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Abstract

State Minimization of Finite State Machines
using Implicit Techniques

by
Timothy Yee-Kwong Kam
Doctor of Philosophy in Electrical Engineering and Computer Sciences
University of California at Berkeley
Professor Robert K. Brayton, Chair

State minimization is an important step in sequential synthesis of VLSI circuits. This dis-
sertation addresses state minimization problems of various classes of finite state machines (FSM'’s).
An exact algorithm usually consists of generation of compatibles and solution of a binate covering
problem. State-of-the-art explicit minimizers fail on FSM’s requiring an exponential number of
compatibles, or huge binate tables. Such difficult examples do arise in practice.

This dissertation first contributes a fully implicit algorithm for exact state minimization
of incompletely specified FSM’s, and a software implementation called 1SM. Novel techniques are
developed to represent and generate various subsets of compatibles implicitly. ISM can handle sets
of compatibles and prime compatibles of cardinality up to 2!5%, The dissertation also presents the
first published algorithm for fully implicit exact binate covering. ISM can reduce and solve binate
tables with up to 10° rows and columns. The entire branch-and-bound procedure is carried out
implicitly.

To handle a more general and more useful class of FSM’s, the first implicit algorithm for
exact state minimization of pseudo non-deterministic FSM’s is presented. Its implementation IsM2
is shown experimentally to be superior to a previous explicit formulation. ISM2 could solve exactly
all but one problem of a set of published benchmarks, while the explicit program could complete
approximately one half of the examples, and in those cases with longer running times.

A theoretical solution is presented for the problem of exact state minimization of gen-
eral non-deterministic FSM'’s, based on the proposal of generalized compatibles. This gives an
algorithmic foundation for exploring behaviors contained in an NDFSM.



Recent research in sequential synthesis, verification and supervisory control relies, as
a final step, on the selection of an optimum behavior to be implemented at a component FSM
within a network of FSM’s. This dissertation contributes an exact condition characterizing when an
FSM-composition is well-defined. Exact and heuristic algorithms are proposed to find a minimum
behavior contained in a PNDFSM (capturing all permissible behaviors) such that it is Moore or

its composition with another DFSM (representing the environment) is well-defined, and the global
behavior meets a specification.
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Chapter 1

Introduction

VLSI (Very large scale integrated) circuits are widely used in modem electronic products.
Since the invention of the planar integrated circuit by Robert Noyce and Jack Kelby in 1959,
the number of transistors that can be successfully fabricated on a single chip has doubled almost
every year. As the complexity and performance requirements of VLSI circuits are increasing
exponentially, the design process has to be automated by using computer-aided design (CAD) tools.
A CAD tool is a computer program that can help an IC designer in the VLSI design process. This
dissertation is concemned with the problem of automatically synthesizing a class of digital circuits.

Manual Design Vs. Automatic Synthesis

To best motivate the need for automatic synthesis, let us consider, as an example of the
state-of-the-art VLSI design, the Intel’s P6 microprocessor [15]. To stay ahead in the race for the
next generation microprocessors, the most crucial factor in such a VLSI circuit design is probably
the design time, which has a big effect on its time-to-market and ultimately to product success in
the market. CAD tools hold the promise of shortening the design cycle by automating part of it.
P6 consists of a CPU core with 5.5 million transistors and a secondary cache with 15.5 million
transistors. For circuits with millions of transistors, the design cost may be considerable in terms
of the number of design engineers involved and in term of the computer resources it requires. It
is simply impossible to design such a complicated circuit manually, without any form of design
automation. A hidden cost is when some design errors are not discovered early in the design cycle.
This calls for verification tools which include simulation, and formal verification. Verification will
not be covered in this dissertation, but instead we will concentrate on logic synthesis, i.e., CAD
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tools that aids the design process.

Beside reducing the design time and cost, an important design objective is to improve
the quality of the circuit. There are at least four aspects of design quality: area, delay, power
and testability. Continuing on the P6 example, as SRAM has a regular structure, the 15.5 million
transistors can be packed into a die of 202 mm2. As the CPU probably contains a big portion
of random logic, a die area of 306 mm? is used for the 5.5 million transistors there. Given a
specification, one would like to obtain an implementation with a small area on silicon. Clock
frequency is an important measure of the performance of a microprocessor. At a clock frequency
of 133 MHz, the P6 microprocessor is claimed to deliver 200 SPECint92. The maximum clock
frequency is dictated by the delay time of the critical path in the circuit. Power consumption is
becoming more important as more transistors are packed into a single package. With both the CPU
and SRAM dies housed in a single package, the peak power consumed by the P6 is estimated to
be 20 Watts at a clock frequency of 133 MHz. Testability measures the ability to determine during
production testing faults that occur within a chip. Note that both delay and power can be reduced as
we scale the operating voltage and the process technology. To attain a small power-delay product,
P6 is fabricated using a 2.9V, 0.6 micron, 4-layer-metal BICMOS process technology. Further gain
in circuit performance can be obtained only by the use of CAD tools.

Now let us concentrate on CAD tools that perform logic synthesis.

1.1 Logic Synthesis

Logic synthesis is a design automation process that generates a physical layout of a design
from a user-input behavioral specification. In this section, we present a typical design flow and
describe briefly each synthesis step involved . Each individual step can also be seen as a mapping,
from a more abstract design representation to a less abstract one. Usually higherlevels of abstraction
are used to describe behaviors while the lower levels are more structural in nature.

High Level Synthesis

High level synthesis [55] translates a behavioral specification originated from the user
into a register transfer level (RTL) description of the design. High level synthesis usually involves
two tasks: scheduling and allocation. In the scheduling step, a specific time slot is determined
for each of the operations in the specification such that some design constraints (such as area,
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delay, etc) are satisfied while other factors are optimized. In the allocation step, operations and -
variables are assigned to functional units and memory units respectively. The end result of high level

synthesis is an RTL description which consists of two parts: datapath and controller. The former is

an interconnection of functional blocks (e.g., arithmetic units such as adders and multipliers), and

memory units (e.g., registers). The control sequence for the datapath is generated by a controller

which is described as a finite state machine (FSM). We will concentrate on the design of the control

logic, which is usually time consuming,.

Sequential Synthesis

The goal of sequential synthesis is to optimize control-oriented designs at the level of
finite state machines. The result of sequential synthesis is a Boolean network of combinational
logic blocks and memory elements. As the work presented in this dissertation is concemed with
design tools for sequential synthesis, we shall discuss it in more detail in Section 1.2.

Combinational Logic Synthesis

After synthesis at the sequential level, the next step is to perform an optimization on the
combinational portion of a circuit. The goal of combinational logic synthesis [8] is to find an optimal
interconnection of primitive logic gates that realizes the same functionality as the original circuit.
This process involves two steps: technology independent optimization and technology mapping.
Technology independent optimization derives an optimal structure of the circuit independent of the
gates available in a particular technology. Technology mapping is the optimization step to select
the particular gates from a pre-designed library, to implement an optimized logic network. The
optimization criteria are again: area, delay, power and testability.

Layout Synthesis

The final step in the synthesis flow is physical layout synthesis [41). From a gate level
description, it generates mask geometries of transistors and wires to be fabricated on silicon.
Different layout tools are used for different design methodologies, such as full-custom, standard
cell and gate array (including FPGA and sea-of-gates). Some common steps in layout synthesis are
floorplanning, placement, routing, layout editing and module generation.
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1.2 Sequential Logic Synthesis

In general, synthesis tools working at lower levels of abstraction are more mature than the
ones operating at higher levels. The problems and solutions for layout synthesis and combinational
logic (in particular two-level logic) synthesis are quite well understood. This fact is reflected by
the wide use of commercial CAD tools in these synthesis domains. From a research perspective,
sequential synthesis represents the next frontier in logic synthesis. Digital circuits, in general, are
sequential in nature. It is desirable to work at the sequential level because CAD tools working at a
higher level of abstraction can explore a wider design space. The main challenge is to efficiently
explore this huge design space and obtain a quality solution within some reasonable memory space
and CPU time. The subject of this dissertation is the design of algorithms and techniques for
sequential synthesis with an emphasis on the exact state minimization problem.

Finite state machine (FSM) is a restricted class of sequential circuit called synchronous
circuits which assumes the existence of a common global clock. An FSM is a discrete dynamic
system that translates sequences of input vectors into sequences of output vectors. FSM’s are a
formalism growing from the theory of finite automata in computer science [32). An FSM has a set
of states and a set of transitions between states; the transitions are triggered by input vectors and
produce output vectors. The states can be seen as recording the past input sequence, so that when
the next input is seen, a transition can be taken based on the information of the past history. If a
system is such that there is no need to look into past history to decide what output to produce, it has
only one state and therefore it yields a combinational circuit. On the other hand, systems whose
past history cannot be condensed in a finite number of states are not physically realizable.

FSM'’s are obtained either as a by-product of high level synthesis, or are directly given
by the user. FSM’s generated by high level synthesis tools are usually not minimum in the number
of states. When directly specified by the user, FSM’s are often designed for ease of description,
instead of for compactness in representation. It is desirable to state minimize the FSM representation
because usually it is a good starting point for other sequential synthesis and verification tools. Also
a smaller number of states might result in less memory elements and simpler next state logic in the
final implementation.

States in an FSM specification can either be symbolic or binary-encoded. Usually an
FSM with symbolic states is initially given. To optimize the circuit at the sequential level, one can
first perform state minimization, followed by state assignment. Given an FSM, state minimization
produces another FSM whose behavior is equivalent to or contained in the behavior(s) of the
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original FSM. Given an FSM with symbolic states, state assignment encodes these symbolic states
into binary codes. An FSM can also be partitioned into a network of interacting FSM’s. FSM
partitioning is useful as current tools for exact state minimization and exact state assignment can
handle only small to medium examples.

There is no theoretical guarantee that a state minimized FSM is always a better starting
point for state assignment than an FSM that has not been state minimized [30], yet in practice
this leads to excellent solutions, because it couples a step of behavioral optimization on the state
transition graph (STG) with an encoding step on a reduced STG, so that the complexity of the
latter’s task is reduced.

1.3 Implicit Techniques

Efficient representation and exploration of design space is key to any sequential synthesis
tool. We say that a representation is explicit if the objects it represents are listed one by one
intemally. Objects are manipulated explicitly, if they are processed one after another. Implicit
representation means a shared representation of the objects, such that the size of the representation
is not proportional to the number of objects in it. By implicit manipulation, we mean that in one
step, many objects are processed simultaneously.

Seminal work by researchers at Bull [16] and improvements at U.C. Berkeley [80] pro-
duced powerful techniques for implicit enumeration of subsets of states of an FSM. These techniques
are based on the idea of operating on large sets of states by their characteristic functions [13] rep-
resented by binary decision diagrams (BDD’s) [11]. In many cases of practical interest, these
sets have a regular structure that translates into small-sized BDD’s. Once the related BDD’s can
be constructed, the most common Boolean operations on them (including satisfiability) have low
complexity, and this makes it feasible to carry on computations unaffordable in the traditional case
where all states must be explicitly represented. Of course, it may be the case that the BDD cannot
be constructed, because of the intrinsic structure of the function to represent or because a good
ordering of the variables is not found.

- More recent work at Bull [19, 48] has shown how implicants, primes and essential primes
of a two-valued or multi-valued function can also be computed implicitly. Reported experiments
show a suite of examples where all primes could be computed, whereas explicit techniques imple-
mented in ESPRESSO (7] failed to do so.

