible to simplify the algorithm based on Shannon expansion.

The algorithm is described in pseudo-code in Fig. 6.2. Given a product-of-sums expression, a

splitting variable, x, is chosen. Since all clauses have exactly two literals in the positive phase, the

product of all sum terms containing jc, caU it x-expr, after simplification, consists of two terms, the

first is Xalone and the second is the product of all the othervariables in x-expr. Therefore a recursive

call is needed only for the product of the sum-terms in the initial expression that do not contain

X, called reducedjexpr. The two product terms, xjexpr and cs(reducedjexpr), are multiplied and

single cube-containment is used to obtain the minimum sum-of-products expression. Again single

cube-containment can be used to find the minimum expression since the function is unate [11].

This algorithm replaces exponential (in the number of dichotomies) calls as required in

the worst-case by a Shannon expansion based approach by a linear number of them. Of course,

the runtime of the algorithm is still proportional to the final number of primes, which may be

exponential (in the number of dichotomies).

The example in Fig. 6.3 illustrates the complete input encoding process. A set of input

constraints is shown and the corresponding initial dichotomies are derived. The maximal compati

bles ate generated by a procedure cs that recurs on the splitting variable. Variable 0 is chosen as first

splitting variable. The procedure returns the minimal productps of the following two expressions:

the first is the product of all sum terms containing 0 (in this case simplified into 0 and 234567) and

the second is the result of the recursive call of the procedure cs on the sum terms that do not contain

0. By minimal product it is meant that the two expressions, when available after a series of recursive

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 119

calls, are multiplied out and then single cube-containment is performed on them. Once the maximal

compatibles are found, the prime dichotomies are easily obtained and a standard unate covering

routine produces a minimum subset of primes that cover aU given initial dichotomies. Notice that

to simplify the example we have forced the symbol si to be always in a right block. This reduces

the number ofprime dichotomies but does not affect the solution tothe input encoding problem^.

6.6 Input and Output Constraint Satisfaction

6.6.1 Output Encoding Constraints

A dominance constraint a > 6, requires that the encoding for a bit-wise covers the

encoding for 6. This means that any dichotomy chosen in the final cover carmot have a in the left

block while b is in the right block. Hence, any dichotomy that has this property may be deleted

from consideration.

A disjunctive constraint a = 6 V c, implies that the encoding for symbol a must be the

same as the bit-wise or of the encodings of b and c. This means that any dichotomy in a feasible

solution must have at least one of 6 and c appear in the same block as a. Any dichotomy that does

not possess this property may be deleted. This property is easily extended to the case where the

disjunctiveconstraint involves more than two symbols or has nested conjunctiveconstraints.

A preliminary algorithm follows from the discussion above, hi the first step, the di

chotomies corresponding to the input constraints are generated. Next the prime dichotomies are

generated using the algorithm described in Section 6.5.1; those that violate any of the dominance

or disjunctive constraints are eliminated. Finally, the remaining dichotomies are used in selecting a

minimum cover of all the initial dichotomies representing the input constraints. If there is at least

one initial dichotomy that carmot be covered, then there is no solution.

This procedure may be used to answer two questions. The first is whether a feasible

encoding exists for a set of input and output constraints. The second is to find the minimum length

encoding satisfying the constraints, if it exists. An obvious drawback of this method is that many

prime dichotomies may be generated but later deleted since they violate output constraints. We

present an efficient algorithm that avoids the generation of useless prime dichotomies.

In general, this symmetry cannot be exploited when there are both input and output constraints.

120 CHAPTER 6. ENCODING CONSTRAINTS

/* Given pairwise incompatibilities among a list of dichotomies

as a product-of-sums expression generate all prime dichotomies.

Each sum term has two literals and there are n variables,

each corresponding to a distinct initial dichotomy. */

/* Convert 2-CNF to sum-of-products expression

0(n) recursivecalls */

procedure cs {aq)r) {

X= splitting variable

C = all sum terms with variable x

reduced-expr = expr without the sum-terms in C

xjexpr = sum-of-product expression of C

return (ps {xjexpr, c,s{reduced-ej^r)))

}

I* Obtain the product of two expressions.

exprl has 2 terms, where the first term is a single variable */

procedure ps {exprl^exprT) {

product-expr - product ofexprl and expr2

resultjejq)r = singlexube-containment {productjexpr)

return {resultjsxpr)

}

procedure prime.dichotomy^enerate {expr) {

result = cs {expr)

foreach (term T in result)

missing = list of variables not in T

new-primejdichotomy = union of dichotomies corresponding to missing

add new-primejiichotomy to primeJist

return {primeJist)

>

Figure 6.2: Efficient geneiution ofprime dichotomies

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 121

Constraints (30,32,54) (30,31,34) (31,32,33) (31,33,34)

Initial dichotomies 0 : (3o3234;3i) 1 : (33; 303234) 2 : (33; 303134) 3 : (32; 303134)

4 : (30; 313233) 5 : (34; 313233)

6 : (30;313334) 7 : (32; 313334)

Deriving maximal compatibles {prime dichotomies)

C3((0+ 2)(0 + 3)(0 + 4)(0 + 5)(0 + 6)(0 + 7)(1 + 3)(1 + 4)(1 + 5)(1+ 6)(1 + 7)(2 + 4)(2 + 5)(2 + 6)(2 + 7)(3 +

4)(3 + 5)(3 + 6)(4 + 7)(5 + 6)(5 + 7))

ps{ (0 + 234567),c3((1 + 3)(1 + 4)(1 + 5)(1 + 6)(1 + 7)(2 + 4)(2 + 5)(2 + 6)(2 + 7)(3 + 4)(3 + 5)(3 + 6)(4 +

7)(5 + 6)(5+7)))

ps{ (0+ 234567),p3((1+ 34567),C3((2 +4)(2 + 5)(2 + 6)(2+ 7)(3 +4)(3 + 5)(3 + 6)(4+ 7)(5 + 6)(5+ 7))))

ps{ (0 + 234567),p3((1 + 34567),ps{ (2 + 4567),C3((3 + 4)(3 + 5)(3 + 6)(4 + 7)(5 + 6)(5 + 7))))))

ps{ (0 + 234567),ps((1 + 34567),ps{ (2 + 4567),p3((4 + 7), cs{ (3 + 4)(3 + 5)(3 + 6)(5 + 6)(5 + 7))))))

P3((0 + 234567),ps((1 + 34567),p3((2 + 4567),p3((4 + 7),p3((3 + 456),C3((5 + 6)(5 + 7)))))))

ps{ (0 + 234567),p3((1 + 34567),p3((2 + 4567),ps((4 + 7),p3((3 + 456), (5 + 67))))))

ps{ (0 + 234567),p3((1 + 34567),p3((2 +4567),p3((4 + 7), (35 + 367+ 456)))))

ps((0 + 234567),p3((1 + 34567),p3((2 + 4567), (345 + 357 + 367 + 456))))

ps((0 + 234567),p3((1 + 34567), (2345+ 2357 + 2456 + 2367 + 4567)))

ps((0 + 234567),(12345 + 12357+ 12456+12367 + 14567+ 34567))

(012345+ 012357+ 012456+ 012367+ 034567+ 014567+ 234567)

Maximal compatible sets {6,7} {4,6} {4,5} {3,7}

{2,3} {1,2} {0,1}

Prime dichotomies (soS2', S1S3S4) (so', S1S2S3S4) (soS4',siS2S3) (s2',sosiS3S4)

(S2S3;S0S1S4) (S3;S0S1S2S4) (S0S2S4; S1S3)

Minimum cover (soS234;siS3) (S2S3;S0S1S4) (so^4;3iS253) (soS2;S1S3S4)

Figure 6.3: Input encoding example

122 CHAPTER 6. ENCODING CONSTRAINTS

6.6.2 Satisfiability of Input and Output Constraints

We motivate the constraint satisfaction procedure using the example in Fig. 6.4. Given the

encodingconstraints,26initialdichotomiesareobtained. Considerthe initialdichotomies(so;si ss)

and (siss; sq) that are generated from the face embeddingconstraint (si, S5). Since sq > si, the

dichotomy (sq; S1S5) is not allowed and is deletedfrom consideration. The dichotomy (siss; sq) is

valid and will be used in a feasibleencoding. Considerthe dichotomy (sf, S2S5). If this dichotomy

is to be expanded to a valid prime dichotomy, symbol sq is forced to be in the right block, since

Sq > S2. Also, since si > S3, S3 must be in the left block and since S4 > S5, S4 is forced into the

right block. Thus, all valid dichotomies covering this initial encoding dichotomy must cover the

"raised" dichotomy (S1S3; S0S2S4S5). Similarly, we obtain the six raised dichotomies shown. On

generating the prime dichotomies from these raised dichotomies, we obtain fiveprimes.

A dichotomy is raised by adding symbols into either its left or right block as implied

by the output constraints. For example, the dichotomy (sq;5i«2) may be raised to the dichotomy

(^0^3; S1S2). A dichotomyis said to be maxinially raised if no further symbolscan be added into

either the left or right block by the output constraints. The procedure raise-dichotomy in Fig. 6.6

describes an algorithm that maximally raises a dichotomy with respect to a set ofoutput constraints.
0

When the problem is to detennine if a set of constraints is satisfiable, we do not have

to generate the prime dichotomies. Instead we use the set of maximally raised valid dichotomies,

which are far fewer in number than the prime dichotomies, and we merely check if all the initial

dichotomies are covered by the maximally raised and valid dichotomies.

An algorithm to check for the satisfiability of input and output constraints is shown in

Figs. 6.5,6.6 and 6.7. The following example shows why the second call to removeJnvalidjdichotomies

in Fig. 6.7 is needed. Consider the constraints {a;bc),d = b-\-canda> d. Afterraisejiichotomy

the following dichotomy is generated (ad; be) (by constraint a > d), but {ad\be) is an invalid di

chotomy because it conflictswith constraint d = b-i-e. So a new pass of removeJnvalidjiichotomies

is required to delete it. Alternatively, we could suppress in Fig. 6.7 the first call to raise-dichotomy,

and leave only the second one.

Since the raising of each dichotomy is performed in time linear in the number of symbols

times the number of initial dichotomies, the running time of the algorithm is polynomial in the

number of symbols and constraints.

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 123

Face embedding constraints :

{si,ss) (s2,S5) (S4,S5)

Dominance constraints:

So > Si So > S2 So > S3

So > S5 Si > S3 S2 > S3

S4 > S5 S5 > S2 S5 > S3

Disjunctive constraints :

So = Si V S2

Initial dichotomies:

(so;siS5) (siS5;so) (so; S2S5)

(S2S5; So) (so;S4S5) (S4S5; So)

(si;S2Ss) (S2S5;Si) (si;S4S5)

(S4S5;Si) (S2;SiS5) (siS5;S2)

(s2;S4S5) (S4S5; S2) (S3;SiS5)

(siS5;S3) (S3;S2S5) (S2S5; S3)

(S3;S4S5) (S4S5; S3) (S4;S1S5)

(si S5: S4) (S4;S2S5) (S2S5; S4)

(so;S3) (S3; So)

Maximally raised dichotomies :

(S1S3; S0S254S5) («2S3; S0S1S4S5) (S2S3S4S5; sosi)

(sqsiS2S3S5; S4) {S2S3S5J so^i)

(S2S3S5; S4)

Uncovered initial dichotomies :

(so;S1S5)
(siS5;so)

Figure 6.4: Example of feasibility check with input and output constraints

124 CHAPTER 6. ENCODING CONSTRAINTS

/* S is the set of symbols to be encoded */

procedure removeJnvalidjdichotomies (jD, constraints) {

foreach (dichotomy de D)

I* to handle dominance constraints */

foreach (pair of symbols s,me S)

if (s > m & s in left block & m in right block)

delete d

/* to handle disjunctive constraints */

foreach (disjunctive constraint)

if (parent in left block & at least one child in right block)

delete d

if (parent in right block & all children in left block)

delete d

/* to handle disjunctive-conjunctive constraints */

foreach (extended disjunctive-conjunctive constraint)

if (parent in right block & one child of each conjunction in left block)

delete d

}

Figure 6.3: Removal of invalid dichotomies

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 125

/* rf is a valid dichotomy */

procedure raise_dichotomy (rf, constraints){

do {

/* to handle dominance constraints */

foreach (symbol s € 5)

if (s in left block & s > m)

insert m into left block of d

if (s in right block & m > s)

insert m into right block of d

/* to handle disjunctive constraints */

foreach (parent symbol s in a disjunctive constraint)

if (all children in left block)

insert s into left block

if (all children but one child c in left block & s in right block)

insert child c into right block

/* to handle disjunctive-conjunctive constraints */

foreach (parent s in a disjunctive-conjunctiveconstraint e)

if (one child of each conjunction in left block)

insert s into left block

if (one child of all but one conjunction in left block & s in right block)

insert all children of remaining conjunction into right block

} while (at least one insertionwithin loop)

}

Figure 6.6: Maximal raising of dichotomies

126 CHAPTER 6. ENCODING CONSTRAINTS

procedure check-feasible (constraints) {

I - generateJnitialjdichotomies (constraints)

D = remove-invalidjdichotomies (/, constraints)

foreach (dichotomy d in D)

raise-dichotomy (d, constraints)

D = removeJnvalicLdichotomies (D, constraints)

foreach (dichotomy i G /)

if i is not covered by some de D

return (INFEASIBLE)

return (FEASIBLE)

}

Figure 6.7: Feasibility check of input and output constraints

We now prove that the feasibility algorithm is correct.

Theorem 6.6.1 Given a set of input and output constraints, let I be the set of initial dichotomies

generated from the input constraints, including all uniqueness constraints that are not already

covered by an initial dichotomy. Let each valid dichotomy in I be maximally raised to obtain a set

ofvalid dichotomies D. A dichotomy that becomes invalid on raising is deletedfrom D. The input

and output constraints are satisfiable ifand only ifeach i e I is covered by some d ^ D.

Proof: If Part Consider a valid maximally raised dichotomy d = {Li; Ri), where Li and Ri

are disjoint subsets of the symbols to be encoded. Consider a symbol s ^ d. There are no output

constraints that either require any of the symbols in Li to cover s, or s to cover any of the symbols

in i?i. Otherwise d is not raised maximally. Add all symbols F = {s : s ^ d}, to the right block

of d. There may be output constraints among the symbols in F, but these are satisfied since all the

symbols in F are inserted into the right block. Repeat the same operation of adding uncommitted

symbols to the right block for all valid maximally raised dichotomies. Call the dichotomies so

obtained complete, because every symbol appears in either block ofeach of them. A valid encoding

exists by deriving the codes fix)m any set of complete valid maximally raised dichotomies that cover

all initial dichotomies in I.

Only If Part Assume that some initial dichotomy i e I'ls not covered by any of the dichotomies

in D. It means that there isno d e D that contains block-wise i or the dual of i. At the start of

check-feasible i was put in D, unless removed by the first call of removeJnvalidjdichotomies. Then

6.6. INPUT AND OUTPUT CONSTRAINT SATISFACTION 127

it wasraisedto d{i)anditmusthave beenremoved bythe secondcall to removeJnvalid-dickotomieSj

otherwise d{i) G D would contain block-wise i. Suppose that there exists a dichotomyp whose

right and left blocks contain the right and left blocks of i. Then the conditions that caused invalidity

of i or caused raising and then invalidity of d(i) are satisfied also for p (it can be seen by case

analysis of the conditions of removeJnvalidjiichotomies and raise jiichotomy) and so either p is

invalidor it can be maximally raised to an invalid d{p). Therefore there can be no valid dichotomy

that contains block-wise i.

Similar reasoning holds for the dual dichotomy of i (blocks are reversed), i.e. ftom the

fact that the dual of i was initially put in £) it is deduced that there can be no valid dichotomy that

contains the dual of i. Therefore there can be no valid dichotomy that covers i, i.e., no feasible

solution exists. •

6.6.3 Exact Encoding of Input and Output Constraints

Once the feasibilitycheck of a set of input and output constraintsis passed, a problem is

to find codes of minimum length that satisfy the constraints. If the requirement that codes are of

minimumlengthis dropped, thenit is sufficient to takethevalidmaximally raiseddichotomies, make

each of them complete by addingto the right block any state absentfrom the dichotomy and then

choose a minimal set of complete maximally raised dichotomies that cover all initial dichotomies.

By adding absentstatesto the right blockno invalid dichotomy can be produced, sinceno removal

or raisingrule becomesapplicableto the completemaximallyraiseddichotomies so obtained.

We will now discuss the case when codes of minimum length are wanted. An encoding

colunmmustbe a complete andvaliddichotomy. Whenthereare inputconstraints only, the notions

of valid prime dichotomiesand of valid complete dichotomiescoincide. In general, there are two

ways of computing aUvalid complete dichotomies:

1. In generateJnitial-dichotomiesadd all uniqueness constraints to /, as done in [116].

2. After the prime encodingdichotomieshave been generated,make them complete,by adding

in all possible ways the missing symbols to the right and left blocks.

Wewill adopt here the firstoption because it is more practical in this algorithmicframe.

An algorithmfor satisfying both input and output constraints is shown in Fig. 6.8. Fol

lowing the generation of the initial dichotomies from the input and uniqueness constraints, those

that violate output constraints are deleted. The remaining dichotomies are raised maximally. Any

128 CHAPTER 6. ENCODING CONSTRAINTS

raised dichotomy that becomes invalid is deleted. If each of the initial dichotomies is covered by

at least one of the valid and maximally raised dichotomies, all prime dichotomies are generated

fix)m the valid raised dichotomies and invalid dichotomies are removed again. Using an exact unate

covering algorithm, a minimum cover of the initial dichotomies by valid prime dichotomies yields

the exact solution.

The following example shows why the third call to removeJnvalidjiichotomies in Fig. 6.8

is needed. Consider the symbols a, 6,c, d, the uniqueness constraints (a; 6), (6;a), (a; c), (c; a),

(a; rf), (d; a), (6; c), (c;6), (6; d), (d;b), (c;d), (d; c) and the disjunctive constraint 6 = c + d. The

first call to removeJnvalidjiichotomiesremoves (6; c) and (6; d). By raising, (c;6) becomes (c;hd)

and (d;6) becomes (d;6c). By merging (6; a) and (c;d) the invalid prime dichotomy (6c; ad) is

obtained.

An example is given in Fig. 6.9. Notice that, given the initial dichotomies (s2;

(sQSi; S2), (S3; SQSi). (sQSi; S3), (so; si), (51; so), (s2; S3) and (ss; S2), the following are removed

because they are invalid: (sosi; S2) (it conflicts with si > S2), (sosi; S3) (it conflicts with so =

Si V S3) and (so;si) (it conflicts with so > si). By raising the remaining valid dichotomies one

obtains the following raised dichotomies: (siS2; S0S3) (from the initialdichotomy (si; so), since

Si > S2 forces S2 into the left block and so = si V S3 forces S3 into the right block) that subsumes

the valid dichotomy (s2;S3), (S3; S2Si) (from (S3; S2), since si > S2 forces si into the right block),

(52; sosi) and (S3; sosi) (the last two are initial dichotomies unmodified by the raising process).

Since each initial dichotomy is covered by some raised dichotomy, an encoding satisfying all

constraintsexistsby Theorem6.6.1. The primedichotomies are (S2S3; sosi) (by merging(s2;sosi)

and (s3;sosi)), (s3;sosiS2) (by merging (s3;sosi) and (s3;s2si)), (siS2;soS3) and (s2;«osi).

Notice that the last dichotomy is not complete, i.e., S3 does not appear in either block. The

completions of (s2; sqsi) are (S2S3; sqsi) and (s2; 5osiS3)- The firstonehad been alreadygenerated

by merging, the secondone replaces (s2; sqsi). Even thoughin the proposed algorithm in Fig. 6.8

we do not use the step of completions, but we add instead all uniqueness constraints to /, in the

example we have preferred the former way for compactness of exposition.

Theorem 6.62 Given a set of input and output constraints, let I be the set of initial dichotomies

generatedfrom the input constraints, including all uniqueness constraints. The algorithm shown in

Fig. 6.8 generates codes ofminimum lengthfor a set of input and output constraints, ifa solution

exists.

Proof: The proofis based on Theorem 6.6.1. If a solution exists, a minimum solution can be obtained

6.7. BOUNDED LENGTH ENCODING 129

procedure exact-encode (constraints) {

I = generateJnitialjdichotomies (constraints)

D = removeJnvalidjdichotomies (/, constraints)

foreach (dichotomy de D)

raise-dichotomy (d, constraints)

D = remove-invalidjdichotomies (U, constraints)

foreach (dichotomy i e I)

if i is not covered by some de D

return (INFEASIBLE)

P = prime_dichotomy_generate(D)

valid^rimes = remove_invalidjdichotomies (P, constraints)

mincov = minimumjcover (/, valid^rimes)

return (derivexodes (mincov))

}

Figure 6.8: Exact encoding constraint satisfaction

from the maximally raised and valid dichotomies by generating prime dichotomies, and then finding

a minimum covering ofthe initial dichotomies. Notice that we require that all uniqueness constraints

are in / to guarantee that no valid dichotomy is missed. It may be that a subset of the uniqueness

constraints is sufficient to the purpose, but we do not explore the issue more. •

6.7 Bounded Length Encoding

The solution of problem P-3 (c.f. Section 10.1) requires a fixed-length encoding that

minimizes a cost function on the constraints. In practice, this problem is more relevant than

problem P-2 which requires that all constraints be satisfied using a minimum number of encoding

bits. The reason is the trade-off between the increased code-length and the area gain obtained

by satisfying all constraints. For example, optimal encoding for finite state machines (FSM's)

implemented by two-level logic may be viewed as the process ofgenerating a set ofmixed input and

output constraints. Satisfying all the constraints may require an encoding whose length is greater

than the minimum code-length. This translates into extra columns of the PLA, and may result in

sub-optimal PLA area and performance. The same reasoning applies to multi-level logic, where

130 CHAPTER 6. ENCODING CONSTRAINTS

Face embedding constraints:

{so,s\)

Dominance constraints :

So > Si Si > S2

Disjunctive constraints :

So = Si V S3

Initial dichotomies :

(s2; SQSi) (sQSi; S2) (53; sqSi)

(sosi;s3) (so;si) (si;so)

(s2;S3) (S3; S2)
Raised dichotomies :

(s2;SoSi) (s3;SoSi) (siS2;SoS3)

(s3;S2Sl)

Prime dichotomies :

(S2; SqSi) (S2S3; SqSi) (S3; SqSiS2)

(S1S2; S0S3)

Complete dichotomies :

(S2;S0S1S3) (s2S3;SoSi) (S3; SqSi S2)

(si S2; S0S3)

Minimum cover :

(s2S3;S0Si) (siS2;SoS3)

Final encoding :

So = 11, Si = 10, S2 = GO, S3 = 01

Figure 6.9: Example of exact encoding with input and output constraints

6.7. BOUNDED LENGTHENCODING 131

literal counts are used instead of cubes. Therefore, logic synthesis applications require an encoding

algorithm that:

• considers different cost functions; and,

• minimizes a chosen cost function for encodings of fixed length.

There are three cost functions that are useful in such applications:

• the number of constraints satisfied;

• the number of product-terms in a siun-of-product representation of the encoded constraints;

and,

• the number of literals in a sum-of-product representation of the encoded constraints [85].

We illustrate the meaning and technique of computation of these cost functions with an

example. Consider the following input constraints: (e, /, c), (e, d, g), (a, 6,d), (a, g, /, d). To

satisfy all the constraints, an encoding of 4 bits is required. A solution is a = 1010, b = 0010,

c = 0011, d = 1110, e = 0111, / = 1011, 5 = 1100. Suppose instead that the code-length

is fixed at 3 bits. Irrespective of which 3-bit encoding is chosen, it must be the case that one or

more input constraints are not satisfied. This leads to the problem of estimating the "goodness"

of each 3-bit encoding. For each input constraint /, define a Boolean function F/ whose on-set

contains the codes of the symbols in the constraint and whose off-set contains the codes of the

symbols not in the constraint. The unused codes are in the don't care set. For instance, given

the previous encoding, the points in the on-set of F^ej,c) are (0111,1011,0011), those in the

off-set are (1010,0010,1110,1100) while the don't care set contains the remaining unused nine

codes. If constraint I is satisfied, two-level minimization of F/ yields a single product-tenn. If a

constraint is not satisfied, there wiUbe at least two product-terms in the minimized result. Thus, the

number of product-terms after two-level minimization is a measure of the satisfaction of the input

constraints. For constraints arising from encoding problems oftwo-level logic, this is an appropriate

cost function. An algorithm based on this cost function may require a number of two-level logic

minimizations. This may be approximated by a single logic minimization of a multi-outputBoolean

function, where each constraint is represented by a distinct output of the multiple-output function.

The number ofliterals of a two-level implementation of the constraints can be computed in the same

way; literals are counted instead of product-terms.

132

000

CHAPTERS. ENCODING CONSTRAINTS

oil

101/

era

b

111

d

110

c

(e, f, c) {1-0,0-1)

(e, d, g) {--1}

(a, b, d) 5^ (111, 0-0}

(a,g,f,d) a- (111,-0-)

Figure 6.10: Example of cost function evaluation

In Figure 6.10, a 3-bit encoding for the previous set ofconstraints is shown, together with

the product-termsneeded to implement the encoded constraints. The given3-bit encodingviolates

3 face constraints. They are (e, /, c), (a, 6,d), (a, /, d). 1 cubes and 14 literals are required to

represent the encoded constraints.

6.7.1 Heuristic Algorithm for Input Constraints

Consider the input constraint satisfactionproblem where an encodingof length c bits is

desired, whileminimizingthe number of violatedconstraints. This is an exactversionof problem

P-3. We require a selection of prime dichotomies that must have two properties. First, the primes

must ensure that each symbol gets a unique code, that is, all the uniqueness constraints must be

covered by the selected primes. Second, the fewest face constraints must be violated. The only

apparent way this can be done is to enumerate all 2" - 2 prime dichotomies (using n symbols) and

then solve an exact weighted unate covering problem. This approach is clearly infeasible on all but

trivial instances of P-3.

Heuristic algorithmscan be easily developed within the encoding frameworkpresented in

this chapter. In this subsection we describe a heuristic algorithmbased on the conceptofdichotomies

to solve P-3 approximately.

6.7. BOUNDED LENGTH ENCODING 133

As indicated above, the first phase of an exact solution to problem P-3 involves the

enumeration ofall 2" - 2 prime dichotomies that exist for n symbols. This step is termed candidate

dichotomy generation (or candidate generation in short). The second phase is to determine a

selection of a fixed number of these encoding dichotomies that minimize the desired cost function.

This is termed selection. While candidate generation is clearly exponential in the input size, the

selection phase requires examination of a polynomial (in the code-length c) number of sets of

candidate encoding dichotomies. A heuristic algorithm that avoids this enumeration of dichotomies

while retaining the structure of the exact approach is detailed now.

Let S = 51,52,Sn be a set of symbols and let jD be a set of encoding dichotomies

using these symbols. Consider some subset of symbols, P = 5pi,5p2, ...,5p^. The restricted

dichotomies of D with respect to P are the elements of the set Dp of dichotomies obtained by

removing all symbols not in P from each dichotomy de D.

The algorithm has three main phases: splitting of a set of symbols, merging of restricted

dichotomies and selection ofthe c best restricted dichotomies for a subset of symbols. The splitting

phase is used to divide the given encoding problem into two smaller problems, each to be encoded

using one less bit. Assuming that each sub-problem is solved optimally, the solution for the original

encoding problem is generated by the steps of merging and selection.

Let a code of length c be desired for n symbols, si,..., 5„. Consider a partition of the

symbols into two groups 5i,..., Sk and Sk+i...5n. Let Di be the c - 1 best dichotomies restricted

to 51,..., 5fc. Similarly, let D2 be the c - 1 best dichotomies restricted to 5^+1,..., Sn. Then, the

candidate dichotomies for si,..., s„ is the set

D = {{si...sk; 5fc+i...5„)} u (Di X D2) U (D2 XDi).

The best selection of c dichotomies from D is used to obtain a desired encoding. By repeatedly

applying this technique until each partition contains a single symbol, a bounded-length encoding is

achieved following the merging and selection steps.

Splitting of symbols: We are interested in obtaining two sub-problems, each using one

less code bit than the given problem does. In splitting the symbols into disjointpartitions, the fewest

constraints should be violated. This is achieved by using a modification of the Kemighan-Lin [68]

algorithm forpartitioning^.

^This stq)canalso bepeifonned byusing thenotion of incompatibility between dichotomies. Theprime dichotomy
that covers the maximum number of dichotomies is desired. Given the pairwise incompatibilities between dichotomies,
this can be obtained by choosing the minimum cover of the pairwise incompatibilities {cf. Section 6.5.1). We do not

134 CHAPTER 6. ENCODING CONSTRAINTS

Each partition P can be considered as yielding a dichotomy, dp. For example, the

partition of n symbols into two blocks of symbols {si,.and {sk+i, ...ySn} gives dp =

(si...sk; Sk+i ...Sn). The choice of partition F is determined by a cost ftmction evaluation on the

dichotomy dp. For example, if the number of violated face constraints is to be minimized, then

P is chosen such that the fewest face constraints are violated by dp. If the number of literals (or

cubes) is being minimized, then P is chosen such that the maximum number of restricted initial

dichotomies are covered by dp. This corresponds to minimizing the number of uncovered initial

dichotomies. Thus, for the partitioning algorithm [68], the nodes are the symbols being partitioned

and the nets are either face constraints or initial dichotomies.

The procedure is perfomied recursively on each resulting partition. Bach partition again

yields candidate dichotomies restricted to the subset of symbols that appear in it. When only two

symbols remain, a single dichotomy that corresponds to the uniqueness constraint between them is

generated.

Consider the example shown in Fig. 6.3, where an encoding of length 3 is required to

minimize the number of literals in siun-of-product form. In the first step, at least four initial

dichotomies must be violated by any partition. Assume that the symbols are partitioned into

Pi = {so,51,52,54} and P2 = {53}, which violates 6 of the initialdichotomies (numbered 0,3,4,

5, 6, 7). Further partition of the symbols in Pi yields Pn = {sq, 54} and P12 = {51, S2}, which

violates four of the initial dichotomies (numbered 0,3,6,7 in the example).

Merging ofrestricted dichotomies: Here the restricteddichotomiesgeneratedfromeach

of the sub-partitions, say Fi and P2. are merged to obtain a set of dichotomies that ensures unique

codes for all the symbols in the merged partition, P = Pi u P2. Since the sets of symbols in Pi and

P2 are disjoint, each dichotomy in P is a union of one dichotomy each from Pi and P2. Thus, m

dichotomies for Pi and n dichotomies for P2 yield mn candidate dichotomies for P.

Consider partitions Pi = {so,5i, S2, S4} and P2 = {53} whichare to be merged for the

example of Fig. 6.3. Assume that the encoding dichotomies chosen (by recursive application of this

algorithm) for Pi are Di = {(S0S4; S1S2), (soS2; 51S4)}. Theonlychoice for P2 is D2 = {(53;)}.

The merged dichotomies to be considered aie D = {(50S1S2S4; 53), (S0S3S4; S1S2), (S0S4; S1S253),

(50S2S3; S1S4), (S0S2; S1S3S4)}. The best encodingof length 3 is chosen from this set by the next

step.

Selection of best restricted dichotomies: The objective of this final step is to choose a

employ this technique since the number of incompatibilities is often enormous. Additionally, the prime dichotomy is
required to have a boimdedniunber of symbols in each block, which further complicates the approach.

6.8. OTHER APPLICATIONS 135

minimal numberofcandidate dichotomies that violate the minimum numberofencodingconstraints,

yet covers all the uniqueness constraints. It is important to note that when the best selection of

dichotomies restricted to a subset of symbols is sought, a global view of constraints (and cost

function) must be employed. For example, consider the subset of symbols P —{pi, ...pk} with

candidate dichotomies Dp. A cover of size CDp is desired. The constraints of the entire problem

are first restricted to the symbols p\, ...pk. The cost function evaluation technique mentioned in the

previous section is applied to each selection of cd^ dichotomies from Dp. The set thatminimizes

the given cost function is chosen as the best selection of restricted dichotomies.

Continuing with the example ofFig. 6.3, following the merging step described above, the

3 best dichotomies selected are (sosiS2S4; «3)j (50^2; S1S3S4) and (soS4; siS2«3). This is done by

evaluating aUselections of size 3 from the set D that cover all uniqueness constraints and minimize

the literal count. In the general case the number of evaluations can be restricted to some fixed

number to reduce the search space.

This heuristic algorithm has shown promising results and has been successfully applied

to other encoding constraint satisfaction problems [97,7].

6.8 Other Applications

In this section we illustrate that the formulation presented in Section 6.6 provides a

uniform frameworlc for the satisfaction of various other encoding problems.

6.8.1 Input Encoding Don't Cares

The notion of an encoding don't care was first described in [91], and an example of

how encoding don't cares are generated in the two-level case is given in [145]. A face constraint

containing symbols a, 6 and e and with symbols c and d as encoding don't cares is denoted

(a, 6, [c,d\, e). This constraint specifies that a, 6,e must be assigned to oneface of a binary n-

dimensional cube, with c and d free to be included or excluded fiom this face, and no other symbol

sharing this face. Encoding don't cares have been shownto be essential for determining good factors

in deriving a multi-level implementation of a given multi-valued description [85].

A simple example shows that suboptimal solutions of P-2 are computed when input en

coding don't cares are disregarded. Giventhe symbols5 = {a, 6, c, d, e, /} and the face constraints

(a, 6), (a, c), (a, d), (a, 6, [c,d],e), a minimumlength encodinguses 3 primes, e.g. (a, b,e; d, /),

136 CHAPTER 6. ENCODING CONSTRAINTS

(a, c, d; b,e, /), (a, 6, d; c, e, /). If the encodingdon't cares are forced to be in the face constraint,

i.e. (a, 6, [c,c(], e) is replaced by (a, 6,c, d, e) then a minimum length encoding uses 4 primes,

e.g. (a, b,c, d, e; /), (a, 6,c;d, e, /), (a, c, d; b, e, /), (a, b,d; c,e, /). In the case that the encoding

don't cares are forced not to be in the face constraint, i.e. (a, b, [c,d],e) is replaced by (a, 6,e)

a minimum length encoding uses 4 primes, e.g. (a, 6,e; c,d, /), (a, b,c;d, e, /), (a, d; 6,c,e, /),

(a,c,d;6,e,/).

The framewoik described in Section 6.6 naturally handles encoding don't cares. Consider

the face constraint (so«iS3[s5])> whichimpliesthat ss mayor may not be chosento be on the same

face as SO) and 53. Converting this constraint to initial dichotomies is simply a matter of not

generatingthe dichotomies (sosiss; S5) and (55; sqsiss). The absenceof thesedichotomiesenables

S5 to be either inside or outside the face that includes sq, si and S3. In the presence of encoding

don't cares, a prime dichotomy may be a bi-partition of a subset of the symbols. In contrast,

when encoding don't cares are not used, each prime dichotomy is a bi-partition of the entire set

of symbols. For instance, if we consider the set of face constraintsof the previousexample (a, 6),

(a, c), (a, d), (a, 6, [c,d],e), the primedichotomies generated by the extended definition of compat

ibilityare: (a, 6,e; /), (a, 6,e; d, /), (a, 6,e; c, /), (a, 6; c,d, e, /), (a, c;6,d, e, /), (a, d; 6,c,e, /),

(a, 6, c; d, e, /), (a, c, d; 6,e, /), (a, b,d; c, c, /), (a, b,c, d; e, /). A minimumcoverof 3 primescan

be extracted out of them, as shown before.

The algorithms described for the feasibility check and exact encoding, shown in Fig

ures 9.1, 9.2 and ?? respectively, extend naturally to encoding don't cares. Note that the satisfia

bility check algorithm described in [39] cannot be easily extended to handle encoding don't cares

without a significant penalty in run-time. The encoding algorithm presented in [147] also cannot be

extended to handle don't cares.

6.8.2 Distance-2 Constraints

In [135,134,35] a condition for easy and fiill sequential testability requires an encoding

such that the codes assigned to a selected pairofstates, say a and 6, must be at least distance-2 apart.

This condition may be easily satisfied by selecting at least two prime dichotomies in the minimum

cover, each having a and 6 in different blocks. Suppose that, of all the prime dichotomies, the pairs

{pi) Pz) and {p3,P4} havea and bin different blocks. At least one of the two pairs must be chosen

in a final cover. This is enforced by augmenting the binate covering formulation with the clauses

(pi + bi)(p2-hbi)(p3 + h)(P4-t-h)(bi + 62),

6.8. OTHER APPLICATIONS 137

where 6i and 62are two new columns of the covering table.

6.8.3 Asynchronous State Assignment

The state assignment algorithm proposed by Tracey [143] may also be applied in per

forming state assignment for asynchronous state machines [74]. The basic idea is that whenever

a pair of state transitions occur under the same input (so that the input values caimot be used to

distinguish among them), at least one state signal must remain constant during both transitions and

have a different value for each transition. This set ofconstant signals allows the circuit to distinguish

among different transitions thus avoiding critical races. Tracey was the first to propose the concept

of dichotomyas correspondinginformallyto the ideaof a column(bit) in the binaryencodingofthe

intemal states. It distinguishes one set of states from another by a single bit in the corresponding

encodings. The implementation in [74] successfully uses our exact input encoding algorithm (cf.

Section 6.5).

6.8.4 Logic Decomposition

hi [97] it is investigated the problem of decomposing a function so that the resulting

sub-frmctions have a small number of cubes or literals. The decomposition problem is formulated

as an encoding problem. In general, an input-outputencoding formulation has to be employed

to solve the problem. However, it is shown that for programmable gate array architectures which

use look-up tables, the input encoding formulation suffices, provided one uses minimum-length

codes. The unused codes are used as don't cares for simplifying the sub-functions. An average

improvement of over20%is achieved whenencoding is usedwhileperforming the decomposition.

The encoding is performed using the heuristic algorithmdescribedin Section 6.7.1.

6.8.5 Logic Partitioning

hi [7] the problem of encoding the communication betweentwo logic blocks is studied.

Twoseparate blocksof logiccan communicate unidirectionally througha channel that consistsof a

number ofcommunication lines. The encoding of the symbols communicated across the channel has

two requirements: first, the encoding width is fixed (usually to the minimum possible width), and

second, the encoding must minimize the amount oflogic in the sending and receiving blocks while

balancingthe size of the blocks. By definition, the input encodingconstraintsand output encoding

constraints are each taken from different blocks of logic. Consequently, balancing the size of the

138 CHAPTER 6. ENCODING CONSTRAINTS

blocks translates into balancing the amount of constraint satisfaction in the two sets of constraints.

Since the existing constraint satisfaction algorithms do not perform constraint satisfaction balancing,

only the encoding constraints generated from the receiving block are considered. The heuristic input

encoding algorithm described in Section 6.7.1 is used among others.

6.8.6 Limitations of Dichotomy-based Techniques

This section has illustrated how new classes of encoding constraints, together with face

and output constraints, can be accommodated in the dichotomy-based frame. It is legitimate to

ask what kind of constraints cannot be naturally solved using dichotomies. Such an example of

unwieldy encoding constraints are chain constraints [1] used to derive area-optimal finite state

machine implementations that use counter-based PLA structures. State assignment in [1] consists

of a step of deriving face and chain constraints and a step of satisfying them. A chain constraint

requires that increasing binary numbers be assigned to the codes of the ordered sequence of states.

The first element in the chain can be given any code. For instance, a chain constraint involving

the ordered sequence a, 6,c, d, e, /, g, h, i is denoted by {a- b- c-d-e-f-g-h-i) and

is satisfied by the encoding a = 0010, 6 = 0011, c = 0100, d — 0101, e = 0110, / = 0111,

g = 1000, h = 1001, i = 1010. For every pair of adjacent states in the chain the code of the right

state is equal to the code of the left state increased by one in binary arithmetic. As an example of

encoding problem with face and chain constraints, consider the face constraints (6,c), (a, 6), and

the chain (d - b - c - a). A satisfyingassignmentis: a = 00,6 = 10, c = 11, d = 01.

Even though it is possible, for a given code length, to add to the covering expression the

clauses that impose the chain conditions, a straightforward solution seems to require a computa

tionally expensive enumeration.

6.9 Results

Table 1 gives the results of using the exact encoding algorithm on a set of examples using

both input and output encoding constraints. These constraints are generated using an extension of

the procedure described in [91] that also generates good disjunctive constraints. The procedure

has been described in Chapter 5. The procedure for generating encoding constraints ensures that

the constraints are satisfiable by calling the algorithm in Figure 9.3. The number of valid prime

encoding-dichotomies is shown in the third column. As seen from the table, all the examples with

6.9. RESULTS

Name # States # Primes #Bits Time

(sees)

bbsse 16 1449 7 20

cse 16 201 7 3

dkl6 27 24316 12 1050

dk512 15 35 9 1

donlile 24 673 12 17

exl 20 2023 9 45

keyb 19 189 9 4

kirkman 16 54 11 8

master 15 972 5 4

planet 48 > 50000 * *

si 20 469 7 10

sla 20 50 7 3

sand 32 2481 11 88

scf 121 >50000 * *

styr 30 > 50000 * *

tbk 32 13 12 41

viterbi 68 > 50000 * *

vmecont 32 > 50000 * *

* indicates results not available

Larger examples were not experimented with

Table 1: Exact input and output encoding

139

140 CHAPTER 6. ENCODING CONSTRAINTS

Name States # Constraints Constraints Cubes

NOVA ENC NOVA ENC

bbsse 16 5 3 3 12 8

cse 16 12 8 8 24 18

dkl6 27 33 25 20 43 48

dk512 15 10 8 9 12 11

donfile 24 24 8 11 48 39

exl 20 11 8 8 19 19

kirkman 16 25 9 9 58 58

planet 48 12 12 12 12 12

si 20 14 14 14 14 14

sla 20 14 14 14 14 14

sand 31 7 6 6 8 8

styr 30 18 14 14 29 26

scf 121 14 11 * 21 *

tbk 32 98 44 39 284 237

viterbi 68 6 6 6 6 6

vmecont 32 40 24 25 81 67

Constraints: Number of constraints to be satisfied

Constraints: Number of satisfied constraints

Cubes: Number of cubes in a two-level implementation of the constraints

nova: Encoding using nova [147], minimum code length

ENC: Heuristic encoding, minimum code length

* : Out of memory

Table 2 : Two-level heuristic minimum code length input encoding

less than 50000 primes completed in very little CPU time on a DEC 3100 workstation. In the

case ofplanet there are only nine dominance constraints and no disjunctive constraints, which lead

to almost no decrease in the number of primes generated from the face constraints (exponential

in the worst case). In the case of vmecont there are only eight different face constraints (six of

them have only two states), which lead to a huge number of primes being generated from the laige

numberofun-implied uniqueness constraints. Thousands ofsatisfiabilitychecks on input and output

encoding constraints can be perfonned routinely in a matter of seconds, showing the efficiency of

our algorithm. The previous approach suggested for prime generation in [154] does not complete

on any of the examples.

6.9. RESULTS 141

Table 2 compares an implementation of the heuristic algorithm described in Section 6.7.1

with the best bounded-length input encoding algorithm implemented in nova [147] (option -e

ih). NOVA is a state assignment program for two-level implementations, that features a variety

of constraint satisfaction algorithms. The input constraints are generated by calling the two-level

multiple-valued logic minimizer espresso [114]. The number of satisfied face constraints and the

numberofcubes in a two-level implementationofthe constraints using the minimum possible length

for encoding are compared in the table. While both algorithms perform comparably with regard

to the number of constraints satisfied, our approach has a significant advantage with respect to the

number of cubes needed to implement the input constraints in two-level form. This cost function

is very important because it measures the advantage of satisfying a subset of input constraints in

a fixed code-lengthmore precisely. Our algorithmin almost all cases needs fewer cubes than the

algorithm in nova. On the benchmarkset it requires on average 13%fewercubesand in somecases

the gain is more than 20%. The number of cubes listed in Table2 under the column nova, is not

the same as the number of cubes of the final FSM implementation obtained by nova [147]. nova

performs additional encoding tasks to approximate the input-output encoding problem that arises

in FSM's. Instead, we compare only the quality of the input encoding algorithms. For instance,

we report 284 cubes for tbkusing nova and 237 cubes for our algorithm. This means that if tbk

were to be encoded with 5 bits using only input constraint information, the encoding algorithmin

NOVA would require 284 andour algorithm 237cubes to implement the inputconstraints. In reality

with the option -e ih nova achieves 147cubes, because it does not limit itself to input constraints

satisfaction (and withthe option-e ioh it achieves 57 cubes, usinga bettermodelof the input-output

encoding problem). A heuristic algorithm that considers partial satisfaction of a set of input and

output constraints remains to be developed. In the example of sand only 8 cubes are reported

for both algorithms, because these are the cubesneeded to implement the cubes generating input

constraints. However, thereare manymorecubes in the FSM that do not generateinputconstraints,

and are not reflected in the table.

Table 3 compares our approach to simulated annealing for multi-level examples. Input

constraintswith don't cares are generated by the multiple valued multi-levelsynthesis program Mis-

MV [85] with the number of factored form literals in the encoded implementation as cost function

(in practice, the number of literals in a sum-of-product representation of the encoded constraints

is used as an approximation to this cost function). Because of the presence of encoding don't

cares and the cost function of literals, simulated annealing was the only other known algorithm for

solving this problem. Weuse two sets of experiments to compare the effectiveness of our heuristic

142 CHAPTER 6. ENCODING CONSTRAINTS

bounded-length algorithm versus the version of simulated annealing algorithm implemented in

Mis-MV. Minimum-length encoding is always used, mis-mv is mn using a script that invokes the

constraints satisfaction routine six times; fivetimes to perform a cost evaluation that drives the multi

valued multi-level optimization steps and one final time to produce the actual codes that replace the

symbolic inputs [85]. Simulated annealing is called the first five times with 1 pairwise code swap

per temperature point, while the last call performed 10 pairwise code swaps per temperature point.

Simulated armealing does not complete on the larger examples with 10 pairwise swaps per step.

These examples are marked with a f in the table, and only 4 swaps were allowed per temperature

step for these examples. When using our heuristic algorithm, the full-fledged encoder is called all

six times. See [85] for a detailed explanation of the scripts.

As can be seen from Table 3, our algorithm on average performs a little better than

simulated armealingin terms of literal count. This is significant especially in the large examples,

whereit reducestheliterals counts up to 10%furtherthan simulatedarmealing. Whenour algorithm

does worse, it is within 5% of the simulated armealing result. However, a significant parameter

here is the amount of time taken. Simulated armealing consumes at least an order of magnitude

of time (two orders or more for larger sized examples) more than our algorithm when a better

quality solutionis desired, i.e. using 10 swapsper step. On attempting to reducethe mntime to be

comparable toourapproach, a noticeable lossofoptimizationqualitycompared toourapproach may

be observed in the table. Furtherimprovements to the heuristic encoding algorithm arepossible.

6.10 Conclusions

Thischapterhaspresenteda comprehensive solutionto the problemof satisfyingencoding

constraints. We have shown that the problem of determining a minimum lengthencoding to satisfy

both input and output constraints is NP-complete. Based on an earlier method for satisfying

inputconstraints [154], we have provided an efficient formulation of an algorithm that determines

the minimum length encoding that satisfies both input and output constraints. It is shown how

this algorithm can be used to determine the feasibility of a set of input and output constraints

in polynomial time in the size of the input. While all previous exact formulations have failed

to provide efficientalgorithms, an algorithm that efficiently solves the input and output encoding

constraintsexactlyhas been described. A heuristicprocedurefor solvinginput encodingconstraints

with bounded code-length in both two-level and multi-level implementations is also demonstrated.

In the multi-level case, only a very time-consuming algorithm based on simulated annealing was

6.10. CONCLUSIONS

Name States Literals Time

SA ENC SA ENC

bbsse 16 162 164 3017 175

cse 16 229 236 3969 234

dkl6 27 336 380 27823 1523

dk512 15 82 85 2090 138

donfile 24 154 172 16265 935

kirkman 16 201 229 2621 322

master 15 392 398 2069 423

si 20 280 304 16297 833

sla 20 240 254 4878 241

fsand 31 763 737 1926 2332

fscf 121 * * * *

fstyr 30 581 608 3128 1359

fplanet 48 648 639 10298 14983

ftbk 32 560 498 3774 4090

fviterbi 68 327 322 860 1013

fvmecont 32 378 364 2074 2883

sa: Simulated annealing (5 callswith 1 move per stepand 1 callwith 10moves per step)

ENC: Heuristic encoding in minimum code length (6 calls)

Time SA: Time for sa; includes run time for minimization script [85]

Time ENC : Time for ENC; includes run time for minimization script [85]

f: SA does not completein 10hours with 10 movesper step; SA limitedto 4 steps per move

*: Does not complete in 10 hours

Table 3 : Multi-level heuristic minimum code length input encoding

143

144 CHAPTER 6. ENCODING CONSTRAINTS

known before. This framework has also been used for solving a variety of encoding constraint

satisfaction problems generated by other applications.

145

Chapter 7

Generalized Prime Implicants

7.1 Introduction

A methodfor exploring globally the solutionspace of optimal two-level encodings was

proposed by Devadas andNewton in [39]. Theirkeycontribution wasthedefinition of Generalized

PrimeImplicants (GPI's), as a counterpart of prime implicants in two-level minimization.

Unfortunately, thenumber of GPI's is so largeevenfor smallFSM's, that in practice it is

outof question tocompute them anda fortiori to solve theinduced covering problem fornon-trivial

examples.

Recently, enumeration and manipulation of very large sets have been successfully per

formed by representing theircharacteristic functions withBinary Decision Diagrams (HDD's). In

many cases of practical interest these sets have a regular structure that translates intosmall-sized

HDD's, even when an explicitrepresentation wouldbe impossible to compute. Here, loosely, we

consider a representation as explicit if it requires space lineraly proportional to the size of the

represented set.

In particular, researchers at Hull and UGH [25,79,53] investigated implicitcomputations

of primeimplicants of a two-valued or multi-valued function. In someexamples allprimescouldbe

computed implicitly, even whenexplicittechniques implemented in espresso [11] failed to do so.

Moreover, implicitalgorithms havebeendesigned to reduce theunatetableof the Quine-McQuskey

procedureto its cycliccore [29,53], and to solve the binatecovering problemassociated withexact

state minimization [66].

