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Abstract

A Computational Theory of Laurent Polynomial Rings and Multidimensional FIR

Systems

by

HYUNG-JU PARK

Doctor of Philosophy in Mathematics

University of California at Berkeley

A Laurent polynomial ring is a natural ground ring for the study of FIR (Finite Impulse

Response) systems in signal processing since an FIR �lter bank can be seen as a matrix over

this ring, and the notion of perfect reconstruction is represented by the unimodularity of

the corresponding multivariate Laurent polynomial matrices. Contrary to the conventional

a�ne approach to the theory of multidimensional FIR �lter banks as a linear algebra

over polynomial rings, the toric approach based on Laurent polynomial rings o�ers a more

adequate framework. In connection with these applications, we look at the computational

aspects of the theory of modules over Laurent polynomial rings, and develop a few of their

applications to signal processing:

� A new, computationally e�ective algorithm for the Quillen-Suslin Theorem is found,

and implemented using the computer algebra package SINGULAR.

� An algorithmic proof of Suslin's Stability Theorem is found, which gives an analogue

of Gaussian Elimination over a polynomial ring.

� An algorithmic process of converting results over polynomial rings to their counter-

parts over Laurent polynomial rings is developed. With the help of this process, we

extend the above two algorithms, the Quillen-Suslin Theorem and Suslin's Stability

Theorem, to the case of Laurent polynomial rings.

� A notion of inner product spaces over Laurent polynomial rings is introduced, and a

theoretical framework for this notion is developed.
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� A few outstanding problems in multidimensional perfect reconstructing �lter banks

are shown to be solvable with the aid of the above algorithms. Explicit examples are

included that are worked out by SINGULAR.
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Chapter 1

Introduction to Part I: History

and Problems

The theory of ideals and (�nitely generated and projective) modules over polyno-

mial rings and Laurent polynomial rings1 has been studied in various contexts. Geometri-

cally, such ideals and modules correspond to a�ne and toric varieties, and vector bundles

over them, respectively. And algebro-geometric results concerning algebraic vector bundles

over an algebraic torus directly a�ect the FIR �lter bank theory since �nitely generated

projective modules over a Laurent polynomial ring are represented by such vector bundles.

Computational aspects of this theory, however, have a relatively short history, and

Gr�obner bases theory provides the foundation for them, with the Buchberger algorithm

acting as the universal engine that drives many computations. In Chapter 2, we will review

this Gr�obner bases theory in a brief and self-contained manner.

In 1955, Jean Pierre Serre made a conjecture regarding the triviality of algebraic

vector bundles over an a�ne space. This problem became a daunting task for many mathe-

maticians, and was fully solved only in 1976, 20 years after the question was raised. Serre's

conjecture, which is now known as the Quillen-Suslin theorem after the two mathematicians

who independently solved this long standing problem, states that any �nitely generated pro-

jective module over a polynomial rings is free. And in 1978, R.G. Swan [Swa78] extended

this result to the case of Laurent polynomial rings.

1Unless otherwise speci�ed, we will generally assume throughout this thesis that the coe�cient rings of
these polynomial rings and Laurent polynomial rings are �elds even though many results can be readily
extended to more general kinds of coe�cient rings.
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While the original proofs by Quillen [Qui76] and Suslin [Sus76] are nonconstructive,

new constructive proofs were found lately [LS92], [Fit93], [FG90], which give us algorithmic

ways of �nding a free basis of any given (f.g. and projective) module over a polynomial ring.

In Chapter 3, we give a new, and readily implementable algorithm for the same purpose,

that is based on a syzygy computation. This algorithm is very easily implementable since

syzygy computation is already a standard part of many computer algebra packages, e.g.

Macaulay2 and SINGULAR3 . We present a few examples which are worked out in detail by

the computer algebra package SINGULAR.

Immediately after proving the Serre Conjecture, A.A. Suslin went on to prove the

following K1-analogue of Serre's conjecture [Sus77, Thm. 6.3].

Suslin's Stability Theorem. Let R be a commutative Noetherian ring and
n � max(3; dim(R) + 2). Then, any n � n matrix A = (fij) of determinant
1, with fij elements of the polynomial ring R[x1; : : : ; xm], can be written as a
product of elementary matrices over R[x1; : : : ; xm].

In Chapter 4, we develop an algorithmic proof of the above assertion over a �eld R = k,

which gives an analogue of the Gaussian elimination algorithm over a multivariate polyno-

mial ring k[x1; : : : ; xm]. Our method is inspired by the Logar-Sturmfels algorithm, [LS92],

for the Quillen-Suslin Theorem.

For a given A 2 SLn(k[x1; : : : ; xm]) with n � 3, the algorithm of this chapter

produces elementary matrices E1; : : : ;Et 2 En(k[x1; : : : ; xm]) such that A = E1 � � �Et, and

implementation of this algorithm involves use of Gr�obner bases.

Suslin's stability theorem established in Chapter 4 fails for n = 2, and a counter-

example was constructed by P.M. Cohn in [Coh66]. In Chapter 5, we will develop an

algorithm determining precisely when a given matrix in SL2(k[x1; : : : ; xm]) allows such a

factorization into elementary matrices, and if it does, expressing it as a product of elemen-

tary matrices.

In Chapter 6, we extend our algorithm for the Quillen-Suslin Theorem to the case

of Laurent polynomial rings. For a commutative ring R, we call v = (v1; : : : ; vn) 2 Rn

unimodular if its components generate R, i.e. if there exist g1; : : : ; gn 2 R such that

2Macaulay is a computer algebra system for algebraic geometry and commutative algebra, developed by
M. Stillman and D. Bayer. It is available freely by anonymous ftp from ftp.math.harvard.edu. For more
information, see [BS].

3SINGULAR is a computer algebra system for singularity theory and algebraic geometry, developed in
the University of Kaiserslautern, Germany. It is still being alpha-tested, and is freely available by anonymous
ftp from helios.mathematik.uni-kl.de. For more information, see [GPS95].
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v1g1 + � � �+ vngn = 1. And in this chapter, we develop a systematic process of converting

Laurent polynomial vectors to polynomial vectors while preserving unimodularity. The

same process will be used in Chapter 11 to extend our algorithm for the Suslin's Stability

Theorem to the case of Laurent polynomial rings. A similar idea of changing variables was

used by A. Suslin in [Sus77].

In Chapter 7, we develop the notion of inner product spaces over Laurent polyno-

mial rings, and study the unitary group with respect to the canonical group ring involution

over Laurent polynomial rings.

Notations

� A �eld is typically denoted by k while R; C denote the �eld of real numbers and the

�eld of complex numbers.

� A ring always means a commutative ring with identity unless otherwise speci�ed, and

is denoted by roman characters: e.g. A;R, etc.

� Modules over a ring are denoted by M;N , etc.

� Elements of a module are denoted by bold-face characters: e.g. f ;v, etc.

� Matrices over a ring are denoted by bold-face characters: e.g. A;B;E, etc.
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Chapter 2

Gr�obner Bases (Standard Bases)

\� � � In view of the ubiquity of scienti�c problems modeled by polynomial equa-
tions, this subject is of interest not only to mathematicians, but also to an
increasing number of scientists and engineers. In this context, Gr�obner bases
theory provides the foundation for many algorithms in algebraic geometry and
commutative algebra, with the Buchberger algorithm acting as the engine that
drives many computations. � � �" (B. Sturmfels, [Stu94]).

2.1 Brief History

The Hilbert Basis Theorem states that any ideal of a polynomial ring is �nitely gen-

erated. However, Hilbert's original proof is nonconstructive and does not o�er an e�ective

way of �nding a �nite set of generators for a given ideal of a polynomial ring. Determining if

a given polynomial belongs to a particular ideal is not an easy problem, either. Even when

we have an explicit (and �nite) set of generators for the ideal and a polynomial known to

be a member of the ideal, writing this polynomial as a linear combination with polynomial

coe�cients of the given generators could already be a daunting task.

In his celebrated 1964 paper [Hir64], H. Hironaka1 answered this ideal membership

question by introducing special kinds of ideal generators called standard bases. Slightly later,

B. Buchberger independently and e�ectively addressed the same problem in his Ph.D the-

sis [Buc65], but used the name Gr�obner bases in honor of his thesis advisor W. Gr�obner. It

was mainly Buchberger's continued works that inspired far more research on the theoretical

and computational aspects of Gr�obner bases and their applications to various mathematical

1According to D. Eisenbud [Eis95], earlier mathematicians like P. Gordan, F. Macaulay, and W. Gr�obner
already had found the notion of Gr�obner Bases, and used them for their respective problems.
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and scienti�c problems.

Nowadays, Gr�obner bases have become a very important tool in computational

algebra and computational algebraic geometry, and are implemented in many commercial

and noncommercial computer algebra packages.

The explicit Gr�obner basis computations for the examples in the remaining chap-

ters of this thesis were carried out by using two noncommercial computer algebra packages:

Macaulay (see [BS]) and SINGULAR (see [GPS95]).

[CLO92], [Mis93], [BW93], [Eis95] are excellent references for more information on

Gr�obner bases and their applications.

B. Sturmfels' unpublished lecture notes [Stu94] from New Mexico State Univer-

sity Holiday Symposium 94 o�ers a state-of-the-art exposition on relatively new polytope

theoretic aspects of Gr�obner bases and their application to integer programming.

2.2 Monomial Order

From now on, we will use the following shorthand notations.

� x := (x1; : : : ; xm),

� For d = (d1; : : : ; dm) 2Zm�0, xd := xd11 � � �xdmm .

De�nition 2.2.1 Let M be a �nitely generated free module over k[x] = k[x1; : : : ; xm] with

basis ei, 1 � i � n.

1. A monomial in M is an element of the form

m = xdei; 0 � di 2Z;

and Mono(M) is the set of all the monomials in M.

2. A term2 in M is a monomial multiplied by a scalar.

3. A monomial order is a linear order � on Mono(M) such that, if t1; t2 2 Mono(M)

and 1 6= s 2 Mono(k[x]), then t1 � t2 implies t1 � t1 � s � t2 � s.
2The de�nitions of term and monomial vary in the literature, e.g. our term (resp. monomial) is

monomial (resp. term) in [Mis93].



8

4. Let c = (c1; : : : ; cm);d = (d1; : : : ; dm) 2 Zm�0. Then for two monomials l = xcei and

m = xdei, we say l divides m if i = j and 0 � cs � ds 8s. In this case, we de�ne

m=l := xd�cei:

Now, �x a monomial order � on Mono(M). Any nonzero term t 2 M can be

uniquely written in the form t = am for some nonzero a 2 k and m 2 Mono(M), and for

two nonzero terms t1 = a1m1 and t2 = a2m2, we loosely say 0 � t1 � t2 if m1 � m2.

This is obviously an abuse of notation because it implies, for example, 2x2y � 3x2y and

3x2y � 2x2y at the same time. Note also that any f 2 M can be uniquely written as

f = t1 + t2 + � � �+ tl

where t1; : : : ; tl are nonzero terms in M such that t1 � t2 � � � � � tl. The term tl = alml

is called the leading term or initial term of f and is denoted as lt(f) or in(f). We call al and

ml the leading coe�cient and the leading monomial of f , respectively, and denote them by

lc(f) and lm(f). For f ; g 2 M, we say f � g if lm(f) � lm(g). It should be noted that,

if we change the monomial order on Mono(M), then we may have a di�erent lt(f) for the

same f 2 M.

Throughout this thesis, we will use the word leading interchangeably with the word

initial. Also, by a k[x]-module, we will always mean a �nitely generated k[x]-module, and

thus, is actually a submodule of a �nitely generated free module over k[x]. Since monomials

in a �nitely generated free k[x]-module were de�ned in the above, we can now talk of

monomials in an arbitrary �nitely generated k[x]-module by regarding them as elements

in a �xed ambient free module. In the following subsections, we will describe some of the

most commonly used monomial orders in practice: lexicographic, degree lexicographic, and

reverse degree lexicographic order.

2.2.1 Univariate Case

There is a natural (and in fact unique) monomial order on Mono(k[x]), that is,

1 � x � x2 � x3 � � � � :

If N is a submodule of a free module (k[x])n with e1; : : : ; en being the free basis, then for

two monomials x�ei; x
�ej 2 N ,

x�ei � x�ej () i > j or � < �:
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2.2.2 Lexicographic Order

When the ambient free module is k[x], for � = (�1; : : : ; �m) and � = (�1; : : : ; �m),

x� �lex x
� () 9 1 � i � m : �1 = �1; : : : ; �i�1 = �i�1; �i < �i:

When the ambient free module is (k[x])n with e1; : : : ; en being the free basis, for

� and � same as in the above,

x�ei �lex x
�ej () i > j or x� �lex x

�:

Example 2.2.2 LetM = (k[x; y; z])2 with k[x; y; z]-basis e1; e2. Then, with respect to the

lexicographic order, x2y3ze1 �lex x
2yz2e1 �lex y

3z4e1 �lex e1 �lex x
5e2 �lex xyz2e2 �lex

z5e2 �lex e2. Also, note that

lt(2x2y3ze1 + 3y3z4e1) = 2x2y3ze1

lt(�e1 + ye2 + xze2) = �e1:

2

Proposition 2.2.3 (Characteristic property of lex order) If f 2 k[x1; : : : ; xm] satis�es

ltlex(f) 2 k[xs; xs+1; : : : ; xm] for some s, then f 2 k[xs; xs+1; : : : ; xm].

Proof: An easy exercise. 2

2.2.3 Degree Lexicographic Order

When the ambient free module is k[x], for � = (�1; : : : ; �m) and � = (�1; : : : ; �m),

x� �dlex x
� () deg(x�) < deg(x�); where deg(x�) = �1 + � � �+ �m; or

deg(x�) = deg(x�) and 9 1 � i � m :

�1 = �1; : : : ; �i�1 = �i�1; �i < �i:

When the ambient free module is (k[x])n, we extend above ideal-case order to this

module case in the same way as in the previous subsections.

Proposition 2.2.4 If f 2 k[x1; : : : ; xm] is homogeneous with ltdlex(f) 2 k[xs; xs+1; : : : ; xm]

for some s, then f 2 k[xs; xs+1; : : : ; xm].

Proof: An easy exercise. 2
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2.2.4 Reverse Degree Lexicographic Order

When the ambient free module is k[x], for � = (�1; : : : ; �m) and � = (�1; : : : ; �m),

x� �rdlex x
� () deg(x�) < deg(x�); where deg(x�) = �1 + � � �+ �m; or

deg(x�) = deg(x�) and 9 1 � i � m :

�n = �n; : : : ; �i+1 = �i+1; �i > �i:

Again, we can extend this ideal-case order to the general module case in the same

way as in the previous subsections.

This reverse degree lexicographic order (or simply reverse lexicographic order) is

the monomial order that we will use for most of our computations throughout this thesis.

As Bayer and Stillman showed in [BS87a] and [BS87b], the use of this monomial order

sometimes improves the e�ciency of the computation enormously.

Example 2.2.5 Consider the two monomials x1x3; x
2
2 2 k[x1; x2; x3]. Then, x1x3 �dlex x

2
2

while x1x3 �rdlex x
2
2. 2

Proposition 2.2.6 If f 2 k[x1; : : : ; xm] is homogeneous with ltdrlex(f) 2 hxs; xs+1; : : : ; xmi
for some s, then f 2 hxs; xs+1; : : : ; xmi.

Proof: An easy exercise. 2

2.3 Gr�obner Bases and Division Algorithm

De�nition 2.3.1 1. A k[x]-module is called a monomial module if it is generated by

a �nite number of monomials.

2. For a subset S of a free k[x]-module M with a �xed monomial order, we denote by

in(S) (or lt(S)) the set of the initial terms (or leading terms) of elements of S, i.e.

in(S) := flt(f) j f 2 Sg:

3. The initial module associated to a subset S of a free k[x]-module M with a �xed

monomial order is the module generated by the elements of in(S), i.e.

hin(S)i = hflt(f) j f 2 Sgi:
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Remark 2.3.2 By Dickson's Lemma, any k[x]-module generated by monomials is actually

generated by a �nite number of monomials, and henceforth a monomial module. Therefore

the �niteness condition in the above de�nition of a monomial module is not necessary, and

the initial module hlt(S)i associated to any subset S of a free k[x]-module is a monomial

module. For a proof of Dickson's Lemma, see [CLO92] or [Mis93].

Let ff1; : : : ; flg be a set of generators for N . Then, since each lt(fi) 2 lt(N ), the

monomial module hlt(f1); : : : ; lt(fl)i is clearly contained in the monomial module hlt(N )i.
Now one can ask when these two monomial modules coincide.

First note that N is the set of all the linear combinations (with coe�cients from

k[x]) of fi's. Therefore, if one can form a linear combination (with coe�cients from k[x])

of fi's so that the resulting combination has the leading term not divisible by any of lt(fj),

1 � j � l, then hlt(f1); : : : ; lt(fl)i is a proper submodule of hlt(N )i.

Example 2.3.3 Fix the degree lexicographic order on k[x; y], and let I = hf; gi, with
f = 1� xy and g = x2. Then the relation

(1 + xy)f + y2g = 1

implies that we can form a linear combination of f and g so that the resulting combination

is strictly smaller than f and g (w.r.t. the monomial order), i.e. the resulting combination

has the leading term 1 which is not divisible by either of lt(f) or lt(g), and thus not in

hlt(f); lt(g)i. Therefore, hlt(f); lt(g)i is a proper submodule of hlt(I)i.
Actually, I = k[x; y], and therefore hlt(I)i = k[x; y] while

hlt(f); lt(g)i = h�xy; x2i � hxi:

2

De�nition 2.3.4 Let N be a submodule of a a free k[x]-module M. Then w.r.t. a �xed

monomial order on M,

1. G = ff1; : : : ; flg � N �M is called a Gr�obner basis of N if

hlt(f1); : : : ; lt(fl)i = hlt(N )i

i.e. if the submodule generated by lt(f1); : : : ; lt(fl) coincides with the initial module

hlt(N )i associated to N .
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2. G = ff1; : : : ; flg � N is called a minimal Gr�obner basis of N if G is a Gr�obner basis

with lc(fi) = 1 8i, and no monomial in this set is redundant.

3. G = ff1; : : : ; flg � N is called a reduced Gr�obner basis of N if G is a Gr�obner basis

with lc(fi) = 1 8i, and for any two fi; fj 2 G, no term of fj is divisible by lt(fi).

Remark 2.3.5 It actually turns out that N always has a unique reduced Gr�obner basis.

Example 2.3.6 The computation done in the previous example shows that f1� xy; x2g is
a not a Gr�obner basis. 2

Before proceeding to the multivariate division algorithm, let us take a look at the

univariate polynomial case: For any given polynomials f; g 2 k[x] with g 6= 0, the Euclidean

Division Algorithm constructs an expression of the form

f = qg + r

with deg(qg) = deg(f) and deg(r) < deg(g). With respect to the usual univariate monomial

order, we can restate these conditions on q and r by saying that lt(f) = lt(qg) and none of

the monomials of r is in the monomial ideal hlt(g)i.
Now, we de�ne a natural multivariate analogue of Euclidean Division.

De�nition 2.3.7 Let M be a free k[x]-module with a �xed monomial order �, and F =

ff1; : : : ; flg be an ordered subset ofM. Then for a nonzero f 2 M, a standard expression

of f in terms of F (or fi's) is an expression

f =
lX

i=1

hifi + r; hi 2 k[x]; r 2 M

such that lt(f) � lt(hifi) 8i, and r 2 k[x] is a k-linear combination of monomials not in

hlt(f1); : : : ; lt(fl)i.

Example 2.3.8 Let f1 = 1� xy; f2 = x2 2 k[x; y]. Then, w.r.t. the lex order with x � y,

x3y � 1 = �x2f1 + f2 � 1

is a standard expression while

1 = (1 + xy)f1 + y2f2

is not. Actually, the unique standard expression of 1 in terms of f1; f2 is 1 = 0 �f1+0 �f2+1,

and thus 1 is not divisible by ff1; f2g. 2
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Theorem 2.3.9 Let M be a free k[x]-module with a �xed monomial order �, and F =

ff1; : : : ; flg be an ordered subset of M. Then there is an algorithm that yields a unique

standard expression in terms of fi's for any given nonzero f 2 M.

Proof: We have to construct the following Division Algorithm.

Algorithm 2.1: Division Algorithm

Input: f1; : : : ; fl; f 2 M with f 6= 0

Output: h1; : : : ; hl 2 k[x], r 2M

Speci�cation f =
Pl

i=1 hifi + r is a standard expression

Initialize i = 0 and let r0 := f .

WHILE ri := f �Pi
p=1mpfsp 6= 0 DO

IF no lt(fj) divides a monomial of fi

THEN for each j = 1; : : : ; l, set

f := fi

hj :=
X

fpjsp=jg
mp

ELSE let f be the maximal term of fi that is divisible by some lt(fj), and let

si+1 := j

fi+1 := f=lt(fj)

i := i+ 1

The termination of this algorithm is guaranteed since the maximal term of ri divisible by

some lt(fj) decreases at each step. 2

De�nition 2.3.10 1. The unique polynomial vector r 2 M in the above Division Algo-

rithm is called the remainder or normal form of f on division by F , and denoted

by N(f ; F ).

2. If the Division Algorithm applied to f yields zero as its remainder, then we say f is

divisible by F , or f reduces to zero on division by F .
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Remark 2.3.11 The Division Algorithm depends on the ordering of the elements of F =

ff1; : : : ; flg, i.e. changing the order of fi's will produce di�erent standard expressions for

the same f .

Example 2.3.12 Let f = 2x2y� 3xy2+ y2; f1 = xy� 1; f2 = y2� 1 2 k[x; y], and use the

lex order with x � y as the �xed monomial order on k[x; y]. Apply the Division Algorithm

to �nd a standard expression of f in terms of f1 and f2:

We note �rst that lt(f1) = xy and lt(f2) = y2.

� i = 0: Since lt(f1) = xy divides lt(r0) = 2x2y,

r0 = f = 2x2y � 3xy2 + y2

m = 2x2y

j = 1

s1 = 1

m1 = m=lt(fj) = 2x2y=(xy) = 2x:

� i = 1:

r1 = f �m1fs1 = (2x2y � 3xy2 + y2)� 2x(xy � 1) = �3xy2 + 2x+ y2

m = �3xy2

j = 1

s2 = 1

m2 = m=lt(fj) = �3xy2=(xy) = �3y:

� i = 2:

r2 = f �m1fs1 �m2fs2 = r1 �m2f1 = (�3xy2 + 2x+ y2) + 3y(xy � 1)

= 2x+ y2 � 3y

m = y2

j = 2

s3 = 2

m3 = m=lt(fj) = y2=y2 = 1:
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� i = 3:

r3 = f �m1fs1 �m2fs2 �m3fs3 = r2 �m3f2 = (2x+ y2 � 3y)� (y2 � 1)

= 2x� 3y + 1:

Now, note that neither of lt(f1) nor lt(f2) divides a monomial of r3. Therefore the

process terminates here, and

r = r3 = 2x� 3y + 1

h1 =
X

fpjsp=1g
mp = m1 +m2 = 2x� 3y

h2 =
X

fpjsp=2g
mp = m3 = 1:

Finally, we get the following standard expression of f in terms of f1 and f2:

f = h1f1 + h2f2 + r

= (2x� 3y)f1 + f2 + 2x� 3y + 1:

2

The following corollary, together with the above Division Algorithm, shows why a

Gr�obner basis is so special among many sets of ideal generators.

Corollary 2.3.13 (Submodule Membership Algorithm) Suppose N is a submodule

of a free k[x]-module M with a �xed monomial order � and G = ff1; : : : ; flg � N is a

Gr�obner basis of N . Then, there is an algorithm for writing any f 2 M in the form

f = h1f1 + � � �+ hlfl + r; hi 2 k[x]; r 2 M

such that f 2 N if and only if r = 0.

Proof: One direction ((=) is obvious.
If f 2 N and r 6= 0, apply the Division Algorithm to get a standard expression of

f in terms of fi's: f = h1f1 + � � �+ hlfl + r. Note that the Division Algorithm necessarily

requires lt(r) 62 hlt(f1); : : : ; lt(fl)i.
Now, noting r = f �Pl

i=1 hifi 2 N and hlt(N )i = hlt(f1); : : : ; lt(fl)i, we get

lt(r) 2 hlt(N )i = hlt(f1); : : : ; lt(fl)i;

which is a contradiction. 2
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Theorem 2.3.14 (Buchberger Algorithm) Any submodule of a free k[x]-module has a

Gr�obner basis w.r.t. an arbitrary �xed monomial order.

We will prove this theorem in the next section by giving an algorithm that con-

structs a Gr�obner basis for any given submodule of a free k[x]-module.

De�nition 2.3.15 Let N be a submodule of a free k[x]-module M. Then the monomials

of M which do not lie in the initial module hlt(I)i := hflt(f) j f 2 Sgi associated to N are

called the standard monomials w.r.t. N .

Corollary 2.3.16 (Macaulay) Let N be a submodule of a free k[x]-module M. Then the

(images of the) standard monomials w.r.t N form a k-vector space basis for M=N .

Proof: In order to show that the standard monomials span M=N as a k-vector space, let

fg1; : : : ; glg be a Gr�obner basis for N whose existence is guaranteed by the Theorem 2.3.14.

Now choose an arbitrary �g 2 M=N , and use the above Division Algorithm to write g 2 M
in the form g = h1g1 + � � �+ hlgl + r. Then g � r (mod I), where r 2 M is a k-linear

combinations of monomials not in hlt(g1); : : : ; lt(gl)i = hlt(N )i. Therefore, �g 2 M=N is a

k-linear combination of standard monomials w.r.t N .

To show the linear independence, assume we have nonzero standard monomials,

mi's, 1 � i � l, w.r.t. N such that

f =
X

cimi 2 N ;

for some nonzero ci's in k. Then lt(f) 2 hlt(N )i. But this is a contradiction since lt(f) is

one of cimi's and mi is a standard monomial, i.e. not in hlt(N )i. 2

2.4 Buchberger Algorithm

By the Hilbert Basis Theorem, any submodule N of a f.g. free module M over

k[x] is generated by �nitely many elements, say, f1; : : : ; fl 2 N . Now, we intend to construct

a Gr�obner basis for N out of these generators.