Therefore it is important to investigate how far these techniques based on implicit com-
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putations can be pushed to solve the core problems of logic synthesis and verification. When exact
solutions are sought, explicit techniques run out of steam easily because too many elements of the
solution space must be enumerated. It appears that implicit techniques offer the most realistic hope
to increase the size of problems that can be solved exactly. This dissertation is a first step on the
application of implicit techniques to solve optimization problems in the area of sequential synthesis.

1.4 Contributions to State Minimization

State minimization is an important step in sequential synthesis of VLSI circuits. This dis-
sertation addresses state minimization problems of various classes of finite state machines (FSM’s).
An exact algorithm [60, 28] usually consists of the generation of compatibles and the solution of a
binate covering problem [68). The state-of-the-art explicit minimizer [65] fails on FSM’s requiring
an exponential number of compatibles, or huge binate tables. We indicate also where such examples

.arise in practice.

This dissertation first contributes a fully implicit algorithm for exact state minimization
of incompletely specified FSM’s, and a software implementation called ISM. Novel techniques are
developed to represent and generate various subsets of compatibles implicitly. ISM can handle sets
of compatibles and prime compatibles of cardinality up to 2!°%, The dissertation also presents the
first published algorithm for fully implicit exact binate covering. ISM can reduce and solve binate
tables with up to 105 rows and columns. The entire branch-and-bound procedure is carried out
implicitly.

To handle a more general and useful class of FSM'’s, the first implicit algorithm for exact
state minimization of pseudo non-deterministic FSM’s is presented. Its implementation ISM2 is
shown experimentally to be superior to a previous explicit formulation [83]. ISM2 could solve
exactly all but one problem of a set of published benchmarks, while the explicit program could
complete approximately one half of the examples, and in those cases with longer running times.

A theoretical solution is presented for the problem of exact state minimization of gen-
eral non-deterministic FSM’s, based on the proposal of generalized compatibles. This gives an
algorithmic foundation for explorihg behaviors contained in an NDFSM. .

Recent research [83, 4, 2] in sequential synthesis, verification and supervisory control
relies, as a final step, on the selection of an optimum behavior to be implemented at a component
FSM within a network of FSM’s. This dissertation addresses the abstracted problem of finding
a minimum behavior contained in a PNDFSM (capturing all permissible behaviors) such that its
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composition with another DFSM (representing the environment) is well-defined and the global

" behavior meets a specification. This dissertation contributes a necessary and sufficient condition
characterizing when such a composition is well-defined. Furthermore, exact and heuristic algorithms
are proposed for selecting such a behavior contained in a PNDFSM which is either Moore, or well-
defined with respect to another DFSM.

1.5 Organization of the Dissertation

The dissertation is divided into three parts. The first part presents some preliminary
definitions, theories and techniques related to state minimization. The second part presents an
implicit algorithm for exact state minimization of incompletely specified finite state machines
(ISFSM’s). The third part addresses state minimization problems of non-deterministic finite state
machines (NDFSM’s).

Chapter 2 provides a taxonomy on some useful classes of finite state machines, and their
state minimization problems. At the end of this chapter, we prove the correctness of our state
minimization algorithms for pseudo non-deterministic FSM’s (of which ISFSM’s are a subclass).

In Chapter 3, we show how we can represent and manipulate sets and sets-of-sets efficiently
using a suite of implicit techniques.

An exact algorithm for state minimization of incompletely specified FSM’s consists of
two steps. Chapter 4 describes an implicit algorithm for the generation of compatibles and prime
compatibles. Chapter 5 presents the first published algorithm for a fully implicit binate covering
table solver.

Chapter 6 explores the state minimization problem of non-deterministic FSM’s, and
presents a fully implicit algorithm for exact state minimization of pseudo non-deterministic FSM’s,
a useful subclass of NDFSM’s.

Recent advances indicate that synthesis of a component machine within a network of
interacting FSM's requires the solution of specialized versions of the state minimization problem
of PNDFSM's. Chapter 7 presents solutions to these problems, based on variations on our implicit
minimization algorithm given in Chapter 6.

Finally Chapter 8 provides a conclusion of the theoretical and practical results obtained
in this research.
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Chapter 2

Taxonomy

The aims of this chapter are to provide a unified notational framework for the dissertation,
and to introduce the theory behind state minimization. In this chapter, we first define some useful
classes of finite state machines (FSM’s) and finite automata (FA’s), and investigate their inter-
relationship. We will show that a non-deterministic FSM (NDFSM) can be used to specify a set
of behaviors. Then we will describe how different behaviors can be explored within an NDFSM
specification. These concepts introduced are central to exact algorithms for state minimization for
FSM'’s. At the end, the correctness of our state minimization algorithms will be proved for a class
of FSM'’s called the pseudo non-deterministic FSMs.

2.1 Taxonomy of Finite State Machines

We use characteristic functions proposed by Cemy [13] to represent sets and relations,
both in theory and in practice. In the sequel, B = {0, 1}.

Definition 2.1 Given a subset S C U where U is some finite domain, the characteristic function of
S, xs : U = B, is defined as follows. For each element z € U,

Oifz ¢ S,

lifz € S.

Definition 2.2 Given a relation R C X x Y where X andY are some finite domains, the charac-
teristic function of R, xg : X XY — B, is defined as follows. For each pair (z,y) € X X Y,

xs(z) = {

0if z and y are not in relation R,
XR (.'L' ) y) =

1ifz and y are in relation R.
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The above definition can be extended to any n-ary relations.

Definition 2.3 A non-deterministic FSM (NDFSM), or simply an FSM, is defined as a 5-tuple
M = (S,1,0,T, R) where S represents the finite state space, I represents the finite input space
and O represents the finite output space. T is the transition relation defined as a characteristic
JunctionT : I x § x § x O = B. On an input i, the NDFSM at present state p can transit to a
next state n. and output o if and only if T'(¢, p, n, 0) = 1 (i.e., (3, p, n, 0} is a transition). There exists
one or more transitions for each combination of present state p and input i. R C S represents the
set of reset states. ! *

Note that in this and subsequent definitions, the state space S, the input space I and the
output space O can be generic discrete spaces and so S, I and O can assume symbolic values [21, 70].
A special case is when S, I and O are the Cartesian product of copies of the space B = {0,1},
i.e., they are binary variables. The fact that the FSM’s have symbolic versus binary encoded input
and output variables does not change the formulation of problem, nor the solution based on the
computation of compatibles. The theory extends in a straightforward manner to encoded state
spaces.

The above is the most general definition of an FSM and it contains, as special cases,
different well-known classes of FSM's. An FSM can be specified by a state transition table (STT)
which is a tabular list of the transitions in 7. An FSM defines a transition structure that can also be
described by a state transition graph (STG). By a labeled edge p '—/°> n, the FSM transits from state
pon input i to state n with output o.

Definition 2.4 Given an FSM M = (S, 1,0, T, R), the state transition graph of M is a labeled
directed graph, STG(M) = (V, E), where each state s € S corresponds to a vertex in V labeled
s and each transition (i, p, n, 0) € T corresponds to a directed edge in E from vertex p to vertex n,
and the edge is labeled by the input/output pair i/o.

To capture fiexibility/choice/don’t-care/non-determinism in the next state n and/or the
output o from a present state p on an input ¢, one can specify one or more transitions (i,p,n,0) € T.
As said above, we assume that the state transition relation T is complete with respect to ¢ and p, i.e.,
there is always at least one transition from each state on each input. This differs from the situation
in formal verification where incomplete automata are considered.

!In subsequent definitions, R represents the set of reset states while r represents the unique reset state.



2.1. TAXONOMY OF FINITE STATE MACHINES 13

Definition 2.5 A state transition relation T is complete if
Vi,p3n,o[T(i,p,n,0)]= 1.

Vis used to denote universal quantification, whereas 3 denotes existential quantification. The above
equation is an abbreviation of the following statement:

Vie IVpe€ S3n € S30€Osuchthat T(¢,p,n,0)=1

Relational representation of T' allows non-deterministic transitions with respect to next
states and/or outputs, and also allows correlations between next states and outputs. More specialized
forms of FSM’s are derived by restricting the form of transitions that is allowed in 7. FSM’s can
be categorized by answering the following questions:

1. Instead of a single transition relation, can the next state information and output information
of the FSM be represented separately by two functions or relations?

2. Can the FSM be represented by functions instead of relations? 2

3. Are the next states and outputs in the relations and/or functions correlated? Next state
information is not correlated with the output if the former is related to the inputs and present
states only. Uncorrelated output is similarly defined.

Now we introduce different classes of FSM’s. An NDFSM is a pseudo non-deterministic
FSM (PNDFSM ) if for each triple (¢,p,0) € I x S x O, there is a unique state n such that
T(i,p,n,0) = 1. It is non-deterministic because for a given input and present state, there may be
more than one possible output; it is called pseudo non-deterministic because edges (i.e., transitions)
carrying different outputs must go to different next states 3.

Definition 2.6 A pseudo non-deterministic FSM (PNDFSM) is a 6-tuple M =
(5,1,0,6,A, R). S represents the finite state space, I represents the finite input space and O
represents the finite output space. 8 is the next state function definedas § : I x S x O — S where
each combination of input, present state and output is mapped to a unique next state. A is the output
relation defined as a characteristic function A : I x S x O — B where each combination of input
and present state is related to one or more outputs. R C S represents the set of reset states.

2Relations are denoted by upper-case letters (e.g., A denotes a next state relation) while functions are denoted by
lower-case ones (e.g., § represents a next state function).
3The underlying finite automaton of a PNDFSM is deterministic.
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In other words for a PNDFSM, T'(i, p, »,0) = 1 if and only if A(i,8,0) = 1 and n = §(¢, 5, 0).
Since the next state n is unique for a given combination of input, present state and output, it can be
given by a next state function n = (3, p, 0). Since the output is non-deterministic in general, it is
represented by the relation A.

Theorem 2.1 An NDFSM is pseudo non-deterministic if
Vi,p,0!n [T(i,p,n,0)] =1

where ! denotes a new operator called the unique quantifier which will be introduced in Section 3.3.2.
\z F(z,y) &f {yly is related to a unique z in F}.

One can extend the previous definition to get a numerable family of machines as follows.
An NDFSM is a k-step pseudo non-deterministic FSM (k-PNDFSM), where k € w (i.e., k is a
' natural number), if at any present state, the choice of the next state can be uniquely identified by
observing input-output sequences of length up to k. An NDFSM is a k-step pseudo non-deterministic
FSM (k-PNDFSM), where k € w, if for each tuple (i, i3, ...,%k,p,0,02,...,0) € I X I X +++ X
I'xSx0xO0 x---x O, there is a unique next state n € S and there are states s3,---,sx € S
such that T'(i, p, n, 0) = 1 and T(43, n, 82, 02) = T'(43, 82, 83, 03) = - - - = T (i, Sk—1, 8k, 0k) = 1.

Definition 2.7 A k-step pseudo non-deterministic FSM (k-PNDFSM) is a 6-tuple M =

'(S,1,0,8,A, R). ¢ is the next state function definedas § : I x -+ - X IXSxOx:--x0 = S
where each combination of present state, k inputs and k outputs gives a unique next state. A is the
output relation defined as a characteristic function A : I x S x O — B where each combination of
input and present state is related to one or more outputs. R C S represents the set of reset states.

By definition, a PNDFSM is an 1-PNDFSM. Cemy in [14] has given a polynomial
algorithm to convert a k-PNDFSM to a PNDFSM. A k-PNDFSM has a representation smaller or
equal to that of an equivalent PNDFSM. We shall consider the state minimization of 1-PNDFSM
only and assume that the k-PNDFSM can be handled by first going through such a conversion step.