In the present workwe capitalizeon these algorithmictechnologiesto proposea complete

procedure to generate and select GPI's based on implicit computations. This approach combines

146 CHAPTER?. GENERALIZED PRIME IMPLICANTS

techniques for implicit enumeration of primes and implicit solution of covering tables together

with a new formulation of the problem of selecting an encodeable cover of GPI's. The proposed

algorithms have been implemented using state assignment ofFSM's as a test case. The experiments

exhibit a set ofmedium FSM's where laige GPI problems could be solved for the first time, showing

that these techniques open a new direction in the minimizationof symbolic logic. Since the problem

of symbolic minimization is harder than two-valued logic minimization, more practical woiic is

required to improve the efficiency of the implementation and to tie it with good heuristics to explore

the solution space ofencoding problems. The present contribution shows how to extract a minimal

encodeable cover from a large set of GPI's, allowing - in line of principle - the exploration of

all minimal encodeable covers. This advances the state-of-art of symbolic minimization, which

up to now has been done with various heuristic tools [92, 147, 42, 77], often very well-tuned for

their domain of application, but lacking a rigorous connection beween an exact theory and the

approximations made. For instance it is noticeable that these tools, with the exception of esp_sa,

cannot predict the cardinality of the covers that they produce, while the size of a minimized encoded

cover of GPI's matches the size of the cover obtained after encoding (with the same codes) and

minimizing the original cover.

The presentation is organized on a number of chapters as follows. In Section 7.2 we

introduce some basic definitions. In Section 7.3 we introduce GPI's. In Section 7.4 we show

how generation of GPI's of a symbolic covercan be reduced to finding the prime implicants of a

companionmulti-valued function. The relations of GPI's to primes of encodedcovers is analyzed

in Section 7.5. The problemof selectinga minimumset of encodeableGPI's by reductionto unate

covering is described in Section 8.1, and by reduction to binate covering is described in Section 8.2.

The issue of non-determinism and GPI's is discussed in Section 8.3. A theory of encodeability of

GPI's based on the new notions of raising graphs and updating sets is presented in Section 9.1. The

passage to implicit algorithms is done in Sections 11.1 and 11.2. In Section 11.3 we present an

implicit solution of the GPI selectionproblem,while Section 11.4demonstrateson an example the

implicit algorithm. The correctness of the results is verified with the method shown in Section 11.5.

Implementation issues are discussed in Section 11.6. In Section 11.7experimental results are given,

while conclusions are drawn in Section 11.8.

7.2. BASIC DEFINITIONS 147

7.2 Basic Definitions

7.2.1 Finite State Machines

A Finite-State Machine (FSM) is represented by its State TVansition Graph (STG) or

equivalently, by itsState TVansition Table (STT).ASTGis denotedby asextuple{/, 0,5,75,5, A},

where I and O are the sets of inputs and outputs, S is the set of states and IS is the set of initial

states. 5 (next state function) is a mapping from I x S to S that given an input and a present state

defines a next state. A (output function) is a mapping from I x S to O that given an input and a

present state defines an output. An STG where one next-state and one output for every possible

transitionfrom every state are defined correspondsto a completely specified finite state machine

(CSFSM). An STT is a tabular representation of the FSM. Each row of the table corresponds to a

single edge in the STG. Conventionally,the leftmost columns in the table correspond to the primary

inputs and the rightmost columns to the primary outputs. The column followingthe primary inputs

is the present-state column and the column following that is the next-state column.

An incompletely specified finite state machine (ISFSM) is one where either5 or Aor

both are a relation of a restricted kind, i.e. there is at least one pair (i, s) on which either 5(i, s)

or A(i,s) (or both) is equal to the set of all possiblevalues, writtenusually in cube notation. For

instance, suppose that O = then ii si S2 denotes a transitionunder input i\ from si

to S2 which outputs any of the possible 8 minterms in i\ 5i ANY 01— denotes a transition

under input i\ from si to any state in S which outputseither QIC or 011 (instead of ANY one can

write * or -). Lastly, ii si ANY denotes a transition under input i\ from si to any state

in S which outputs any minterm in B^\ for economy of representation, one usually omits these

transitions (sometimescalled missing or unspecified transitions) from an FSM description. When

doing state assignment, if there are more hardware states than symbolic states^ ANYofamissing

transitioncan be implementedby anypossiblehardwarestate. ToeverySTGcontainingunspecified

next-states one can constract an equivalent STG where all unspecified next states are replaced by a

trap state T, as in [98]. The transitions from T imder any input go to T itself and their outputs are

unspecified. The new STG describes exactly the same behaviours as the old one.

^Suppose that3 symbolic states areencoded with 2 bits,thenthere are4 hardware states.

148 CHAPTER?. GENERALIZED PRIME IMPLICANTS

7.2.2 Multi-valued Functions

We review the definitions used for multi-valued (also known as symbolic) input binary-

valued functions. For a more complete treatment the reader is referred to [114].

Definition 7.2.1 Let pi,i = 1,..., n positive integers. Define Pi = {0,..., p,- - 1}for i =

1,..., n, and B = {0,1, *}. A multiple-valued input, binary-valued outputfunction, f, is a

mapping

f: Pi X Pzx - -'X Pn-^ B

The function / has n multiple-valued inputs. Each input variable i assumes one of the p,

values in Pi. The value * e B is used when the function value is unspecified (i.e., it is allowed to

be either 0 or 1).

An n-input, m-output switching function can be represented by a multiple-valued function

of n + 1 variables where p, = 2 for i —1,..., n, and p„+i = m. The minimizationproblem for

multiple-output functions is equivalent to the minimization of a multiple-valued function of this

form [119].

Definition 72.2 Let Xi be a variable takinga valuefrom the set Pi, and let Si be a subset of Pi.

xf' represents the Booleanfunction

ifXi^Si

' \ 1 ifXi €Si
xf* is called a literal ofvariable Xi. IfSi = 0, then the value ofthe literal is always 0, and the
literal is called empty. If Si = Pi, then the valueof the literal is always 1, and the literal is called

full.

Two-valued (or binary) functions are a special case of multi-valued functions where

Pi = {0,1} for i = 1,..., 71. In thecaseof a two-valued single-output function, some notational

simplification is then possible. A cube may be written as a vector on a set of variables with each

position representing a distinct variable. The values taken by each position are 1, 0 or 2 (same as

-, don't-care), signifyingthe tme form, negatedform or both of the variablecorresponding to that

position. A minterm is a cube with only 0 and 1 entries. Cubes can be classified based on the

number of 2 entries. A cube with k entries or bits which take the value 2 is called a fc-cube. A

minterm thus is a 0-cube.

7.2. BASIC DEFINITIONS 149

A product term (or cube) is a Boolean product (AND) of literals. A minterm or 0-cube

is a product-teim in which the sets ofvalues of all literals are singletons. If a product term evaluates

to 1 for a given minterm, the product term is said to contain (or cover) the minterm.

A sum-of-products (or cover) is a Boolean sum (OR) of product terms. If any product

term in the sum-of-products evaluates to 1 for a given minterm, then the sum-of-products is said to

contain the minterm. If a literal in a product-term is empty, the product term contains no minterms,

and is called the null product(written 0). The on-set of a function is the set of mintermsfor which

the ftmction value is 1. Likewise, the off-set is the set of minterms for which the function value is

0, and the DC-set is the set of minterms for which the function value is unspecified.

In the definitions which follow, S = and T —xf^X^^ •••Xj" repre
sent product terms.

The product term S contains the product term T (T c S) if T, C 5,- for i = 1... n. The

complement ofthe literal Xf* (written Xf*) is the literal Xp~^*. The complement ofthe product
term S (S) is the sum-of-products U?=i Xp.

The intersection of product terms S and T (5 n T) is the product term

ySinTi yS2nT2 ySnOTn
Ai A.2 A„

If Si C\Ti = %for some i, then 5 n T = 0 and 5 and T are said to be disjoint. The intersection of

covers F and G is the union of / n for all / e F and g E G. The distance between S and T

(distanc€(S, T)) is 0 Ti = 0}|.

The consensus of S and T (consensus(5, T)) is the sum-of-products

[J ^S,UTi ^
1=1

If distance{S, T) >2 then consensus{S, T) = 0. If distance{S, T) = I and Si n Ti = 0, then

consensus(S^ T) is the single product term Xp^^^ •••Xp^^* ••• Ifdistance{S, T) = 0
thenconsensus(S, T) is a coverof n terms. If theconsensus of S andT is nonempty, it is the setof

maximalproduct terms (orderedby containment)which are contained in 5 UT and which contain

mintermsof both 5 and T. The consensusof two covers F and G is the union of consensus(f, g)

for all / G F and € G.

The cofactor (or cube restriction) of 5 with respect to T {St) is empty if 5 and T are

disjoint. Otherwise, the cofactor is the product term

y5iUTi yS2UT2 ySnUTn

150 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

The cofactor of a cover F with respect to a product term S is the union of fs for all / € F.

An implicant of a function is a product term which does not contain any mintemi in the

off-set of the function. A prime implicant of a function is an implicant which is not contained

by any other implicant of the function. An essential prime implicant is a prime implicant which

contains a minterm which is not covered by any other prime implicant.

The product term S can be represented in positional cube notation as a binary vector in

the following form:

where cj = 0 if y ^ 5,*, and cj = 1 if j G 5,-. In other words, a symbolic variable that can
take values from a set of cardinality n is represented in positional cube notation by an n-bit vector

to denote a literal of that variable such that each position in the vector corresponds to a specific

element of the set. A 1 in a position in the vector signifies the presence of an element in the literal

while a 0 signifies the absence. This method of representation is commonly known as one-hot. By

complementing the n-bit vector that represents the one-hot encoding of a symbolic variable, one

gets a representation called complemented one-hot.

7.3 Generalized Prime Implicants

7.3.1 Definition of Generalized Prime Implicants

Multi-valued inputs and binary-valued outputs functions can be represented by multiple-

valued functions where the set of binary outputs is treated as another multi-valued input variable.

Positional cube notation allows also to represent any ftmction with multi-valuedinput and multi

valued output variables. This is commonly done in programs like espresso-mv, when a function

with symbolic inputs and outpus (e.g., an FSM) is 1-hot encoded and then minimized. But the

minimizationproblem for functions with multi-valuedinput and multi-valuedoutput variables is

not known to be equivalent to the minimization of a multiple-valued function of this form. After

1-hot encoding the onsets of the minteims (values) of a symbolic output are minimized separately.

To handle the minimization problem of functions with multi-valued input and multi-valued output

variables the concept of generalized prime implicants has been introduced [39].

Consider a discrete (alias symbolic) function whose domain and range are finite sets. The

previous theory of multi-valued minimization does not take into account the effect of encoding the

symbolic output variables to get a minimum two-level encoded function. More precisely it does

7.3. GENERALIZED PRIME IMPLICANTS 151

not model the fact that after encoding the onsets of the symbolic outputs are not anymore disjoint.

To overcome this limitation a concept of generalized prime implicants has been introduced in [39].

Even though the concept can be defined for functions with many symbolic inputs and many symbolic

outputs, for simplicity we will restrict most of the discussion to the case of a function with binary

inputs, one symbolic input variable, one symbolic output variable and binary outputs. This handles

symbolic descriptions of FSM's. In what follows we will often not make a distinction between a

function / and a cover that represents /.

Consider an FSM M given by a symbolic cover / :/ xI-^ExO. Given an integer n

and an encoding ftmction e : Z ->• 5", let e(/) be the encoded cover of /, i.e. the cover obtained

from / after replacement of the states with their codes, according to e. Consider a prime implicant

s = i p n o of the function represented by the encoded cover e(/). Associate to the encoded

present state field p the set of states Sp C Z, whose codes are contained in p. Associate to the

encoded next state field n the set of states Sn Q 2, whose intersection of the codes is n Both

operations are well-defined. Then one can associate to s the following symbolic product-term

S = iXp'XS'o.
S Q

Given / :/ xZ->ZxO, consider a symbolic product-term

is a multi-valued input binary-valued output product-term, except that it has a multi-valued output

variable Xn whose multi-valued literal does not need to be a singleton. This latter feature makes it

"generalized". A question arises: what is the meaningof a such a generalized product-term ? Such

a generalized product-term is a templatefor corresponding encodedproduct-terms, as the following

definitions clarify.

Definition 7.3.1 Given a set of symbols 5 C Z and an encoding function e : S B^, let

e(s) = e(s)ie(s)2 '"e{s)nfor s € S. Then l+)e(5) is the product-term X^^X^ •••ATf" where
Si = {0,1} iff 3s,s e Ss.t. e{s)i = 1ande{s)i = 0; Si —{0} iff\/s£S e(s)i = 0; 5,- = {1}

iff'^seS e(s)i = 1.

1+1 defines the minimumBooleansubspaceof spannedby the codes of the states of 5.

Definition 732 Given a set of symbols 5 C Z and an encoding Junction e : S B^, let

e(s) = €(s)\e(s)2 '' 'e{s)nfor s e S. Then 0^(5) is the product-term Xf^X^ •• where
Si = {0} iff3seS s.t. e(s)i = 0; Si = {1} iff e S €{s)i = 1.

^Consider thenextstates in / of thetransitions with mintenns in i Sp,theintersection of their codes mustbeequalto
n if a is a prime implicant(an exceptionis the case of transitionswith ANY next state and specifiedproper outputs), and
must be < n if a is an implicant that is not a prime.

152 CHAPTER?. GENERALIZED PRIME IMPLICANTS

n defines the vertex of obtained by bit-wise intersection of the codes of the states of 5.

Definition 733 Given a product-term S = iXp^X '̂̂ o ofa symbolicfunction f : I xZ

E X O, and an encoding function e : S B^, the encoded product-term e(5) is given by:

e(5) = ili)e(5p)ne(5„)o.

Example 7.3.1 Consider the symbolic product-term 1-0 stl, st3, st4 st2, st3 1001 and the

encoding e{stO) = Oil, e(stl) = 000, e{st2) = 111, e(st3) = 100, 6(st4) = 010, e(st5) = 101.

1+) e(Sp = {stl, st3, st4})is —0, f] e(5n = {st2, st3})is 100, e(l -0 stl, st3, st4 st2, st3 1001)

wl-0 --0 100 1001.

Definition 7.3.4 A generalized implicant (GI) S of a symbolicfunction f : I xZ -^ZxO is a

product-term of the form S = iXp''X^"o such that there are an integer n andan encoding

function e\Z-^ so that e(S) is an implicantof e(f).

Definition 733 A generalizedprime implicant (GPI) S ofa symbolicfunction f : I xZ -¥ZxO

is a generalized implicant such that there are an integer n and an encodingfunction e B^ so

that e(S) is a prime implicantofe{f).

It is true that for each prime implicant of an encoded FSM there is a GPI.

Theorem 73.1 For each prime implicant ofthe Boolean junction represented by an encoded cover

there is at least one GPI.

Proof: Given a prime of a Boolean function represented by an encoded cover, consider the present

state subcube and find all states whose codes are contained in it, discarding those that do not

correspond to a state in the symbolic cover. This gives Sp. Find in the original symboliccover the

next states of the states in Sp under the proper inputs of the prime. This gives Sn (the intersection

of the codes of the states in Sn dominates the next state subcube of the prime). The proper input

and output subcubes of the GPI are the same as those of the prime. •

A similar theorem holds replacing prime implicant with implicant. The given definition does not

tell us how to compute the GPI's. GPI's can be obtained by a symbolic equivalent of the consensus

operation. Actually this is how they were first introduced in [39], as we will see in the next section.

Definition 73,6 A GI gi covers another GI g2 iff the proper input and output of g\ contain,

respectively, the proper input and output of g2, the present state literal of g\ is a superset of the

present state literal ofgz and the next state literal ofg\ is a subset of the next state literal ofg2.

7.3. GENERALIZED PRIME JMPLICANTS 153

7.3.2 Generalized Prime Implicants by Consensus Operation

In old textbooks [94] it was common to represent a multiple-output function by a cover

of the function consisting of a set of cubes in the common input space, with an output tag attached

to each cube to specify the functions to whose onset the cube belongs. We call it functional

view. Instead in the more modem relational view the outputs are treated as one more multi-valued

variable [118, 114]. For instance a minterm in the relational view is a product-term in the input

and output variables where each literal is a singleton; in the ftmctional view it is a product-term in

the input variables where each literal is a singleton, with an attached tag that specifies one or more

output functions. Therefore a minterm in the functional view may correspond to more than one

minterm in the relational view.

Generalized Implicants (GI's) extend the definition of multiple-output implicants to the

case that some output variablesare symbolic. In analogy to an output tag, the notion of symbolic

tag has been introducedin [39]. A GI can be writtenas a cube with associated tags for the multiple-

valuedand binary-valued outputfimctions. The tag of a cube for a multiple-valued outputvariable

gives the output symbol to whose onset the cube belongs. We let the tag of a symbolic output

variable containmore that one symbol, under the convention that - after encoding - the symbolic

tag willbe replaced by a cubethatis thebit-wise intersection of thecodesof the symbols in the tag.

Prime implicants are maximal implicants of a Boolean function. Implicants of multiple-

outputfunctions (multiple-outputimplicants) cancover0-cubes inmorethanoneoutputfunction. A

multi-output primeimplicant is a maximal implicant fora setofoutputfunctions. Prime implicants

can becomputed by theconsensus method [107,94]. Maximality of a multiple-outputprimemeans

that its inputpart cannotbe expanded without intersecting the offsetof at leastone function in the

output tag, nor any newfunction canbe added to theoutputtag without the inputpart intersecting

the offset of this added function. The consensus operation of two product-terms p\ and pi is the

laigest product-term p such that p does not imply (i.e. is not contained in) either pi or p2> but p

implies pi p2. Iterative consensus consists of successive addition of derivedconsensus terms to

a sum-of-productespressionand removal of terms which are included in other terms. The iteration

of this procedure yields the set of all prime implicants.

Boolean Consensus. Generationofall prime implicants in the Boolean domain by iterated

consensus is themergingof A;-cubes toform {k+1)-cubes untilnonew cubes aregenerated, (k+l)-

cubes remove from the list of candidate primes those A;-cubes that are covered by a {k-\- l)-cube.

When two A:-cubes are merged, the output part of the (k -f l)-cube cannot dominate the output

154 CHAPTER?. GENERALIZED PRIME IMPLICANTS

parts of the fc-cubes from which it was derived, since it is the conjunction of the output parts of

the A;-cubes. A (k+ l)-cube removes a A:-cube only if the input part of the (k + l)-cube covers

the input part of the /j-cube and the output part of the A:-cube is the same as the output part of the

(k-{- l)-cube.

Consensus can be extended to GI's by defining the symbolic tag of a consensus cube as

the union of the symbolic tags of the merged cubes. From now we will indicate by CONS the

consensus operator. By the context it will be clear if it is Boolean consensus or symbolic consensus.

Example 7.3.2

CONS(n stl sfOOl; 11st2 stl 11) = 11 stl,st2 st0,st2 01

Since these two minterms (or, 0-cubes) are distance-1from each other in the inputpart, they can

be merged together to form a l-cube, with the binary output part of the l-cube being the bitwise

conjunction of the binary output parts of the individual 0-cubes. The symbolic output parts are

merged too, and the output part of the l-cube is the union of the output parts of the 0-cubes. If

So gets the code 101 and si gets the code Oil, then the output part of the encoded l-cube is 001,

saying that the cube 11 sil, st2 belongs to the onset ofthe third (and jifth) outputfunction.

GPI's are maximalimplicantsobtainedafter repeated applicationsof symbolicconsensus. Consider

the ruleto generate GPI'sof FSM's. We suppose thattheproperinputs andoutputs arebinary, even

though it wouldbe easy to handlemultiple-valued proper inputsand outputs.

Symbolic Consensus, (k -f 1)-cubes are generated by merging /j-cubes imtil no new

primes can be generated. A (k l)-cube formed from two A:-cubes has a next statetag that is the

unionof the two A;-cubes' next statetags and an outputtag that is the intersection of the outputsin

the A:-cubes' output tags. The binary inputs ofthe k -\- l-cube are obtained with the usual consensus

rule for binarycubes. The present-state partof the -1- l-cube is the unionof the presentstateparts

of the fc-cubes. A (k-\-1)-cube cancels a fc-cube onlyif theirmultiple-valued present stateparts are

identical or if the multiple-valued presentstatepart of the {k-f- l)-cube contains all the symbolic

states. ^ The binary input part ofthe fc -f- l-cube must cover the binary input part ofthe A:-cube. In
addition, the next state and output tags have to be identical. A cube with a next state tag containing

all the symbolic states and with a nuUoutput tag can be discarded.

^The rule has noBooleandomaincoimteipartand itisdue to the fact that whenreplacing symbols with booleanvectors,
the present state part yields an input constraintwhosesatisfiability dependson the encoding. Each of these GPI's is a
multiple-outputprime in the Boolean domain associatedto an encodingwhere the input constraint is satisfied. Keeping
all GPI's that differ only in the present state part, all multiple-output primes for all possibleencodingsare generated.

7.3. GENERALIZED PRIME IMPLICANTS 155

Proposition 7.3.1 A GPI corresponding to a prime implicant ofan encoded cover can always be

obtained by symbolic consensus.

Proof: Given a prime implicant of an encoded cover, consider the corresponding GPI (found as in

the proofoftheorem 7.3.1) and the mintenns ofthe original symbolic cover that are contained in it.

By perfomiing symbolic consensus on the cover of the contained minterms one obtains exactly the

corresponding GPI. •

Viceversa, considera product temi obtained by symbolicconsensus, then there is always an encoding

such that the encoded GPI is a prime implicantofthe encoded symbolic cover. For instance consider

1-hot encoding padded by a final 1, i.e., a 1 is added at the end of all codes.

7.3.3 Encodeability of Generalized Prime Implicants

Given a set of GPI's the goal is to realize the original symbolic cover. There are two

issues here:

1. There may not exist a single encoding function that worics for all GPI's of the cover and

translates them into primes of the encoded initial cover.

2. The encoded cover ofGPI's may not realize (yet) the encoded initial cover.

The first issue is one of encodeability, i.e., of finding codes that map a symbolic cover into a

corresponding two-valued cover. The second issue is one of covering, i.e., of realizing all the

behaviorof the initial symboliccover. We will now define carefullythe conditionsto satisfy both

types of requirements. They will be phrased in terms of encoding constraints, expressing both

encodeability and covering.

Supposethat a set of GPI's, P, is given. Considera minterm m (in the primary input and

present state space), of the original symbolic cover (a 0-cube is determined by a minterm in the

proper input space and a present state) and say that it asserts the next state s„i. In an encoded cover

m will assert the code assignedto Stu. denotedby e(s,„). Supposethat GPI's pmn •"iPmM ofthose

in F cover m. Minterm m asserts in P the intersection of next states in the tags of Prm»• •mPrnw

In order that the cover of GPI's P be equivalent to the original FSM, each minterm must assert in

P the same output as in the original FSM. Therefore the following next-state encoding constraint

(or minterm encoding constraint or consistency equation) must be satisfied for every minterm

m:
rriM

e(«m) = U f'-l)
t=mi

156 CHAPTER?. GENERALIZED PRIME IMPLICAmS

where Si,jS are thenextstates in the tag of the GPIPmi ande(s) is the codeassigned to states. fl

corresponds to bitwise conjunction and U corresponds to bitwise disjunction. The state Sm is called

the parent and the states Sij are called the children of the next-state constraint.

If no GPI in P covers m, then the constraint for m reduces to:

e{sm) = 0 (7.2)

Qearly this constraint (empty next-state constraint) is unsatisfiable, if some GPI that covers m is

not added to P.

For example, if two GPI's, one with next state tag (si, S2i and anotherwith nextstate

tag (si,54) are the ones in P covering minterm 10 si si 11, the constraint for the minterm

10 Si Si 11 wouldbe e(si) = e(si) n e(s2) De(s3) (J e(si)ne(s4).

Moreover, in order that the cover of GPI's P be equivalent to the original FSM, each

minterm must assert in P the same proper outputs as in the original FSM. Say that each GPI pi has

a corresponding output tag o, and that the output tag of minterm m is Om- Suppose as before that

GPI's pmi,..., PniM of those in P cover m. The following proper output covering constraint

must be satisfied for every minterm m:

mAf

(7.3)
i—m\

If mintenns are defined as a product of multi-valued singleton literals as in Section 8.1, proper

output covering constraints are satisfied iff a set of GPI's that covers every row is selected, i.e. by

reduction to an ordinary unate covering problem.

EachGPI yieldsalso an input encoding constraint (or face embedding constraint), i.e.,

the set ofstates in the multi-valuedliteral of the present state variable. An input encoding constraint

is satisfiable if there is an encoding such that the codes of the states form a face (in the Boolean

encoding space) that does not include the codes of the states absent from it. An input encoding

constraint is satisfied in a given encoding if the codes of the states in it form a face (in the Boolean

encoding space) that does not include the codes ofthe states absent from it. If it contains all states or

only one state, the input constraint is trivial, since it does not impose any limitationon the encoding

of the states.

Finally uniqueness encoding constraints impose that different codes states are assigned

to different states (e.g., e{si) e(5j), for i j). Unless otherwise stated, we suppose that they

must always be satisfied. They can be modelled in the same way as input constraints, and when not

necessary we will not distinguish between the two types of constraints.

7.3. GENERALIZED PRIME IMPLICANTS 157

Sometimes constraints of various types are called collectively encoding constraints. It

will be clear from the context which types ofconstraints are meant.

A set of of GPI's or ofencoding constraints induced by them is said to be encodeable or

feasible or satisfiabie if there is an assignment of states to codes (Boolean vectors) such that each

constraint is satisfied, according to the definition of satisfaction of its specific type of constraint.

Such an assignment is called an encoding.

The selection of a minimum set of GPI's that satisfies both the (next state and input)

encoding constraints and the (proper output) covering constraints can be modelled as a table

covering problem (either a constrained unate covering or binate covering problem). This reduction

will be fully developed in Section 8.1.

The tag of a GPI may contain from one to all the states. If one generates only GPI's

whose tag has a cardinality less than a given bound, one has an approximate algorithm for the

state assignment problem. By setting the boimd to 1, a disjoint minimizationproblem is defined,

equivalentto approximatingstate assignmentas an input encoding problem as in [92]. By setting

the boimd to less than the number of states, one can trade-off quality of the solution vs. running

time.

7.3.4 Sufficiency of GPI's

The problem of obtaining the minimum two-level representation of a function can be

reducedto one of findingthe minimumnumberof prime-implicants coveringall the minteims. The

sameholdstrue for symbolicfunctionsbymeansof GPI's, with thecaveatthat the chosenGPI's must

be encodeable. Thus, if one selects a minimum set of encodeable GPI's that cover all the minterms,

this is a minimum solution of the state assignmentproblem for two-level implementations. It is

a solution because of encodeability, i.e., enforcing the consistency equations makes sure that each

minterm asserts the same output both in the original and in the GPI cover (and so in the encoded

cover). It is also a minimum solution, as the following theorem shows.

Theorem 732 A minimum cardinality symbolic cover ofan FSM can be made up exclusively of

GPI's.

Proof: Wesuppose that no cube of the cover has a next state tag containing aU the symbolic states

and a null output tag, otherwise it can be dropped and the cover would not be minimal. Assume

that we have a minimum cardinality solution with a cube ci that is not a GPI. Let the tag of ci be

the T. We know that a GPI pi exists such that

158 CHAPTER?. GENERALIZED PRIME IMPLICANTS

1. the binary input part of p\ covers the binary input part of ci;

2. Pi and ci have same present state part;

3. Pi and ci have same next state and binary outputs tags.

Replacing ci with pi will not change the cardinality of the cover. The only question is whether the

set of GPI's so obtained is encodeable. We show now that it is the case. The generalized implicants

(GI's) of the given cover are encodeable by hypothesis. The constraints of the GPFs of the new

cover are the same as those of the given GI's, except for the minterms in pi- ci. For each mintenn

in Pi - Ci we add new disjuncts to its consistency equation. Each disjunct is a conjunction of

symbols each of which is a next state originally asserted by the minterm, because when generating

GPI's (e.g. pi) we take the union of the next states tags of the merged GI's. One of the meiged

GI's must cover the minterm and a GI covers a minterm only if it includes in its next state tag

the next state that the minterm asserts. Since each added disjunct contains the next state asserted

by the minterm, whatever encoding satisfies the old consistency equation, it satisfies also the new

consistency equation. Notice that the input constraints of the GPI's of the new cover coincide with

those of the given GI's, because the GPI cancellation rule requires the same present state part to

delete a GI Therefore any encoding that satisfies the given GI's satisfies also the GPI's of the

new cover and therefore encodeability is preserved. •

7.4 Reduction of GPI's Computation to MV Primes Computation

The next question is how to compute efficiently GPI's. In [39] it is shown how to reduce

the computation of GPI's to the computation of the primes of a multiple-valued function obtained

by transformation of the given FSM. We will generalize the transformation to the case of ISFSM's

and prove the correctness of the reduction.

This reduction is of great interest because it allows to exploit existing efficient algorithms

for prime generation [114, 53]. We will describe briefly in Section 11.2 efficient algorithms for

generation of laige sets of primes and report on their application to this problem.

^GPI cancellation when thepresent state partof the cancelling cube is full preserves encodeability becauseit actually
relaxes input constraints.

7.4. REDUCTION OFGPrS COMPUTATION TO MV PRIMES COMPUTATION 159

-0 stO stO 01 -0 100 100 01 -0 100 oil 10 01 100 000 11

11 stO StO 00 11 100 100 00 11 100 oil 11 0- 010 000 01

01 stO stl — 01 100 010 00 01 100 101 00 -1 010 000 01

0- stl stl 1- 0- 010 010 10 0- 010 101 00 01 001 111 11

11 stl StO 0- 11 010 100 00 11 010 oil 10

10 stl st2 10 10 010 001 10 10 010 110 01

1- st2 st2 11 1- 001 001 11 1- 001 110 00

00 st2 stl 10 00 001 010 10 00 001 101 01

01 st2 ANY —

Figure 7.1: Covers of FSM leoncino

7.4.1 An Example

Fig. 7.1 shows on left a symbolic cover of an example of ISFSM, leoncino, that wiU

be used throughout the exposition of GPI minimization. It is an ISFSM because there are some

don't cares in the proper output part and one unspecified next state, denoted by ANY. In the

tabular format, it is customary to omit transitions which have the next state and all proper outputs

imspecified. The input variables of this symbolic function are the proper inputs and the present

state; the output variables are the next state and the proper outputs.

An FSM can be interpreted as a multiple-valued ftmction by representing both the present

state and the next state with 1-hot encoding. For instance, use espresso with the keywords:

.mv 5 2-3-3 2, .typefr, .kiss. The meaning is that the givenFSM is a function with 5 multiple-

valued variables, two of which are binary, two 3-valued and one 2-valued. Type fr specifies that a

cube is in the offset of an output variable where a 0 appears

The one-hot encoded representation of the onset, offset and dcset of leoncino are the

second, third and fourth cover from left, respectively,of Fig. 7.1. The cover of the onset and offset

are read directly from the input (since type fr is specified). By complementingthe union of the

covers of the onset and offset, a cover of the dcset is obtained

®Asa matter of fact, espresso treats n binary ouQrut variables as onen-valued inputvariable; moreover, a s-valued
next state variable and an n-valued proper output variable are replaced by one s n-valued variable. In the example, the
function has 4 multiple-valuedvariables, two of which are binary,one 3-valued and one 5-valued.

^Complementation isperformed only with respect to theproper inputs and present state universe.

160 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

7.4.2 Definition of the TVansformation

We will exhibit a multi-valued function whose primes are the GPI's of the FSM leoncino,

modulo a post-processing step.

To do that define a function, called companion function of the symbolic function, with 4

multiple-valued variables, two ofwhich are binary, one 3-valued and one 8-valued. We represent the

companion function by a companion cover ofthe symbolic cover, constructed as follows. Transform

the cover of the onset of the original function by transforming each cube into a companion cube in

the following way:

1. represent with complemented 1-hot encoding the next state;

2. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

Transform the coverofthe dcset of the original function by transforming each cube into a companion

cube in the following way:

1. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

The transformed cover of the onset of the symbolic function is:

-0 100 01101101

11 100 01101100

01 100 10101100

0- 010 10110110

11 010 01110100

10 010 11010110

1- 001 11011011

00 001 10111010

The transfonned cover of the dcset of the symbolic function is:

01 100 00001111

0- 010 00010101

-1 010 00010101

01 001 11111011

Rnally, the companion function is the function represented by the companion cover

obtained by joining the transformed covers of the onset and dcset of the symbolic function:

7.4. REDUCTION OEGPI'S COMPUTATION TO MVPRIMES COMPUTATION 161

.mv' 4 2; 3 8

-0 100 01101101

11 100 01101100

01 100 10101100

0- 010 10110110

11 010 01110100

10 010 11010110

1- 001 11011011

00 001 10111010

01 100 00001111

0- 010 00010101

-1 010 00010101

01 001 11111011

In the next section we will show that the primes of this function are in 1-1 correspondence

with the GPI's of the original FSM, modulo an easy post-processing step that deletes some primes.

The primes of the companion MV function are shown in Fig. 7.2.

Someprimescan be removed because theydo not correspond to GPI's. Primesof one of

the two following types are removed:

1. Primes that are covered by another prime, with full present state part and with the same next

state and output tags. It is alwaysbetter to select the coveringprime since it induces no face

constraint and covers the same minterms in the next state and output spaces.

2. Primes with full next state tag and null output tag. Since the next state tag is fiill, after

encoding, it would be replaced by the intersection of all the codes, that is the all zero code,

for any encoding. Therefore such a prime wouldnot contributeto cover any minterm in next

state spaces, nor in the output spaces (null output tag).

Fig. 8.3 shows the set of 26 GPI's obtained after post-processing.

7.4.3 Correctness of the IVansformation

Theorem 7.4.1 The computationofGPVs can be reduced to the computationof theprimes of the

companionmultivaluedfunction (MVprimes)followed bya post-processing step that cancels 1) any

MVprime contained by an MVprime with coinciding nextstate and output tags and whosepresent

state part contains all the symbolicstates and 2) anyMVprime with a nextstate tag containing all

the symbolic states and with a null output tag.

162CHAPTER7.GENERALIZEDPRIMEIMPLICANTS

.mv4238

.p39

0-01010110111

0100111111011

1-00111011011

-100111011011

0110010101111

0111010100111

0110110101011

01oil10110011

0111110100011

-010001101101

0-00110111010

—00110011010

0-oil10110010

0-10000101101

1101001110101

-101000110101

0-11000100101

1001011010110

-001010010110

10oil11010010

-0oil10010010

1-10001101100

—10000101100

1010101001001

11oil01010001

-1oil00010001

1-01001010100

—
01000010100

1111001100100

-111000100100

1-11001000100

—11000000100

0-10100101000

1-10101001000

—10100001000

1-oil01010000

—oil00010000

0-11100100000

1-11101000000

Figure12'.GPI'sofFSMleoncinobeforepost-processing

7.4. REDUCTION OFGPrS COMPUTATION TO MV PRIMES COMPUTATION 163

Proof: In the course of the proof we will refer to a symbolic cover (symbolic product-term) and

an MV cover (MV product-tenn) as companion of each other if they are obtained by means of the

previous transformation.

One must prove that for every GPI there is a prime of the function (modulo a post

processing step) and viceversa. In the sequel, unless otherwise stated, we wiU call MV primes

those left after the post-processingstep applied to the set of primes of the MV fimction. hi [39]

the rules for consensus and cancellation originally defined for binary cubes (e.g., in [94]) were

extendedto symboliccubes. We call them GPI consensusand GPI cancellation. GPl's are defined

as the fixed point of the computation that takes an initial symbolic cover and iteratively applies

to it GPI consensus and cancellation. Primes of the companion MV function can be computed in

different ways. They can be found as the fixed point of the computationthat takes an initial MV

coverand iteratively appliesto it MV consensusandcancellation. Wesupposethat both fixed-point

computations proceed as follows:

Start with the initial cover. For each pair of cubes in the cover, repeat until the cover does not

change:

1. compute their consensus;

2. apply cancellation to the consensus cubes;

3. add the consensus cubes to the cover, unless their are cancelled by a cube already in the cover,

4. cancel any other cube covered by a consensus cube.

We show that at each step (and at fortiori at the end)of both fixed-point computations, performed

respectively on the symbolic andMVcover, twocompanion covers aremaintained.

We are now goingto describe carefully and contrastconsensus and cancellation in both

domains.

GPI consensus. GPI consensus forms a A; -|- 1-cube from two fc-cubes that either have

1. same binary-valued parts and different present state part; or

2. unidistant binary-valued parts and same present state part.

Merging two Ar-cubes forms a A; -I- 1-cube thathasa nextstatetagthat is theunionof thetwo fc-cubes'

next state tags and an output tag that is the intersectionof the outputs in the A;-cubes' output tags.

The binary inputs of the A; -I- 1-cubeare obtained with the usual consensus rule for binary cubes. The

164 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

present-state part of the A: -1- 1-cube is the union of the present state parts of the fc-cubes. Example

of GPI consensus in case 1:

CONS(00 stO stO01; GO st2 stl 10) = 00 stO,st2 stO,s«l 00

Example of GPI consensus in case 2:

CONS{lOst2 st2 ll;00s£2 stl 10) = -0 st2 st2,stl 10

MVconsensus. ConsiclertwoMVcubes5 = andT =

The intersection of 5 and T is the product-term

nT„U Xi .Xrf^
1

which is the largest product term contained in both S and T. If Si D Tj = for some i, then

5 n T = <^ and S and T are said to be disjoint. The distance between S and T equals the number

of empty literals in their intersection. The consensus of S and T is the sum-of-products

1

If the distanceof S and T is > 2 then their consensusis empty. If the distanceof S and T is 1 and

Si n Ti = (f), then their consensus is the single product-term

If the distance of S and T is 0, then their consensus is a cover of n terms. Summarizing, MV

consensus forms one cube fipom two MV cubes that have distance 1, and A; + 2 cubes - if A; is the

numberof binaryinputs- from two twoMV cubes that havedistance0. Exampleof MV consensus

of unidistant cubes:

COiV5(00100 01101101;00001 10111010) = 00 101 00101000

Example of MV consensus of 0-distant cubes:

COATS'COOllO 00100101;00101 00101000) =

00100 00100000,00100 00100000,00111 00100000,00100 00101101

Notice that the transformation rule for cubes in the onset ensures that the next state in the output

field has a complemented 1-hot encoding so that MV intersection of encoded next states has the

7.4. REDUCTION OF GPI'S COMPUTATION TO MV PRIMES COMPUTATION 165

same effect as GPI union of next state tags. For the same reason, the transformation rule for cubes

in the dcset does not complement the 1-hot encoding of the next state in the output field. The

following facts account for the asymmetry. There are two types of cubes in the dcset. The first type

is generated by transitions with next state ANY, e.g.,: 01 stl ANY — (01 001 11111011). The

fact that the next state is encoded by 111 means that the cube carries no information about the next

state. When this cube is merged with other cubes at distance < 1, it does not add any information

to the next state, same as when taking consensus of the companion GPFs. The second type is

generated by transitions with a specified next state and some unspecified proper outputs. These

transitions generate a pairofcubes, one in the dcset and one in the onset, as follows: 0- stl stl

corresponding to 0 - 010 00010101 in the dcset and 0 - 010 10110110 in the onset.

When the onset and the dcset are joined, these two cubes are merged into one cube that

corresponds to the original transition where all unspecified proper outputs have been set to 1, in

agreementwith the fact that the GPFs computed startingfrom onset / and dcset d coincidewith the

GPI's computed starting from onset f -\-d and empty dcset (as it is true in general for the primes

of a boolean fimction).The example shows the cube resulting from merging and the corresponding

transition: 0 - 010 10110111 (0 - stl stl 11).

GPI cancellation. A fc -h 1 cube cancels a fc-cube if one of the following is true:

1. The binaryinputpart of the A; + 1-cube covers the binaryinputpart of the k-cub&.

2. They have the same presentstate part, and the next state andoutput tags are identical.

3. The presentstatepart of the A; + 1-cube contains all thesymbolic statesandthe nextstate and

output tags are identical.

The last case is part of the post-processing step in the MV domain. In addition, a cube with a next

state tag containing all the symbolic statesand witha null outputtag is cancelled. This case too is

part of thepost-processing stepin the MVdomain, exceptwhena MV primehas also a full present

state part (then the present state field in the output part is all O's).

MV cancellation. An MV cube contains another MV cube if the parts of the former

containthe corresponding parts of the latter. An MV cubecancelsanotherMV cube if it containsit.

Notice that the present state field in the output part has been introduced to avoid MV cancellation

when there is strict containment between present state parts, as shown here where the upper MV

cube 10 Oil 11010010 (10 stl^ stl stl 10) does not cancel the lower one 10 010 11010110

(10 stl stl 10), consistently with the GPI cancellation rule.

166 CHAPTER?. GENERALIZED PRIME IMPLICANTS

GPI consensus to MV consensus. Suppose that GPI consensus applies to two symbolic

cubes. Does MV consensus apply to their companion MV cubes ? If so, does GPI consensus result

in a symbolic cube whose MV companion is equal to the MV cube obtained by MV consensus ?

a Suppose that the two symbolic cubes have the same binary-valued parts and different present

state part. The companion MV cubes may have distance 1 or distance 0.

al If the companion MV cubes have distance 1, GPI consensus works as MV consensus. Example

of GPI consensus and companion MV cubes:

CONS(OOstO st0 0l;00st2 stl 10) = 00siO,stO.stlQO

CONS{OOmO 01101101; GO 001 10111010) = 00 101 00101000

a2 If the companion MV cubes have distance 0, GPI consensus generates 1 consensus cube, while

MV consensus generates k+ 2 consensus cubes, if k is the number of proper binary inputs.

But k + l consensus cubes are cancelled and the only one left is the companion cube of the

symbolic consensus cube. Example ofGPI consensus and companion MV cubes:

CONS(00 stO, stl stO, stl 01;00 stO, st2 stO, stl 00) = 00 stO, stl, st2 stO, stl 00

COAr5(00110 00100101; 00101 00101000) =

00 100 00100000,00100 00100000,00111 00100000,00100 00101101

The firsttwo termsare absorbedby the twooriginalMV cubes, the thirdone is the companion

MV cube of the result of GPI consensus. The fourth term is cancelled by another MV cube

companion of a symbolic cube created by GPI consensus. In this example it is cancelled by

0- 100 00101101, an MV prime whose companion symbolic cube is 0- stO stO.stl 01.

b Suppose that the two symbolic cubes have imidistant binary-valuedparts and same present state

part. In this case the companion MV cubes have distance 1 and GPI consensus works as MV

consensus.

MV consensus to GPI consensus. Suppose that MV consensus applies to two MV cubes.

Does GPI consensus apply to their companion symbolic cubes ? If so, does MV consensus result in

a MV cube whose symbolic companion is equal to the symbolic cube obtained by GPI consensus ?

1 Suppose that the two MV cubes have distance 1.

7.4. REDUCTION OFGPrS COMPUTATION TO MV PRIMES COMPUTATION 167

la If they differ in a binary input, MV (X)nsensus works as GPI consensus

lb If they differ in the present state part, MV consensus woiks as GPI consensus.

Ic If they differ in the output part, GPI consensus does not apply, while MV consensus does. But

the MV consensus cube is cancelled by an already existing cube, so the net effect is the same

in both cases

2 Suppose that the two MV cubes have distance 0. Apparently GPI consensus and MV consensus

behave differently, but the same reasoning as in case a2 of the analysis of GPI consensus to

MV consensus shows that the net effect is the same.

GPI cancellation to MV cancellation. Suppose that GPI cancellation applies between

two symbolic cubes. Does MV cancellation apply to their companion MV cubes ? Yes. GPI

cancellation applies only when two symbolic cubes have the same present state part and the next

state and output tags are identical. Obviously a containment relation is satisfied by binary-valued

inputs. The companion MV cubes satisfy the same containment relation and MV cancellation

applies too.

MV cancellation to GPI cancellation Suppose that MV cancellation applies between

two MV cubes. Does GPI cancellation apply to their companion symbolic cubes ? There are

cases when MV cancellation applies, but GPI cancellation does not. But they happen only when

cancelling the last cube generated by MV consensus between cubes with distance 0. This MV cube

has no symbolic companion and therefore the net effect is the same, as aigued in case a2 of the

analysis ofGPI consensus to MV consensus. Example ofGPI consensus and companion MV cubes:

CONS(10 stO, stl sfO, st2 00; 10sfO, st2 stO, st2 01) = 10 stO, stl, stl siO,st2 00

CONS(\0110 01000100; 10101 01001001) =

10100 01000000,10100 01000000,10111 01000000,10100 01001101

In this example the fourth term is cancelled by the MV cube -0 100 01101101. The companion

symbolic cubes are respectively 10 sfO,stlySt2 stO, st2 01 and -0 stO stO 01. Notice that the

symbolic cube companion of the cancelling cube does not cancel the symbolic cube companion of

the cancelled cube. But this cancellation in the GPI domain is not required because the companion

symbolic cube of the cancelled MV cube is not generated by GPI consensus. •

168 CHAPTER?. GENERALIZED PRIME IMPLICANTS

7.4.4 Definition of a Max-Min Family of IVansformations

The transfomiation in Section 7.4.2 produces a function whose primes conespond to the

GPI's, after a pruning step is applied to them. It is of practical interest to define functions whose

primes correspond to a subset of the GPI's, in order to generate a part of the GPI's, when the whole

set cannot be built or manipulated.

We are going now to define a family of such transformations. We remind that the onset

of the companion function defined in Section 7.4.2 is obtained finom the onset of the symbolic FSM

by transforming each cube in the following way:

1. represent with complemented 1-hot encoding the next state;

2. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

The dcset of this new function is obtained from the previous dcset by transforming each cube in the

following way:

1. insert the complemented 1-hot encoding of the present state between the next state and the

proper outputs.

Notice the key step of inserting the complemented 1-hotencodingof the present state between the

next state and the proper outputs. This step avoidscancellation ofcubes whose present state literal is

includedproperlyin anothercubes*presentstateliteral, sincetheformercubemightbenecessary for

encodeability reasons. But suppose that, instead than inserting the complemented 1-hot encoding

of the present state, we insert any literal that is contained in it. The effect is that some unwanted

cube cancellation can take place, and therefore that we will get a proper subset of the GPI's. In the

extreme limit we can replace the complemented 1-hotencodingof the present state with an empty

cube and this will make possible the most of cancellation, producing the smallest subset of GPI's

definable in this way. We call maximal transformation the one presented in Section 7.4.2 and

minimal transformation the one with an empty subcube. The Max-Minfamilyof transformations

includes any transformation that for any cube in the original cover inserts between the next state and

the proper outputs any literal included between the complemented 1-hot encoding of the present

state and the empty literal. This proves the next statement.

Proposition 7.4.1 Each tran^ormation in the Max-Minfamily generates a subset ofGPI's.

7.5. RELATION BETWEEN GPI'S AND PRIMES OFENCODED FSM'S 169

7.5 Relation between GPI's and Primes of Encoded FSM's

In this section we demonstrate by examples the relation between GPI's and primes of

encoded FSM's.

7.5.1 Minimum Cover of Encoded FSM and Minimum Cover of Encoded GPI's

We analyze the following two experiments:

1. Given a satisfying encoding, replace the codes in the FSM and minimize it (without makesparse,

to obtain a minimum cover of primes).

2. Given a correspondingset ofGPI's, replace the codes in the GPI's and minimize the resulting

cover.

The two covers are the same, up to exceptions explained by the theory.

Encode theFSMleoncino withthe following codes: e(sfO) = 00, e(5il) = 10,e{st2) =
11. The encoded FSM is

-0 00 00 01

11 00 00 00

01 00 10 —

0- 10 10 1-

11 10 00 0-

10 10 11 10

1- 11 11 11

00 11 10 10

01 11 — —

— 01 — —

A minimum cover of primes of the encoded FSM is:

-01- 1010

01— 1011

-00- 0001

101- 1110

1—1 1111

2. The GPI's in the minimum encodeable solution are:

'One canomitthelasttwo cubes andspecify .typefr, which tells toESPRESSO toputtheunspecified input minterms
in the dcset of all outputs.

170 CHAPTER?. GENERALIZED PRIME IMPLICANTS

3 1- st2 st2 11

5 01 stO,stl. st2 stl 11

6 -0 stO StO 01

16 10 stl,st2 st2 10

17 -0 stl,st2 stl,st2 10

11 11 stl stO 01

18 1- stO StO 00

The encoded GPI's in the minimum er

3 1- 11 11 11

5 01 — 10 11

6 -0 00 00 01

16 10 1- 11 10

17 -0 1- 10 10

11 11 10 00 01

18 1- 00 00 00

Add cube 01 (dcare

introduced as an artifact of encoding):

1- 11 11 11

01 — 10 11

-0 00 00 01

10 1- 11 10

-0 1- 10 10

11 10 00 01

1- 00 00 00

— 01 — —

A minimum cover of primes of the encoded GPI's is:

1—1 1111

01— 1011

101- 1110

-11- 0001

-00- 0001

-01- 1010

This coincides with the previousminimumcover of primes of the encodedFSM, except

for the cube —11 — 0001, explainedby all zeroes effect (see discussion in subsection8.1 before).

The previous transformations are summarized by Figure 7.3.

7.5.2 Primes of Encoded FSM vs. Primes of Encoded GPPs

GPI's can be seen as templatesof the primes of every encodedFSM. The followingtwo

experiments clarify the statement:

7.5. RELATION BETWEEN GPI'S AND PRIMES OFENCODED FSM'S 171

optimum
encoding

original cover
of FSM

GPi generation
and seiection

min seiection
of GPis

encoded cover
of FSM

optimum
encoding

encoded
set of GPis

mnmze

cover

min cover of primes
of encoded FSM

if

minimize cover,
using do set

Figure 7.3: The circle of encodings

1. If one takes the primes of an encoded FSM and extracts the underlying GPI's, one gets a

subset of the GPFs.

2. If one takes all the GPI's, encodes them with a given encoding and then raises them to

primality in the encoding space (by removing the encoded GPI's that are not primes and

expanding them with the appropriatedcset), one gets the primes of the encoded FSM (with

the same encoding).

Weillustratethe previousstatementswithexamples. The previoustransformations are summarized

by Figure 7.4.