De�nition 2.4.1 Let N be a submodule of a free k[x]-module M and f1; f2 be elements of

N such that lt(f1) and lt(f2) involve the same basis element ej of M. Then the S-pair of

f1 and f2 is de�ned by

S(f1; f2) := h1f1 � h2f2;
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where h1; h2 2 k[x] are the smallest degrees terms making the cancellation

lt(h1f1) = lt(h2f2):

(One �nds that hiej = lt(fi)= gcd(lt(f1); lt(f2)):) If lt(f1) and lt(f2) involve distinct basis

elements of M, we set S(f1; f2) := 0.

The following theorem o�ers an important algorithmic criterion in terms of S-pairs

to test if a given set of generators for N is in fact a Gr�obner basis.

Theorem 2.4.2 (Buchberger's Criterion) The set G = ff1; : : : ; flg is a Gr�obner basis

i� for all pairs i 6= j, the remainder on division of the S-pair S(fi; fj) by G is zero.

Proof: See the Theorem 15.8 of [Eis95]. 2

Now above theorem allows us to construct a Gr�obner basis forN in a �nite number

steps by the following algorithm. Again we let N be a submodule of a free k[x]-module M.

Algorithm 2.2: Buchberger Algorithm

Input: G = ff1; : : : ; flg, a set of generators for N
Output: fg1; : : : ; gpg, a Gr�obner basis for N

� Step 1: If all the S(fi; fj)'s, i 6= j, have zero remainders on division by G, then G is

a Gr�obner basis by the Theorem 2.4.2. Give G as the output.

� Step 2: If some S(fi; fj) has a nonzero remainder Sij := N(S(fi; fj); G), then replace

G by the enlarged set ff1; : : : ; fl;Sijg, and go back to Step 1:.

Since the submodule generated by the leading terms of f1; : : : ; fl;Sij is strictly

larger than hlt(f1); : : : ; lt(fl)i, this process must terminate after �nitely many steps.

The Buchberger Algorithm outlined in the above does not necessarily yield a min-

imal Gr�obner basis, and the following lemma lets us eliminate some redundant generators.

Lemma 2.4.3 Let G be a Gr�obner basis for a submodule N of a free k[x]-module. If there

is f 2 G such that lt(f) 2 hlt(G� ffg)i, then G� ffg is also a Gr�obner basis for N .
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Proof: By de�nition, hlt(G)i = hlt(I)i. If lt(f) 2 hlt(G�ffg)i, then hlt(G�ffg)i = hlt(G)i.
Now by de�nition, it follows that G� ffg is a Gr�obner basis. 2

Example 2.4.4 Find a minimal Gr�obner basis for G = f1 � xy; x2g 2 k[x; y] using the

Buchberger Algorithm, and express each element of the Gr�obner basis as a linear combina-

tion (with coe�cients from k[x; y]) of 1� xy; x2:

� Step 1: The remainder of S(1 � xy; x2) = x � (1 � xy) + y � x2 = x on division

by f1 � xy; x2g is simply itself, x, which is nonzero. Hence, we have to enlarge G

to f1 � xy; x2; xg. But x2 is redundant since it is divisible by x. Therefore, let

G1 = f1� xy; xg.

� Step 2: The remainder of S(1 � xy; x) = 1 � (1 � xy) + y � x = 1 on division by

f1 � xy; xg is 1, which is nonzero. Hence, we have to enlarge G1 to f1 � xy; x; 1g.
Now, note that 1�xy; x are redundant since each of them is divisible by 1. Therefore,

f1g is a Gr�obner basis for G = f1� xy; x2g 2 k[x; y].

Since h1�xy; x2i = h1i, we should be able to express 1 as a linear combination of 1�xy; x2.
For this purpose, we retrace the above process of getting to f1g:

1 = S(1� xy; x) = (1� xy) + y � x
= (1� xy) + yS(1� xy; x2)

= (1� xy) + y(x(1� xy) + y � x2)
= (1 + xy)(1� xy) + y2x2:

2

Example 2.4.5 (Ideal Membership) Let f = 2x2y � 3xy2 + y2; f1 = xy � 1; f2 =

y2 � 1 2 k[x; y]. Determine if f belongs to the ideal hf1; f2i � k[x; y].

We will use the lex order with x � y as our �xed monomial order on k[x; y]. In

order to apply the Corollary 2.3.13, we �rst have to �nd a Gr�obner basis for G = ff1; f2g:

� Step 1: The remainder of S(f1; f2) = y(xy � 1) � x(y2 � 1) = x � y on division by

fxy � 1; y2 � 1g is simply itself, x � y, which is nonzero. Hence, we have to enlarge

G to fxy � 1; y2 � 1; x� yg. But according to the Lemma 2.4.3, xy � 1 is redundant
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since its leading term xy is divisible by the leading term of x � y. Therefore, let

G1 = fy2 � 1; x� yg.

� Step 2: S(y2 � 1; x � y) = x � (y2 � 1) � y2 � (x � y) = �x + y3 is divisible by

fxy � 1; y2� 1g since the Division Algorithm yields

�x + y3 = y � (y2 � 1)� 1 � (x� y):

Hence, G1 = fy2 � 1; x� yg is a minimal Gr�obner basis for G = ff1; f2g (one checks
easily that this is actually the unique reduced Gr�obner basis for G = ff1; f2g).

Now apply the Division Algorithm to �nd a standard expression of f in terms of G1. One

�nds that the remainder is y + 1, which is nonzero. Therefore, we conclude from the

Corollary 2.3.13 that

f 62 hf1; f2i:

2

2.5 Syzygy Computation

Let M be a free k[x]-module of rank q with free basis fe1; : : : ; eqg. We will

occasionally identify an element of M with a q dimensional column vector with entries

from k[x] by writing it as a unique linear combination (with coe�cients from k[x]) of the

given basis elements.

Now let v1; : : : ;vp be elements ofM = (k[x])q.

De�nition 2.5.1 A syzygy of the ordered set F = fv1; : : : ;vpg is a polynomial vector

h = (h1; : : : ; hp) 2 (k[x])p such that

h1v1 + � � �+ hpvp = 0 2 (k[x])q:

Consider the homomorphism � of free k[x]-modules de�ned as follows:

� : (k[x�1])p �! (k[x�1])q

(h1; : : : ; hp) 7! h1v1 + � � �+ hpvp:

Then a syzygy of F = fv1; : : : ;vpg is simply an element of Ker(�), and we see that the set

of all the syzygies of F coincides with Ker(�), thus makes a k[x]-module itself.
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Now the Hilbert Basis Theorem tells us that Ker(�), the module of syzygies of F ,

has a �nite number of generators, but it does not give us an e�ective way of �nding them.

Actually, when v1; : : : ;vp 2 (k[x])q satisfy an additional condition called unimod-

ularity condition, then Ker(�) turns out to be free, and thus an arbitrary syzygy can be

written as a unique linear combination (with coe�cients from k[x]) of the elements of a

free basis of Ker(�). This result is a consequence of the Quillen-Suslin Theorem, and will

be studied in more detail in the next chapter.

Since the Buchberger Algorithm of the previous section gives us a way of expressing

each remainder Sij := N(S(fi; fj); G) as a linear combination of fi's, if the remainder Sij = 0,

then we get a linear combination among the fi's being equal to zero, i.e. a syzygy. Now a

theorem of Schreyer states that these syzygies generate the entire module of syzygies. For

a more detailed exposition, see the section 15.5 in [Eis95].



21

Chapter 3

A Syzygy-based Algorithm for the

Quillen-Suslin Theorem

3.1 A Conjecture of Serre

In FAC ([Ser55], 1955), J.-P. Serre pointed out that no example was known of a

nontrivial algebraic vector bundle over an a�ne space, and this observation became a fact

when D. Quillen and A. Suslin proved it as a theorem in 1976.

De�nition 3.1.1 Let R be a commutative ring with identity. Then a module M over R is

called projective if it is a direct summand of a free module over R.

Since locally trivial algebraic vector bundles are interpreted as locally free coherent sheaves,

we can reformulate the Serre's Conjecture as

[1] Any �nitely generated projective module over a polynomial ring (with coe�-
cients from a �eld) is free.

De�nition 3.1.2 Let R be a commutative ring.

1. Let v = (v1; : : : ; vn)t 2 Rn for some n 2 N. Then v is called a unimodular column

vector if its components generate R, i.e. if there exist g1; : : : ; gn 2 R such that

v1g1 + � � �+ vngn = 1.

2. A matrix A 2 Mpq(R) is called a unimodular matrix if its maximal minors generate

the unit ideal in R.
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Remark 3.1.3 When R = k[x1; : : : ; xm] is a polynomial ring and v 2 Rn is a unimodular

vector, we can explicitly �nd these gi's either by using the e�ective Nullstellensatz (see

[FG90]) or by retracing the steps in computing a Gr�obner basis G = f1g for hv1; : : : ; vni.

The following lemma gives an important property of a unimodular vector.

Lemma 3.1.4 Let R be a commutative ring and v 2 Rn. Then, Rv � Rn splits as a direct

summand if and only if v 2 Rn is unimodular.

Proof: Suppose Rv is a direct summand of Rn and v =
Pn

i=1 viei. Write Rv�N = Rn for

some submodule N of Rn. Then any element of Rn can be written uniquely in the form,

av +w, for some a 2 R and w 2 N . De�ne an R-module homomorphism f : Rn ! R by

f(av +w) = a. Then since f(v) = 1 =
Pn

i=1 vif(ei), v is unimodular. Conversely, if v =Pn
i=1 viei 2 Rn is unimodular, then there exists g1; : : : ; gn 2 R such that

Pn
i=1 vigi = 1 2 R.

De�ning an R-module homomorphism � : Rn ! R by �(ei) = gi, we get the following short

exact sequence:

0 �! Ker(�) �! Rn ��! R �! 0:

De�ning an R-module homomorphism � : R! Rn by �(a) = av, we see that the

above short exact sequence splits. Hence, Rv is a direct summand of Rn. 2

Actually, this lemma is a special case of the following well known result whose

proof is essentially same as in the above proof.

Lemma 3.1.5 Let R be a commutative ring, and M 2 Mpq(R) for p � q. Then M is

unimodular if and only if its q column vectors form a free basis of a rank q submodule of

Rp that splits as a direct summand.

Now consider the following statement over polynomial rings.

[2] (Unimodular Completion) Let A be a p � q unimodular matrix, p � q,
with polynomial entries, i.e. a matrix over k[x] := k[x1; : : : ; xm]. Then A can
be completed to a square p � p unimodular matrix �A 2 GLp(k[x]) by adding
p� q columns to the matrix A.
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Figure 3.1: Unimodular completion of A to �A

We claim that Serre's Conjecture [1] is equivalent to the above elementary linear

algebraic statement [2], which is actually the form Quillen and Suslin used to prove Serre's

Conjecture.

Theorem 3.1.6 The statement [1] is equivalent to the statement [2]

Proof: [1] =) [2]: Consider the submodule N of the free k[x]-module (k[x])p, generated

by the q columns of A. Then the unimodularity of A implies that N separates as a direct

summand of (k[x])q, i.e.

N � T = (k[x])p

for some submodule T of (k[x])p. Since T is a direct summand of (k[x])p, it is a projective

k[x]-module. We can, therefore, apply the statement [1] to conclude that T is free. Let

v1; : : : ;vp�q 2 (k[x])p be a free basis for T , i.e.

T = �p�q
i=1 k[x]vi:

Now regarding vi's as p dimensional column vectors, add them to the matrix A to make a

p � p matrix. The resulting square matrix is unimodular since its column vectors form a

basis for (k[x])p.

[2] =) [1]: First, we need to establish the fact that every projective module N over a

polynomial ring k[x] is stably free, i.e. N � (k[x])q �= (k[x])p for some p; q 2Z�0.
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To see this, consider a free resolution of the projective module

0! Fm ! Fn�1 ! � � � ! F0 ! F�1 = N ! 0:

Note here that we are using the Hilbert Syzygy Theorem to obtain a free resolution of N
whose length is bounded by m, the number of variables. Then, denoting the kernel of the

module homomorphism Fi ! Fi�1 by Ni, we have

F0
�= N �N0;F1

�= N0 �N1;F2
�= N1 � N2; � � � ;Fn

�= Nn�1:

Therefore we get

N � F1 � F3 � � � � �= N � (N0 � N1)� (N2 �N3)� � � �
�= (N �N0)� (N1 � N2)� � � �
�= F0 � F2 � � � � ;

which implies that N is stably free.

Now that we have N � (k[x])q �= (k[x])p, we can make a p� q unimodular polyno-

mial matrix whose column vectors form a free basis for (k[x])q � (k[x])p. Then apply the

statement [2] to complete this p� q matrix to a square p� p unimodular matrix. Then the

last p� q columns of this square matrix form a free basis for N . 2

Remark 3.1.7 The second part of the proof is based on the Hilbert Syzygy Theorem in

assuming the existence of a �nite free resolution of a projective module over a polynomial

ring. An algorithmic construction of such a free resolution can be found in [LS92].

In the following section, we will attempt to develop an e�ective algorithm for

Unimodular Completion. By using this algorithm, one not only knows the freeness of a

given f.g. projective k[x]-module but also can �nd a free basis for that module.

While there are recent algorithmic proofs of Unimodular Completion, ([LS92] and

[Fit93]), our algorithm based on a syzygy computation using Gr�obner basis seems to o�er

a very e�ective algorithm which can be easily implemented since syzygy computation is al-

ready a standard part of many computer algebra packages, e.g. Macaulay and SINGULAR.

3.2 A Syzygy-based Algorithm for Unimodular Completion

In the following, we will present an e�ective algorithm for Unimodular Completion

based on a syzygy computation using Gr�obner bases.
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Algorithm 3.1: UnimodCompletion

Input: A = (fij) 2 Mpq(k[x]), p � q, a unimodular polynomial matrix

Output: �A 2 GLp(k[x]), a square unimodular matrix

Speci�cation: the p� q matrix made of �rst q columns of �A is A

This will by no means replace the proof of Unimodular Completion given in Chap-

ter 4 as the Corollary 4.3.6, since we need to assume the validity of the statement of the

Quillen-Suslin Theorem to deduce the right size of a minimal syzygy basis.

Also, the �rst step in the algorithm is about �nding a particular left inverse of

A 2 Mpq(k[x]), and our method for this step is due to A. Logar and B. Sturmfels [LS92].

� Step 1: Find a q � p matrix B 2 Mqp(k[x]) such that BA = Iq in the following way:

The column vectors of the unimodular matrix At = (fji) 2 Mqp(k[x]) span the free

k[x]-module (k[x])q. Therefore, we can use Gr�obner bases to express the standard

basis vectors e1; : : :eq 2 (k[x])q as linear combinations (with polynomial coe�cients)

of the column vectors of At.

More explicitly, denoting the i-th column vector of At by wi, 1 � i � p, we have

wi :=

0BB@
fi1
...

fiq

1CCA. Now, use Gr�obner basis to �nd gij 's such that

e1 :=

0BBBBB@
1

0
...

0

1CCCCCA = g11w1 + � � �+ g1pwp = g11

0BB@
f11
...

f1q

1CCA+ � � �+ g1p

0BB@
fp1
...

fpq

1CCA
...

eq :=

0BBBBB@
0
...

0

1

1CCCCCA = gq1w1 + � � �+ gqpwp = gq1

0BB@
f11
...

f1q

1CCA + � � �+ gqp

0BB@
fp1
...

fpq

1CCA :

Denoting the q � p matrix (gij) by B, we can rewrite the above set of equations as

Iq =

0BB@
g11 � � � g1p
...

...

gq1 � � � gqp

1CCA
0BB@
f11 � � � f1q
...

...

fp1 � � � fpq

1CCA
= BA:
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� Step 2: Again, let w1; : : : ;wp 2 (k[x])q be the column vectors of At. Now, �nd a

syzygy basis s1; : : : ; sp�q 2 (k[x])p for the set fw1; : : : ;wpg in the following way:

Consider the k[x]-module homomorphism � : (k[x])p ! (k[x])q de�ned by At, i.e. for

any p-dimensional column vector v 2 (k[x])p,

�(v) := Atv:

First, note that � is surjective due to the unimodularity of A. More explicitly, let B

be the left inverse ofA found in the Step 1. Then, for anyw 2 (k[x])q,Btw 2 (k[x])p

and

�(Btw) = At(Btw)

= (BA)tw

= Iqw = w:

Thus we get the following short exact sequence:

0 �! Ker(�) �! (k[x])p
��! (k[x])q �! 0: (3.1)

De�ning a k[x]-module homomorphism � : (k[x])q ! (k[x])p by �(w) = Btw, we

see that the above short exact sequence splits. Hence, Ker(�) is a direct summand

of (k[x])p, i.e. a projective module over k[x], and therefore free of rank p� q by the

Quillen-Suslin Theorem. Now �nd the reduced Gr�obner basis s1; : : : ; sp�q 2 (k[x])p

of Ker(�).

Note that � : (k[x])p ! (k[x])q satis�es the following property:

�(

0BB@
h1
...

hp

1CCA) = h1w1 + � � �+ hpwp;

where w1; : : : ;wp 2 (k[x])q are the column vectors of At.

Therefore, Ker(�) is precisely the (�rst) module of syzygies of the vectorsw1; : : : ;wp 2
(k[x])q.

� Step 3: Let

si = (si1; : : : ; sip)
t; 1 � i � p� q

S = (sij) 2 M(p�q)q(k[x])



27

and de�ne a square polynomial matrix C 2 Mp(k[x]) by

C =

 
B

S

!

=

0BBBBBBBBBBB@

g11 � � � g1p
...

...

gq1 � � � gqp

s11 : : : s1p
...

...

s(p�q)1 : : : s(p�q)p

1CCCCCCCCCCCA
:

Now, let �A := C�1, and terminate the process.

To verify the validity of this algorithm, it remains to show, (1) that the polynomial

matrix C 2 Mp(k[x]) is unimodular, and (2) that �A ia really a unimodular completion of

A, i.e. the �rst q columns of �A := C�1 make A.

To show (1), just note that the row vectors of C span the free module (k[x])p =

Im(�)� Ker(�) ' (k[x])q � (k[x])p�q since the �rst q rows span Im(�) and the rest of the

rows span Ker(�).

To show (2), note that

CA =

 
B

S

!
A

=

 
Iq

0

!
2 Mpq(k[x])

implies

A = C�1
 
Iq

0

!
:

Therefore, for each 1 � i � q,

i-th column of A = Aei

= C�1
 
Iq

0

!
ei

= i-th column of C�1;

i.e. the �rst q columns of �A := C�1 are same as the q columns of A as desired.
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3.3 Examples

Example 3.3.1 De�ne four polynomials in k[x; y; z] by

f1 = 1� xy � 2z � 4xz � x2z � 2xyz + 2x2y2z � 2xz2 � 2x2z2 + 2x2yz2

f2 = 2 + 4x+ x2 + 2xy � 2x2y2 + 2xz + 2x2z � 2x2yz

f3 = 1 + 2x+ xy � x2y2 + xz + x2z � x2yz

f4 = 2 + x+ y � xy2 + z � xyz:

Verify that the polynomial vector v := (f1; f2; f3; f4)
t 2 (k[x; y; z])4 is unimodular and

�nd a unimodular completion of v. De�ning a projective module M � (k[x; y; z])4 by

hvi�M= (k[x; y; z])4, �nd a free basis ofM whose existence is guaranteed by the Quillen-

Suslin Theorem.

� Step 1: The following SINGULAR script computes a Gr�obner basis G of the ideal

hf1; f2; f3; f4i w.r.t. the reverse degree lexicographic order, and the transformation

matrix T such that G = (f1; f2; f3; f4)T, and a syzygy basis G of ff1; f2; f3; f4g.

ring r=0,(x,y,z),(c,dp);

poly f(1)=1-x*y-2*z-4*x*z-x2*z-2*x*y*z+2*x2*y2*z-2*x*z2-2*x2*z2

+2*x2*y*z2;

poly f(2)=2+4*x+x2+2*x*y-2*x2*y2+2*x*z+2*x2*z-2*x2*y*z;

poly f(3)=1+2*x+x*y-x2*y2+x*z+x2*z-x2*y*z;

poly f(4)=2+x+y-x*y2+z-x*y*z;

ideal I=f(1),f(2),f(3),f(4);

ideal G=std(I); matrix T=lift(I,G); module S=syz(I);

Now SINGULAR responds with

> G;

G[1]=1

> T;

T[1,1]=0
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T[2,1]=-1z+1

T[3,1]=2z-1

T[4,1]=-1x

The relation G = (f1; f2; f3; f4)T = 1 implies Ttv = 1, and thus v is unimodular, and

B = Tt = (0;�z + 1; 2z� 1;�x)

is a particular left inverse.

� Step 2: In order to �nd a unimodular completion of the column vector v, we need

to �nd a syzygy basis of ff1; f2; f3; f4g.

> S;

S[1]=[0,x2z-1x2+1,-2x2z+x2-2,x3]

S[2]=[1,-1xyz+xy+2z-1,2xyz-1xy-2z+1,-1x2y+x]

S[3]=[-1y-1z,xz-1yz-1z2-1x+2z-2,-2xz+x-4z+2,x2+2x+1]

Therefore,

C =

 
B

S

!

=

0BBBBB@
0 �z + 1 2z � 1 �x
0 x2z � x2 + 1 �2x2z + x2 � 2 x3

1 �xyz + xy + 2z � 1 2xyz � xy � 2z + 1 �x2y + x

�y � z xz�yz�z2�x+2z�2 �2xz + x� 4z + 2 x2 + 2x+ 1

1CCCCCA :

� Step 3: One checks easily that det(C) = �1, i.e. C is unimodular, and the resulting

unimodular completion of v is

�A = C�1

=

0BBBBB@
f1 z � 2z2 1� 2xyz � 2xz2 �2xz
f2 �1 + 2z 2xy + 2xz 2x

f3 �1 + z xy + xz x

f4 0 y + z 1

1CCCCCA :

The three column vectors of �A other than the �rst make a free basis of the rank

3 free module M � (k[x; y; z])4 which is the complement of the rank 1 submodule

hvi := k[x; y; z]v� (k[x; y; z])4, i.e. hvi �M = (k[x; y; z])4.
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2

Example 3.3.2 Consider the two polynomial vectors v1;v2 2 (k[x; y; z])3 given by

v1 :=

0BB@
xy � y + 1

yz + w

�y

1CCA

v2 :=

0BB@
1� x

�z
1

1CCA :

Verify that the k[x; y; z]-module M� (k[x; y; z])3 generated by v1 and v1 splits as a rank

2 direct summand of the free module (k[x; y; z])3. Also, �nd the k[x; y; z]-module N �
(k[x; y; z])3 such thatM�N = (k[x; y; z])3.

We have to show the unimodularity of the matrix A :=

0BB@
xy � y + 1 1� x

yz + w �z
�y 1

1CCA,
and �nd a unimodular completion �A of A. Then the last column vector of �A generates N .

Our SINGULAR script for this purpose goes as follows.

ring r=0,(x,y,z,w),(c,dp);option(redSB);

vector v(1)=[xy-y+1,1-x];vector v(2)=[yz+w,-z];vector v(3)=[-y,1];

module M=v(1),v(2),v(3);

module G=std(M); matrix T=lift(M,G); module S=syz(M);

And the results are

> G;

G[1]=[0,1]

G[2]=[1]

> T;

T[1,1]=y

T[1,2]=1

T[2,1]=0

T[2,2]=0

T[3,1]=xy-1y+1

T[3,2]=x-1
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> S;

S[1]=[w,-1,xw-1z-1w]

Since f(1; 0); (0; 1)g is a Gr�obner basis of the row vectors of A, A is unimodular, and the

relation G = MT translates to  
0 1

1 0

!
= AtT:

By taking transpose of both sides, we get TtA =

 
0 1

1 0

!
, i.e.

 
1 0 x� 1

y 0 xy � y + 1

!
A = I2:

Hence, B :=

 
1 0 x� 1

y 0 xy � y + 1

!
is a left inverse of A, and

C =

 
B

S

!

=

0BB@
1 0 x� 1

y 0 xy � y + 1

w �1 xw � z � w

1CCA :

The resulting unimodular completion of A is

�A = C�1

=

0BB@
1� y + xy 1� x 0

w + yz �z �1
�y 1 0

1CCA :

2
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Chapter 4

An Algorithmic Proof of Suslin's

Stability Theorem

Over a �eld k, Gaussian elimination tells us that we can repeatedly apply

elementary row and column operations to reduce any matrix in SLn(k) to the identity

matrix In, where the standard linear group SLn(k) denotes the group of all the n � n

matrices of determinant 1 whose entries are elements of k.

Less obvious but still true is that, due to the Euclidean Division Algorithm for k[x],

this elementary reduction is also possible for the matrices with entries from the univariate

polynomial ring k[x].

Even more strikingly, while the Euclidean Division Algorithm is not valid any more

for the multivariate polynomial ring k[x] := k[x1; : : : ; xm], Suslin's Stability Theorem states

that the same is true for SLn(k[x]) with n � 3 and m � 1.

De�nition 4.0.3 A square matrix A over a ring R is called realizable, if A can be written

as a product of elementary matrices over R.

Recall that for any ring R, an n� n elementary matrix Eij(a) over R is a matrix

of the form In + a �Eij where i 6= j; a 2 R and Eij is the n� n matrix whose (i; j) entry is

1 and all other entries are zero. Now letting En(R) be the subgroup of SLn(R) generated

After it was discovered that Cynthia Woodburn [Woo94] obtained the result of this chapter independently
of the author at the same time, she and the author started collaborating and wrote a joint paper [PW94]
based on the collaboration. The result of this section will be extended, in Chapter 11, to the case of Laurent
polynomial rings.
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by the elementary matrices, for a commutative coe�cient ring R, Suslin's stability theorem

can be expressed as

SLn(R[x1; : : : ; xm]) = En(R[x1; : : : ; xm]) for all n � max(3; dim(R) + 2):

When the coe�cient ring is a �eld R = k, this is equivalent to saying that any n�n (n � 3)

unimodular matrix is realizable. Therefore, the algorithm to be developed in this chapter

could be called a realization algorithm.