Classical texts usually describe the Mealy and Moore model of FSM’s. For completeness,
they are also defined here as subclasses of NDFSM. A Mealy NDFSM is an NDFSM where there
exists a next state relation* A : 7 x S x § — B and an output relation A : I x Sx O = B

“The next state relation A can be viewed as a function A : I x S — 2%; n € A(i, p) if and only if  is a possible next
state of state p on input i, :

The output relation A can be viewed as a function A: I x S — 2% 0 € A(s, p) if and only if o is a possible output
of state p on input 3.
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such that for every (i,p,n,0) € I x S x S x O, T'(¢,p,n,0) = 1 if and only if A(, p,n) = 1 and
A, p,0)= 1.

Definition 2.8 A Mealy NDFSM is a 6-tuple M = (S, 1,0, A, A, R). S represents the finite state
space, I represents the finite input space and O represents the finite output space. A is the next state
relation defined as a characteristic functionA : I x S x S — B where each combination of input
and present state is related to a non-empty set of next states. A is the output relation defined as a
characteristic function A : I x S x O — B where each combination of input and present state is
related to a non-empty set of outputs. R C S represents the set of reset states.

Note that next states and outputs are not correlated in the state transition relation of a Mealy machine.

A Moore NDFSM is an NDFSM where there exists a next state relationA : I xSxS — B
and an output relation A : § X O — Bsuchthatforall (i,p,n,0) € IXSxSx O, T(i,p,n,0) =1
if and only if A(¢, p, n) = 1 and A(p,0) = 1.

Definition 2.9 A Moore NDFSM is a 6-tuple M = (S, 1,0, A, A, R). S represents the finite state
space, I represents the finite input spacé and O represents the finite output space. A is the next state
relation defined as a characteristic function A : I x S X S — B where each combination of input
and present state is related to a non-empty set of next states. A is the output relation defined as a
characteristic function A : S x O — B where each present state is related to a non-empty set of
outputs. R C S represents the set of reset states.

As a special case of Mealy machine, Moore machines have its output depends on its present state
only (but not input).

The definition of Moore machine presented here is the same as the one given by Moore
in [58] and followed by authors in the field (e.g., [86]). The key fact to notice is that the output is
associated with the present state. In other words, the common output associated to a given state,
goes on all transitions that leave that state. This is a reasonable assumption when modeling an
hardware system. However, it is common to find in textbooks [40, 32] a “dual” definition where the
output is associated with the next state. In other words, the common output associated to a given
state, is on all edges that go into that state, while edges leaving a given state may carry different
outputs.

This second definition enjoys the nice property that it is always possible to convert a
Mealy machine into a Moore machine. This may be the reason of its popularity. Instead with the
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first definition, there are Mealy machines that have no Moore equivalent. For example, a wire can
be consider a Mealy machine with one state and with its input connecting directly to its output. It
does not have an equivalent Moore machine.

An NDFSM is an incompletely specified FSM (ISFSM) if for each pair (3,p) € I x S
such that T'(i, p, », 0) = 1, (1) the machine can transit to a unique next state = or to any next state,
and (2) the machine can produce a unique output o or produce any output.

Definition 2.10 An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M =
(S5,1,0,A,A,R). S represents the finite state space, I represents the finite input space and O
represents the finite output space. A is the next state relation defined as a characteristic function
A:Ix S xS — Bwhere each combination of input and present state is related to a single next
state or to all states. A is the output relation defined as a characteristic function A : I xS xO — B
where each combination of input and present state is related to a single output or to all outputs.
R C S represents the set of reset states.

Incomplete specification is used here to express some types of don’t cares in the next states
and/or outputs. We warn that even though “incompletely specified” is established terminology in
the sequential synthesis literature, it conflicts with the fact that ISFSM’s have a transition relation
T that is actually completely specified with respect to present state p and input ¢, because there is
at least one transition for each (i, p) pairin T.

A deterministic FSM (DFSM) or completely specified FSM (CSFSM) is an NDFSM
where for each pair (i, p) € I x S, there is a unique next state n and a unique output o such that
T(i,p,n,0) = 1,i.e., there is a unique transition from (3, p). In addition, R contains a unique reset
state,

Definition 2.11 A deterministic FSM (DFSM) or completely specified FSM (CSFSM) can be
defined as a 6-tuple M = (S,1,0,6,\,r). S represents the finite state space, I represents the
finite input space and O represents the finite output space. ¢ is the next state function defined as
0:1x S — Swheren € S is the next state of present state p € S on input i € I if and only if
n = 8(1, p). Ais the output function defined as A : I x S — O where o € O is the output of present
statep € Soninputi € I ifand only if o = A(i,p). r € S represents the unique reset state.

Note that an ISFSM and a DFSM are both next-state output uncorrelated because we can
represent the next state and output information separately. But a PNDFSM (and k-PNDFSM) is
next-state output correlated as the next state is correlated with the output by » = 4(%, p, o).
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A Moore DFSM is a Moore NDFSM where for each pair (i, p) € I x S, there is a unique
next state n and for each p € S, a unique output o such that T'(¢,p, n,0) = 1. In addition, R
contains a unique reset state.

Definition 2.12 A Moore DFSM can be defined as a 6-tuple M = (S, 1,0,86, )\, r). S represents
the finite state space, I represents the finite input space and O represents the finite output space. &
is the next state function defined as 6 : I x S — S where n € S is the next state of present state
p € Soninputi € Iifand only if n = §(i, p). \is the output function defined as A : S — O where
o € O is the output of present state p € S if and only if o = A(p). r € S represents the reset state.

Definition 2.13 Given an NDFSM, a state s is output-deterministic if for every input i, there exists
a unique output o such that s outputs o under input i. An NDFSM is output-deterministic (i.e., the
NDFSM is an ODFSM) if every reachable state is output-deterministic.

Theorem 2.2 An NDFSM is output-deterministic if and only if
Vi,ploIn [T (i,p,n,0)]=1.

Definition 2.14 An NDFSM is spurious non-deterministic if for each input sequences, there is a
unique output sequence.

A spurious non-deterministic FSM, as opposed to a true non-deterministic one, can be viewed as a
DFSM. Is spurious non-determinism the same as output-determinism for NDFSM’s?

Theorem 2.3 If an NDFSM is spurious non-deterministic, then all its reachable states are output-
deterministic.

Proof: Given an NDFSM that is spurious non-deterministic. Assume that a reachable state s is
not output-deterministic, there is an input 7 on which s can produce two different outputs. As s is
reachable, say with input sequence o; from a reset state, the machine will produce different output
sequences under the input sequence o;i. As this contradicts the fact that the NDFSM is spurious
non-deterministic, our assumption was false. . [

2.2 Taxonomy of Finite Automata

Definition 2.15 Given a finite set of symbols X (i.e., a finite alphabet), a language L is a set of
strings of symbols from X.
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Definition 2.16 A deterministic finite automaton (DFA), or simply finite automaton (FA), is
defined as a 5-tuple A = (S,Z,4,r, F). S represents the finite state space and X represents a finite
alphabet. § is the next state function defined as § : L x S — S where n € S is the next state of
present state p € S on symbol i € X if and only if n = 6(i,p). r € S represents the reset state.
F C S is the set of final states.

The next state function & can be extended to have as argument strings in T*, (i.e.,
0:Z* xS = S)by b(pi,s) = (¢, 6(p, s)).

A string z is said to be accepted by the DFA A if §(z,r) is a state in F. The language
accepted by A, designated L(A), is the set of strings {z|6(z,r) € F}.

Definition 2.17 A non-deterministic finite automaton (NDFA) is defined as a S-tuple A =
(S,Z,A,r,F). S represents the finite state space and T represents the finite alphabet. A is
the next state relation defined as as a characteristic functionA : X x S x S — Bwheren € Sisa
next state of present state p € S on symbol i € X if and only if n € A(i,p) 6. r € S represents the

reset state.

The next state relation can be extended to have as argument strings in X* (i.e., A :
Z* x § xS = B) as follows: A(pi,s,s") = 1 if and only if there exists s' € S such that
A(p,s,s") =1andA(i,s',s") = 1.

A string z is said to be accepted by the NDFA A if there exists a sequence of transitions
corresponding to x such that A(z, r) contains a state in F. The language accepted by A, designated
L(A), is the set of strings{z|A(z,r) N F # 0}.

Theorem 2.4 Let L be the language accepted by a non-deterministic finite automaton. Then there
exists a deterministic finite automaton that accepts L.

Proof: By subset construction [32). [ ]

Corollary 2.5 DFA’s and NDFA’s (and NDFA's with e-transitions and regular expressions) accept
the same set of languages. ’

Proof: The class of languages accepted by NDFA's includes the set of languages accepted by DFA’s
(regular sets). Converse is also true because of the previous theorem. |

®The next state relation A can be viewed as a function A : I x S — 2%; n € A(i, p) if and only if n is a possible next
state of state p on input i.
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As DFA’s and NDFA's accept the same set of languages, we shall refer to both as finite
automata (FA's). However given an NDFA, its equivalent DFA may have an exponential number of
states as compared with the NDFA.

Whereas a DFA is restricted to having exactly one transition from a state for each symbol,
an NDFA may have any number of transitions for a given symboi, including zero transition. If
when processing a string, an NDFA comes to a state from which there is no transition labeled
with a symbol, the path followed is terminated. Actually, given an NDFA with missing transitions,
an equivalent NDFA without any missing transition can be constructed by adding a unacceptable
dummy state, and pointing all missing transitions to this dummy state.

An NDFA allows multiple reset states. Again given an NDFA with multiple reset states,
an equivalent NDFA can be constructed with a new unique reset state.

2.3 Conversions between Finite State Machines and Finite Automata

Theorem 2.6 (DFA — DFSM) Given a DFA A = (S,1,6,r,F),aDFSM M = (S,1,0,6,),r)
can be constructed such that O = {0,1} and for every i € I and s € S, \(¢,s) = 1 if and only if
d(i,s) € F.

The DFSM M will output 1 after an input string if and only if the string read since the
reset state is also accepted by the DFA A. We ignore the e-string (i.e., the fact that the reset state of
A may be acceptable) as it cannot be modeled by a Mealy DFSM.

Theorem 2.7 (NDFSM — NDFA) Given an NDFSM M = (S,1,0,T,R), an NDFA A =
(S,I x O,A, R, S) can be constructed such that for each io € I x O (i.e., a symbol contain-
ing an input and an output part) and for each s € S, A(io, p,n) = 1 if and only if T(¢, p, n,0) = 1.
All states are acceptable in A.

Theorem 2.8 An FSM is pseudo non-deterministic if and only if the FA associated with it is
deterministic.

Note that although a given FSM is deterministic, the constructed finite automaton can still
be non-deterministic because the next state  of a present state p is not always specified under every
topairin I x O.

Theorem 2.9 (NDFSM — PNDFSM) Given an NDFSM M = (S,1,0,T, R),an NDFA A =
(S,Ix0,A, R, S) can be constructed according to the above Theorem 2.7. The NDFA can then be
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“determinized” via subset construction [32] to obtain a DFA A% = (25,1 x O,A%, Ré¢t 25),
Then consider an NDFSM Mt = (25, 1,0, T4, R%*,25) where each symbol of A% is splitted
into an input and an output, and T%(i,p,n,0) = 1 if and only if A%*(io,p,n) = 1. Mt is
pseudo non-deterministic.