1. From primes of the encoded FSM to GPI's.

The primes of the previous encoded FSM are:

1—1 1111

-1-1 1111

—01 1111

01— 1011

1 1010

0-10 1011

101- 1110

0-1- 1010

-01- 1010

-11- 0001

0-0- 0001

-00- 0001

172 CHAPTER?. GENERALIZED PRIME IMPLICANTS

extract
underlying GPIs

primes of
encoded FSM

minimize
using do set encoded set

of GPIs

a set
of GPIs

Figure 7.4: The circle of primes

0—0 0001

The companion MV cubes are:

1- st2,stS st2 11

-1 st2,st3 st2 11

— st3 st2 11

01 stO,stl,st2 ,st3 stl 11

— st2,st3 stl 10

0- stl stl 11

10 stl,st2 st2 10

0- stl,st2 stl 10

-0 stl,st2 stl 10

-1 stl,st2 StO 01

0- stO,st3 StO 01

-0 stO,st3 StO 01

0- stO,stl StO 01

The corresponding GPFs are

3 1- st2 st2 11

4 -1 st2 st2 11

5 01 StO,stl. st2 stl 11

8 — st2 stl,;st2 10

1 0- stl stl 11

16 10 stl,st2 st2 10

9 0- stl,st2 stl 10

17 -0 stl,st2 stl, ist2 10

®There isnoGPI for st3 st211 since itbelongs to the don'tcare setofst3.

the set of
ail GPIs

encode

7.5. RELATION BETWEEN GPVS AND PRIMES OFENCODED FSM'S 173

22 -1 stl. St2 StO,stl,st2 01

10 0- stO StO,stl 01

6 -0 stO StO 01

13 0- stO, stl stO,stl 01

2. From encoded GPI*s to primes of the enco

The encoded GPI's are:

1 0- 10 10 11

2 01 11 — 11

3 1- 11 11 11

4 -1 11 11 11

5 01 — 10 11

6 -0 00 00 01

7 0- 11 10 10

8 — 11 10 10

9 0- 1- 10 10

10 0- 00 00 01

11 11 10 00 01

12 -1 10 00 01

13 0- -0 00 01

14 10 10 11 10

15 -0 10 10 10

16 10 1- 11 10

17 -0 1- 10 10

18 1- 00 00 00

19 — 00 00 00

21 11 1- 00 01

22 -1 1- 00 01

23 11 -0 00 00

24 -1 -0 00 00

25 0- — GO 00

26 1- — 00 00

Notice that there may be GPI's that cannot be encoded. For instance, the encoding of the

MV literal siO, st2 of 20 : 10 stO, st2 stO, st2 01 would be —, that includes also stl.

Notice that to establish a 1-1 correspondance with the primes of the encoded FSM, it is
necessary to find the primes of the encoded GPI's, because some encoded GPI's subsume some

other encoded GPI's, e.g.

^GPI14 andGPI16 were kept, because itcould bethatnoselectionofGPI's thatsatisfies theinput constraint sG, stl
is the smallest one, so that the smallest selection of encodeable GPI's would not include GPI 16, but might include GPI
14.

174 CHAPTER 7. GENERALIZED PRIME IMPLICANTS

14 10 stl st2 10

16 10 stl,st2 st2 10

14 10 10 11 10

16 10 1- 11 10

Notice also that, before computing the primes, one must add to the encoded GPI's the
following cube 01 , that specifies as don't care for all output functions the input

minterms with present state 01, introduced as an artifact of the encoding. In general, one computes
the primes of the cover that includes the encoded GPI's and aU the global don't care minterms

related to encoded present states not corresponding to symbolic present states of the original FSM.
The primes of the encoded GPI's coincide with the primes of the encoded FSM and are:

1—1 1111

-1-1 1111

—01 1111

01— 1011

—1 1010

0-10 1011

101- 1110

0-1- 1010

-01- 1010

-11- 0001

0-0- 0001

-00- 0001

0—0 0001

Nowlet us workout the examplechoosinga 1-hotencoding: e(siO) = 100,e(sil) =010,

e(st2) = 001.

1. From primes of the encoded FSM to GPI's.

The primes of the encoded FSM and the corresponding GPI's are:

-11- 11111 dcset

-1-1 mil dcset

—11 11111 dcset

01—1 11111 01 st2 - 11 gpi 2

—000 mil dcset

0100-
11111

01 st2 - 11 gpi 2

1—1 00111 1- st2 st2 11 gpi 3

-1—1 00111 -1 st2 st2 11 gpi 4

01 01011 01 st0,stl,st2 stl 11 gpi 5

0-1- 01011 0- stl stl 11 gpi 1

1

o
0

1

00111 1- st2 st2 11 gpi 3

-100- 00111 -1 st2 st2 11 gpi 4

7.5. RELATION BETWEEN OPTS AND PRIMES OFENCODED FSM'S

o 1 o 1 o010
11

0
-

st
l

st
l

11gp
i

1

-01— 100
01

-0 stOstO01gp
i

6

1 1 0 1 o010
10

0
-

stl,s
t2

st
l

10gp
i

9

01 010
10

0
-

st
2

st
l

10gp
i

7

1 000
10

— st
2

stl,s
t2

10 gp
i

8

1 1—
1

I tH 1—
1

100
01

11 st
l

stO01gp
i

11

1 0 1 o o 100
01

-0StOStO 01gp
i

6

0 1 1 1 000
01

0
-

StOStO
,stl01gp
i

10

-10
—

000
01

-1 stl,s
t2

stO,st
l,st201gp
i

22

-1-
1- 000
01

-1 st
l

StO
,stl01gp
i

12

o 1 1 1 o000
01

0
-

StO
,stlStO
,stl01gp
i

13

100
—

001
10

10stl,s
t2

st
2

10gp
i

16

1 1—
1

1 o I—
1

001
10

10st
l

st
2

10gp
i

14

-00—000
10

-0stl,s
t2

stl,s
t210gp
i

17

-0-
1-000
10

-0st
l

stl,s
t210gp
i

15

-00
-

000
10

— st
2

stl,s
t210gp
i

8

1-1
—100
00

1
-

stOSt
O00gp
i

18

110
-0

100
01

11st
l

StO01gp
i

11

1 o 1 o rH000
0110StO,
st2StO,
st201gp
i

20

11—
0

100
00

11StO
,stlStO00gp
i

23

1 O o 100
00

1
-

StOstO0
0

gp
i

18

2. From encoded GPI's to primes of the encoded FSM.
The encoded GPI's are:

1 0- 010 010 11

2 01 001 11

3 1- 001 001 11

4 -1 001 001 11

5 01 010 11

6 -0 100 100 01

7 0- 001 010 10

8 — 001 000 10

9 0- 0— 010 10

10 0- 100 000 01

11 11 010 100 01

12 -1 010 000 01

13 0- —0 000 01

14 10 010 001 10

15 -0 010 000 10

16 10 0— 001 10

17 -0 0— 000 10

18 1- 100 100 00

19 — 100 000 00

175

176 CHAPTER?. GENERALIZED PRIME IMPLICANTS

20 10 -0- 000 01

21 11 0— 000 01

22 -1 0— 000 01

23 11 —0 100 00

24 -1 —0 000 00

25 0- 000 00

26 1- 000 00

The following global dcare minterms are added:

—000

11

-11-

-1-1

The primes of the encoded GPFs are:

-11- 11111

-1-1 11111

—11 mil

01—1 11111

—000 11111

0100- 11111

1—1 00111

-1—1 00111

01 01011

0-1- 01011

1

o
o

1

1—1

00111

-100- 00111

o
1

o
1

o

01011

-01— 10001

1

1

o
1

o

01010

0
1

1

1

01010
1 00010

11-1- 10001

o
0

1

o

10001

1

1

r-l
1

o

00001

-10— 00001

-1-1- 00001

o
1

1

1

o

00001

100— 00110

0
1

l-»
1

00110

-00— 00010

-0-1- 00010

-00- 00010

1

l-»
1

1

10000

7.5. RELATION BETWEEN GPrS AND PRIMES OFENCODED FSM'S 111

110-0 10001

10-0- 00001

11—0 10000

1—00 10000

They coincide with the primes of the encoded FSM.

Summarizing, we point out that each GPI corresponds to various primes in different

encoded FSM's, for instance, the GPI 3 \ - stl st2 11 corresponds to the following primes:

1. 1--1 llllinFSMencodedby00,10,ll

2. 1 0 1011 in FSM encoded by 01,11,10

3. 1 1 00111 in FSM encoded by 100,010,001

4. 1-00 - 00111 in FSM encoded by 100,010,001

In the last case it is noticeable that the same GPI corresponds to two different primes in the same

encoded FSM (only one of them is needed for covering puiposes, they differ in minterms of the

don't care set of every output function). The number of GPI's is not only much smaller than the

total number of primes over all encoded FSM's, but it may be even smaller than the number of

primes ofone encoded FSM, as the case of 1-hot encoding shows

7.5.3 An Analysis Procedure

Given a symbolic FSM and an encoding (fiom which one derives the corresponding

minimized encoded FSM), it may be of interest to study the encoding from the point-of-view of

GPI analysis. For instance, if an encoding produces a very small cover, the analysis will revealhow

the symbolic cover was mapped into such a compact representation. The previous discussion on

the relation between GPI's and primes of a minimized encoded FSM can be put to use in devising

a procedure that analyzes an encoding. Here we sketch the main steps. More specific information

could be extracted to drive an intelligent heuristic search of a small encodeable cover of GPI's.

1. Encode and minimize the FSM, making sure that a cover of primes is returned

2. Compute the set of GPI's.

'̂ Notice thatGPI's are the MV primes of thecompanion MY hmction, after post-processing.
For instance, with espresso disable the step of makesparse.

178 CHAPTER?. GENERALIZED PRIME MPLICANTS

3. Match the primes of the encoded minimized cover with the corresponding GPI's. To do this,

given a prime, consider the present state subcube and find all the states included in it, then

take away all hardware states that do not correspond to a state in the symbolic cover. As a

result we have the proper input subcube and the set of present states. It is a fact that there is

a unique GPI that has the same input subcube and the same set of states in the present state

literal. It is the (only) one which corresponds to the given prime.

4. Derive the consistency equations of the given set of GPI's (for each minterm of the symbolic

FSM, and for each GPI that covers it in the inputpart, add one term to the consistency equation

of that minterm).

5. Derive the face constraints and check that they are satisfied.

As an example, consider the following encoded and minimized realization of the FSM

leoncino:

-01- 1010

01— 1011

-00- 0001

101- 1110

1—1 1111

The corresponding GPI's are:

17 -0 stl,st2 stl,st2 10

5 01 st0,stl,st2 stl 11

6 -0 stO stO 01

16 10 stl,st2 st2 10

3 1- st2 st2 11

1. GPI 17 covers minterms 12,13,14,16;

2. GPI 5 covers minterms 1,2,3,4;

3. GPI 6 covers minterms 6,9,10;

4. GPI 16 covers minterms 7,8,20,21;

5. GPI 3 covers minterms 14,15,16,17,18,19;

6. mintenns 5 and 11 are not implemented because stOhas zero code.

179

Chapter 8

Minimization of GPI's

8.1 Reduction of GPI Minimization to Unate Covering

Given all the GPI's, one must select a minimum encodeable subset of them that covers

each minteim of the original FSM in the next state variables and in the proper output variables

asserted by the minterm.

An approach reduces the problem to unate covering with encodeability and it has been

proposed in [39]. A reduction to binate covering, where encodeability is translated into binate

clauses, has been outlined in [133,132]. Here we introduce the two approaches and discuss their

respective merits. We start with reduction of GPI minimization to unate covering.

In [39] it is summarily proposed a modification of unate covering to solve the problem

of selecting a minimum encodeable set of GPI's. Here we present a more complete version of it,

clarifying issues arising in the case of state assignment. We wiU illustrate the discussion with the

example leoncino shown in Fig. 7.1.

Minterms of the example. Minterms are product-terms where each literal is the char

acteristic function of a singleton. The minterms generated by the symbolic cubes of the previous

cover are shown in Fig. 8.1. A —means an empty next state tag. Given the semantics of ANY,

no minterm is contributedby transition 01 stl ANY .It follows that no related encodeability

constraint will be generated, ensuring that ANY of a missing transition is implemented by any

possible hardware state. This is more than having all symbolic next states as possible, instead all

hardware next states are possible (this is a point never mentioned in the literature). If we have mul

tiple next states (non-deterministic FSM's), the minterm equations will have more choices. Notice

that a minterm like 11 stO stO GO does not need to be implemented (i.e., it is not in the onset of the

180 CHAPTERS. MINIMIZATION OF GPFS

-0 stO stO 01: 1 00 StO - 01 00 100 00001

2 00 StO StO 00 00 100 10000

3 10 StO - 01 10 100 00001

4 10 StO StO 00 10 100 10000

11 stO StO

o
o

5 11 StO StO 00 11 100 10000

01 stO stl —: 6 01 StO stl 00 01 100 01000

0- stl stl 1-: 7 00 stl - 10 00 010 00010

8 00 stl stl 00 00 010 01000

9 01 stl - 10 01 010 00010

10 01 stl stl 00 01 010 01000

11 stl StO 0-: 11 11 stl StO 00 11 010 10000

10 stl st2 10: 12 10 stl - 10 10 010 00010

13 10 stl st2 00 10 010 00100

1- st2 st2 11: 14 10 st2 - 10 10 001 00010

15 10 st2 - 01 10 001 00001

16 10 st2 st2 00 10 001 00100

17 11 st2 - 10 11 001 00010

18 11 st2 - 01 11 001 00001

19 11 st2 st2 00 11 001 00100

00 st2 stl 10: 20 00 st2 - 10 00 001 00010

21 00 st2 stl 00 00 001 01000

01 st2 ANY —:

Figure 8.1: Minterms of FSM leoncino

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 181

1 00 100 11101101 00 StO - 01 00 100 00001

2 00 100 01101100 00 stO StO 00 00 100 10000

3 10 100 11101101 10 stO - 01 10 100 00001

4 10 100 01101100 10 StO StO 00 10 100 10000

5 11 100 01101100 11 StO StO 00 11 100 10000

6 01 100 10101100 01 StO stl 00 01 100 01000

7 00 010 11110110 00 stl - 10 00 010 00010

8 00 010 10110100 00 stl stl 00 00 010 01000

9 01 010 11110110 01 stl - 10 01 010 00010

10 01 010 10110100 01 stl stl 00 01 010 01000

11 11 010 01110100 11 stl StO 00 11 010 10000

12 10 010 11110110 10 stl - 10 10 010 00010

13 10 010 11010100 10 stl st2 00 10 010 00100

14 10 001 11111010 10 st2 - 10 10 001 00010

15 10 001 11111001 10 st2 - 01 10 001 00001

16 10 001 11011000 10 st2 st2 00 10 001 00100

17 11 001 11111010 11 st2 - 10 11 001 00010

18 11 001 11111001 11 st2 - 01 11 001 00001

19 11 001 11011000 11 st2 st2 00 11 001 00100

20 00 001 11111010 00 st2 - 10 00 001 00010

21 00 001 10111000 00 st2 stl 00 00 001 01000

Figure 8.2: Extended representation of the minterms of FSM leoncino

next state variable) if stO is assigned the all zeroes code.

We defined a companion MV function whose primes (modulo a post-processing step) are

the GPI's of the original symbolic function. The product terms of the companion MV function that

correspond tothe minterms ofthe original symbolic function are shown inFig. 8.2 ^. The cover on

the right shows the minterms represented with 1-hot encoding (and with the augmenting state set

in the output part removed). We call the representation on the left extended representation and the

one on the right reduced representation.

GPI's of the example. The GPI's of leoncino are shown in Fig. 8.3. The cover on the

right shows the GPI's represented with 1-hot encoding (and with the augmenting state set in the

output part removed). We call the representation on the left extended representation and the one on

the right reduced representation.

The covering tables of the example. Now we can compute the covering table whose

'Thesecubes arenotminterms of thecompanion function because theou^ut variable hasbeenaugmented with one
more state set and the states in the output variable are represented with complemented 1-hot encoding.

182 CHAPTERS. MINIMIZATION OF GPVS

1 0- 010 10110111 0- stl stl 11 0- 010 01011

2 01 001 11111011 01 st2 - 11 01 001 00011

3 1- 001 11011011 1- st2 st2 11 1- 001 00111

4 -1 001 11011011 -1 st2 st2 11 -1 001 00111

5 01 111 10100011 01 stO,stl. St 2 stl 11 01 111 01011

6 -0 100 01101101 -0 stO stO 01 -0 100 10001

7 0- 001 10111010 0- st2 stl 10 0- 001 01010

8 — 001 10011010 — st2 stl,st2 10 — 001 OHIO

9 0- oil 10110010 0- stl,st2 stl 10 0- oil 01010

10 0- 100 00101101 0- StO StO,stl 01 0- 100 11001

11 11 010 01110101 11 stl StO 01 11 010 10001

12 -1 010 00110101 -1 stl StO,stl 01 -1 010 11001

13 0- 110 00100101 0- StO,stl StO,stl 01 0- 110 11001

14 10 010 11010110 10 stl st2 10 10 010 00110

15 -0 010 10010110 -0 stl stl,st2 10 -0 010 OHIO

16 10 oil 11010010 10 stl,st2 st2 10 10 oil 00110

17 -0 oil 10010010 -0 stl,st2 stl,st2 10 -0 oil OHIO

18 1- 100 01101100 1- StO StO 00 1- 100 10000

19 — 100 00101100 — StO StO,stl 00 — 100 11000

20 10 101 01001001 10 StO,st2 StO,st2 01 10 101 10101

21 11 oil 01010001 11 stl,st2 StO,st2 01 11 oil 10101

22 -1 oil 00010001 -1 stl,st2 StO,stl,st2 01 -1 oil 11101

23 11 110 01100100 11 StO,stl StO 00 11 110 10000

24 -1 110 00100100 -1 StO,stl StO,stl 00 -1 110 11000

25 0- 111 00100000 0- stO,stl. St 2 StO,stl 00 0- 111 11000

26 1- 111 01000000 1- StO,stl. st2 StO,st2 00 1- 111 10100

Figure 8.3: GPI's of FSM leoncino

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 183

678901234567890123456

X X

XX X X

X

XXX X

XX XXX

XX X XX

X X

XXX X

XX XXX

XX X X X X X

X X X X

X X X X X

X X

X

XXX X

X X

XX X

X

X X

0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9

1 X

2 X

3 X

4 X

5

6 X

7 X X

8 X X

9 X X X

10 X X X

11

12

13

14 X X

15 X

16 X X

17 X X X

18 X X

19 X X X

20 X X X

21 X X X

Figure 8.4: Covering table of FSM leoncino

columns are GPI's and whose rows are minterms. One can use either the extended or the reduced

representation for the GPI's and minterms. The extended representation has the advantage that

column dominance, that requires same present state literal and next state tag (or next state tag of the

dominating colunm as a subset of the next state tag of the dominated column), can be done simply

by checking containment of the representations: a GPI (column) covers a minterm (row) iff the GPI

contains the minterm. Notice that by construction the tag of a GPI may contain a superset of the

next states in the tag ofa covered minterm, but not a subset. When it contains a proper superset, the

encodeability check tells whether the next state of the minterm can be produced by a column (or set

of columns). The resulting table is shown in Fig. 8.4. The second column does not any intersect

any row because it corresponds to a GPI that covers only points in the don't care set of the original

fimction (from the unspecified transition 01 st2 - 11).

We caU next-state minterms the minterms that assert a next state and output minterms the

184 CHAPTERS. MINIMIZATION OF GPI'S

minterms that assert a proper output. The next-state minterms insure that the correct next state is

producedfor a giveninput. The outputmintermsinsure that the correct properoutputs are produced

for a given input. The two types of minterms differ in the definition of when they are covered.

Outputminterms are coveredas long as a GPI that contains them is selected. A rowcorresponding

to a next-state minterm may require more than one column to be covered (i.e. to satisfy its encoding

constraint) because each column may contribute only part of the next state (given that a GPI asserts

as next state the conjunction of the codes of the states in its tag). Indeed if the tag of a column c is

a proper superset of the tag of an intersected row r, then c might not be sufficient to cover r.

Each next-state minterm yields a constraint (or consistency equation) where the code of

the next state is set equal to the disjunction of the conjunctions of the codes of the next states in the

tags of the selected GPI's that cover the minterm. These output constraints have a special feature:

the next state on the left side appears in all the conjunctions on the right side. This fact will be

exploited to establish properties ofthe coveringalgorithm and to simplify the algorithmto check the

satisfiabilityof constraints. Moreover, each GPI contributesan input constraint (the present states

in its input part), albeit sometimes a trivial one.

The previous table cannot be used as an input to a covering routine because of the

noted difference between next-state and output minterms. For instance, one cannot perform row-

dominance between two rows of different kinds; e.g., in the previous table one cannot say that

row 2 is eliminated by row 1, because row 2 is a next-state mintenn and, even if row 1 (an output

minterm) is covered, row 2 may still be unsatisfied after selecting one column that covers row 1

(in other words, the encoding constraint of row 2 may be unsatisfiable, given the current selection

of columns). We wiU see that row dominance cannot be performed also between two rows each of

which corresponds to a next state minterm. A way to handle the problem is to split the table into

two tables: the (proper) output table and the next-state table. They have the same columns, the

rows of the former are the output minterms and the rows of the latter are the next-state mintenns.

It is possible to apply column dominance to the combined tables, ifwe restrict the ordinary

definition of column dominance. The ordinary definition is that a column dominates another one

if the former covers at least as many rows as the latter. Restricted column dominance holds iff

ordinaiy column dominance holds, the two columns have the same present state and the next state

tag of the dominating column is a subset (proper or not) of the next state tag of the dominated

column. The reason is that such a dominating column covers at least as many output and next state

minterms as the dominated column and contributes to the consistency equation ofeach covered next

state minterm a term that bitwise dominates or is equal to the one contributed by the dominated

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 185

00000000011111111112222222

12345678901234567890123456

1 X X X

3 X X

7 X X X X

9 X X X

12 X X X X

14 X X X X

15 X X

17 X X X

18 X X

20 X X X X

X X

Figure 8.5: Output covering table of FSM leoncino

column. For instance, if thetagof thedominating columnis {stl, st2} andthe tagof thedominated

column is {sH, sf2, siS}, then €{stl).e(st2) > e{stl).e{st2).e{st3)j whatever encoding e(.) is

given to stl,st2, st3 Notice that restricted column dominance arises because of the next state

table. Coliunn dominance must be applied to the combined tables to guarantee the optimality of the

solution.

In the cancellation rule of the consensus procedure to compute GPFs there is a condition

that the next state tag ofthe cancelling GI must be equal to the next state tag ofthe cancelled GI. This

is more restrictive than the condition for restricted column dominance requiring that the next state

tag ofthe dominating column must be a subset (proper or not) of the next state tag ofthe dominated

column. An interesting question is when it happens that a column covers at least as many rows of

another column and its next state tag is a proper subset of the next state tag of the other column.

The output table is shown in Fig. 8.5. This table defines an ordinary unate covering

problem. Here row dominance can be performed without conditions. Restricted column dominance

can be applied to the combined tables. As a lower bound one can use the maximal independent

set This bound is looser than in standard unate covering because even if a solution can be found of

cardinality equal to the lower bound, it may not satisfy the next state constraints.

The next-state table is shown in Fig. 8.6. This table defines a constrained unate covering

problem. This table is covered iff some columns are selected that satisfy the encoding constraints

(next state constraints, input constraints and uniqueness constraints). The next state constraints are

'Li [39] the "samepresent state" condition is overlooked.

186

2

4

5

6

8

10

11

13

16

19

21

000000000

123456789

X

X

X

X X

X

X

X

X

X X

111

0 12

X

X X

X

X X

X X

XXX

X

CHAPTERS. MINIMIZATION OF GPrS

1 2

9 0

X

X X

X

X

X

X

X X

2 2

3 4

X X

X X

X

X X

X X

Figure 8.6: Next-state covering table ofFSM leoncino

a consistency equation for each row; to satisfy a consistency equation it is necessary that a colunm

intersecting the related row is selected (covering problem), but in general it is not sufficient because

of the interaction with the input and uniqueness constraints (constrained covering problem). Given

the structure of the encoding constraints, they can always be satisfied by adding more columns to a

given selection that solves the ordinary covering problem. Every input and imiqueness constraint

yields a set of initial encoding dichotomies [116]. For each initial encoding dichotomy there is a

companion one, where the same blocks of states appear moved from left to right and viceversa.

Only one of two companion encoding-dichotomies must be satisfied. Next state constraints can be

viewed as deleting encoding dichotomies. A removed encoding dichotomy is said to be unsatisfied,

otherwise it is satisfied. We will show that by selecting enough columns that cover rows responsible

of cancelling an encoding dichotomy, the latter can be satisfied. The goal is to choose the minimum

number of columns such that the encoding constraints are satisfied (a necessary condition is that the

next state table is covered). Row dominance is meaningless iri the next-state table. Consider the

example:

ri r2

Cl X X

C2 X

Even though column ci covers rows ri and r2, we may have to choose also column C2 to avoid

^Only input anduniqueness constraints were generated in theouqjut table, sosatisfiability of encoding constraints is
always guaranteed there.

8.1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 187

that the next state constraint of row ri removes an encoding dichotomy. Therefore removing row

ri as row dominated by row rz would not guarantee a correct solution of the original problem. A

new lower bound will be later defined, based on a maximal independent set of violated encoding

dichotomies (similar to the notion of disjoint violations in [39]).

A solution of the example. Let us select a set of encodeable GPI's that cover the output

and next state tables. The output table can be covered by choosing columns 3,5,6,17. In the

next-state table two rows (m5 and ml 1) are not covered by columns 3,5,6,17; we choose column

18 to cover row 5 and column 11 to cover row 11. At this point the next state constraints are:

m2; GO 100 00 stO StO = StO

m4: 10 100 10 stO StO = StO

m5: 11 100 11 StO StO = StO

m6: 01 100 01 StO stl = stl

m8; 00 010 00 stl stl = stl.st2

mlO; 01 010 01 stl stl = stl

mil: 11 010 11 stl StO = StO

ml3: 10 010 10 stl st2 = stl.st2

ml 6: 10 001 10 st2 st2 = st2 + s

ml9: 11 001 11 st2 st2 = st2

m21: 00 001 00 st2 stl = stl.st2

Only m8, ml3 and m21 have non-trivial next state constraints. The only non-trivial input

constraint is (stl,st2), from column 17.

We now check if the previous constraints are satisfiable. The initial encoding dichotomies

are: (stlst2; stO), (st0;stlst2), (stl;st2), (st2;stl). Next state constraint stl = sil.si2(from

both m8 and m21) eliminates (st2; stl); the reason is that this encoding dichotomy corresponds

to an encoding bit where st2 is assigned 0 and stl is assigned 1, but the disjunctive constraints

m8 and m21 force sfl to be assigned 0, if st2 is assigned 0. For the same reason, next state

constraint st2 = stl.st2 (from ml3) eliminates {stl; st2). Sinceboth (sil; st2) and {st2;stl)

are eliminated (stl cannot be distinguished from st2) by m8, ml3 and m21, a column that covers

at least one of m8, ml3, m21 is selected: e.g., we choose column 16 that covers row ml3 (but

does not cover m8 and m21). The previous constraints remain the same, except for the following

update: ml3 : 10 010 10 stl st2 = st2 -\- stl.st2 {= 5£2). Notice that a new column could

introduce a new input constraint, but column 16 does not. Ifwe check again satisfiability, we notice

that {stl; st2) is not anymore removed by ml3 and so we have an encodeableselection of GPFs

that solves our original problem. An encoding that satisfies all constraints with a minimum code

length is: enc{stO) = 00, enc(sil) = 10, enc(sf2) = 11.
The GPI's in the final solution, together with the corresponding encoded GPI's, are:

188 CHAPTERS. MINIMIZATION OF GPVS

3 1- st2 st2 11

1- 11 11 11

5 01 StO,stl,st2 stl 11

01 — 10 11

6 -0 StO StO 01

-0 00 00 01

16 10 stl,st2 st2 10

10 1- 11 10

17 -0 stl,st2 stl,st2 10

-0 1- 10 10

11 11 stl stO 01

11 10 00 01

18 1- StO StO 00

1- 00 00 00

By assigning to stO the all zeroes code GPI18 is not needed. It should be the case that

also GPI 11 is not needed, because it covers only minterm 11 stl in 11 stl stO 00, but it is not so.

The reason being that GPI 11 is chosen to cover next state stO in minterm 11 sU; it happens that

GPI 11 when raised to primality expands also to the onset of a proper output, so that, when encoding

GPI 11 with GO for stO, it is not recognized that GPI 11 is useless. This motivates a later discussion

on the necessity of repeating the minimization procedure to model the all zeroes code effect.

The all zeroes code issue. If a next state is encoded with all zeroes then the minterms

with that next-state do not need to be covered by a GPI; in terms of the original FSM, one does not

implement the product-terms with a next-state encoded with all zeroes and proper outputs all zeroes.

This fact is not modelled by GPI's. For instance, the following minterms of the original FSM do

not need to be implemented if stO is assigned the code GO: 11 stO stO GO and 11 sil stO G-.

Knowing beforehand that those two mintenns do not need to be realized may change the

best solution. The only known way to cope with this problem is to repeat the previous procedure

up to AT + 1 times, if N is the number of next states; once as before and then once for each

next state, dropping from the original cover all the minterms producing a given next-state (called

reserved state) and all zeroes as proper outputs. If all minterms belong to the onset of at least one

binary-valued output, then there is no advantage in using an all-zero code and so only one covering

must be made. If an all-zero code is already reserved, when at the end codes of minimum length

that satisfy the encoding constraints of the optimal solution must be detemiined, one must take

into account that the all-zero code cannot be used anymore. Suppose that the only set of codes of

minimum length that satisfy the encoding constraints require a state to have the all-zero code. Then

'^Wedo not know whether the best solution has at all a code with all zeroes.

8.1, REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 189

we can add an encoding bit, setting it to 1 for all the codes but the reserved state that gets a 0. The

encoding constraints will be satisfied by these new codes, with a penalty ofone more encoding bit.

Notice that even if we reach the conclusion that one of the states in a given optimal selection of

k GPI's requires the all-zero code, there may be another selection of k GPFs where this does not

happen, lb find this other selection we should replace the current satisfiability check with a routine

that tells whether the encoding constraints are satisfiable without using the all-zero code; in the

worst-case, this can be achieved by exploring all codes that satisfy those constraints. But we are

allowed to assign to the reserved state the all-zero code (not needed by the remaining states) without

adding an encoding bit, if the reserved state was taken into account in the input and uniqueness

constraints. In this way we are guaranteed to optimize also the secondary cost function (number of

encoding bits). In practice this would be too expensive to compute, so we wiU only minimize the

primary cost function (number of product-terms), adding one more encoding bit, when it is needed

to handle the issue of the all-zero reserved code.

Summing up towards an exact algorithm. The problem is to select a minimum set

of GPI's that cover the output table and satisfy the encoding constraints of the next state table.

One can explore the space of solutions by solving the output table first and then computing its

minimum extension to a solution of the next state table. This procedure is wen-defined because of

the foUowing result:

Proposition 8.1.1 Any solution ofthe output table can be extended to a global solution.

Proof: Take the original FSM, replace each cube (asserting a next state) by a GPI that contains it and

has the same present state literal and next state. This GPI exists because the rule for cancelling GFs

requires the same present state literal and next state and, moreover, such a GPI is never canceUed by

column domination because its next state tag cannot be a subset of another tag. This gives an upper

bound on the number of GPI's necessary to cover the next-state table. These GPI's are compatible

with the input constraints of any selected set ofGPI's that covers the output table. The reason is that

the suggested way ofcovering the next-state table yields only trivial output constraints (of the form

a = a a.b a.c-|-...) and whatever input constraints there are, they can always be satisfied

(in the worst-case by 1-hot encoding). •

The minimum of all such solutions solves exactly the original problem. In other words,

for a given solution of the output table, we find the minimum set of GPI's which extends it to a

solution of the next state table. This is the current best solution. One then goes back to the unate

covering problem and finds a second solution to it, that in tum will be extended optimally to satisfy

190 CHAPTERS. MINIMIZATION OF GPFS

the next state table, and so on, until an optimal solution to the global problem is found. When

back to the unate covering problem we use as best current solution the best global one, not the best

solution of the unate problem. Therefore if there is a solution of the output table, worse than the

previous best solutionof the output table, but such that it can be extended to a better global solution,

it can be found. This guarantees that a global optimum is reached. At the end, when a minimum

solution of the original problem has been found, codes of minimum length that satisfy the encoding

constraints of the optimal solution must be determined.

In the output table we must solve an ordinary unate covering problem, for which well-

known algorithms exist [114]. In the next state table we must solve a constrained covering problem:

choose a minimum number of columns such that all encoding constraints are satisfied. An exact

algorithm can be designed using a branch-and-bound scheme as for table covering. It is also helpful

to maintain the same model of the problem as a table with a set of columns (GPl's) and rows

(minterms). At each step a new column is chosen that extends the current partial solution to one that

satisfies more the related encoding constraints. A key operation ofthe algorithm is to check whether

a set of selected GPFs satisfies the related encoding constraints. If so, we have a complete solution,

otherwise a new GPl must be selected and the feasibility check applied again. New criteria must

be defined for selection of a branching column and for computing a lower bound. This constraint

satisfaction problem can also be solved by a variant strategy in two steps: ordinary unate covering

of the next state table, and then selection of more GPFs to satisfy the encoding constraints, hi this

variant the strategy of exploring the solution space is modified to favour choosing first GPFs that

cover at least once every minterm of the next state table.

8.1.1 Exact Selection of an Encodeable Cover of GPI's

Figure 8.7 shows an exact algorithm to find a minimum selection of GPFs that is a cover

of the original FSM and that is encodeable. The procedure is patterned on the branch-and-bound

algorithm used to find an exact solution to unate covering [66].

Theorem 8.1.1 The algorithm ofFigure 8.7finds a minimum cardinality selection ofGPVs that is

a cover ofthe original FSM and that is encodeable.

Proof: The goal is to select columns of P to cover the output minterms and satisfy the encoding

constraints induced by the next state minterms. The latter goal requires that for each next state

minterm one or more GPFs are chosen so that the encoding constraints are satisfied. For this purpose

at first columns are chosen until the next state minterms are satisfied, as certified by encodeable.

8.1. REDUCTION OFGPI MINIMIZATION TO UNATE COVERING 191

then a call to mincov (a unate solver) selects a set of additional GPI's to complete the covering

of the ou^ut minterms (if needed). This is done for each new solution to the next state minterms

problem, i.e. each partial solution is extended optimally to a complete solution. The algorithm

has the same control structure as the branch-and-bound procedure designed to solve exactly unate

covering. Differences are:

1. In the table reduction step column dominance is restricted and row dominance is disallowed.

Both restricted column dominance and detection ofessentials are performed on the complete

set of minterms to guarantee conecmess.

2. The procedures to check encodeability (encodeable ^), and to compute a lower bound

(Ibound) and a branching column (select-column) are specific to the problem. Designs of

these procedures will be presented after that encodeability ofGPFs will have been discussed

in depth.

3. After invoking mincov the current solution is bounded away, if the cost of the new complete

solution is worse than the current upper bound.

The algorithm explores in the worst-case all solutions. At the beginning it reduces

correctly the global matrix. It handles first the next state minterms and whenever it has foimd a

new partial solution that satisfies all the encoding constraints, it extends it optimally to a complete

solution. The bounding mechanism is the same as in the case of unate covering. It relies on a global

upper bound, while a lower bound is computed only by considering the next state minterms. This

weakens the lower bound, but guarantees correctness. Also the branching column is computed only

by considering the next state mintemis. The procedure mincov is invoked on the output minterms

table, after output minterms covered as a side-effect by the current partial solution are removed.

The best solution in this table is found using a unate table solver. The current complete solution is

compared against the upper bound •

Notice that when dealing with next state minterms there is no notion of a covered minterm, but we

speak instead of satisfied dichotomies, as it will be seen in detail later. Therefore next state rows

are not deleted imtil all encoding constraints are satisfied.

replaces the simpler check that all rows of the matrix have been covered.
^When solving exactly unate covering, if thenew lower bound is less than the upper bound and the table isempty, it

means that a better solution has been found. Here, if encodeahle succeeds, we must compare again the complete solution
with the upper bound, because in the previous comparison the new lower boimd was not yet (in general) a complete
solution, since the output minterms had not been covered yet (in general).

192 CHAPTERS. MINIMIZATION OF GPFS

procedure exact-gpi-selection(P, Mn, Mo,G, Ibound, ubound) {

/* restricted colunm dominance, empQr columns and essentials */

Pjdom = restrictedjdominatedjcolumn3{P, Mn U Mo)

P = P — Pjdom

Ge = essential{P, Mn U Mo)

if ((cost(Gc) + cost(G)) > ubound) retum(0)

elseG = GuGe

/* find lower boimd from here to final solution by independent set */

indep = lbound{P, Mn)

/* make sure the lower bound is monotonically increasing */

Iboundjnew = MAX{card{G) + card{indep), Ibound)

/* bounding based on no better solution possible */

if {Ibound-new > ubound) beat = 0

f* check for new best solution */

else if (encodea61e(G,Mn)) { /* new 'best' solutionat currentlevel*/

Mo=Mo- Mo.G

besto = mincov{P,Mo,G,lbound-new, ubound)

if ((cost(6esto) + cost(G)) > ubound) best = 0

else beat = G U beato

} else { /» no morereductions: split andrecur */

pick —selectjcolumn(P, Mn)

/* branching column in the covering set */

beatl = exact-gpi-aelection{P —pick, Mn, Mo, G Upick, Iboundjnew, ubound)

/* update the upper bound if a better solution is found */

if {beatl ^ 0 and ubound > card{beatl)) ubound = card{beatl)

/* no branching if heuristic covering */

if (6estl ^ 0 andheuriaticjcovering) retum(6estl)

!* no branching if lower bound matched */

if {beatl ^ 0 andcard(&estl) == Iboundjnew) retum(6estl)

/* branching column not in the covering set */

beatl = exact.gpijaelection{P —pick, Mn, Mo, G, Iboundjnew, ubound)

beat = aolutionjchooaeJ3e3t{beatl, beatl)

}

retum(6est)

}

Figure 8.7: Exact selection of GPI's

8,1. REDUCTION OF GPI MINIMIZATION TO UNATE COVERING 193

8.1.2 Approximate Selection of an Encodeable Cover of GPI's

The bottleneck of the proposed exact selection algorithm is likely to be the very large

number of branchings to guarantee exactness of the solution. Since the number of branchings is

a (complex) fimction of the number of GPI's, one could try to restrict branching by generating or

keeping only a subset of the GPI's. For instance a simple-minded heuristic would be to generate

only the GPI's that have in the next state tag a number of states not larger than the logarithm of

the number of states of the FSM. Another shortcut in the exact algorithm would be to stop at the

first solution. In general an exact solution should make its quality more noticed in the case of next

state intensive problems, i.e., state assigrunent problems whose final result depends strongly on the

realization of the next states logic.

A different family of heuristics, presented in this section, starts with the complete set of

GPI's, but selects a solution greedily, instead of bulding the full (branch-and-bound) computation

tree. A fine tuning is required to trade-off^ efficiency vs. running time vs. ease of implementation.

Fig. 8.8 shows an approximate algorithm to find a selection ofGPI's that is a cover of the

original FSM and that is encodeable. The algorithm is approximate because it finds only one partial

solution (that covers all minterms of the FSM) by invoking unate.encoding and then extends it to

a complete solution by selecting greedily new GPI's needed to make the first selection encodeable.

Since output and next state minterms together are fed to a standard unate table solver, "prohibited"

table reductions may be carried on. In the step to extend the solution, minterms and GPI's that

have been incorrectly discarded may be taken back in the solution, if needed. In opposition to the

exact algorithm presented previously, this algorithm covers first optimally the output minterms and

then extends greedily the partial solution to handle also the next state minterms. One could say

that it is geared more towards output intensive problems. The exact and heuristic algorithms take

the opposite view about covering next state minterms first vs. covering output minterms first. The

following considerations discuss the issue.

1. In order to cover the outputminterms first in the exact algorithm, one should modify a standard

unate solver to restrict the table reduction operations. This was considered undesirable from

an implementative point of view.

2. In the heuristic algorithm we did not take care of the next state minterms first, based on the

expectation that it would have been less efficient than taking care of the output minterms first.

The expectation is justified by the fact that we have an high quality unate table solver, not

194 CHAPTERS. MINIMIZATION OF GPTS

procedure approx^i_selection(P, M„, Mo) {

n') —unate-encoding{P, Mn + Mo)

G'{i',p'y) = Pie^i/y) - G(i',p',nO

unsat^FID{x, y) = 1

while{unsai.FID{x, y) 0) {

GPIselected{i'yp',n') —select.column{G', Mn)

G{i'yp'y n') = Gii'yp'y u') + GPIjselected{i', p'y n')

G'{i'yp'yn') = G'{i'yp'yn') —GPI-selected{i' yp',n')

unsat.FID{x, y) = encodeable{Gy Mn)

}

retum(G)

}

Figure 8.8: Approximate selection of GPI's

likely to be matched in efficiency by a selector of encodeable GPI's. Experiments will assess

the validity of this choice.

The simplified description of the algorithm highlights that it does a greedy search, by showing that

after a call to unate-encoding, one GPI at a time is chosen until the problem is solved. There is no

backtacking to improve the solution (and no usage of a lower bound).

8.2 Reduction of GPI Minimization to Binate Covering

The encodeability check for a set of GPI's, given a bound on the number of encoding bits,

was already formulated in [39] as a Boolean satisfiability problem.

The idea has been advanced further in [133,132], to cast the whole problem of selecting

a minimum encodeable cover of GPI's, for a fbced code-length, as a binate covering problem. An

implementation has been described in [19]. A binate covering problem asks for the minimum

solution of a fonnula written as a POS. Each literal in the POS can be chosen in the positive or

negative phase in the solution and the cost of a solution is the sum of the cost of literals chosen

in the positive phase, in the hypothesis that each literal has associated a cost (usually the cost is

1). In our case, the literals are the GPI's and the bits of the codes of the states; the cost of a

GPI is 1 and the cost of a bit is 0. Choosing a literal of a GPI in positive phase corresponds to

8.2. REDUCTION OF GPI MINIMIZATION TO BINATE COVERING 195

selecting that GPI in the cover. Choosing a literalof a bit in positive or negative phasecorresponds

to setting it to 1 or to 0 in the encoding. In a sense, this reduction to binate covering lumps a

genuine table covering problem (selecting a coverof GPI's) with a satisfiability problem (finding

codesthat satisfyconstraints). Apparently this is appealing becauseeverything is solvedin a unique

algorithmic frame, but the disadvantage is that a good algorithm for table covering may not be a

good algorithm for satisfiability.

We will illustrate the reduction to binate covering using the same example leoncino.

Suppose that we encode the states stO, sfl and st2 with 2 bits. The encoding bits are eoi, eo2, en,

€i2» 621. 622. where is the j-th bit of the code of state i. Wedenote e(sti) the code of state sti.

We are going to builda binate table whosecolumnsare the GPI's (denotedby for i = 1, ..., 26)

and the encoding bits (ejj, i = 0,1,2, j = 1,2). In our example there are 32 columns. The rows

are clauses which state the conditions under which GPI's can be chosen to cover the minterms and

an encoding compatible with them exists. There are clauses that express that next-state and output

minterms are covered; other clauses represent input constraints induced by GPI's; finally, other

clauses insure that a unique encoding is determined. We will now survey in detail each type of

clauses.

The GPI's selected in the final cover must assert the same next state and proper outputs

asserted by each minterm in the FSM. So we have clauses for both conditions.

For each next-state minterm, for all GPI's that cover it, we impose that the code of the

next-state of the minterm is equal to the the disjunction of the conjunction of the next-states in the

tags of the selected GPI's. Basically we read the next-state table and write-down an equation for

each row. The big difference is that each row of the unate next-state table gives rise to many rows

in the binate table, as the example shows.

€{stO) = e(st0){g6 + 9ioe{stl) gi3€(stl) -1- gi9e(stl) -|-5246(5^1))

e(stO) = e(sfO)(ge + g\s + gi9e(st\) g2oe{st2) -j- g26e(st2))

e{stO) = e{stO){gii -|-5196(5^) -|- 923 + g24e{stl) -|-g26e(st2))

e(stl) = e(sil)(flr5 + gioe{stO) -f fifi36(5fO) -f gi9€{st0) + flf246(sf0) H- 925^(810))

€{stl) = €{stl)(gi -\rg9-\rg\3e{st0) -I- gi5€(st2) -1- gne(st2) g25e(stO))

e{stl) = e(sil)(flri + ^5 ^9 -f- gi2e(siO) -|- gi3e(slD) -f g22e(st0)e{st2) g24e{st0) -F g25e(st0))

e{stO) = e(5fO)(511 -F gi2e(stl) + g2\e{st2) g22€{stl)e(st2) -h923 + 5246(5^) -1- 926e(st2)

e{st2) = e(st2)(9i4 5156(s£l) -t- gie + 9ne{stl) -|- 5266(stO)

196 CHAPTERS. MINIMIZATION OF GPFS

e{st2) = e{st2) (gs + gie{st\) + gie+ gne(stl) + g2oe(stO) + g26e(st0)

e{st2) = €(st2){g3 + ^4 + gse{stl) + g2ie(st0) + g22e{st0)e{stl) + g26e(stG)

e{stl) = €(st\){g7 + gfie(st2) + 5(9 + gne{st2)

Consider the firstof the previous equations. It is equivalent to two equations in SOP:

eoi = 601(5^6 + gio^ii + gisen + Qig^n + £'24611)

602 = 602(fif6 +£'10612+ 5^13612 +£'19612+524612)

or, equivalently:

601 + 56 + 510611 + 513611 + 519611 + 524611

602 + 56 + 510612 + 513612 + 519612 + 524612

They can be rewritten in PCS as:

(601 + 56 + 510 + 513 + 519 + 524) (^1 + 56 + 611)

(eo2 + 56 + 510 + 513 + 519 + 524) + 56 + 612)

Notice that a possible solution of these clauses is eoi = eo2 = 0, and in that case no GPI is needed

to cover minterm m2. This solves the problem of the all zeroes code that requires instead a clumsy

repetition of minimizations in the unate reduction in subsection 8.1. The problem of efficient

conversion from SOP to PCS requires that one avoids generating duplicated and subsumed clauses.

The point is illustrated by the following examples. Consider the SOP a + 6c + def. It can rewritten

as the following POS:

(a + 6+ d)(a + 6+ c)(a + 6+ /)(a + c + d)(a + c + e)(a + c + /).

Consider the SOP a + 6c + dc, where some literals occur in more than one disjunct (literal c). It

can be rewritten as:

(o -|- 6 -|- d)(tt -|- 6 -j- c)(ct c d)(o c c).

Taking away duplicated and subsumed clauses one gets:

(a + 6+ d)(aH- c).

8.2. REDUCTION OF GPI MINIMIZATION TO BINATE COVERING 197

It is reported in [19] that a distributive method, which recursively generates clauses and immediately

eliminates those duplicated and subsumed, reduces very effectively the number of clauses. The

clauses of a reported example went down from 631,000 to 184. No description of the algorithm is

provided in the report. The only existing documentation is the code itself, that I have not yet read.

Summarizing, each next-state minterm equation yields some clauses to be added to the

binate table. For instance, the next-state equation of minterm ml yields four clauses. In the

worst-case, if there are m minterms, the length of the code is fc, each minterm involves g GPFs

and each GPI has n next-states in its tag, we have 0(m.k.n^) clauses. But in practice this number

can be reduced to 0(m.k.n) if an efficientSOP to PCS conversionis in place, given that the same

next-states occur in many GPPs (this is elimination of dominated rows, in the binate covering

formulation).

For each output minterm, one GPI that covers it must be selected. Basically each row of

the output table translates into one row of the binate table. In our example, the first four clauses of

this type are:

[96 + 9\o + gis)

(96 + 92o)

(91 + 5^9 + 9\5 + 9n)

(91 + + 99)

Some clauses must enforce that the input constraint associated to each selected GPI is

satisfied. This can be translated into the logical condition that, if a GPI is selected, each state not

in the face must be assigned an opposite phase with respect to the states in the face in at least one

encoding column. Input constraints with only one state or with all the states are trivial and no

clauses are generated for them. In our example, face constraint (stl,st2) is associated to GPFs

9,16,17,21,22, (stO.stl) to GPFs 13,23,24 and (stO^stl) to GPI 20. For instance, the logical

condition to satisfy stl, stl, if GPI 9 is selected, is:

99 + 601611621 + 601611621 +602612^22 + 602612622-

A conversion from SOP to PCS must be made. But in this case it happens rarely that simplifications

can be made, differently from next-state covering clauses (the only simplification that occurs here is

ofclauses with a literal and its negation). The experimental fact is that these clauses are a bottleneck

ofthe binate covering approach. For instance, [19] reports the following data: from 256,000clauses

198 CHAPTERS. MINIMIZATION OF GPI'S

for an FSM of 4 states and a code of length 2, to 11,764,900 clauses for an FSM of 8 states and

a code of length 3. hi the worst-case, if the states are s, the length of the code is k, and there are

/ states in a face constraints, the number of clauses introduced by a GPI with a non trivial face

constraint is0((s - /).(/+ 1)^*^) clauses.

Some clauses insure that no pair of states are assigned the same code. In our case they are

e{stO) €(stl), €(s<0) ^ e(5il) and e(sil) ^ e{st2). The condition e(5<0) / e(stl), i.e., that

the codes of the two states differ in at least one bit, is expressed by the following SOP:

eoieii -h eoieii -h eo2ei2 + 602^12•

A conversion from SOP to POS is required. In the worst-case, if the states are s and the length of

the code is k, the number of clauses to insure distinct codes is Other clauses insure that

a state is not assigned more than one code, hi our example, they are:

(eoi ® €oi)(eo2 0eo2)(eii 0cii)(ei2 0 ei2)(e2i ®e2i)(622 0 622)

In the worst-case, if the states are s and the length of the code is A;, the number of clauses to insure

unique codes is 0(k.s). All together these clauses make sure that an encodingis produced.

Once the binate table has been completed, one can use any binate solver to find a solution.

In practice the size of the table is too large for available tools. Since both the number of columns

(roughly, the numberofGPI's) and ofrows (even larger than the number ofcolumns) become quickly

very large, even approaches that solve binate covering by means of a shortest path computation of

the clauses represented by BDD's as in [82, 62] have been unable to solve non-trivial instances.

Indeed the methods in [82,62] may succeed in handling huge numbers of clauses, but they are still

limited by the numbers of columns, which are the support variables of the required BDD's.