This chapter is organized as follows.

� In Section 4.1, an algorithmic proof of the normality of En(k[x]) as a subgroup of

SLn(k[x]) for n � 3 is given. Nonconstructive proofs of the results in this section can

be found elsewhere, e.g. [Sus77] or [Vas81].

� In Section 4.2, we give an algorithm for the Quillen Induction Process, a standard

way of reducing a given problem over a ring to an easier problem over a local ring.

Using this Quillen Induction Algorithm, we reduce our realization problem over the

polynomial ring R[xm] to one overRM[xm]'s, where R = k[x1; : : : ; xm�1] andM ranges

over a �nite set of maximal ideals of R.

� In Section 4.3, an algorithmic proof of the Elementary Column Property, a stronger

version of the Unimodular Column Property, is given, and we note that this algorithm

gives another constructive proof of the Quillen-Suslin theorem. Using the Elementary

Column Property, we show that a realization algorithm for SLn(k[x]) is obtained from

a realization algorithm for matrices of the special form0BB@
p q 0

r s 0

0 0 1

1CCA 2 SL3(k[x]);

where p is monic in the last variable xm (note x := (x1; : : : ; xm)).

� In Section 4.4, in view of the results in the preceding two sections, we note that a

realization algorithm over k[x] = k[x1; : : : ; xm] can be obtained from a realization

algorithm for the matrices of the special form

0BB@
p q 0

r s 0

0 0 1

1CCA over R[X ], where R is now

a local ring and p is monic in X . A realization algorithm for this case found by M.P.

Murthy in [GM80] is reproduced in this section.
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4.1 En is normal in SLn, for n � 3

Lemma 4.1.1 The Cohn matrix A =

 
1 + xy x2

�y2 1� xy

!
is not realizable, but

 
A 0

0 1

!
2 SL3(k[x; y]) is.

Proof: The nonrealizability ofA was �rst proved by P. M. Cohn in [Coh66], and a complete

algorithmic criterion for the realizability of matrices in SL2(k[x1; : : : ; xm]) will be developed

in Chapter 5.

Now noting that 
A 0

0 1

!
=

0BB@
1 + xy x2 0

�y2 1� xy 0

0 0 1

1CCA = I3 +

0BB@
x

�y
0

1CCA � (y; x; 0);
we see that the realizability of this matrix is a special case of Lemma 4.1.3 below. 2

De�nition 4.1.2 Let n � 2. A Cohn-type matrix is a matrix of the form

In + av(vjei � viej)
t; i < j 2 f1; : : : ; ng;

where v = (v1; : : : ; vn)
t 2 (k[x])n, a 2 k[x], and ei = (0; : : : ; 0; 1; 0; : : : ; 0)t with 1 occurring

only at the i-th position.

Lemma 4.1.3 (Mennicke) Any Cohn-type matrix for n � 3 is realizable.

Proof: First, consider the case i = 1; j = 2. In this case,

B = In + a

0BB@
v1
...

vn

1CCA (v2;�v1; 0; : : : ; 0)

=

0BBBBBBBB@

1 + av1v2 �av21 0 � � � 0

av22 1� av1v2 0 � � � 0

av3v2 �av3v1
...

... In�2
avnv2 �avnv1

1CCCCCCCCA

=

0BBBBBBBB@

1 + av1v2 �av21 0 � � � 0

av22 1� av1v2 0 � � � 0

0 0
...

... In�2
0 0

1CCCCCCCCA
nY
l=3

El1(avlv2)El2(�avlv1):



35

So, it is enough to show that

A =

0BB@
1 + av1v2 �av21 0

av22 1� av1v2 0

0 0 1

1CCA
is realizable for any a; v1; v2 2 k[x]. Let \!" indicate that we are applying elementary

operations, and consider the following:

A =

0BBB@
1 + av1v2 �av21 0

av22 1� av1v2 0

0 0 1

1CCCA!

0BBB@
1 + av1v2 �av21 v1

av22 1� av1v2 v2

0 0 1

1CCCA

!

0BBB@
1 �av21 v1

0 1� av1v2 v2

�av2 0 1

1CCCA!

0BBB@
1 0 v1

0 1 v2

�av2 av1 1

1CCCA!

0BBB@
1 0 v1

0 1 v2

0 av1 1 + av1v2

1CCCA

!

0BBB@
1 0 0

0 1 v2

0 av1 1 + av1v2

1CCCA!

0BBB@
1 0 0

0 1 v2

0 0 1

1CCCA!

0BBB@
1 0 0

0 1 0

0 0 1

1CCCA : (4.1)

Keeping track of all the elementary operations involved in 4.1, we get

A = E13(�v1)E23(�v2)E31(�av2)E32(av1)E13(v1)E23(v2)E31(av2)E32(�av1):

In general (i.e., for arbitrary i < j),

B = In + a

0BB@
v1
...

vn

1CCA (0; : : : ; 0; vj; 0; : : : ; 0;�vi; 0; : : : ; 0)

with vj occurring at the i-th position and �vi occurring at the j-th position. Therefore, we

have

B =

0BBBBBBBBBBBBBB@

1 � � � av1vj � � � �av1vi � � � 0
. ..

...
... 0

1 + avivj �av2i
...

...

av2j 1� avivj
...

...

vnvj �vnvi 1

1CCCCCCCCCCCCCCA
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=

0BBBBBBBBBBBBBB@

1 � � � 0 � � � 0 � � � 0
. ..

...
... 0

1 + avivj �av2i
...

...

av2j 1� avivj
...

...

0 0 1

1CCCCCCCCCCCCCCA
�
Y

1�l�n

l6=i;j

Eli(avlvj)Elj(�avlvi)

= Eit(�vi)Ejt(�vj)Eti(�avj)Etj(avi)Eit(vi)Ejt(vj)Eti(avj)Etj(�avi)
�
Y

1�l�n

l6=i;j

Eli(avlvj)Elj(�avlvi);

where t 2 f1; : : : ; ng can be chosen to be any number other than i or j. 2

Since a Cohn-type matrix is realizable, any product of Cohn-type matrices is also

realizable. This observation motivates the following generalization of the above lemma.

Lemma 4.1.4 (Suslin) Suppose that A 2 SLn(k[x]) with n � 3 can be written in the form

A = I + vwt for unimodular column vectors v;w 2 (k[x])n such that wtv = 0 2 k[x].

Then A is realizable.

Proof: Since v = (v1; : : : ; vn)
t is unimodular, we can use the e�ective Nullstellensatz or

Gr�obner bases to �nd g1; : : : ; gn 2 k[x] such that v1g1 + � � �+ vngn = 1.

This, combined with wtv = w1v1+ � � �+wnvn = 0, yields a new expression for w:

w =
X
i<j

aij(vjei � viej)

where aij = wigj � wjgi. Now,

A = In + v

0@X
i<j

aij(vjei � viej)

1At

= In +
X
i<j

vaij(vjei � viej)
t

=
Y
i<j

�
I + vaij(vjei � viej)

t
�
:

Each factor on the right hand side of this equation is a Cohn-type matrix and thus realizable,

so A is also realizable. 2
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Corollary 4.1.5 BEij(a)B
�1 is realizable for any B 2 GLn(k[x]) with n � 3 and a 2 k[x].

Proof: Note that i 6= j, and

BEij(a)B
�1 = In + (i-th column vector of B)a(j-th row vector of B�1):

Let v be the i-th column vector of B and wt be a times the j-th row vector of B�1. Then

(i-th row vector of B�1) �v = 1 implies v is unimodular, and wtv is clearly zero since i 6= j.

Therefore, BEij(a)B
�1 = In + vwt satis�es the condition of the above lemma, and is thus

realizable. 2

Corollary 4.1.6 En(k[x]) is a normal subgroup of GLn(k[x]), for n � 3.

Proof: Let A 2 GLn(k[x]) and E 2 En(k[x]). Then the above corollary gives us an

algorithm for �nding elementary matrices E1; : : : ;Et such that A�1EA = E1 � � �Et. 2

4.2 Gluing of Local Realizability

Let R = k[x1; : : : ; xm�1], X = xm and M 2 Max(R) =fmaximal ideals of Rg.
For A 2 SLn(R[X ]), we let AM 2 SLn(RM[X ]) be its image under the canonical mapping

SLn(R[X ]) ! SLn(RM[X ]). We will occasionally write A = A(X) to emphasize that we

are viewing the entries of the matrix A as polynomials in one variable. Now consider the

following analogue of Quillen's patching theorem for elementary matrices:

Suppose n � 3 and A 2 SLn(R[X ]). Then A is realizable over R[X ] if and only
if AM 2 SLn(RM[X ]) is realizable over RM[X ] for every M 2 Max(R).

While a non-constructive proof of this assertion is given in [Sus77] and a more general

functorial treatment of this Quillen Induction Process can be found in [Knu91], we will give

a constructive proof for it here, thus providing a patching algorithm with input certain local

factorizations of a given matrix A and output a global factorization of A into elementary

matrices. Since the necessity of the condition is clear, we have to prove the following

theorem.

Theorem 4.2.1 (Quillen Induction Algorithm) Let A 2 SLn(R[X ]). If AM 2 En(RM[X ])

for every M 2 Max(R), then A 2 En(R[X ]).
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Proof: Let a1 = (0; : : : ; 0) 2 km�1, and let M1 = fg 2 k[x1; : : : ; xm�1] j g(a1) = 0g be the
corresponding maximal ideal. Then by assumption, AM1 is realizable over RM1 [X ]. Hence,

we can write

AM1 =
Y
j

Esj tj

 
cj
dj

!
(4.2)

where cj ; dj 2 R; dj 62M1. Letting r1 =
Q

j dj =2M1, we can rewrite 4.2 as

AM1 =
Y
j

Esj tj

 
cj
Q

k 6=j dk
r1

!
2 En(Rr1) � En(RM1):

Denote an algebraic closure of k by �k. Inductively, let aj 2 �km�1 be a common zero of

r1; : : : ; rj�1 and Mj = fg 2 k[x1; : : : ; xm�1] j g(aj) = 0g be the corresponding maximal

ideal of R for each j � 2. (See Chapter 3 of [CLO92] for details and references for using

Gr�obner bases to �nd a common zero of a �nite set of polynomials.) De�ne rj =2Mj in the

same way as r1 above, so that

AMj
2 En(Rrj [X ]):

Since aj is a common zero of r1; : : : ; rj�1 in this construction, we immediately see that

r1; : : : ; rj�1 2 Mj = fg 2 R j g(aj) = 0g. But noting rj =2 Mj , we conclude that rj =2
r1R+ � � �+ rj�1R. Now, since R is Noetherian, we will get to some l after a �nite number

of steps such that r1R+ � � �+ rlR = R. (We can use Gr�obner bases to determine when 1R

is in the ideal r1R+ � � �+ rlR, e.g. see [CLO92, p. 94].)

Let d be a natural number. Then since rd1R+� � �+rdl R = R, we can �nd g1; : : : ; gl 2
R such that rd1g1 + � � �+ rdl gl = 1. Now, we express A(X) 2 SLn(R[X ]) in the following

way:

A(X) = A(X �Xrd1g1) � [A�1(X �Xrd1g1)A(X)]

= A(X �Xrd1g1 �Xrd2g2) � [A�1(X �Xrd1g1 �Xrd2g2)A(X �Xrd1g1)]

�[A�1(X �Xrd1g1)A(X)]

= � � �
= A(X �

lX
i=1

Xrdi gi) � [A�1(X �
lX

i=1

Xrdi gi)A(X �
l�1X
i=1

Xrdi gi)] � � �

� � � [A�1(X �Xrd1g1)A(X)]:



39

Note here that the �rst matrixA(X�Pl
i=1Xrdi gi) = A(0) on the right hand side is in En(R)

by the induction hypothesis. We will now show that for a su�ciently large d, each bracketed

expression in the above equation is actually in En(R[X ]), so that A itself is in En(R[X ]).

To this end, we let AMi
= Ai and identify A 2 SLn(R[X ]) with Ai 2 SLn(RMi

[X ]). Then

each bracketed expression is of the form

A�1
i (cX)Ai((c+ rdi g)X):

Claim: For any c; g 2 R, we can �nd a su�ciently large d such that A�1
i (cX)Ai((c +

rdi g)X) 2 En(R[X ]) for i = 1; : : : ; l.

Let

Di(X; Y; Z) = A�1
i (Y �X)Ai((Y + Z) �X) 2 En(Rri[X; Y; Z])

and write Di in the form

Di =
hY

j=1

Esj tj(bj + Zfj)

where bj 2 Rri[X; Y ] and fj 2 Rri[X; Y; Z]. From now on, the elementary matrix Esj tj(a)

will be simply denoted as Ej(a) for notational convenience. For p = 1; : : : ; h, de�ne Cp by

Cp =
pY

j=1

Ej(bj) 2 En(Rri [X; Y ]):

Then the Cp's satisfy the following recursive relations:

E1(b1) = C1;

Ep(bp) = C�1
p�1Cp (2 � p � h);

Ch = I:

Hence, using the fact that Eij(a+ b) = Eij(a)Eij(b), we have

Di =
hY

j=1

Ej(bj + Zfj)

=
hY

j=1

Ej(bj)E
j(Zfj)

= [E1(b1)E
1(Zf1)][E

2(b2)E
2(Zf2)] � � � [Eh(bh)E

h(Zfh)]

= [C1E
1(Zf1)][C

�1
1 C2E

2(Zf2)] � � � [C�1
h�1ChE

h(Zfh)]

=
hY

j=1

CjE
j(Zfj)C

�1
j :
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Now in the same way as in the proof of Lemma 4.1.4 and Corollary 4.1.5, we can write

CjE
j(Zfj)C

�1
j as a product of Cohn-type matrices, i.e. for any given j 2 f1; : : : ; hg, let

v =

0BBB@
v1
...

vn

1CCCA be the sj-th column vector of Cj . Then

CjEsj tj(Zfj)C
�1
j =

Y
1�
<��n

[I+ v �Zfj � a
�(v
e� � v�e
)]

for some a
� 2 Rri [X; Y ]. Also, we can �nd a natural number d such that

v
 =
v0

rdi
; a
� =

a0
�
rdi

; fj =
f 0j
rdi

for some v0
 ; a0
� 2 R[X; Y ]; f 0j 2 R[X; Y; Z]. Now, replacing Z by r4di g, we see that all

the Cohn-type matrices in the above expression for CjE
j(Zfj)C

�1
j have denominator-free

entries. Therefore,

CjE
j(r4di gfj)C

�1
j 2 En(R[X; Y ]):

Since this is true for each j, we conclude that for a su�ciently large d,

Di(X; Y; r
d
i g) =

hY
j=1

CjE
j(rdi gfj)C

�1
j 2 En(R[X; Y ]):

Now, setting Y = c proves the claim, and completes the proof of the theorem. 2

4.3 Reduction to SL3

Let A 2 SLn(k[x]) with n � 3, and let v be its last column vector. Then v is

unimodular. (Recall that the cofactor expansion along the last column gives a required re-

lation.) Now, if we can reduce v to en = (0; 0; : : : ; 0; 1)t by applying elementary operations,

i.e. if we can �nd B 2 En(k[x]) such that Bv = en, then

BA =

0BBBBB@
0

~A
...

0

p1 : : : pn�1 1

1CCCCCA



41

for some ~A 2 SLn�1(k[x]) and pi 2 k[x] for i = 1; : : : ; n� 1. Hence,

BAEn1(�p1) � � �En(n�1)(�pn�1) =

 ~A 0

0 1

!
:

Therefore, our problem of expressing A 2 SLn(k[x]) as a product of elementary matrices

is now reduced to the same problem for ~A 2 SLn�1(k[x]). By repeating this process, we

get to the problem of expressing A =

0BB@
p q 0

r s 0

0 0 1

1CCA 2 SL3(k[x]) as a product of elementary

matrices, which is the subject of the next section.

In this section, we will develop an algorithm for �nding elementary operations

that reduce a given unimodular column vector v 2 (k[x])n to en. Also, as a corollary to

this Elementary Column Property, we give an algorithmic proof of the Unimodular Column

Property which states that for any given unimodular column vector v 2 (k[x])n, there exists

a unimodular matrix B, i.e. a matrix with constant nonzero determinant, over k[x] such

that Bv = en. Therefore, our algorithm gives another constructive proof of the Quillen-

Suslin theorem.

De�nition 4.3.1 For a ring R, Umn(R) = fn-dimensional unimodular column vectors

over Rg.

As in Section 4.2, let R = k[x1; : : : ; xm�1] and X = xm. Then k[x1; : : : ; xm] =

R[X ]. By identifying A 2 SL2(R[X ]) with

0@ A 0

0 In�2

1A 2 SLn(R[X ]), we can regard

SL2(R[X ]) as a subgroup of SLn(R[X ]). As before, we use the notation A = A(X) and

v = v(X) to emphasize that we are viewing the entries of a matrix A or a vector v as

polynomials in one variable. Now consider the following lemma and theorem, which will be

used to prove the Elementary Column Property.

Lemma 4.3.2 Let f1; f2; b; d 2 R[X ] and let r 2 R be the resultant of f1 and f2. Then

there exists B 2 SL2(R[X ]) such that

B

 
f1(b)

f2(b)

!
=

 
f1(b+ rd)

f2(b+ rd)

!
:

Proof: By a property of the resultant of two polynomials, we can �nd g1; g2 2 R[X ] such

that f1g1 + f2g2 = r. (See [CLO92, Prop. 3.5.9] or [GM80, p. 28] for details.) Let
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s1; s2; t1; t2 2 R[X; Y; Z] be the polynomials de�ned by

f1(X + Y Z) = f1(X) + Y s1(X; Y; Z);

f2(X + Y Z) = f2(X) + Y s2(X; Y; Z);

g1(X + Y Z) = g1(X) + Y t1(X; Y; Z);

g2(X + Y Z) = g2(X) + Y t2(X; Y; Z):

Now, de�ne

B11 = 1 + s1(b; r; d) � g1(b) + t2(b; r; d) � f2(b);
B12 = s1(b; r; d) � g2(b)� t2(b; r; d) � f1(b);
B21 = s2(b; r; d) � g1(b)� t1(b; r; d) � f2(b);
B22 = 1 + s2(b; r; d) � g2(b) + t1(b; r; d) � f1(b):

Then one checks easily that B :=

0@ B11 B12

B21 B22

1A satis�es the desired property and that

B 2 SL2(R[X ]). 2

Theorem 4.3.3 Suppose v(X) =

0BBB@
v1(X)

...

vn(X)

1CCCA 2 Umn(R[X ]), and v1(X) is monic in X.

Then there exists B1 2 SL2(R[X ]) and B2 2 En(R[X ]) such that B1B2 � v(X) = v(0).

Proof: Let a1 = (0; : : : ; 0) 2 km�1, and M1 = fg 2 k[x1; : : : ; xm�1] j g(a1) = 0g be

the corresponding maximal ideal. We identify residue �eld R=M1 with k. By hypothesis

v 2 (R[X ])n is a unimodular column vector, so its image �v in (k[X ])n = ((R=M1)[X ])n is

also unimodular. Since k[X ] is a principal ideal ring, the ideal h�v2; : : : ; �vni is generated by a

single element, G1 = gcd(�v2; : : : ; �vn). Then �v1 and G1 generate the unit ideal in k[X ] since

�v1; �v2; : : : ; �vn generate the unit ideal. Using the Euclidean division algorithm for k[X ], we

can �nd E1 2 En�1(k[X ]) such that

E1

0BBB@
�v2
...

�vn

1CCCA =

0BBBBBB@
G1

0
...

0

1CCCCCCA :
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Since we may regard E1 as an element of En(R[X ]) and G1 as an element of R[X ]. Then,

0@ 1 0

0 E1

1Av =

0BBBBBBBBBB@

v1

G1 + q12

q13
...

q1n

1CCCCCCCCCCA
for some q12; : : : ; q1n 2M1[X ]. Now, de�ne r1 2 R by r1 = ResX(v1; G1+q12), the resultant

of v1 and G1 + q12 with respect to X , and �nd f1; h1 2 R[X ] such that

f1 � v1 + h1 � (G1 + q12) = r1:

Since v1 is monic, and �v1 and G1 2 k1[X ] generate the unit ideal, we have

�r1 = ResX(v1; G1 + q12)

= ResX(�v1; G1)

6= 0:

Therefore, r1 =2 M1. Denote an algebraic closure of k by �k. Inductively, let aj 2 �km�1 be

a common zero of r1; : : : ; rj�1 and Mj be the corresponding maximal ideal of R for each

j � 2. De�ne rj =2 Mj in the same way as above. De�ne also Ej 2 En�1(kj [X ]); Gj 2
kj [X ]; fj; hj 2 R[X ], and qj2; : : : ; qjn 2Mj [X ] in an analogous way. As we saw in the proof

of Theorem 3.1, there is a �nite l such that r1R+ � � �+ rlR = R. Find gi's in R such that

r1g1 + � � �+ rlgl = 1. Now, de�ne b0; b1; : : : ; bl 2 R[X ] by

b0 = 0

b1 = r1g1X

b2 = r1g1X + r2g2X
...

bl = r1g1X + r2g2X + � � �+ rlglX = X:

Then these bi's satisfy the recursive relations:

b0 = 0

bi = bi�1 + rigiX for i = 1; : : : ; l:
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Claim: For each i 2 f1; : : : ; lg, there exist Bi 2 SL2(R[X ]) and B0
i 2 En(R[X ]) such that

v(bi) = BiB
0
iv(bi�1).

Using this and the fact that En(R[X ]) �SL2(R[X ])� SL2(R[X ]) �En(R[X ]) (Corol-

lary 4.1.5), we get inductively

v(X) = v(bl)

= BlB
0
lv(bl�1)

...

= BB0v(b0)

= BB0v(0)

for some B 2 SL2(R[X ]) and B0 2 En(R[X ]). Therefore, it is enough to prove the above

claim.

Proof of claim: Let ~Gi = Gi + qi2. Then

 
1 0

0 Ei(X)

!
v(X) =

0BBBBBBBB@

v1(X)

~Gi(X)

qi3(X)
...

qin(X)

1CCCCCCCCA
:

For 3 � j � n, we have

qij(bi)� qij(bi�1) 2 (bi � bi�1) �R[X ] = rigiX �R[X ]:

Since ri 2 R doesn't depend on X , we have

ri = fi(X)v1(X) + hi(X) ~Gi(X)

= fi(bi�1)v1(bi�1) + hi(bi�1) ~Gi(bi�1)

= a linear combination of v1(bi�1) and ~Gi(bi�1) over R[X ]:

Therefore, we see that for 3 � j � n,

qij(bi) = qij(bi�1) + a linear combination of v1(bi�1) and ~Gi(bi�1) over R[X ]:
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Hence we can �nd C 2 En(R[X ]) such that

C

 
1 0

0 Ei(bi�1)

!
v(bi�1) = C

0BBBBBBBB@

v1(bi�1)
~Gi(bi�1)

qi3(bi�1)
...

qin(bi�1)

1CCCCCCCCA
=

0BBBBBBBB@

v1(bi�1)
~Gi(bi�1)

qi3(bi)
...

qin(bi)

1CCCCCCCCA
:

Now, by Lemma 4.3.2, we can �nd ~B 2 SL2(R[X ]) such that

~B

 
v1(bi�1)
~Gi(bi�1)

!
=

 
v1(bi)

~Gi(bi)

!
:

Finally, de�ne B 2 SLn(R[X ]) as follows:

B =

 
1 0

0 Ei(bi)�1

! ~B 0

0 In�2

!
�C �

 
1 0

0 Ei(bi)

!
:

Then this B satis�es

Bv(bi�1) = v(bi);

and, by using the normality of En(R[X ]) again, we see that

B 2 SL2(R[X ])En(R[X ]);

which proves the claim and completes the proof of the theorem. 2

Remark 4.3.4 Note that the groups GLn(k[x]) and En(k[x]) act on the set Umn(k[x]) by

matrix multiplication. If the group action of En(k[x]) on Umn(k[x]) is transitive, then we

get a desired algorithm in the following way: For any n-dimensional unimodular column

vectors v;v0 over k[x], we can �nd B 2 En(k[x]) such that Bv = v0. Now, let v0 = en.

Theorem 4.3.5 (Elementary Column Property) The group En(k[x]) acts transitively

on the set Umn(k[x]), for n � 3.

Corollary 4.3.6 (Unimodular Column Property) The group GLn(k[x]) acts transi-

tively on the set Umn(k[x]), for n � 2.

Proof: For n � 3, the Elementary Column Property clearly implies the Unimodular Column

Property since a product of elementary matrices is always unimodular, i.e. has a constant

nonzero determinant.
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If n = 2, for any v = (v1; v2)
t 2 Um2(k[x]), by using Buchberger's algorithm for

computing a Gr�obner basis, we can �nd g1; g2 2 k[x] such that v1g1 + v2g2 = 1. Then the

unimodular matrix Uv =

 
v2 �v1
g1 g2

!
satis�es Uv � v = e2. Therefore we see that, for any

v;w 2 Um2(k[x]), U
�1
w Uv � v = w where U�1

w Uv 2 GL2(k[x]). 2

Proof of Theorem 4.3.5: Since the Euclidean division algorithm for k[x1] proves the

theorem for m = 1, we may assume by induction the statement of the theorem for R =

k[x1; : : : ; xm�1]. Let X = xm and v =

0BB@
v1
...

vn

1CCA 2 Umn(R[X ]). We may also assume that v1

is monic by applying a change of variables (as in the proof of the Noether Normalization

Lemma). Now by Theorem 4.3.3, we can �nd B1 2 SL2(R[X ]) and B2 2 En(R[X ]) such

that

B1B2 � v(X) = v(0) 2 R:

Then by the inductive hypothesis, we can �nd B0 2 En(R) such that

B0 � v(0) = en:

Therefore, we get

v = B�1
2 B�1

1 B0�1en:

By the normality of En(R[X ]) in SLn(R[X ]) (Corollary 4.1.5), we can write B�1
1 B0�1 =

B00B�1
1 for some B00 2 En(R[X ]). Since

B�1
1 =

0BBBBBBBBBB@

p q 0 : : : 0

r s 0 : : : 0

0 0
...