Theorem 2.10 (k-PNDFSM — 1-PNDFSM) Construction given by Cerny in [14].

2.4 Trace Sets and Behaviors

In the remaining sections of this chapter, we shall introduce different concepts that lead up
to an exact algorithm for state minimization. Our discussion will be based on the state minimization
of PNDFSM'’s because we believe it is the largest subclass of NDFSM’s that our state minimization
procedure can handle correctly. Miller has given a proof in [56] for the classical exact algorithm for
JSFSM minimization [28). We contribute a concise proof for our exact state minimization algorithm
for PNDFSM’s, by presenting a number of theorems in the following sections. In this section, we
first show that a DFSM realizes a behavior while an NDFSM realizes a set of behaviors.

Definition 2.18 Given a finite set of inputs I and a finite set of outputs O, a trace between I and O
is a pair of input and output sequences (o;, 0,) where o; € I*, o, € O* and |o;| = |o,|.

Definition 2.19 A trace set is simply a set of traces.

Definition 220 An NDFSM M = (S,1,0,T, R) realizes a trace set between I and O from state
so € S, denoted by L(M|,) ", if for every trace ({ip, i1, . . .,i;},{00, 01, . .,0;}) in the trace set,
there exists a state sequence 81,82, . . ., Sj+1 Such thatVk : 0 < k < j, T(ik, Sk, Sk41,0%) = 1.

Definition 2.21 AnISFSM M = (S,1,0,A, A, R) realizes a trace set between I and O from state
so € S, denoted by L(M |s,), if for every trace ({10, t1,...,1;}, {00, 01,...,0;}) in the trace set,
there exists a state sequence sy, 82y ...y 8j+1 SUch thatVk : 0 < k < j,

® Skt1 € A(%k, k), and

® o € A(k, Sk)-

7If the NDFSM M is viewed as a NFA A which alphabetis Z = I x O, the trace set of M from a state sp corresponds
to the language of A from so, and both will be denoted by L(M |,, ).
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The trace set realized by a deterministic FSM with inputs 7 and outputs O is called a
behavior between the inputs I and the outputs O. A formal definition follows.

Definition 2.22 Given a finite set of inputs I and a finite set of outputs O, a behavior between 1
and O is atrace set, B = {(0i,0,) | |0i| = |0,|}, which satisfies the following conditions:

1. Completeness:
For an arbitrary sequence o; on I, there exists a unique pair in B whose input sequence is
equal to o;.

2. Regularity:
There existsa DFSM M = (S, 1,0, 8, A, so) such that, for each ((to, . . .,1;), (o1, .. .,0;)) €
B, there is a sequence of states sy, sy, . . ., ;41 With the property that siy) = §(ix, s¢) and
o = A(i,8x) foreveryk:0 < k < j.

For each state in a deterministic FSM, each input sequence corresponds to exactly one
possible output sequence. Given a reset state, a deterministic FSM realizes a unique input-output
behavior. But given a behavior, there can be (possibly infinitely) many DFSM’s that realize the
behavior. Thus, the mapping between behaviors and DFSM realizations is a one-to-many relation.

Any other kinds of FSM’s, on the other hand, can represent a set of behaviors because
by different choices of next states and/or outputs, more than one output sequence can be associated
with an input sequence. Moreover, multiple reset states allow alternative trace sets be specified;
depending on the choice of the reset state, a behavior within the trace set from the chosen reset state
can be implemented. Therefore, while a DFSM represents a single behavior, a non-deterministic
FSM (NDFSM) can be viewed as representing a set of behaviors. Each such behavior within its trace
set is called a contained behavior of the NDFSM. Then an NDFSM expresses handily flexibilities
in sequential synthesis. Using an NDFSM, a user can specified that one out of the set of behaviors
is to be implemented. The choice of a particular behavior for implementation is based on some
cost function such as the number of states. Other cost functions related to implementability will be
investigated in Chapter 7.

2.5 Machine Containment

The fact that an NDFSM represents a set of behaviors leads naturally to the notion of
behavioral containment or trace set inclusion between NDFSM's.
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Definition 2.23 An NDFSM’s M = (S, I, 0, T, R) behaviorally contains another NDFSM M’ =
(S',1,0,T', R'), denoted by L(M) 2 L(M'), if ® for every r' € R', there exists r € R such that
the trace set of M from r contains the trace set of M' from r'. i.e.,

L(M) 2 L(M")if and only if V¥r' € R’ 3r € RL(M],) 2 L(M')1).

A different and more restrictive notion of containment is structural containment, which
requires that the state transition graph (STG) of M’ be embedded in the STG of M.

Definition 2.24 AnNDFSM’s M = (S, 1,0, T, R) structurally contains another NDFSM M’ =
(8',1,0,T', R'), denoted by STG(M) 2 STG(M'), if there exists a one-to-one mapping ¢ :
S’ — S such that

1. Vr € R ¢(r) € R,and
2.VieIVpe §'Vge §'Voe O if T'(i,p,q,0) = 1 then T (i, p(p), p(g),0) = 1.

Theorem 2.11 If STG(M) 2 STG(M’) then L(M) 2 L(M'). The converse is not true in
general.

This theorem implies that in general, we cannot explore all behavior contained in the trace set of
an NDFSM by enumerating DFSM’s which are structurally contained within the NDFSM. But in
Section 2.8, we shall show that all behaviors contained by a PNDFSM can be explored by finding
DFSM'’s that are structurally contained in a derived machine called the power NDFSM.

2.6 Behavioral Exploration in PNDFSM’s

In this section, we introduce the notion of a closed cover and establish the fact that by
finding all closed covers of a PNDFSM, we can explore all behaviors contained in it.

Definition 2.25 Given an NDFSM M = (S,1,0,T, R), a set of state sets, {c1,¢2,...,¢.}, is a
cover of M if® there existsr € Rand c; : 1 < j < nsuchthatr € c;.

Definition 2.26 Given an NDFSM M = (S,1,0,T, R), a set of state sets, K = {c1,c2,...,¢n},
isclosed in M ifforeveryi € I'andc;:1 < j < n,thereexistso € Oandcy : 1 < k < n such
that for each s € c;, there exists s' € cy such that T(¢,s,s',0) = 1. ie,

VieIVe;€ K30€O3cr € KVs€c;Is' € e, T(3,8,8,0)=1

8¢f. classical definition for ISFSM minimization.
%¢f. classical definition for ISFSM minimization.
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The above definition applies to all kinds of FSM’s. The following lemma restricts the
definition of closure condition to the case when M is a PNDFSM. This restriction to the PNDFSM
subclass is necessary for some subsequent theorems to hold.

Lemma 2.12 Givena PNDFSM M = (S, 1,0, 6, A, R), a set of state sets, K = {¢1,¢2,...,¢,},
is closed in M if and only if for every i € I and c; : 1 < j < n, there exists o € O such that

1. foreach s € c;, A(3,8,0) = 1,and
2. there exists ¢ : 1 < k < n such that for every s € c;, 6(i,8,0) € ck.
ie,VieIVe;j€ K30€ O {[Vs€cjA(i,s,0)=1]:[Tcx € K Vs € ¢; 6(¢,8,0) € ck] }.

Proof: By the definition of PNDFSM, [T'(i, s, ¢, 0) = 1] & [A(3,8,0) = 1] - [$' = 6(3, s, 0)]. The
closure condition for PNDFSM can be derived by a series of quantifier moves starting from the
formula in Definition 2.26.

VieIVe;e K30€O3ck e KVs€ec;3Is' € ex T(3,8,8,0)=1

VieIVe; € K30€O3cx € KVs € cj3s' € cx { [A(3,5,0) =1]-[¢' = 8(3,s,0)] }
VieIVe;€ KJo€O3cr e KVs€ec; {[A(3,8,0)=1]-[35' € ek 8’ = 6(4,5,0)] }
VieIVe;€e KJo€ O3cy € K{[Vs€cjA(i,8,0)=1]-[Vs € ¢ 8(3,s,0) € ¢i] }
VieIVe; € K30€ O {[Vs€cjA(i,8,0)=1]-[3ck € KVs €¢;(is,0) € ci] }

t ¢ ¢ 3

Lemma 2.13 GivenanISFSM M = (S,1,0,A, A, R),a set of state sets, K = {c1,¢2,...,cp}, is
closed in M ifand only ifforevery i € Iandc;:1< j < n,

1. there exists o € O such that for each s € c;, A(i,s,0) = 1, and

2. there exists ¢ : 1 < k < n such that for every s € c;j, there exists s' € cy such that
AG,s,8)=1.

ie,Vi€IVc; € K{[30€OVsecjA(i,s,0)=1]-[Fc; € KVs € ¢; 3¢’ € cxA(i,s,5") =1]}.

Proof: By the definition of ISFSM, [T'(i, s, &,0) = 1] & [A(,8,0) = 1] - [A(, 8,5") = 1]. The
closure condition for ISFSM can be derived by a series of quantifier moves starting from the formula
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in Definition 2.26.

VieIVc;€e K3o€ O3 € KVsec;3s' € e, T(i,5,8,0)=1
© VielIVe;€ K3o€O3c, € KVs€c;Is' € cx { [A(i,8,0) = 1] - [A(,8,8) =1]}
@ VielIVe;€ KJo€O3cke KVsec; {[A(i,s,0)=1])-[35' € cx A(4,8,8) =1]}
& VieIVeje K{[Bo€ OVse€cjA(i,s,0)=1]-[Fcx € KVs € c;Is' € cx A(i,s,8) = 1] }

Definition 2.27 A set K of state sets is called a closed cover for M = (S,1,0, T, R)if
1. Kisacoverof M ,and

2. Kisclosedin M.

Definition 2.28 Let M = (S,1,0,T,R),and K = {c), 3, ..., ¢y} be a closed cover for M where
¢j€25for1<j<n,and M' = (S',1,0,T', Ry where S' = {s,8,...,5,}.

K is represented by M’ (M’ represents K) ifforeveryi € I'and j : 1 < j < n,
there exists k : 1 < k < n and o € O such that, if T'(i,s;,8k,0) = 1 then Vs € ¢; 3s' €
¢k T(i,8,8,0)=1.

Note that this definition implies a one-to-one mapping of K onto S; in particular, ¢; — s; for
1 < j < n. However, many different FSM’s can represent a single closed cover.

Theorem 2.14 If K is a closed cover for a PNDFSM M, then there exists a DFSM M’ representing
K. If K is represented by M, then L(M') C L(M).