8.3 GPI's and Non-Determinism

8.3.1 Symbolic Don't Cares and Beyond

In [39] mention is made of symbolic don't cares. In the state assignment context, they

arise when more than one next state is allowed for a transition (don't care transitions). We introduced

already such a situation when the next state is ANY, i.e. any of aUthe states, but a more general

case is when the next state can be any of a subset of states. GPI's can be generated also for this

more generalcase. Suppose that we have a don't care transition i\ si sq/s2 o\ wherethe next-state

8.3. Gprs AND NON-DETERMINISM 199

sq/s2 means that soandS2 arebothacceptable nextstates. We can replace thedon't caretransition

by two care transitions ii si sq oi and i\ si S2 o\, and then apply the algorithm for generating GPI's

as in Subsection7.3.1. Onemore rule is required to handle A:-cubes with identicalproper inputs and

present states: a fe-cube cancels another A;-cube, if they have identical input parts and the tag of the

first is a subset of the tag of the second. The reason is that the cancelling cube covers the same input

subspace in more next-state spaces. The encodeability condition is modified, by replacing a single

next state by a disjunction ofnext states in the consistency equation ofeach don't care minterm. The

next states in the disjunction are those that appear in the original don't care transition that covers the

given don't care minterm. Moreover, if a GPI corresponding to some next states being asserted by

a symbolic don't care minterm is selected, other GPI's corresponding to different next states being

asserted by the same don't care minterm cannot be selected in the cover

Don't care transitions arise naturally in FSM's, as a way to represent different STG's

that describethe same sequential function. A givenSTG is only one representation of a sequential

function (a collection of input-output traces). An STG can be restructured in different ways and

still represent the samesequential function. It is not known apriori whichof these representations

is the starting point leading to the most compact representation after state assignment. A state

assignment procedure optimal for a sequential function (and not only for a given representation

of the function) shouldcapture all equivalent STG's and find out whichone is the best to encode.

No such a procedure is currently known in the general case. Currently it is common to do state

minimization first and then to perform state assignment, since an STG withminimum number of

states is usually a good starting point for state assignment. But it is a suboptimal procedure, as

pointed out first in [55].

Givena CSFSM,state minimization retums a unique reducedFSM (up to state renaming).

State minimizationof CSFSM's merges all equivalent states into one state. Since it is not known

apriori theamountof merging thatproduces thebeststartingpointfor stateassignment, onecanpass

to the state assignment step the meigeability information, insteadof the reduced FSM. The state

assignment routineis giventhe task to decide the merging, whileassigning the codes to the states.

In this way, a family of equivalent STGs, complete under state merging and state re-direction, is

explored duringstateassignment. Sucha combined stateminimization andencoding procedure has

been proposed in [78], in the following form:

^Anticipating a future discussion, we say that the selection of encodeable GPI's reduces to binate covering and
encodeability when there are don't care transitions. When don't care transitions are not present, one can reduce the
selection of encodeable GPI's to unate covering and encodeability.

200 CHAPTERS. MINIMIZATION OF GPVS

1. Identifyequivalent states and impliedstate pairs.

2. Modify the FSMrepresentation by lettingthe next-state of any transition be any one of the

equivalent states.

3. In the state assignment step, allow equivalent states to have the same code (i.e., equivalent

states need not have different codes) and assign the same code to all implied state pairs of

equivalent states encoded with the same code.

This way of coupling state minimization and state assignment gives rise to don't care transitions,

because some transitions have more than a possible next state.

Given an ISFSM, a state minimization procedure returns an ISFSM with a minimum

number of states. Another way oflooking to it is that state minimization of ISFSM's takes a family

ofCSFSM's and returns a subfamily ofCSFSM's, all characterized by having the minimum number

of states. We do not know of an exact procedure that explores at the same time state minimization

and state assignment of ISFSM's. In [133], the problem of mapping the implied classes into

compatibles in the reduced FSM (problem of unique mapped representation) has been modelled

with don't cares transitions in the reduced FSM.

The introductionof don't care transitionsis a specialcase of symbolicrelations, pioneered

in [82, 78]. Symbolic relations tie together the notion of GPI (that accounts for symbolic in the

name) with the notion of relation. It is clear that with don't care transitions we have a relation, and

not anymorea function,because the output responseis a number ofchoices and not just one. They

are symbolic relations because the output response is symbolic, so GPI's are required. To solve

the symbolic relation problem, the notionof GPI's is extended to the one of generalized candidate

primes (GCPI's), ®similar to the notion ofacandidate prime inaboolean relation. An appropriate
covering problem is thensetup, whereby a minimum subsetof GCPI's is selected to implement the

symbolicrelation. We refer the reader to the references for a detailed presentation of the theory.

It suffices to say here that covering with GCPI's involves a binate table covering step, while for

covering with GPI's (constrained) unate table covering suffices.

In this thesis we only considersymbolicdon't cares arising with a next state ANY. They

can be handledin the frameof GPI's, withouta need to extendthe theoryto GCPI's. Beforeleaving

the topicof symbolicdon't cares, wereportanexamplefrom [133]of uniquemappedrepresentation

modelled using GCPI's. Consider the ISFSM given in the table.

generalized candidateprime of a symbolicrelation His a. cube (cjcr) C D x £ such that there exists an input
encoding D -¥ andan ou^ut encoding0 : £ for which (^(c)| ^>(<7)) is a primeof a mapping f H.

8.3. GPrS AND NON-DETERMINISM

0 1

1 1,0 2,0

2 — 4,1

3 1." 2,0

4 1,1 5,0

5 3,0 3,1

201

A solution with minimum number of states can be formed with the compatibles:

a = {l,3},6={2,5},c={3,4}

When constructing the reduced FSM there is a choice for the next state of b under input 0 So,

we get:

0 1

a a,0 6,0

b (a, c),0 0,1

c a,l 6,0

The STT of the reduced FSM is:

a

b

(a,c)
c

a

b

The primes of this symbolic relation are listed in Figure 8.9. Let the encoding of a be laiLi-

Similarly for b and c. We now proceed to derive the coveringconstraints.
x = 0 a

(ial + + Cjlbl + C8 + Cglcl + ClO + Cip/jl + C20 + Ql/cl)

(hi + Cl + Ojkl + C8 + Cgl^a + ClO + 019/52 + C20 + C2i/c2)

X = 1 a

x = 0 6

(hi + 02 + O7/0I -H Oii/cl + 012 + 019/al + 022/cl)

(hi + 02 + C7/02 + Oll/c2 + 012 + O19/02 + 022/c2)

(Ll + 03 + 08 + 09/cl + 013/cl + 015 + Ciehl + 020 + 02l/cl)oi4

(hi + 03 + C8 + 09/02 + 013/^2 + 015 + Oie/cl + 020 + 02i/c2)014+

(h\ + 09/al + O13/0I + 014 + Oie/ol + O2l/al)O3C8Ci5C20

(/c2 + 09/02 + 013/02 + Cl4 + Ol6/a2 + C2lhl)C3CsCi5C20

'Thesolution a = {1}, b = {2,5},c = {3,4}has nomapping options.

202 CHAPTERS. MINIMIZATION OFGPVS

ci: 0 a a 0

C2'- 1 a b 0

C3: 0 b a 0

C4: 1 b c 1

C5: 0 c a 1

ce: 1 c b 0

c?: — a anb 0

eg: 0 a\Jb a 0

eg: 0 aU 6 a n c 0

cio- 0 a\Jc a 0

cii: 1 a\Jb bnc 0

C12: 1 a U c b 0

C13: - 6 a n c 0

C14: - 6 c 0

C15: 0 bUc a 0

Cl6- 0 bUc a n c 0

en: 1 bUc bnc 0

cig: - c a n 6 0

C19: - a U c aOb 0

C20: 0 aU6Uc a 0

C21: 0 aU6Uc aOc 0

C22: 1 alibU c bnc 0

Figure 8.9: Primes of the symbolic relation.

8.3. Gprs AND NON-DETERMINISM 203

X = 1 6

C4

x = Oc

C5

x= 1 c

{kl + C6 + Cl2 + Cnlcl + Cig/al + Ci9/ai + C22/cl)

(^62 + C6 + C\2 + Cl7/c2 + Cls'aZ + <^19^2 + ^22^02)

Let us turn now our attention to the face embedding constraints. The non-trivial face embedding

constraints, the related sets of primes, and the corresponding constraints are:

aUb: C8,C9,cii

C8C9C11 -|- (/al ® ^cl)(4l 0 ^cl) + ('o2 ® 'c2)(^62 0 ^<3.)

a U c: cio, C12,ci9

C10C12C19 + {lal 0 4l)(^cl0 ^6l) + {Ll 0 k2){id2 0 ^2)

6Uc: C15,C16,C17

C15CI6C17 + (^61 0 'ol)('cl 0 'al) + (k2 0 L2)(^c2 0 U2)

Finally, the disjointness constraints are given by:

((/al 0 /61) + (^o2 0 ^62))((^al 0 ^cl) + ('a2 0 'c2))((^61 0 Ll) + (^62 0 ^<3,))

The optimum encoding is given by the minimum cost assignment satisfying the product of all the

constraintsderivedso far. Puttingtheseconstraintsin POS form results in a huge numberof clauses,

in spite of the simplicity of the example.

8.3.2 GPI's for Decomposition

Another application of GPI's is for the decomposition of FSM's into interconnected

submachines. A formulation of FSM decomposition taigeting two-level logic as symbolic-output

partitioning has been proposedin [6]. The algorithm proposedrequires the generationof GPI's of

submachines and the solution of a constrained covering problem. We refer the interested reader to

the original paper. Here the novel aspects of this application ofGPI's are outlined.

204 CHAPTERS. MINIMIZATION OF GPFS

Suppose that the problem is to decompose a given FSM, M, into two interconnected

FSM's, Ml and M2, with the objective to minimize the total number of product terms in the

minimized symbolic representations of the submachines. Let the number of product terms in

the prototype machine, M, after one-hot coding and two-level logic minimization be P. Let the

number of product terms in the submachines Mi and M2 after one-hot coding and two-level logic

minimizationbe Fi and F2. respectively. An optimal decomposition minimizes Pi + P2. An upper

bound to Pi -1- P2 is P, corresponding to the case when no good decomposition can be found and

so the original FSM is not decomposed.

One decides a-priori a decomposition topology and a number of submachines. Outputs

can be partitioned between the various submachines. Decomposition topologies vary fix)m a general

one where each submachine knows the state of every other submachine to a parallel one, where

no submachine knows the state of any other submachine. Of course a given decomposition does

not need to exist. A way to find decompositions is to come up with one partition of the original

states for each submachine. These partitions must satisfy some properties to induce a functionally

correct decomposition. The properties depend on the chosen topology. In the case of a general

decomposition it is sufficient the minimum requirement that the product of the partitions be the

zero-partition; for a paralleldecomposition everypartitionmust be closed. Insteadof partitionsone

could look for set systems [56] (statesmay be in more than one block) and explorea larger solution

space, but it is not done in the referred project.

Suppose that one looks for a general decomposition into two submachines (it always

exists). Conceptually eachstateintheoriginalFSMis splitintotheconcatenation oftwocompanion

states. Two copies of the original FSM are made, where each copy is defined on one of the two sets

of companion states. Sinceeachcopyreads the stateof the other, it follows that eachcopyseesthe

globalpresentstate as in the original FSM. The outputscan be distributed between the two copies.

For instance, all outputs can be given to one of the two copies.

The symbolic covers of the two submachines are then minimized. A multi-valued min

imization of the 1-hot encoded covers would not yield any more information, than a multi-valued

minimization of the 1-hot encoded original FSM. Instead the goal here is to find a pair of valid

partitions (whose product is the zero-partition) such that the minimized multi-valued covers of

the two submachines, where merged states are identified, are minimum. Now enter the GPI's.

^^Multi-valued minimization ofa 1-hot encoded cover isa concise way ofsaying that multi-valued minimization ofa
symboliccoverreturns a minimizedmulti-valued cover,that can be realizedwith an equivalenttwo-valuedcoverby 1-hot
encodingtheminimized multi-valued cover;altematively, one can say that 1-hotencodingof a symbolic cover followed
by two-valued minimization is equivalent to multi-valued minimization of a symboliccoverfollowed by 1-hotencoding

8.3. Gprs AND NON-DETERMINISM 205

Supposethat we compute the set of GPI's of each submachine (this is more than computingthe set

of Pi's of each submachine). We know that each GPI carries a next state tag whose interpretation

is that the encoded GPI produces as next state the intersection of the codes of the states in the

tag. Since we are computing a bound when the encodingis one-hot, the bitwise intersectionof the

codes of two states is null unless they have the same code. Therefore the tag ofeach GPI forces to

merge the states in it into one. So we can use the next state tags of the GPI's to explore all possible

partitions. The selection of two minimum sets ofGPI's which induce valid partitions and such that

the meigings forced by their tags do not conflict with the input constraints induced by their present

state literals gives two submachines whose 1-hot encoded implementations have a total minimum

cardinality. Different topologies induce different requirements on the selections of GPI's that yield

correct decompositions. Notice that there may be codes shorter than 1-hot and still satisfying the

input constraints and merging conditions, but here we are not interested in encoding the states, but

in decomposing the original FSM by means of a preprocessing step.

The two selected sets of GPI's define the symbolic covers of the two submachines. Each

state in the present state literal of a GPI in a submachine denotes the pair of companion states of

both submachines: one is the present state of the current submachine and the other state is an input

from the other submachine. Each state of a submachine is replaced by the representative of the

equivalence class to which it belongs. The two symbolic covers must now be encoded. Since each

submachine reads as input the state of the other submachine, the state assignment routine should

take into account such an interaction between the two submachines. This is an instance of state

assignment of a network of FSM's, for which no good algorithm is known up to now. It is not

mentioned in [6] how the problem of encoding mutually interacting FSM's has been solved in the

reported experiments. It is only stated that a state-of-art state assignment tool for single FSM's

(nova) has been somehow used.

The following example shows the main steps of a decomposition. The original FSM is:

0 si s2 1

1 si s3 1

0 s2 s3 0

1 s2 s4 0

0 s3 s3 0

of the minimized symbolic cover.
If GPI's of each submachineare used without this restriction on a chosenencoding, then the GPI's ofeach submachine

would carry the same information as the GPI's of the original FSM. GPI's are independentof an encoding (GPI's are used
to find an optimal encoded cover), but here they are used with a presupposedencoding, so that here GPI minimization is
equivalent to multi-valued minimization and simultaneous exploration of the partitions.

206

The two copies are:

1 s3 s4 0

0 s4 s2 1

1 s4 si 1

CHAPTERS. MINIMIZATION OF GPVS

0 sal sbl sa2

1 sal sbl sa3

0 sa2 sb2 sa3

(1) 1 sa2 sb2 sa4

0 sa3 sb3 sa3

1 sa3 sb3 sa4

0 sa4 sb4 sa2

1 sa4 sb4 sal

0 sal sbl sb2 1

1 sal sbl sb3 1

(2) 0 sa2 sb2 sb3 0

1 sa2 sb2 sb4 0

0 sa3 sb3 sb3 0

1 sa3 sb3 sb4 0

0 sa4 sb4 sb2 1

1 sa4 sb4 sbl 1

They have the following minimum covers of GPI's:

- 1000 (sal sa2 sa3)

(3) 0 1111 (sal sa2 sa3)
- 0001 (sal sa2 sa3)

1 0110 (sa4)

0 1000 (sb2) 1

(4) 1 1000 (sb3 sb4) 1

- 0110 (sb3 sb4) 0

0 0001 (sb2) 1

1 0001 (sbl) 1

Replace the present state literals in (3),(4) with a concatenation i

The covers are:

- sal sbl (sal. sa2,sa3)

0 sal sbl (sal. sa2,sa3)

(3') 0 sa2 sb2 (sal. sa2,sa3)

0 sa3 sb3 (sal. sa2,sa3)

0 sa4 sb4 (sal. sa2,sa3)

8.3. Gprs AND NON-DETERMINISM 207

- sa4 sb4 (sal,sa2. sa3)

1 sa2 sb2 (sa4)

1 sa3 sbS (sa4)

0 sal sbl (sb2) 1

(4') 1 sal sbl (sb3,sb4) 1

- sa2 sb2 (sb3,sb4) 0

- saS sbS (sb3,sb4) 0

0 sa4 sb4 (sb2) 1

1 sa4 sb4 (sbl) 1

Replace each state by a representativeof its equivalenceclass (sal, sal, i

by sal; s63, sb4 are one class represented by s63). The final symbolic

- sal sbl sal

(3") 0 sal sb2 sal

0 sal sb3 sal

- sa4 sb3 sal

1 sal sb2 sa4

1 sal sb3 sa4

0 sal sbl sb2 1

(4") 1 sal sbl sb3 1

- sal sb2 sb3 0

- sal sb3 sb3 0

0 sa4 sb3 sb2 1

1 sa4 sb3 sbl 1

An optimal state assignment of both submachines should take into account their interactions.

For instance, when encoding submachine (3") the symbolic input sb appears as state variable in

submachine (4").

hi summary, decomposition does not carry out the complete encoding of the states, it

merely 'preprocesses' themso that thesubsequent stateencoding applied on thepreprocessed setof

stateswillbe guaranteed to realize thedecomposition withthedesired topology. The decomposition

problemis simpler than the classical state assignmentproblemsince a one-hotcoding has already

beenassumed,andtheonlydegreeoffreedomis in givingthe samecode to the states. It is interesting

to mentionthat stateencodingcan be viewedas the problemof finding an optimaldecompositionof

the prototype machine into as many submachines as there are state bits in the final state encoding.

The number of submachines (number of bits), topology of interconnections and distribution of the

proper outputs are all unknowns that an optimal state assignment decides , thereby producing an

optimal decomposition.

208 CHAPTERS. MINIMIZATION OF GPI'S

Redecompositionof interconnected FSM's via GPI's is briefly touched upon in [5]. The

claim is that one can generate the GPFs of the submachines and after some operations deduce fiom

them GPI's of the overall FSM. These operations are described very briefly and are not clear, but the

point made is that one can explore the GPI's of the overall FSM, without a need to flatten the FSM

network into a lumped FSM to compute them. This corresponds to a re-encoding/re-partitioning of

the initial implementation.

209

Chapter 9

Encodeability of GPI's

9.1 A Theory of Encodeability of GPI's

We present a theory of encodeability of GPI's based on the notion of raising graphs and

updating sets. It is at the core of new algorithmsfor the computationof a branchingcolumn and of

a lower bound to be used in a branch-and-bound scheme to find a minimum encodeable cover of

GPI's.

9.1.1 Efficient Encodeability Check of GPI's

A set of selected GPI's and the original cover of the FSM yield a set of constraints: the

input constraintsof the GPI's, the uniqueness constraints and the next state constraints. Then one

must find if the selected GPI's are encodeable, i.e., if there is an assignment of codes to states such

that all associated encoding constraints are satisfied. If so, codes of minimum length that satisfy

the constraints must be found in order to convert the cover of encodeable GPI's into a two-valued

cover that implementsthe original FSM. Theory and algorithmsto check satisfiability of encoding

constraints have been proposed in [116], to which we refer for details. Here we review necessary

definitions and theorems. Moreover, we present novel results on encodeability of GPI's that will

be the basis for a new feasibility check algorithm very suitable for a BDD-based representation.

We suppose that a set of GPI's and an FSM cover (therefore a set of states and a set of next state

constraints) are given.

An encoding dichotomy (or,more simply,dichotomy) i = (/; r) is a 2-blockpartitionof

a subset of the states to be encoded. The states in the left block are associated with the bit 0 while

210 CHAPTER 9. ENCODEABILITY OF GPI'S

those in the right block are associated with the bit 7. If a dichotomy is used in generating codes,

then a code bit of the states in the left block is assigned 0 while the same code bit is assigned 7 for

the statesin the rightblock. For example, (ab;cd) is an dichotomy in whicha and 6are associated

with the bit 0 and c and d with the bit 7.

A face constraint yields pairs of initial dichotoniies (ID). For instance, given the states

a, 6,c, d, e and the face constraint (a6c), the initial dichotomies are {abc; d), (d;abc), (abc\ e),

(e; abc). Since dichotomies have a fixed 0 or 7 assignment, for each of them there is a dual

one where the blocks are switched. So there is natural equivalence relation I on the initial di

chotomies / (duality-equivalence). Two initial dichotomies are in the same class iff they are dual

of each other (the dual of the dual of dichotomy i is i). In the example there are two classes

{(a6c;d), (d;abc)},{(abc;e), (e;abc)}. A class t = {zl, zr} of the dualityequivalence relation is

called a free initial dichotomy (FID). A FID can be represented by either initial dichotomy that is

in the class. Uniqueness constraints too generate initial dichotomies.

A dichotomy = (/', r') orderly or block-wise covers another dichotomy z = (/, r),

noted as D i, iff 3 / and r' D r. Notice that this definition differs from the one given in [116],

where it is said that a dichotomy ii covers a dichotomy ii if the left and right blocks of iz are subsets

respectively eitherofthe left and right blocks, or ofthe right and left blocks of ii. We reserve instead

this unordered definition of covering to the case of a dichotomy covering a free initial dichotomy.

A dichotomy i' = (V, r') unorderly covers a FID i = (/, r), noted as t' 3 i, iff 3 ' and r' D r

orl' D r and r' 3 L We willoftendropthe qualification and simply say "covers", when it willbe

clear from the context which one is meant.

A dichotomy is complete if each state appears in either block. A completion of a

dichotomy i = (l, r) is a dichotomy c(i) = (c{l), c(r) such thatc(l) 3 /, c(r) 3 r, c(/) n c(r) = 0,

c(/) Uc(r) = U(I, r), where U is theuniverse set.

A dichotomy violates a next-state encoding constraint if the encoding bit generated for

the states in the dichotomy does not satisfy the bit-wise requirements of the next-state encoding

constraint. A valid dichotomy is one that does not violate any next-stateencodingconstraint. The

notion of valid and complete dichotomy coincides with the notion of prime dichotomy proposed

in [116],but here we will not use the latter term since we do not rely on iterated union to generate

valid and complete dichotomies.

A dichotomyis raised by adding states into either its left or right block as implied by the

next-state encoding constraints. A dichotomy is said to be maximally raised if no further states

can be added into either the left or right block by the next-state encoding constraints.

9.1. ATHEORYOFENCODEABa.ITYOFGPrS 211

procedure check-feasible {constraints) {

I = generateJnitial-dichotomies (constraints)

D = copy(/)

foreach (dichotomy d in D)

raise-dichotomy (d, constraints)

D = removeJnvalid-dichotomies (D, constraints)

I = dualityjequivalence (I)

foreach (free dichotomy? = {il, i/t} € T)

if (? is notcovered byd{ii) G£)orby £/(««) GD)

return (WEAS/BLfi)

return (FEASIBLE)

}

Figure 9.1: Encodeability check

The procedure check^easible (modified from [116]) generates initial dichotomies from

face constraints and uniqueness constraints, raises and deletes them using the next state constraints

(procedures raisejiichotomy and removeJrrvalidjiichotomies) and finally reports the unsatisfied

initial dichotomies.

Given an initial dichotomy i = (/; r) and a next state constraint e, the procedure

raisejiichotomy defines two raising rules:

1. If one child of each conjunctionof e is in the left block of i, then insert the parent s of e into

the left block of i (l^t raising rule).

2. If one child of all but one conjunction of e is in the left block of i and the parent s of e is in

the right block of i, then insert all children of the remaining conjunctionof e into the right

block of i (right raising rule).

For a givene and i at mostone of the two rules is applicable,becausethe conditionsfor applicability

are contradictory. To model the semantics of an empty next-state constraint (e.g., a = 0), it is

stipulated that in removeJnvalidjUchotomies any dichotomy d with the parent of the constraint in

the right block is removed. In raisejiichotomy an empty next-state constraint does not force any

raising.

Givenan initial dichotomy i = (/; r), we denote by d(i) = (d(l); d(r)) the maximally

212 CHAPTER 9. ENCODEABILITY OF GPI'S

procedure removeJnvalidjdichotomies (£>, constraints) {

foreach (dichotomy de D)

foreach (next-state constraint e)

if (parent in right block of d &

one child of each conjunction in left block of d)

delete d

}

Figure 9.2: Detection of invalid dichotomies

procedure raise-dichotomy(d, constraints) {

do {

foreach (parent 5 in a next-state constraint e)

if (one child of each conjunction in left block of d)

insert s into left block of d

if (one child of all but one conjunction in left block of d &

s in right block of d)

insert all children of remaining conjunction into right block of d

} while (at leastone insertion withinloop)

}

Figure 9.3: Raising of dichotomies

9.1, ATHEORYOFENCODEABILITYOFGPI'S 213

raised dichotomy that raise-dichotomy generates. This definition is well-posed, because if a di

chotomy i is givenas an input to raisejdichotomy, a unique d{i) is returned, accordingto the order

of application of the next-state constraints and rules.

An initial dichotomy is satisfied if there is a valid maximally raised dichotomy that

covers it. A free initial dichotomy is satisfied if at least one of the two initial dichotomies in it

is satisfied ^ We wiU show that any maximally raised dichotomy thatcovers an ID i is invalid if

d{i) is invalid. Therefore, a free initial dichotomyis unsatisfied if raise-dichotomy obtains invalid

maximally raised dichotomies from both of its two initial dichotomies. One says also that a free

initialdichotomy i = {^l, in} (oraninitialdichotomy i) is violated bythenextstateconstraints that

are responsible for the deletion of d(iL) and d(iR) (of d(i)). Summarizing,next state constraints

remove raised dichotomies and so they violate initial dichotomies, and therefore some face or

uniqueness constraints cannot be satisfied.

Wenowprovethat it is sufficient to checkwhetherd{i) is invalid to determine if Bi' such

that i is covered by d(i'). Thisproves thatcheckJnfeasible detects correctly infeasibility.

Theorem 9.1.1 Given an initial dichotomy i and the corresponding maximally raised dichotomy

d(i). Ifd(i) is invalid, i cannot be covered by another maximally raised dichotomy d(i'), unless

d{i') is invalidtoo.

Proof: We prove first thatif = (/'; r')^i' f=- i, such that (/; r) C d{i') = {d{V); d(r')), i.e. (/; r)

iscovered bya maximally raised dichotomy d{i'), then d{i) = (d(l); d{r)) C d(i') = (d(l');d(r')).

Suppose that some raising steps are needed to maximally raise {I; r) to (d{l)\ d(r)); we prove

the statement by induction on the number k of raising steps. Denote the dichotomy (/; r), after

the application of the first k raising steps, as (Ikl rk). The statement is true for k = 0, since if

(/; r) = (d(/); d(r)), i.e. i is already maximally raised, then (d(l); d{r)) C {d{l'); d{r')). Suppose

that it is true for k, i.e. (/&; rk) C {d(l');d(r')), we wantto show that it holds for A; + 1, i.e that

(^ft+i;rfe+i) C (d(/');d(r')). Either theleftraising rule ortheright raising rule is applied togoftom

(Ik'y rk) to (/fc+i; rfc+i). If the left raising rule for next-state constraint e withparent p is applied,
then (lk+i\rk+i) = {h U{p}; rk). Since k C d{V), e is applicable also to (d{l'); d{r')) and so it

inserts p in the leftblock d(l'). But, since {d(f);d{r')) is maximally raised, p is already in d(l'),

and so (/fc+r, rk+i) C (d(/Oi ^(^0)- the right raising rule for next state constrainte with parent

p and uncommitted conjunct bi...bmis applied, then {lk+i\ rk+\) = rjb U{6i... bm}). Since

Ik C d(l'), and C d(r'), e is also applicable to (d(/Oj ^(r'))* unless one child of 6i.. .6^ is

Note that "satisfied" is here an overloaded word.

214 CHAPTER 9. ENCODEABILITY OF GPVS

in d{l'), making (d{P); d(r')) invalid, because p is in d{r'). But, since (d{P); d(r')) is maximally

raised, 6i.. .6^ is already in d(r') andso (/fc+i; r^+i) C (d{l');d{r')).

Finally we prove that if (d(/); d{r)) is invalid, then {d{l')\ d(r')) is invalid too. Suppose

that (d(/); d(r)) is removed by e, thenthe parentof e mustbe in d{r) andonechild of each conjunct

must be in d{l). Since we proved previously that (d(l); d(r)) C (d(l'); d{r')), then the parent

of e must be also in d(r') and one child of each conjunct must be in d{l'), i.e. e removes also

d(iO = •

We wiU now look into the properties of the raising process, proving that not only in case

of infeasibility all maximally raised dichotomies are invalid (as stated by Theorem 9.1.1), but also

that in case of feasibility the same valid maximally raised encoding dichotomy is obtained, so that

raise-dichotomy is sufficient to find all valid maximally raised dichotomies.

Theorem 9A.J2 For any order ofapplication of the next state constraints and of the raising rules

to a given dichotomy, either the same valid maximally raised dichotomy is produced or no valid

maximally raised dichotomy is produced.

Proof: We show that if we start with i we get a maximally raised dichotomy that is unique if it is

valid, i.e. the same maximally raised dichotomy is obtained independently of the order in which the

next state constraints are used (the choice of the left or right rule is fixed once a next state constraint

has been chosen). This shows that the procedure raisejiichotomy computes all valid maximally

raised dichotomies. Since Theorem9.1.1 showsthat if d(i) is invalid, any other maximallyraised

dichotomy that covers i is invalid, the theorem is proved.

Suppose that, given i, the next state constraints ei, e2,..., e/ are applicable. Wewill show

that for any choice of e, after applying e to i, we get a raised dichotomy to which the remaining

e's are still applicable with exactly the same rule, if the raised dichotomy is still valid Since the

application of a next state constraint with a rule produces the same effect on the two sides of an

dichotomy, if the conditions of applicabilityof a next-stateconstraint become true after applying

a certain sequence of raising actions, these conditions will become trae soon or later in any other

sequence of raising actions. Therefore any order of raising ends up with the same valid maximally

raised dichotomy.

Suppose that Ck and ej are both applicable to i = (f, r) and that ejb is applied first,

producing We show that Cj is applicable to ie^ with the same rule as it was to i, unless an

^It may happen that, after applying anapplicable next state constraint, asa consequence some other applicable next
state constraint does not need to be applied anymore.

9.1. ATHEORYOFENCODEABILITYOFGPrS 215

invalid dichotomy is obtained. If ej was applicable to i with the left rule, i.e. one child of each

conjunctionof Cj was in /, then Cj is stiU applicableto ie^ with the left rule. If Cj was applicableto

i with the right rule, i.e. one child of all but one conjunction c of ej was in I and the parent of sj

was in r, then ej is still applicable to ie^ with the right rule, unless a previous raising has inserted

in I one child of c previouslyunassigned; but in the last case ej is applicableto ie^ with the left rule

and so it forces its parent into /, but its parent must have been already in r for ej to be applicable

with the right rule to i and so an invalid dichotomy is obtained. •

9.1.2 Encoding of a Set of Encodeable GPI's

Once a set of GPI's is known to be encodeable, one must find codes of minimum length

that satisfy the encoding constraints. If the requirement that codes are ofminimum length is dropped,

then it is sufficient to take the valid maximally raised dichotomies, make each of them complete

by adding to the right block any state absent from the dichotomy and then choose a minimalset

of complete maximally raised dichotomiesthat cover all free initial dichotomies [116]. Note that

by addingabsentstates to the rightblockno invalid dichotomy can be produced, sinceno existing

encoding constraints become applicable to the complete maximally raiseddichotomies so obtained.

We will now discuss the case where codes of minimum length are wanted. An encoding

column of a valid encoding corresponds to a complete and valid dichotomy. The next theorem

proves that set of valid complete dichotomies is exactly the set of valid completions of the set of

valid maximally raised dichotomies.

Theorem 9.13 The set of valid complete dichotomies is the set of valid completions of valid

maximally raised dichotomies.

Proof: A free initialdichotomygenerates two initialdichotomies. A dichotomycoversa free initial

dichotomy iff it contains eitherinitialdichotomy. From an initialdichotomy eitherone obtains a

uniquevalidmaximally raised dichotomy or novalidmaximally raiseddichotomy. Wesuppose that

thegivensetofGPTs isencodeable, soforagivenfree initialdichotomy (a;, y) atleastoneof thetwo

initial dichotomies (/, r) yields a valid maximally raised dichotomy (d(/), d(r)). Avalid complete

dichotomy that covers a given free initial dichotomy (x, y) by block-wise containig (/, r) must

contain the valid maximallyraised dichotomy (d(/), d(r)), because adding symbols left and right

to (/, r) does notinvalidate any raising on (/, r) if a valid maximally raised dichotomy (d(/),d(r))

is obtained by maximally raising (/, r) (a raisingby left rule is stiU applicable to supersets of I and

216 CHAPTER 9. ENCODEABILITY OF GPFS

procedure exact-encode(constraints){

/ = generate-initialjdichotomies (constraints)

D = copy(/)

foreach (dichotomy d in D)

raise_dichotomy (d, constraints)

D = removeJnvalidjdichotomies (D, constraints)

I = dualityjequivalence (/)

foreach (free dichotomy? = {^l, GI)

if (?is notcovered by d(ii) G or by d(iii) GD)

return (INFEASIBLE)

C = complete-dichotomygenerate (D)

validjcomplete = removeJnvalidjdichotomies (C, constraints)

mincov = minimumjcover (I, validjcomplete)

return (derivejcodes (mincov))

}

Figure 9.4: Exact encoding of constraints

r; a raisingby right ruleis still applicable if a validmaximally raiseddichotomy is obtained) and a

valid complete dichotomy is a fortiori maximally raised.

Byconsidering allpossible completions of (d(l), d(r)) onegetsallcomplete dichotomies

that contain block-wise (/, r). By keeping only the validcompletions one gets the set of valid and

completedichotomiesthat contain block-wise (/, r). •

The selectionof a minimumset of validcompletedichotomies that coverthe originalfree

initial dichotomies can then be cast again as a table covering problem. Attention must paid to the

factthat avalidcomplete dichotomy covers a freeinitialdichotomy bycovering anyof its twoinitial

dichotomies. In otherwords, eachrowof the covering tablecorresponds to a freeinitialdichotomy

that has a 1 in a column corresponding to a valid complete that covers either initial dichotomy

in that free initial dichotomy. Procedure exactjencode shows the fuU sequence of steps to check

encodeabilityand, if the latter holds, to encode the set of GPI's with codes of minimumlength.

9.1. ATHEORYOFENCODEABILITYOFGPrS 217

9.1.3 Updating Sets and Raising Graphs

In this section we address the issue of adding more GPI's to a set of GPI's that is not

encodeable. We know by Proposition 8.1.1 that there is an addition of GPI's that makes the current

set encodeable, but the problem is which GPI's to add. Our strategy is to use the information

gathered in checking encodeability to drive the choice of useful GPI's to add to the current cover.

New notions of updating sets and raising graphs will be introduced to that purpose.

If no valid maximally raised dichotomy is produced, then, according to the order of

raising, different invalid maximally raised dichotomies can be produced, as the following example

shows. Consider the initial dichotomy (6c; d) and the next state constraints a = a6 + ac and

d = da + dc. Let L and R denote respectively the left and right raising rule.

Two different sequences of raising actions are:

(a6c;d)

(a6c; d) (abed;d) invalid

(abed; d) (a6cd;d)

(a6cd; d) (abed; d)

(6c;d)'='°-±? '̂'̂ (6c;da)
(6c; da) (abc;da) invalid

(a6c;da) (abed;da) invalid

(a6cd; da) (abed; da)

(abed; da) (abed; da)

At the first step both a = ab-\-ac with Lord = da + dc with R can be applied. If a = a6 + ac

with L is applied first, then d = da + dc with R cannot be applied anymore because its condition

has been falsified. Instead d = da + dc with L can be applied, but it must result in an invalid

dichotomy because the parent of d = da + dc was already in the right block and now is inserted

in the left block. Applying first d = da + dc with R has the advantage that both a = ab + ac

and d — da + dc are recognized as responsible for removing (6c; d), allowingmore freedom to

update the minterm constraints. For instance, update a = a6 + ac into a = a6 + ac + ad, then

(6c; d) is raised to (6c; ad) and it is not anymore invalid. Alternatively, update d = da + dc to

d = da-\- dc-{- d, then (6c; d) is raised to (a6c;d) and it is not anymore invalid. If we would

consideronly d = da + dc as responsibleof deleting (6c; d) we would miss that also by updating

a = a6 + ac the cancellation does not take place anymore.

218 CHAPTER 9. ENCODEABE.1TY OF GPVS

When a free initial dichotomy is violated (and therefore a face constraint cannot be

satisfied), by Proposition 8.1.1 there is always a set ofGPI's whose addition to the current selection

makes the new set of GPPs encodeable. An optimization problem is to add the smallest number of

GPFs that achieves the goal. The following result guarantees that, after adding a GPI, an existing

set of free initial dichotomies is not less satisfied.

Proposition 9.1.1 Ifa set offree initial dichotomies ID is satisfied by the next-state constraints of

a setofGPVs G, then ID is satisfied by the next-state constraints induced bya setofGPI's G' D G.

Proof: The consistency equations of minterms covered by the newly added GPI are updated. By

the rule of removal, given a dichotomy and a consistency equation, if the left state of the equation

is in the right block of the dichotomy and one state in each conjunct of the equation is in the left

block then the dichotomy is deleted. When the equation is updated, one more conjunct is added

to it and so the condition of the previous rule may fail to be true. Also it may be the case that a

removal is a consequence of some previous raising. By adding a conjunct to a consistency equation

it may happen that the conditions in the raising rules may not be anymore true, making impossible

the raising and consequent removal. •

Notice that the addition of a GPI may introduce more initial dichotomies (because of new face

constraints), tempoiily making harder the overall encodeability problem.

We would like to add the smallest number of GPFs so that the resulting encoding con

straints are satisfied. In the worst-case, a branch-and-bound search technique may have to explore

all solutions, but a good choice of a new GPI at the branching step will bound more quickly the

search. To this effect we annotate each unsatisfied free dichotomy with the next-state constraints

that violated it. The following facts are important:

1. Next-state constraints ofthe form a = a-|-... are always trivially satisfied and once a constraint

becomes such it does not need to be anymore considered {trivial next state constraint).

2. Next-state constraints with the same consistency equation, but associated to differentmm\&vms

are different next state constraints. The reason is that, if they delete an initial dichotomy, all

of them must be properly updated to avoid any violation of that initial dichotomy and this

may require the addition of different GPFs.

3. Next-state constraints with different consistency equations may remove the same dichotomy,

for different encoding violations. The procedure removeJnvalid-dichotomies can be made to

enumerate them all.

9.1. ATHEORYOFENCODEABILITYOFGPrS 219

In order to choose an "effective" branching column, we need to annotate each unsatisfied

initial dichotomy with the next-state constraints violating it. The annotation must capture exactly

all sets of next-state constraints causing unsatisfiability. We highlight first some issues by means of

the following examples.

1. A maximally raised dichotomy may be removed as a consequence of a previous raising

action. Both the raising next-state constraint and deleting next-state constraint are therefore

responsible of the cancellation. Selecting a GPI that updates either of them could make

the cancellation go away. Consider the dichotomy (a6;c) and the next state constraints

d = dadb, f = fa-\- fd, c = ca-\- cf:

{ab-,c) (^abd;c)

(abd; c) (abdf; c)

{abdf;c) (abcdf; c) invalid

(abcdf; c) [abcdf;a)

(abcdf; c) (abcdf; c)

Updating any of d = rfa -|- d6, / = fa + fd,c = ca-\-cf can make the cancellation go

away. For instance, update d = da + dbtod = da-\-db-\- dc:
. , . cl=da+db+dc(L) . , .
(ab; c) —> (ab; c)

(ab; c) (ab;c)

(ab;cf)

(a6;c/)(a6;c/)

(ab; cf) (af)'̂ cdf)

(ab;cdf) (ab; cdf)

(ab; cdf) (ab-^ cdf)

Update / = f a-1- fd to f = fa-\- fd + fc:

(ab;c) (abd;c)

(abd; c) (abd; c)

(a6d; c) (abd;cf)

(abd; cf) (abd;cf)

(abd; cf) (abd;cf)

(abd; cf) (a6d; cf)

Update c = ca-\-cf toe = ca-\- cf -\-c:

(a6;c)''='̂ 4''"" (abd-,c)

220 CHAPTER 9. ENCODEABIL]TY OF GPVS

{abd; c) {abdf;c)

{abdf; c) (^abdf; c)

{abdf; c) (abdf; c)

(abdf; c) (abdf; c)

2. The proposed annotation is not order-independent, because invalid maximally raised di

chotomies and next state constraints which remove them are order-dependent. Consider the

dichotomy (abe;c) and the next state constraints d = da-\- db,c = erf -{- ce, in the given

order:

(abe;c) (abde; c)

(a6rfe; c) (abcde; c) invalid

(abcde; c) (abcde; c)

Update c = erf-f ce to c = erf -|- ce -f- c:

(abe;c) (abde; c)

(abde;c) (a6rfe; c)

Let us now exchange the order of the two next state constraints:

(abe; c) (abe; erf)

(abe; cd) ^ (abde; cd) invalid
(abde; cd) (abcde; cd) invalid

(abcde; cd) (abcde;cd)

Update c = erf-f ce to c = erf -1- ce -f- c:

(abe;c) (abe; c)

(abe;c) (abde;c)

(abde;c) (abde; c)

Update rf = rfa -H rf6 to rf = da-\- db + dc:

(abe; c)

(abe;cd) (abe; cd)

In all previous examples, it was always sufficient to update a single next state constraint

to make satisliable the given initial dichotomy. It is not always so, as the following example shows.

1. Considerthe dichotomy (ab; c) and the next state constraints rf = da + db, f = /a + /rf,

c = ca-{-cf,c = ca -1- erf. Update rf = rfa -f rf6 to rf = rfa -f rf6 -f dc:

(ab\c)

9.1. ATHEORYOFENCODEABILrrYOFGPrS 221

(a6; c) ^ab; c)

(ab;cf)

(ab;cf) (ab;cdf)

{ab; cdf) (a6; cdf)

(a6;cdf) (^ab; cdf)

{ab\ cdf) (aft; cdf)

Update / = fa-\-fd to f = /a + /</ + /c:

(a6; c) [abd\ c)

(abd;c) {abd; c)

(abd; c) ^ {abd\ cf)
{abd; cf) (abed;cf) invalid

(abed;cf) (abed;cf)

(abed; cf) (abed; cf)

(abed; cf) (abed; cf)

Update c = ca + c/ to c = ca + c/ + c:

(ab; c) (abd;c)

(abd; c) (abdf; c)

(abdf; c) (abdf; c)

(abdf; c) (abcdf; c) invalid

(abcdf; c) (abcdf; c)

(abcdf; c) (abcdf; c)

(abcdf; c) +'= (abcdf; c)
The conclusionis that to make the cancellationgo awayone must update either d = da-\-db

or (/ = /a + fd and c = ca + cd) or (c = ca + cf and c = ca + cd), i.e. the minimal

sets of next state constraints that must be updated have cardinality > 1.

The last examples motivate the following definitions. A next state constraint is updated

when a disjunct that has the parent among its conjuncts is added to it. When the added disjunct

contains only the parent, the updated next-state constraint is trivial. A trivial next-state constraint

can always be reduced in the form parent = parent. So a next-state constraint can be made trivial

by adding a disjunct that is a singleton coinciding with the parent.

Given an initial dichotomy i and a set of next-state constraints C, a set of updating

next-state constraints or updating set U C C is a set of next-state constraints such that, if they

222 CHAPTER 9. ENCODEABILITY OF GPVS

are replaced by trivial next-state constraints U', then i is not anymore violated by (C - i7) U U'.

If i is not violated by any c 6 C, then C/ = 0. If i is not satisfied by C, a trivialupdating set is C

itself. A minimal updating set is an updating set that does not contain properly a set of updating

next-state constraints.

The support of the set of all minimal updating sets is the union of all minimal updating

sets. The support can be used in the computation of a correct lower bound. As an example, suppose

that the set of all minimal updating sets is

{{d = rfa-f </6}, {/ = fa-{-fd,c = ca-\-cd}^{c = ca-|-c/, c = ca + cd}}, (9.1)

then its support is

{d = da-{-db^f = /a-H/rf, c = ca-\-cd}, (9.2)

We need algorithms to find:

1. an updating set;

2. a minimal updating set;

3. all minimal updating sets;

4. the support of all minimal updating sets.

Wepresent next an elegant characterization ofupdating sets in terms of the raising graph,

that is a graph describing all possible raisings that can be acted upon an initial dichotomy. This

characterization is the basis of algorithms discussed in Section 11.3.

We state first some facts about applicability of next-state constraints to dichotomies.

Given an initial dichotomy, a next-state constraint is applicable to it iff the conditions of either

raising rule are satisfied by the dichotomy and the application of the next-state constraint adds at

least one state to either block. If the former condition is true and the latter is false the constraint

is vacuously applicable. Since the conditions for the two raising rules are mutually exclusive, at

most one of them is applicable. Therefore we can say that a next-state constraint is left applicable

or right applicable to a dichotomy. If a next-stateconstraint is applicableto a dichotomyit stays

applicable to it until it is applied or until it becomes vacuously applicable (because another raising

action produces the same effect), with at most a change of type of rule. Precisely, a left applicable

next-state constraint stays left applicable or becomes vacuously applicable. A right applicable

next-state constraint either stays right applicable or becomes vacuously applicable or becomes left

9.1. ATHEORYOFENCODEABILITYOFGPrS 223

applicable, because a left raising adds to the left a state of a conjunct that before had no state to the

left. In the latter case, invalidity is reached. Given a dichotomy i and a set of next-state constraints

C, the latter can be partitioned into a set Co of the ones applicable, a set C„a of the ones not

applicable or vacuously applicable and a set Cu of the ones already applied (used). The three sets

are a partition of C.

Given an initial dichotomy and a set of next-state constraints, suppose that the ones in

Co are applied in parallel to an initial dichotomy so that raised dichotomies are obtained. For each

raised dichotomy, move the applied next-state constraint (which now become vacuously applicable)

from Ca to Cu and check if any next-state constraint in C„a is now applicable, in which case it

must migrate from Cna to Co. At each step the sets Co, Cno, Cu are a partition of C. By this

process one builds a raising graph whose nodes are dichotomies, and whose directed edges are

next-state constraints that raise the predecessor dichotomy to the successor dichotomies. After a

new node (raised dichotomy) is added, one checks whether it is invalid; if so, one does not raise

that node anymore. When no node can be raised, the process is terminated. The resulting graph is

the collection of all possible ways to apply the next-state constraints in C to the initial dichotomy i

Theorem 9.1.4 The set ofoutgoing edges ofany node (that is not a sink) ofthe raising graph ofa

violated initial dichotomy is an updating set.

Proof: ByTheorem9.1.2,eitherall sinksofthe grapharethesamevalidmaximallyraiseddichotomy

or they are invalid raised dichotomies (not necessarily the same). In the latter case, consider the

outgoing edges En of a node n that is not a sink. If each of the next-state constraints associatedto

En is updated, say to a trivial next state constraint, the node n becomes a valid maximallyraised

dichotomy; it is maximally raised because Ca has been emptied, and it is valid because it has been

valid up to now and no raising has been performed. But considernow the raising graph that would

be obtained by starting all over the process, without using the next-state constraints in En. Since

along a path a valid maximallyraised dichotomyis reached, then all sinks must be the same valid

maximally raised dichotomy, again by Theorem 9,1.2. In other words, the outgoing edges of n

yield an updating set. Therefore any path in the original raising graph from the source to an invalid

sink must include at least one of these edges, so that by updating the related next-state constraints

an invalid raised dichotomy is not reached. •

Corollary 9.1.1 A minimal set ofoutgoing edges, i.e., not properly contained in arty other set of

outgoing edges, is a minimal updating set. All minimal sets of outgoing edges are all minimal

224 CHAPTER 9. ENCODEABILrrY OF OPFS

updating sets. The union of all minimal sets of outgoing edges gives the support of all minimal

updating sets.

9.1.4 Choice of a Branching Column

Given a set of selected GPI's and of unsatisfied free initial dichotomies, we add one more

GPI to minimize the violations that make unsatisfied those free initial dichotomies.

Anexample willhelpin clarifying thenotion. Let ii = {«i^, andtz = {izi, h^}

unsatisfied free initial dichotomies. Suppose that for each of them we know the minimal updating

sets. For instance, supposethat the disjunctionof minimalupdating sets of is c,- + Cj + c^, of

is Ci + Cp, of 12^ is CjCq + c,- andof izji is Cp + c^, where the c's arenextstateconstraints. From

the updating next-state constraints we know the mintenns that must be updated. The step from

next-state constraints to minterms is clarified by the following statements:

1. the same next-state constraint may be associated to more than one minterm;

2. to update a next-state constraint a new conjunct must be or-ed to it;

3. to or a new conjunct a new GPI must be chosen that provides it by its next state tag;

4. a GPI contributes a conjimct only to the minterms that it covers, i.e. a GPI updates a next-state

constraint only for the minterms that it covers;

5. if the same next state constraint comes with more than one minterm it may be necessary to

update it differently for each minterm, i.e. a different GPI may be have to be selected to

update that next-state constraint for each minterm to which it is associated.

For instance,supposethat c,- is associated to mintermm,, Cj to mintermsrrij and mjk, Cs to and

mt, Cp to mp, Cq to rriq and to (indexes of constraints and minterms vary in different sets).

Then the set of aU mintermsto be updatedof ii ^ is m,- -H mjrrik -I- nismu of I'lis mi H- mp,of

is mjmkmq -|-mi and of «2h is mp mr. We can summarize the updatingconditionsof as:

(m,- + mjmk + msmt) -|- (m,- + mp) (9.3)

and of «2 as:

(mjmkmq -1- mi) -i- (mp -|- m^). (9.4)

For to be satisfied it is necessary to find a GPI such that

9.i. ATHEORYOFENCODEABILrrYOFGPrS 225

1. its proper input and present state part coversthe proper input and present state part of m,- and

no statein its tag is in the leftblockof ii ^ (otherwise, onedoesnot invalidate the if condition

of raisejdichotomy and removeJnvalidjdichotomies)\ or,

2. its proper input and present state part covers the proper input and present state part of ruj and

rrik and no state in its tag is in the left block of ii^; or,

3. its proper input and present state part covers the proper input and present state part of rus and

mt and no state in its tag is in the left block of ^; or,

4. its proper input and present state part covers the proper input and present state part of mi and

no state in its tag is in the left block of ii

5. its proper input and present state part covers the proper input and present state part of and

no state in its tag is in the left block of i\j^.