... In�2
0 0

1CCCCCCCCCCA
for some p; q; r; s 2 R[X ], we have

v = B�1
2 B�1

1 B0�1en

= (B�1
2 B00)B�1

1 en
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= (B�1
2 B00)

0BBBBBBBB@

p q 0 : : : 0

r s 0 : : : 0

0 0
...

... In�2
0 0

1CCCCCCCCA

0BBBBBBBB@

0

0
...

0

1

1CCCCCCCCA
= (B�1

2 B00)en

where B�1
2 B00 2 En(R[X ]). Since we have this relationship for any v 2 Umn(R[X ]), we get

the desired transitivity. 2

4.4 Realization Algorithm for SL3(R[X])

Now, we give a realization algorithm for the matrices of the form:0BB@
p q 0

r s 0

0 0 1

1CCA 2 SL3(k[x]):

Again, by applying a change of variables, we may assume that p 2 k[x] = k[x1; : : : ; xm] is

a monic polynomial in the last variable xm. In view of the Quillen Induction Algorithm

developed in Section 4.2, we see that it is enough to develop a realization algorithm for

matrices of the form

0BB@
p q 0

r s 0

0 0 1

1CCA 2 SL3(R[X ]), in the case where R is a commutative local

ring and p 2 R[X ] is a monic polynomial. A realization algorithm for this case was obtained

by M.P. Murthy [GM80, Lemma 3.6]. We present below a slightly modi�ed version.

Lemma 4.4.1 Let L be a commutative ring, and a; a0; b 2 L. Then, the following are true.

1. (a; b) and (a0; b) are unimodular over L if and only if (aa0; b) is unimodular over L.

2. For any c; d 2 L such that aa0d � bc = 1, there exist c1; c2; d1; d2 2 L such that

ad1 � bc1 = 1; a0d2 � bc2 = 1, and0BB@
aa0 b 0

c d 0

0 0 1

1CCA �

0BB@
a b 0

c1 d1 0

0 0 1

1CCA �
0BB@
a0 b 0

c2 d2 0

0 0 1

1CCA (mod E3(L)):
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Proof: (1) If (aa0; b) is unimodular over L, then (a; b) and (a0; b) are clearly unimodular.

Suppose, now, that (a; b) and (a0; b) are unimodular over L. Then, we can �nd

h1; h2; h
0
1; h

0
2 2 L such that h1a+ h2b = 1; h01a

0+ h02b = 1. Now, by letting g1 = h1h
0
1; g2 =

h02 + a0h2h01, we get g1aa0 + g2b = 1.

(2) If c; d 2 L satisfy aa0d � bc = 1, then (aa0; b) is unimodular, which in turn implies

that (a; b) and (a0; b) are unimodular. Therefore, we can �nd c1; d1; d1; d2 2 L such that

ad1 � bc1 = 1 and a0d2 � bc2 = 1. For example, we can let

c1 = c2 = c; d1 = a0d; d2 = ad:

Now, consider0BB@
aa0 b 0

c d 0

0 0 1

1CCA = E21(cd1d2 � d(c2 + a0c1d2))

0BB@
aa0 b 0

c2 + a0c1d2 d1d2 0

0 0 1

1CCA
= E21(cd1d2 � d(c2 + a0c1d2))E23(d2 � 1)E32(1)E23(�1)

�

0BB@
a b 0

c1 d1 0

0 0 1

1CCAE23(1)E32(�1)E23(1)

0BB@
a0 b 0

c2 d2 0

0 0 1

1CCA
�E23(�1)E32(1)E23(a� 1)E31(�a0c1)E32(�d1):

This explicit expression shows that0BB@
aa0 b 0

c d 0

0 0 1

1CCA �

0BB@
a b 0

c1 d1 0

0 0 1

1CCA �
0BB@
a0 b 0

c2 d2 0

0 0 1

1CCA (mod E3(L)):

2

Theorem 4.4.2 Suppose (R;M) is a commutative local ring, and A =

0BB@
p q 0

r s 0

0 0 1

1CCA 2

SL3(R[X ]) where p is monic. Then A is realizable over R[X ].

Proof: We induct on deg(p). If deg(p) = 0, then p = 1, and A is clearly realizable. More

explicitly, we have

A = E21(r � 1)E21(1)E12(1� p+ q):
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Now, suppose deg(p) = d > 0 and deg(q) = l. Since p 2 R[X ] is monic, we can �nd

f; g 2 R[X ] such that

q = fp+ g; deg(g) < d:

Then,

AE12(�f) =

0BB@
p q � fp 0

r s � fr 0

0 0 1

1CCA =

0BB@
p g 0

r s� fr 0

0 0 1

1CCA :

Hence we may assume deg(q) < d. Now, we note that either p(0) or q(0) is a unit in

R, otherwise, we would have p(0)s(0) � q(0)r(0) 2 M, which contradicts the fact that

ps� qr = p(0)s(0)� q(0)r(0) = 1. Consider these two cases separately.

� Case 1: Suppose that q(0) is a unit.

We have

AE21(�q(0)�1p(0)) =

0BB@
p� q(0)�1p(0)q q 0

r � q(0)�1p(0)s s 0

0 0 1

1CCA :

So, we may assume p(0) = 0. Now, write p = Xp0. Then, by Lemma 4.4.1, we can

�nd c1; d1; c2; d2 2 R[X ] such that Xd1� qc1 = 1; p0d2 � qc2 = 1 and0BB@
p q 0

r s 0

0 0 1

1CCA �

0BB@
X q 0

c1 d1 0

0 0 1

1CCA �
0BB@
p0 q 0

c2 d2 0

0 0 1

1CCA (mod E3(R[X ])):

Since p0 is monic and deg(p0) < d, the second matrix on the right hand side is realizable

by the induction hypothesis. As for the �rst matrix, we may assume that q is a unit of

R since we can assume deg(q) < deg(X) = 1 and q(0) is a unit. Then invertibility of

q leads easily to an explicit factorization of

0BB@
X q 0

c1 d1 0

0 0 1

1CCA into elementary matrices.

� Case 2: Suppose that q(0) is not a unit.

First we claim that there exist p0; q0 2 R[X ] such that deg(p0) < l; deg(q0) < d and

p0p � q0q = 1. To prove this claim, we let s 2 R be the resultant of p and q. Then

there exist f; g 2 R[X ] with deg(f) < l; deg(g) < d such that fp + gq = s. Since
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p is monic and p; q 2 R[X ] generate the unit ideal, we see that s =2 M, hence s

is a unit in R. Now, setting p0 = f=s; q0 = �g=s proves the claim. Also note that

p0(0)p(0)�q0(0)q(0) = 1 and q(0) 2M implies p0(0) =2M. This means that q(0)+p0(0)

is a unit. Now, we have that0BB@
p q 0

r s 0

0 0 1

1CCA = E21(rp
0 � sq0)

0BB@
p q 0

q0 p0 0

0 0 1

1CCA

= E21(rp
0 � sq0)E12(�1)

0BB@
p+ q0 q + p0 0

q0 p0 0

0 0 1

1CCA :

Note that the last matrix on the right hand side is realizable by Case 1, since q(0) +

p0(0) is a unit and deg(p+ q0) = d. Thus,

0BB@
p q 0

r s 0

0 0 1

1CCA is also realizable.

2

4.5 Eliminating Redundancies in the Realization Algorithm

When applied to a speci�c polynomial matrix, the realization algorithm obtained

in this chapter will produce a factorization into elementary polynomial matrices, but this

factorization may not have minimal length. The Steinberg relations [Mil71, p. 39] from

algebraic K{theory provide a method for improving a given factorization by eliminating

some of the unnecessary factors. The Steinberg relations which elementary matrices satisfy

are

1. Eij(0) = I ;

2. Eij(a)Eij(b) = Eij(a+ b);

3. For i 6= l, [Eij(a);Ejl(b)] = Eij(a)Ejl(b)Eij(�a)Ejl(�b) = Eil(ab);

4. For j 6= l, [Eij(a);Eli(b)] = Eij(a)Eli(b)Eij(�a)Eli(�b) = Elj(�ab);

5. For i 6= p, j 6= l, [Eij(a);Elp(b)] = Eij(a)Elp(b)Eij(�a)Elp(�b) = I:

The realization algorithm developed in this chapter can be implemented together with a re-

dundancy elimination algorithm based on the above set of relations using existing computer

algebra systems.
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Chapter 5

A Realization Algorithm for

SL2(k[x1; : : : ; xm])

5.1 Introduction

Suslin's stability theorem established in the previous chapter fails for n = 2,

and a counter-example was constructed by P.M. Cohn in [Coh66], i.e. the Cohn matrix, 
1 + xy x2

�y2 1� xy

!
2 SL2(C [x; y]); was shown to be nonrealizable. On this matter, L. Tol-

huizen, H. Holmann and A. Kalker have developed an algorithm in [THK95] that determines

precisely when a given matrix in SL2(k[x]) := SL2(k[x1; : : : ; xm]) is realizable, and if it is,

expresses it as a product of elementary matrices.

In this chapter, we will develop another algorithm for the same task based on

degree lexicographic order on the polynomial ring k[x]. Actually, usual lexicographic order

doesn't work for our purpose since it does not necessarily guarantee the termination of our

algorithm in a �nite number of steps.

5.2 Main Theorem

For an p � q matrix A = (aij) 2 Mpq(k[x]), we can de�ne its rank, viewing it

as a matrix over k(x), the �eld of quotients of k[x]. Also, for a �xed monomial order on

Mono(k[x]), we de�ne the matrix of its leading terms as lt(A) := (lt(aij)).

Now, the following theorem gives a characterizing property for the realizable 2� 2
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matrices.

Theorem 5.2.1 Suppose that A =

 
p q

r s

!
2 SL2(k[x]) is realizable, and �x a monomial

order on Mono(k[x]). Then, either the matrix of its leading terms, lt(A), is of rank 2, or

one of its row vectors is a monomial multiple of the other row.

Remark 5.2.2 In the case of the Cohn matrix A =

 
1 + xy x2

�y2 1� xy

!
, note that lt(A) = 

xy x2

�y2 �xy

!
is of rank 1, but neither of the two row vectors (xy; x2) = x � (y; x) and

(�y2;�xy) = �y � (y; x) is a monomial multiple of the other.

Proof: Since A is realizable, we can write A as a product of elementary matrices. Let

A = E1 � � �El be such a representation without a trivial factor , i.e. for each i = 1; : : : ; l,

Ei is either E12(f) or E21(f) for some f 6= 0 2 k[x]. Now, we will do an induction on l.

If l = 1, the statement of the theorem is trivial since we have either A =

 
1 q

0 1

!

or A =

 
1 0

r 1

!
for some q; r 2 k[x], and in both cases, lt(A) is of rank 2.

Now let

A0 = E1 � � �Ek�1

=

 
a b

c d

!
2 SL2(k[x]):

Suppose that the rank of lt(A0) is 1. Then by the induction hypothesis, we may assume

without loss of generality that

(lt(a); lt(b)) = h � (lt(c); lt(d))

for some nonzero monomial h 2 k[x].

Now, we have two cases:

A =

 
p q

r s

!
= A0E12(f) =

 
a b+ fa

c d+ fc

!

or

A =

 
p q

r s

!
= A0E21(f) =

 
a+ fb b

c+ fd d

!
:
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In the �rst case, det(A) = 1 implies

lt(c) � lt(b+ fa) = lt(a) � lt(d+ fc)

= h � lt(c) � lt(d+ fc):

Therefore, lt(b+ fa) = h � lt(d+ fc).

Now,

(lt(r); lt(s)) = (lt(c); lt(d+ fc))

and

(lt(p); lt(q)) = (lt(a); lt(b+ fa))

= (h � lt(c); h � lt(d+ fc))

= h � (lt(c); lt(d+ fc))

= h � (lt(r); lt(s))

as desired.

The same method gives the same conclusion in the second case.

Now, to complete the proof, we have to consider the case when

lt(A0) =

 
lt(a) lt(b)

lt(c) lt(d)

!
;

is of rank 2.

In this case, note that both ad and bc are constants, otherwise, detA(0) = 1 implies

det(lt(A0)) = 0 contradicting rank(lt(A0)) = 2. So, let us assume a is a constant. If one

of b or d is also a constant, then A0E12(f) =

 
a b+ fa

c d+ fc

!
and A0E21(f) =

 
a+ fb b

c+ fd d

!
always have at least one constant entry, so we are done. Hence we assume that both of b

and d are nonconstants.

In this case, note that a 6= 0 and c 6= 0, otherwise det(A0) = ad� bc = 1 can not

be satis�ed.

Claim: lt(b) j lt(d)
det(A) = 1 implies a � lt(d) = lt(b)lt(c), and a 6= 0. So, lt(d) = (a�1lt(c)) � lt(b).

There are two cases to consider, again.

A =

 
p q

r s

!
= A0E12(f) =

 
a b+ fa

c d+ fc

!
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or

A =

 
p q

r s

!
= A0E21(f) =

 
a+ fb b

c+ fd d

!
:

In the �rst case, p = a is a constant entry of A, so we are done.

In the second case, note that lt(a) � lt(c) < lt(d) since a � lt(d) = lt(b)lt(c) and

b is not a constant. Hence, we have lt(c + fd) = lt(fd). Recall we are assuming f 6= 0.

Therefore,

(lt(r); lt(s)) = (lt(f) � lt(d); lt(d)) = lt(d) � (lt(f); 1)

and

(lt(p); lt(q)) = (lt(f) � lt(b); lt(b)) = lt(b) � (lt(f); 1) = h � (lt(r); lt(s))

as desired. 2

5.3 Realization Algorithm for SL2(k[x1; : : : ; xm])

Now, let us see how to obtain a realization algorithm for E2(k[x]) from the Theo-

rem 5.2.1 of the previous section.

If one of the entries of A :=

 
p q

r s

!
2 SL2(k[x]), say p, is a constant, then A is

always realizable in the following way.

� If p = 0, then det(A) = �rq = 1 necessarily implies r; q are invertible. Using the

invertibility of r, we easily get

A =

 
0 q

r s

!
= E12(�r�1)E21(r)E12(q + r�1s):

� If p 6= 0, then using the invertibility of p, we get

A = E21(p
�1(r � 1))E12(p� 1)E21(1)E12(p

�1(1� p+ q)):

De�nition 5.3.1 For B= (bij) 2 SLn(k[x]), we de�ne deg(B) 2 (Z�0)m by

deg(B) = max
1�i;j�n

fdeg(bij)g 2 (Z�0)m:

Remark 5.3.2 If deg(B) = (0; : : : ; 0) 2 (Z�0)m, then clearly all the entries of B are

constants.
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Now, out of a given A 2 SL2(k[x]), we try to make a matrix with a constant entry by

applying elementary operations. If A =

 
p q

r s

!
2 SL2(k[x]) doesn't have any constant

entries, then compare the two vectors (lt(p); lt(q)) and (lt(r); lt(s)).

� Step 1: If neither of them is a monomial multiple of the other, then by the Theo-

rem 5.2.1, A is not realizable. Otherwise, go to step 2.

� Step 2: Assume without loss of generality that

(lt(p); lt(q)) = h � (lt(r); lt(s))

for some monomial h 2 k[x]. There are two cases to consider. If h is a constant,

replace A by E12(�h)A and go to step 1. Otherwise, go to step 3.

� Step 3: Note that the matrix E12(�h)A =

 
p� hr q � hs

r s

!
has a strictly smaller

degree than A. Now replace A by E12(�h)A, and see if it has a constant entry. If it

does, then terminate the process. Otherwise go to step 1 with the new A.

If any intermediate matrix in the above process is not realizable by step 1, then A

itself is not realizable. Otherwise, since the above procedure strictly reduces the degree of

A each time and there are only �nitely many elements of (Z�0)m between 0 2 (Z�0)m and

deg(A) 2 (Z�0)m, we get a matrix in SL2(k[x]) with a constant entry after a �nite number

of steps. By keeping track of all the intermediate matrices, we �nd elementary matrices

E1; : : : ;El over k[x] such that A = E1 � � �El.

Remark 5.3.3 With respect to lexicographic order, there are in�nitely many elements of

(Z�0)m between 0 2 (Z�0)m and deg(A) 2 (Z�0)m for a nonconstant matrixA 2 SL2(k[x]).

Therefore, even though the above procedure strictly reduces the degree of A each time, we

may not get to a matrix with constant entry in a �nite number of steps.
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Chapter 6

Extensions to Laurent Polynomial

Rings

6.1 Polynomial Rings and Laurent Polynomial Rings

So far, we have studied unimodular matrices exclusively over polynomial rings.

We now want to study unimodular matrices over Laurent polynomial rings, and see the

possibility of extending the results of the preceding chapters to the case of Laurent polyno-

mial rings. Therefore, in this chapter, we develop an algorithm that transforms a Laurent

polynomial column vector to a polynomial column vector while preserving unimodularity.

Let n � 2 be a nonzero integer.

Algorithm 6.1: LaurentToPoly

Input: v(x) 2 (k[x�1])n, a Laurent polynomial column vector

Output: x! y, a change of variables
T(x) 2 GLn(k[x�1]), a square unimodular Laurent polynomial matrix

Speci�cation: (1) v̂(y) := T(x)v(x) 2 (k[y])n is a polynomial column vector in
the new variable y

(2) v(x) is unimodular over k[x�1] if and only if v̂(y) is unimodular
over k[y]

This process is very powerful essentially because the unimodularity of the Laurent

polynomial vector v(x) 2 (k[x�1])n is converted to the unimodularity of the polynomial

vector v̂(y) 2 (k[x])n.
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Algorithm 6.2: ReduceToSingle

Input: An Algorithm for the Unimodular Column Property,
i.e. an algorithm that completes any unimodular column vector
v = (f1; : : : ; fp)

t 2 (k[x�1])p to a p� p unimodular matrix over k[x�1]

Output: A general Unimodular Completion Algorithm

Now we can use this process to give an algorithmic proof of the following important

result.

Corollary 6.1.1 (Laurent polynomial analogue of Quillen-Suslin Theorem) Let

B be a p � q unimodular matrix, p � q, with Laurent polynomial entries. Then B can be

completed to a square p� p unimodular matrix �B by adding p� q columns to the matrix B.

Proof:

Single Column Case: For a given unimodular Laurent polynomial vector v 2 (k[x�1])n,

one can use the algorithm UnimodCompletion to complete the unimodular polynomial

vector v̂(y) 2 (k[y])n to a square unimodular polynomial matrix Â 2 Mn(k[y]). Then,

T�1Â 2 k[x�1] expressed in terms of the original variables x := (x1; : : : ; xm) is a unimod-

ular completion of v 2 (k[x�1])n.

General Case: We reduce this to a single column case.

For a given p � q (p � q) unimodular matrix A, consider its �rst column vector

v := A

0BBBBB@
1

0
...

0

1CCCCCA. By using the input algorithm, we can complete v to a p � p unimodular

matrix B and from B

0BBBBB@
1

0
...

0

1CCCCCA = v, we have

B�1v =

0BBBBB@
1

0
...

0

1CCCCCA :
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This implies

B�1A =

0BBBBB@
1 h2 � � � hq

0
... C

0

1CCCCCA :

for some h2; : : : ; hq 2 k[x�1], and a (p� 1)� (q � 1) matrix C.

Now, C, the cofactor of (B�1A)11 = 1, is also unimodular, and by induction, we

can complete C to a (p� 1)� (p� 1) unimodular matrix �C. Then the p� p matrix

�A = B

0BBBBB@
1 h2 � � � hq 0 � � �0
0
... �C

0

1CCCCCA
is a unimodular completion of A. 2

We start with generalizing the Noether Normalization Lemma to the case of Lau-

rent polynomial rings.

6.2 Laurent analogue of Noether Normalization

The Noether Normalization Lemma states that, for any given polynomial f 2 k[x],

by de�ning new variables y1; : : : ; ym by x1 = y1; x2 = y2 + yl1; : : : ; xm = ym + yl
m�1

1 for a

su�ciently large l 2 N and regarding f as a polynomial in the new variables y1; : : : ; ym, we

can make f a monic polynomial in the �rst variable y1.

Now, we extend this to the Laurent polynomial ring k[x�1] = k[x�11 ; : : : ; x�1m ].

Algorithm 6.3: LaurentNoether

Input: f 2 k[x�1]

Output: x! y, a change of variables

Speci�cation: the leading and the lowest coe�cients of f 2 k[y�1] with respect to
the �rst variable y1 are units in the ring k[y�12 ; : : : ; y�1m ]

Theorem 6.2.1 (Laurent polynomial analogue of Noether Normalization) Let

f 2 k[x�1] be a Laurent polynomial, and de�ne new variables y1; : : : ; ym by x1 = y1; x2 =
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y2y
l
1; : : : ; xm = ymy

lm�1
1 . Then, for a su�ciently large l 2 N, the leading and the low-

est coe�cients of f 2 k[x�1] with respect to the �rst variable y1 are units in the ring

k[y�12 ; : : : ; y�1m ].

Proof: Since f is a �nite sum of monomials, we can write

f =
X

(i1;:::;im)2I
ai1;:::;imx

i1
1 � � �ximm

where I is a �nite index set.

De�ning new variables y1; : : : ; ym by x1 = y1; x2 = y2y
l
1; : : : ; xm = ymy

lm�1
1 , and

letting i = (i1; : : : ; im) and l = (1; l; l2; : : : ; lm�1), we have

f =
X
i2I

aix
i1
1 � � �ximm

=
X
i2I

aiy
i1
1 (y

i2
2 y

i2l
1 ) � � �(yimm yimlm�1

1 )

=
X
i2I

aiy
i1+i2l+���imlm�1

1 yi22 � � �yimm

=
X
i2I

aiy
i�l
1 yi22 � � �yimm :

Now, as in the proof of the usual Noether Normalization Lemma, by choosing a

su�ciently large l, we can make the integers i � l for i 2 I all distinct. Let

p = minfi � l j i 2 Ig
q = maxfi � l j i 2 Ig:

Then we can write

f = bpy
p
1 + bp+1y

p+1
1 + � � �+ bqy

q
1

where all the bi's are units of k[y
�1
2 ; : : : ; y�1m ], i.e. monomials. 2

6.3 Description of the Algorithm

Let n � 2, S = k[x�12 ; : : : ; x�1m ], and v = (v1; : : : ; vn)t 2 (k[x�1)n = (S[x1])n. By

using the algorithm LaurentNoether, we may assume that the leading and the lowest

coe�cients of v1 w.r.t. x1 are invertible elements of S. Write

v1 = apx
p
1 + ap+1x

p+1
1 + � � �+ aqx

q
1

where ap and aq are units of S.
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� Step 1: Using the invertibility of ap 2 S, de�ne D 2 Mn(S[x
�1
1 ]) and v0 2 (S[x�11 ])n

by

D :=

0BB@
a�1p x

�p
1 0

0 apx
p
1

In�2

1CCA
v0 = (v01; : : : ; v

0
n)

t := Dv:

Note here that the matrix

D = E21(apx
p
1)E12(1� a�1p x�p1 )E21(1)E12(1� apx

p
1)

is realizable over S[x�11 ], and

v01 = a�1p x
�p
1 v1 = 1+ ap+1=apx1 + � � �+ aq=apx

q�p
1

is a polynomial in S[x1].

� Step 2: Since the constant term of v01 2 S[x1] is 1, by adding suitable multiples of

v01 to v0i's, i = 2; : : : ; n, we can make v02; : : : ; v0n polynomials in S[x1] whose constant

terms are zero, i.e. �nd E 2 En(k[x
�1]) such that

Ev0 = v̂ =

0BB@
v̂1
...

v̂n

1CCA 2 (S[x1])
n;

where v̂1 � 1 mod x1 and v̂i � 0 mod x1 for all i = 2; : : : ; n.

� Step 3: Choose a su�ciently large number l 2 N so that, with the following change

of variables,

x1 = y1 � (y2 � � �ym)l

x2 = y2
...

xm = ym;

all the v̂i's become polynomials in k[y]. Then v̂1 � 1 mod y1 � � �ym.
Now give the transformation matrix T := ED as the output.
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Lemma 6.3.1 With the notations as in the above, v(x) is unimodular over k[x�1] if and

only if v̂(y) is unimodular over k[y].

Proof: ((=) The unimodularity of v̂(y) over k[y] trivially implies the unimodularity of

v̂(x) over k[x�1]. This, together with the unimodularity of T 2 Mn(k[x
�1]) immediately

implies the unimodularity of v(x) = T�1v̂(x) over k[x�1].