Proof: Suppose K = {c1,¢,...,¢cn} is a closed cover for M = (S,1,0,T, R). Then a DFSM
M' = (§',1,0,T,r) representing K can be constructed as follows. Let S’ = {s,$3,...,5n}
where there is a one-to-one correspondence between c; and s; for 1 < j < n. As K is a cover,
there exists aset ¢; : 1 < j < n and a reset state r € R such that r € ¢;. Pick one such ¢; and
choose r' to be the corresponding state s;. As K is closed, foreachi € Tand ¢; : 1 < j < n, there
existscx: 1 < k <nando € OsuchthatVs € ¢; 35’ € ¢ T (i, s, &/, 0) = 1. Out of these possible
choices of c, and o, we choose an arbitrary transition (3, s;, s, o) for 7' from present state s; on
input :. As each (¢, s;) pair has a unique transition; ‘M’ is a DFSM. With this definition of M’, it
follows directly that M’ satisfies Definition 2.28 so that K is represented by M’.
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For the second part of the theorem, suppose K = {c1, ¢, . - ., ¢, } is a closed cover for M,
and K is represented by M’ = (S’,1,0,T',r'); then §' = {3y, 83, ..., 8,} by Definition 2.28. To
prove that £(M') C L£(M) we must show that for the unique reset state r’ of M’, 3r € R L(M|,) 2
L(M'|,+). As K isacover,3r € Rr € ¢ forsomec; : 1 < j < n. We show £(M|,)) 2 L(M'],;)
by induction on the length k of an arbitrary input sequence, i, 142, ...,%. As M’ is a DFSM, the
input sequence produces from state s; a unique output sequence o;, 0z, ..., 0 and a unique state
Sequence s;(), S;(2), - - -» Sj(x)- We claim that the same input sequence when applied to M at r
will produce the same output sequence, via some state sequence r1, 12, . . ., r'x, Where rp, € Ci(m)
for1 < m < k. Remember that r € ¢;. For the base case k = 1, as K is closed, there exists
¢;) : 1 £ (1) < n such that forevery ry € ¢iay T(81,7,11,01) = 1. As M is a PNDFSM, there
is aunique 1 € c;(1) corresponding to output o;. Assume the induction hypothesis is true for k — 1
where k > 1. S0 rx_1 € ¢j(c—1). Againas K is closed, there exists c;(x) : 1 < j(k) < n such that
for every ri € cjk), T(ik,Tk-1,7k,0k) = 1. 1} € ¢;(k) is unique. Thus the hypothesis is proved.

|

Theorem 2.15 Givena PNDFSM M anda DFSM M, if L(M') C L(M) then there exists a closed
cover for M which is represented by M'.

Proof: Let M = (S,1,0,T,R) and M' = (§',1,0,T',R') where S' = {s1,52,...,5n} .
We assume that L(M') C L(M). Let K = {c1,¢cz,...,c,} be the set of state sets defined as
follows: s € ¢; if and only if the trace set of M from s contains the trace set of M’ from s;, i.e.,
L(M]4) 2 L(M],,).

By the definition of L(M’) C L(M), ¥s; € R' (1 £ j < n) 3r € R such that
L(M|,) 2 L(M'|,,). By construction of K, r € c;. Therefore K is a cover of M.

We now show K is closed, ie., Vi € I Ve; € K 3o € O { [(Vs € ¢; A(3,s,0) =
1]- [3cx € K Vs € ¢; 4(i,5,0) € ck)] } according to Lemma 2.12. Consider an arbitrary input
¢ € I and an arbitrary element ¢; € K. As M’ is a DFSM, there exists a unique o € O such that
T'(, sj,8},0) = 1 for some s’. Now let us concentrate on this particular o. By the definition of
K, we know for every s € c;, L(M|;) C L(M'|,;). The trace (i, 0) is in L(M’|,,), and therefore
is also in £(M|,). So Vs € ¢; A(i,s,0) = 1. We now prove the last term in the conjunction.
Assume 3cx € K Vs € cj 6(3,8,0) € cf is false. For each ¢, € K, there exists a pair of
states {4(i, px, 0), 8(i, qx, 0)} € cx, where p; and g are elements of c;. Now L(M’|,,) is not
contained in both £(M |5 p,.0)) and L(M |5(5,ax0))» Since {8(%, p, 0),8(3, g, 0)} € cx; thus on
some input sequence iy, #3, . . ., &, 6(%, px, 0) and é(3, gx, o) cannot produce the same output by M.
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Then on input sequence i, iy, 2, ..., #p, px and g; cannot produce the same output by M. This
implies that p; and g are not included in any ¢; : 1 < j < n, which contradicts the assumption
and proves Jcx € K Vs € ¢;j 6(¢,8,0) € c;. In summary, for arbitrary i and c;, the formula
o€ O {[(Vs € cj A(4,8,0) = 1] - [3cx € K Vs € ¢; 6(3,8,0) € c;,)j } is true. Therefore K is
closed. : |

Note in Theorem 2.15, M cannot be easily generalized to an NDFSM, because the above
proof would not go through.

The following is the main theorem proving the cormrectness of exact state minimization
algorithms which are based on closed covers. It shows that one can explore all behaviors contained
within a PNDFSM by find all closed covers for the PNDFSM.

Theorem 2.16 Let M be a PNDFSM and M' be a DFSM. L(M') C L(M) if and only if there
exists a closed cover for M which is represented by M'.

“Proof: The only if part immediately follows from Theorem 2.14. The if part immediately follows
from Theorem 2.15. n

2.7 State Minimization Problems
Definition 229 GivenanNDFSM M =-(S, I, 0, T, R), the state minimization problem is to find
aDFSM M' = (S',1,0,T', R') such that

1. L(M") C L(M),and

2. VM such that L(M") C L(M), |S'] < |S"). 1@
Such a case is denoted by L(M') mgm L(M).

M’ is not required to be deterministic. On the contrary, to preserve flexibility for other

sequential synthesis tools, one may extend the definition and choose the M’ with maximal non-
determinism in specification, out of all state minimum machines.

Definition 2.23 of behavioral containment and Definition 2.29 of the state minimization
problem apply also to other kinds of FSM’s, which are subclasses of PNDFSM’s.

Definition 2.30 A closed cover K for M is called a minimum closed cover for M if every closed
cover K' of M has |K'| > |K]|.
Given a set S, | S| denotes the cardinality of the set. _
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The following theorem is a companion and an extension of Theorem 2.16. It proves the
optimality of exact state minimization algorithms which find minimum closed covers.
Theorem 2.17 Let M be a PNDFSM and M" be a DFSM. L(M') "C" (M) if and only if there
exists a minimum closed cover for M which is represented by M'.
Proof: Assume L(M') mén L(M). By Theorem 2.15, there exists a closed cover K for M which
is represented by M’. Suppose there exists a closed cover K” for M such that |K”| < |K]|.
By Theorem 2.14, there exists a DFSM M" representing K” such that L(M") C £(M). This
contradicts with our initial assumption so K must be a minimum closed cover for M.

Assume K is a minimum closed cover for M. By Theorem 2.14, there exists a DFSM
M’ representing K and L(M') C L(M). If L(M") mgm L(M), there exists a minimum closed
cover K" for M such that K" represents M". However K must have the same number of sets as
K" since K is also a minimum closed cover for M. Thus M’ has the same number of states as M"'
sothat L(M') € L(M). n

The state minimization problem defined above is very different from the NDFA min-
imization problem described in classical automata textbooks. Here we want a minimal state
implementation which is contained in the specification, while the classical problem is defined as:

Definition 2.31 Given an NDFSM M, the behavior-preserving state minimization problem is to
find an NDFSM M’ which represents the same set of behavior as M but has the fewest number of
states.

The above notion of behavior-preserving state minimization may be useful in formal
verification because all behaviors specified must be verified and thus must be preserved during
minimization.

2.8 Power NDFSM and Structural Containment

Now let us revisit the question: Can we explore behaviorally contained DFSM’s by
structural containment? This is an interesting question because intuitively, structural containment is
easier to compute than behavioral containment. In this section, we shall show that given a PNDFSM
M, we can derive a new NDFSM called MP°%" such that M’ is behaviorally contained in M if
and only if M’ is structurally contained in MPower,
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Definition 2.32 Given a PNDFSM M = (S,1,0,T,R), the power NDFSM is Mrover —
(25,1,0, Trower, RPOver), TPY" is qtransitionrelationin I x25 x25 x O. TP*r (i, ¢;, cx, 0) =
1ifand only if Vs € ¢; 3¢’ € cx T(i,s,8',0) = 1. RP°*" C 25 includes every state set which
contains a reset state r € R.

Note that MP**" is not pseudo non-deterministic because given any transition (i, ¢;, ck,0) €
Trower, for every ¢ D ck, there is another transition such that T7°“*" (i, c;, ¢,0) = 1 and
RPo¥eT(c) = 1.

Definition 2.33 Given a power NDFSM MP*¥*" = (25 I, 0, TPVr, RP°“er), the power NDFSM
with its state space restricted to a set K of state sets, denoted by MP°*°" |k, is the NDFSM
(K,I,0,TPV" |, RPOUer| ). TP |g(i,c,c/y0) = 1 if and only if ¢, € K and
TPover (i, ¢, c/,0) = 1. RP**"|g(c) = 1ifand only if ¢ € K and RP*V*"(c) = 1.

Lemma 2.18 K is a closed cover if

1. KN RPover £ 0, and
2. foreveryi € I and c; € K, there exists ¢, € K and o € O such that TP*¥* (i, c;, ck, 0) = 1.

Proof: Condition 1 of Lemma 2.18 is true if and only if there exists c¢; such that c; € RP°“*" and
¢; € K. By Definition 2.32, ¢; € RP°“*" implies that there exists a reset state r € R such that
r € ¢;. As ¢j € K, K is a cover according to Definition 2.25. By substituting the definition of
T'Po¢" into condition 2 of Lemma 2.18, the closure condition as expressed by Definition 2.26 is
satisfied. [ ]

This lemma suggests an altemative way of finding a closed cover, K. Looking to the
power PNDFSM MPover | K corresponds to a set of states in 25 such that (1) at least one state in
K is a reset state in RP°“¢", and (2) for each input ¢, each state in K can have a next state also in
K under transitions in T%°“*", This selection procedure is analogous to finding a DFSM which is
structurally contained within the power PNDFSM, and covers at least one reset state.

Lemma 2.19 K is represented by M’ if the power NDFSM with its state space restricted to K
structurally contains M'. i.e., STG(MP°***"|g) D STG(M').

Proof: By Definition 2.28, K is represented by M’ if and only if foreveryi € Jandj: 1< j < n,
there exists k : 1 < k < n and o € O such that, if T'(3, s;, sx, 0) = 1 then TP°¥*" (3, ¢;, ¢, 0) = 1.
Let MP°%*"|x be the power NDFSM. of M with its ‘state space restricted to the set K. By
Definition 2.24, K is represented by M’ if and only if STG(MP°¥*"|k) 2 STG(M’). [



2.8. POWER NDFSM AND STRUCTURAL CONTAINMENT 29

Now we are ready to extend Theorem 2.16 and provide another way of exploring behaviors
contained within a PNDFSM, beside enumerating closed covers.

Theorem 2.20 Let M be a PNDFSM and M’ be a DFSM. The following statements are equivalent:
1. L(M') C L(M).
2. There exists a closed cover for M which is represented by M'.
3. There exists a subset K C 2° such that

e K N Rrover &£ §, and
o Vi€ IVcj € K 3e; € K Jo € O TPo¥®r (i, ¢j,cx,0) = 1,and
e STG(M') C STG(MPover|k).

Proof: Equivalence of statements 1 and 2 follows from Theorem 2.16. By applying Lemmas 2.18
and 2.19 and gathering their conditions, statement 2 becomes statement 3. [ |

Definition 2.34 ADFSM M’ is aminimum structurally contained DFSM ina PNDFSM M., denoted

o

by STG(M')'C STG(M),if
1. STG(M') C STG(M), and

2. VM" such that STG(M") C STG(M), |S'| < |S"|.

Theorem 221 Let M be a PNDFSM and M’ be a DFSM. The following statements are equivalent:
1. LMy C L(m).
2. There exists a minimum closed cover for M which is represented by M'.
3. There exists a subset K C 25 such that

o K N RPover £ 0, and
® Vi€ IVc; € K 3ex € K Jo € O TP¥" (i, ¢, ck,0) = 1,and
o STG(M')'C STG(M?**|x).
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Theorem 2.21 summarizes succinctly the theory we know about state minimization.