There may be no single GPI that achieves the goal, but a set of them may be needed. So we want to

select the GPI that improves the overall satisfiabilityofunsatisfied initial dichotomies, even ifit does

not succeed in making satisfiable any single of them. Transfomi in POS the updating conditions of

t\\

(mi -f- mj + ms+ rrip) (m,- + mj + + mp) (mi+ mjk + + mp) (m,- + mjfe + + mp) (9.5)

and do the same for those of i2 In this way, the updating conditions of t\ and t2 can be expressed

by a set of updating clauses.

In general, considera set of clauses of the form t(mi H-... + mp), for each unsatisfied

free initial dichotomy i, and each updating clause (m,• + ... + mp) obtained for 1 These clauses

can be seen as the rows of a unate covering table, whose columns are the candidate GPI's to

extend the current solution. There is an element in the table at the intersection of GPI gk and row

i(mi + ... + mp) iff

1. the proper input and present state part of gk covers the proper input and present state part of

mi and no state in the tag of gk is in the left block of i'l; or,

2. ...;or.

^Boolean identities allow simplification of theclauses, so that subsumed literals and clatises canbe cancelled. For
instancethe firstclause simplifiesfrom rm + mj + + m; + mp to m, + mj + m, + mp. Apparentlythis alters the
choice of the branching column.

226 CHAPTER 9. ENCODEABILITY OF GPI'S

3. the proper input and present state part of gk covers the proper input and present state part of

TUp and no state in the tag of gk is in the left block of iR.

Such a table (called thefull satisfiability table) requires a knowledge of all the updating sets and it

would be difficult to manipulate with implicit techniques, because each clause refers to a variable

number ofconditions. The difficulty is not with having many clauses for the same i, but with having

many literals per clause. Each clause is a row of the table, but we do not know an appropriate

labelling scheme for a row with a variable number of literals.

A cruder estimate is made by restriction to one minimal updating set for each initial

dichotomy. In that case, each updating clause will have exactly two literals and an implicit labelling

schemefor rows and columnscan be devised. For instance,consider mjurik for ii ^ and rup for ii^,

that give the POS

mjUfik + mp = (mj + mp)(mfc + nip). (9.6)

There is an elementin the table at the intersection of GPI gk and row ii {mj + nip) iff

1. the proper input and present state part of gk covers the proper input and present state part of

mj and no state in the tag of gk is in the left block of ii or,

2. the proper input and present state part of gk covers the proper input and present state part of

TTip and no state in the tag of gk is in the left block of ii

Such a table is called partial satisfiability table.

This restriction affects only the quality of branching column selection, not the exactness

of a final solution, that is guaranteed by the completness of the search technique. The GPI that has

more entries in the table is considered to be the most desirable to choose as next branching column.

This proposed algorithm requires to build a matrix and to find the column in it with maximum

number of ones.

9.1.5 Computation of a Lower Bound

In ordinary unate covering, the cardinality of a maximum set of pairwise disjoint rows

(i.e. no 1's in the same column) is a lower bound on the cardinality of the solution to the covering

problem, because a different element must be selected for each of the independent rows in order

to cover them. Since finding a maximum independent set is an NP-complete problem, in practice

an heuristic is used that provides a weaker lower boimd. A row is found that is disjoint from a

9.1. ATHEORYOFENCODEABILITYOFGPrS 227

maximum number of rows (i.e. a row of minimum length). All rows having elements in common

with it are then deleted. This process is iterated until a set of pairwise disjoint rows (independent

set) is found.

Consider again the example used to describe the branching column selection, where the

unsatisfied h:ee initialdichotomies t\ andh hadrespectively theupdating conditions:

(mi + mjmk + msmt) + (m,- + mp) (9.7)

and:

(mjmfcmg + mi) + (mp + mr). (9.8)

Supposethatwebuildthe fullsatisfiability table,asdescribed above. Thecardinality of a maximum

set of pairwisedisjoint rows is a lower boundon the cardinality of the solutionto the constrained

covering problem, because a different element mustbe selected foreachof the independent rows in

orderto satisfythem. This captures the notionof a maximum set of pairwise disjointviolations of

jhee initial dichotomies.

Wealready observed thatbuildingthefullsatisfiability tablemaybedifficult andnotprone

to a simple implicitmanipulationscheme. Unfortunately herewecannot usethepartial satisfiability

tableeither,becauseit doesnot yielda correctlowerbound,sincewe wouldbechoosingan arbitrary

updating set foreach initial dichotomy and wecannot claim thatthisis thebestthatcanbe done.

A way out of this difficulty is to build the supportsatisfiability table. Replace the and

operators withoroperators intheprevious updating conditions toget"relaxed" updating conditions:

(mi + mj + mk-\-ms + mt) 4- (m,- + mp) (9.9)

and:

(mj + mfc + m, + m,) + (mp + m^). (9.10)

If the original updating conditions are satisfied, the relaxed onesare too. Again, theseclauses can

be seen as the rowsof a unate coveringtable. There is an elementin the table at the intersectionof

GPI Qk and row t\, which is associated to (mi + mj + m^+ m^ 4- mt) 4- (m,- 4- "ip), iff:

1. the properinputand present statepartof gk covers the properinputandpresentstatepart of

anyof {mj,..., mJ and no state in the tag of gkis in the left blockof or,

2. the properinputand present statepart of gkcovers the properinputandpresentstatepart of

anyof {m,-, mp} and no state in the tag of gkis in the left blockof ii„.

228 CHAPTER 9. ENCODEABILITY OF GPFS

Such a table is called support satisfiability table.

A maximal set of parwise disjoint rows of this table still provides a correct lower bound,

albeit a lower one than the full satisfiability table does. One can manipulate this table with implicit

techiques, as shown precisely in Section 11.3; thesetof rows are theVs. To compute theentries of

the table one can use a relation on dichotomies and minteims, such that for instance iirrii is in the

relation iff rrii is a literal in the clause associated to n. This works because there is a unique clause

associated to each 1.

This table can be used also for branching column selection, but it would degrade the

quality of the choice even more than the partial satisfiability table.

A weaker lower bound can be computed considering only the next state constraints of the

type a = 0. Since for each of them a GPI must be chosen to cover the related minterm, one can use

a covering table with entries to 1 iff a GPI contains a minterm, as in ordinary unate covering.

229

Chapter 10

Binate Covering

10.1 Introduction

It is not feasible to generate GPFs and to set up a related unate or binate covering table by

explicit techniques on non-trivial examples [19]. By means of techniques as in [79,53,30], GPI's

can be generated using HDD-based (alias implicit) representations. The next step is to select an

encodeable cover of GPI's using implicit representations. This motivates the development of new

algorithms to solve covering problems based on the representation and manipulation of covering

tables represented with HDD's. Since covering problems are ubiquitous in logic synthesis and

combinatorial optimization, in this chapter we will develop a general theory of implicit solutions

of binate covering problems. It is a development of large applicability, as shown by its successful

application to an host of problems in state minimization [63]. In the next chapter we will see how

this formulation is employed in the GPI minimization problem.

At the core of the exact solution ofvarious logic synthesis problems lies often a so-caUed

covering step that requires the choice of a set of elements of minimum cost that cover a set of

ground items, under certain conditions. Prominent among these problems are the covering steps in

the Quine-McQuskey procedure for minimizing logic functions, selection of a minimum number

of encoding columns that satisfy a set of encoding constraints, selection of a set of encodeable

generalized prime implicants, state minimization of finite state machines, technology mapping and

Boolean relations. Let us review first how covering problems are defined formally.

Supposethat a set 5 = {si,...,««} is given. The cost of selectingsi is ci where c,- > 0.

By associating a binary variable xi to 5,-, which is 1 if s, is selected and 0 otherwise, the binate

230 CHAPTER 10. BINATE COVERING

covering problem (BCP) can be defined as finding S' C S that minimizes

n

1=1

subject to the constraint

A(xuX2,...,Xn) = 1,

where A is a Boolean function, sometimes called the constraint function. The constraint function

specifies a set of subsets of S that can be a solution. No structural hypothesis is made on A. Binate

refers to the fact that A is in general a binate function (a function is binate if it has at least a binate

variable). BCP is the problem of finding an onset minterm of A that minimizes the cost function

(i.e., a solutionof minimumcost of the Booleanequation A(xi^x2,..., a^n) = 1).

If A is given in product-of-sums form, finding a satisfying assignment is exactly the

problem SAT, the prototypical iVP-complete problem [46]. In this case it also possible to write A

as an arrayofcubes (that form a matrix with coefficients from the set {0,1,2}). Each variableof A

is a column and each sum (or clause) is a row and the problem can be interpreted as one of finding

a subset C of columns of minimum cost, such that for every row n, either

1. such that aij = 1 and Cj e C, or

2. 3j such that aij = 0 and Cj ^ C.

In other words, each clause must be satisfied by setting to 1 a variable appearing in it in the positive

phase or by setting to 0 a variable appearing in it in the negative phase. In a unate covering problem,

the coefficients of A are restricted to the values 1 and 2 and only the first condition must hold. In this

chapter, we shall consider the minimum binate covering problem where A is given in product-of-

sums form. In this case, the term covering is fully justified because one can say that the assignment

of a variable to 0 or 1 covers some rows that are satisfied by that choice. The product-of-sums A is

called covering matrix or covering table.

As an example of binate covering formulation of a well-known logic synthesis problem,

consider the problem of finding the minimum number of prime compatibles that are a minimum

closed cover of a given FSM. A binate covering problem can be set up, where each column of the

table is a prime compatible and each row is one ofthe covering orclosure clauses ofthe problem [50].

There are as many covering clauses as states of the original machine and each of them requires that

a state is covered by selecting any of the prime compatibles in which it is contained. There are as

many closure clauses as prime compatibles and each of them states that if a given prime compatible

10.1. INTRODUCTION 231

is selected, then for each implied class in its corresponding class set, one of the prime compatibles

containing it mustbe chosentoo. In the matrixrepresentation, tableentry (i, j) is 1 or 0 according

to the phase of the literal corresponding to prime compatible j in clause i; if such a literal is absent,

the entry is 2.

A special case of binate covering problem is a unate covering problem, where no literal

in the negative phase is present. Exact two-level minimization [87, 113] can be cast as a unate

covering problem. The columns are the prime implicants, the rows are the minterms and there is a

1 entry in the matrix when a prime contains a minterm.

Various techniques have been proposed to solve binate covering problems. A class of

them [14, 72] are branch-and-boimd techniques that build explicitly the table of the constraints

expressed as product-of-sum expressions and explore in the worst-case all possible solutions, but

avoid the generation of some of the suboptimal solutions by a clever use of reduction steps and

bounding of search space for solutions. We will refer to these methods as explicit.

A second approach [82] formulates the problem with Binary Decision Ehagrams (HDD's)

and reduces finding a minimum cost assignment to a shortest path computation. In that case the

number of variables of the HDD is the number of columns of the binate table.

Recently, a mixed technique has been proposed in [61]. It is a branch-and-bound algo

rithm, where the clauses are represented as a conjimction of HDD's. The usage of HDD's leads to

an effective method to compute a lower bound on the cost of the solution.

Notice that unate covering is a special case of binate covering. Therefore techniques for

the latter solve also the former. In the other direction, exact state minimization, a problem naturally

formulated as a binate covering problem, can be reduced to a unate covering problem, after the

generation of irredundant prime closed sets [117]. Hut there is a catch here: the cost function is not

any more additive, so that the reduction techniques so convenient to solve covering problems, are

not any more applicable as they are.

In this chapter, we are interested in exact solutions of binate covering. Existing explicit

methods do quite well on small and medium-sized examples, but fail to complete on larger ones.

The reason is that either they cannot build the binate table because the number of rows and colunms

is too large, or that the branch-and-bound procedure would take too long to complete. For the

approach of building a HDD of the constraint function and computing the shortest path fails, it fails

when the number of variables (i.e., columns) is too large because it is likely that a HDD with many

thousands of variables will blow up.

The crux of the matter, when explicit techniques fail, is that we are representing and

232 CHAPTER 10. BINATE COVERING

manipulating sets that are too large to be exhaustively listed and operated upon. Fortunately we

know of an alternative way to represent and manipulate sets: it is by defining the set over an

appropriate Boolean space (i.e., encoding the elements of the set), associating to it a Boolean

characteristic function and then representing this function by a binary decision diagram (BDD).

Since now on, by BDD of a set we will denote the BDD of the characteristic function of the set

over an appropriate Boolean space. A BDD [16, 10] is a canonical directed acyclic graph data

structure that represents logic functions. The items that a BDD can represent are determined by

the number of paths of the BDD, while the size of the BDD is determined by the number of

nodes of the DAG. There is no monotonic relation between the size of a BDD and the number

of elements that it represents. It is an experimental fact that often very large sets, that carmot be

represented explicitly, have a compact BDD representation. Set operations are easily turned into

Boolean operations on the corresponding BDD's. So we can manipulate sets by a series of BDD

operations (Boolean connectives and quantifications) with a complexity depending on the sizes of

the manipulated BDD's and not on the cardinality of the sets that are represented. The hope here is

that complex set manipulations have as counterparts Boolean propositions that can be represented

with compact BDD's. Ofcourse, this is not always the case and it may happen that an intermediate

BDD computation, in a sequence of operations leading to a set, blows up. The name of the game is

a careful analysis ofhow propositional sentences can be transformed into logically equivalent ones,

that can be computed more easily with BDD manipulations. Special care must be exercised with

quantifications, that bring more danger of BDD blowups. All of this goes often under the name of

implicit representations and computations.

The previous insight has already been tested in a series of applications. Research at

Bull [23] and UC Berkeley [142] produced powerful techniques for implicit enumeration of subsets

of states of a Finite State Machine (FSM). Later work at BuU [25, 79] has shown how implicants,

primes and essential primes ofa two-valued ormulti-valued function can also be computed implicitly.

Reported experiments show a suite of examples where all primes could be computed, whereas

explicit techniquesimplemented in espresso [11] failed to do so. Finally, the fixed-pointdominance

computation in the covering step of the Quine-McQuskey procedure has been made implicit in

current work [29, 53]. The experiments reported show that the cyclic core of all logic functions

of the ESPRESSO benchmark can be successfully computed. For some of them espresso failed the

task.

This chapter describes an implicit formulation ofthe binate covering problem and presents

an implementation. The implicitbinate solverhas been tested for the selection ofan encodable set of

10.2. RELATION TO 0-lINTEGER LINEAR PROGRAMMING 233

GPI's, as reported in Chapter 11, and for state minimizationofISFSM's and pseudo NDFSM's [63].

The reported experiments show that implicit techniques have pushed the frontier of instances where

binate covering problems can be solved exactly, resulting in better optimizations in key steps of

sequential logic synthesis.

In the following sections, we will review the known algorithms to solve covering problems

and then we will describe a new branch-and-bound algorithm based on implicit computations. The

remainder of the chapter is organized as follows. We have defined the minimum cost binate

covering problem in this section. In Section 10.2, we will compare this problem with 0-1 integer

linearprogramming. The branch-and-bound scheme will be introduced in Section 10.3 which has be

used in explicit binate covering algorithms summarized in Section 10.4. In Section 10.5, we survey

the classical reduction rules used in explicit algorithms. Our implicit binate covering algorithm is

then introduced in Section 10.6 and its program input, an implicit table representation, is described

in Section 10.7. Section 10.8 illustrates how reduction techniques can be implicitized. Other kinds

of implicit table manipulations are introduced in Section 10.9.

10.2 Relation to 0-1 Integer Linear Programming

There is an intimate relation between 0-1 integer linear programming (ILP) and binate

covering problem (BCP). For every instance of DLP, there is an instance of BCP with the same

feasible set (i.e., satisfying solutions) and therefore with the same optimum solutions and vice

versa. As an example, the integer inequality constraint

3>x\ —2x2 + 4x2 ^ 2,

with 0 < a;i, a;2, < 1 corresponds to the Boolean equality constraint

X\X2-\-X2 — 1,

that can be written in product-of-sums form as:

(«! + a;3)(^-l-a;3) = 1-

Given a problem instance, it is not clear a-priori which formulation is better. It is an interesting

question to characterize the class of problems that can be better formulated and solved with one

technique or the other.

234 CHAPTER 10. BINATE COVERING

LlJo.BDD{I) {

let I be Wj 'Xj>T

if (max{I) < T) return 0

if (min(I) > T) return1

i = ChooseSplittingVar(I)

'̂ 3 '^3^T- Wi)
7® = (Ej^ti ^
/i = LI.to.BDD(I^)

fo = LlJo.BDD(I^)

return / = a;,- • /^ + ^ •/°

}

Figure 10.1: Transfonnation from linear inequality to Boolean expression.

As an example of reduction from ILP to BCP, a procedure (taken from [61]) that derives

the Boolean expression corresponding to J2]=\ >T is shown inFigure 10.1.

The idea of the recursion relies on the observation that:

1. / = 0 if and only if max(I) = J2wi>o

2. / = 1 if and only if min(I) —

When neither case occurs, the two subproblems and 7°, obtained by setting the splitting variable

Xito 1 and 0 respectively, are solved recursively.

10.3 Branch-and-Bound as a General Technique

Branch-and-bound constructs a solution of a combinatorial optimization problem by

successive partitioning of the solution space. The branch refers to this partitioning process; the

bound refers to lower bounds that are used to construct a proof of optimality without exhaustive

search. A set of solutions can be represented by a node in a search tree of solutions, and it is

partitioned in mutually exclusive sets. Each subset in the partition is represented by a child of the

10.4. A BRANCH-AND-BOUNDALGORITHMFOR MINIMUMCOSTBINATE COVERING235

originalnode. In this way, a computation tree is built. An algorithm that computes a lowerbound

on the cost of any solutionin a given subsetallows to stop further searches from a givennode, if

the best cost found so far is smaller than the cost of the best solution that can be obtained from the

node (lower boundcomputedat the node). In this case the node is killed and thereforenone of its

children needs to be searched; otherwise it is alive.

If we can show at any point that the best descendant of a node y is at least as good as the

best descendant of node x, then we say that y dominates x, and y can kill x.

Figure 10.2 shows the classical algorithm [105]. An activeset holds the live nodes at

any point. A variable C/ is an upper bound on the optimalcost (cost of the best completesolution

obtained at any given time). The branchingprocessneeds not produce only two childrenof a given

node, but any finite number.

We will see in the next section that BCP can be solved by the following recursive equation

BCP(Mj) = BestSolution(BCP(Mf^.) U{icj, BCP{Mf-))

where Mf is the binate table that corresponds to a function in product-of-sum form /, and

BCP{Mf^.) (respectively, BCP(Mf—)) is the subproblem expressed by the function /p. (re

spectively, /^). BCP(Mj) returns an onsetminterm of / that minimizes the cost function.

The previous equation can potentially generate an exponential number of subproblems,

but powerfiil dominance and bounding techniques as weU as good branching heuristics help in

keeping the combinatorial explosion under control.

10.4 A Branch-and-Bound Algorithm for Minimum Cost Binate Cover

ing

We will survey in this section a branch-and-boimd solution of minimum cost binate

covering. This technique has been described in [51, 50, 13,14], and implemented in successful

computer programs [112,108,130]. The branch-and-bound solution of minimum binate covering

is based on a recursive procedure. A run of the algorithm can be described by its computation tree.

The root of the computation tree is the input of the problem, an edge represents a call to smjnincov,

an internal node is a reduced input. A leaf is reached when a complete solution is found or the

search is bounded away. From the root to any intemal node there is a unique path, that is the current

path for that node. In the sequel, we will describe in detail the binary recursion procedure. The

presentation will refer to the pseudo-code smjnincov, shown at the end of this subsection.

236 CHAPTER 10. BINATE COVERING

branch.and-boundQ {

activeset = original problem

U = oo

currentbest —anything

while (activeset is not empty) {

choose a branching node k e activeset

remove node k from activeset

generate the children of node k: child« = 1,. .,nk

and the corresponding lower bounds zi

for i = 1 to nfc {

if (zi > U) kill child i

else if (child i is a complete solution) {

U = zi

currentbest = child i

else add child i to activeset

}

}

}

}

Figure 10.2: Structure of branch-and-bound.

lOA. ABRANCH-AND-BOUNDALGORITHMFORMINIMUMCOSTBINATECOVERING231

10.4.1 The Binary Recursion Procedure

The inputs to the algorithm are:

• a covering matrix M;

• a current-path partial solution select (initially empty);

• a row of non-negative integers weight, whose z-th element is the cost or weight of the z-th

column of M;

• a lower bound Ibound (initially set to 0), which is a monotonic increasing quantity along each

path of the computation tree equal to the cost of the partial solution on the current path;

• an upper bound abound (initially set to the sum of weights of all columns in M), which

is the cost of the best overall complete solution previously obtained (a globally monotonic

decreasing quantity);

The output is the best column cover for input M extended from the partial solution select

along the current path, called best current solution, if this solution costs less than abound. An empty

solution is retumed if a solution cannot be found which beats ubound or an infeasibility is detected.

By infeasibility, it is meant the case when no satisfying assignment of the product ofclauses exists.

Even though the initial problem in a typical logic synthesis application has usually at least a solution,

some subproblemsin the branch and bound tree may be infeasible. Whensmjnincov is called with

an empty partial solution select and initial Woundand ubound, it returns a best global solution.

The algorithm calls first a procedure smjreduce that applies to M essential column

detection and dominance reductions. The type ofdomination operations and the way in which they

are applied are the subject of Section 10.5. Another more complex reduction criterion (GimpeTs

rule) can also be applied (see Subsection 10.5.12). These reductionoperations delete fn)m M some

rows, columns and entries. What is left after reduction is called a cyclic core. The final goal is to

get an empty cyclic core. The value ofthe lower bound is updated using a maximal independent set

computation (see Subsection 10.4.3). If no bounding is possible and the reductions do not suffice

to solve completely the problem, a partition of the reduced problem into disjoint subproblems is

attempted (see Subsection 10.4.2) and each of them is solved recursively. When everything fails,

binary recursion is performed by choosing a branch column (see Subsection 10.4.4). Solutions to

the subproblems obtained by including the chosen column in the covering set or by excluding it

238 CHAPTER 10. BINATE COVERING

from the covering set are computed recursively and the best solution is kept (the second recursion

is skipped if the solution to the first one matches the updated lower bound).

The procedure smjnincov returns when:

• The cost of a partial solution, found by adding essential columns to select, is more than

ubound or infeasibility is detected when applying the domination rules (line 1). An empty

solution is returned.

• The best current solution is found by applying Gimpel's reduction technique (line 2). Since

gimpel-reduce calls recursively smjnincov, an empty solution could be returned too,

• The updated lower bound, determined by adding to Ibound the cost of the essential primes

and of the maximal independent set, is not less than abound Qine 5), An empty solution is

returned.

• There is no cyclic core and we are not in the previous case. The best current solution is found

by updating select with the new essential and unacceptable columns (line 6),

• The best current solution is found by partitioning the problem (line 7), The procedure

smjnincov is called recursively on two smallercovering matrices determined by smMock4>artition

(line 8 and 10), An empty solution can be returned by either recursive call. If the first call to

smjnincov returns an empty solution, the second one is not invoked (line 9). If neither call

retums empty, each contributes its retumed value to the current solution.

• A branching column is chosen and smjnincov is called recursively with the branch column

in the covering set (line 12). If the recursive call of smjnincov retums a non-empty solution

that matches the current lower bound {Iboundjiew), that solution is retumed as the current

solution (line 14), If the cost of the current solution is less than ubound, ubound is updated,

i.e., the current solution is also the best global solution Qine 13),

• As in the previous case, but smjnincov is called recursively with the branch column not in

the covering set (line 15), The best among the solution found in the previous case and the

one computed here is the current solution.

Notice the following facts about the procedure smjnincov:

• The parameter Ibound is updated once Cine 4), The reason is that after the computation ofthe

essential columns (line 1) and of the independent set (line 3), the cost of the previous partial

lOA. A BRANCH-AND-BOUNDALGORITHMFOR MINIMUMCOSTBINATE COVERING239

sm.mincov{M, select, weight, Ibound,ubound) {

/* Applyrow dominance,columndominance,and selectessentials*/ (1)

if {}.smjreduce[M, select, weight, ubound)) return empty-solution

I* See if Gimpel's reduction technique applies */ (2)

if {gimpel-reduce{M,select, weight, Ibound,ubound,&best)) return best

/* Find lower bound from here to final solution by independent set */ (3)

indep = smjmaximalJindependent-sei{M, weight)

!* Make sure the lower bound is monotonically increasing */ (4)

Ibound-new = max{cost{select) + cost{indep),Ibound)

/* Bounding based on no better solution possible */ (5)

if {Ibound-new > ubound) best = empty-solution

else if (M is empty) { /* Newbest solutionat current level*/ (6)

best = solution-dup{select)

}else if {sm-block-partition{M,8lM\,&M2) gives non-trivialbi-partitions) { (7)

bestl = sm-mincov{M\, select!, weight,0, ubound —cost{select)) (8)

/* Add best solution to the selected set */ (9)

if {bestl —emptysolution) best —emptysolution

else { (10)

select = select U bestl

best = sm-mincov{M2, select, weight, Ibound-new, ubound)

}
} else { /* Branchon cycliccore and recur */ (11)

branch = select-column{M, weight, indep)

select! = solution-dup{select) Ubranch

let Mbranch be the reduced table assuming branch column is not in solution (12)

bestl = sm-mincov{Mbranch, select, weight, Ibound-new, ubound)

I* Update the upper bound if we found a better solution */ (13)

if {best! / emptysolution) and {ubound > cost{bestl)) ubound = cost{bestl)

/* Do not branch if lower bound matched */ (14)

if {best! ^ empty-solution) and {cost{bestl) = Ibound-new) return bestl

let be the reduced table assuming branch column not in solution (15)

best2 = sm-mincov{M^^:^:^, select,weight,Ibound-new, ubound)

best = best-solution{bestl, bestl)

}
return best

Figure 10.3: Detailed branch-and-bound algorithm.

240 CHAPTER 10. BINATE COVERING

solution summed to the cost of the essential columns and of the independent set is potentially

a sharper lower bound on any complete solution obtained from this node of the recursion

tree. The updated value Woundjtew is used in the rest of the routine. The lower bound is a

monotonically increasing quantity along each path of the computation tree.

• The parameter abound is updated once (line 13). At that point a new complete solution has

just been retumed by the recursive call to smjnincov (line 12) and an updated value ofabound

must be recomputed for the following recursive call of smjnincov (line 15). The reason is

that when a new complete solution is obtained, the current abound is not any more valid and

therefore it must be updated before it is used again. To be updated, abound is compared

against the cost of the newly found solution, and the minimum of the two is the new abound.

The upper boimd is a monotonically decreasing quantity throughout the entire computation.

The previous analysis proves that the algorithm finds a minimum cost satisfying assign

ment to the problem.

10.4.2 N'Vfay Partitioning

If the covering matrix M can be partitioned into two disjoint blocks Mi and M2, the

covering problem can be reduced to two independent covering subproblems, and the minimum

covering for M is the union of the minimum coverings for Mi and M2. Such bi-partition can be

found by putting in Mi a row and all columns that have an element in common with the row (i.e.,

the columns intersecting the row) and recursively all rows and columns intersecting any row or

column in Mi. The remaining rows and columns (i.e., not intersecting any row or column in Mi)

are put in M2. This algorithm can be generalized to find partitions made by N blocks, as shown in

Figure 10.4.

Theorem 10.4.1 Ifa covering matrix M can be partitionedinto n disjoint blocks Mi, M2,..., M„,

the union ofthe minimum covers o/Mi, M2,..., Mn is the minimum cover ofM.

Bi-partitioning is implemented in [108,130] as follows. When checking for a partition of

the problem (line 7), the routine smjnincov is called recursively on two independents subproblems

(lines 8 and 10), if they exist. When solving the smaller of the two subproblems (Line 8), the initial

solution is empty, the initial lower boimd is set to 0, the initial upper bound is set to the difference

between the current abound and the cost of the current partial solution. When solving the larger

10.4. ABRANCH-AND-BOUNDALGORrrHMFORMINIMUMCOSTBINATECOVERING24l

njwayjpartition(M) {

while (there is a row r,- not in any partition){

put r,- in a new partition Mk

while (there is a row tj connected to any row in partition Mk) {

put row rj in partition Mk

}

}

}

Figure 10.4: N-way partitioning.

of the two subproblems Gine 10), the initial solution is the current solution (to which the solution

of the smaller subproblem is added, if it is not empty), the initial lower bound is set to the current

lower bound WoundJiew, the initial upper bound is set to the current ubound.

Theorem 10.4,2 The upper bound set in the smaller subproblem is correct.

Proof: Let select be the partial solution along the current path. It holds that (cost of the final

solution along the current path) > (cost of solving M\ + cost (select) + 1). If (cost of solving Mi)

> (ubound - cost (select)), then (costof the final solutionalongthecurrentpath) > (ubound +1),

i.e., (cost of the final solution along the current path) > ubound. This is ruled out by setting the

upper boimdwhen solving Mi to (ubound - cost(select)), sincesmjnincov returns a non-empty

solution only if it can beat the given upper bound. •

10.4.3 Maximal Independent Set

The cardinality of a maximum set of pairwise disjoint rows of M (i.e., no 1*s in the same

colunm) is a lower bound on the cardinality of the solution to the covering problem, because a

different element must be selected for each of the independent rows in order to cover them. If the

size of current solution plus the size of the independent set is greater or equal to the best solution

seen so far, the search along this branch can be terminated because no solutionbetter than the current

one can possibly be found. It is also true that the size of the independent set at the first level of the

242 CHAPTER 10. BINATE COVERING

recursion is a lower bound for the final minimum cover, so that the search can be terminated if a

solution is found of size equal to this lower bound. Since finding a maximum independent set is an

NP-complete problem, in practice an heuristic is used that provides a weaker lower bound. Notice

that even the lower bound provided by solving exactly maximum independent set is not sharp.

In [112,108,130], the adjacency matrix B of a graph whose nodes correspond to rows in

the cover matrix M is created. In the binate case, only rows are taken into consideration which do

not contain any 0 element. An edge is placed between two nodes if the two rows have an element in

common. While B is non-empty, a row Ri of B is found that is disjoint from a maximum number

of rows (i.e., the row of minimum length in B). The column of minimum weight intersecting Ri

is also found. The weight is cumulated in the independent set cost. All rows having elements in

common with Ri are then deleted from B. At the end ofthe while-iteration a set ofpairwise disjoint

rows (independent set) and their minimum covering cost is found. Notice that one could think to

the problem in a dual way as finding a maximal clique in a graph with the same rows as before, and

edges between two nodes representing two disjoint rows.

10.4.4 Selection of a Branching Column

The selection of a good branching column is essential for the efficiency ofthe branch and

bound algorithm. Since the time taken by the selection is a significant part of the total, a trade-off

must be made between quality and efficiency.

In [112,108, 130], the selection of the branching variable is restricted to columns inter

secting the rows of the independent set, because a unique column must eventually be selected from

each row of the maximal independent set. Among those rows, the selection strategy favors columns

with large number of 1's and intersecting many short rows. Short rows are considered difficult rows

and choosing them first favors the creation of essential columns. More precisely, the column of

highest merit is chosen. The merit of a given column is computed as the product of the inverse of

the weight of the colunm multiplied by the sum of the contributions ofall rows intersected in a 1 by

the column. The inverse of the contribution of a row is equal to the number of all non-2 elements

(each can contribute in covering the row) minus 1. The inverse is well-defined, because at this stage

each row has at least two-elements (it is not essential).

10.5. REDUCTION TECHNIQUES 243

10.5 Reduction Techniques

Three fundamental processes constitute the essence of the reduction rules:

1. Selection of a column: a column must be selected if it is the only column that satisfies

a required constraint (Section 10.5.7), A dual statement holds for unacceptable columns

(Section 10.5.8). Also related is the case of unnecessary columns (Section 10.5.9).

2. Elimination of a column: a column Ci can be eliminated, if its elimination does not preclude

obtaining a minimal cover, i.e., if there exists in M another column Cj that satisfies at least

all the constraints satisfied by Ci (Section 10.5.5).

3. Elimination of a row: a row Ri can be eliminated if there exists in M another row Rj that

expresses the same or a stronger constraint (Section 10.5.1).

Even though more complex criteria of dominance have been investigated (for instance.

Section 10.5.12), the previous ones are basic in any table covering solver. Reduction rules have

previously been stated for the binate covering case [50,51,14,13], and also for the imate covering

case [87, 113,13]. Here we will present the known reduction rules directly for binate covering

and indicate how they simplify for unate covering, when applicable. For each of them, we will

first define the reduction rule, and then a theorem showing how that rule is applied. Proofs for

the correctness of these reduction rules have been given in [50, 51, 14, 13], and they will not be

repeated here, except for a few less common ones. We will provide a survey comparing different

related reduction rules used in the literature.

The effect of reductions depends on the order of their application. Reductions are usually

attempted in a given order, until nothing changes any more (i.e., the covering matrix has been

reduced toa cyclic core). Figure 10.5 shows how reductions are applied in[112,108,130]^

10.5.1 Row Dominance

Definition 10.5.1 A row Ri dominatesanother row Rj if Rj has all the I's and O's ofRi; i.e.,for

each column Ck ofM, one ofthefollowing occurs:

• Mi^k = 1 andMj^k = 1,

• Mi^k = 0 and Mj^k = 0,

^The reductions ^-dominance androwjconsensusdiQ onlyin[108] andthereduction byimplication is onlyin [130].

244 CHAPTER 10. BINATE COVERING

s'm-reduce{A, solution, weight, ubound) {

do {

apply /^-dominance or a-dominance

find essential columns

find unacceptable columns

if (a column is both essential and unacceptable)

return empty-solution

for each essential column {

delete each row intersecting the column in a 1

if (a row of length 1 intersects the column in a 0)

retum emptysolution

delete column

add column to solution

if (cost of solution > ubound)

retum emptysolution

}
for each imacceptable column {

delete each row intersecting the column in a 0

if (a row of length 1 intersects the column in a 1)

retum emptysolution

delete column

}

apply row-Consensus

apply low-dominance

} while (reductions are applicable)

retum solution

Figure 10.5: Flow of reduction rules.

lOS REDUCTION TECHNIQUES 245

• Mi^k = 2.

Theorem 10.5.1 Ifa rowRj isdominatedbyanotherrow Ri,Rj canbeeliminatedwithoutejecting

the solutions to the coveringproblem.

This definition of row dominance is

• similar to column dominance (Rule 3) in [50], except that the labels of dominator row, Ru

anddominated row, Rj, are reversed (i.e., reverse definition of dominance),

• similar to column dominance (Rule 3) in [51], except that the labels of dominator row, R^

anddominated row, Rj, are reversed (i.e., reverse definition of dominance),

• equivalent to row dominance (Definition 10) in [14],

• identical to row dominance (Definition 2.11) in [13].

Row Dominance for a Unate Table

Definition10.5.2 ArowRidominates another rowRj iffor all columns Ck,Mi^k = 1 Mj^k = 1-

10.5.2 Row Consensus

Theorem 10.5J2 If Ri dominates Rj, except for a (unique) column Ck where Ri and Rj have

different values,elementMj^k can be eliminatedfromthematrix M (i.e., the entry inposition Mj^k

becomes a 2) without affecting the solutions ofthe covering problem.

Proof: Suppose thatentry Mj^k is 1 andentry Mi^k is 0. The alignment is thesameif entry Mj^k is 0

and entry Mi^k is 1. If entry Mj^k is removed, the problem arises that we are not able to satisfy row

Rj by setting aifc to 1. A problemarisesif a minimum-costsolutionrequiresXk set to 1,becausewe

could miss the fact that setting Xk to 1satisfies also row Rj. Instead we could obtain an higher-cost

solution, by selecting another column in order to satisfy row Rj - Mj^k- We now show that this

is not the case. If a minimum-cost solution requires xk set to 1, we must still satisfy row Ri that

cannot be satisfied by xk set to 1. Whatever choice will be made to satisfy J?,-, it will satisfy also

Rj - Mj^k (since Rj - Mj^k has all Ts and O'sof Ri) and therefore no more cost will be incurred

to satisfy row Rj - Mj^k- The previousargumentfails if Rj - Mj^k is empty and there are cases in

which an higher-cost solution would be found. One could claim that if Rj - Mj^k is empty, then

Rj has only entry Mj^k and therefore Xk is an essential, that is taken care by the essential column

246 CHAPTER 10. BINATE COVERING

detection. In reality it mayhappen thatby applying rowconsensus many timesto thesamerowRj

(using different rows Ri) at a certain point Rj is emptied. In that case the last application of row

consensus is potentially faulty and should not be done. •

Row consensus is applied in [108]. This criterion generalizes the one given in [59].

10.5.3 Column a-Dominance

Definition 10.5J A column Cj a-dominates another column Ck if

• Cj ^ Ck,

• CjhasalltheVsofCk,

• CkhasalltheO'sofCj;

i.e., Cj < Ck, andfor each row Ri ofM, none ofthefollowing can occur:

• Mij = 2 and Mi^k = 1,

• Mij = 0 and Mi^k = 1,

• Mij = 0 and Mi^k = 2.

Alternatively, Cj < Ck, andfor each row Ri ofM, one ofthefollowing occurs:

• ^i,j ~

• Mij —2 and Mi^k ^ 1.

• Mij —0 and Mi^k = 0.

Note that these last 3 cases are exactly the complement ofthe cases excluded above.

Theorem 10.53 LetM be satisfiable. Ifa column Ck is a-dominated byanother column Cj, there

is at least one minimum cost solution with column Ck eliminated (xk = 0^, together with all the

rows in which it has O's.

This definition of column a-dominance is

• an extension to row a-dominance (Rule 1) in [50], because the latter doesn't include the case

Mij = 0 and Mi^k = 0,

10.5. REDUCTION TECHNIQUES 247

• equivalent to first halfof Rule4 in [51]: (a) Cj has all the 1's of Ok and (bl) Ck has all the

O'sofCj,

• identical to column dominance (Definition 11, Theorem 3) in [14],

• identical to colunm dominance (Definition 2.12, Theorem 2.4.1) in [13].

Column Dominance for a Unate Table

Definition 10^.4 A column Ci dominates another column Cj iffor all rows Rk, Mkj = I

Mk,i = 1.

10.5.4 Column /^-Dominance

Definition 10.5.5 A columnCi (3-dominates another columnCj if

• Q < Cj,

• Cihasallthel'sofCj,

• for every rowRp in which Ci has a 0, either Cj has a Dor thereexists a row Rqin which Cj

has a 0 and Ci does not have a 0, such that disregarding entries in columns Ci and Cj, Rq

dominates Rp.

Theorem 10J.4 Let M be satisfiable. If Ci (5-dominates Cj, there is at least one minimum cost

solutionwith columnCj eliminated(xj = 0), togetherwith all the rows in which it has O's.

Proof: We must show that given a solution, one can find another solution, of cost lesser or equal,

with column Cj eliminated (xj = 0). There are two cases for the original solution: either Xi = 1

and Xj = 1 or a;,- = 0 and Xj = 1 (if xj = 0, we are done). The new solution has Xi = 1 and

Xj = 0 and coincidesfor the rest with the given solution. The case when xi = 1 and xj = 1 is easy,

becausecolumn Ci has all 1's of column Ci and thereforeCj is useless.

Consider now the case when Xi = 0 and xj — 1. The clauses with a 0 in colunm Ci

are satisfied by not choosing Ci and the clauses with a 1 in column Cj are satisfiedby choosing

Cj. Each clause with a 0 in column Cj (and without a 0 in column Ci) is satisfied by a proper

assignment of a columndifferent fix)m Ci and Cj, say Ck. Noticethat the hypothesis that column

Ci does not have a 0 in the clause is essential here, otherwise this clause would be satisfied already

by not choosing Cu without resorting to a column Ck. Now consider the assignment with column

248 CHAPTER 10. BINATE COVERING

Ci andwithoutcolumnCj (xi —1andXj = 0) andthe sameremaining assignments as theprevious

one. It costs no more than the previous one. We show that it is a solution. In order to do that we

mustmake surethat the O's covered by C, and the 1's covered by Cj by settingxi = 0 and Xj = I,

are still covered in the new assignment where Xi = 1 and Xj = 0. The clauses witha 1 in Cj are

satisfied by Cj, becauseCi has all 1's of Cj. Each clause, say Rp, with a 0 in columnC,- is satisfied

too,becausethereis a corresponding clause, say Rq,witha 0 in columnCj, and wealready noticed

that thereexistsanothercolumn, Ck,that satisfies Rq. Butby hypothesis Rq dominates Rp, i.e., Rp

has all the I's andO's of Rq, hence column Ck satisfies alsoclauseRp (if entry Mq^k = 1(0), then

entry Mp^k = 1(0) alsoand Xk = I (xk = 0) satisfies both clauses). •

This definition of column /^-dominance is

• strictly stronger than column a-dominance given in 10.5.3,

• more general than row /^-dominance (Rule 5) in [50], because the latter assumes that the

covering table contains only rows with no or one 0,

• equivalent to second halfof Rule4 in [51]: (a) C,- has all the I's of Cj and (b2)for every row

Rp in which Ci has a 0, there exists a row Rq in which Cj has a 0, such that disregarding

entries in row Ci and Cj, Rp dominates Rq (with reverse definition of row dominance),

noticingthat by mistakethe conditionthat C, does not have a 0 in row Rq was omitted,

• not mentioned in [14] and [13].

10.5.5 Column Dominance

Definition 10.5.6 A column Ci dominatesanother column Cj if either Ci a-dominates Cj or Ci

p-dominates Cj.

Theorem 10.5.5 Let M be satisfiable. If Ci dominates Cj, there is at least one minimum cost

solutionwithcolumn Cj eliminated(xj = 0), togetherwithall the rows in whichit has O's.

10.5.6 Column Mutual Dominance

Definition 10.5.7 Two columns Ci and Cj mutuallydominate each other if

• Ci has a 0 in every row where Cj has a 1,

• Cj has a 0 in every rowwhere Ci has a 1.

10.5. REDUCTION TECHNIQUES 249

Theorem 10^.6 LetM be satisfiable. If Ci and Cj mutually dominate each other, there is at least

one minimum cost solutionwith columns Ci and Cj eliminated(xi = Xj = Oj, togetherwithall the

rows in which they have O's.

This defimtion of column mutual dominance is

• identical to rule for mutually reducible variables in [128],

• not mentioned in other papers.

10.5.7 Essential Colunm

Definition 10.5.8 A column Cj is an essentialcolumn if there existsa row Ri havinga 1 in column

Cj and Ts everywhere else.

Theorem 10.5.7 If Cj is an essential column, it must be selected (xj = 1^ in every solutions.

ColumnCj must then be deleted togetherwith all the rows in which it has 1'^.

This definition of essential column is

• identical to essential row (Rule 2) in [50],

• identical to Rule 1 in [51],

• included in Definition 9 in [14]: the row Ri in the above definition corresponds to a singleton-1

essential row in [14],

• included in Definition 2.10 in [13]: the row Ri in the above definition corresponds to a

singleton-1 essential row in [13].

Essential Column for a Unate Table

Definition 10.5.9 A column is an essential column ifit contains the 1 ofa singleton row.

10.5.8 Unacceptable Colunm

Definition 10.5.10 A columnCj is an unacceptable column if there existsa row Ri having a 0 in

column Cj and 2's everywhere else.

This reduction rule is a dual of the essential column rule.

250 CHAPTER 10. BINATE COVERING

Theorem 10.5.8 IfCj is an unacceptable column, it mustbe eliminated (xj = 0^ in every solution,

together with all the rows in which it has 0'5.

This definition of unacceptable column is

• identical to that of nonselectionable row in [50],

• identical to Rule 2 in [51],

• included in Definition9 in [14]: the row Ri in the above definition corresponds to a singleton-0

essential row in [14],

• included in Definition 2.10 in [13]: the row Ri in the above definition corresponds to a

singleton-0 essential row in [13].

10.5.9 Unnecessary Colunm

Definition 10.5.11 A column ofonly O's and 2's is an unnecessary column.

Notice that there is no symmetric rule for columns of I's and 2's. The reason is that selecting a

column to be in the solution has a cost, while eliminating it has no cost.

Theorem 10.5.9 IfCj is an unnecessary column, it may be eliminated(xj = Oj, together with all

the rows in which it has O's.

This definition of unnecessary column is

• identical to Rule 4 in [50],

• identical to Rule 5 in [51],

• not mentioned in [14] and [13].

10.5.10 Trial Rule

Theorem 10.5.10 If there exists in a covering table M a row Ri having a 0 in column Cj, a I in

column Ok and 2's in the rest, then apply thefollowing test:

• eliminate Ck together with the rows in which it has O's,

lOS REDUCTION TECHNIQUES 251

• eliminate Cj, which is now an unacceptable column, together with the rows in which it has

O's,

• continueas long as possible to eliminate the columnswhichbecomesunacceptable columns.

If at least one row of M has only 2's at the end of this test, then column Ck must be selected

(xk = 1f". Ther^ore, Ckcanbedeleted together with all thecolumns inwhich it has Vs.

This reduction rule is

• identical to Rule 6 in [50],

• not mentioned in other papers.

10.5.11 Infeasible Subproblem

Unlike the unate covering problem, the binate covering problem may be infeasible. In

particular, an intermediate covering matrix M may found to be unsatisfiable by the following

theorem. When an infeasible subproblem is foimd, that branch of the binary recursion is pruned.

Theorem 10.5.11 A coveringproblem M is infeasible if there exists a column Cj which is both

essential and unacceptable (implying xj = 1 and xj = Oj.

This definition of infeasibility is

• not mentioned in [50] and [51],

• briefly mentioned in [14],

• identical to the unfeasible problem in [13].

10.5.12 Gimpel's Reduction Step

Another heuristic for solving the minimum cover problem has been suggested by Gim-

pel [48]. Gimpel proposed a reduction step which simplifies the covering matrix when it has a

special form. This simplification is possible without further branching, and hence is useful at

each step of the branch and bound algorithm. In practice, Gimpel's reduction step is applied after

reducing the covering matrix to the cyclic core.

It is possible that a row is left with only 2*s by a sequence of reduction steps.

252 CHAPTER 10. BINATE COVERING

Gimpel's reduction can be described in terms of the product-of-sums represented by a

covering table. The product-of-sums is examined to see if any clause has only two literals of the

same cost. For example, assume the expression has the form:

P= R(ci + C2)(ci -l-5l) ...(ci H-5n)(c2 + ri) . . . (C2 + T„i)

where c\ and C2 are single variables witha costC, 5,-, i = 1... n and TjJ= 1...m are sums of

variables not containing ci or C2, and R 'lSd. product of sums of variables not containing ci or C2.

Because the covering table is assumedminimal, if there is a clause (ci C2), then m > 1, n > 1,

and none of Si or Tj is identicallyzero.

Note that with the expression written in this form, each parenthesized expression corre

sponds directly to a single row in the covering table. By algebraic manipulations, the expression

can be re-written as:

p = R(ciC2 + ciT-\- C2S)

where 5 = n?=i Su and T = nSi Ti.

A second covering problem is derived from the original covering problem with the fol

lowing form:

Pi = R{c2 -f- 5 -F T)
n m

= •Rnn(«2+'5.+r,)
i=l i=l

The main theorem of Gimpel is:

Theorem 10^.12 Let Mi be a minimum cover for pi. A cover for p can be derived from Mi

according to the rule: if S is covered by Mi then add C2 to Mi to derive a cover of p; otherwise,

add ci to Ml to derive a cover of p. The resulting cover is a minimum coverfor p.

A proof can be found in [113], where a more extended discussion is presented.

GimpeTs reduction step was originally stated for covering problems where each colutim

had cost 1. Robinson and House [60] showed that the reduction remains valid even for weighted

covering problems if the cost of the column ci equals the cost of the column C2, as it has been

presented here. Gimpel's rule has been first proposed in [48] and then implemented in [112]. In

[108, 130] Gimpel's rule has been extended to handle the binate case. This extension has been

described in [131].

10.6. IMPLICIT BINATECOVERESIG

10.6 Implicit Binate Covering

mincov(i?,C, C/) {

(i?,C) = Reduce(i2,C,C/)

if (Teniiinal_Case(/2, C))

if (cost(-R, C) > U) returnno solution

else U = cost(i2, C)\ return solution

L = LowerJBound(jR, C)

if (L > t/) return no solution

Ci = Choose-Column(jR, C)

= mincov(/2ci >C'c,»U)

5° = mincov(i2c7, Cc-^ U)

return Best-Solution(5^ U{c,}, S°)

}

Figure 10.6: Implicit branch-and-bound algorithm.

253

The classicalbranch-and-bound algorithm[50,51] for minimum-costbinate coveringhas

been described in previous sections, and implemented by means of efficient computer programs

(ESPRESSO and stamina). These state-of-the-artbinate table solvers represent binate tables effi

cientlyusing sparsematrix packages. But the fact that each non-empty table entry still has to be

explicitly represented put a bound on the size of the tables that can be handled by these binate

solvers. For example, we would not expectthese binatesolvers to handleexamples requiring over

10® columns (up to 2^®°° columns), reported in state minimization of FSM's [63]. To keep with

our stated objective, the binate table has to be represented implicitly. We do not represent (even

implicitly) theelements of thetable,butwemakeuseonlyof a setof rowlabelsanda setof column

labels,each represented implicitlyas a BDD.They arechosenso that the existence andvalueof any

table entry can be readily inferred by examining its correspondingrow and column labels. In the

sequel, we shall assume that every row has a unit cost.

A binatecovering problem instance can be characterized by a 6-tuple (r, c, i2,C, 0,1),

defined as follows:

254 CHAPTER 10. BINATE COVERING

• the group of variables for labeling the rows: r

• the group of variables for labeling the columns: c

• the set of row labels: R(r)

• the set of column labels: C(r)

• the 0-entriesrelationat the intersection of row r andcolumn c: 0(r, c)

• the 1-entries relationat the intersectionof row r and column c: l(r, c)

In other words, the user of our implicit binate solver would first choose an encoding for

the rows and columns. Given a binate table, the user will then supply a set of row labels as a BDD

R(r) and a set of column labels as a BDD C(c), and also the two inference rules in the form of

BDD relations, 0(r, c) and 1(r, c), capturing the 0-entries and 1-entries.

The classical branch-and-bound solution ofminimum cost binate covering is based on the

recursive procedure as shown in Figure 10,3. In our implicit fonnulation, we keep the branch-and-

bound schemesmnmarized in Figure 10.6,but we replace the traditionaldescriptionof the table as

a (sparse) matrix with an implicit representation, using BDD's for the characteristic functions of the

rows and columns of the table. Moreover, we have implicit versions of the manipulations on the

binate table requiredto implementthe branch-and-bound scheme. In the following sections we are

going to describe the following:

• implicit representation of the covering table,

• implicit reduction,

• implicit branching column selection,

• implicit computation of the lower bound, and

• implicit table partitioning.