(=)) Since v̂ is a unimodular column vector over k[y�1], we can use Gr�obner bases to �nd

h1; : : : ; hn 2 k[y] and k 2 N such that

h1v̂1 + � � �+ hnv̂n = (y1 � � �ym)k:

Since v̂1 � 1 mod y1 � � �ym, we can �nd g 2 k[y] such that

v̂1 = 1 + g � (y1 � � �ym):

Now, de�ne recursively a sequence of polynomials ffi 2 k[y] j i 2 Ng in the following way:

f1 = 1� g � (y1 � � �ym)
fi+1 = (1� g2

i � (y1 � � �ym)2i) � fi:

Then the fi's de�ned in this way satisfy the following property:

f1v̂1 = (1� g � (y1 � � �ym)) � (1 + g � (y1 � � �ym)) = 1� g2 � (y1 � � �ym)2

f2v̂1 = (1� g2 � (y1 � � �ym)2) � f1v̂1 = 1� g4 � (y1 � � �ym)4
...

fiv̂1 = 1� g2
i

(y1 � � �ym)2i:

Let r 2 N be the smallest number such that 2r � k, and de�ne h 2 k[y] by h =

g2
r
(y1 � � �ym)2r�k . Then,

1 = frv̂1 + g2
r

(y1 � � �ym)2r

= frv̂1 + g2
r

(y1 � � �ym)2r�k � (h1v̂1 + � � �+ hnv̂n)

= frv̂1 + h(h1v̂1 + � � �+ hnv̂n)

= (fr + hh1)v̂1 + hh2v̂2 + � � �+ hhnv̂n:

This gives a required unimodular relation. 2
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Chapter 7

Parahermitian Modules and

Paraunitary Groups

7.1 Introduction

Let R be a commutative ring with an involution �, and

G = fxn11 xn22 � � �xnmm j n1; n2; : : :nm 2Zg

be the free abelian group with m generators x1; x2; : : :xm. Then the Laurent polynomial

ring over R,

R[x�1] := R[x�11 ; : : : ; x�1m ] = R[x1; x
�1
1 ; : : : ; xm; x

�1
m ];

as viewed as a group ring R[G], has a natural involution �p that is compatible with �, i.e.

for f =
P
ai1���imxi1 � � �xim with ai1 ���im 2 R, �p(f) =

P
�(ai1���im)x�i1 � � �x�im . One can

consider other (actually 2 more) involutions on R[x�1] that extends �, for one thing, �h

de�ned by �h(f) =
P
�(ai1���im)x

i1 � � �xim . Over the polynomial ring R[x], this polynomial

involution �h jR[x] has been studied in hermitian K-theory for various reasons.

To distinguish the hermitian structure associated with the involution �p from the

one associated with �h, we use the term parahermitian in the �rst case, following its usage

in electrical engineering. The unitary group associated with the involution �p is called the

paraunitary group. The coe�cient ring R for us will mainly be R or C . Among the signal

processing researchers, it is well recognized that an element of this paraunitary group rep-

resents a lossless or energy-preserving system. When m = 0, paraunitary matrices are just
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ordinary unitary matrices and, over R, they are simply a product of rotations (up to sign).

When m = 1 (1-D case), a classi�cation theorem on the paraunitary group was obtained by

P. P. Vaidyanathan [Vai93], which, over R, asserts that rotations (constant unitary matri-

ces) and delays (diagonal matrices with monomial entries) generate the paraunitary group

Un(R[x
�1]). As for its multivariable analogue, while there was a conjecture asserting the

existence of a similar factorization in the multivariable case (e.g. [HP94]), S. Venkataraman

and B. Levy ([VL94]) successfully used the theory of 2-D state space to construct a nu-

merical example of a paraunitary matrix in M2(C [X; Y ]) that is not factorizable into any

smaller paraunitary polynomial matrices.

In the following section 2, the general aspect of the hermitian modules over the

Laurent polynomial ring R[x�1] arising from the involution �p is studied. In the remaining

sections, we study the structure of the paraunitary group Un(C [x
�1]); n � 2, in particular,

its subgroup of the completely separable paraunitary matrices, i.e. those that can be written

as a product of constant unitary matrices and delays. We do this by giving a convex

geometric look at the system of polynomials involved. As an application of these techniques,

we will construct a closed form 2�2 paraunitary matrix that is not factorizable into rotations

and delays.

7.2 Orthogonal Summands of Parahermitian Modules

De�nition 7.2.1 Suppose M is a �nitely generated projective module over a Laurent poly-

nomial ring R[x�1], and h; i is a hermitian sesquilinear form on M w.r.t the involution �p.

We call a pair (M; h; i) a parahermitian space over R[x�1] if h; i is nonsingular, i.e. if
its adjoint h :M!M� de�ned by h(v) = hv; �i for v 2 M is an isomorphism.

On R = C , we take � to be the usual complex conjugation, i.e. �(a) = �a for any

a 2 C . For any f 2 C [x�1], we simply denote �p(f) by ~f .

De�nition 7.2.2 For a matrix H = (hi;j) 2 Mkl(C [x
�1]), its parahermitian conjugate

~H = (h0i;j) 2 Mlk(C [x
�1]) is de�ned by h0i;j = ghj;i. We call a square matrix H 2 Mn(C [x

�1])

parahermitian if it satis�es ~H = H.

Example 7.2.3 Let H1 =

 
1� x 2 + 1=y

y=x 1 + i

!
2 M2(C [x

�1 ; y�1]). Then one gets ~H1 =
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1� 1=x x=y

2 + y 1� i

!
. For H2 =

 
x+ 1=x y + 1=x

1=y + x xy � 1 + 1=xy

!
, one checks easily that ~H2 =

H2. Therefore, H2 is parahermitian while H1 is not. 2

De�nition 7.2.4 A square matrix H 2 Mn(C [x
�1]) is called paraunitary if it satis�es

~H �H = H � ~H = I. The paraunitary group, Un(C [x
�1]), is the group of all the n � n

paraunitary matrices in Mn(C [x
�1]).

Remark 7.2.5 Let H(x1; : : : ; xm) 2 Mn(C [x
�1]) be paraunitary, and (a1; : : : ; am) be a

point on the topological torus S1 � � � � � S1 . Then H(a1; : : : ; am) 2 Mn(C ) is just unitary

as a matrix over C (because �ai = a�1i for any ai 2 S1). This shows that a paraunitary

matrix is a natural Laurent polynomial analogue of a unitary matrix.

Remark 7.2.6 For the free C [x�1]-module (C [x�1])n, de�ne a sesquilinear form h; i on
(C [x�1])n by hv;wi = Pn

i=1 ~viwi where v =
Pn

i=1 viei;w =
Pn

i=1 wiei 2 (C [x�1])n with

fe1; : : : ; eng being the standard basis of (C [x�1])n. Then, ((C [x�1])n; h; i) becomes a para-

hermitian space, and a paraunitary matrix H 2 Un(C [x
�1]) de�nes an isometry from

((C [x�1])n; h; i) onto itself.

One deduces easily that an n�n matrixH over C [x�1] is paraunitary if and only if

its column vectors (or row vectors), v1; : : : ;vn, satisfy the usual orthonormality condition:

hvi;vji = �ij .

Example 7.2.7 Consider H = 1p
2

 
x2 x

xy2 �y2
!
2 M2(C [x�1 ; y�1]). Then, one veri�es

easily that ~H � H = H � ~H = I . So, H is paraunitary. Let v = 1p
2
(x2; xy2)t and w =

1p
2
(x;�y2)t be the column vectors of H. Then,

� hv;vi= 1
2(

1
x2
; 1
xy2

)

 
x2

xy2

!
= 1

� hw;wi= 1
2(

1
x ;

�1
y2
)

 
x

�y2
!
= 1

� hv;wi= 1
2(

1
x2
; 1
xy2

)

 
x

�y2
!
= 0

This shows that v and w are unit norm vectors in C [x�1 ; y�1]2 that are orthogonal

to each other. 2
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Remark 7.2.8 LetM be a submodule of (C [x�1])n that splits as a direct summand. Then

M is projective. Now by the theorem of R. G. Swan [Swa78] that generalizes the Quillen-

Suslin theorem over polynomial rings to the same statement over Laurent polynomial rings,

M is free.

Let fv1; : : : ;vkg be a free basis of M, k � n. Then the adjoint of h; i jM is

described by the k � k matrix (hvi;vji). Therefore, (M; h; i jM) is nonsingular if and only

if det(hvi;vj >) is a unit of C [x�1]. In this case, (M; h; i jM) itself forms a parahermitian

space.

Conversely, if (M; h; i jM) � ((C [x�1])n; h; i) is a parahermitian subspace, then

the following proposition states that M � (C [x�1])n is a projective submodule that splits

as an orthogonal summand.

Proposition 7.2.9 1. Let (U ; h; i) be a parahermitian module over C [x�1] and M be a

submodule of U which is �nitely generated and projective.

If (M; h; i jM) is nonsingular, then

(U ; h; i) = (M; h; i jM) ? (M?; h; i jM?):

2. If there exist parahermitian modules (Ui; h; ii), i = 1; 2, such that

(U ; h; i)' (U1; h; i1) ? (U2; h; i2);

then h; ii, i = 1; 2 are nonsingular if and only if h; i is nonsingular.

Proof: See Lemma 3.6.2 in [Knu91]. 2

From now on, we will identify v =
Pn

i=1 viei 2 (C [x�1])n with the column vector

(v1; : : : ; vn)
t. Also, we will denote the Laurent polynomial ring C [x�1] by A.

Corollary 7.2.10 Let (M; h; i jM) � (An; h; i) be a parahermitian subspace, and v 2 M.

Consider the submodule Av �M of rank 1.

1. Av �M splits as a direct summand if and only if v 2 An is unimodular.

2. (Av; h; i jAv) � (M; h; i) splits as an orthogonal summand if and only if hv;vi 2 R>0.
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Proof: (1) This is the Lemma 3.1.4.

(2) If hv;v >i 2 R>0, then v is clearly unimodular, and thus by the �rst part of this

Corollary, Av is a direct summand of M. Hence, in view of Proposition 7.2.9, we only

need to check if h; i jAv is nonsingular. As we observed in the Remark 7.2.8, h; i jAv is

nonsingular since det(hv;vi) = hv;vi 2 A�.

Conversely, if (Av; h; i jAv) � (M; h; i) splits as an orthogonal summand, then

h; i jAv is nonsingular, which occurs precisely when det(hv;vi) = hv;vi 2 A�. Now, the

following Lemma gives the result. 2

Lemma 7.2.11 Let A = C [x�1]g, and v 2 An. Then,

hv;vi 2 A� () hv;vi 2 R>0:

Proof: One direction ((=) is obvious.
If hv;vi 2 A�, then hv;vi is a nonzero monomial in A = C [x�1] satisfying hv;vi=

hv;vi. Involution invariant nonzero monomials in A are just nonzero real numbers. To show

that hv;vi is a positive real number, write v =
P
vi1���imx

i1 � � �xim with vi1���im 2 Rn. Then,
by an explicit computation, we see that the constant term of hv;vi is equal toP k vi1���im k2
which must be same as the nonzero real number hv;vi. 2

Example 7.2.12 Let A = C [x�1 ; y�1], M = A2, v1 = (1� xy; x2)t 2 M, and v2 = (1 �
xy; 1+xy)t 2 M. Then both of v1 and v2 are unimodular since (1+xy)�(1�xy)+y2 �x2 = 1

and 1
2 � (1� xy) + 1

2 � (1 + xy) = 1. Therefore, both of Av1 and Av2 are direct summands

of M. However, since

hv1;v1i = (1� 1

xy
)(1� xy) +

1

x2
x2 =2 A�;

hv2;v2i = (1� 1

xy
)(1� xy) + (1 +

1

xy
)(1 + xy) = 4 2 A�;

we see that Av1 is not an orthogonal summand ofM while Av2 is. Actually, we claim that

w1 = (�y2; 1 + xy)t and w2 = (1 + xy; 1� xy)t satisfy

Av1 �Aw1 = M
Av2 ? Aw2 = M:

First, in order to show Av1�Aw1 =M, it is enough to show that any (f; g)t 2 M
can be uniquely written in the form, f 0v1 + g0w1, for some f 0; g0 2 A. This translates into
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the following linear system: 
1� xy �y2
x2 1 + xy

! 
f 0

g0

!
=

 
f

g

!
:

This system has unique solution since det

 
1� xy �y2
x2 1 + xy

!
= 1, i.e.

 
1� xy �y2
x2 1 + xy

!
2 GL2(A):

To show Av2 ? Aw2 =M, �rst verify in the same manner that Av2�Aw2 =M,

and then note that

hv2;v2i = 4 2 A�;

hw2;w2i = 4 2 A�;

hv2;w2i = (1� 1=xy)(1 + xy) + (1 + 1=xy)(1� xy) = 0:

7.3 Paraunitary Completion

Suppose that H (n > k) is an n � k paraunitary matrix over A := C [x�1], i.e. a

rectangular matrix with entries in A whose column vectors are orthonormal to each other.

Now the question is,

Can we complete this matrix to a square n�n paraunitary matrix by adding more

columns to it?

Let v1; : : : ;vk 2 An be the column vectors of H, and V � An be the submodule

of An generated by these vectors. Then since V is an orthogonal summand of An, we have

V ? V? = An. Now the above question can be rephrased as,

Can we �nd an orthonormal basis of V??

If the answer to this question is positive, then the members of this orthonormal

basis will be the extra column vectors we can add to H to make a square paraunitary

matrix.

Let Vn(A) be the set of the n-dimensional vectors over A of unit norm, and Wn(A)

be the subset of Vn(A) consisting of the vectors of norm equal to 1. Note that, according

to the Corollary 7.2.10 and Lemma 7.2.11,
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Vn(A) = fv 2 An j <v;v> 2 A�g
= fv 2 An j <v;v> 2 R>0g
= fv 2 An j Av separates as a 1-dimensional orthogonal

summand of Ang: (7.1)

The paraunitary group Un(A) acts on the set Wn(A) by matrix multiplication,

and the above problem of paraunitray completion can also be expressed in terms of the

transitivity of this group action. For v;w 2 Wn(A), we will denote v
Un� w if there exists

U 2 Un(A) such that v = Uw.

Proposition 7.3.1 The paraunitary completion problem has a positive answer if and only

if the above group action of Un(A) on Wn(A) is transitive.

Proof: An easy exercise. 2

Lemma 7.3.2 Any paraunitary matrix H 2 U2(A) can be written uniquely in the form

H =

 
f ��~g
g � ~f

!
(7.2)

for a vector

 
f

g

!
2 A2 of norm 1, and a monomial � 2 A.

Proof: Let the �rst column of H be v =

 
f

g

!
, which is clearly of unit norm. Then by

Corollary 7.2.10, Av splits as an orthogonal summand of A2. And its orthogonal comple-

ment (Av)? is a free submodule of A2 of rank 1 whose generator can be any of its elements

of unit norm. We easily see that w =

0@ �~g
~f

1A is one such element of (Av)?. Since the

second column vector of H is in (Av)?, it can be written as �v for some � 2 A, and since

it is also of unit norm, � should be a unit of A = C [x�1] which must be a monomial. 2

Proposition 7.3.3 U2(A) acts transitively on W2(A).

Proof: It's enough to show that v
Un� (1; 0)t for any v = (v1; v2)

t 2 Wn(A). For this

purpose, de�ne U 2 M2(A) by

U =

0@ ~v1 ~v2

�v2 v1

1A :
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Using hv;vi = ~v1v1 + ~v2v2 = 1, one easily checks that U is paraunitary i.e.

~UU = I and satisfy Uv = (1; 0)t. 2

Remark 7.3.4 It is still an open problem to determine if the group action of Un(A) on

Wn(A) is transitive for n � 3. The transitivity can be deduced if the parahermitian ana-

logue of Serre's conjecture is true, that is, if any parahermitian space is isometric to a free

module with trivial inner product. This problem will be more carefully analyzed elsewhere.

However, when m = 1, more can be said without this conjecture. Actually, it will be shown

in the next section that the separable subgroup Sn(C [x
�1 ]) of Un(C [x

�1 ]) generated by

constant unitary matrices (elements of Un(C )) and delays (diagonal matrices with mono-

mial entries) already acts transitively on Wn(C [x�1 ]). This means that any rectangular

paraunitary matrix over C [x�1 ] can be completed to a square paraunitary matrix.

We will need the following lemma later.

Lemma 7.3.5 The determinant of a paraunitary matrix H 2 Un(A) is a monomial of the

form �xn for some n = (n1; : : : ; nm) 2Zm and � 2 C with k�k = 1.

Proof: From H � ~H = I , we see that det(H) � det( ~H) = 1, i.e. det(H) is an invertible

element of C [x�1], which must be a monomial. Let det(H) = �xn. Then det( ~H) = ��x�n.

Now, det(H) � det( ~H) = 1 gives ��� = 1. 2

7.4 Paraunitary Groups over IC[x�1]

If v 2 Wn(C [x�1 ]) is a monomial vector, i.e. v = v0x
k for v0 2 Cn and k 2 Z,

then it is easy to see that v
Sn� (1; 0; : : : ; 0)t. That is, since v 2Wn(A), we have

hv;vi = 1 = < xkv0; x
kv0 > = hv0;v0 > = k v0 k2 :

Now �nd an orthonormal basis fw1; : : : ;wn�1g of (Cv0)? � Cn (the standard Gram-

Schmidt process will do this). Then the matrix

U = (v0;w1; : : : ;wn�1) 2 Mn(C)

is clearly unitary. Denoting the delay, diag(x; 1; : : : ; 1) 2Mn(C [x
�1 ]), by D, we have

D�k ~Uv = (1; 0; : : : ; 0)t:

Since D�k ~U 2 Sn(C [x�1 ]), this implies v
Sn� (1; 0; : : : ; 0)t.
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Lemma 7.4.1 If v 2Wn(C [x
�1 ]) is a binomial vector, i.e. v = v0x

k+v1x
l for v0;v1 2 Cn

and k < l 2Z, then v Sn� (1; 0; : : : ; 0)t.

Proof: Since the monomial case is considered above, assume that v0 6= 0 and v1 6= 0.

1 = hv;vi
= hv0xk + v1x

l;v0x
k + v1x

l >

= k v0 k2 + k v1 k2 + hv0;v1 > xl�k + hv1;v0 > xk�l:

Therefore, we have k v0 k2 + k v1 k2= 1 and hv0;v1 > = hv1;v0 > = 0. Now �nd

an orthonormal basis fw1; : : : ;wn�1g of (Cv0)
? � Cn , and de�ne U1 2 Mn(C ) by U1 =

( v0
kv0k ;w1; : : : ;wn�1) which is clearly unitary. Denote the delay diag(x�k ; x�l; : : : ; x�l) 2
Mn(A) by D, and let v0 = D ~U1v. Since

~U1v =

0BBBBB@
~v0
kv0k
~w1
...

~wn�1

1CCCCCA (v0x
k + v1x

l)

=

0BBBBB@
k v0 k xk

hw1;v1 > xl

...

hwn�1;v1 > xl

1CCCCCA ;

we see that v0 = D ~U1v = (k v0 k; hw1;v1 >; : : : ; hwn�1;v1 >)t, and kv0k= 1.

Now �nd an orthonormal basis fw0
1; : : : ;w

0
n�1g of (Cv0)? � Cn , and de�ne U2 2

Mn(C ) by U2 = (v0;w0
1; : : : ;w

0
n�1). Then ~U2v

0 = (1; 0; : : : ; 0)t = ~U2D ~U1v. 2

Lemma 7.4.2 If v 2Wn(C [x
�1 ]) \Mn(C [x]), i.e. a polynomial vector of unit norm, then

there exists S 2 Sn(C [x�1 ])\Mn(C [x]), a product of constant unitary matrices and negative

delays, such that Sv = (1; 0; : : : ; 0)t.

Proof: Multiplying by a negative delay if necessary, we may assume without loss of gener-

ality that

v = v0 + v1x+ � � �+ vlx
l; vi 2 Cn ; v0 6= 0; vl 6= 0:

Now the condition hv;vi 2 C � implies hv0;vl > = 0, which means v0 + vlx
l is a

unit norm vector. By the proof of Lemma 7.4.1 above, we can �nd U1;U2 2 Un(C ), and
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c 2 R such that

v0 + vlx
l = U1diag(1; x

l; � � � ; xl)U2

0BBBBB@
c

0
...

0

1CCCCCA :

From this representation, letting ~vi = U1vi, we deduce that

v0 + vlx
l = U1diag(1; x

l; � � � ; xl) ~U1(v0 + vl�1xl�1)

= U1diag(1; x
l; � � � ; xl)(~v0 + ~vl�1xl�1):

Also, note that

v1x+ � � �+ vl�1xl�1

= U1diag(x; x; � � � ; x)(~v1+ � � �+ ~vl�1xl�2)

= U1diag(1; x; � � � ; x)diag(x; 1; � � � ; 1)(~v1+ � � �+ ~vl�1xl�2):

Therefore, we get

v = (v0 + vlx
l) + (v1x + � � �+ vl�1xl�1)

= U1diag(1; x
l; � � � ; xl)(~v0 + ~vl�1xl�1) +

U1diag(1; x; � � � ; x)diag(x; 1; � � � ; 1)(~v1+ � � �+ ~vl�1xl�2)

= U1diag(1; x
l; � � � ; xl)f~v0 + ~vl�1xl�1 +

diag(x; 1; � � � ; 1)(~v1+ � � �+ ~vl�1xl�2)g:

Since the degree of the vector polynomial ~v0 + ~vl�1xl�1 + diag(x; 1; � � � ; 1)(~v1 +
� � �+ ~vl�1xl�2 is l � 1, by induction on the degree, the lemma is proved. 2

Now we can use the above lemmas to show the transitivity of Sn(C [x
�1 ]) on

Wn(C [x
�1 ]).

Proposition 7.4.3 If m = 1, Sn(C [x
�1 ]) acts transitively on Wn(C [x

�1 ]).

Corollary 7.4.4 If m = 1, Un(C [x�1 ]) acts transitively on Wn(C [x�1 ]).
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Proof of Proposition: Let v 2 Wn(C [x
�1 ]) . Multiplying by a delay if necessary, we

may assume that v is a polynomial vector, i.e. has no negative exponents involved. Write

v = v0 + v1x+ � � �+ vlx
l; vi 2 Cn ; v0 6= 0 vk 6= 0:

Now the proposition follows from the Lemma 7.4.2. 2

Theorem 7.4.5 (P. P. Vaidyanathan) Sn(C [x
�1 ]) = Un(C [x

�1 ]) for any n � 2, i.e. any

paraunitary matrix H 2 Un(C [x
�1 ]) can be written as a product of constant unitary matrices

and delays. If H 2 Un(C [x
�1 ])\Mn(C [x]) is a polynomial matrix, then it can be written as

a product of constant unitary matrices and positive delays.

Proof: Let v1 = H(1; 0; : : : ; 0)t 2 Wn(C [x
�1 ]) be the �rst column vector of H. Then by

Proposition 7.4.3, there exists S1 2 Sn(C [x
�1 ]) such that

S1v1 = (1; 0; : : : ; 0)t:

Since the matrix S1H is again paraunitary, it must be of the following form:

S1H =

 
1 0

0 H1

!

where H1 2 Hn�1(C [x�1 ]).

Now apply the same procedure to the �rst column vector of H1. Repeating this

procedure, we �nd S1; : : : ;Sn 2 Sn(C [x�1 ]) such that

S1 � � �SnU = I:

This implies that H = ~Sn � � � ~S1 2 Sn(C [x
�1 ]), i.e. H is a product of constant

unitary matrices and delays. When H is a polynomial matrix, the statement follows from

the Lemma 7.4.2 since all the Si's involved can be chosen to be products of constant unitary

matrices and positive delays. 2

Example 7.4.6 Consider H = 1
4

0@ p
2
x � p6 p

6 +
p
2x

�
p
2

x2
�

p
6
x �

p
6
x +

p
2

1A 2 U2(C [x
�1 ]). One checks

easily that H is paraunitary. Applying the above algorithm, we get the factorization,

H = D0 � (R1 �D1) � (R2 �D2) where D0 =

0@ 1
x 0

0 1
x2

1A, D1 = D2 =

0@ 1 0

0 x

1A are delays,

and R1 =
1p
2

0@ 1 1

�1 1

1A, R2 =
1
2

0@ 1
p
3

�p3 1

1A are rotations. 2
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De�nition 7.4.7 1. The standard delay in Un(C [x
�1 ]) is the diagonal matrix D de-

�ned by D = diag(1; : : : ; 1; x).

2. The i-th standard delay in Un(C [x
�1
1 ; : : : ; x�1m ]) is the diagonal matrix Di de�ned

by Di = diag(1; : : : ; 1; xi).

A slight variation of the above theorem over the polynomial ring C [x] (rather than

over C [x�1 ]) which is often used in many applications in 1-D �lter banks and wavelets is

the following.

Theorem 7.4.8 (P. P. Vaidyanathan) Let H(x) 2 Un(C [x
�1 ]) \Mn(C [x]) be paraunitary

with det(H) = xd. Then it can be written in the form, H = Vd(x)Vd�1(x) � � �V1(x)H0,

where H0 is a constant unitary matrix, and for each 1 � i � d, i(x) = I � vi~vi + xvi~vi for

certain constant unit norm vector vi.

Proof: Consider the rotation matrix R =

0BBB@
In�2

0 1

�1 0

1CCCA 2 Un(C). Then,

Rtdiag(1; : : : ; 1; x; 1)R = diag(1; : : : ; 1; x):

Therefore, the unitary polynomial matrix H 2 Un(C [x]), which is a product of

constant unitary matrices and delays, can be rewritten as a product of constant unitary

matrices and standard delays, i.e.

H = U0DU1 � � �Ud�1DUd

where D is the standard delay diag(1; : : : ; 1; x).

Note here that det(H) = xd was used to deduce the right number of factors. Now

rewriting H as

H = (U0D ~U0)(U0U1D ~U1
~U0) � � �

we see that it is enough to show the theorem for H = ~Udiag(1; : : : ; 1; x)U, where U =

(uij) 2 Un(C).

Noting that

H = ~Udiag(1; : : : ; 1; x)U

= ~U(I + diag(0; : : : ; 0; x� 1))U

= I + ~Udiag(0; : : : ; 0; x� 1)U;
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and

~Udiag(0; : : : ; 0; x� 1)U =

0BB@
(x� 1)�un1un1 � � � (x� 1)�un1unn

...
...

(x� 1)�unnun1 � � � (x� 1)�unnunn

1CCA

= (x� 1)

0BBBBBB@
un1

un2
...

unn

1CCCCCCA (�un1; �un2; : : : ; �unn);

we prove the theorem. 2

Remark 7.4.9 If H 2 MN(C [x]) is paraunitary with det(H) = xn, then according to the

above theorem, we can write it as a product of Vi(x)'s, 1 � i � n. Now, it is easy to see

that the highest degree term appearing in the expansion of this product could be at most

xn. Note that this means, any paraunitary matrix H 2 MN(C [x]) with det(H) = �1xn can

be written uniquely as

H = h0 + h1x+ � � �+ hkx
k; k � n;

i.e. the order k of a paraunitary matrix H 2 MN(C [x]) is bounded by the degree n of its

determinant.