Although we have the theory, we do not yet have an exact algorithm for state minimization
which explores structurally contained DFSM’s within the power NDFSM. However, this is not due
to an inability to represent MP°**" compactly as it can be represented implicitly as shown in
Chapter 6. In Chapter 7, we will describe a heuristic procedure to find a minimal DFSM structurally
contained in the power NDFSM. In the next section, we’ll outline the common steps used in state
minimization algorithms which are based on closed cover, for different subclasses of NDFSM’s.

2.9 Exact Algorithm for State Minimization

By Theorem 2.17, the state minimization problem of PNDFSM can be reduced to the
problem of finding a minimum closed cover for the PNDFSM. From what we know so far, a closed
cover may contain any arbitrary set of states. Once such a minimum closed cover is found, a
‘minimum state DFSM which represents the closed cover can be obtained easily, and this final step
is traditionally called mapping. A brute force approach to find a minimum closed cover would
be to enumerate sets of state sets, and test each one of them to see if it represents a closed cover
according to Definition 2.25 and Lemma 2.12. Out of all the closed covers, one would pick one of
minimum cardinality. This section will discuss ways to improve on this brute force algorithm.

In the exact method described above, each candidate closed cover includes subsets of
2% where S is the state space of the PNDFSM. The number of such state sets to be generated is
exponential in the number of states, |S|. Actually we do not have to consider all subsets, but only
those that will constitute a closed cover. The definition of a closed cover requires that it contains
subsets only of the following types.

Definition 2.35 A set of states is an output compatible if for every input, there is a corresponding
output which can be produced by each state in the set.

Lemma 2.22 Every element of a closed cover ! is an output compatible.

Proof: By Definition 2.26, for each set ¢; : 1 < j < n on every input ¢ € I, there is an output
o € O that can be produced by each state in the set. Therefore c; is an output compatible. |

Definition 2.36 A set of states is a compatible if for each input sequence, there is a corresponding
output sequence which can be produced by each state in the compatible.

This more restrictive lemma is also true: Every element of a closed set is an output compatible,
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Lemma 2.23 Every element of a closed cover is a compatible.

Proof: The lemma can be proved by showing that if K is a closed set of output compatibles then
K is a closed set of compatibles. (The converse is trivially true because a compatible is also an
output compatible.) Assume K is a closed set of output compatibles but there exists ¢; € K such
that p; € ¢; and ¢; € c; are not compatible. Thus there exists some input sequence ¢, #2, . .., ¢ to
M which produces state sequences p;, 2, . . ., Pk and q1, @2, . . ., gk, respectively. And there is no
output o € O such that T'(i, p, px+1,0) = 1 and T(¢, gk, gk+1,0) = 1, for any pr41 and gr41. As
K is closed, forany m : 1 < m < n, {pm,gm} is contained in some set in K. However {px, ¢i}
contradicts our assumption that each set in K is output compatible and proves that each ¢; € K is
a compatible. u

Because of Lemma 2.23, an exact state minimization algorithm only needs to generate
compatibles. The next step of an exact algorithm after compatible generation is to select a subset
of compatibles that corresponds to a minimized machine. To satisfy behavioral containment, the
selection of compatibles should be such that appropriate covering and closure conditions are met.
The covering conditions guarantee that some selected compatible (i.e., some state in the minimized -
machine) corresponds to a reset state of the original machine. The closure conditions require that
for each selected compatible, the compatibles implied by state transitions should also be selected.
The state minimization problem reduces to one that selects a minimum closed cover of compatibles.
Instead of enumerating and testing all subset of compatibles, the selection is usually solved as a
binate covering problem. Covering and closure conditions are expressed as binate clauses, and
the minimum solution can be searched in a systematic manner.

The set of compatibles is still very large. For the purpose of state minimization, it is
sufficient to identify a minimum subset called the prime compatibles such that a minimum closed
cover of prime compatibles still yields a minimum behaviorally contained machine. Compatibles
that are not dominated by other compatibles are called prime compatibles.

Definition 2.37 A compatible ¢’ prime dominates a compatible c if for each minimum closed cover

containing c, the selection with c replaced by ¢ also corresponds to a minimum closed cover.

Definition 2.38 A compatible c is a prime compatible if there does not exists another compatible
 such that ¢’ prime dominates c.

Theorem 2.24 There exists a minimum closed cover made up entirely of prime compatibles.
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Proof: Suppose C'is a minimum closed cover which contains a compatible c that is not prime, i.c.,
there exists a prime compatible & which dominates c. By Definition 2.38, the set (C — {c}) U {&}
must be another minimum closed cover with one more prime compatible. One can continue this
substitution process until the minimum closed cover is made up entirely of prime compatibles. M

The actual computations of compatibles and primeness differ for different types of FSM’s.
Also the related covering problems vary slightly.
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Chapter 3

Implicit Techniques

3.1 Introduction

In this chapter, we shall review and introduce techniques for efficient representation and
manipulation of objects. We say that a representation is explicit if the objects it represents are
listed one by one intemnally. And objects are manipulated explicitly, if they are processed one after
another. Implicit representation means a shared representation of the objects, such that the size of
the representation is not proportional to the number of objects in it. By implicit manipulation, we
mean that in one step, many objects are processed simultaneously.

The objects we need to represent include functions, relations, sets, and sets of sets. In
Section 3.2, we introduce a new data structure called the multi-valued decision diagram (MDD)
which can represent multi-valued input multi-valued output functions. MDD is an generalization of
binary decision diagram (BDD) [11] which will be reviewed in Section 3.3, and the latter represents
binary input binary output functions. Relations and sets can be expressed in terms of characteristic
functions [13] as shown in Section 3.3. We also describe a variant of BDD called the zero-suppressed
BDD (ZBDD) in Section 3.4. The remaining of the chapter concemns with efficient representation
of multi-valued input binary output functions. In such a case, Section 3.5 shows that an MDD can
be mapped to an equivalent BDD after choosing an encoding for each multi-valued variable. In
Section 3.6, the logarithmic encoded MDD is described. And in Section 3.7, the 1-hot encoded
MDD is introduced. The latter is particular useful for efficient representation of set of sets, so
an extensive suite of operators will be introduced for efficient manipulations of such sets of sets.
In Section 3.8, MDD’s are used to represent FSM’s. Issues on MDD variable ordering will be
discussed in Section 3.9.
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First we give definitions pertaining to MDD’s.

. Definition 3.1 Let F be a multiple-valued input, multiple-valued output function of n variables -

ZT1,Z2y..4yZTy.

F:AxBXx..xP,=2Y

Each variable, z;, may take any one of the p; values from a finite set P; = {0, 1,...,p;—1}.
The output of F may take m values from the set Y = {0, 1, ..., m — 1}. Without loss of generality,
we may assume that the domain and range of F are integers. In particular, F is a binary-valued
output function if m = 2, and F is a binary-valued input functionif p; = 2 foreveryi: 1 < ¢ < n.

Definition 3.2 Let T; be a subset of P,. z}r‘ represents a literal of variable z; which is defined as
the Boolean function:

]

T = 0 iz ¢T;
1 ifz;eT;

Definition 3.3 The cofactor of F with respect to a variable x; taking a constant value j is denoted
by F_; and is the function resulting when z; is replaced by j:

fz{(zl,...,zn) = f(zl,...,z;_l,j,z;+1,...,x,,)

Definition 3.4 The cofactor of F with respect to a literal z,-T" is denoted by .7-‘;,- and is the union
of the cofactors of F with respect to each value the literal represents:

fz?“. = U };j
' jET

The cofactor of F is a simpler function than F itself because the cofactor no longer depends on the
variable z;.

Definition 3.5 The Shannon decomposition of a function F with respect to a variable z; is:

pi—1

F=Y ai.F,
=0 ¢

The Shannon decomposition expresses function F as a sum of simpler functions, i.e. its cofactors
F .- This allows us to construct a function by recursive decomposition,
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3.2 Multi-valued Decision Diagrams

This section describes a new data structure - the multi-valued decision diagram [78, 36)
that is used to solve discrete variable problems [36, 45, 84, 44, 3]. Our definition of multi-valued
decision diagrams closely follows that of Bryant, [11], with two exceptions: we do not restrict
ourselves to the Boolean domain, and the range of our functions is multi-valued. From Section

3.3 onwards, we use only binary-valued output functions, however the theory is valid for the more
general multi-valued functions.

Definition 3.6 Anmulti-valued decision diagram (MDD) is arooted, directed acyclic graph. Each
nonterminal vertex vis labeled by a muiti-valued variable var(v) which can take values from a range
range(v). Vertex v has arcs directed towards |range(v)| children vertices, denoted by childy(v) for
each k € range(v). Each terminal vertex u is labeled a value value(u) € Y = {0,1,...,m - 1}.

Each vertex in an MDD represents a multi-valued input multi-valued output function and all used-
visible vertices are roots. The terminal vertex u represent the constant (function) value(u). For each
nonterminal vertex v representing a function F, its child vertex childy(v) represents the function
F,x foreach k € range(v). i€, F = Tyerange(n) VF * For-

For a given assignment to the variables, the value yielded by the function is determined
by tracing a decision path from the root to a terminal vertex, following the branches indicated by
the values assigned to the variables. The function value is then given by the terminal vertex label.

Example The MDD in Figure 3.1 represents the discrete function F = maz(0,z — y) where =
and y are 3-valued variables.

3.2.1 Reduced Ordered MDD’s

Definition 3.7 An MDD is ordered if there is a total order < over the set of variables such that for

every nonterminal vertex v, var(v) < var(childy(v)) if childi(v) is also nonterminal.

Definition 3.8 An MDD is reduced if
1. it contains no vertex v such that all outgoing arcs from v point to a same vertex, and

2. it does not contain two distinct vertices v and v’ such that the subgraphs rooted at v and v’
are isomorphic.
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0 0 0 1 0 0 2 1 0

terminal vertex u ~ N value(u) = 2

Figure 3.1: Example of an MDD for a discrete function.

Definition 3.9 A reduced ordered multi-valued decision diagram (ROMDD) is an MDD which
is both reduced and ordered.

Henceforth, we consider only ROMDD’s and the name MDD will be used to mean
ROMDD.

Variable ordering must be decided before the construction of any MDD. We assume that
this has been decided and that the naming of input variables have been permuted so that z; < z;4.
MDD’s are guaranteed to be reduced at any time during the constructions and operations on MDD’s.
Each operation returns a resultant MDD in a reduced ordered form.
Example The ROMDD for the MDD in Figure 3.1 is shown in Figure 3.2. The variable ordering is
z < y. Note that one redundant nonterminal vertex and six terminal vertices have been eliminated.

A very desirable property of an ROMDD is that it is a canonical representation.

Theorem 3.1 For any multi-valued function F, there is a unique reduced ordered (up to isomor-
phism) MDD denoting F. Any other MDD denoting F contains more vertices.

Proof: The complete proof has been given in [78]. | .

Corollary 3.2 Two functions are equivalent if and only if the ROMDD’s for each function are
isomorphic.
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F=max(0,x-y)

Figure 3.2: Reduced ordered MDD for the same function.

3.2.2 CASE Operator

The CASE operator forms the basis for manipulating MDD's. Most operations on discrete
functions can be expressed in terms of the CASE operator on MDD’s.

Definition 3.10 The CASE operator selects and returns a function G; according to the value of the
Sunction F:

CASE(F,Go,G1,...,Gm-1) = Giif (F=i)

The operator is defined only if range(F) = {0, 1, . .., m-1}. The function returned from the CASE
operation has a range of range(G;). In particular, if the G; are binary-valued, the resultant function
will also be a binary-valued output function.