At each call of the binate cover routine mincov, the binate table undergoes a reduction

step Reduce and, if termination conditions are not met, a branching column is selected and mincov

is called recursively twice, once assuming the selected column ci in the solution set (on the table

Rci yCci) and once out of the solution set (on the table R^, Ccj). Some suboptimalsolutionsare

bounded away by computing a lower bound L on the current partial solution and comparing it

10.7. IMPLICIT TABLE GENERATION 255

against an upper bound U (best solution obtained so far). A good lower bound is based on the

computation of a maximal independent set.

10.7 Implicit Table Generation

Here we define three ways of specifying the binate covering table in decreasing order of

generality. A table is defined implicitly by generating BDD-based representations of the rows and

columns and by giving relations specifying the 1 and 0 entries, given the rows and columns. By

imposing restrictions on the way in which rows and columns ate labeled and entries are defined,

one gets representations with varying degrees of generality. Historically the third (less general)

way was implemented first to solve exact state minimization of ISFSM's [65]. It is applicable to

other problems whosecoveringtable can be represented in the same way,e.g., the exact formulation

of technology mapping for area minimization [113]. The difference between the first and second

formulation is only in some computation simplification in the latter one, for tables that have at most

one 0 per row. There is a trade-off between generality of the representation and efficiency of the

computations: "hard-wiring" the rules that define a table may speed up table manipulations,to the

price of more limited applicability.

In Chapter 11 we will see how the covering tables occurring in GPI minimization ate

generated. In [63] it is shown how covering tables occurring in state minimization of FSM's are

constructed. In the next section, we will describe how a binate covering table can be manipulated

implicitly so as to solve the minimum cost binate covering problem.

1. General binate covering table

• the group of variables for labeling the rows: r

• the group ofvariables for labeling the columns: c

• the set of row labels: /2(r)

• the set ofcolumn labels: C(c)

• the 0-entriesrelationat the intersectionof row r and column c: 0(r, c)

• the l-entries relation at the intersectionof row r and column c: l(r, c)

2. Binate covering table assuming each row has at most one 0:

• the group of variables for labeling the rows: r

256 CHAPTER 10, BINATE COVERING

• the group of variables for labeling the columns: c

• the set of rowlabels: R(r)

• the set of columnlabels: C{c)

• the 0-entries relation at the intersectionof row r and column c: 0(r, c)

• the l-entiies relation at the intersectionof row r and column c: 1 (r, c)

3. Specialized binate covering table for exact state minimization and similar problems:

• the group of variablesfor labeling the rows (each label is a pair): (c, d)

• the group of variables for labeling the columns: p

• the set of rowlabels: R(c, d)

• the set of column labels: C(p)

• the O-entries relationat the intersection of row (c, d) and columnp: 0((c, d),p) = (p =

c)

• the 1-entries relationat the intersection of row (c, d) and columnp: 1 ((c, d),p)= {pD

d)

hi the sequel, each implicit table operation wiU be expressed by three BDD formulas,

each representing a realization for a different implicit binate solver. Each equation will be labeled

1,2, or 3, depending on which of the above set of assumptions are made.

10.8 Implicit Reduction Techniques

Reduction rules aim to the following:

1. Selection of a column. A column must be selected if it is the only column that satisfies a

given row. A dual statement holds for columns that must not be part of the solution in order

to satisfy a given row.

2. Elimination of a colunm. A column ci can be eliminated if its elimination does not preclude

obtaining a minimum cover, i.e., if there is another column Cj that satisfies at least aU the

rows satisfied by c,-.

3. Eliminationof a row. A row ri can be eliminatedif there exists another row rj that expresses

the same or a stronger constraint.

10.8. IMPLICIT REDUCTION TECHNIQUES 257

The order of the reductions affects the final result. Reductions are usually attempted

in a given order, until nothing changes any more (i.e., the covering matrix has been reduced to a

cyclic core). The reductions and order implemented in our reduction algorithm are summarized in

Figure 10.7.

Reduce(17, C, U) {

repeat {

CoIlapse_Columns(0

Column_Dominance(R, C)

Sol = Sol U Essential-Columns(i2, C)

if QSol\ > U) returnno solution

Unacceptable.Columns(il, C)

Unnecessary_Columns(i2, C)

if (C does not cover B) return no solution

Collapse_Rows(R)

Row-Dominance(i2, C)

} until (both R and C unchanged)

return (i?, C)

}

Figure 10.7: Implicit reduction loop.

hi the reduction, there are two cases when no solution is generated:

1. The added cardinality of the set of essential columns, and of the partial solution computed so

far, Sol, is laiger or equal than the upper bound U. In this case, a better solution is known

than the one that can be found from now on and so the current computation branch can be

bounded away.

2. After having eliminated essential, unacceptable and unnecessary columns and covered rows,

it may happen that the rest of the rows cannot be covered by the remaining columns. In this

case, the current partial solution cannot be extended to any full solution.

258 CHAPTER W. BINATE COVERING

We are going to describe how the reduction operations are performed implicitly using

BDD's on the three table representations described in the previous section.

10.8.1 Duplicated Columns

It is possible that more than one column (row) label is associated with columns (rows)

that coincide element by element. Weneed to identify such duplicated columns (rows) and coUapse

them into a single column (row). This avoids the problem of columns (rows) dominating each other

when performing implicitly column (row) dominance. The following computations can be seen as

finding the equivalence relation of duplicated columns (rows) and selecting one representative for

each equivalence class.

Definition 10.8.1 Two columns are duplicates, if on every row, their corresponding table entries

are identical.

Theorem 10.8.1 Duplicated columns can be computed as:

dup.col(c\ c) ^= Vr {R(r) [(0(r, c') <=> 0(r, c)) • (l(r, c') •<=> l(r, c))]}

dup.col(c\c) ^ = Vr {R(r) => [-«0(r,c') •-'0(r,c) •(l(r, c') ^ l(r, c))]}

dup.col(p\p) ^ = ySd R(p\ d)' fid R(p^ d) ♦ Vrf {[3c il(c, rf)] => [(p' 2 (p 2 d,)]}

Proof: As discussed at the end of Section 10.7, the first equation computes the duplicated columns

relation for the most general binate table, and the second equation for the binate table with the

assumption that there is at most one 0 in each row, and the third equation is for the specialized binate

table for state minimization, assuming the columns are prime compatibles p, and the rows are pairs

(c, d).

For the colurrm labels d and c to be in the relationdupjcol, the firstequationrequires the

following conditions to be met for every row label r e R: (1) the entry (r, c) is a 0 if and only

if the entry (r, d) is a 0, (i.e., 0(r, c^ ^ 0(r, c)), and (2) the entry (r, c) is a 1 if and only if the

entry (r, </) is a 1, (i.e., l(r, d) <=> l(r, c)). Assuming each rowhas at mostone 0 for the second

equation, condition 2 requires that the row labeled r carmot intersect either column at a 0, (i.e.,

->0(r, c') •-iO(r,c)). •

Theorem 10.8.2 Duplicated columns can be collapsed by:

C(c) = C(c)-]^d [C(d) • (d •< c) •dupjcol(d^ c)]

C(p) 3 = C(p)' flp' [C(p') ' (p' -< p)' dup.col(p\p)]

10.8. IMPLICIT REDUCTION TECHNIQUES 259

Proof: This computation picks a representative column label out of a set of column labels corre

sponding to duplicated columns. A column label c is deleted from C if and only if there is another

columnlabel d whichhas a smallerbinaryvalue than c (denotedby d •< c) and both label the same

duplicated column. Here we exploit the fact that any positional-set c can be interpreted as a binary

number. Therefore, a unique representative from a set can be selected by picking the one with the

smallest binary value. ^ •

10.8.2 Duplicated Rows

Definition 10.82 Two rows are duplicates if, on every column, their corresponding table entries

are identical.

Detection of duplicated rows, selection of a representative row, and table updating are

performedby the followingequations as in the case of duplicatedcolumns.

Theorem 10.82 Duplicated rows can be computed as:

dup.row{dj r) = Vc {C(c) =>• [(0(r', c) 0(r, c)) •(l(r', c) ^ l(r, c))]}

dup.row(d, d',c,d) ^ = (d = c)- fip [C(p) •((p 2 d') (p2 d))]

Proof: Similar to the proof forTheorem 10.8.1. For the row labels d and r to be in the relation

dupjrow, the first equation requires the following conditions to be met for every column label

c € C: (1) the entry (r, c) isa 0 if and only if the entry (r', c) is a 0, (i.e., 0(r', c) 0(r, c)), and

(2) the entry (r, c) is a 1if and only if the entry (r', c) is a 1,(i.e., 1(r', c) <=> 1(r, c)). •

Theorem 10.8.4 Duplicated rows can be collapsed by:

R[r) = R(r)' pd [i2(r') •(d < r) •dup.row(dy r)]

R{c, d) ^ = R(c, d)' pd, d' [R(c\d') • (d' -< d) •dup.row(d, d',c,d)]

Proof: The proof is similarto that for Theorem 10.8.2, except we are delete all duplicating rows

here except the representative ones. •

From now on, sometimes we will blur the distinction between a column (row) label and

the column (row) itself, but the context should say clearly which one it is meant.

^Alternatively, onecould have usedthecproject BDD operator introduced in[80] topicka representative colunuiout
ofeach set of duplicated columns.

260 CHAPTER 10. BINATE COVERING

10.8.3 Column Dominance

Some columns need not be considered in a binate table, if they are dominated by others.

Qassically, there are two notions of column dominance: a-dominance and ^-dominance.

Definition 10.8J A column d a-dominates another column c if c' has all the I's of c, and c has

all the O's ofd.

Theorem 10.8.5 The a-dominance relation can be computed as:

a_dom(c', c) ^= fir {R{r) -[l(r, c) •-»l(r,d)]+ [0(r, d) •-"0(r, c)]}

a.dom(d, c) ^ = fir {R{r) •[l(r, c) •-»l(r,d) + 0(r, c')]}

OL.dom(p\ p) ^ = fic, d [i?(c, d) •(p 3 d) •(p' ^ d)]- fid R(p', d)

Proof: For column d to a-dominate c, the first equation ensures that there doesn't exists a row

r e R suchthat either(1) the tableentry (r, c) is a 1but the tableentry (r, d) is not,or (2) the table

entry (r, d) is a 0 but the tableentry (r, c) is not. Assuming each rowhas at mostone0, condition

2 can be simplified to the second equation that tableentry (r, d) is a 0. •

Definition 10.8.4 A column d /^-dominates anothercolumn cif(I) d has all the I's of c, and (2)

for every row d in which d contains a 0, there exists another row r in which c has a 0 such that

disregarding entries in column d, r' has all the I's ofr.

Theorem 10.8.6 The(3-dominance relationcan be computed by:

p.dom{d, c) = fid •[l(r', c) • d)

+ 0(r', dy fir [ii:(r) •0(r,c)- fie" [C(c") •[c" ^ d) •l(r, c") •-.!(/, c")]]]}

fi.dom(p\p) 3= fid'{3d (R(d, d')). (p Dd'). (p' 2 d')}

. fid' {R{p', d'y fid [R(p, dy fiq [C{q) . [q ^ p') •(g Dd) •(g 2 d')]]}}

Proof: According tothedefinition, thetableshould contain a row r' e i?ifeitherofthefollowing

two cases is true at that row: (1) table entry at column c is a 1 while entry at column d is not a 1 (i.e.,

1(r', c) •-il (r', c')), or (2) c' hasa 0 in row d (i.e., 0(r', c')) but there does notexist a row r ^ R

such that its colunm c is a 0 and disregarding entries in column d^ row d has all the 1's of row r.

Rephrasing thelastpartofthecondition2, theexpression fie" [C(d') •[c" d)-l (r, c") —•! (r', c")]

requires that there is no column c" e C apart from column d such that c" has a 1 in row r, but not

in row d. m

10.8. IMPLICIT REDUCTION TECHNIQUES 261

The conditions for a-dominance are a strict subset of those for /^-dominance, but a-

dominance is easier to compute implicitly. Either of them can be used as the column dominance

relation coLdom.

Theorem 10^.7 Theset ofdominatedcolumns in a table (i2,C) can be computedas:

D(c) = C(c) •3c' [C(c') • (c' ^ c) •coLdom(c\c)]

D(p) 3 = C(p) •3p' [C(p')' ip' ^ p)' coLdom(p', p)]

Proof: A column c e Cis dominated if there is anotherc' eC differentfrom c (i.e., c' ^ c) which

column dominates c (i.e., co/-rfom(c',c)). •

Theorem 10,8.8 Thefollowing computations delete a set ofcolumns D(c)from a table (R, C) and

all rows intersecting these columns in a 0.

C(c) C(c).-iD(c)

R(r) = R(r)' /9c [D{c) •0(r, c)]

C(p) 3= Cip)'-^D(p)

R{c,d) 3= R{c,d)--^D{c)

Proof: The first computation removes columns in D{c) from the set of columns C(c). The

expression 3c [D(c) - 0(r, c)] defines all rows r intersecting the columns in D in a 0. They are

deleted from the set of rows R. •

10.8.4 Row Dominance

Definition 10.8.5 A rowr' dominatesanotherrowr if r has all the I's and O's of r'.

Theorem 10.8.9 The row dominance relation can be computed by:

row.dom(r',r) = ^c {C(c) •[l(r', c) •-'l(r, c) + 0(r',c) •-«0(r, c)]}

rowjdom(c\ d',c,d) ^ = flp [C{p) •(p 2 d') •(p 2 d)] •[unatejrow(c') + (c' = c)]

Proof: For r' to dominate r, the equationrequiresthat there is no column c e C such that either (1)

thetable entry (r', c) is a 1buttheentry (r, c) isnot,or (2)theentry (r', c) is a 0buttheentry (r, c)

is not. •

262 CHAPTER 10. BINATE COVERING

Theorem 10.8.10 Given a table {R(r), C{c)),the set ofunate rowlabels r can be computed as

unatejrow{r) =y3c [C(c) •0(r, c)].

Givena table (jR(c, d)yC[p)), the setofunate rowlabels c can be computedas

unate-row(c) ^ =/9p[C(p) •(p= c)] =]^c C(c).

Theorem 10.8.11 The set ofrows not dominated by other rows can be computed as:

R(^r) = R(r)- [jR(r') ♦ (r' / r) •rowjdom{r\ r)]

/2(c, d) ^ = R{c, d)- d' {R{c\ d') •[(c', d') (c, rf)] •row-dom{c'̂ d\ c,rf)]}

Proof: The equation expresses that any row r e R, dominated by another different row r' e R, is

deleted from the set of rows /2(r) in the table. •

10.8.5 Essential Columns

Definition10.8.6 A column c is an essential column if there is a rowhavinga 1 in column c and

2 everywhere else.

Theorem 10.8.12 Theset ofessential columnscan be computedby:

ess.col(c) 1= C(c) •3r {R{r) -l(r, c)- ;Bc'[C(c') •(c' c) •(0(r,c') + l(r, c'))]}

ess-col{c) ^= C(c) •3r {R{r) •l(r, c) •unatejrow{r)' fic' [C{c') •(c' ^ c) •l(r,c')]}

ess.col(p) ^= C{p)' 3c, d{R{c, d) -(pD d) -unatejrow(c)- ^p' [C(p') •(p' ^ p) •(p' Dd)]}

Proof: For a column c € C to be essential, there must exist a row r e R which (1) contains a 1 in

column c (i.e., 1(r, c)),and(2)thereis not another different column intersecting the rowin a 1 or 0

(i.e., [C(c'). (d ^ c). (0(r,c') + l(r,c'))]).

Assumingthat a row can have at most one 0, a column c € C is essential if and only if

there is a rowr Gi? which(1) contains a 1 in columnc (i.e., 1(r, c)), and (2) doesnot containany

0 (i.e., unatejrow(r)), and (3) there is not anotherdifferent columnintersecting the rowin a 1 (i.e.,

^c'[C(c').(c'7^c).l(r,c')]). •

Theorem 10.8.13 Essential columns must be in the solution. Each essential column must then be

deletedfrom the table together with all rows where it has I's.

10.8. IMPLICIT REDUCTION TECHNIQUES 263

Thefollowing computations add essential columns to the solution, delete themfrom the

set ofcolumns and delete all rows in which they have I's:

solution(c) = solution(c)-{• ess.col(c)

C{c) = C(c) •-iess-Col{c)

R(r) = R(r)- ySc [ess.col{c) • l(r, c)]

solution(p) ^ = solution(p) + ess.col{p)

C(p) C(p)'-*€SS.col{p)

R{c, d) ^ = i2(c, d) •-*ess-col{c)

Proof: The first two equations move the essential columns from the column set to the solution set.

The third equation deletes from the set of rows R all rows intersectingan essentialcolumn c in a 1.

10.8.6 Unacceptable Columns

Definition 10.8.7 A column c is an unacceptable colunm ifthere is a row having a 0 in column c

and 2 everywhere else.

Theorem 10.8.14 The set ofunacceptable columns can be computed by:

unacceptable-col{c) ^= C(c) •3r {-R(r) •0(r, c)- ^c' [C(c') • (c' a) •0(r, c')]}

unacceptable.col(c) ^ = C(c) •3r {R(r) •0(r, c)- [C{c') •l(r, c')]}

unacceptablejcol{p) ^ = C(p) •3d {R{p,d)' ^p' [C(p') • (p' 3 d)]}

Proof: For column c e C to be unacceptable, there must be a row r e R such that (1) it intersects

the column c at a 0, and (2) there does not exists another column d different from c which intersects

that row r at a 0 (i.e., ^c' [C(c') • (c' 7^ c) • 0(r, c')]), and (3) no columnc' intersects that row r in

a 1 (i.e.,]3c! [C(d) ♦ l(r, c')]). Condition 2 is not needed if we assumethat each rowcontainsat

most one 0. •

264 CHAPTER 10. BINATE COVERING

10.8.7 Unnecessary Columns

Definition 10.8.8 A column is an unnecessary column if it does not have any 1 in it.

Theorem 10.8.15 The set ofunnecessary columns can be computed as:

unnecessary-Col{c) = C{c)' [i?(r) • l(r, c)]

unnecessary.col{p) ^ = C(p)' /9c, d [i?(c, d)- (pD d)]

Proof: A column c 6 C is unnecessary if no row r 6 i? intersects it in a 1. •

Theorem 10.8.16 Unacceptable and unnecessary columns should be eliminatedfrom the table,

together with all the rows in which such columns have O's.

The table (jR, C) is updated according to Theorem 10.8.8 bysetting

D{c) = unacceptable.col{c)-{• unnecessary.col{c)

D{p) unacceptablejcol{p) + unnecessary-Col{p)

Proof: Obvious. •

10.9 Other Implicit Covering Table Manipulations

To have a fully implicit binate covering algorithm as described in Section 10.6, we must

also compute implicitly a branching column and a lower bound. These computations as well as

table partitioning involve solving a common subproblem of finding columns in a table which have

the maximum number of 1 's.

10.9.1 Selection of Columns with Maximum Number of I's

Givena binary relation F(r, c) as a BDD, the abstractedproblemis to finda subsetof c's

each of which relates to the maximum number of r's in F(r, c). An inefficientmethod is to cofactor

F with respect to c taking each possible values c,-, count the number of onset minterms of each

F(r, c)|c=ci. and pick the cfs with the maximum count. Insteadour algorithm, Lmax, traverses

each node of F exactly once as shown by the pseudo-code in Figure 10.8.

Lmax takes a relation F(r, c) and the variables set r as aiguments and returns the set G

of c's which are related to the maximum number of r's in F, together with the maximum count.

10.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS

Lmax(F, r) {

V- bdd-top-var(F)

if (u € r)

return (1, bddjcount-onset(F))

else { /* u is a c variable */

(T, countJT) = Lmax(bdd-then(F), r)

(F, count-E) —Lmax(bddjelse(F),r)

count —msx.{countJr, countJS)

if (countJ' = count.E)

G = YTE(v,T,E)

else if (count = countJT)

G=ITE(u,T,0)

else if (count = count.E)

G = ITE(i;,0,F)

return (G, count)

}

}

Figure 10.8: Pseudo-code for Lmax.

265

266 CHAPTER 10. BINATE COVERING

Variables in c are required to be ordered before variables in r. Starting from the root of BDD F, the

algorithm traverses down the graph by recursively calling Lmax on its then and else subgraphs.

This recursion stops when the top variable u of F is within the variable set r. In this case, the BDD

rootedat vcorresponds to a cofactorF(r, c)|c=ci for somec,. The minterms in its onsetarecounted

and returned as count, which is the number of r's that are related to c,.

During the upward traversal of F, we construct a new BDD G in a bottom up fashion,

representing the set of c's with maximum count. The two recursive calls of Lmax return the sets

r(c) and E(c) with maximumcounts countJT and count for the then and the else subgraphs.

The larger of the two coimts is returned. If the two counts are the same, the columns in T and E

are mergedby ITE{vy T, E) and returned. If count.T is larger,only T is retained as the updated

columns of maximum count And symmetrically for the other case. To guarantee that each node

of BDD F(r, c) is traversed once, the results of Lmax and bddjcount.onset are memoized in

computed tables. Note that Lmax returns a set of c's of maximum count. If we need only one c,

some heuristic can be used to break the ties.

To understand how Lmax works consider the explicit binate table:

00 01 10 11

00 1 2 1 1

01 2 1 1 2

10 2 1 2 1

11 2 1 2 1

with four rows and four columns. The columns that maximize the number of I's are the second and

the fourth. If the rows and columns are encoded by 2 boolean variables each, using the encodings

givenon top of each column and to the left of each row, the 1 entries of the table are represented

implicitly bytherelation F(c, r) ^whose minterms are:

{0000,1000,1100,0101,1001,0110,1110,0111,1111}.

The BDDrepresenting F is showninFigure10.9. The resultof invoking Lmaxon F(r, c) is a BDD

representing the relation G(c) whose minterms are: {01,11}, corresponding to the encodings of

the second and fourth column.

10.9.2 Implicit Selection of a Branching Column

The selection of a branching column is a key ingredient of an efficient branch-and-bound

covering algorithm. A good choice reduces the number of recursive calls, by helping to discover

and c are swapped in F so that minterms are listed in the order of the BDD variables.

10.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS

•

c2

10

01,oof 11,10,00

1=2 Q«2 Q<=2
L E T A E T A E

11

rl

cl

c2

00 01

001 rl 11,01,10

r2 r2

Rgute 10.9: BDD of F(r, c) to illustrate the routineUnax

267

268 CHAPTER 10. BINATE COVERING

more quickly a good solution. We adopt a simplified selection criterion: select a column with

a maximum number of Ts. By defining F'(r, c) = R(r) 'C(c) • l(r, c) which evaluates trae if

and only table entry (r, c) is a 1, our column selection problem reduces to one of finding the c

related to the maximumnumber of r's in the relation F'(r, c), and so it can be found implicitlyby

calling Lmax(F\ r). A more refined strategy is to restrictour selection of a branching columnto

columns intersecting rows of a maximal independent set, because a unique column must eventually

be selected from each independent row. A maximal independent set can be computed as follows.

10.9.3 Implicit Selection of a Maximal Independent Set of Rows

Usually a lower bound is obtained by computing a maximum independent set of the unate

rows. A maximum independent set of rows is a (maximum) set of rows, no two of which intersect

the same column at a 1. Maximum independent set is an NP-hard problem and an approximate

one (only maximal) can be computed by a greedy algorithm. The strategy is to select short unate

rows from the table, so we constract a relation F"(c, r) = R{r) •unate.row(r) •C(c) • l(r, c).

Variables in r are ordered b^ore those in c. The rows with the minimum number of I's in F" can be

computed by Lmin(F'\ c), by replacing in Lmax the expression max{countJr,count-E) with

min(countJr, count-E). Oncea shortest row, shortest{r)^ is selected, all rows having 1-elements

in common withshortest{r) arediscarded from F"(c, r) by:

F"(c, r) = F"{c, r). fie' {3r' [shortest{r') -F''{c\ r')] •F"{c', r)}

Anothershortest rowcan then be extractedfrom the remainingtable F" and so on, until F" becomes

empty. The maximum independent set consistsof all shortest(r) so selected.

10.9.4 Implicit Covering Table Partitioning

If a covering table can be partitioned into n disjoint blocks, the minimum covering for

the original table is the union of the minimum coverings for the n sub-blocks. Let us define the

nonempty-entry relation 01 (r, c) = 0(r, c) -fl (r, c). The implicitalgorithm in Figure 10.10takes

a tabledescription in terms of its setof rows R{r), its setof columns C(c) andthenonempty-entry

relation 01(r, c), partitions it into n disjoint sub-blocks, and retum them as n pairs of (R',C),

each corresponding to the rows and columns for the i-th sub-block.

n-way partitioning can be accomplished by successive extraction of disjoint blocks fix)m

the table. When the following iteration reaches a fixed point, {Rk,Ck) corresponds to a disjoint

10.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS

n-way.partition(R(r)jC(c)^01(r^ c)) {

w = 0

while (R not empty) {

k = 0

Ro{r) = Lmax{R(r) •C(c) • 01 (r, c))

repeat {

k = k-\-l

Ck(c) = C(c)'3r {Rk-i(r) •01(r,c)}

Rk(r) = R(r) •3c {Ck{c) •01(r, c)}

} untH {Rk = Rk-i)

R^'^Rk

C^^Ck

R = R —Rk

C = C-Ck

71 = n + 1

}
return {(i2*,C*) : 0 < i < n - 1}

}

Figure 10.10: Implicit n-way partitioning of a covering table.

sub-block in {R,C).

Ro{r) = L7nax(R{r) •C(c) •01(r, c), c)

Ck{c) = C(c)-3r{Rk-i{r)'01{r,c)}

Rk{r) = R{r) •3c {Ck{c) • 01(r, c)}

269

This sub-block is extracted from the table (R, C) and the above iteration is applied again to the

remaining table, until the table becomes empty. [65] provides a more detailed explanation.

Givena coveringtable, a single mv/ Ro(r), whichhas the maximumnumberofnonempty

entries, is first picked using LmaxQ. The set of columns Ci(c) intersecting this row at 0 or 1

270 CHAPTER 10, BINATE COVERING

entries is given by C(c) • 3r [Ro(r) • 01(r, c)] (we want c e C such that there is a row r e Ro

which intersects c at a 0 or 1). Next we find the set of rows R\ intersecting the columns in Ci via

nonempty entries, by a similarcomputation R{r) •3c [Ci(c) •01(r, c)]. Then we can extract all

the rows R2(r) which intersects Ci(c), and so on. This pair of computationsis iterativelyapplied

within the repeat loop in Figure 10.10 until no new connected row or column can be found (i.e.,

Rk = Rk-\)- Effectively, starting from a row, we have extracted a disjoint block from

the table, which will later be retumed. The remaining table after bi-partition simply contains the

rows R- R} mA thecolumns C - If theremaining table isnotempty, wewill extract another

partition (i?^, CP-) by passing through the outer while loop a second time. If the original table

contains n disjoint blocks, the algorithm is guaranteed to retum exactly the n sub-blocks by passing

through the outer while loop n times.

10.10 Implicit Two-level Logic Minimization

The implicit computations presented to manipulate a binate table are valid a fortiori

when the table is unate. In the latter case, however, more specialized algorithms can be designed

to exploit fully the features of the simpler problem. Historically speaking, an implicitization of

covering problems has been carried on first for the case ofimate tables generated in the minimization

of two-level logic functions.

Given a boolean function /, consider the problem of findinga minimum two-level cover.

A classical exact algorithm by Quine and McQuskey reduces it to a unate covering problem where

the rows of the table are minterms and the columns of the table are primes of the function. There

is a 1 at the intersection of a row and column, if the prime associated to the column contains the

minterm associated to the row. An efficient implementation of unate covering is provided in the

program espresso. In that implementation an improvement has been introduced, because there is

only one row for each set of minterms that are covered by the same set of primes. In other words,

the table is constructed in such a way that there are no equal rows in it.

The set of all primes and minterms may be exponential in the number of input variables.

Manipulating a table with an exponential number of rows and columns may add another exponential

blow-up. To overcome these problems, researchers at Bull [29,30] and UCB [53] have represented

the set of primes and the unate table with logic ftmctions implemented with ROBDD's. The key

steps have been:

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 271

1. Define a boolean space where all those sets could be represented.

2. Transform the computation of the primes, unate table and the table reduction operations into

operations on boolean functions defined on the boolean space of the problem.

An whole suite of papers has been produced by the French group [25,79,27,26,24,28,29,30,22].

Here we will outline only the key steps of this approach.

We remind that a literal is a prepositionalvariable xk or its negation Pn is the set of

products that can be built from the set of variables {xi,..., a;„}. The subsetrelation C is a partial

orderon the set Pn. P is maximal iff theredo not existtwo products p andp' of P suchthatp c p'.

A product p is an implicant of a boolean function / iffp C {a; € {0,1}" | f(x) ^ 0}. Aproduct p

is a prime implicantof / iff it is a maximalelementof the set of implicantsof / with respectto C.

Any subset P of Pn can be partitioned in the following way:

P —Pifi U ({ic/j} X U XPxf.)

where is the set of productsof P whereneither the variable xk nor ^ occurs; (respectively

Pxk) is the set of products of P where^ (xk) occurs, afterdropping ^ (xk).

A booleanspaceto representall productscan be obtainedby a numberofvariablesdouble

with respect to the niunber of input variables of /. It is the metaproduct representation in the

literature by researchers at Bull and the extendedspace in the literature by researchers at UCB. The

basic idea is to encodethe presenceof Xk or ^ or both (i.e. neither literal appearsexplicitlyin the

product) with two bits.

The computation of primes reduces to finding the maximal products over all implicants

of /. The following recursive computation finds all prime implicants:

Prime(f) = Prime[f-^ Af^)

U{^} X (Prime(f-si;) \ Prime{f^ Af^))

U{xfc} X (Prime(fxf^) \ Prime(f^ A/^))

It is easy to transpose this computation to the case of the extended space or metaproducts represen

tation.

The tablecoveringproblemcan now be describedby the triple < Q, P-, C>, where Q is the

set ofminterms of /, P is the set of primes of / and C describes the table building relation^ Notice

that this is already a progress with respect to the traditional approach because we do not represent

272 CHAPTER 10. BINATE COVERING

directly the table, but we have instead an operator (C) to infer the table entries. This is a special

case of the encoding scheme of binate tables for exact state minimization, previously reported.

Strictly speaking, this reformulation is not tied to the fact of using an implicit representation. It

could be used also with an explicit representation. When coupled with a BDD-based representation

it lends itself to very efficient algorithms, because the final size of the representation is not linearly

proportional to the number of primes computed.

A unate table is reduced by applying row and column dominance and detecting essential

primes. Row dominance is stated as follows.

Definition10.10.1 ArowRj dominates another rowRi iffor all columns Ck, Mj^k = 1 => Mi^k =

1.

In the case of < Q, P, C>, this translates into:

g :<Q g' (vp e P(q' c p) (g c p))

Moreover, if there are rows that intersect exactly the same set of columns, i.e. they are equivalent,

one should compute this equivalence relation and then replace each equivalence class with one

representative (called sometimesprojection operation [78]). Row dominance should then be applied

to these representatives only.

Instead ofusing such a projection and then applying the definition ofdominance relation,

one can define a row transposing fimction that maps the rows on objects whose manipulation can

be done more efficiently. The maximal elements of the transposed objects are the dominating rows.

The basic idea is that each row of a covering table corresponds to a cube, called signature

cube, that is the intersection of the primes covering the minterm associated to the row. This was

noticed first in [99]. A rigorous theory and an efficient algorithm were developed at UCB [89]. The

steps of the algorithm follow. Compute the signature cube of the each cube of an arbitrary initial

cover and make irredundant the resulting cover. Using the fact that for each cube of an arbitrary

irredundant cover of signature cubes, there is some essential signature cube contained by it, obtain

the irredundant cover ofessential signature cubes (called minimum canonical cover). For each cube

of the minimum canonical cover, generate the set of primes containing it (the essential signature

set). Solve the resulting unate covering problem as usual. The resulting unate covering problem is

exactly what one could get by applying row domination to the minterais/primes table.

One can define a row transposing function tq (Q) based on the idea of signature cubes.

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 273

Definition 10.10.2 tq : Q —> Pn is definedas:

Mv) = n p
{p6P|gCp}

Inotherwords, eachelementof tq (Q) is obtained byanelement gof Q, byintersecting allelements

of P that cover q.

The following theorem relates row dominance to the row transposing function.

Theorem 10.10.1 Thefunction tq is such that

g<Q g' <=>TQ(q)CTQ{q').

Givena set covering problem (Q, P, C), thefunction maa;crQ(Q) computes the maximal elements

of the set tq (Q), i.e., the dominating rows.

Since the range tq is F„, the computation of tq can be easily transposed to the case of

the extended space or metaproducts representation. The most obvious implementation would use

quantified boolean formulas, but in practicethey tend to produce huge intermediateROBDD's. A

quantifierfree recursive computationof maxcTQ(Q) has givenbetter experimental results.

Wepresent now a pseudo-code description of MaxTauQ{Q, P, /?), the recursive proce

dure usedto compute maxcrg(Q). We define first two auxiliary functions Supset andSubset:

Supset(Pj Q) = {p ^ P \ 3q € Qp^ q}

Subset{P,Q) —{p ^ P \ ^q ^ Qp Q q}

Theorem 10.10.2 MaxTauQ(Q, P, 1) computes maxcTQ{Q).

Proof: The terminal cases are easy. Consider a variable xk. One can divide the set P in three

subsets: P^^, the products of P in which Xk occurs, Pjjj-, the products of P in which ^ occurs

and Pi^fe, the products of P in which neither Xk nor^ occurs. Similarly, one can divide the set Q

in three subsets: the products of Q in which Xk occurs, the products of Q in which Wk

occurs and Qi^, the products of Q in whichneither Xk nor Yk occurs.

The products of can be contained by products of or by products of Pi^^. The

products of Qxk can be contained by products of Pxk or by products of of Pi^. The products of

Qik can be contained only by products of P^. KOhas the products of contained by products

274

MaxTauQ(Q, P, k) {

ifQ = 0or(5 = 0{

if P = {1} return{1}

KO= Subset(Q-^, F^)

Kl= Subset(Qx^,

KO = Qik U{Q^ \ KO) U \Kl)

R = MaxTauQ{K, Pi^,k + 1)

RO = MaxTauQ{KO, Pi^ U/ k + l)

Rl = MaxTauQ(Kl,P\^ UPar^), /? + 1)

return Pu

{^} XSubset(RO, ^))U

{a;*:} XSubset(Rl^ R))\J

}

CHAPTER 10. BINATE COVERING

Figure 10.11: Recursive computationof maxcTQ{Q)

of F^. K1 has the products of contained by products of Pc^. K has the products of

the productsof that are not contained by products of F^ and the productsof Qx^ that are not

contained by products of Px^.

Also the set MaxTauQ{Q, P, 1) can be divided in three subsets: the set of products in

which Xk occurs, the set of products in which xk occurs and the set of products of P in which

neither Xk nor ^ occurs. The last set is givenby R, that is MaxTauQ{K, Pi^, fc + 1). Indeed in

R the second argument is Pi^, the set of products of P where neither Xk nor Wk occurs. The first

argument is K that includes the products of Q where Xk nor Wk occurs and so can be contained only

by products of Pi^, and the products of Q where either Xk or "xk occurs but they are not covered

by or F^ and so they can be covered onlyby Pi^. The secondset is obtained from RO, that

is MaxTauQ(KO, Pi^ U + 1), by the following modification. In the first argument of RO

there are the products of Q where ^ occurs, which are contained by the products of P in the

second argument. A product in RO must be mirltiplied by {^} because for sure each q e KO is

containedby a productof F^, and by definition of tq (g) one must intersectall the products that

contain q. But before multiplyingby {^} we must subtract from POthe productscontainedin R

(Subset{RO, R)), because if a product rOof PO is containedby a product r of P (or is equal to) it

10.10. If^LIOT TWO-LEVEL LOGIC MINIMIZATION 275

meansthat theresoQq e K and qO e KO suchthat tq (q) D tq (^) (because r contains rOand rO is

multiplied by {^}) and we wantto keeponly TQ{q) because we are computing maxcTg. Instead

if a product of R is contained by a product of RO,the fact that the product of ROmust be multiplied

by {^} makes the twoproducts notcomparable. Therefore {xk} x (RO \ Subset(RO, R)) is the

set of products of MaxTauQ(Q, F, 1)in which Wk occurs. Replacing verbatim {^} withxk, the

same reasoningapplies for the additioncomingfrom Rl, from which the firstset is obtained. •

After thesetQ' = maxcTq(Q)hasbeen computed, theproblem < Q, F, C> transforms

to < Q', F, R' >, where q'R'p iff q' = rQ(q) and g C p. R' =C, since g C p iff TQ(q) C p.

Thereforethe new covering problemis < Q\ F, C>.

A similar development holds for column dominance.

Definition lO.lOJ A column Ci dominates another column Cj iffor all rows Rk, Mkj = 1

Mk,i = 1.

In the case of < Q, F, c>, this translates into:

p:<pp' (Vq £ Q(q c p) =» (g C p'))

Moreover, if there are columns that intersectexactly the same set of rows, i.e. they are equivalent,

oneshouldcompute thisequivalence relation andthenreplace eachequivalence classwithonerepre

sentative (projection operation). Column dominance should then beapplied to these representatives

only.

Instead of usingsucha projection andthenapplying thedefinition of dominance relation,

onecandefine a columntransposing function thatmapsthecolumns onobjects whose manipulation

can be donemore efficiently. The maximal elements of the transposed objects arethe dominating

columns.

Consider the following column transposing function rp(p):

Definition 10.10.4

'•p(p) = C(U q),
{qeQ\qCp}

where C(E) = minc{p € F„ | p 3 E}.

C(E) is theunique smallest product thatcontains theset E. Here min is an intersection operator,

so

Tp(p) = minc{p € F„ 1p 3 F},

276 CHAPTER 10. BINATE COVERING

MaxTauP(Qj P, k) {

if(5 = 0orQ = 0{

if Q =Pn return P

K = Supset(Pi^,Qi^)[J

S'u>psct{P\^j Qxj^) OSups€t(^Pij^f

KO = Supset{Pi^ U Q^) \K K1 = Subset(Pi^ U \ K

R = MaxTauP(Qi^ U U K-> ^ + 1)

RO = MaxTauP(Q^), KO, A: + 1)

Rl = MaxTauQ(Qx^),K\,k+ 1)

return Ru

{^} XSubset{RO, R))[J

{xk} XSubset{Rl,R))\J

}

Figure 10.12: Recursive computation of ma®cT-p(P)

or,

^p(p) = flip € Fn Ip 3 U q}.
{qQQ\qCp}

The following theorem relates columndominance to the columntransposing function.

Theorem 10.10.3 Thefunction Tp is such that

p:<pp' ^ Tp(p) C Tp(p').

Given a setcovering problem (Q, F, C), thefunction maxcjp (F) computes themaximal elements

of the set Tp{P), i.e. the dominatingcolumns.

Since the range rp is F„, the computation of rp can be easily transposed to the case of

the extended space or metaproducts representation. The most obvious implementation would use

quantified boolean formulas, but in practice they tend to producehuge intermediate ROBDD's. A

quantifier free recursive computation of maxcTp{P) has givenbetterexperimental results.

Wepresent now a pseudo-code descriptionof MaxTauP(Q, F, k), the recursive proce

dure used to computemaxcrQ{Q).

Theorem 10.10.4 MaxTauP(Q, F, 1) computes maxQTp(P).

10.10. IMPLICIT TWO-LEVEL LOGIC MINIMIZATION 277

Proof: The terminal cases are easy. Consider a variable xk. The set K is the set of products of

Pi^ that contain a productof or that contain a productof and a productof So K

is the set of products p of P such that rp(p) does not contain the literal Xk nor Xk. Therefore the

set R is the set of products of maxcTp(P) that do not contain the literal Xk nor The set KO

(respectively Kl) is the set of of productsp of P that only contain products of Q where the literal

Wk (respectively Xk) occurs. Since in the definition of rp (p) one takes an intersectionof products

(primes that containthe products contained by p), the set RO is the set of products of rp(P) that

contain the literal and that are maximal with respect to rp(P)^. Since we want only the

maximal products with respect to rp(P), from RO one subtracts the products that are contained by

a product of R. •

Afterthe set P' = 7naxcTp{P) has beencomputed, the problem< Q, P, C> transforms

to < Q, P', R' >, where qR'p' iff p' = rp(p) and q C p. R' =C, since 9 C p iff g C rp(p).

Therefore the new coveringproblemis < Q, P', C>.

One more table reduction operation is the detection of essential columns.

Definition 10.10.5 A column is an essential column ifit contains the 1 ofa singleton row.

Theorem lO.lOil Theset of essentialproducts is E = Pn maxcrg {Q).

After the set P = P n maxcTglQ) has been computed, the problem < Q, P, C>

transfonns to < Q \ P, P \ P, C>.

Successive application of row dominance, essential detection and column dominance

computes the cyclic core of the unate covering problem. A branch-and-bound procedure, where

table reduction is invoked on subtables splitted along a branching column, leads to a final solution,

that is a minimum number of primes needed to cover all the minterms. Notice that in the papers

by the researchers at Bull no implicitization is reported of the choice of a branching column and

of a lower bound computation. Implicit formulations of such operations were instead reported first

in [66].

In [30] it is stated that the usage of Zero-Suppressed HDD's by Minato [95] instead

of ROBDD's [16] resulted in more efficient implicit representations of the computations of the

problem.

278 CHAPTER 10. BINATE COVERING

279

Chapter 11

Implicit Minimization of GPI's

11.1 Implicit Representations and Manipulations

Algorithms for sequential synthesis have been developed primarily for State Transition

Graphs (STG's). STG's have been usually represented in two-level form where state transitions

are stored explicitly, one by one. Altematively, STG's can be represented implicitly with Binary

Decision Diagrams (HDD's) [16, 10]. HDD's represent Boolean functions (e.g. characteristic

functions of sets and relations) and have been amply reported in the literature [16,10], to which we

refer.

11.1.1 Implicit FSM Representation

A Finite State Machine(FSM)can be represented by a 5-tuple (/, (9,5, T, O). I and O

are the sets of input patterns and output patterns. 5 is the set of states. T C/xSxS'isthe

transition relation that relates a next state to an input and a present state. OC/x5xOisthe

output relation that relates an output to an input and a present state. An FSM, where each (input,

state) pair is related to exactly one next state and one output, is a completely specified FSM. An

incompletely specified FSM is one where either the next state or the output is not specified for at

least one (input, state) pair.

If a next state is unspecified, no transitions on the (input, state) pair need to be considered

for the purpose of state minimization, so they are omitted from T. On the other hand, we represent

all unspecified output patterns in O corresponding to an (input, state) pair. The transition and

280 CHAPTER 11. IMPLICIT MINIMIZATION OF GPFS

output relations are given by:

T(i, p, n) = 1 iff 71 is the specified next state ofstate p on input i

0(i, p,o) = 1 iff o is a (possiblyunspecified) output of state p on i

where i and o are Booleanvectors of signals while p and n are represented by positional-sets defined

below.

11.1.2 Positional-set Representation

To perform sequential optimization, one needs to represent and manipulate efficiently sets

of states, or state sets, (such as compatibles) and sets of sets of states (such as sets of compatibles).

Our goal is to represent any set of sets of states implicitly as a single BDD, and manipulate such

state sets symbolically all at once. Different sets of sets of states can be stored as multiple roots

with a single shared BDD.

Suppose a FSM has n states, there are 2^ possible distinct subsets of states. In order to

represent collections of them, each subset of states is represented in positional-set form, using a set

of n Boolean variables, x = xiX2 . •. The presence of a state sk in the set is denoted by the fact

that variable Xk takes the value 1 in the positional-set, whereas xk takes the value 0 if state Sk is not

a member of the set. One Boolean variable is needed for each state because the state can either be

present or absent in the set. For example, if = 6, the set with a single state S4 is represented by

000100 while the set of states S2S3S5 is represented by 011010.

A set ofsets of states is representedas a set 5 ofpositional-setsby a characteristicfunction

Xs • jB" ^ B as: X5(2^) = 1 iff the set of states represented by the positional-seta; is in the set S.

A BDD representing X5(aj) will contain minterms,each correspondingto a state set in 5.

11.1.3 Operations on Positional-sets

Wrth our definitions of relations and positional-set notation for representing set of states,

useful operators on sets and sets ofsets can be derived. Wehave proposed in [65] a unified notational

framework for set manipulation, extending the work by Lin et al. in [79]. Here we define some

basic operators.

Proposition 11.1.1 Set equality, mirroring, containment, and strict-containment between two

positional-sets x and y can be computed by: (a; = y) = ^ yk)l compl(x^y) =

n?=i (^k <=> --2/ifc); {xDy) = nLi (Vk Xk); {xDy) = {xDy)-(x^ y).

11,1. IMPLICIT REPRESENTATIONS AND MANIPULATIONS 281

Proposition 11,12 Given twosets ofpositional-sets, complementation, union, intersection, and

sYtaxp can beperformedon themas logical operations (-•, +, •, on their characteristicfunctions.

Proposition 11.U The Maximal of a set F of sets is the set containing sets in F not strictly

contained by any other set in F, and is given by:

Maximala;(xF) = XF(ic)- \XF(y) •(y D a^)]-

The term 3y \xF(y) •{y 3 a;)] is true iff there is a positional-set y in xf such that y D a;. In such

a case, x cannotbe in the maximal set by definition, and are takenawayfrom xfC®). One defines

symmetrically the Minimal of a set.

Proposition11.1.4 The operation Set_Minimal6(F(a, 6)) keeps in the relation F(a,6) only the

pairs (a, b) such that there is no a' relatedto exactly a proper subsetof the b's with which a is in

relation and it is computed by:

Set.Minimalh(F{a,6)) = F(a, 6)- fic{3dF{c^ d)-Vd[F(c,d) F(a, d)]'3d[-iF(c, d)-F(a,d)]}.

Each a is connected to a set of 6's. By varying a, we have all sets of 6's and we keep the minimal

onesof them. We keep in the minimality relation only the pairs (o, b) where a is connected to a

minimalset of6's. The fact that the minimalityis computedover the 6's is indicatedby the subscript

6 of SetJ/Iinimal. It is necessary to add the term 3d F(c, d) in order to constrainthe c's in the

following implication.

Example 11.1.1 Given the relation F(a, 6) with elements (001,011,100,101,211,201,210), the

relationSet-MinimalJ)(F{a^ b)) haselements (001,011,111), the relationMinimaLb(F(aj 6))

has elements (001,100,201,210).

An often used family of operators is Tiiple that computes for a given k the A;-out-of-n

positional-sets. For instance Tuple^x\{'̂) gives the universe set on the support x, Tupleo^x) gives
the empty set on the support x.

Finally we need the operators of the family Lmin and Lmax, first proposed in [66], to

which we refer for detailed explanations. Besides those already described in [66], we introduce a

newoperator MultiJLmin, that is a variant of Lmin. Given a binary relation F(r, c) as a BDD,

Lmm(F(r, c), r) computes Fimic), the set of c's which relate to the minimum numberof r's in

F(r, c). An inefficient method is to cofactor F with respect to c taking each possiblevalues Cj,

282 CHAPTER 11. IMPLICIT MINIMIZATION OF GPTS

countthe numberof onsetmintermsof each F(r, c)\c=ci. andpick the c,'s with theminimumcount.

Instead the algorithm Lmin is implemented as a primitive BDD operator that traverses each node

of F exactly once. Variables in c are required to be ordered above (before) variables in r.

As a variant of the Lmin operator, the Multi-Lmin(R(l,r,i,p, x,y), operator

computes a relation Rmltti (/, r, x, y)suchthat, foreach (ar, y), (I, r) relates to theminimum number

of (i,p) in i2(Z, r, x,y),i.e., foragiven (a;, y),it finds Z/mm(f2|a;,y(/, r, i,p, a;,y), (Z,p)). Again

the computation is performed with a BDD primitive that traverses once each node of R. Variables

(x,y) are required to beordered above (before) (Z, r) which in turn must beabove (i,p).

11.1.4 Relations for Implicit Encodeability of GPI's

In the next sectionswe will present in detail a set of implicit computationsthat generate

the GPI's and select a minimalsubsetof encodeable GPI's that cover the originalFSM. Here we

introduce thebasicrelations usedin the implicit algorithms. Others willbepresented in thecoming

sections.

• Z= input vector

• p = positional set of present states

• n= positional set of next states (tag)

• m = positional set of next states (tag)

• o = output vector (tag)

• cover./(i, p, ti, m, o) = onset of the originalFSM

where the combination (Z,p) denotes a cube in the input/present-state part of the STT, n

represents the next state tag of the cube, and a is the output vector.

cover.fd{i, p, n, m, o) = union of onsetanddcsetof theoriginal FSM

coverjr(i, p, n, m, o) = offsetof the originalFSM

• M(i, p, n, o) = mintermsof a STT

where the combination (Z, p) denotes a mintenn in the input/present-state part of the STT, n

represents the next state tag of the mintenn, and o is the output vector.

M{iyP^n) = 3o M{i^p^n^o)

M{iy p) = 3n, o M(Z,p, n, o)

11.2. IMPLICIT GENERATION OF GPI'S AND MINTERMS 283

• Mn(i, p, n, o) = next-State mintemisof a STT

where the field o is null

• Mo(ii Pi n, o) = outputmintenns of a STT

where the field n is null

• CMI (i, p, 71,771, o) = mintenns of a STT

wherethe combination (i, p) denotes a minterm in the inpul/present-state part of the STT, n

represents the complemented next state tag of the mintenn, m represents the complemented

present state part, and o is the output vector.

• GPI(i'i p'i n\ m', o') = the set of the GPI's

wherethecombination (i', p') denotes a cube(GPI)in theinput/present-state partof the STT,

n' represents the complemented next state tag of the GPI, mf represents the complemented

present state part, and o' is the output tag.

• P{i\ p', n'i o') = the set of the GPI's

wherethecombination (z',p') denotes a cube(GPI)in the input/present-state partof the STT,

n' represents the next state tag of the GPI, and ofis the output tag.

• G(i'i p'i 7i', o') = a selectionof GPI's

wherethecombination (i', p') denotes a cube(GPI) in the input/present-state partof the STT,

n' represents thenextstatetag of the GPI,and of is the outputtag.