7.5 The Structure of U2(IC[x
�1
1 ; � � � ; x�1m ])

Again, multiplying by a delay if necessary, we assume that all the paraunitary

matrices being considered are polynomial matrices. First, we need a few lemmas.

Proposition 7.5.1 Let H(x) 2 M2(C [x]) be a paraunitary polynomial matrix of deter-

minant ei�xn. Then it can be written uniquely in the following form:

H(x) =
k1X

i1=0

k2X
i2=0

� � �
kmX

im=0

hi1���imx
i1
1 x

i2
2 � � �ximm

where 0 � kj � nj for each j = 1; : : : ; m, and hi1���im 2 M2(C) for all (i1; � � � ; im) 2
f0; : : : ; k1g � � � � � f0; : : : ; kmg.
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Proof: Since we can always write uniquely

H(x) =
X

(i1;:::;im)2I
hi1 ���imx

i1
1 x

i2
2 � � �ximm

for a �nite index set I , we have only to show that hi1���im = 0 if ik > nk for any k = 1; : : : ; m.

Suppose � = maxfi1 j hi1���im 6= 0 for some (i2 � � � im)g > n1. Then we can write

H(x1; : : : ; xm) = h0(x2; : : : ; xm) + h1(x2; : : : ; xm)x1 + � � �+ h�(x2; : : : ; xm)x
�
1

for some polynomial matrices hi(x2; : : : ; xm) 2 M2(C [x2 ; : : : ; xm]) with h�(x2; : : : ; xm) being

not identically zero. Now, let (a2; a3; : : : ; am) be any �xed point on the torus S1 � � � � �
S1. Then H(x1; a2; a3; : : : ; am) is a paraunitary matrix in M2(C [x1 ]) whose determinant

has degree n1. Therefore, by Remark 7.4.9, the highest degree term in the expansion of

H(x1; a2; a3; : : : ; am) with respect to x1 can be at most xn11 . This means h�(a2; a3; : : : ; am) =

0 since � > n1. Now that this is true for any (a2; a3; : : : ; am) on the torus S1�� � ��S1, the

polynomial matrix h�(x2; : : : ; xm) must be a zero matrix, which contradicts the de�nition

of �. Therefore, hi1���im = 0 for any i1 > n1. And the same method gives hi1���im = 0 for any

ik > nk, k = 1; : : : ; m. 2

De�nition 7.5.2 For any polynomial matrix G 2 Mlm(C [x]) with the minimal representa-

tion G =
Pk1

i1=0

Pk2
i2=0

� � �Pkm
im=0 hi1���imx

i1
1 x

i2
2 � � �ximm , we say G is of type (k1; : : : ; km) 2Zm

and we call k = k1 + � � �+ km the total order of G.

Using this new terminology, the above Proposition 7.5.1 can be rephrased as \the type

of a paraunitary polynomial matrix is bounded by the exponents of its determinant". An

immediate but very useful corollary of this lemma is,

Corollary 7.5.3 Let H 2 M2(C [x1 ; : : : ; xm]) be a paraunitary polynomial matrix. If the

determinant of H doesn't involve a variable xk, then

H 2 M2(C [x1 ; : : : ;cxk; : : : ; xm]);
i.e. H is a polynomial matrix not involving the variable xk at all.

Remark 7.5.4 Any paraunitary polynomial matrix H 2 M2(C [x]) whose determinant in-

volves only one variable must have all of its components involving only one variable by

Corollary 7.5.3 above, and is trivially factorizable by Theorem 7.4.5.
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Lemma 7.5.5 Suppose H 2 M2(C [x]) with det(H) = xn = xn11 � � �xnmm is factorizable into

(constant) unitary matrices and delays, and n = n1+ � � �+nm is the total degree of det(H).

Then H has a canonical factorization into n + 1 unitary matrices and n standard delays,

i.e.

H = UnDnUn�1Dn�1 � � �U1D1U0 (7.3)

for some unitary matrices U0; : : : ;Un 2 U2(C ) and standard delays D1; : : : ;Dn's with

the number of i-th standard delays appearing in this expression being precisely ni for each

1 � i � n.

Proof: Let R(�) =

 
cos(�) � sin(�)

sin(�) cos(�)

!
be the rotation matrix. Since a delay is a product

of

 
1 0

0 xi

!
's and

 
xj 0

0 1

!
's, by noting

 
xj 0

0 1

!
= R(��=2)

 
1 0

0 xj

!
R(�=2), we see

that any delay can be expressed as a product of unitary matrices and standard delays.

Therefore, H itself can be written as a product of unitary matrices and standard delays,

i.e. H = UlDlUl�1Dl�1 � � �U1D1U0, for some unitary matrices Ui's and standard delays

Di's. To see that l = n, take the determinant of both sides:

det(H) = xn11 � � �xnmm =
lY

k=1

det(Dk):

From this expression, we see that the number of i-th standard delays appearing in this

product must be ni, and the l must be equal to the total degree of det(H) = n. 2

LetH 2 M2(C [x]) be a paraunitary polynomial matrix, and let v be its �rst column

vector. Then the separability of H clearly implies the separability of v: if H = H1H2 for

two paraunitary polynomial matrices H1;H2 2 M2(C [x]), then v = H1v2 where v2 is the

�rst column vector of H2.

Now, the following lemma asserts that the converse is also true, thereby relating

the separability of a paraunitary matrix with that of a unit norm vector. Since, from

a computational point of view, the unit norm vectors are easier to deal with than the

paraunitary matrices, we will actually consider the separability of the polynomial vectors

of unit norm rather than that of the paraunitary matrices.

Lemma 7.5.6 Let H 2 U2(C [x]) be paraunitary with det(H) = xn, and v be its �rst

column vector of type k := (k1; : : : ; km). Suppose v is perfectly separable, i.e.

v = UdDdUd�1Dd�1 � � �U1D1v0 (7.4)
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for some unitary matrices U1; : : : ;Ud 2 U2(C), a constant unit norm vector v0 2 C 2 , and
standard delays D1; : : : ;Dd with the number of the i'th standard delays appearing in this

expression being precisely ki. Then H is also perfectly separable.

Proof: Write v0 =

 
a

b

!
for a; b 2 C with a2 + b2 = 1. Then one checks easily that

H = UdDdUd�1Dd�1 � � �U1D1

 
a �xn�k�b
b xn�k�a

!

= UdDdUd�1Dd�1 � � �U1D1

 
a ��b
b �a

! 
1 0

0 xn�k

!
:

2

7.6 Computational Aspects

Consider a vector v =

 
f

g

!
2 (R[x; y])2 of unit norm. Then its component

polynomials f; g 2 R[x] are constrained by the unit norm condition ~vv = 1, and this

constraint can be described by a system of quadratic polynomials in the coe�cients of f; g.

Now we would like to see when these algebraic relations describing the unit norm condition

on v guarantee the decomposition of v into the form 7.4.

Let v =

 
f

g

!
2 (R[x; y])2 be of unit norm of type (k1; k2) with total order 2,

and let � = xk1yk2 2 R[x; y]. Then �~v becomes a polynomial vector. De�ne a paraunitary

matrix H 2 M2(R[x; y]) by

H =

 
f ��~g
g � ~f

!
;

in which we get the following three cases to consider; det(H) = x2; xy; y2.

In terms of v, we see that v is of type (2; 0); (1; 1) and (0; 2), in respective cases.

The two cases when v is of type (2; 0) and of type (0; 2) are trivial by Corol-

lary 7.5.3.

Suppose, therefore, v is of type (1; 1), i.e. det(H) = xy. In this case, by Proposi-

tion 7.5.1, we can write

H = h00 + h10x+ h0;1y + h11xy
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for some h00; h10; h0;1; h11 2 M2[R]. The corresponding expression for v is,

v = v00 + v10x+ v0;1y + v11xy

for some v00;v10;v0;1;v11 2 R2. De�ne the real numbers aij ; bij, 0 � i; j � 1, by vij = 
aij

bij

!
and consider

1 = ~vv

= (vt00+ vt10x
�1 + vt0;1y

�1 + vt11x
�1y�1)(v00+ v10x+ v0;1y + v11xy):

Equating the respective coe�cients of x and y, we get the following set of relations:

0 = vt11v00 = a01 a10 + b01 b10

0 = vt10v01 = a00 a11 + b00 b11

0 = vt10v00 + vt11v01 = a00 a10 + a01 a11 + b00 b10 + b01 b11

0 = vt01v00 + vt11v10 = a00 a01 + a10 a11 + b00 b01 + b10 b11

1 = vt00v0;0+ vt01v0;1 + vt10v1;0 + vt11v11

= a00
2 + a01

2 + a10
2 + a11

2 + b00
2 + b01

2 + b10
2 + b11

2: (7.5)

Note here that the above set of relations gives de�ning equations for a unit norm

vector of type bounded by (1; 1), that is, if we choose any real numbers aij 's and bij 's satisfy-

ing above set of relations, and de�ne a polynomial vector v by v =
P1

i=0

P1
j=0

 
aij

bij

!
xiyj ,

then v will be a unit norm vector of type � (1; 1).

Therefore, we can view above set of relations as quadratic polynomials fi; 1 � i � 5

in the polynomial ring R[a00; a10; a01; a11; b00; b10; b01; b11] de�ning a variety which we may

call the Paraunitary Variety of type (1; 1). The real valued points on this subvariety

of a�ne 8-space are in one-to-one correspondence with the unit norm polynomial vectors

of type � (1; 1), and thus paraunitary matrices of determinant xn1yn2 with (n1; n2) �
(1; 1). Therefore, this variety precisely parametrizes all the paraunitary matrices whose

determinant is a factor of xy.

To see what type of algebraic relations on the ai's and bi's assure the factorizability

of v as in 7.4, assume

v = R(�)D(x)v0 (7.6)
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for a certain rotation matrix R(�), the �rst standard delay D(x) =

 
1 0

0 x

!
, and a poly-

nomial vector v0 2 (R[x; y])2. Letting v0(y) = v00 + v01y and v1(y) = v10 + v11y, we now

get

R(�)tv = R(�)t(v0(y) + v1(y)x)

= R(�)tv0(y) +R(�)tv1(y)x

= D(x)v0

=

 
1 0

0 x

!
v0

Since the second component of the vector R(�)tv is divisible by x, its constant term,

that is, the second component of the vector R(�)tv0(y), should be zero. So, we get

(� sin(�); cos(�))v0(y) = 0, i.e.

(� sin(�); cos(�))v00 = (� sin(�); cos(�))v01 = 0

Conversely, if there exists a nonzero constant vector (a; b) such that (a; b)v0(y) = 0, then v

splits as in 7.6, with R(�) = 1p
a2+b2

 
b a

�a b

!
. We can do the same to see when v splits

with the factor R(�)D(y). What we get is the following:

The vector v splits as in 7.4

() \(a; b)v00 = (a; b)v01 = 0" or \(a; b)v00 = (a; b)v10 = 0" has a

nontrivial solution (a; b):

()
 
a00 b00

a01 b01

! 
a

b

!
= 0 or

 
a00 b00

a10 b10

! 
a

b

!
= 0 has a nontrivial solution 

a

b

!
:

() a00b01 � b00a01 = 0 or a00b10 � b00a10 = 0:

() f := (a00b01 � b00a01)(a00b10 � b00a10) = 0: (7.7)

Let I(1; 1) � R[a00; a10; a01; a11; b00; b10; b01; b11] be the ideal generated by the 5 quadratic

polynomials fi; 1 � i � 5. Since any point in the variety V (I(1; 1)) de�nes a unit norm

vector of type � (1; 1) and an arbitrary point in V (f) de�nes a vector decomposable into

the form in 7.4, showing V (I(1; 1)) � V (f) is equivalent to showing that any unit norm

vector of type � (1; 1) is factorizable as in 7.4. Therefore, our question has boiled down to:
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V (I(1; 1))� V (f) ?

The following lemma gives a su�cient condition for the above question to have a positive

answer.

Lemma 7.6.1 Let k be an arbitrary �eld. Then,

g 2
p
I =) V (I) � V (g) (7.8)

Now the following radical ideal membership algorithm can be used for our computational

test of f 2 pI(1; 1).

Lemma 7.6.2 (Radical Ideal Membership) f 2 pI i� the ideal (f1; f2; f3; f4; f5; 1� t � f)
of the ring R[a00; a10; a01; a11; b00; b10; b01; b11; t] is the unit ideal, i.e. 1 belongs to the ideal

(f1; f2; f3; f4; f5; 1� t � f).

Remark 7.6.3 Note here that we have introduced a new variable t.

Noting that the ideal (f1; f2; f3; f4; f5; 1� t � f) is a unit ideal i� its Gr�obner bases is f1g,
we can use any existing computer algebra packages to compute the Gr�obner bases of the

six polynomials f1; f2; f3; f4; f5; 1� t � f in 9 variables. We used Macaulay and SINGULAR

for this computation, which gave us the positive answer for the above case (d = 2), that is,

it showed that the Gr�obner bases of f1; f2; f3; f4; f5; 1� t � f is just 1.

For higher d's, the corresponding radical ideal membership can be checked in the

same fashion even though the involved Gr�obner bases computation takes much more time.

For d = 3, there are 4 types of Paraunitary Variety; of type (3; 0); (2; 1); (1; 2),

and (0; 3). The (3; 0); (0; 3) cases are trivial by Corollary 7.5.3, and by symmetry, we have

only to consider type (2; 1) case. The Paraunitary Variety of type (2; 1) is de�ned by 8

quadratic polynomials in the a�ne 12-space, and there are 3 polynomials of degree 4 whose

radical ideal membership is to be checked. Hours of Gr�obner bases computation in this case

con�rmed that the answer is still positive.

For the d = 4 case, there are two nontrivial cases to consider; of type (3; 1) and of

type (2; 2). The Paraunitary Variety of type (3; 1) is de�ned by 11 quadratic polynomials in

the a�ne 16-space, and there are 6 polynomials of degree 4 whose radical ideal membership

is to be checked. For the type (2; 2) case, which is de�ned by 13 quadratic polynomials in

the a�ne 18-space, there are 9 polynomials of degree 4 whose radical ideal membership is
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to be checked. The computation showed that the the Paraunitary Varieties of type (3; 1)

and (1; 3) are completely separable while the Paraunitary Variety of type (2; 2) is not. So

the �rst counter-example may occur at type (2; 2).

7.7 Convex Geometric Approach

The computation done in the preceding section shows the peculiar behavior of the

Paraunitary Varieties of type (n; 1) or (1; n), and that the �rst nonseparable example may

be found in (2; 2) case. With the convex geometric approach to be taken in this section, we

will actually construct the following nonseparable unit norm vector V of type (2; 2).

V =
1

26

r
105

13

 �q5
7x� x2

2 � y
3 � 22xyp

35
+ 11x2y

3 � y2

2 � 17xy2p
35

� 4x2y2

2 + 12xp
35
+ x2

2 + 8y
3 � 61xy

3
p
35
� 2x2y

3 � y2

2 � 2
q

5
7xy

2

!

First, to understand the convex geometry behind our parahermitian structure, consider a

vector

v =

 
f

g

!
= v00 + v10x+ v01y; vij 2 C 2 � f0g:

Then the convex hull of its exponent vectors is spanned by f(0; 0); (1; 0); (0; 1)g.

c

c c

v01

v00 v10

0 1

1
@
@
@
@
@
@
@
@@

66

-

Figure 7.1: The convex hull of the exponent vectors of v

Now we claim that v 2 C [x; y] is not of unit norm. To see this, note that hv;vi 2 C �
implies

hv;vi = hv00 + v10x + v01y;v00+ v10x+ v01yi
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= (~v00v00 + ~v10v10 + ~v01v01) + (~v00v10x+ ~v10v00
1

x
) +

(~v00v01y + ~v01v00
1

y
) + (~v01v10

x

y
+ ~v10v01

y

x
)

2 C � :

From the fact that the last expression has to be a constant, we deduce that

v00 ? v10

v00 ? v01

v10 ? v01:

Quite clearly, no three vectors v00;v10;v01 2 C � f0g can satisfy this mutual

orthogonality.

Theorem 7.7.1 The 2 � 2 paraunitary matrices of type (n; 1) or (1; n) are completely

separable.

Remark 7.7.2 This theorem was �rst observed and proved in [LV90]. We present here a

new proof based on our convex geometric method.

Proof: Suppose that

v =
1X

i=0

kX
j=0

vijx
iyj :

Write v = vi=0(y) + vi=1(y)x. Then it is easy to verify that the two face components,

vi=0(y); vi=1(y) 2 C [y], of v are of unit norm and orthogonal to each other since v is of

unit norm. And from the orthogonality of these two vectors;

hvi=0(y);vi=1(y) > = ^fi=0(y)fi=1(y) + ^gi=0(y)gi=1(y)

= fi=0(1=�y)fi=1(y) + gi=0(1=�y)gi=1(y)

= 0;

one deduces that, if u 2 C is a zero of fi=0 but not a zero of gi=0, then 1=�u is a zero of gi=1.

There are the following two cases to consider:

1. when fj=0 and gj=0 have no common root

2. when fj=0 and gj=0 have a common root.
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Case 1: When fj=0 and gj=0 have no common root.

In this case, we can write

fj=0(y) = aj=0(y � �)

gj=0(y) = bj=0(y � �); � 6= �:

Using the orthogonality of vj=0 and vj=k, we see that

fj=k(y) = aj=k(y � 1=��)

gj=k(y) = bj=k(y � 1=��):

where aj=0�aj=k�+ bj=0�bj=k� = 0. Now the convex hull generated by the exponent vectors

of v has the structure shown in the Figure 7.2.

e

e

e

e

e e

6

-

0 1

1

k-1

k

�

�
aj=0�

bj=0�

�
 
aj=0

bj=0

!

�
 aj=0

�
bj=0
�

!
 
aj=k

bj=k

!

Figure 7.2: The convex hull of the exponent vectors of v

Letting ci's and di's, 1 � i � l, be the common roots of ffi=0(y); gi=0(y)g and

ffi=1(y); gi=1(y)g, respectively, one gets the following representation.

fi=0(y) = �aj=k
�

(y � c1) � � �(y � cl) � (y � u1) � � �(y � uk�l)

gi=0(y) = �bj=k
�

(y � c1) � � �(y � cl) � (y � v1) � � �(y � vk�l)
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fi=1(y) = aj=k(y � d1) � � �(y � dl) � (y � 1

�v1
) � � �(y � 1

�vk�l
)

gi=1(y) = bj=k(y � d1) � � �(y � dl) � (y � 1

�u1
) � � �(y � 1

�uk�l
):

Now note in Figure 7.2 that

1. at (0; 0), constant coe�cient of vj=0 = constant coe�cient of vi=0,

2. at (1; 0), leading coe�cient of vj=0 = constant coe�cient of vi=1,

3. at (0; k), constant coe�cient of vj=k = leading coe�cient of vi=0,

4. at (1; k), leading coe�cient of vj=k = leading coe�cient of vi=1.

Comparing the coe�cients of the polynomials involved, we get the following relations.

�aj=k
�

(�1)kc1 � � �cl � u1 � � �uk�l = �aj=0�

�bj=k
�

(�1)kc1 � � �cl � v1 � � �vk�l = �bj=0�

aj=k(�1)kd1 � � �dl � 1
�v1
� � � 1

�vk�l
= aj=0

bj=k(�1)kd1 � � �dl � 1

�u1
� � � 1

�uk�l
= aj=0:

Therefore, we have

aj=k
bj=k

u1 � � �uk�l
v1 � � �vk�l =

aj=0
bj=0

:

Let

A =
bj=k
�

lY
i=1

(y � ci)

B = (�1)k�l aj=kQk�l
i=1 �vi

lY
i=1

(y � di)

F =
�bj=0
�aj=0

k�lY
i=1

(y � ui)

G =
k�lY
i=1

(y � vi):

Then using the above relations, one obtains

v =

0@ f

g

1A
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=

0@ AF + x �B ~Gyk�l

�AG+ x �B ~F yk�l

1A
Now hv;vi = 1 translates into

A ~AF ~F +B ~BG ~G+A ~AG ~G+B ~BF ~F

= (A ~A+B ~B) � (F ~F +G ~G)

= 1

From the last expression, we conclude that both of A ~A + B ~B and F ~F + G ~G are nonzero

constants since they are involution invariant monomials. By dividing by their norms if

necessary, we may assume that A ~A+ B ~B = F ~F + G ~G = 1. In this case, we have

v =

0@ f

g

1A
=

0@ AF + x �B ~Gyk�l

�AG+ x �B ~Fyk�l

1A
=

0@ F ~G

�G ~F

1A0@ 1 0

0 x

1A0@ A

B

1A :

This shows the separability.

Case 2: When fj=0 and gj=0 have a common root.

In this case, we can write

fj=0(y) = aj=0(y � 
)

gj=0(y) = bj=0(y � 
)

fj=k(y) = aj=k(y � �)

gj=k(y) = bj=k(y � �)

where aj=0�aj=k + bj=0�bj=k = 0. Now the convex hull generated by the exponent vectors of

v has the structure shown in the Figure 7.3. Now we can proceed in the same fashion as in

the previous case. 2

Now we will construct a nonseparable paraunitary matrix of type (2; 2). And in

doing this, we will actually construct a continuously parametrized family of nonseparable
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�
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bj=0

!
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bj=0

!
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!
 
aj=k

bj=k

!

Figure 7.3: The convex hull of the exponent vectors of v

paraunitary matrices of type (2; 2). Let

v =
2X

i=0

2X
j=0

vijx
iyj

=
2X

i=0

2X
j=0

 
aij

bij

!
xiyj

be a nonseparable vector of unit norm. As we observed in the Equation 7.7 of the previous

section, the separability (or nonseparability) of a vector of type (2; 2) is characterized by

the following.

w =
2X

i=0

2X
j=0

wijx
iyj is separable

() w00;w10;w20 are all parallel or w00;w01;w02 are all parallel.

Assuming v00 6= 0, de�ne parameters r 2 R�0 and � 2 [0; 2�) by a00 = r cos(�); b00 =

r sin(�). Now introduce two new parameters s and t by

s = hv00;v20i = a00a20 + b00b20

t = [0; 0; 2]x = det[v00;v20] = a00b20 � a20b00

where the bracket notation is de�ned by [i; j; k]y = det[vji;vki] and [i; j; k]x = det[vij ;vik].
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e e

e e e

e ee

e

6

-

1

2

1 20

v00 v10 v20

v01 v11 v21

v02 v12 v22

Figure 7.4: The exponent vectors of v of type (2; 2)

The above relation can be rewritten in matrix form,0@ s

t

1A =

0@ a00 b00

�b00 a00

1A0@ a20

b20

1A
= r

0@ cos(�) sin(�)

� sin(�) cos(�)

1A0@ a20

b20

1A :

Inverting this relation, we can express a20; b20 in terms of r; �; s; t.0@ a20

b20

1A = 1=r2

0@ cos(�) � sin(�)

sin(�) cos(�)

1A0@ s

t

1A :

Now v00 ? v22 and v20 ? v02 imply that

v02 = u

0@ �d
c

1A
v22 = v

0@ �b
a

1A
for some u; v 2 C . Now we will further assume that, on each of the 4 faces of the convex

hull in the Figure 4, the corresponding face components of f and g have a common root.

In this case, on the face j = 0, the fact that fj=0 = a00 + a10x + a20x
2 and

gj=0 = b00 + b10x+ b20x
2 have a common root is equivalent to the vanishing of the Bez�out
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resultant of fj=0 and gj=0, which is [0; 0; 2]2y� [0; 0; 1]y � [0; 1; 2]y. Therefore we can introduce

two new parameters w and z by letting

w = [0; 0; 1]y=[0; 0; 2]y = [0; 0; 2]y=[0; 1; 2]y

z = [0; 0; 1]x=[0; 0; 2]x = [0; 0; 2]x=[0; 1; 2]x:

Now we claim that these 8 parameters (r; �; s; t; u; v;w; z), subject to 2 polynomial rela-

tions among them, determine all the possible nonseparable unit norm vectors of type (2; 2)

satisfying the above boundary conditions. This means that the set of the nonseparable

paraunitary vectors of type (2; 2) with the additional boundary conditions is a variety of

dimension 6. For this purpose, we only need to express v10;v01;v12;v21;v11 in terms of

these parameters, and describe all the relations among these parameters. Actually, from

the vanishing of the 4 face-resultants, it is not hard to derive the following relations.

v10 =

 
s a

t b

! 
w

1=w

!

v01 =

 �t a

s b

! 
uz

1=z

!

v12 =

 
t �b
�s a

! �vw
u=w

!

v21 =

 �s b

�t �a

! 
uvz

1=uz

!
:

Therefore, we only have to express the interior coe�cient v11 in terms of these parameters.

Consider the Aij 's de�ned by the expansion hv;vi = P2
i=�2

P2
j=�2Aijx

iyj . Then since

hv;vi= 1, we have to have Aij = 0 for any i 6= 0 or j 6= 0. In particular,

A01 = hv00;v01i+ hv01;v02i+ hv10;v11i+ hv11;v12i+
hv20;v21i+ hv21;v22i = 0

A10 = hv00;v10i+ hv10;v20i+ hv01;v11i+ hv11;v21i+
hv02;v12i+ hv12;v22i = 0

A11 = hv10;v21i+ hv00;v11i+ hv11;v22i+ hv01;v12i = 0

A�11 = hv10;v01i+ hv20;v11i+ hv11;v02i+ hv21;v12i = 0:

From A11 = A�11 = 0, we get an expression of v11 in terms of our parameters, and

A01 = A10 = 0 gives the relations among the parameters. One veri�es easily that fr =
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2; � = �=2; s = 1; t = 1; u = 1; v = 2; w =
p
20=7; z = 2=3g is a legitimate set of values for

the parameters, i.e. satis�es the two constraint equation A01 = A10 = 0. And specializing

at these values gives the nonseparable example introduced at the beginning of this section.
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Part II

Applications to Signal Processing
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Chapter 8

Introduction to Part II

While there has been much recent research done on multidimensional (MD) mul-

tirate systems, some basic questions have been left untouched. In the following, we will

describe some of the basic problems arising from the multidimensional multirate systems,

and all the systems, henceforth, will be assumed to be FIR (Finite Impulse Response).