The input parameters to the CASE operator are, in general, multi-valued functions givenin
the form of MDD's. The task is to generate the resultant function H = CASE(F, Gy, G1, - . ., G-1).
Since the selector F can be a function instead of a variable, we need a recursive algorithm to compute
the CASE operator.

If the selector is a variable z, the following function returned by the CASE operator
corresponds to a vertex with a top variable z and with child functions Go, Gy, ...,Gp;—1. The
vertex is denoted by a (p; + 1)-tuples on the right.

CASE(z,Gy, Gy, . . ., Gp;-1) = (2,Go, Gy, - - -, Gp'»_l) (3.1
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Equation 3.1 and 3.2 will form the terminal cases for our recursive algorithm.
CASE(F,0,1,....m-1)=F (3.2

Notice that the Shannon decomposition of H with respect to z can be realized by:

-1
H = Y H,
i=0
= CASE(z,Hp,H,,...,H.p1)
= (x,Hzo,Hxl,...,pr-l) (3.3

Recursion is based on the following reasoning. Remember that we can express a complex
function in terms of its cofactors using Shannon decomposition. The cofactors of a function are
simpler to compute than the original function. So to compute the CASE of complex functions,
- we first compute the CASE of their cofactors and then compose them together using Shannon
decomposition. More rigorously,

p-1
in -CASE(F,Go, Gy, .. .,Gre1)zi
i=0

r—-1

= Zmi'(Gj if (F=j))a:‘

i=0

CASE(F,Gy,Gy,...,Gm_1)

p—1

= Ea:" . (GJ z 1f (F = J)z')
=0
r-1

= )2 (Gju if (Fys = 3))
= 'C'=21.S'E(a:,
CASE(F0,Gp0,Gy 9, - -+, Gy ),
CASE(F,1,Gp1,G1 a1y -y Gt 1)y
.oy (34)

CASE(Fxp-l y GO zP=1, Gl gP=lyee ey Gm—l zP-1 ))

The pseudo-code for the recursive CASE algorithm is given in Figure 3.3. First, the
algorithm checks for terminal cases. Then if the function needed has already been computed and
stored in the unique table, it will be returned. Itnot, the cofactors H_; of the function H are computed
by calling CAS E recursively with the cofactors F;,Gg i, ..+, Gpm—1 i S its arguments. These
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CASE(F,Gy,...,Gm-1){
if terminal case retumn result
if CASE(F,Gy,...,Gmn-1) in computed-table return result
let z be the top-variable of F, Gy, ...,Gm-1
Iet p be the number of values z takes
forj=0to(p—1)do
H,j=CASE(F,;,Goz,--,Gm-12i)s
result = (z, Hyo,..., Hyp1)
insert result in computed-table for CASE(F, Gy, ...,Gm-1)
retumn result

Figure 3.3: Pseudo-code for the CASF algorithm.

are composed together using Shannon decomposition. By Equation 3.3, Shannon decomposition
with respect to z is equivalent to the (p + 1)-tuple (z, Hyo, . .., H p-1).

It is shown in [78] that the worst-case time complexity of the CASE algorithm is
O(Pmaz | F|-|Go|...| Gm-1 ).

3.3 Binary Decision Diagrams

The literal z; denotes that variable z; has the value 1 and the literal Z; denotes that variable
z; has the value 0. Cofactors with respect to literals are similar to the ones in the previous section,
and are formally defined in Section 3.3.1.

Binary decision diagrams were first proposed by Akers in [1] and popularized by Bryant
in[11].

Definition 3.11 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each
nonterminal vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs,
childp(v) and childy(v). Each terminal vertex u is labeled 0 or 1.

Each vertex in a BDD represents a binary input binary output function and all used-visible vertices
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are roots. The terminal vertices represent the constants (functions) 0 and 1. For each nonterminal
vertex v representing a function F, its child vertex childg(v) represents the function F and its other
child vertex child, (v) represents the function F,. i, F=%:-F;+v - F,.

For a given assignment to the variables, the value yielded by the function is determined
by tracing a decision path from the root to a terminal vertex, following the branches indicated by
the values assigned to the variables. The function value is then given by the terminal vertex label.

Definition 3.12 A BDD is ordered if there is a total order < over the set of variables such
that for every nonterminal vertex v, var(v) < var(childy(v)) if childg(v) is nonterminal, and
var(v) < var(child)(v)) if childy (v) is nonterminal.

Definition 3.13 A BDD is reduced if
1. it contains no vertex v such that childg(v) = child;(v), and

© 2. it does not contain two distinct vertices v and v’ such that the subgraphs rooted at v and v'
are isomorphic.

Definition 3.14 A reduced ordered binary decision diagram (ROBDD) is a BDD which is both
reduced and ordered.

Any subset S in a Boolean space B" can be represented by a unique Boolean function
Xs : B" = B, which is called its characteristic function [13], such that:

xs(z) =1 ifandonlyif zin S

In the sequel, we’ll not distinguish the subset S from its characteristic function xs, and will use S
to denote both.

Any relation R between a pair of Boolean variables can also be represented by a charac-
teristic function R : B> — B as:

R(z,y) =1 ifand only if z is in relation R to y

R can be a one-to-many relation over the two sets in B.
These definitions can be extended to any relation R between n Boolean variables, and
can be represented by a characteristic function R : B* — B as:

R(z1,22,-..,25) =1 if and only if the n-tuple (z1, 22, ..., 2,) is in relation R
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3.3.1 BDD Operators

A rich set of BDD operators has been developed and published in the literature [11, 6).
The following is the subset of operators useful in our work.

The ITE operator forms the basis for the construction and manipulation of BDD’s. The
use of the ITE operator also guarantees that the resulting BDD is in strong canonical form [6]. The
CASE operator is the multi-valued analog of the ITE operator.

Definition 3.15 The ITE operator returns function G, if function F evaluates true, else it returns

Sunction G3:
Gy fF=1

ITE(F,Gy,Go) =
(F,G1, Go) {Go otherwise

where range(F)={0,1}.
Definition 3.16 The substitution in the function F of variable z; with variable y; is denoted by:
[z: = ]F = Fz1, .., Tic1y Yir Tit1y - - - Tn)

and the substitution in the function F of a set of variables = = 1z, ...z, with another set of
variables y = y11 . . . yn is obtained simply by:

[z = ylF=[z1 =2 wnllz2 2 n)...[zn = wW)F

In the description of subsequent computations, some obvious substitutions will be omitted for clarity
in formulas.

Definition 3.17 The cofactor of F with respect to the literal z; (Z; resp.) is denoted by F, (Fe:
resp.) and is the function resulting when z; is replaced by 1 (0 resp.):

Fri(®1y .oy Zn) = F(21y. 0 oy Tic1, 1, Zig1y - ooy Tp)

Fer(z1y. -0y 2Z0) =.7-'(:31,...,z;_l,O,z,-.,.],...,z,,)

The cofactor of F is a simpler function than F itself because the cofactor no longer depends on the
variable z;.

Definition 3.18 The existential quantification (also called smoothing) of a function F over a
variable z; is denoted by 3z;(F) and is defined as:

3; (F) = Fer+ o,
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and the existential quantification over a set of variables © = 1,23, . . ., Ty, is defined as:
3z (F) = 3z; (322 (...(3za (F))))

Definition 3.19 The universal quantification (also called consensus) of a function F over a
variable z; is denoted by Vz;(F) and is defined as:

Vz; (F) = Fe - Fuy
and the universal quantification over a set of variables = = 2y, 2, . .., z,, is defined as:

Vz (F) =Vz; (V22 (... (V2 (F))))

3.3.2 Unique Quantifier

Now we introduce a new BDD operator called the unique quantifier, which is in the same
class as the existential and universal quantifiers.

Definition 3.20 The unique quantification of a function F over a variable z; is denoted by \z; (F)
and is defined as:

1z; (F) = F5 ® Fo
and the unique quantification over a set of variables = = z1,x3, ..., 2y, is defined as:
Iz (F) =tz ('z2 (...('zn0 (F))))

Suppose ¥ is arelationon z, y and 2. !z F(z,y, z) = {(y, 2)|apair (y, z) is related 1o a unique z}.
Some properties of the unique quantifier will be presented:

Lemma33 lzly F& lylz F

Proof:\zlyF & (F53 @ F3y @ F @ Fp) & lyl2 F
using the distributive property of cofactor over XOR, (F & G), < F; & G.. |

It is well known that 3z Vy F = Vy 3z F. Let us investigate if similar properties hold
for the unique quantifier.

Lemma3d !z3y F=3ylz F
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Proof:
123y F & (F+F)zo (F+F),
€ Foy - Fig-Foy+ Fay Fog - Foy+ Fog - Fog - Foy + Foy - Ty - Py
Wi F & (FFoF)g+(FRoF),
@ Fy-Fg+Feg-Fy+ Py Foy+ Ty - Fyy
lzdyF = Jyla F

|

The converse, 3y !z F = !z 3y F, isnot true in general. Consider the relation F(z, y) =

{(0,0), (0,1),(1,1)}, 3y !z F is true but !z 3y F is false. For the same F, !z Yy F is true but

Vy !z F is not; therefore !z Yy F = Vy !z F is not true in general. Also, !z Vy F < Vy !z Fis

not true in general because of the counter example F(z,y) = {(0,0), (1,1)}, where Vy !z F is true
but !z Vy F is false.

The pseudo-code in Figure 3.4 outlines the BDD unique algorithm. The BDD function
for !z F is returned by calling unique(F, z,1) where z = {2, 23,...,2,}.

First, the algorithm checks for terminal cases, and checks if the result has already been
computed before. Otherwise if the top variable v of F is the same as z; then the following recursive
formula is applied:

12, Tigdy oo oy Bn (F) = 12041, Zig2y - ooy Bn (F7) © 1201, Tig2y o - oy (Fz,)

If vis below z;, F is independent of variable z; and therefore the result from the next recursion can
be simply returned. If v is above z;, we need to compute !z F; and !z F, and merge the results by
the ITE operator. Finally the result is stored in the computed-table, and returned.

3.4 Zero-suppressed BDD’s

Definition 3.21 A zero-suppressed BDD (ZBDD) is defined identically as a BDD.
The functional interpretation of ZBDD's is the same as that for BDD’s.

Definition 3.22 A ZBDD is ordered if it is ordered when viewed as a BDD.

Definition 3.23.A ZBDD is reduced if
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unique(F, z,1) {
if (¢ > |z|) or (top-indez(F) > bottom_indez(z)) retum F
if unique(F, z, 1) in computed-table return result
let v be the top variable of F'
if (indez(v) = indez(z;)) {
T = unique(Fy,,z,i+ 1)
E = unique(Fg, z,i+ 1)
result = ITE(T,E, E)
} else if (top_indez(F) > indez(z;)) {
result = unique(F,z,i+ 1)
'} else {
T = unique(F,,z,1)
E = unique(F3, z, 1)
result = ITE(v,T, E)
}
insert result in computed-table for unique(F, z, i)
return result

Figure 3.4: Pseudo-code for the unique quantifier.
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1. it contains no vertex v such that child,(v) is a terminal vertex labeled 0, and

2. it does not contain two distinct vertices v and v’ such that the subgraphs rooted at v and v’
are isomorphic.

Definition 3.24 A reduced ordered zero-suppressed binary decision diagram (ROZBDD) is a
ZBDD which is both reduced and ordered.