G(i'i p'i n') = 3o' G(i'i p', n', o')

G'(i'i p'i n') = the set of GPI's whichhave not been selectedyet

• £>(/, r) = a set of encodingdichotomies

Each dichotomy (/i, /2, •••, U\ ''i, ''2) •-•>̂ j) is represented by a pairof positional sets (/, r).

11.2 Implicit Generation of GPI's and Minterms

11.2.1 Implicit Generation of GPI's

The step ofcomputing the set of GPI's can be reduced to computing the prime implicants

ofa boolean function associated to the givenFSM [39]. A very fruitful recent research effort [53,30]

succeeded in findingefficientlyby implicit computations the prime implicants ofa boolean function.

284 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

We refer to [53,30] for a complete treatment of the topic and we report here a few facts required in

our application.

If a multiple-valued function is represented in positional notation [114], cubes of the

onset (or dcset or offset) of the function can be mapped into vertices of a suitable Boolean space

(extended Boolean space), which has as many variables as the length of a positional vector. So sets

of minterms, implicants and primes of a multiple-valued boolean function are subsets of vertices in

the extended Boolean space. Key properties of this extended space representation are that primality

of an implicant corresponds to maximality when the order is given by set inclusion and that set

operations can be performed as boolean operations on the characteristic functions of the sets. Here

we review only some core facts and show the sequence of computations to compute the prime

implicants of a multi-valued function.

Consider acube 5 = xf^ x ^252... x Each 5,- is asubset of0,1,..., Pi, where
Pi is the set of possible values of the i-th variable Xi.

Definition 11J2.1 Acube S = X^^ x X2S2.. •x is represented by the vertex yvhere

^ij = 0 ifj i Si and Xij = 1 ifj g Si, in the booleanspace Thisrepresentation is called

extended space representation.

Example 11.2.1 The cube x where P\ —{0,1,2} and = {0,1} is represented

by the vertex xiixi2X2iX22X23, i.e., (1,0,1,1,1) inB^.

In this way, each cube is mapped into a unique vertex of the extended Boolean space,

except for the emptycube (i.e., the cube whichhas at least a part completely empty). The empty

cube is mapped into a set of pointsin the extended Boolean space,the so-called nuU points.

Definition 11J2.2 The null set or set qf null points is therepresentation in theextended spaceof

the null cube ofthe originalfunction space.

Proposition 11.2.1 The setofnullpoints isgiven by null (a;) = Y^iUjXij

Definition 11.2J The vertex set is the representation in the extended space of all the vertices of

the originalfunction space.

The vertex set can be computed by the following proposition.

Proposition 11.2.2 The vertex setisgiven by vertex(x) = YiiJ^j^ij Ylk:^j

Figure 11.1 shows how to compute implicitly the prime implicants of a multi-valued

function.

11.2. IMPLICIT GENERATION OF GPrS AND MINTERMS 285

procedure implicit4)i_generation(cot;er_/(f) {

/* minterms of (onset + dcset) */

vertex.fd{i'p'm'n'o') = 3ipmno[cover-fd{ipmno)veriex{i'p'm'n'o'){ipmno D i'j/m'n'o')]

!* minterms of offset */

vertex —vertex{i'j/m'n'o') —vertex./d{i'p'm'n'o')

I* implicants of (onset + dcset) and null cubes */

impl.null{i'j/m'n'o') —U{i'm'n'o') —3ipmno vertex.r{ipmno){i'p'm'n'o' D ipmno)

!* prime implicants */

cprime{i'p'm!n'o') —maximal{impl.null(i'p'm'n'o'))

/* remove remaining null cubes (e.g., 001111111111111)*/

prime{i'p'm'n'o') = cprime{i'p'm!n'o') —null.cube{i'p'm'n'o')

}

Figure 11.1: Implicit computation of prime implicants

11.2.2 Reduced Representation of GPI's and Minterms

GPI's are found in a (extended) representation GPI(i\ p\ n\ m\ o'), that can be easily

converted to a (reduced) representation n', o'). The meaning of the different fields of

GPI and P has been given in Section 11.1.4. The extended representation has the advantage that

column dominance, which requires the same present state literal, can be done simply by checking

containment of the representations. A GPI (column) covers a minterm (row) iff the GPI contains

the minterm. The reduced representation has the advantagethat a smaller number of variables is

required. This advantage is not trivial when many sets of variables are required.

To get the reduced representation one musttransform backfromthe (i, p, n, m, o) space

into the original (i, p, n, o) space, whileenforcing that the transformation conventions are satisfied.

The reduced representation of the primes is given by:

P{i',p', n', o') = (m —)• n')3n'{3'm'GPI{i\p', n\ m', o') •compl(n\ fh))

Theequationdropsthe m' field of GPI andconverts the n' field fiiom complemented 1-hotencoding

to 1-hot encoding.

The reduced representation of the minterms is given by:

red.cover.f(i\p', n', o') = (m —> n')3n'(3m'cover.n\ m', o') •compl{n\fh))

286 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

M(i,p,n,o) = 3m(vertex(i,p,n,m,o)Tupl€o(7n))

Bi'p'n'o'[r€d.cover.f(i',p',n\o'}(ipno C i'p'n'o')]

red.cover.f is the reduced representation of the onset of the original FSM. It is obtained by

dropping the m field of cover./ and converting the n field from complemented 1-hot encoding

to 1-hot encoding. The equation for M selects the minterms of vertex with an empty m field

and then keeps only those that are in the reduced representation of the onset of the original FSM.

Output minterm is a minterm where n = Tupleo(n) and next-state minterm is a minterm where

o = Tupleo{o).

11.2.3 Pruning of Primes

Some primes can be removed because they do not correspond to GPI's. One removes

primes of one of the two following types:

1. Primes that are covered by another prime, with full present state part and with the same next

state and output tags.

2. Primes with full next state tag and null output tag.

The first operation is implemented by:

P(i',p',n\o') = P(i',p',n',o') - 3i,p{P{i,p, n\o'){i Di')Tuple\p\(p)(ip^ i'p'))

Noticethat the clauseip / i'p' avoids the self-cancellation of primes with a fiill presentstate part.

The second operation is implemented by:

P(i',p', n', a') = P(i\p', n',a') - Tuple^n'\(''̂ ')Tupleo{o')

11.3 Implicit Selection of GPI's

Once the GPI's, or a subset of them, have been computed one must select a subset of them

that is encodeable and covers the original FSM.

11.3.1 Implicit Selection of a Cover of GPI's

Once GPI's and minterms are obtained, one sets up a covering problem. The rows of the

table are the minterms and the columns are the GPI's. If the next state tag of a GPI is a superset of

11.3. IMPLICIT SELECTION OF GPrS 287

the next state tag of a minterm and the GPI asserts all the outputs that the minterms asserts then there

is a 1 at the intersection of the given GPI and minterm. The table is unate, i.e., either an entry is 1 or

it is empty. We will use an implicit table solver to select a subset ofGPFs that cover the minterms.

Implicit algorithms to solve binate covering problems were presented in [66]. We implemented two

implicit binate solvers: a specialized one with a fixed table definition rule and a general one, where

one specifies by means of functions how entries are evaluated. Notice that for this application only

a unate solver is required, but we do not have a specialized unate solver, which could capitalize on

the restricted type of input. Here we could use either binate solver program and the specialized one

might be faster. But in Section 11.3.3 it will be necessary to use the general implicit binate solver.

So the latter will be used in both cases. In our application there is a 1 at the intersection of a given

minterm and GPI iff the next state tag of the GPI is a superset of the next state tag of the minterm

and the GPI asserts all the outputs that the minterm does. The implicit general binate solver requires

the sets of colimms and rows and a rule to compute a table entry. In this case they are:

1. Columns are C(g) = F{q).

2. Rows are R(d) = Ru{d) = M{d).

3. The table entry at the intersectionof the columnlabelled by g G C and of the rowlabelled by

d £ Risliflq D d.

4. The tableentryat the intersection of the columnlabelled by ^ GC andof the rowlabelledby

d£ Risnever0.

If the minterms and GPTs are in the reduced representation it is sufficient to set d = i, p, n, o and

q = i', p', n\ o' to guaranteethat there is a 1 at row c, d and colunm q iff qDd, since there is a 1 iff

i',p',n',o' D i,p,n,o^.

^If, instead, the minterms and GPFs are in the extended representation, setting d = i,p,n,m,o and q =
i',p',n',m',o' there is a 1 at row c,d and colunm g iff i' D i,p' p,n' C n,m' C m,o' D o. The latterrule
is differentfrom therule i' D t, p' D p,n' D n,m' D m,o' D o hardwiredin the specializedbinate solver. Therefore
with an extendedrepresentation one cannotuse thespecializedbinatesolver. It is also the case that the largernumberof
variables of the extendedrepresentation will slow dovmthe binate solver. An advantage of an extendedrepresentation
is that if one would implement columndominance as a maximal operation on columns, restricted column dominance (or
better, a strenghtened versionof it) would correspondto a maximaloperationon columns in extendedrepresentation.
But our binate solvers implement a more general definition of coltimn dominance, that does not reduce to a maximal
operation.

288 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

11.3.2 Implicit Computations for Encodeability

Given a set of minterms M corresponding to a FSM (STT) and a selection of GPI's G,

one must check if the uniqueness constraints, the face embedding constraints and the encoding

constraints induced by the GPFs are satisfiable. If not, one selects one more GPI from the set of

unselected GPFs G', with the objective to minimize the number of unsatisfied face constraints.

Figure 11.2 shows computations to check for constraint satisfaction, to select one more

GPI to improve satisfiability and to compute a lower bound on the number of GPFs to be added to

make the problem feasible. They differ significantlyfipom those proposed in [116]because the fact of

using a BDD-base representation has motivated a different formulation of the encodeability check.

The encodeability problem is such that the number of encoding constraints is proportional to the

number ofminterms. The characteristic functions ofsets ofdichotomies and ofencoding constraints

are represented implicitly using BDD's. Furthermore, implicit operations can be applied to multiple

objects simultaneously. As a result, enumerative processes such as the raising of dichotomies can

performed efficiently with the proposed representation.

Each of the following major steps is described in a separate subsection:

• Computation of encoding constraints.

• Computation of free initial dichotomies fn)m face embedding constraints.

• Computation of free initial dichotomies fix)m uniqueness constraints.

• Duplication of fiee initial dichotomies into pairs of fixed initial dichotomies.

• Iterative raising of initial dichotomies, until they become maximally raised or invalid.

If a problem is infeasible, one disregards the free initial dichotomies and raised di

chotomies that have been satisfied and carries on, instead, the following steps on the unsatisfied

dichotomies:

• Computation of the set of minimal updating sets ofencoding constraints.

• Selection of a branching column (i.e., a GPI in G').

• Computation of a lower bound.

The routineimplicitjencodeabilityrQtams (unsat.FID, GPIselected^ lowerJbound)

to the calling routine. If the given constraints are satisfiable, implicitjencodeabUity will retum

11.3. IMPLICIT SELECTION OF GPrS 289

unsat-FID = GPI.selected = 0. Otherwise, the calling routine receives a non-empty set of un

satisfied fiee initial dichotomies unsatJ'ID; moreover, it can set the lowerbound to lower.bound,

and then perform branching with the column in GPI.selected.

Encoding Constraints

Each encodingconstraint,represented by a set of quadruples (i, p, n, n'), is associated to

aminterm denoted by («, p)? The left hand-side ofthe encoding constraint isasingle state n (called

the parent) and the right hand-side is a disjunction of conjuncts, so that the right hand-side can be

represented by a set of positional sets n' (each elementof n' is called a child of the conjunct). In

other words, if an n' is related to i, p, n in such a quadruple, n' representsone of the conjuncts on

the right hand-side of the encoding constraint.

Givena minterm intheinputpart, (i, p), theparent n isuniquely determined by M (i, p, n).

Bydefinition, eachconjunctn' corresponds to anextstatetagof aGPIcontainingthat inputminterm.

Thus the set of encoding constraints can be computed as:

encoding.constraints{i, p,n, n') = M{i^p, n) •3i',p' [G{i',p', n') •(i C i') • (p C p')].

These constraints can be further simplified as illustrated by the following example:

a = a -1- abc. First, we know that the set {a} is contained in the set {a6c} and thus the latter

conjunct is redundant in therighthand-side. Suchredundancies canbe removed bythe Minimaln>

operator [66]. The constraint is then simplified to a = a which is trivially satisfiable. Then the

trivial constraints canbe takenaway by the term {n ^ n'):

constraints{i,p,n,n') = Minimalni{encoding.constraints{i,p,n,n')) • (n ^ n').

Free Initial Dichotomies from Face Embedding Constraints

Face embedding constraintsare state sets of present state literals in the selected GPI's,

and can be derived by the following expression: 3i', n' [G(i', p', n')]. To generate thefree initial

dichotomy originated from a face embedding constraint, we choose (arbitrarily) the left block, x,

of the free initial dichotomy to represent the present state literal of a GPI, and the right block, y, to

represent a singlestate(i.e., Tuple\ (y) is true) notpresent in theliteral (i.e., (y %a:)). Thustheset

of free initial dichotomies originated from face embedding constraints can be computed by:

FIDjace(x,y) = 3p' {3i',n' [G{i',p',n')] •(x = p')} -Tuplexifr) •(y g a;)

^The relation between encoding constraints andinput minterms is, ingeneral, a one-to-many function.

290 CHAPTER 11. IMPLICIT MINIMIZATION OFGPTS

procedure implicitjencodeabiliiy(G,G',M) {

encoding-con3traint3{i,p^n^n') = M{i,p,n) •3t',p' [G(t',p',n') • (t C »') • (p C p')]

constraints{i,p,n,n') = Minimal„i{encoding-constraints{i, p,n, n')) • (n 56 n')

FIDfact{x,y) = 3t',n' [G(»',a;,n')] •Tup/ei(3/) •(p 2 a?) - Tup/ei(a7) •Tup/ei(p)

FIDunique{x,y) = r«p/ei(®) •Tup/ei(y) • (t y y)

• /Bx',y' {F/D/a«(®'.p') •[{^€ x') • (y € y') + (x e y') •(y Gx')]}

FID{Xty) —FIDf^•^•Gun»que(x,y)

ID{l,r,x,y) = FID{x,y) • [(/ = x) • (r = y) + (/ = y) • (r = x)]

left.ruh{l',r', l,r,i,p) = (r = r') •3n {3n' constraints{i,p,n,n'){n U = i) •(n n /' = 0)

•Vn' [constroints(t,p,n,n') => (n' n /' 56 0)]}

right.rule{l',r', l,r, i,p) = (/ = /') •3n' {(n' Ur' = r) •(n' n r' 96 n') •3n [(n C r') •consfratn<s(t,p,n,n')

.(n' n / = 0) • Vn" [((n" 9^ n') •constraint3{i,p, n, n")) ^ (n" n / 96 0)]]}

ru/es(/',r',/,r, t,p) = leftjrule{l',r',l,r,i,p) + right.rule{l' ,r',l,r,i,p)

invalid{l, r) = (/ D r ^ 0)

maximaUyjraised{V, r') =>3/, r,», p ru/es(/', r', t, p, /, r)

/♦ traverseraising graphs ♦/

Dvalidih **» y) = raising.graphs{ID{l, r, x, y), rules{l',r', /, r, i, p), invalid{l, r, x, y))

/* prune satisfied raising graphs */

unsaUFID{x,y) = FID(x,y)- ^/,r [G„oj,d(/,r,x,y) -maximally.raised{l,r)]

Dvalidii,rjX,y) = Dvaii(i{l,r,x,y) •unsat.FID{x,y)

I* compute set of min updating sets *!

updating.sets{l,r,i,p,x,y) = 3/',r' [I>„oj,d(/,r,x,y) 'rules{l, r,l',r',i,p)]

min.updating.set3{l, r, i, p,x, y) = Set.Minimali,p{updating.3et3{l, r, i,p, x,y))

/* select branch column */

min.outdeg.node{l,r,x,y) = MultiJjmin{min.updating.3ets{l,r,i,p,x,y), (»,p),(x,y))

min.outdeg.edge3{l, r, t, p,x, y) = min.outdeg.node(l, r, x, y) •min.updating.3et3{l, r, i, p,x,y)

Ti(i,p,x,y;i',p',n') = 31, r [min.outdeg.edges(l,r,i,p,x,y) -(n'D I = 0)] •G'(t',p',n') •(t' Di) •(p' Dp)

GPI.3elected(i',p',n') = Lmax(Ti, (i,p,x,y))

I* computelower bound*/

72(x,y;i',p',n') = 3t,p{31,r [mm.«pdo<my_set5(l,r,t,p,x,y) -(n' n 1= 0)]•G'(t',p',n') •(t' Di) •(p' Dp)}

lower.bound = MaxJndep.Set{^2,{x,y),(i',p',n'))

return{un3atJ'ID, GPI.3elected, lower.bound)

}

Figure 11.2: Implicit encodeability computations

11.3. IMPLICIT SELECTION OF GPrS 291

= 3i', n' [G(i\ x, n')] *Tuplei{y) '(y%x).

Free Initial Dichotomies from Uniqueness Constraints

Uniqueness constraints generate initial dichotomies with a singleton state in the a; and y

blocks(i.e.,Tuplei (x) •Tuplei{y) is true). Weneedto generate an initialdichotomy (a:, y) if states

Xand y are not already distinguished by any free initial dichotomy resulting from face embedding

constraints. Thiscondition is expressed by: flx\ y' {FIDjacei^'-, y') • [(a; Gx') • (y € y') + (a; 6

y') • (y € a:')]}.
The previous relation generates the set of fixed initial dichotomiesrelated to uniqueness

constraints. Howeverfor subsequent computations, we need also the set of free initial dichotomies.

So wemustpickone dichotomyoutof eachcomplementary pairof fixed initialdichotomies,andthis

can be done systematically by the clause (x y y). Here we exploitthe fact that any positional-set

can be represented as a binary number, and we only pick an initial dichotomy («, y) to be a free

initial dichotomyif the binary representation of x is greater than that of y. In summary, the set of

free initial dichotomies originated from uniqueness constraints can be computed by:

FIDy^fixqueip^^yi) — TV'pl€\{x^ 'Tupl€\{y^' {x y y^

•]3x', y' {FIDjaceix'x y') •[(x Gx') •(y Gy') + (a; Gy') •(y Gx')]}-

Now we combine these two sets to form the set of free initial dichotomies as follows:

FID(x, y) = FIDface{p^,y) + FIDunique(x, y).

Initial Dichotomies

Each free initial dichotomy (a;, y) in FID corresponds to twofixed dichotomies (x,y),

(y, s) G ID. They can be computedas follows:

ID(l,r) = 3x,y{FID{x,y)-[{l = x)-(r = y) + {l= y)-{r = x)]}

= FID(l,r) + FID{r,l).

In the algorithm shownin Figure 11.2,eachdichotomy (/, r) is actually aimotated by the

free initialdichotomy(x, y) fromwhichit is originallyderived or raised. A raisinggraph is a rooted

connected graph. The (x, y) label is useful to distinguish dichotomies in different raising graphs.

In other words, the same dichotomy (i.e., same left and right blocks) can be reached starting from

292 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

different free initial dichotomies, but the reached dichotomies are treated as different. As a result,

raising graphs will not overlap. To obtain the annotatedID{1, r, x, y), the existentialquantification

over Xand y is omitted from the ID computation in Figure 11.2.

Raising Graphs and Implicit Tools for their IVaversal

The problem of branch column selection and lower bound computation requires the

exploration of different raising actions. The process of raising can be modeled by a forest of

raising graphs. Each raising graph has a free initial dichotomy as its root. Its intermediate nodes

are non-maximally raised valid dichotomies, while its leaves are either all invalid dichotomies

or all maximally raised valid dichotomies. The properties of the leaves have been proved in

Section 9.1.1 and will be exploited by our algorithm. The outgoing edges from a dichotomy are

labeled by encoding constraints which are applicable to that dichotomy. The edges point to their

corresponding raised dichotomies.

The advantage of casting the problem to one of graph traversal is that efficient implicit

graphtraversal techniques can be employed. As a result, we can perform all the following compu

tations in a single implicit iterative step:

1. manipulate all separate raising graphs simultaneously,

2. for each raisinggraph,operateon all leaf-dichotomies in it simultaneously,

3. for each raisinggraph and each leaf-dichotomy in it, test applicability of all encoding con

straints and obtain all raised dichotomies simultaneously.

Asmentioned before,eachnode of a raisinggraph is labeledby a dichotomy (possiblyan

invalid or amaximally raised validone). Eachedgeis labeled by anapplicable encoding constraint.

Thus each edge canbeexpressed bya 6-tuple (/', r', p, /, r) which islabeled bytheinputminterm

originates from the dichotomy and is raised (or pointed) to the dichotomy (/,r).

Pictorially, we have (/',r') (/, r).^ The set ofpossible raising edges is represented by the set
rules{l\ r', /, r), which represents the rules that raise dichotomies. The set rules consists of

the sets leftjrule and right.rule:

Tules(l\ r\ /, r, z, p)= leftjrule(l\ r', /, r, z, p)-{- right.rule(l\ r\ /, r, z,p).

^Note that asingle encoding constraint can beassociated to more than one input minterm. Such a case iscorrectly
modelled bymultiple edgesbetween nodes(!', r') and{I,r).

11.3. IMPLICIT SELECTION OF GPVS 293

A leftjTule does not modify the right block, but adds a state n originally absent from the

leftblock {nOV = 0), to form a newleft block/, (n U/' = I). Thus the raising rulesherecannot

be applied vacuously (because each rule must add at least one state to one block). In addition, the

raising conditions as described in Section 9.1.1 require that at least one child ofeach conjunct is in

the left block:

Vn' [constraints(i, p, n, n') ^ {n'D 7!^ 0)].

The leftjrule is computed by:

left.rule{l\ r', /, r, p) = (r = r') •Bn {(n U/' = /)• (n n /' = 0)

•Vn' [constraints{i,p, n, n') {n'Hi' ^ 0)].

The right-rule is similarly computed by:

right-rule(l'y r'y Z, r, iyp) = (Z = I') •3n' {(n' Ur' = r) •(n' C\r' ^ n')

'3n [(n C r') •constraints(iy p, n, n') • (n' n Z= 0)

•"in" [((ti'' i=- n')' constraints(i,py n, n")) => (n" n Ẑ 0)]]}-

The above computations are not specific to a particular set of dichotomies and thus they can be

computed once and for all before the iterative loop.

To test for termination, one checks if a dichotomy is invalid or not. As compared with the

explicitalgorithm in [116], raising is stoppedonce an invalid dichotomy is detected by a simpler

wayof testing invalidity. A dichotomy (Z, r) defined to be invalid if an element is common to both

its left andrightblocks (Z Dr ^ 0):

invalid{ly r) = (Z Dr 7^ 0).

A validdichotomy has been maximally raised if no encoding constraint in rules can be

applied to it. Themaximality of a dichotomy (Z', r') is tested as follows:

maximally-raised(l'y r') = ;3Z, r, iyprules(l'y r'y Z, r).

Raising by Implicit Graph Traversal

The raising graphs are traversed in an iterative maimer. The goal is to collect the reached

dichotomies into two sets: Dyaiid representing the set of valid (partially or maximally) raised

dichotomies and Dinvaiid denoting the set of invalid dichotomies. A fiee initial dichotomy is

294 CHAPTER 11. IMPLICIT MINIMIZATION OF GPVS

unsatisfied if the raising subgraphs^ rooted at bothof its fixed initial dichotomies have all their

leaves in A„vo/»d- In this case, one wants the GPI that, once added, improves more satisfiability.

On the other hand, if any leaf of a raising subgraph is valid and maximally raised, one concludes

by Theorem 9.1.2 that the free initial dichotomy is satisfiable. In this case, the whole raising graph

should be ignored during the computation of a branching column and lower bound.

We start with the set of fixed initial dichotomies (Do = ID). At the k-th iteration, a

currentset of dichotomies Dk(l'y r') is raisedwith respectto all applicable rules to givea newset

of raised dichotomies Dk+i (/, r). The currentset of dichotomiesis transformed as follows:

Dk+i (/, r, X, y) = 3/', r', i,p [Dk(l', r', a;, y) •rules{l\ r', I, r, i,p)].

Invalid dichotomies obtained above are then detected and added to the set Dinvaiid^ and they are

removed from the set Dk+i. This remaining set Dk+\ is added to the set of valid dichotomies

Dyaiid' These updatings are performed by the following computations:

Dinvalid(l, r,x,y) = Dinvaiid(U ^ X, y) Dk+\(/, r,x,y)' invalid(l, r)

Dk+i(l,r,x,y) = Dk+i{l,r,x,y)'-yinvalid{l,r)

Dyalid(li^i^^y) — ®j2/) "I" (f, r, ajj t/).

The value of k is incremented, and the next iteration is applied again if Dk ^ 0. Note that if all

dichotomies in Dk(l', r') have beenmaximally raised, no rules willbe^plicable toany (/', r') in it,

andtherefore Dk+i(h becomes emptyafterthe fc-th iteration. Also if alldichotomies Dk+i(/, r)

become invalid, the above computations will leave Dk+i empty. The iteration will terminate in both

cases. A procedure to compute the raising graphs is shown in Fig. 11.3.

Pruning Satisfied Free Initial Dichotomies and their Raising Graphs

As discussed in Section 9.1.1, a free initial dichotomy is satisfied iff it can be maximally

raised to a validdichotomy. In other words, a free initial dichotomy (a;, y) is unsatisfied if it cannot

be raisedto a dichotomy (/, r) that is both valid (i.e., Dyaiid(U a;, y)) and maximally-raised (i.e.,

maximallyjraised(l^ r)). The set of unsatisfied free initial dichotomiescan be computedby:

unsat-FID(x^ y) = yS/, r [Dyaiid(h v)' maximallyjraised{l^ r)].

"^The root ofa raising graph is a free initial dichotomy in FID{x,y), and has two children which are fixed initial
dichotomies m ID{l,r,x,y). In the sequel,the termraisingsubgraphswill be used to refer to thesubgraphs rootedat
those fixed initial dichotomies.

11.3. IMPLICIT SELECTION OF GPrS 295

procedure raising.graphs(/D, ru/es, invalid) {

k = 0; Dk{l, r,x,y) = D^aiidil, r, x, y) = ID{1, r, a;, y); Dinvaiid{l, r, y) = 0

do {

Dk+i{l,r,x,y) = 3l',r',i,p[Dk{l\r',x,y)rules{l',r',l,r,i,p)]

I^invalid{l) J/) —I3invalid{^i fy V) "1" I3k+l (^> J/) ' invalid{^l, r)

Dk+i (/, r, X, y) = Dk+\(/, r, x, y) •-*invalid{l,r)

Dvaiid{l, r, X, y) = Dyaiid{l, r, x, y) + Dk+i{I, r, x, y)

= it + 1

} until (D&(/,r,x,y) = 0)

return {D-valid)

}

Figure 11.3: Implicit encodeability computations

Once a free initial dichotomy is satisfied, it will remain satisfied even if we add more

GPI's to our. selection. As a result, there is no reason to traverse the raising graph rooted at each

satisfied free initial dichotomy again. To ignore these satisfied raising graphs when computing

updating sets in the next section, the dichotomies aimotated with (x, y) ^ unsat-FID are taken

away from the set Dyaiid-

r, X, y) = Dyaiidi,^} ^̂ iy)' unsat-FI D{x^y).

Computing the Set of Minimal Updating Sets

If a free initial dichotomy is removed, we find and update a set of encoding constraints

responsible of removing the dichotomy. Such a set of encoding constraints is called an updating

set, and it is associated witha particularfree initialdichotomy (x, y) (and the raisinggraph rooted

there). Asmentioned inSection9.1.3,eachupdatingsetcorresponds toadichotomy node (/, r) in the

raisinggraph, andthe updatingencodingconstraints correspond to the labelsof the outgoingedges

of thatnode. We represent thesetof updating setsby the relation updatingjsets{l^ r, i, p, x^y):m

encodingconstraintdenotedby input minterm (i, p) is in an updatingset associatedwithdichotomy

(/, r) within the raising graph rooted at (x, y) iff the6-tuple (/, r,«,p, x, y) is in the updatingsets

relation. The (/, r) label is kept because it will be used later. The set of all updating sets can be

obtainedimplicitlyas shownbelow,by consideringall aimotated valid dichotomiesand identifying

296 CHAPTER 11. IMPLICIT MINIMIZATION OF GPVS

all applicable encoding constraints (via rules) from each of these valid dichotomies:

updating-sets(l,r,i,p^x,y) = 31', r' [Dvalid(li^iXiy)' rules(l,r,l', r',i,p)].

In the subsequent computations, only a subset of minimal updatingjsets, called minjupdatingsets,

matters. An updating set is in minjupdating^ets if no encoding constraint can be removed from

it, while the set still remains an updating set. The set of all minimal updating sets can be computed

by identifyingnodes (/, r) whosesetsof outgoingedgelabels (i,p) arenot subsetsofotherupdating

sets:

minjupdating-sets{l, r,i,p,x,y) = Set.Minimali^p{updating.sets{l, r,i,p,x,y)).

Branching Column Selection

As the existing selectionofGPI's does not satisfy all free initialdichotomies (ifunsatJ^ID

7^ 0), at least one more GPI must be selected. The objective of GPI (branching column) selection

is to maximally improve the overall satisfiability of the unsatisfied free initial dichotomies. The

addition of a GPI will update a number of encoding constraints, and therefore will improve (or at

least not worsen) the satisfiability of unsat.FID. To select such a GPI optimally, we must use the

set ofall updating sets ofencoding constraints {updating.set) to construct a/w// satisfiability table.

Here heuristically, webuild a simplifiedpartial satisfiability table^ instead.

For each unsatisfied free initial dichotomy (a:, y), we find an updatingset with the mini

mum number of encoding constraints, i.e., a minimum cardinality updating set. Because any GPI

selection that updates these constraints may satisfy the given free initial dichotomy, one hopes that

by updating constraints in a minimum cardinality updating set, a small number ofGPI's will suffice

to find an encodeable cover. A minimum cardinality updating set corresponds to the minimum

out-degree node in the raising graph.

The minimum out-degree node (/, r, x, y) in the raising graph rooted at (a;, y) can be

extracted by the Multi.Lmin operator on the set ofminimal updating sets:

min.outdeg.node{l,r,x,y) = Multi.L'min{min-updating.sets{l,r,i,p,x,y), (a;,y)).

The edges (i, p) associated with each minimum cardinality updating set are obtained by:

min.outdeg.edges{l, r, i, p, x, y) = min.outdeg.node(l, r, x, y)

•min.updating.sets{l, r,i,p,x,y).

^With respect tothepartialsatisfiability table presentedinSection9.1.4, this table issimplified, becauseeachupdating
clause has exactly one literal, and not two.

11.3. IMPLICIT SELECTION OF GPFS 297

The columns of the simplified partial satisfiability table, Ti, are labeled by the unselected

GPFs G'(i\ p', n'). The rows of tableTi are divided intosections corresponding to different un

satisfiedfree initial dichotomies. Thus a part of the row label is (x, y) to distinguishthe sections.

Withina section,a rowis also labeledby (i, p) corresponding to an encodingconstraintin the min

imum cardinality updating set (i.e., (z, p) e min.outdeg.edges). A tableentry (i, p, a;, y; i', p', n')

is a 1-entry iff the input part of the GPI covers the input minterm of the encoding constraint (i.e.,

(i' D z) • (p' D p)) andno childof the conjunct n' is in the left block, (n' n / = 0). The implicit

table is obtained by the following computation:

Ti(z, p, X, y\ i\ p', n') = 3/, r [7ninjoutdeg.edges{l, r, z, p,x, y)'(n' Hi = 0)]

'G'{i',p\n') •{i' 2 i) •{p' 2 P)-

To select a GPI to improvethe overallsatisfiability of unsat.FID, we select a columnin table Ti

that contains the maximum number of 1's. The Lmax operator is used to pick such a column as

follows:

GPI-selected(i\p', n') = Lmax(Ti, (z,p,x, y)).

Lower Bound Computation

For reasons described in Section 9.1.5, we cannot use the simplified partial satisfiability

table Ti for lower bound computation. Instead, we constructthe support satisfiability table, T2.

We still start with the set of minimal updating sets. The rows are now labeled onlyby («,«/) e

unsat-FID. Eachrowrepresents anor clauseoftheencodingconstraints inall minjapdatingsets

associated with (a:, y). The 1-entries in table T2 areobtained as those in Ti, except that here all

edges in thesupport areused instead ofonlythosein min-outdeg-edges, andthe whole right-hand

expression is existentially quantihed by z,p because each clause represents an <7r of all encoding

constraints in the support. Table r2 is computed as follows:

72(®} y;p\ n') = 3z, p {3/, r [min-updating-sets{l, r, z, p,a;, y)- [n' Hi = 0)]

'G'(i',p',n') • (i' 2 i) - (p'2 p)}-

A lower bound on the number of additional GPI's to make the problem satisfiable

can be found by computing the maximal independent set of rows in table T2, by means of the

MaxJndep-Set operator [66] as follows:

lowerbound = Max-IndepSet{T2, (a;, y), {i\p', n')).

298 CHAPTER 11. IMPLICIT MINIMIZATION OF GPTS

procedure codesJmpliciLgpi_selection(I>„a/id, maximally.raised, FID) {

/* find valid maximally raised dichotomies */

Datartil, »*) = 3a;, yDvaiidil, r, x, y) •maximally.raised{l, r)

/* complete valid maximally raised dichotomies */

Dcomplete{l,r) = 31',r'{D,tart{l',r'){l D l'){r D r'){l-r = 0) ^x[Tuplei{x){l 2 a;)(r 2 ®)]}

/* remove invalid dichotomies */

Dvaiid{l, r) = Dcompiete{l, r) - 3/'r'ap[rtx/es(/,r, I', r', i,p) •invalid{l', r')]

/* select a minimum set of valid complete dichotomies that cover the HD's */

Dcoiumnaihr) = unate.encoding{Dvalid, FID)

}

Figure 11.4: Computation of codes satisfying a selection ofGPI's

11.3.3 Implicit Encoding of an Encodeable Set of GPI's

In this section we describe the generation of codes that satisfy an encodeable set of GPI's.

The cost ftinction is the niunber of encoding bits. The problem is to generate valid complete

dichotomies and then set up and solve a unate covering problem.

Figure 11.4 shows an exact implicit algorithm to find codes of minimum length that

satisfy a givenset of encodingconstraints(in this case already known to be encodeable), based on

thenotion of completion of a dichotomy. The algorithm computes the completion Dcompieteih

ofthe set Dstart{U ofvalid maximally raised dichotomies. Then it removes from Dcompiete{l, r)

the invalid dichotomies, i.e., the dichotomies that could be raised again. Since the dichotomies

in Dcompiete(i,are complete, if raising is still possible, it must introduce some invalidity. By

Theorem9.1.3 this procedure finds a minimumset of encodingcolumns.

The last step solves a table covering problem. The rows of the table are the fiee initial

dichotomies and the columns are the valid complete dichotomies. If a valid complete dichotomy

covers oneof the two initialencoding dichotomies associated to a free initialdichotomy (itselfand

the one with the two blocksexchanged) thenthereis a 1 at the intersection of thevalidcomplete

dichotomy and the free initialdichotomy. The tableis unate, i.e. eitheran entryis 1or it is empty.

The implicit general binate solver previously mentioned is used here.

The general binate solverrequires the sets of columns and rows and a rule to compute a

®In other words, the left and right blocks ofthe free initial dichotomy are subsets respectively either of the left and
right blocks,or of the right and left blocksof the valid completedichotomy.

11.4. A WORKED EXAMPLE 299

table entry. In this case they are:

1. Columnsare C(q) = Dj,aiid(^, r), where q = l^r.

2. Rowsare R(d) = Ru{d) = FID{x^ y), where d = x,y.

3. The table entry at the intersectionof the columnlabelledby (/, r) e C and of the rowlabelled

by (jc, 2/) € is 1 iff / 3 r D y or / 3 y, r D a;.

4. The tableentry at the intersectionof the columnlabelledby (/, r) € C andof the rowlabelled

by («, y) G i? is never 0,

As a result a set of valid complete dichotomies Dcolumns is selected. The columns in Dcolumns

are a minimum cover of all the rows.

11.3.4 Approximate Implicit Selection of an Encodeable Cover of GPI's

Fig. 11.5 shows a detailed description of an approximate implicit algorithm to find a

selection of GPFs that is a cover of the original FSM and that is encodeable. A simplified view

of the algorithm was already shown in Fig. 8.8 and related issues commented. The computations

introduced in Section 11.3.2 are used to check encodeability and select a branching column. One

minor efficiency improvement is the addition of a set accjsat.FID(x^ y) to accumulate the fiiee

initial dichotomies (a;, y) already shown to be satisfied, becauseby Theorem 9.1.1, they will stay

satisfied when adding more GPI's to the solution. Notice also that a FID (re, y) already verified

could be generated again by a newly selected GPI. So when we recompute the FID's generated by

the augmented set of GPI's, we check that none of them has been found satisfiable already. To

update the set acc.sat.FID(x, y), at each iteration one adds to it sat.FID(x, y), the set of the

FDD's (x, y) found satisfiedin the current iteration. There are various efficiency issues regarding

partially duplicated computations in the while loop. We consider them an implementative detail,

not to be discussed here. An implementationof this implicit approximate algorithm wiUbe reported

next.

11.4 A Worked Example

We show the main steps of the algorithm presented in 11.3.4 on the FSM leoncino. The

first call to the implicit binate solver returns the following cover ofGPI's

^The numbers within () identify them in thelists ofGPI's and covering tables given inSection 8.1.

300 CHAPTER 11. IMPLICIT MINIMIZATION OF GPVS

procedure appToxjinpIicit-gpi-selection(P,M) {

G{i',p',n',o') = unate-encoding{P, M);

G'{i',p',n',o') —P{i',p',n',o') —G{i'^p', n', o'); unsat-FID{x,y) —1; acc.sat-FID{x,y) = 0

while{unsatJ'ID{x, y) 0) {

FIDfaceixty) - 3t',n' [G(t',®,n')] •T«p/ei(y) • (y g a;) - Tuplei{x) -Tupleiiy)

FIDunique(x,y) = Tuplexix) •Tuplex{y) • (x >- y)

• ySar'.y' {F/D/ace(;r',y') •((a; C x') • (y C y') + (x C y') • (y C x')]}

FID{x,y) = FIDfacci^iV) + F/D^mqucC^.y); FID{x,y) = FID{x,y) - acc.sat.FID{x,y)

ID{1,r, X,y) = FID{x, y) • [(/ = x) • (r = y) + (/ = y) • (r = x)]

encoding.conatrainta{i,p,n, n') = Mnii,p,n) •3t',p' [G(t',p',n') • (i C i') • (p C p')]

consfromt«(t, p, n, n') = Mimma/„/(encodtn3_consfrotn<a(t,p,n,n')) • (n ^ n')

leJt.rule{Vyv', l,r,i,p) = (r = r') •3n {3n' conatrainta{iyp,n, n'){n U/' = /)• (n n /' = 0)

•Vn' [conatrainta{i,p,n,n') (n' n 1' 0)]}

right.rule(l', r', 1,r, t, p) = (1 = /') •3n' {(n' u r' = r) • (n' n r' ^ n') *3n [(n C r') •conatrainta(iy p, n, n')

•(n' n / = 0) • Vn" [((n" n') •conatrainta{i, p, n, n")) ^ (n" n / ^ ®)]]}

rules(/',r',/, r,t,p) = left.rule(l',r',l,r,i,p) + rightjrule{l' ,r',l,r,i,p)

invalid{l,r) = (Irir ^ 0); maximallyjraiaediji',r') =jBl,r,iyprulea{l',r',i,p,l,r)

P Uavcrse raising graphs */

Dvalidi^,»",x, y) = raiaing-grapha{ID{l, r, x, y), rulea{l',r', I, r, i, p),invalid(l, r, x, y))

/* prune satisfied raising graphs */

unaat.FID{x,y) = FID{x,y)' ^f,r [D„ojjd(/,r,x,y) •Tnaximalfy_ratsed(/,r)]

aat.FID{Xty) = FID{x,y) —unaat.FID(x,y); acc.aatJ'lD{x,y) = acc.aatJ'ID{x,y) + aatJ'ID{x,y)

^unsat.volidC.r.x.y) = G„oi,d(/,r,x,y) •unaatJFID{x,y)

P compute set of min updatingsets and selectbranchingcolumn*/

updating.3et3{l,ryi,p,x,y) = 31',r' [D^naat.valid{l>'',x,y) • rulea{l,r, l',r',i,p)]

min.updating.aeta{l, r, t, p, x, y) = 5et_Mtmmo/i,p(updattny_sets(/, r, t, p, x, y))

min.outdeg.node{l, r, x, y) —MuHi.Lmin{min.updating.8eta[l, r, t, p, x, y), (t, p), (x, y))

min-outdeg.edgea{l, r, i, p, x, y) = min.outdeg.node{l, r, x, y) •min.updating.aeta{l, r, i,p, x, y)

Tx{i,p,x,y; i',p', n') = 31,r [min_outdey_edyes(l,r, t,p,x,y) • (n' n 1= 0)] •G'{i',p',n') • (t' D t) • (p' D p)

GPI.aelected{i' ,p',n') = Lmox(Ti, (i,p, x,y))

G{i',p',n') —G{i',p',n') + GPI.8elected{i',p',n')', G'(i',p',n') = G'{i',p',n') —GPI.aelected{i',p',n')

}

rctum(P(t', p'n', o') • G(t', p', n'))

}

Figure 11.5: Approximate implicit selection of GPI's - Detailed view

11.4. A WORKEDEXAMPLE 301

1 -00100111 (3).0111101011 (5),-111011000 (24),-010010001 (6),-001101110 (17).

The next-state constraints are:

9722 siO = stO

1714 stO = stO

ms stO = stO.stl

7726 sil = 5^1 + siO.sil

9728 ^^1 = Stl.st2

mio stl = stl -I- stO.stl

mil stO = stO.stl

mi3 st2 = stl.st2

mi6 st2 = st2 stl.st2

mi9 st2 — st2

m2i sil = stl.st2

Trivial next-state constraints are ms, mg, mii, m^, m2i.

The non-trivial faceconstraints are (siO, stl) and (stl, st2). The free initialdichotomies

are (stO, stl; st2) and (stl, st2; stO). The initial dichotomies are (stO, stl; st2), (st2; stO, stl),
(stl, st2; stO) and (stO; stl, st2).

There are two raising graphs, one rooted at (stO, stl;st2) and the other rooted at

(stl, st2;stO). The edges oftheraising graph rooted at (stO, stl; st2) are:

(stO, stl; st2) —¥ (stO, stl; st2),

(stO, stl; st2) —y (st2; stO, stl),

(stO, stl; st2) (st2, stO, stl; st2),

(st2;StO,stl) (stl, st2; stO,stl),

(st2; stO,stl) (stl,st2; stO,stl).

AU maximally raised dichotomies (sinks of the graph), i.e., the nodes (st2,st0, stl;st2) and

(stl, st2; stO, stl), areinvalid, so theFID (stO, stl; st2) is violated.

The edgesof the raisinggraphrootedat (stl, st2; stO) are:

(stl,st2;stO) —¥ (stl,st2;stO),

(stl,st2; stO) —¥ (stO; stl, st2),

(stl,st2; stO) (stO, stl,st2; stO),

(stl,st2;st0) (st0,stl,st2;st0).

While sink (stO, stl, st2;stO) is invalid, sink (stO; stl, st2) is valid, so theFID (stl, st2;stO) is

not violated. In this example, all raising actions happen to be due to the left rule.

302 CHAPTER 11. IMPLICIT MINIMIZATION OF GPFS

Since the FID (st0,sil;si2) is violated, the given selection of GPI's is not encode-

able. A new GPI is added to it, returned by Lmaa;: 1001100110 (16). The non-trivial next-

state constraints are the same as before, except the one corresponding to that is updated to

mi3 st2 = stl.stl -f si2 becoming a trivial next-state constraint. If we repeat the pro

cess of building the raising graphs, we obtain the same graphs as before except that the edge

{stO, sil; st2) (si2, stO,stl; st2) will be missing,becausemi3 cannotforceanymore raisings.

Therefore also the FID {stO,stl; st2) is not anymore violated, because it has a valid sink, i.e.,

(stO^ stl; st2). So an encodeable coverof 6 GPTshas been obtained.

11.5 Verification of Correctness

After obtaining an encodeable cover of GPI's and codes that satisfy the constraints,one

replaces the codes in the GPI cover and minimizes it to get a minimized encoded GPI cover,

Fmin.gpi- It is usefiil also to replace the codes in the original FSM cover and then to minimize it,

gettingFmin-fam- Since the don't care set can be used differently, the two minimized covers may

differ and the smallest one is picked.

It is also important to verify that theminimized encoded GPI cover, Fmin.gpi* is still a

cover of theonset of theoriginal FSM. This canbeachieved bychecking thatFmin.gpi iscontained

in the union of the onset and dcset of the encoded (not minimized!) FSM cover and that the onset

of theencoded (not minimized!) FSM cover is contained intheunion of Fmin.gpi and thedcset of

theencoded FSM cover. If thischeck is routinely successful oneis confident thatthealgorithm has

beenimplemented conectly. Thischeck is always performed at the endof ourprogram.

Figure 11.6showsthe operationsto encode andverifythe correctness. F, D and R denote

respectively onset, dcset and offset.

We demonstrate theprocedure on theexample previously utilized toexplain thealgorithm.

The set of selected GPI's, G, is:

1- 001 001 11

10 oil 001 10

01 111 010 11

-1 110 110 00

-0 100 100 01

-0 oil oil 10

The codesare: enc(stO) = 00, enc{stl) = 10, €nc{st2) = 11. By encoding the GPI cover, one

obtains the covers Fgpi and Rgpii

1 IS VERIHCATION OF CORRECTNESS 303

procedure code_and-verify(G, Dcoiumns.FSM) {

/* encode the GPI cover */

Fgpi = encode.gpi{G, Dcoiumna, FSM)

/* minimize encoded GPI cover */

Dgpi = 0(coi;er)

Rgpi = complement{Fgpi)

Fmin-gpi —GSpVGSSO^^Fgpi , Dgpi , Rgpi)

/* encode the FSM cover */

{Ffgm, Rfam) = encode.fsm{Dcolumna , FSM)

Dfsm = complement{Ffsm URjsm)

/* verify correcmess */

if (^Ffnin_gpi C Fjsfji UDfsm 3nd Q Fmin.gpi GDjsm){

/* minimize encoded FSM cover */

Fmin-Jam = espresso{Fjsm) srri} Rjsm)

retum(i^n»m_gpi j

} else retumC'error")

}

Figure 11.6: Computationof minimizedencoded coversand correctnesscheck

304 CHAPTER IL MPLICrr MINIMIZATION OF GPrS

1-11 1111 -00- 1110

101- 1110 0 0100

01— 1011 11-0 1111

-1-0 0000

1

0
1

1100

-000 0001 -001 1111

-01- 1010 001- 0001

-010 0001

110- 1111

The minimized encoded GPI cover, Fmin..gpii ^S.

-000 0001

101- 0100

01— 1011

-01- 1010

1-11 1111

By encoding the FSM cover, one obtains the covers F/.sm» Rfsm 3nd Djgm

-000 0001 -000 1110 —01 1111

0100 1000 1100 1111 01-1 1111

0-10 1010 0100 0100 010- 0011

1010 1110 0-10 0100

0
I—1

0

0001

1-11 1111 1110 1110 -110 0001

0011 1010 1010 0001

0011 0101

The minimizedencoded FSM cover, Fmin.jsm, is:

101- 0100

-00- 0001

01— 1010

-01- 1010

1—1 1111

11.6 Implementation Issues

11.6.1 Order of BDD Variables

The ordering of the BDD variables is one of the most excruciating problems encountered
while implementing BDD-based computations. Four arrays ofvariables are needed: Ao, Ai, ^2, A3,
where in turn each array is composed of five subarrays of variables: 7, F, AT, M, O. 7 is an array
of input variables, F, AT, and M are each an array of state variables and O is an array of output
variables. Consider an example with 1 input, 1 output and 3 states; Aq will consist of:

11.6. IMPLEMENTATION ISSUES 305

i pi p2 p3 nl n2 n3 ml m2 m3 o

IP N MO

In the computationofprime compatibles only arrays i4oand Ai are used. In the solutionof

the firstcoveringtable all four of them are used. It is imperative that the variables in Aq,>li, A2,A3

be interleaved, in order to have linear-sized BDD representations of various key intermediate

computations both when computing the primes and solving the first covering table.
We show a compatible order for two arrays of variables Aq and Ai. Unprimed variables

are thosein Aq andprimed(0 are those in Ai:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 i' pi pi' p2 p2' p3 p3' nl nl' n2 n2' n3 n3' ml ml' m2 m2' m3 m3'
20 21

o o'

Notice that within each array of the type A there is freedom of ordering the variables in

7, P, iV, A7,0. We refer to this ordering as single interleaving. When primes are computed, we

keep enabled the dynamic reordering routineavailablein the CMU BDD package.
But it is also necessary that the variables in the arrays P, N and M are interleaved, in

order to have linear-sized BDD representations of various key intermediate computations in the
encodeabilitystep and when solving the second coveringtable. Weshow an order compatiblewith
both requirements for two arrays of variables Ao and A\. Unprimed variables are those in Aq and
primed (') are those in Ai:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 i' pi pi' nl nl' ml ml' p2 p2' n2 n2' m2 m2' p3 p3' n3 n3' m3 m3'
20 21

o o'

This order insures both:

1. interleaving between the variables in Ao and Ai; and

2. interleaving between the variables in P, AT, M within array Aq and within array Ai.

Notice that within each array of the type P or iV or M there is freedom of ordering the variables.

There is also freedom in ordering I and O with respect to P, AT, M. We refer to this ordering as

double interleaving. Double interleaving is required only for the encodeability computations and

the second covering table. Wehave implemented two variants of double interleaving, hi both cases

one starts with single interleaving, then in the firstvariant one switches to double interleaving before

invoking the table solver (on the first covering table), while in the second variant one switches to

306 CHAPTER 11. IMPLICIT MINIMIZATION OF OPTS

double interleaving after invoking the table solver (on the first covering table). Again dynamic

reordering is allowed during the computation of primes. The second variant is to be preferred

because it constrains less the ordering when solving the first covering table, and the experiments

confirm it. The ordering with only single interleaving, instead, is not recommended because it is

often unable to pass successfiilly through the second covering table solver.