In many applications, the design and analysis of invertible MD multirate schemes

boil down to the following mathematical question:

Given a matrix of polyphase components, can we e�ectively decide whether or
not that matrix has a left inverse, and give a complete parametrization of all the
left inverses of that matrix?

In order to show how the various problems are reduced to the above simple form,

the following three problems will be used as demonstrating examples. The same three

problems were used in [KPV95] to show the relevancy of Gr�obner bases in the theory of

multidimensional FIR systems.

1. Given an MD FIR low-pass �lter G(z), decide e�ectively whether or not G(z) can oc-

cur as an analysis �lter in a critically downsampled, 2-channel, perfect reconstructing

(PR) FIR �lter bank. When this decision process yields a positive answer, �nd all

such �lter banks.

2. Given a sample rate conversion scheme consisting of upsampling by p, �ltering with

an MD FIR �lter U(z) and downsampling by q, decide e�ectively whether or not this

scheme is FIR invertible.
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3. Given an oversampled MD FIR analysis �lter bank, decide e�ectively whether or not

there is an FIR synthesis �lter bank such that the overall system is PR. When this

decision process yields a positive answer, provide a complete parametrization of all

such FIR synthesis �lter banks.

In the following chapters, we will show how these problems are reduced to the

above simple form, and how our previous results on unimodular polynomial matrices are

relevant to these problems in MD systems. The reason unimodularity comes in can be seen

easily from the following statement whose proof will be given in Chapter 10:

A (not necessarily square) Laurent polynomial matrix has a left inverse if and
only if it is unimodular.

Therefore, mathematically, we are dealing with the problem of determining if a

given Laurent polynomial matrix is unimodular, and in case it is, if we can explicitly

�nd all the (not unique in non-square cases) left inverses for it. This allows us to see the

study of perfect reconstructing FIR �lter banks as the study of unimodular matrices over

Laurent polynomial rings [KPV95].

Exploiting the results developed mainly for polynomial rings, we immediately see

that the answers to these questions are positive over polynomial rings, i.e. when the matrices

involved are unimodular polynomial matrices rather than Laurent polynomial matrices.

In system theoretic terminology, causal invertibility of causal �lters are therefore covered

by these methods. Geometrically, this demonstrates the relative simplicity associated with

a�ne systems compared to toric systems.

The situation, however, is more complicated partly because an FIR-invertible

causal �lter may not be causal-invertible.

For an example, consider the polynomial vector

 
z

z2

!
2 (k[z])2. While the re-

lation 1
2z � z + 1

2z2 � z2 = 1 clearly shows the FIR-invertibility of this vector, it is not

causal-invertible since there are no polynomials f(z); g(z) 2 k[z] satisfying

f(z) � z + g(z) � z2 = 1

as we can see easily by evaluating both sides at z = 0.

Now, in order to extend our a�ne results (i.e. causal cases) to general FIR systems,

we need an e�ective process of converting a given Laurent polynomial matrix to a polynomial
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matrix while preserving unimodularity. A systematic process to that e�ect was developed

in Chapter 6, and will be used through the remaining chapters.

In Chapter 9, the above three problems are thoroughly examined in the transparent

one-dimensional (1-D) causal setup.

In Chapter 10, we will get to the same problems in MD multirate signal processing,

for which our main tools are the Syzygy-based algorithm for the Quillen-Suslin Theorem

developed in Chapter 3.

There are far more classes of MD problems for which Gr�obner bases are an essential

tool. For example, in obtaining the Realization Algorithm in Chapter 4, we relied on the

Gr�obner bases method to determine the termination of the subprocesses. And in Chapter 11,

we will give a complete parametrization (in terms of ladder structures) of MD bi-orthogonal

�lter banks with 3 or more channels by using this Realization Algorithm.
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Chapter 9

One-dimensional Multirate

Systems

9.1 Reduction to Causal Systems

Many problems in signal processing give rise to Laurent polynomial matrices, and

perfect reconstructing �lter banks are represented by the unimodularity of these matrices.

A preparatory process to be carried out �rst in this case is to apply the algorithm Lau-

rentToPoly that will allow us to apply the techniques known for polynomial matrices to

this situation. Let us recall the algorithm LaurentToPoly.

Input: v(x) 2 (k[x�1])n, a Laurent polynomial column vector

Output: x! y, a change of variables
T(x) 2 GLn(k[x

�1]), a square unimodular Laurent polynomial matrix

Speci�cation: (1) v̂(y) := T(x)v(x) 2 (k[y])n is a polynomial column vector in
the new variable y

(2) v(x) is unimodular over k[x�1] if and only if v̂(y) is unimodular
over k[y]

A graphical demonstration of this process is shown in the Figure 9.1.

Now �nding an FIR inverse S to the given FIR �lter A is equivalent to �nding a

causal inverse Ŝ to the causal �lter Â.

Example 9.1.1 Consider the unimodular Laurent polynomial vector v = (z; z2)t 2 k[z�1].

Convert v to a unimodular polynomial vector.
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Â T
�1

T Ŝ

A S

Figure 9.1: Conversion of an FIR system A to a causal system Â

In this case, the transformation matrix is

T =

 
1=z 0

0 z

!
:

And the converted unimodular polynomial vector is

v̂ = (1; z3)t:

2

9.2 Applications of Euclidean Division Algorithm

In this section, we will derive a mathematical formulation for the three problems

described in the Introduction and show how unimodularity is involved, and how to solve

them in the 1-D case.

Problem 1: Given a 1-D FIR low-pass �lter G(z), decide e�ectively whether or not G(z)

can occur as an analysis �lter in a critically downsampled, 2-channel, perfect reconstructing

(PR) FIR �lter bank. When this decision process yields a positive answer, �nd all such

�lter banks.

To answer this question, we decompose G(z) into its polyphase components:

G(z) = G0(z
2) + zG1(z

2):

As noted in [VH92], the �lter G(z) occurs as the low-pass �lter in a 2-channel PR �lter

bank if and only if there exist Laurent polynomials �(z) and �(z) such that

�(z)G0(z) + �(z)G1(z) = 1: (9.1)
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First, by conducting the preparatory step outlined above, we assume G0(z); G1(z)

and �(z); �(z) are polynomials. Then the condition and the construction of the polynomials

�(z) and �(z) can be simultaneously solved by the Euclidean Division Algorithm: apply a

succession of elementary row operations to the polynomial vector

 
G0(z)

G1(z)

!
to reduce it to 

G(z)

0

!
where G(z) := gcd(G0(z); G1(z)), i.e. �nd a E 2 E2(k[z]) such that

E

 
G0(z)

G1(z)

!
=

 
G(z)

0

!
:

If the greatest common divisor of G0(z) and G1(z) is not 1 (up to multiplication by con-

stants), then G(z) can not act as the low-pass �lter in a 2-channel �lter bank. If the greatest

common divisor is indeed 1, then the �rst row

(�0(z); �0(z)) := (1; 0)E

of the unimodular polynomial matrix E 2 E2(k[z]) can be a choice for (�(z); �(z)), thereby

yielding a �lter bank with G(z) as its low-pass �lter. To �nd all the �lter banks having

G(z) as its low-pass �lter, let u(�; �) := ��0�+ �0�. Then, 
G0(z) G1(z)

��0 �0

! 
�

�

!
=

 
1

u

!
:

Therefore,  
�

�

!
=

 
�0 �G1(z)

�0 G0(z)

! 
1

u

!
:

Now, regarding u as a free parameter ranging over the Laurent polynomials in k[z�1], we

get all the possible FIR �lter banks with G(z) as its low-pass �lter.

In the following examples, to illustrate the method of consecutive elementary oper-

ations, we will �rst consider a simple FIR �lter which is actually not a lowpass �lter, but is

easy to handle. A real-world lowpass �lter for which the construction of the corresponding

synthesis �lters involves more computational steps will be treated in the second example.

Example 9.2.1 Consider a simple FIR �lter G(z) given by

G(z) =
1

z2
+ 1 + 2z � 2z2 + 5z3 � 6z5
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This G(z) is decomposed into polyphase components as

G(z) = G0(z
2) + zG1(z

2);

where G0(z) and G1(z) are found as

G0(z) =
1

z
+ 1� 2z

G1(z) = 2 + 5z � 6z2:

Now we apply the preparatory algorithm LaurentToPoly to A(z) := (G0(z); G1(z))
t:

� Preparatory Step 1: 
z 0

0 1
z

! 
G0(z)

G1(z)

!
=

 
1 + z � 2z2

2
z + 5� 6z

!
:

� Preparatory Step 2:

E21(�2

z
)

 
1 + z � 2z2

2
z + 5� 6z

!
=

 
1 + z � 2z2

3� 2z

!
:

� Preparatory Step 3:

E21(�3)
 
1 + z � 2z2

3� 2z

!
=

 
1 + z � 2z2

�5z + 6z2

!
:=

 
Ĝ0(z)

Ĝ1(z)

!
:

Therefore, we have

Â(z) = T(z)A(z)

where the converted causal �lter Â(z) = (Ĝ0(z); Ĝ1(z))t and the transformation ma-

trix T(z) are given by

Â(z) =

 
1 + z � 2z2

�5z + 6z2

!

T(z) := E21(�3)E21(�2

z
)

 
z 0

0 1
z

!

=

 
z 0

�2� 3z 1
z

!
:

Now we apply the Euclidean Division Algorithm to Â(z) = (Ĝ0(z); Ĝ1(z))t.
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� Step 1: Since Euclidean Division yields Ĝ0(z) = �1
3Ĝ1(z) + 1� 2

3z, we have

E12(
1

3
)

 
Ĝ0(z)

Ĝ1(z)

!
=

 
1� 2

3z

�5z + 6z2

!
:

� Step 2: Since Euclidean Division yields �5z + 6z2 = (�6� 9z)(1� 2
3z) + 6,

E21(6 + 9z)

 
1� 2

3z

�5z + 6z2

!
=

 
1� 2

3z

6

!
:

� Step 3:

E12(
�3 + 2z

18
)

 
1� 2

3z

6

!
=

 
0

6

!

Combining these together, we have

E12(
�3 + 2z

18
)E21(6 + 9z)E12(

1

3
)

 
Ĝ0(z)

Ĝ1(z)

!

=

 �5z
6 + z2 �1�z+2z2

6

6 + 9z 3 + 3z

! 
Ĝ0(z)

Ĝ1(z)

!

=

 
0

6

!
;

which implies

(6 + 9z) � Ĝ0(z) + (3 + 3z) � Ĝ1(z) = 6;

i.e.

(1 +
3

2
z) � Ĝ0(z) +

1 + z

2
� Ĝ1(z) = 1:

Therefore, Ŝ := (1 + 3
2z;

1+z
2 ) is a left inverse to Â, and changing back to the

original system, we get the corresponding left inverse S to A:

S = ŜB

= (1 +
3

2
z;
1 + z

2
)

 
z 0

�2� 3z 1
z

!

=

 �1� 3
2z

1
2 +

1
2z

!
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Figure 9.2: Frequency Response of the Lowpass Filter H(z)

This gives a synthesis �lter

S(z) := �1 � 3

2
z2 + z(1 + 1=z2)=2

=
1

2z
� 1 +

z

2
� 3

2
z2:

Now, the one-parameter family of Laurent polynomials 
�

�

!
=

 �1� 3
2z �G1(z)

1
2 +

1
2z G0(z)

! 
1

u

!

=

 �1� 3
2z � u(2 + 5z � 6z2)

1
2 +

1
2z + u(1z + 1� 2z)

!
; u 2 k[z�1]

cover all the possible Laurent polynomial solutions to �(z)G0(z) + �(z)G1(z) = 1. 2

Example 9.2.2 Consider a causal lowpass �lter H(z) given by

H(z) = 0:1605+ 0:4156z+ 0:4592z2+ 0:1487z3� 0:1643z4� 0:1245z5+ 0:0825z6+

0:0887z7� 0:0508z8� 0:0608z9 + 0:0351z10+ 0:0399z11� 0:0256z12�
0:0244z13+ 0:0186z14+ 0:0135z15� 0:0131z16� 0:0074z17+ 0:0129z18�
0:0050z19

whose lowpass characteristic is shown in the Figure 9.2.

This is decomposed into polyphase components as

H(z) = H0(z
2) + zH1(z

2);

where H0(z) and H1(z) are

H0(z) = 0:1605+ 0:4592z� 0:1643z2+ 0:0825z3� 0:0508z4+ 0:0351z5� 0:0256z6+
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Figure 9.3: Frequency Response of the Synthesis Filter F (z)

0:0186z7� 0:0131z8+ 0:0129z9;

H1(z) = 0:4156+ 0:1487z� 0:1245z2+ 0:0887z3� 0:0608z4+ 0:0399z5� 0:0244z6+

0:0135z7� 0:0074z8� 0:0050z9:

Euclidean Division yields

H0(z) = �2:5893H1(z) + r(z)

with the remainder

r(z) = 1:2367+ 0:8442 z� 0:4867 z2+ 0:3123 z3� 0:208349 z4+ 0:138472 z5

�0:0888109 z6+ 0:0536797 z7� 0:0323696 z8:

Carrying out the corresponding elementary operation gives

E12(2:5893)

 
H0(z)

H1(z)

!
=

 
r(z)

H1(z)

!
:

Repeating the same procedure to the polynomial vector

 
r(z)

H1(z)

!
, we eventually

get A 2 E2(C [z]), a product of 10 elementary matrices, such that

A

 
H0(z)

H1(z)

!
=

 
0:7661

0

!
:

Let B := 1
0:7661A. Then

B

 
H0(z)

H1(z)

!
=

 
1

0

!
:
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An explicit computation shows

B11(z) = �0:4138 + 0:5743 z� 0:3989 z2+ 0:2652 z3� 0:1667 z4+ 0:0960 z5�
0:0478 z6+ 0:0164 z7+ 0:0154 z8

B12(z) = 2:5658� 0:6827 z+ 0:3689 z2� 0:2369 z3+ 0:1658 z4� 0:1189 z5+

0:0839 z6� 0:0572 z7+ 0:0398 z8

B21(z) = �0:7081� 0:2533 z+ 0:2121 z2� 0:1512 z3+ 0:1036 z4� 0:0679 z5+

0:0416 z6� 0:0231 z7+ 0:0127 z8+ 0:0085 z9

B22(z) = 0:2735+ 0:7824 z� 0:2799 z2+ 0:1406 z3� 0:0865 z4+ 0:0599 z5�
0:0436 z6+ 0:0317 z7� 0:0223 z8+ 0:0220 z9:

Hence, we have

B11H0(z) + B12H1(z) = 1:

Now, the �lter

F (z) = B11(z
2) + zB12(z

2)

= �0:4138 + 2:5658 z + 0:5743 z2� 0:6827 z3� 0:3989 z4+ 0:3689 z5+

0:2652 z6� 0:2369 z7� 0:1667 z8+ 0:1657 z9+ 0:0960 z10� 0:1189 z11�
0:0478 z12+ 0:0839 z13+ 0:0164 z14� 0:0572 z15+ 0:0154 z16+ 0:0398 z17

is a desired synthesis �lter, whose frequency response is shown in the Figure 9.3. Actually,

what we get is a 1-parameter family of synthesis �lters, and making a good choice of

u 2 k[z�1] will give us a synthesis �lter with a more desirable frequency response. 2

Problem 2: Given a sample rate conversion scheme consisting of upsampling by p, �ltering

with a 1-D FIR �lter U(z) and downsampling by q, decide e�ectively whether or not this

scheme is FIR invertible.

To answer this question, we may assume that the numbers p and q are coprime,

p > q. Let U(z) =
Ppq�1

i=0 ziUi(z
pq) be its polyphase decomposition with respect to pq. Let

the expression Ukl(z), 0 � k < p, 0 � l < q, be the polyphase component Ui(z) such that

i � k (mod p) and i � l (mod q). Invertibility of the sample rate conversion scheme can
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then be formulated as the existence of a Laurent polynomial matrix D = (Dm;k(z)) which

is a left inverse of U = (Ukl(z)).

Since a Laurent polynomial matrix has a left inverse if and only if it is unimodular

(Theorem 10.1.3), there exist l :=
�p
q

�
polynomials Di(z) such that

lX
i=1

Di(z)Mi(z) = 1;

where Mi(z) ranges over the maximal minors of U.

So, the second question is about determining the unimodularity of the Laurent

polynomial matrix U, or equivalently, the unimodularity of the Laurent polynomial vector

(M1; : : : ;Ml) 2 (C [z�1 ])l.

This unimodularity determination problem can be readily solved once we no-

tice that, due to the the Laurent polynomial analogue of Hilbert Nullstellensatz over C ,P
iDi(z)Mi(z) = 1 is possible if and only if the Laurent polynomials Mi(z)'s, 1 � i � �p

q

�
,

have no nonzero common roots, i.e. no roots in C � . Since each univariate Laurent polyno-

mial Mi(z) has only �nitely many zeros which can be explicitly found using any existing

computer algebra packages, we can tell if Mi(z)'s have a nonzero common root or not, and

thereby determining if U is unimodular.

Example 9.2.3 Consider a sample rate conversion scheme consisting of upsampling by

p = 3, �ltering with an FIR �lter U(z) and downsampling by q = 2, where U(z) is given by

U(z) =
3

z6
+

6

z5
+

6

z3
+

3

z2
� 2 + 29z + 25z3 + 2z5 � 2z6 � 4z7 + 2z8 � 23z9 � 2z10 +

4z11 + 2z12 � 20z13 � 16z15 + 20z17 + 20z21:

Then we get the polyphase decomposition U(z) =
P5

i=0 z
iUi(z6) of U(z) where Ui(z)'s are

found as

U0(z) =
3

z
� 2� 2z + 2z2

U1(z) =
6

z
+ 29� 4z � 20z2

U2(z) = 2z

U3(z) =
6

z
+ 25� 23z � 16z2 + 20z3

U4(z) =
3

z
� 2z

U5(z) = 2 + 4z + 20z2:
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Now, note that U10(z) = U4(z) since i = 4 is the only integer in [0; 5] such that

i � 1 (mod 3)

i � 0 (mod 2):

Continuing in this way, we get

U =

0BB@
U0(z) U3(z)

U4(z) U1(z)

U2(z) U5(z)

1CCA
The three maximal minors of U are

M1(z) =

�����U0(z) U3(z)

U4(z) U1(z)

����� = �1

M2(z) =

�����U0(z) U3(z)

U2(z) U5(z)

����� = 6

z
� 4� 2z + 2z2

M3(z) =

�����U4(z) U1(z)

U2(z) U5(z)

����� = 6

z
� 2z

which obviously don't have any common roots.

Consequently the given scheme is FIR invertible. 2

Problem 3: Given an oversampled 1-D FIR analysis �lter bank, decide e�ectively whether

or not there is an FIR synthesis �lter bank such that the overall system is PR. When this

decision process yields a positive answer, provide a complete parametrization of all such FIR

synthesis �lter banks.

An oversampled �lter bank corresponds to a non-square polyphase matrix, and the

problem is asking whether or not we can �nd a left inverse for this non-square polyphase

matrix. Let the polyphase matrix be A, a p � q Laurent polynomial matrix, p � q. Since

this polyphase matrix has a left inverse if and only if it is unimodular, we can �rst determine

its unimodularity by the method outlined for the second problem. If this test shows the

unimodularity of A, we �rst apply the algorithm LaurentToPoly to A converting A to

a unimodular polynomial matrix Â. Then, by using the Euclidean Division Algorithm, we

apply a succession of elementary operations to Â to reduce it to the following p� q matrix0BBBBB@
Iq

0
...

0

1CCCCCA 2 Mpq(k);
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where Iq is the q � q identity matrix, and 0 is the q-dimensional zero row vector.

This means that we can �nd E 2 Ep(k[z]), a product of elementary matrices, such

that

EA =

0BBBBB@
Iq

0
...

0

1CCCCCA :

Now take the �rst q rows of E to make a q � p matrix F, i.e.

F := (Iq; 0; : : : ; 0)E:

Then F is a desired left inverse of A. Note here that A = E�1

0BBBBB@
Iq

0
...

0

1CCCCCA implies E�1 2

GLp(k[z]) is a unimodular completion of A.

To get a complete parametrization of all the possible left inverses of A, let B 2
Mqp(k[z]) an arbitrary left inverse of A. Then

BA = Iq:

Now, since E�1 is a unimodular completion of A,

BE�1 = (Iq;u1; : : : ;up�q)

for some u1; : : : ;up�q 2 (k[z�1])q. Now, regarding u1; : : : ;up�q as free parameters ranging

over q-dimensional Laurent polynomial vectors, we get a complete parametrization of the

left inverses to A in terms of (p� q)q parameters ranging over the Laurent polynomials in

k[z�1]:

B = (Iq;u1; : : : ;up�q)E:

Remark 9.2.4 If p = q, i.e. if the polyphase matrix A is a square unimodular matrix,

then the number of free parameters is (p � q)q = 0. This coincides with the fact that a

square unimodular matrix has a unique inverse.
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Example 9.2.5 Consider an oversampled 1-D FIR analysis �lter bank whose polyphase

matrix is the matrix U of the previous example. We already saw in that example that

U =

0BB@
3
z � 2� 2z + 2z2 6

z + 25� 23z � 16z2 + 20z3

3
z � 2z 6

z + 29� 4z � 20z2

2z 2 + 4z + 20z2

1CCA
is unimodular, so there is an FIR synthesis �lter bank such that the overall system is PR.

Now we want to �nd all such FIR synthesis �lter banks.

Closely following the algorithm outlined in the above, we get

EU =

0BB@
1 0

0 1

0 0

1CCA ;

where the 3� 3 matrix E is found as0BB@
z
18 (�18�125z�188z2+252z3�215z4+178z5+6z6) z

3 (�2�27z+30z2+z3)
(�12�89z+51z2�60z3�2z4)

6

z
6 (3+19z�32z2+23z3�9z4�8z5+6z6) z(4�3z�z2+z3) 9=2�4z+3z2=2+z3�z4

z(�4z+23z2=3�5z3+z4+8z5=3�2z6) 2z(�3+2z+z2�z3) �6+6z�z2�2z3+2z4

1CCA :

Now a general left inverse of U is in the form 
1 0 u

0 1 v

!
E;

where u; v are arbitrary Laurent polynomials in k[z�1]. 2
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Chapter 10

Multidimensional Multirate

Systems

10.1 Unimodularity and Left Inverses

For p � q, let A 2 Mpq(k[x
�1]), and B 2 Mqp(k[x

�1]). Denote the i-th column

vectors of the q�p matrices B and At by vi and wi, respectively. For a sequence of integers

i = (i1; : : : ; iq) with 1 � i1 < � � � < iq � p, take the q column vectors vi1 ; : : : ;viq from B,

and q row vectors wt
i1
; : : : ;wt

iq from A to de�ne q � q square matrices Bi and A
i.

Then BA 2 Mq(k[x�1]) is a square matrix and its determinant can be computed

from the maximal minors of A and B by the following formula:

Lemma 10.1.1 (Binet-Cauchy Formula) With notations in the above,

det(BA) =
X
i2I

det(Bi) det(A
i);

where I := f(i1; : : : ; iq) j 1 � i1 < � � � < iq � pg.

Proof: See [Gan77]. 2

Example 10.1.2 Let A =

0BB@
1 3

2 1

4 �1

1CCA, and B =

 
2 1 1

�1 2 1

!
. Then,

det(BA) =

����� 8 6

7 �2

�����
= �58:
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Since the index set is I = f(1; 2); (1; 3); (2; 3)g, the right hand side of the Binet-Cauchy

Formula reads as

X
i2I

det(Bi) det(A
i)

= det(B(1;2)) det(A
(1;2)) + det(B(1;3)) det(A

(1;3)) + det(B(2;3)) det(A
(2;3))

=

����� 2 1

�1 2

����� �
����� 1 3

2 1

�����+
����� 2 1

�1 1

����� �
����� 1 3

4 �1

�����+
����� 1 1

2 1

����� �
����� 2 1

4 �1

�����
= 5 � (�5) + 3 � (�13) + (�1) � (�6)
= �58:

This coincides with the prediction of the Binet-Cauchy Formula. 2

The following theorem has many important consequences as mentioned in Chapter

8, and has been already used in the previous chapter.

Theorem 10.1.3 A p � q Laurent polynomial matrix A (p � q) has a left inverse if and

only if it is unimodular.

Proof: (=):) Suppose B 2 Mqp(k[x�1]) is a left inverse of A. Then the Binet-Cauchy

Formula applied to BA = Iq implies

X
i2I

det(Bi) det(A
t
i
) = 1:

Hence, the maximal minors of A, fdet(At
i
) j i 2 Ig, generate the unit ideal in k[x�1], i.e.

A is unimodular.

((=:) By using the Unimodular Completion Algorithm for Laurent polynomial rings de-

veloped in Corollary 6.1.1, we can complete the unimodular matrix A 2 Mpq(k[x�1]) to a

square unimodular matrix �A 2 GLp(k[x
�1]). Now, from �A�1 �A = Ip, one sees easily that

the q � p matrix B made from the �rst q rows of �A�1 is a left inverse of the p� q matrix

made from the �rst q columns of �A, i.e. BA = Iq. 2

10.2 Two Methods of Causal Reduction

If we consider the three problems in their MD versions, the conditions which need

to be satis�ed resemble their 1-D counter parts Eq. (9.1) and Eq. (9.2). The only di�erence
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is that we have to replace the variable z by z := (z1; � � � ; zn). However, the Euclidean

Division Algorithm is no longer valid, and thus the coe�cients �(z), �(z) and Di(z) and

their existence have to be found in another way.

Naturally, the Gr�obner bases techniques o�er a solution in this MD set-up, and

we should be able to apply Gr�obner bases computations to solve our three problems.

However, since our questions involve Laurent polynomials, we have to perform a

preparatory process to convert the problems to causal problems.

While we already have presented a systematic method to this e�ect in Chapter

6, there is an alternative method for this causal reduction outlined in [KPV95]: for every

variable zi we introduce two new variables xi and yi. Substituting xmi for every positive

power zmi and yki for every negative power z�ki , we transform the original set of Laurent

polynomials into a set of regular polynomials. We then enlarge this set by adding the poly-

nomials xiyi � 1. One veri�es that the constant 1 is a linear combination of the original

set of Laurent polynomials if and only if the same is true for the constructed set of regular

polynomials. Moreover, given a linear combination of polynomials , we �nd a linear combi-

nation of Laurent polynomials by back substitution: xi and yi are replaced by zi and z�1i

respectively.

There are, however, some drawbacks with this method. First, it signi�cantly

increases the complexity of the problem by introducing extra variables and by enlarging the

size of the given polynomial vector. Also, a complete parametrization of solutions needs

separate computation.

Therefore, we will mainly use the algorithm LaurentToPoly for the purpose of

our causal reduction.

In the following, we give an example in which we apply the algorithm Laurent-

ToPoly to reduce the given multidimensional FIR systems to causal systems of the same

dimension.

Example 10.2.1 Let v :=

 
v1

v2

!
=

 1
y +

x
y + x

x
y2

+ 1 + y + xy

!
2 (k[x�1; y�1])2.

� Step 1: Write v1 in terms of x, i.e. express it as a polynomial in S[x] where S :=

k[y�1]: v1 = 1
y + (1y + 1)x. One sees that the leading coe�cient 1

y + 1 of v1 is not a

unit in S. So we apply the algorithm LaurentNoether to v1.

De�ne a new variable z by putting y = zxl where the integer l is to be determined.

With respect to the new variables x and z, v1 becomes v1 =
1
zxl

+ 1
zxl�1

+x. Let l = 1.
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Then v1 = 1
zx + 1

z + x 2 S0[x�1] where S0 := k[z�1] and the leading and the lowest

coe�cients of v1 2 S0[x�1] are units of S0.

� Step 2: We have

v =

 1
zx +

1
z + x

1
z2x

+ 1+ zx+ zx2

!
2 (S0[x�1])2:

Then

v1 :=

 
zx 0

0 1
zx

!
v

=

 
1 + x+ x2z

1
z3x2

+ 1
zx + 1 + x

!
:

Now we apply elementary operations to v1 to make its second component a polynomial

in x whose constant term is zero.

1.

v2 := E21(� 1

z3x2
)v1

=

 
1 + x+ x2z

� 1
z3x +

1
zx + 1� z�2 + x

!
:

2.

v3 := E21((
1

z3
� 1

z
)x)v2

=

 
1 + x+ x2z

1
z3
� 1

z2
� 1

z + 1 + x
z2

!
:

3.

v̂ := E21(� 1

z3
+

1

z2
+
1

z
� 1)v3

=

 
1 + x+ x2z

x (�1+2z�xz+z2+xz2�z3+xz3�xz4)
z3

!
:

The transformation matrix is

T := E21(�1� z � z2 + z3

z3
)E21((

1

z3
� 1

z
)x)E21(� 1

z3x2
)

 
zx 0

0 1
zx

!
;

and the converted vector is

v̂ = Tv =

 
1 + x+ x2z

x (�1+2z�xz+z2+xz2�z3+xz3�xz4)
z3

!
:
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� Now we make another change of variables. De�ne a new variable w by x = w � zl
where the integer l is to be determined.

Then w.r.t. the new variables z; w, v̂ becomes

v̂ =

 
1 + wzl + w2z2l+1

wzl�3
�
�1 + 2z � wzl+1 + z2 + wzl+2 � z3 + wzl+3 � wzl+4

�! :
Let l = 3 since it is the smallest integer that makes the components of v̂ polynomials

in z and w. Then

v̂ :=

 
v̂1

v̂2

!

=

 
1 + wz3 + w2z7

w
��1 + 2z + z2 � z3 � wz4 + wz5 + wz6 � wz7

� ! :
Now the unimodularity of v as a Laurent polynomial vector in k[x�1; y�1] is equivalent to

the unimodularity of v̂ as a polynomial vector in k[z; w].

Now a computation with SINGULAR shows that the reduced Gr�obner basis of

fv̂1; v̂2g � k[w; z] w.r.t. the reverse degree lexicographic order is

f�z2+ 81w+ 17z� 11;�21wz� 4z2+ 9w+ 5z� 2;�567w2� 116wz� z2+ 77w� 2z+ 4g:

Therefore v̂ is not unimodular over k[w; z], and neither is v over k[x�1; y�1]. 2

10.3 Syzygies and Parametrization of Filter Banks

For any given multidimensional FIR �lter which can be the analysis �lter of an

MD perfect reconstructing FIR �lter bank, we can �nd a corresponding synthesis �lter by

using the the method of Gr�obner basis as was demonstrated in the proof of Theorem 10.1.3.

But this particular �lter is by no means unique. And the nonuniqueness of solutions is

measured by syzygy.

In this section, for an arbitrary Laurent polynomial matrix, we will attempt to

give a complete and canonical parametrization for all of its left inverses if there is any.

In matrix terminology, we will �nd some free parameters in terms of which an

arbitrary left inverse of the given unimodular Laurent polynomial matrix can be uniquely

written. Because of the uniqueness here, the number of such free parameters is an invariant

for the given matrix and represents the degree of freedom in obtaining its left inverses.
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It will be shown that, for a p � q unimodular matrix, the degree of freedom associated to

�nding its left inverses is q � (p� q).

In [KPV95], a complete parametrization formula was achieved with which we

can express any synthesis �lter corresponding to the given analysis �lter. While this

parametrization is complete in the sense that it exhausts all the possible synthesis �l-

ters corresponding to the given analysis �lter, it is not canonical, i.e. the expression of a

synthesis �lter in terms of the parameters is not unique. We will remedy this situation here

with the aid of the Quillen-Suslin Theorem.

For a simple example, consider an invertible FIR �lter whose polyphase matrix is

(f1; : : : ; fn)
t 2 k[x�1]. In order to �nd its left inverses, we have to consider all the solutions

to the following equation:

nX
i=1

�i(x)fi(x) = 1: (10.1)

If f�i(x) 2 k[x�1] j i = 1; : : : ; ng is a solution to this equation, then f�i(x) 2 k[x�1] j i =
1; : : : ; ng is also a solution if and only if (�1(x)� �1(x); : : : ; �n(x)� �n(x)) belongs to the

syzygy module S := f(h1; : : : ; hn) 2 (k[x�1])n jPn
i=1 hifi(x) = 0g.

Therefore the problem of giving a complete parametrization for the solutions to

Eq. 10.1 is equivalent to �nding a �nite basis for the syzygy module S.

In the 1-D case, an explicit process of �nding such a basis using the Euclidean

Division Algorithm was shown in detail in the previous chapter.

In the MD case, the syzygy module

S := f(h1; : : : ; hn) 2 (k[x�1])n j
nX
i=1

hifi(x) = 0g

ia a free module of rank n � 1 by the Laurent polynomial analogue of the Quillen-Suslin

Theorem, and its free basis fs1(x); : : : ; sn�1(x)g can be found by the algorithm developed

in Chapter 6, i.e. convert the problem to the case of polynomial rings by using the algorithm

LaurentToPoly and then compute its reduced Gr�obner basis w.r.t. any �xed monomial

order.

Then f�i(x) j i = 1; : : : ; ng is a solution to the Eq. 10.1 if and only if there exist

fu1(x); : : : ; un�1(x)g � k[x�1] such that

(�1(x); : : : ; �n(x)) = (�1(x); : : : ; �n(x)) + u1(x)s1(x) + � � �+ un�1(x)sn�1(x):
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So, there are n� 1 free parameters involved in this case, too.

For the general case, consider an invertible FIR �lter whose polyphase matrix is

A = (fij) 2 Mpq(k[x
�1]), p � q, which is unimodular due to the FIR invertibility of the

�lter it represents. In order to �nd its left inverses, we have to consider all the q�p Laurent
polynomial matrices that are solutions to the following equation:

BA = Iq: (10.2)

Denote the p row vectors of A by

v1 := (f11; : : : ; f1q)
...

vp := (fp1; : : : ; fpq):

If Bpart 2 Mqp(k[x
�1]) is a particular solution to the above Equation 10.2, then B 2

Mqp(k[x
�1]) is also a solution to it if and only if (B�Bpart)A = 0 2 Mq(k[x

�1]).

For each i = 1; : : : ; q, let wi := (wi1; : : : ; wiq) 2 (k[x])p denote the i-th row vector

of B�Bpart. Then

(B�Bpart)A =

0BB@
w11 � � � w1p
...

...

wq1 � � � wqp

1CCA
0BB@
f11 � � � f1q
...

...

fp1 � � � fpq

1CCA

=

0BB@
w11v1 + � � �+ w1pvp

...

wq1v1 + � � �+ wqpvp

1CCA :

Therefore, B 2 Mqp(k[x
�1]) is a a solution to the Equation 10.2 if and only if each row of

B�Bpart belongs to the kernel of the following k[x]-module homomorphism:

� : (k[x�1])p �! (k[x�1])q

h = (h1; : : : ; hp) 7! h1v1 + � � �+ hpvp:

Due to the unimodularity of A, � is onto and the kernel of this homomorphism � is a

direct summand of (k[x�1])p i.e. projective and therefore free of rank p� q by the Laurent

polynomial analogue of the Quillen-Suslin Theorem. And its free basis s1(x); : : : ; sp�q(x) 2
(k[x�1])p can be explicitly found using the algorithm of Chapter 6.
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Since each row of B �Bpart is a unique linear combination (with Laurent poly-

nomial coe�cient) of si(x)'s, we have

w1 = u11(x)s1(x) + � � �+ u1(p�q)(x)sp�q(x)
...

wq = uq1(x)s1(x) + � � �+ uq(p�q)(x)sp�q(x);

for some Laurent polynomials uij , 1 � i � q, 1 � j � p� q. Therefore,

B �Bpart =

0BB@
u11(x) : : : u1(p�q)(x)

...
...

uq1(x) : : : uq(p�q)(x)

1CCA
0BB@

s1(x)
...

sp�q(x)

1CCA ;

where each si(x) is regarded as a p-dimensional row vector. Therefore the general solution

to Eq. 10.2 can be expressed in terms of (p� q)q free parameters:

B = Bpart +

0BB@
u11(x) : : : u1(p�q)(x)

...
...

uq1(x) : : : uq(p�q)(x)

1CCA
0BB@

s1(x)
...

sp�q(x)

1CCA :

Note that this is a minimal complete parametrization in the sense that any complete

parametrization of the left inverses of A always involve at least (p� q)q free parameters.

10.4 Unimodular Completion and Parametrization of Filter

Banks

Since our Unimodular Completion Algorithm developed in Chapter 3 already con-

tains a syzygy computation as its central ingredient, it's natural to ask if one could obtain

the parametrization outlined in the previous section from the Unimodular Completion Al-

gorithm. It turns out that this is indeed the case.

Suppose A 2 Mpq(k[x�1]) is unimodular and �A 2 GLp(k[x�1]) is a unimodular

completion of A. If S 2Mqp(k[x�1]) is an arbitrary left inverse of A, then

SA = Iq =) S �A = (Iq;u1; : : : ;up�q)

=) S = (Iq;u1; : : : ;up�q) �A�1

for some u1; : : : ;up�q 2 (k[x�1])q.
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Now regarding u1; : : : ;up�q as free vector parameters ranging over (k[x�1])q, we

get a complete parametrization involving q � (p� q) free parameters. More explicitly,

S = (Iq;u1; : : : ;up�q) �A�1 (10.3)

=

0BBBBB@
1 0 � � � 0 u11 � � � u1(p�q)
0 1 � � � 0 u21 � � � u2(p�q)
...

. . .
...

...
...

0 0 � � � 1 uq1 � � � uq(p�q)

1CCCCCA �A�1: (10.4)

Note that any complete parametrization involving q � (p � q) parameters gives a

syzygy basis since the degree of freedom associated to �nding the left inverses of a p � q

unimodular matrix is precisely q � (p� q). Therefore the above parametrization obtained

from the Unimodular Completion Algorithm is a complete and canonical parametrization.

Example 10.4.1 De�ne four polynomials in C [x�1 ; y�1; z�1] by

f1 = 1� x y � 2 z � 4 x z � x2 z � 2 x y z + 2 x2 y2 z � 2 x z2 � 2 x2 z2 + 2 x2 y z2

f2 = 2 + 4 x+ x2 + 2 x y � 2 x2 y2 + 2 x z + 2 x2 z � 2 x2 y z

f3 = 1 + 2 x+ x y � x2 y2 + x z + x2 z � x2 y z

f4 = 2 + x+ y � x y2 + z � x y z:

Find a complete parametrization for all the left inverses of the 4� 1 matrix A :=

0BBBBB@
f1

f2

f3

f4

1CCCCCA.

The unimodularity of the matrix A was shown in the Example 3.3.1, and an

explicit unimodular completion �A of A was also constructed there:

�A =

0BBBBB@
f1 �y�xz+2xy2z�2xz2+2xyz2 1� 2xyz � 2xz2 z � 2z2

f2 x� 2xy2 + 2xz � 2xyz 2xy + 2xz �1 + 2z

f3 � �xy2�+ xz � xyz xy + xz �1 + z

f4 1� y2 � yz y + z 0

1CCCCCA :

Therefore, an arbitrary left inverse S of A is of the form

S = (1; u1; u2; u3) �A
�1
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= (1; u1; u2; u3)

0BBBBB@
0 �z+1 2z�1 �x

�y�z xz�yz�z2�x+2z�2 �2xz+x�4z+2 x2+2x+1

�y2�yz+1 �y2z�yz2+2yz�2y+2z�1 �4yz+2y�2z+1 2xy + x+ y

xy+xz xyz+xz2�2xz+2x+1 4xz�2x�2 �2x2�x

1CCCCCA
= (0;�z + 1; 2z� 1;�x)

+u1(�y � z; xz � yz � z2 � x+ 2z � 2;�2xz + x� 4z + 2; x2 + 2x+ 1)

+u2(�y2 � yz + 1;�y2z�yz2+2yz�2y+2z�1;�4yz+ 2y � 2z + 1; 2xy + x+ y)

+u3(xy + xz; xyz + xz2 � 2xz + 2x+ 1; 4xz � 2x� 2;�2x2 � x):

Note here how unimodular completion is closely related to syzygy basis. 2

10.5 Gr�obner Bases and Multidimensional Filter Banks

We now consider the �rst question: We can check whether or not a given MD low-

pass G(z) can act as an analysis �lter in a 2-channel �lter bank by decomposing G(z) into

polyphase components, and checking the unimodularity of the resulting polyphase matrix by

combining the algorithm LaurentToPoly and a Gr�obner basis computation. Moreover, if

the answer is yes, we explicitly �nd a particular low-pass synthesis �lter Hpart(z) by tracing

the steps in the Gr�obner basis computation. We also derive a complete parametrization of

the synthesis �lters by the syzygy basis computation outlined in the previous section.

Example 10.5.1 Consider the �lter G(z1; z2) with impulse response

1

4096

0BBBBBBBBBBBBBB@

0 0 0 8 0 0 0

0 0 24 �96 24 0 0

0 24 �192 456 �192 24 0

8 �96 456 3200 456 �96 8

0 24 �192 456 �192 24 0

0 0 24 �96 24 0 0

0 0 0 8 0 0 0

1CCCCCCCCCCCCCCA
:

The �lter G(z1; z2) is designed to have a diamond-shaped low-pass frequency re-

sponse. It is 
at of order 2 at DC, and vanishing at the aliasing frequencies of the quincunx

sampling lattice (see Fig. 10.1). These properties make it a likely candidate for the low-pass

analysis �lter of a 2-channel, PR �lter bank (downsampling on the quincunx lattice). Ap-

plying the Gr�obner bases computation, we indeed �nd that this is the case, and the �lter
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Frequency response for Analysis Filter

-Pi

0

Pi

Horizontal

-Pi

0

Pi

Vertical
-Pi

0

Pi

Horizontal

Figure 10.1: The frequency response of G(z1; z2).

Hpart(z1; z2) with impulse response

1

3585

0BBBBBBBB@

0 0 48 0 0

0 96 576 96 0

48 576 4288 576 48

0 96 576 96 0

0 0 48 0 0

1CCCCCCCCA
is found as a particular solution for the synthesis �lter. By choosing appropriate values

for the parameters in the parametrization outlined in the previous section, we can modify

Hpart(z1; z2) in order to meet or approximate extra conditions. 2

We will now consider the second question and show how Gr�obner bases can be

used in 2D sample rate conversion schemes.

Example 10.5.2 Consider the 2D sample rate conversion scheme which consists of vertical

upsampling by a factor 3, �ltering with a �lter H(z) = H(z1; z2) and horizontal downsam-

pling with a factor 2. We assume that H is FIR, and we would like to know if this scheme

has an FIR inverse. To be more precise, we are looking for an FIR �lter G(z), such that

horizontal upsampling by a factor 2, �ltering with G(z) and vertical downsampling with a

factor 3, cancels the e�ect of the �rst sample rate conversion scheme.
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Let the �lter H(z) be given by H(z) =
P
hi;jz

i
1z

j
2. Following the method outlined

in Section 9.2, but now for this 2D case, we construct the 3�2 polynomial matrix Hk;l(z) =P
h3i+k;2j+lz

i
1z

j
2, where 0 � k � 2 and 0 � l � 1.

Assume momentarily thatH(z) is a separable �lter Hh(z1)Hv(z2). It is easily seen

that in this case the �lters Hk;l(z) are products of 1D polyphase components, i.e. Hk;l(z) =

Hh
k (z1)H

v
l (z2). Consequently, all the maximal minors of Hk;l(z) have determinants equal

to 0. Therefore the 2D analogue of Eq. 9.2 cannot be satis�ed, and inversion is impossible.

Now we consider a non-separable case, where the �lter H(z) is given by the 4� 6

(horizontal � vertical) impulse response0BBBBB@
2 3 2 1 3 2

3 5 3 1 3 2

1 1 1 1 1 1

2 2 2 1 1 1

1CCCCCA :

The polyphase component matrix Hp = (Hkl) of H(z) is de�ned by

H(z) =
2X

k=0

1X
l=0

zk1z
l
2Hkl(z

2
1; z

3
2);

which is found as

Hp =

0BB@
2 + z1 + z2 + z1z2 3 + 2z1 + z2 + z1z2

3 + z1 + 3z2 + z1z2 5 + 2z1 + 3z2 + z1z2

2 + z1 + 2z2 + z1z2 3 + 2z1 + 2z2 + z1z2

1CCA :

Computing the determinants of the maximal minors we �nd D0(z) = �1 � z2,

D1(z) = �z2�z1z2 and D2(z) = 1�z2�z1z2. These determinants are proper multivariable

expressions and the Euclidean algorithm will therefore not work. In this case one easily

veri�es that D2 �D1 = 1, and therefore Hp is unimodular and there exist an inverse FIR

�lter G(z). To �nd G(z) we �rst need to �nd a left inverse Gp to Hp.

We apply the Unimodular Completion Algorithm developed in Chapter 3 to Hp

now, and the following is the SINGULAR script we used. For notational convenience, we

let x := z1; y := z2.

ring r=0,(x,y),(c,dp); option(redSB);

vector v(1)=[2+x+y+xy,3+2*x+y+xy];

vector v(2)=[3+x+3*y+xy,5+2*x+3*y+xy];

vector v(3)=[2+x+2*y+xy,3+2*x+2*y+xy];

module M=v(1),v(2),v(3);

module G=std(M); matrix T=lift(M,G); module S=syz(M);



120

The output from SINGULAR is as follows:

> G;

G[1]=[0,1]

G[2]=[1]

> T;

T[1,1]=0

T[1,2]=1

T[2,1]=x+2

T[2,2]=-2x-3

T[3,1]=-1x-3

T[3,2]=2x+4

> S;

S[1]=[y+1,-1xy-1y,xy+y-1]

Since f(1; 0); (0; 1)g is a Gr�obner basis of the row vectors of A, A is unimodular, and the

relation G = MT translates to  
0 1

1 0

!
= AtT:

By taking transpose of bothe sides, we get TtA =

 
0 1

1 0

!
, i.e.

 
1 �2x� 3 2x+ 4

0 x+ 2 �x� 3

!
A = I2:

Hence, B :=

 
1 �2z1 � 3 2z1 + 4

0 z1 + 2 �z1 � 3

!
is a left inverse of A, and

C =

 
B

S

!

=

0BB@
1 �2z1 � 3 2z1 + 4

0 z1 + 2 �z1 � 3

z2 + 1 �z1z2 � z2 z1z2 + z2 � 1

1CCA :

The resulting unimodular completion of A is

�A = C�1:
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Now the most general form of Gp is given by the Formula 10.3:

Gp =

 
1 0 u1

0 1 u2

!
�A�1

=

 
1 0 u1

0 1 u2

!
C

=

 
1 0 u1

0 1 u2

!0BB@
1 �2z1 � 3 2z1 + 4

0 z1 + 2 �z1 � 3

z2 + 1 �z1z2 � z2 z1z2 + z2 � 1

1CCA
=

 
1 �2z1 � 3 2z1 + 4

0 z1 + 2 �z1 � 3

!

+

 
u1(z2 + 1) u1(�z1z2 � z2) u1(z1z2 + z2 � 1)

u2(z2 + 1) u2(�z1z2 � z2) u2(z1z2 + z2 � 1)

!
(10.5)

where u1; u2 are arbitrary Laurent polynomials.

Finally, the matrix Gp = (Gkl) is related to the inverse �lter G(z) as the set of

backward polyphase components. To be precise, G(z) is given by G(z) =
P
zk1z

l
2Gkl(z

2
1 ; z

3
2).

Working out these formulas one �nds the following impulse response for the �lter G(z):0BBBBB@
�2 2 �1 �1 1 �1

3 �3 2 1 �1 1

�1 1 0 �1 1 0

2 �2 0 1 �1 0

1CCCCCA :

Again, one can change the values for u1 and u2 in the Eq. 10.5 to adjust to some speci�c

needs. 2
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Chapter 11

Ladder Decomposition of

Multidimensional Perfect

Reconstructing Filter Banks

11.1 Introduction

In Chapter 4, we obtained a realization algorithm that lets us write a given square

unimodular polynomial matrix as a product of elementary polynomial matrices. As sug-

gested in [THK95], such an algorithm has application in signal processing since it gives a

way of expressing a given multidimensional biorthogonal �lter bank as a cascade of simpler

�lter banks called elementary ladder steps.

Mathematically, representing a perfect reconstructing FIR �lter bank as a cascade

of elementary ladder steps is equivalent to expressing a unimodular Laurent polynomial

matrix as a product of elementary matrices over Laurent polynomial ring. Since we already

obtained a Realization Algorithm over polynomial rings and the algorithm Laurent-

ToPoly for transforming a noncausal system to a causal system, we can readily develop a

realization algorithm for an arbitrary unimodular Laurent polynomial matrix.
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11.2 Elementary Column Property over Laurent polyno-

mial rings

In Chapter 6, for any given v =

0BB@
v1
...

vn

1CCA 2 Umn(C [x
�1]), we found E 2 En(C [x

�1])

such that

Ev = w =

0BB@
w1
...

wn

1CCA 2 (S[x1])
n:

And with the change of variables:

x1 = y1 � (y2 � � �ym)l; x2 = y2; : : : ; xm = ym;

we showed that w is unimodular over the polynomial ring C [y ]. Now we can apply the

Elementary Column Property of Chapter 4 tow, if n � 3, to reduce it to en using elementary

operations. Since we used only elementary operations to reduce v to w, by changing

variables back to x, we have reduced v to en by applying elementary operations. This

proves the following Laurent analogue of the Elementary Column Property.

Theorem 11.2.1 (Elementary Column Property for Laurent polynomial rings) The group

En(C [x
�1]) acts transitively on the set Umn(C [x

�1]) when n � 3.

11.3 Realization Algorithm over Laurent Polynomial Rings

Now, the desired realization algorithm for SLn(C [x�1]), n � 3, proceeds as follows:

� Step 1: Use the Elementary Column Property provided by Theorem 11.2.1 to reduce

the problem of obtaining a general realization algorithm over the Laurent polynomial

ring C [x�1] to the problem of �nding a realization algorithm for the matrices of the

following special form: 0BB@
p q 0

r s 0

0 0 1

1CCA 2 SL3(C [x
�1]):
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That is, for a given unimodular matrix A 2 SLn(C [x
�1]), �nd elementary matrices

E1; : : : ;El such that

El � � �E1A =

0BB@
p q 0

r s 0

0 0 In�2

1CCA :

� Step 2: Since

 
p

r

!
is a unimodular column vector over C [x�1], by following the

procedure outlined in the previous section, we can assume that

 
p

r

!
is a unimodular

column vector over the polynomial ring C [x], p � 1 (mod x1 � � �xm) and r � 0

(mod x1 � � �xm).

� Step 3: Now, consider the unimodular row vector (p; q) over S[x�11 ] with the coe�-

cient ring S being C [x�12 ; : : : ; x�1m ]. Since p is a polynomial in S[x1] and its constant

term is 1, by adding a suitable multiple of p to q and by noting that this elementary

column operation does not change r, we can assume that q is a polynomial in S[x1]

and its constant term is zero. Then the condition,

����� p q

r s

����� = 1, forces s to be also a

polynomial in S[x1] whose constant term is 1. Now, using the new variables y1; : : : ; ym

de�ned by x1 = y1 � (y2 � � �ym)l; x2 = y2; : : : ; xm = ym for a su�ciently large l 2 N,
we see that 0BB@

p q 0

r s 0

0 0 1

1CCA 2 SL3(C [y ]):

� Step 4: Use the Realization Algorithm over polynomial rings developed in the chapter

4 to write

0BB@
p q 0

r s 0

0 0 1

1CCA 2 SL3(C [y ]) as a product of elementary matrices over C [y ] and

then change the variables back to x1; : : : ; xm.
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