Dynamic reordering has not been applied yet to the computations in the encodeability

step. It will be interesting to find out whether some hard computations in this part can be sped-up

by reordering. One must pay attention to the fact that the computations that use the linexount

primitive BDD operator must be carried on with dynamic reordering disabled.

11.6.2 Computation of SetJMinimal

In the encodeability step it is necessary to compute the following relation:

Set.Minimalb(F{a^h)) = F(a, 6)- ^c{3d F(c^ d)''id[F(c,d) F(a, d)]-3d[-tF{c, d)-F(a, d)]}.

It turns out that this is a difficult operation with BDD's even when implemented with the

BDD and-smooth operator by rewriting it as:

Set.Minimali,(F(a,b)) = F(a,6)- jBc{3dF{c,d)' pd[F(c, d)'-^F{a, d)]'3d[->F{c,d)'F{a, d)]].

A solution is to approximate the computation using the following logical validities:

[3dF(c, d) => W F(a, d)] => W [F(c, d) => F(a, rf)],

and

[3rf -«F(c,d) •Vcf F(a, d)] ^ 3d [-iF(c, d) •F(a, d)].

If we replace in the computation of Set-Minimalb(F{a^ b)) the right-hand sides with

theleft-hand sidesof theprevious logicvalidities weobtain a superset of Set.Minimal(,(F(a, 6)),

which is a conservative approximation.

11.6.3 The Filtering Heuristic

After a cover ofGPI's is returned from the first table covering step, more GPI's are added

one at a time to make it encodeable. An alternativeis to add to the cover a set of GPI's guaranteed to

make it encodeable, findcodes that satisfy all of them and then let the finalminimization step choose

a minimalcover ofencoded GPI's. The set ofGPI's that we add contains, outof all unselected GPI's,

1].7. EXPERIMENTS 307

those with full or singleton present state literal or with a present state literal already occurring in a

GPI of the cover. Also the generalized implicants of the original cover are added, to guarantee that

at least one encodeable cover can be found. A motivation of this choice is to avoid the introduction

ofGPI's that add new initial dichotomies, making encodeability temporarily harder to satisfy.

This heuristic is a preliminary attempt in an interesting direction to improve on the present

strategy of adding greedily one more GPI at a time. When this heuristic is active we stop at the

first solution of the second covering table. The reason is that since the encodeability problem is

less constrained one gets more primes dichotomies and therefore the second covering table is not

relatively simple as it is often otherwise. In particular it is an experimental fact that these tables

generate a lot of branching activities not adequately controlled by the bounding mechanism, so

that suboptimal regions of the solution space are explored in depth before being recognized as

suboptimal.

11.7 Experiments

We have implemented a program ISA, an acronym for implicit state assigmnent, that

computes the set of GPI's or a subsetof them and then implements the procedure for approximate

implicit selection of an encodeable cover of GPFs described in Section 11.3.4. The program

capitalizeson differentexisting softwaretechnologies. It is built on top of espresso, to exploit the

logic optimizationcapabilities of the latter in the two-level domain. Two-level logic optimization

capabilities are needed at the beginning to do pre-processing (reading a symbolic FSM cover,

building its onset, don't care set and offset, computinga coverof the companionfunction), and at

the end to do post-processing (replacing the codes in the encodeable set of GPI's and in the original

FSM cover and minimizingthem - with an appropriatedon't care set - to measure the qualityof the

final result). The program ISA computes the primes of the companion function (from which GPI's

are obtained after a reduction process) using routines kindly provided by G.M.Swamy firom her

two-level logic minimizer [53]. Then ISA selects a cover of GPI's calling the implicit table solver

described in [66]. As a next step, we have implemented the computations shown in Figure 11.5 to

obtain a minimal encodeable cover of GPI's.

The core computationsare based on the representation of the characteristic functions of

relations by means of BDD's. The program can use both the UCB and the CMU BDD packages

through the BDD interface developedat UCB. AUreported experiments have been done linking the

CMU package.

308 CHAPTER IL IMPLICIT MINIMIZATION OF OPTS

11.7.1 Analysis of the Experiments

Wereport here a set ofexperiments to demonstrate the status ofthe current implementation,

which is still in a development phase. GPI's can model an host of encoding problems taigetting

two-level implementations. Here we have used FSM's as a test case, because they exhibit the most

general fonnulation of encodeability and so they test fiiUy the theory. Other applications can be

handled by simple modifications. All run times are reported in CPU seconds on a DEC DS5900/260

with 440 Mb of memory, unless otherwise stated.

The objective of the current implementation has not been to compete with existing state

assignment programs like nova [147] that have been heavily optimized, but to show that implicit

techniques are mature enough to generate and select encodeable sets of GPI's. While up to now

it has not been practical to manipulate sets of GPPs because they are very large even for small

symbolic covers, our contribution shows that large sets of GPPs for non-trivial examples can be

manipulated with implicit techniques. Improvements to the implicit algorithms can extend the

frontier of the problems that can be handled.

An open issue left for future investigations is how to use effectively this capability in order

to do state assignment or other types of encoding. An exact algorithm that explores all possible

subsets of GPI's to find a minimum encodeable one is hardly practical, so one must introduce

heuristic restrictions in the search of the solution space. Wehave used the simplest possible strategy

of adding one more GPI at a time (chosen to maximize a cost function measuring the lack of

encodeability of the current cover), and then of stopping at this first solution. In order to produce

an high-quality result (measured by the size of the minimized encoded cover) this greedy strategy

must be replaced by one with a limited amount of backtracking to explore increasingly smaller sets

of encodeable covers of GPI's. Here it would help the implicit lower bound criterion presented in

Section 11.3.2, currently not used in ISA.

Tables 11.1 and 11.2 report the results of generating GPI's for FSM's of the MCNC

benchmark and other examples. We have included FSM's with up to around 30 states, that is the

size that can be currently handled. We report the number of primes of the companion function

and the number of GPI's. Comparisons of run times to generate the primes of the companion

function *only* are made with espresso [11]. Both programs were timed out at 7200 seconds of

CPU time. Notice that we report also the number of variables of the companion function (given

by2*z-|-3*p + o, where i, p, o are respectively the number of inputs, states and outputs of the

FSM), because it is a more indicative measure (than the number of states) of the the complexity of

11.7. EXPERIMENTS 309

the computation to generate the GPFs.

Tables 11.3 and 11.4 report the results ofrunning ISA to select a minimal encodeable cover

of GPI's. For these experiments ISA has been run with option -m, that computes a subset of the

GPFs, by applying the minimal transformation, instead of the maximal transformationthat gives all

GPFs (see Section 7.4.4 for a definition of minimal and maximal transformations). The reason is

that smaller tables are generated, to the price of a solution of lesser quality. The tables provide the

following information:

• Under the column "table size" we provide the dimensions of the original table and ofits cyclic

core, i.e., the dimensions of the table obtained when the first cycle of reductions conveiges.

• "mincov calls" is the number of recursive calls of the implicit table solver.

• The column "table sol." is the cardinality of the cover of GPI's returned by the table solver.

• The column "final sol." is the cardinality of the final encodeable cover of GPI's.

• CPU time gives the time for the first call to the table solver under the column "table red.".

Under the column "total" there is the total time of isa on the example, inclusive of the time

to compute the primes, get a cover of GPI's by calling the implicit table solver, find an

encodeable cover ofGPI's and get the codes by another call to the implicit table solver. Since

the latter call is usually on a small table, it is lumped with the rest.

Out of the examples in Table 11.3, isa fails to complete the first table reduction of slave

because of timeout at 18000 seconds, during collapse columns. Guf of the examples in Table 11.4,

ISA fails to complete some of them, again due to timeout or no more memory in the coUapse

column step of the first table reduction. The runs of ex2, maincont, saucier did not complete

because of timeouts during the selection of new GPI's: the time-consuming operations there are

i^etjninimum (which can be successfully approximated as seen in Section 11.6.2) and changes of

BDD variables support necessary for the multiJmin computation. Causes of failure are described

more precisely in the tables. The results reported for cse, dk512, keyb were obtained with option -q

(heuristic of Section 11.6.3), and those for ex2, maincont, pkheader with option -k (approximation

to Set-Minimal in Section 11.6.2). FSM's cse, dk512, keyb, ex2, maincont, pkheader, marki were

run on a DEC 7000 Model 610 AXP with 1Gb of memory.

Tables 11.5 and 11.6 report the cover size of the encoded and minimized covers produced

by ISA and compare them with the best results ofnova. The tables provide the following information:

310 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

#vars. CPU time (sec)
FSM states compan.fii. primes GPI's ISA ESPRESSO

bbara 10 40 14760 13518 9 532

bbtas 6 24 252 230 0 0

beecount 7 31 1834 959 4 1

chanstb 4 44 619 571 8 0

cpab 5 49 3509 2841 44 17

dkM 7 32 2850 1228 3 2

dkl5 4 23 231 143 0 0

dkl7 8 31 2021 1575 2 2

dk27 7 25 377 296 0 0

dol2 5 20 194 170 0 0

es 4 18 101 80 0 0

ex3 10 36 8686 8125 7 181

ex5 9 33 4232 3741 3 20

ex6 8 42 5720 3495 12 26

ex7 10 36 8538 7931 6 147

fstate 8 45 5949 5231 14 23

leoncino 3 15 39 26 0 0

lion 4 17 79 51 0 0

lion9 9 32 2122 1136 3 7

mc 4 23 94 77 0 0

ofsync 4 28 185 155 1 0

opus 10 46 16735 15934 23 329

s8 5 24 326 316 0 0

scud 8 44 43602 30259 74 2026

shiflreg 8 27 764 527 0 0

slave 10 91 273027 228463 147 7135

tav 4 24 81 81 0 0

test 2 10 5 5 0 0

virmach 4 44 257 216 11 0

Table 11.1: GPI's of small examples from the MCNC benchmark and others.

11.7. EXPERIMENTS

CPU time (sec)
FSM states transf. primes GPI's ISA ESPRESSO

bbsse 16 53 1493485 1399079 136 1286

cf 13 69 2206595 2134887 178 -

cse 16 69 2335927 1832229 109 -

dk512 15 50 98238 91947 11 -

exl 20 97 149755546 146394042 336 -

ex2 19 63 4640888 4597063 151 -

ex4 14 63 120835 120721 29 -

keyb 19 73 28592198 27327259 212 -

kiikman 16 78 2106843 2106783 252 -

maincont 16 74 1484786 1418800 37 -

markl 15 71 733697 728799 89 -

master 15 122 269304493 264757774 5630 -

modulo12 12 39 12282 11961 4 5246

pkheader 16 85 229946 229726 823 -

ricks 13 82 120576 119488 80 -

si 20 82 - -
.(«)

-

sla 20 82 693626434 616527717 3902 -

saucier 20 87 111895231 111852040 126 -

tma 20 80 12324742 12118857 3711 -

trainll 11 38 6444 4856 11 207

donfile 24 77 150994935 64959680 2348 -

dkl6 27 88 1207950375 1179949953 3775 -

pma 24 96 1267371428 1248519820 2671 -

rpss 22 115 1229747382 1226813350 536 -

tr4 22 105 2770731006 2769352444 138 -

out of memory

all runs timed out 7200 seconds

Table 11.2: GPI's of medium examples from the MCNC benchmark and others.

311

312 CHAPTER 11. IMPLICIT MINIMIZATION OF GPI'S

• The column "FSM cover" gives the cardinality of the original FSM coven

• The column "1-hot cover" gives the cardinality of the FSM cover, after 1-hot encoding and

minimization.

• Under "results of ISA", the column "min.gpi" gives the cardinality of the encoded and mini

mized cover ofGPI's, while the column "min.FSM" gives the cardinality of the encoded and

minimized initial cover. In both cases the codes used are those returned by the second call to

the table solver, which satisfy the encoding constraints. The column "bits" returns the length

ofthe codes, that is the cardinality of the solution ofthe second call to the table solver. When

two numbers in the same column are given the second one is the result with the filtering

heuristic, option -q.

• Under "results of NOVA", the column "best." gives the cardinality of the smallest cover found

by NOVA, using the options -e ig -r, -e ih -r, -e ioh -r. The length of the codes is in the column

"bits".

It is a factthatnova doesconsistently betterbothascardinality of thecoverandlengthof thecodes.

It mustbepointed out thatthe results of nova arethebestoutofmany runs withdifferent encoding

options (the option -r effectively tries all possible complementations of the codes). In terms of

covercardinality ISA gets oftenclose to the best of nova. The encoding lengthrequired by ISA is

instead hard to justify. It is a weakness thatshould be investigated, if onewants todo high-quality

stateassignment usingGPFs. We reiterate thatthecurrent version of ISA is addressing theproblem

of manipulating GPI's with implicit techniques. The next step is to search efficiently encodeable

cover of GPI's for specific applications.

11.7.2 Evaluation of the Experiments

Wehave presented a complete algorithmto compute implicitlyminimalcovers of GPI's.

After the seminal contribution in [39], this is the first in-depth algorithmic study that probes the

feasibility of generating and selecting sets of GPI's. Since even small symbolic covers generate

large sets of GPI's, implicit techniques have been used to generate GPI's, solve table covering

problems and verify encodeability. The implicit procedure to check encodeability is a noveltyof

this work, togetherwiththe technique to selectGPI's basedon minimalupdating sets.

A fair conclusion is that GPI's push to the limit even the most efficient BDD-based

computations. For instance the generationof prime implicants inducedby GPI's is usually harder

11.8. CONCLUSIONS 313

than the generation ofprimes for the logic functions ofthe espresso benchmark. Also the covering

problems faced to select covers of GPI's and of prime encoding dichotomies, even though they

are unate, are often tougher than those encountered in the espresso benchmaik and in the state

minimization of FSM's [66], a reason being the larger variable support of the BDD representations

ofcolumns and rows. To be able to solve the examples of the previous tables, the package described

in [66] had to be further optimized and inadequacies still remain to be addressed. The implicit

check of feasibility has not been a bottleneckin experiments tried so far. Instead the selectionof

new GPFs based on minimal updating sets failed sometimes due to explosive intermediate BDD

operations; they have been partly solved by replacing the computation of SetMinimal with a

conservative approximation, but for others there is not yet a satisfactory solution. It is an open

problem howto drivethe selection of GPI's witha moreglobalview, in order to obtainencodeable

coversof cardinalityless or equal to the best encodedcovers obtainedby varioustools [147]. This

was not an objective of this work, even though the experience gained here will be very useful to

attack the issue.

The demonstrated techniques exhibit a window of small-medium examples where it is

possible to compute minimalsymbolic covers using GPI's. Further computational optimizations

and improvements to the quality of the search willmakeit competitive withthe bestexisting tools.

11.8 Conclusions

We have presented a complete procedure to generate and select GPI's [39] based on

implicitcomputations. This approach combines techniques for implicitenumeration of primesand

implicitsolutionof covering tablestogetherwitha newformulation of the problem of selecting an

encodeable coverof GPI's. The proposedalgorithms havebeen implemented usingstateassignment

ofFSM's as a test case. The experiments exhibit a set of mediumFSM's where large GPI problems

could be solved for the first time, showing that these techniques open a new direction in the

minimization of symbolic logic. Since the problem of symbolic minimization is harder than

two-valued logic minimization, more practical work is required to improve the efficiency of the

implementationand to tie it withgoodheuristicsto explorethe solutionspaceof encodingproblems.

The present contributionshowshow to extract a minimal encodeablecover firom a large set of GPI's,

allowing - in line of principle - the exploration of all minimal encodeable covers. This advances

the state-of-art of symbolic minimization, which up to now has been done with various heuristic

tools [92,147,42,77], often very weU-tuned for their domain of application, but lacking a rigorous

314 CHAPTER 11. IMPLICIT MINIMIZATION OF GPFS

connection beween an exact theory and the approximations made. For instance it is noticeable

that these tools (with the exception of esp_sa) cannot predict the cardinality of the covers that

they produce, while the size of a minimized encoded cover of GPFs matches the size of the cover

obtained after encoding (with the same codes) and minimizing the original cover.

11.8. CONCLUSIONS 315

table size (row x col) mincov table final CPU time (seconds)
FSM before red. after red. calls sol. sol. table red. total

bbara 187x4124 98x35 9 8 33 329 872

bbtas 28 X 107 9x6 3 4 17 3 32

beecount 153 X176 0x0 1 6 12 44 82

chanstb 169216x525 0x0 1 11 36 1218 1407

cpab 208896 X1892 683x73 8 48 7774 11279

dkl4 157x199 0x0 1 17 31 129 311

dkl5 88x68 0x0 1 14 17 9 13

dkl7 64 X 164 0x0 1 9 19 46 435

dk27 20x71 0x0 1 4 9 5 23

dol2 20x113 19x25 2 15 8 47

es 23x45 0x0 1 5 11 1 2

ex3 42 x 495 0x0 1 5 21 563 4026

ex5 50 X 301 0x0 1 3 19 139 508

ex6 908 x 423 0x0 1 22 24 645 672

ex7 48x583 0x0 1 4 20 106 1101

fstate 5360x1605 11x11 8 21 12770 13402

leoncino 21x22 0x0 1 5 6 0 1

lion 25x29 0x0 1 4 10 0 4

lion9 42 X 175 0x0 1 2 11 10 55

mc 96x71 0x0 1 7 11 5 10

ofsync 300x97 48x24 18 12 33 69 107

opus 914x2830 0x0 1 14 23 704 958

s8 40x206 0x0 1 1 13 8 27

scud 2966x2533 0x0 1 57 95 15633 16885

shiftreg 24x89 8x6 5 3 8 6 21

slave 2207744x16845 _(a)
- - - timeout -

tav 100x81 4x4 5 10 11 10 11

test 8x5 0x0 1 3 3 0 0

virmach 4992 X144 0x0 1 16 17 778 793

timeout 18000 in collapse columns

Table 11.3: Selection of a minimal encodeable GPI cover

316 CHAPTER 11. IMPLICIT MINIMIZATION OF GPrS

table size (row x col) mincov table final CPU time (seconds)
FSM before red. after red. calls sol. sol. table red. total

bbsse 3480x34727 _(a)
- - - timeout -

cf 30208 X102781 .(6)
- - - - -

cse 2588x21798 0x0 1 23 232 6534 14484

dk512 43 X1777 0x0 1 6 52 4150 6108

ex2 86x38410 0x0 1 3 .(<^) 830 timeout

ex4 1072 x 26759 0x0 1 10 20 803 1762

keyb 2666x361240 0x0 1 8 373 1706 3398

kiikman 100252x1081088 .(a)
- - - timeout -

maincont 67586x245784 0x0 1 4 .('=4) 115 timeout

markl 1936 x 50258 5x5 3 7 20 1313 5194

modulol2 24 X 9039 24x36 17 2 24 50 416

pkheader 140288 x 29099 0x0 1 19 36 5850 10299

ricks 31232x16561 14x14 18 27 39 3301 5378

si 15336x586240 Jb)
- - - - -

sla 5120x586240 .(b)
- - - - -

saucier 18496x7106239 0x0 1 15 (d) 6802 timeout

tma 2028x287558 .(b)
- - - - -

trainll 43x583 0x0 1 2 13 177 711

timeout 18000 in collapse columns

out-of-memory in collapse columns

timed out 18000 in adding 3rd GPI

timed out 18000 in adding 1st GPI

timed out 18000 in i_set_minimum

Table 11.4: Selection of a minimal encodeable GPI cover

11.8. CONCLUSIONS

FSM 1-hot results of ISA results of NOVA

FSM cover cover min.gpi min.FSM bits best bits

bbara 60 34 29 27/29 7/5 24 4

bbtas 24 16 13 11/10 6/3 8 3

beecount 28 12 12 10/15 5/4 10 3

chanstb 52 49 26 26/26 2/2 26 2

cpab 76 49 43 43 5 32 3

dkl4 56 25 28 25/26 7/5 24 5

dkl5 32 17 16 16/18 4/4 16 4

dkl7 32 20 18 18/20 8/6 17 3

dk27 14 10 9 9/4 6/9 7 3

dol2 20 13 13 13/10 5/3 9 3

es 12 10 11 8/9 4/3 6 2

ex3 36 21 21 19/22 8/6 17 4

6X5 32 19 18 16/23 9/6 14 4

ex6 34 23 24 24/24 8/6 23 5

ex7 36 20 19 16/24 9/6 15 4

fstate 30 22 21 21 6 16 3

leoncino 8 6 5 5/6 2/2 5 2

lion 11 8 8 8/8 3/3 6 2

lion9 25 10 10 8/10 8/4 8 4

mc 6 10 11 10/10 4/2 8 2

ofsync 41 31 31 32/25 4/4 22 2

opus 22 19 22 16/19 8/7 15 4

s8 22 14 12 12/10 4/3 9 3

scud 127 86 90 78 11 60 5

shiftreg 16 9 6 6/6 5/4 4 3

slave 75 46 - - - 35 4

tav 49 12 11 11/11 3/3 11 2

test 4 3 2 2/2 1/2 2 1

vinnach 18 16 16 16/16 3/3 14 2

Table 11.5: Final solutions and comparison with nova

317

318CHAPTER11.IMPLICITMINIMIZATIONOFGPrS

FSM1-hotresultsofISAresultsofnova

FSMcovercovermin.gpimin.FSMbitsbestbits

cse9155-/78-/55-79454

dk5123021-/28-723-75184

ex4212118/2618/2112/5144

keyb17077-786-772-710476

maikl221919/2716/2013/8174

modulo12242420/1720/1511/5114

pkheader18042632/3324/2613/7245

ricks513339/4632/3210/6304

trainll251113/2212/1510/594

Table11.6:Finalsolutionsandcomparisonwithnova

319

Chapter 12

Conclusions

This thesis investigated algorithms to encode symbolic input and output variables of

sequential behaviors representedby STG's or STT's, when the cost function is minimum two-level

area Varioustechniques developed here were applied or are applicable also to encoding problems

with different cost functions and objectives.

Technicalcontributions havebeen presented in the areaofheuristic symbolic minimization

(Chapters 5), satisfaction of encodingconstraints(Chapter6), minimizationof GPI's (Chapters 7,8,

9 and 11) and implicit binate covering (Chapter 10).

In Chapter5 we have presenteda symbolicminimizationprocedurecapableof exploring

minimal symbolic covers by using face, dominance and disjunctiveconstraints. The treatment of

disjunctive constraints is a noveltyof this work. Conditions on the completnessof sets ofencoding

constraints and a bridge to disjunctive-conjunctive constraints (presented in [39]) have been given.

An invariantof the algorithm is that the minimal symbolic cover under construction is

always guaranteed to be encodeable. Encodeability is checked efficiently using the procedures

described in Chapter 6. Therefore, this synthesis procedure has predictive power that precedent

tools lacked, i.e. the cardinality of the cover obtained by symbolic minimization and of the cover

obtained by replacing the codes in the initial cover and then minimizing with ESPRESSO are very

close. Experiments show that the encoded covers produced by our procedure are usually smaller or

equal than those of the best option of state-of-art tools like nova [147].

An improvement to the procedure would be to introduce some iterated expansion and

reduction scheme, as in espresso [11], to escape from local minima. Currently the algorithm builds

a minimal symbolic cover, exploring a neighborhood of the original FSM cover, with variations of

one single expansion and reduction for each slice of the FSM. A weak pointofthe current algorithm

320 CHAPTER 12, CONCLUSIONS

is that the final code-length is often too long. Currently the algorithm is unable to trade-off final

code-length vs. cardinality of the encoded cover.

In Chapter 6 we have presented a comprehensive solution to the problem of satisfying

encoding constraints. Wehave shown that the problem ofdetermining a minimum length encoding

to satisfy face constraints is NP-complete. Based on an earlier method for satisfying face con

straints [154], we have provided an efficient algorithm that determines the minimum length encod

ing that satisfies both input (face) and output (dominance, disjunctive and disjunctive-conjunctive)

constraints. It is shown how this algorithm can be used to determine the feasibility of a set of input

and output constraints in polynomial time in the size of the input.

A heuristic procedure for solving input encoding constraints with bounded code-length in

both two-level and multi-level implementations is also demonstrated. In the multi-level case, only a

very time-consuming algorithm based on simulated annealing was known before. This framework

has also been used for solving a variety of encoding constraints generated by other applications.

In Qiapter 11 we have presented a complete procedure to generate and select GPI's [39]

based on implicit computations. This approach combines techniques for implicit enumeration of

primes and implicit solution of covering tables together with a new formulation of the problem

of selecting an encodeable cover of GPI's. A novel theory of encodeability of GPI's has been

developed in Chapter 9.

The proposed algorithms have been implemented using state assignmentofFSM's as a test

case. The experiments exhibit a set ofmedium FSM's where hard GPI minimization problems could

be solved for the first time, showingthat these techniques open a new direction in the minimizationof

symbolic logic. Since symbolic minimization has an eumerative complexity higher than two-valued

logic minimization, more practical woik is required to improve the efficiencyof the implementation

and to tie it with good heuristics to explore the solution space of encoding problems.

The present contribution shows how to extract a minimal encodeable cover from a large

set of GPI's, allowing - in line of principle - the exploration of aUminimal encodeable covers. This

advances the state-of-art of symbolic minimization, otherwise restricted to the use ofheuristic tools,

that do not guarantee a complete exploration ofthe solution space. It is true, though, that competing

algorithms [92,147,146] are often well-tuned for their domain of application, while our prototype

of GPI minimization is not yet mature for field applications.

In Chapter 10 we have presented an implicit procedure to solve binate covering problems.

It is based on the idea of representing the columns and the rows ofa table by labelling functions such

that the existence of a 1 or 0 entiy at the intersection of a given row and column can be computed

321

by applying a simple computation on the labels (both the labels and the table entry computation

depend from the problem). All sets are represented and manipulated based on BDD's. New BDD

operations to manipulate sets and sets of sets were designed, including a primitive operation that,

givena binary relation i2(a, 6), finds the a's (6's) that occur the most or the least with 6's (a*s). This

operation was needed to findimplicitly a branching column and compute a maximum independent

set to lower bound the computation.

This procedure has been applied both to finding a cover of GPI's and to selecting a

minimum-state behavior ofa nondeterministic FSM. It has potential applications to many problems

of logic synthesisandcombinatorial optimization. Very large coveringtables that couldnot be gen

erated or solved with traditional techniques were handled by this implicit algorithm, as experiments

in Chapter 11 show.

322

Bibliography

[1] R. Amann and U, Baitinger. Optimal state chains and state codes in finite state machines.

IEEE Transactions on Computer-Aided Design, February 1989.

[2] D. Armstrong. On the efficient assignment of internal codes to sequential machines. IRE

Transactions on Electronic Computers, pages 611-622, October 1962.

[3] D. Armstrong. A programmed algorithm for assigning internal codes to sequential machines.

IRE Transactions on Electronic Computers, pages 466-472, August 1962.

[4] R Ashar. Synthesisofsequentialcircuitsfor VLSIdesign.PhDthesis,University of California,

Berkeley, 1992.

[5] P. Ashar, S. Devadas, and A. R. Newton. A unified approach to the decomposition and

re-decomposition of sequential machines. In The Proceedings of the Design Automation

Conference, pages 601-606, June 1990.

[6] P.Ashar, S. Devadas, and A. R. Newton. Optimumand heuristicalgorithms for an approach

to finitestate machinedecomposition. IEEE Transcu:tions on Computer-AidedDesign, pages

296-310, March 1991.

[7] M. Beardslee and A. Sangiovanni-Vincentelli. An algorithm for improving partitions of

pin-limited multi-chip systems. In The Proceedings of the International Conference on

Computer-Aided Design, November 1993.

[8] D. Bostick, G. Hachtel, R. Jacoby, M. Lighmer, P. Moceyunas, C. Morrison, and D. Raven-

scroft. The Boulder optimal logic design system. In The Proceedings of the International

Conference on Computer-Aided Design, November 1987.

[9] D. Bovet and P. Crescenzi. Introduction to the theory ofcomplexity. Prentice Hall, 1994.

BIBLIOGRAPHY 323

[10] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In The

Proceedings ofthe Design Automation Conference, pages 40-45, June 1990.

[11] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization

Algorithmsfor VLSISynthesis. Kluwer Academic Publishers, 1984.

[12] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A multiple-level

logic optimization system. IEEE Transactions on Computer-AidedDesign, November 1987.

[13] R. Brayton, A. Sangiovanni-Vincentelli,G. Hachtel, and R. Rudell. Multi-level logic synthe

sis. Unpublished book, 1992.

[14] R. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In TheProceedings of

the International Conference on Computer-AidedDesign, pages 316-319, November 1989.

[15] F. M. Brown. Boolean Reasoning. Kluwer Academic Publishers, 1990.

[16] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions

on Computers, pages C-35(8):667-691,1986.

[17] N. Calazans. Boolean constrained encoding: a new formulation and a case study. In The

Proceedings ofthe International Conferenceon Computer-AidedDesign, November 1994.

[18] K-T. Cheng and V.D. Agrawal. State assignmentfor initializablesynthesis. In TheProceed

ings ofthe International Conference on Computer-Aided Design, November 1989.

[19] S.M. Chiu. Exact state assignment via binate covering. EE290ls Project, May 1990.

[20] M. Qesielski, J-J. Shen, and M. Davio. A unified approach to input-outputencoding for FSM

state assignment. The Proceedings of the Design Automation Conference, pages 176-181,

June 1991.

[21] M. Ciesielski and S. Yang. PLADE: a two stage PLA decomposition. IEEE Transactions on

Computer-Aided Design, pages 943-954, August 1992.

[22] O. Coudert. Two-level logic minimization: an overview. Integration, 17-2:97-140, October

1994.

[23] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using functional

Boolean vectors. IFIP Conference, November 1989.

324 BIBLIOGRAPHY

[24] O. Coudert, H.Fraisse, and J.C. Madre. Towards a symbolic logic minimization algorithm.

In The Proceedings ofthe VLSI Design 1993 Conference, pages 329-334, January 1993.

[25] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential

prime implicants of Boolean functions. In The Proceedings of the Design Automation

Conference, pages 36-39, June 1992.

[26] O. Coudert and J.C. Madre. A new implicit graph based prime and essential prime compu

tation technique, hi Proceedings of the International Symposium on Information Sciences,

pages 124-131, July 1992.

[27] O. Coudert and J.C. Madre. A new method to compute prime and essential prime implicants

of boolean functions, hi Advanced Research in VLSI and Parallel Systems, pages 113-128.

The MIT Press, T. Knight and J. Savage Editors, March 1992.

[28] O. Coudert and J.C. Madre. A new viewpoint on two-level logic minimization. Bull Research

Report N. 92026, November 1992.

[29] O. Coudert, J.C. Madre, and H.Fraisse. A new viewpoint on two-level logic minimization.

In The Proceedings ofthe Design Automation Conference, pages 625-630, June 1993.

[30] O. Coudert, J.C. Madre, H.Fraisse, and H. Touati. Implicit prime cover computation: an

overview. In The Proceedings ofthe SASIMI Conference, pages 413-422,1993.

[31] G. Cybenko, D. Krumme, and K. Venkataraman. Fixed hypercube embedding. Information

Processing Letters, April 1987.

[32] M. Davio, J.-P. Deschamps, and A. Thayse. Discrete and Switching Functions. Geoigi

Publishing Co. and McGraw-Hill Intemational Book Company, 1978.

[33] W. Davis. An approach to the assignment of input codes. IEEE Transactions on Electronic

Computers, August 1967.

[34] S. Devadas. General decomposition of sequential machines: Relationships to state assign

ment. In The Proceedings of the Design Automation Conference, pages 314-320, June

1989.

BIBLIOGRAPHY 325

[35] S. Devadas,H-T.Ma, R. Newton, and A.Sangiovanni-Vincentelli.Synthesis and optimization

procedures for fully and easily testable sequential machines. In The Proceedings of the

International Conference on Computer-Aided Designy November 1987.

[36] S. Devadas, H-T. Ma, R. Newton, and A. Sangiovanni-Ymcentelli. Mustang: state assignment

of finite state machines targeting multi-level logic implementations. IEEE Transactions on

Computer-Aided Designy December 1988.

[37] S. Devadas and A. R. Newton. Decomposition and factorization of sequential finite state

machines. In IEEE Transactions on CADy pages 1206-1217, November 1989.

[38] S. Devadas and R. Newton. Corrections to "Exact algorithms for output encoding, state

assignment and four-level Boolean minimization". IEEE Transactions on Computer-Aided

Designy 10(11):1469-1469, November 1991.

[39] S. Devadas and R. Newton. Exact algorithms for output encoding, state assignment and four-

level Boolean minimization. IEEE Transactions on Computer-Aided Designy pages 13-27,

January 1991.

[40] S. Devadas, A. Wang, R. Newton, and A. Sangiovanni-Vincentelli. Boolean decomposition

in multilevel logic optimization. IEEE Journal ofsolid-state circuitSy April 1989.

[41] T. Dolotta and E. McCluskey. The coding of internal states of sequential machines. IEEE

Transactions on Electronic Computersy October 1964.

[42] X. Du, G.D.Hachtel, B. Lin, and A.R.Newton. MUSEia Multilevel Symbolic Encoding

algorithm for state assignment. IEEE Transactions on Computer-AidedDesigny pages CAD-

10(l):28-38, January 1991.

[43] C. Duff. Codage d'automates et theorie des cubes intersectants. Thise, Institut National

Polytechnique de Grenobky March 1991.

[44] E.I.Goldbeig. Matrix formulation of constrained encoding problems in optimal PLA synthe

sis. Preprint No. 19, Institute ofEngineering Cybernetics, Academy ofSciences ofBelarus,

1993.

[45] E.I.Goldbeig. Face embedding by componentwise construction of intersecting cubes.

Preprint No. 1, Institute ofEngineering Cybernetics, Academy ofSciences ofBelarus, 1995.

326 BIBLIOGRAPHY

[46] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-completeness. W. H, Freeman and Company, 1979.

[47] J. Gimpel. A method ofproducing a boolean function having an arbitrarily prescribed prime

implicant table. IRE Transactions on Electronic Computers, EC-14:485-488, June 1965.

[48] J. Gimpel. A reduction technique for prime implicant tables. IRE Transactions on Electronic

Computers, EC-14:535-541, August 1965.

[49] G.N.Raney. Sequential functions. Journal ofthe Association ofComputing Machinery, pages

177-180,1958.

[50] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in

incompletely specified sequential netwoiks. IRE Transactions on Electronic Computers,

EC-14(3):350-359, June 1965.

[51] A. GrasseUi and F. Luccio. Some covering problems in switching theory. In Networks and

Switching Theory, pages 536-557. Academic Press, New Yoric, 1968.

[52] D. Gregory, K. Bartlett, A. DeGeus, and G. Hachtel. SOCRATES: A system for automat

ically synthesizing and optimizing combinational logic. In The Proceedings of the Design

Automation Conference, 1986.

[53] G.Swamy, R.Brayton, and PMcGeer. A fully implicit Quine-McQuskey procedure using

BDD's. Tech. Report No. UCBIERLM92II27,1992.

[54] J. Hartmanis. On the state assignment problem for sequential machines -1. IRE Transactions

on Electronic Computers, June 1961.

[55] J. Hartmanis and R. E. Steams. Some dangers in the state reduction of sequential machines.

In Information and Control, volume 5, pages 252-260, September 1962.

[56] J. Hartmanis and R. E. Steams. Algebraic Structure Theory ofSequentialMachines. Prentice-

Hall, Englewood Oiffs, N. J., 1966.

[57] B. Holmer. What are the ingredients for a good state assignment program ? Tech. Report

No. CSE-95-002, EECS Department, Northwestern University, April 1995.

[58] J. E. Hopcroft and J. D. UUman. Introduction to Automata Theory, Languages, and Compu

tation. Addison-Wesley Publishing Company, 1979.

BIBLIOGRAPHY 327

[59] R. W. House and D.W. Stevens. A new rale for reducing cc tables. IEEE Transactions on

Computers^ C-19:1108-1 111, November 1970.

[60] S. Robinson III and R. House. Gimpel's reduction technique extended to the covering problem

with costs. IRE Transactions on Electronic Computers, EC-16:509-514, August 1967.

[61] S.-W.Jeong and F. Somenzi. A new algorithm for 0-1 programming based on binary decision

diagrams. In Proceedings ofISKrT-92, Inter, symp. on logic synthesis and microproc. arch.,

lizuka, Japan, pages 177-184, July 1992.

[62] S.-W. Jeong and F. Somenzi. A new algorithm for the binate covering problem and its

application to the minimization of boolean relations. In TheProceedings ofthe International

Conference on Computer-Aided Design, November 1992.

[63] T. Kam. State minimization of finite state machines using implicit techniques. Ph.D. Thesis,

University ofCalifornia, Berkeley, 1995.

[64] T. Kam and R.K. Brayton. Multi-valued decision diagrams. Tech. Report No. UCBIERL

M90I125, December 1990.

[65] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vmcentelli. A fully implicit algorithm for

exact state minimization. Tech.Report No. UCBIERLM93I79, November 1993.

[66] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-VmcenteUi. A fully implicit algorithm for

exact state minimization. In The Proceedings of the Design Automation Conference, pages

684-690, June 1994.

[67] R. Karp. Some techniques for state assignment for synchronous sequential machines. IEEE

Transactions on Electronic Computers, October 1964.

[68] B. Kemighan and S. Lin. An efficientheuristic procedure for partitioning graphs. BellSystem

Technical Journal, February 1970.

[69] K. Keutzer and D. Richards. Computational complexity of logic optimization. Unpublished

manuscript, March 1994.

[70] Z. Kohavi. Switching andFiniteAutomata Theory. McGraw-Hill Book Company, New Yoik,

New York, second edition, 1978.

328 BIBLIOGRAPHY

[71] D. Krumme, K. Venkataraman, and G. Cybenko. Hypercube embedding is NP-complete. In

Proceedings ofSIAMHypercube Conference, September 1985.

[72] L. Lavagno. Heuristic and exact methods for binate covering. EE290ls Report, May 1989.

[73] L. Lavagno, S. Malik, R. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Optimization

of multi-level logic with multiple valued inputs. In The Proceedings of the International

Corference on Computer-Aided Design, November 1990.

[74] L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli. Solving the state

assignment problem for signal transition graphs. The Proceedings ofthe Design Automation

Conference, pages 568-572, June 1992.

[75] D. Lewin. Computer-Aided Design ofDigital Systems. Russak-Arnold, 1977.

[76] B. Lin. Experiments with jedi. Private communication, October 1989.

[77] B. Lin. Synthesis of multiple level logic from symbolic high-level description languages.

Proceedings ofthe IFIP International Conference on VLSI, pages 187-196, August 1989.

[78] B. Lin. Synthesis of VLSI designs with symbolic techniques. Tech. Report No. UCBIERL

M9J/i05, November 1991.

[79] B. Lin, O. Coudert, and J.C. Madre. Symbolic prime generation for multiple-valuedfunctions.

In The Proceedings ofthe Design Automation Conference, pages 40-44, June 1992.

[80] B. Lin and A.R. Newton. Implicit manipulation ofequivalenceclasses using binary decision

diagrams. In The Proceedings ofthe International Conferenceon Computer Design, pages

81-85, September 1991.

[81] B.Lin andR. Newton. A generalized approachto the constrainedcubical embedding problem.

In The Proceedings ofthe International Conference on Computer Design, 1989.

[82] B. Lin and E Somenzi. Minimization of symbolic relations. In The Proceedings of the

International Conference on Computer-Aided Design, November 1990.

[83] C. Y.Liu. A system for for synthesis ofarea-efficient testable FSM's. PhX>. Thesis, University

ofWisconsin, 1994.

BIBLIOGRAPHY 329

[84] S. Malik. Combinational logic optimization techniques in sequential logic synthesis. Tech.

Report No. UCBIERLM90I115, November 1990.

[85] S. Malik, L. Lavagno,R. Brayton, and A. Sangiovanni-Ymcentelli.Symbolic minimizationof

multilevel logic and the input encoding problem. In IEEE Transactions on Computer-Aided

Design, volume vol.11, (no.7), pages 825-43, July 1992.

[86] M. Marcus. Derivation of maximal compatibles using Boolean algebra. IBM Journal of

Research and Development, November 1964.

[87] E. McQuskey. Minimization of Boolean fimctions. Bell Laboratories Technical Journal,

November 1956.

[88] E.J. McQuskey and S.H. Unger. A note on the number of internal variable assignments for

sequential switching circuits. IRE Transactions on Electronic Computers, pages 439-440,

December 1959.

[89] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincenetelli. Espresso-signature:

a new exact minimizer for logic functions. IEEE Transactions on VLSI Systems, pages

432-440, December 1993.

[90] C. Mead and L. Conway. Introduction to VLSI Systems, chapter 3, pages 85-86. Addison

Wesley, 1980.

[91] G. De Micheli. Symbolic design of combinational and sequential logic circuits implemented

by two-level logic macros. IEEE Transactions on Computer-AidedDesign, October 1986.

[92] G. De Micheli, R. Brayton, and A. Sangiovanni-A^ncentelli. Optimal state assignment for

finite state machines. IEEE Transactions on Computer-AidedDesign, July 1985.

[93] G. De Micheli, T. Villa, and A. Sangiovanni-Vincentelli. Computer-aided synthesis of

PLA-based finite state machines. In The Proceedings of the International Conference on

Computer-Aided Design, September 1983.

[94] R. E. Miller. Switching theory. Volume I: combinational circuits. J. Wiley and & Co., N.Y.,

1965.

[95] S. Minato. Zero-suppressed BDD's for set manipulation in combinatorial problems. In The

Proceedings ofthe Design Automation Conference, pages 272-277, June 1993.

330 BIBLIOGRAPHY

[96] E. Moore. Gedanken-experiments on sequential machines. In C. Shannon and J. McCarthy,

editors. Automata Studies. Princeton University Press, 1956.

[97] R. Mui^ai, R. Brayton, and A. Sangiovanni-Vincentelli. Using encoding in functional de

composition. Submittedfor publication, 1993.

[98] R. Narasimhan. Minimizing incompletely specified sequential switching functions. IRE

Transactions on Electronic Computers, EC-10:531-532, September 1961.

[99] L. Nguyen, M. Perkowski, and N. Goldstein. Palmini - fast boolean minimizer for personal

computers. In The Proceedings ofthe Design Automation Conference, pages 615-621, July

1987.

[100] A. Nichols and A. Bernstein. State assignments in combinational networks. IEEE Transac

tions on Electronic Computers, June 1965.

[101] P.S. Noe. Remarks on the SHR-optimal state assignment procedure. IEEE Transactions on

Computers, pages 873-875, September 1973.

[102] P.S. Noe and V.T. Rhyne. A modification to the SHR-optimal state assignment procedure.

IEEE Transactions on Computers, pages 327-329, March 1974.

[103] P.S. Noe and V.T. Rhyne. Optimum state assignment for the D flip-flop. IEEE Transactions

on Computers, pages 306-311, March 1976.

[104] C. Papadimitriou. Computational complexity. Addison Wesley, 1994.

[105] C. H.Papadimitriou, J.D. Ullman,and K. Steiglitz. CombinatorialOptimization: Algorithms

and Complexity. Prentice Hall, 1982.

[106] R. Parchman. The number of state assignments for sequential machines. IEEE Transactions

on Computers, pages 613-614, June 1972.

[107] W. Quine. A way to simplify truth functions. Amer. Math. Monthly, 62:627-631, November

1955.

[108] J.-K. Rho and F. Somenzi. Stamina. Computer Program, 1991.

[109] V.T. Rhyne and P.S. Noe. On equivalence of state assignments. IEEE Transactions on

Computers, pages 55-57, January 1968.

BIBLIOGRAPHY 331

[110] V.T. Rhyne and P.S. Noe. On the number of distinct state assignments for a sequential

machine. IEEE Transactions on Computers, pages 73-75, January 1977.

[111] D. Rosenkrantz. Half-hot state assignments for finite state machines. IEEE Transactions on

Computer-Aided Design, May 1990.

[112] R. Rudell. Espresso. Computer Program, 1987.

[113] R. Rudell. Logic synthesis for VLSI design. Tech, Report No. UCBIERL M89I49, April

1989.

[114] R. Rudell and A. Sangiovanni-\^ncentelli. Multiple-valuedminimization for PLA optimiza

tion. IEEE Transactionson Computer-Aided Design, CAD-6:727-750, September 1987.

[115] A. Saldanha and R. Katz. PLA optimizationusing output encoding, hi TheProceedings of

the International Conference on Computer-AidedDesign, November 1988.

[116] A. Saldanha,T. Wla, R. Brayton, and A. Sangiovanni-Vmcentelli. Satisfactionof input and

output encoding constraints. IEEE Transactions on Computer-Aided Design, 13:589-602,

May 1994.

[117] S.C. De Saikar, A.K. Basu, and A.K. Choudhury. Simplification of incompletely specified

flow tables with the help of prime closed sets. IEEE Transactions on Computers, pages

953-956, October 1969.

[118] T.Sasao. Anapplication of multiple-valued logicto a designofProgrammable LogicArrays.

In TheProceedings ofthe International Symposium on Multiple-ValuedLogic, 1978.

[119] T. Sasao. Multiple-valued decomposition of generalized Boolean functions and the com

plexityof Programmable Logic Arrays. IEEE Transactions on Computers, C-30:635-643,

September 1981.

[120] T. Sasao. Input variable assignment and output phase optimization of PLA's. In IEEE

Transactions on Computers, October 1984.

[121] T. Sasao. Multiple-valued logic and optimizationof programmable logic arrays. Computer,

pages 71-80, April 1988.

[122] T. Sasao. Application of multiple-valued logic to a serial decomposition of PLA's. hi The

Proceedings of the International Symposium on Multiple-ValuedLogic, June 1989.

332 BIBLIOGRAPHY

[123] T.Sasao. On the optimal design ofmultipIe-valuedPLA's. IEEE Transactions on Computers,

C-38, n.4:582-592, April 1989.

[124] G. Saucier, M. Crastes de Paulet, and P. Sicand. Asyl: a rule-based system for controller

synthesis. IEEE Transactions on Computer-Aided Design, November 1987.

[125] G. Saucier, C. Duff, and F. Poirot. A new embedding method for state assignment. The

Proceedings ofthe International Workshop on Logic Synthesis, May 1989.

[126] G. Saucier, C. Duff, and F. Poirot. State assignment using a new embedding method based

on an intersecting cube theory. In The Proceedings of the Design Automation Conference,

1989.

[127] R. B. Segal. BDSYN: Logic description translator, BDSIM: Switch level simulator. Master's

Thesis M87/33, Electronics Research Lab., University of California, Berkeley,May 1987.

[128] M. Servit and J. Zamazal. Exact approaches to binate covering problem. Manuscript in

preparation, October 1992.

[129] C.-J. Shi and J. Brzozowski. An efficient algorithm for constrained encoding and its ap

plications. IEEE Transactions on Computer-Aided Design, pages 1813-1826, December

1993.

[130] F. Somenzi. Cookie. Computer Program, 1989.

[131] F. Somenzi. Gimpel's reduction technique extended to the binate covering problem. Unpub

lished manuscript, 1989.

[132] F. Somenzi. Binate covering formulation of exact two-level encoding. Unpublished

manuscript, March 1990.

[133] F. Somenzi. An example of symbolic relations applied to state encoding. Unpublished

manuscript. May 1990.

[134] P. Srimani. MOS networks and fault-tolerant sequential machines. Computers andElectrical

Engineering, 8(4), 1981.

[135] P. Srimani and B. Sinha. Fail-safe realisation of sequential machines with a new two-level

MOS module. Computers and Electrical Engineering, 1,1980.

BIBLIOGRAPHY 333

[136] A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipu

lation. Proc. Int. Conf. CAD (ICCAD'90), pages 92-95, November 1990.

[137] R. Steams and J. Hartmanis. On the state assignment problem for sequential machines - 2.

IRE Transactions on Electronic Computers, December 1961.

[138] J. Storey,H. Harrison, andE.Reinhard. Optimum state assignmentfor synchronoussequential

machines. IEEE Transactions on Computers, pages 1365-1373, December 1972.

[139] Y. Su and R Qieung. Computer minimization of multi-valued switching hmctions. IEEE

Transactions on Computers, September 1972.

[140] Y.Tohma, Y. Ohyama, and R. Sakai. Realization of fail-safe sequential machines by using a

fc-out-of-Ti code. IEEE Transactions on Computers, November 1971.

[141] H.C. Tomg. An algorithm for finding secondary assignments of synchronous sequential

circuits. IEEE Transactions on Computers, pages 461-469, May 1968.

[142] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state

enumeration of finite state machines using BDD's. The Proceedings of the International

Conferenceon Computer-AidedDesign, pages 130-133, November 1990.

[143] J. Tracey. Intemal state assignment for asynchronous sequential machines. IRE Transactions

on Electronic Computers, August 1966.

[144] D. Vaima and E.A. Trachtenbeig. Design automation tools for efficient implementation of

logic functionsby decomposition. IEEE Transactionson Computer-AidedDesign, 8-8:901-

916, August 1989.

[145] T. Adlla, L. Lavagno, and A. Sangiovanni-\fincentelli. Advances in encoding for logic

synthesis. In Digital Logic Analysis and Design, G. Zobrist ed. Ablex, Norwood, 1995.

[146] T. Villa, A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli. Symbolic two-level

minimization. Submittedfor publication, 1995.

[147] T. Villa and A. Sangiovanni-Vncentelli. NOVA: State assignment for optimal two-level

logic implementations. In IEEE Transactions on Computer-AidedDesign, pages 905-924,

September 1990.

334 BIBLIOGRAPHY

[148] Y. Watanabe and R. K. Brayton. State minimization of pseudo non-deterministic fsm's. In

European Conference on Design Automation, pages 184-191,1994.

[149] R Weiner and E.J. Smith. On the number of state assignments for synchronous sequential

machines. IEEE Transactions on Computers, pages 220-221, April 1967.

[150] W. Wolf. Recoding-derived bounds for input encoding. Submitted for publication,January

1990.

[151] W. Wolf, K. Keutzer, and J. Akella. A kernel-finding state assignmentalgorithmfor multi

level logic. In The Proceedings ofthe Design Automation Conference, June 1988.

[152] W. Wolf, K. Keutzer, and J. Akella. Addendum to "A kernel-finding state assignment

algorithm for multi-level logic". In IEEE Transactions on Computer-Aided Design, August

1989.

[153] C-C. Yang. Ontheequivalence of twoalgorithms for finding allmaximalcompatibles. IEEE

Transactions on Computers, pages 977-979, October 1975.

[154] S. Yang andM. Ciesielski. Optimum andsuboptimum algorithms for inputencoding andits

relationship to logic minimization. IEEE Transactionson Computer-Aided Design, January

1991.