The difference between ROBDD and ROZBDD is in one reduction rule. ROBDD elim-
inates all vertex whose two outgoing arc points to a same vertex. ROZBDD eliminates all vertex
whose 1-edge points to a terminal vertex 0. Once a redundant vertex is removed from a ZBDD, the
incoming edges of the vertex is directly connected to the vertex pointed to by the corresponding
terminal vertex 0.

34.1 ZBDD Operators

ROZBDD is designed for representing combination sets so its operators are for set op-
erations, which turn out to be quite different from the common BDD operations on characteristic
functions. The following outlines some of the differences between BDD’s and ZBDD's, and the
difficulties in using the latter.

Unlike ROBDD, the ROZBDD for a universal set is not unique but it has a chain structure
on the variable space of interest. A constant-time complement operation is not available in ZBDD.
Complementation on a set can be performed as set difference against a universal set. But even
this is not recommended because if the original set is a sparse set having a compact ROZBDD
representation, its complement will be dense and cannot be represented compactly.

The semantics of BDD’s and ZBDD's are quite different. BDD is based on Shannon
decomposition but ZBDD is not. As a result, BDD operators such as cofactor, smooth, consensus,
generalized cofactor, etc., do not have direct counterparts in ZBDD.

As a result of these differences, one who has an implicit BDD algorithm cannot readily
convert it into an implicit ZBDD algorithm and expects the latter to run efficiently.

3.5 Mapping MDD’s into BDD’s )

The first-generation MDD package is a direct implementation of the theory presented in
Section 3.2. For efficiency, our current MDD package uses BDD's as its internal representation. By
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hiding the mapped-BDD and its encoded variables from the users, users can construct functions,
manipulate them and output results in terms of multi-valued variables only. But only Boolean output
(multi-valued input) functions can be represented by mapped-BDD’s.

The mapping of MDD’s into BDD's involves two distinct steps: encoding and variable
ordering. Encoding is the process of associating a number of binary-valued variables to each multi-
valued variable, and assigning codes to represent the values the multi-valued variables can take.
Variable Ordering is the process of finding an ordering of the encoded binary-valued variables
such that the size of the final BDD is minimized. Section 3.9 will be devote to variable ordering
techniques used in our work, while we shall first describe the encoding process here. To encode
each m-valued MDD vertex, we must decide on:

1. the number of binary variables used: » encoding variables result in 2" code points, and each
code corresponds to a decision path in the full BDD subgraph of these variables.

2. the assignments of codes to values: At least one distinct code point must be assigned to each
value. Therefore 2™ > m must be true.

3. the treatment of unused code points: If 2" > m, there is one or more unused code points.
Each unused code can either be left unassigned, or be associated a value which another code
has already been assigned to. For the former case, its corresponding path always points to the
terminal vertex 0. For the latter case, the corresponding path can point to the same place as
another path in the BDD subgraph.

In the next two sections, we shall investigate two encoding schemes. Logarithmic encoding in
Section 3.6 offers compact representation of functions, e.g., characteristic functions, where as 1-hot
encoding in Section 3.7 is useful for set representation. Once an encoding and an ordering are
chosen, there is a unique way to map each MDD vertex into a BDD subgraph.

Example Figure 3.5a shows an MDD representing the following function:

Fe 1 ifz>y
0 otherwise

 and y are 3-valued variables which can take values from P, = P, = {0,1,2}. To represent the
MDD using BDD’s, each MDD nonterminal vertex must be mapped into a number of BDD vertices
interconnected in a subgraph. For example in Figure 3.5, the MDD vertex labeled by variable z
is mapped into the BDD vertices labeled by z¢ and z;. In addition, different indices have to be
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F=1ifx>y
x0
0 1
x1
0 1
mapping >
yo
0 1
y1 redundgnt
0 1
] 1
a) ROMDD b) Mapped ROBDD

Figure 3.5: MDD and mapped-BDD representing the relation z > y.

47
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assigned to these binary variables. In this case, since z < y for the MDD, this ordering is respected
for the associated binary variables; zo < #1 < yo < y1. The mapping process dictates the encoding
used. The same encoding, as well as ordering, must be used consistently throughout all function
manipulations.

3.6 Logarithmic Encoded MDD’s

In this section, logarithmic encoding (i.e., integer encoding) is used to map MDD’s into
BDD’s. Our prime concem here is to use the least number of variables and BDD vertices. An
m-valued MDD vertex is represented with [logzm] number of Boolean variables, and is mapped to
a BDD subgraph of m — 1 vertices. These numbers are provably minimum in graph theory.

Each value is assigned an integer code. As discrete variables in CAD problems usually
take values from the ordered set of integers and the operations between them are sometimes integer-
arithmetic in nature, integer encoding results in efficient representation and manipulation.

Of course, not all 2* code points will be used since typically m < 2*. On the other hand
the mapped-BDD will have a path for each binary code point. The decision path for each unused
code point is chosen so as to minimize the BDD size. In fact, an unused point is assigned to the
same path as the used point whose encoding is closest to the unused code point. This mapping
is related to the generalized cofactor operator in [80] which was initially proposed in [17] as the
constraint operator. Given a function f and a care set c, the generalized cofactor of f with respect
to c is the projection of f that maps a don’t care point z to the care point y € ¢ which has the closest
distance to z. Generalized cofactoring results in a small and canonical BDD representation of the
incompletely specified function.

Example Suppose v is a 6-valued variable taking values from P, = {0, 1,2, 3,4,5}. Three binary-
valued variables ug, ¥; and u; can be assigned to encode variable v as shown in Table 3.1. The last
column is used in the example in Section 3.6.1.

Note that if the value range is not a power of 2, some codes will not be used, e.g., 110 and
111. These encodings are used as don’t cares since the values will never occur. In this case these
don’t care are mapped into the same nodes as 100 and 101 respectively. The notation 1 * 0 is used
to represent both encodings 100 and 110 as we don't care about the variable u;.
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Value | Binary | F
of | Encoding | =
v U U
0 [ 000 |[Go
1 001 G
2 010 G2
3 011 Gs
4 1*0 Gy
5 1¥1 Gs

Table 3.1: Logarithmic/integer encoding with don’t cares.

3.6.1 Relationships between CASE and ITE Operators

As the CASE and ITE operators form the basis for manipulation of MDD’s and BDD’s
respectively, mapping can be conveniently performed by replacing each CASE operation by a set
of ITE operations. The recursion step in Equation 3.4 is our starting point. It gives an outer CASE
operator in terms of a top-variable v, and enables conversion to a hierarchy of ITE operators. The
conversion can be summarized by the following recursive formulas:

if piseven: CASE(v,Gy,GY,G3,Gs, . .., Gpo2,Gpy)

= CASE(Y,ITE(u,G},Gp), ITE(u,G3,GY), ..., ITE(u,G,_,,G)_5))

if pisodd: CASE(v,Gy,G1,G2,G3, ..., Gp_3,Gp2,Ghy)

= CASE(V,ITE(u,Gy,Gyp), ITE (u,Gj, - ITE(4,G,_5,G,_3),Gpy)

The recursive use of the above two equations continues until this recursion terminates when there
are only two child-functions remaining in the outer CASE operator:

CASE(v,Gh,G}) = ITE(v,G}, G}).

While pairing up child-functions with the ITE operator, these formulas replace the big
MDD vertex labeled with variable v with a smaller one, labeled with a new multi-valued variable
v/, and a number of BDD vertices labeled with a new binary variable . This mapping process is
best explained by an example.

Example Suppose vis a 6-valued MDD vertex, and Gj, . . ., s are the six child-functions connected
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to it, the CASE to ITE mapping proceeds as follows:
CASE(v,Gy, Gy, G3, G, G4, GS)
= CASE(Y, ITE(uy, 1,Go), ITE (u3,G3, G&)J, ITE(u3,Gs,Gy))
= CASE(v",ITE(w, ITE(u;, G3,Gj), ITE(u3, G}, GY)), ITE(uz, G, 4)
= ITE(uq, ITE(u3,G5,GY), ITE(uy, ITE(uz, G5, G3), ITE(uz, G}, Gb)))

Note that while pairing up child-functions for ITE operations in the first step, we effectively replace

the original 6-valued MDD vertex with a smaller 3-valued MDD vertex. During the assignment
of BDD variables, the ordering uo < u; < u; is used. Figure 3.6 shows the bottom-up recursive
mapping process. Note that the original MDD node labeled v has been mapped into a BDD subgraph
with § internal nodes.

A, A e

ry) '\V') @
ANYIAN.Y;
AAAAAL AAAAAL AAAAAA

3.7 1-hot Encoded MDD’s

In this section we describe how to represent and manipulate implicitly sets of objects.
This theory is especially useful for applications where sets of sets of objects need to be constructed
and manipulated, as it is often the case in logic synthesis and combinatorial optimization. In many
applications such as FSM minimization, encoding and partitioning, the number of objects (number
of states in these cases) to be handled is usually not large. But their exact optimization algorithms
require exploration of many different subsets of such objects. As shown in Section 2.7, exact state
minimization requires selection of a minimum closed cover out of a huge number of candidate sets
of state sets. Therefore our prime concem here is to have a compact representation for set of sets.
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Suppose the elements corresponds to n distinct objects. With 1-hot encoding, a Boolean
variable is associated with each object so n Boolean variables are used. Each singleton element is
assigned a distinct 1-hot code. Obviously with this 1-hot encoding scheme, there are a lot of unused
code points. Unlike the logarithmic encoding where unused code points are reassigned to values,
these code points are used for a purpose other than representing elements or values, but to represent
sets other than singletons.

3.7.1 Positional-set Notation

Given that there are 2™ possible distinct sets of objects, in order to represent collections of
them it is not possible to encode the objects using logan Boolean variables. Instead, each subset of
objects is represented in positional-set or positional-cube notation form, using a set of » Boolean
variables, * = z172...2,. The presence of an element s; in the set is denoted by the fact that
variable z, takes the value 1 in the positional-set, whereas z; takes the value 0 if element s is not
a member of the set. One Boolean variable is needed for each element because the element can
either be present or absent in the set 1.

In the above example, » = 6, and the set with a single element s, is represented by
000100 while the set s;s3s5 is represented by 011010. The elements sy, s4, S¢ Which are not present
correspond to O’s in the positional-set.

A set of sets of objects is represented as a set S of positional-sets, by a characteristic
function xs : B" — B as:

xs(z) =1 if and only if the set represented by the positional-set z is in the set S of sets.

A 1-hot encoded MDD representing xs(z) will contain minterms, each corresponding to a set in
S. Operators for manipulating positional-sets and characteristic functions will be introduced in the
next two subsections.

A 1-hot encoded MDD can be represented as a BDD where each Boolean variable
corresponds to a BDD variable. From now on, we use BDD to refer to 1-hot encoded MDD where
there is no ambiguity.

!The representation of primes proposed by Coudert et al. [19] needs 3 values per variable to distinguish if the present
literal is in positive or negative phase or in both phases.
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3.7.2 Operations on Positional-sets

With our previous definitions of relations and positional-set notation for representing set
of objects, useful relational operators on sets can be derived. We propose a unified notational
framework for set manipulation which extends the notation used in [48). In this section, each
operators Op acts on two sets of variables z = z122...2, and y = y1y...y» and retums a
relation (z Op y) (as a characteristic function) of pairs of positional-sets. Alteratively, they can
also be viewed as constraints imposed on the possible pairs out of two sets of objects, z and y. For
example, given two sets of sets X and Y, the set pairs (z, y) where z contains y are given by the
product of X and Y’ and the containment constraint, X (z) - Y (y) - (z 2 y).

Lemma 3.5 The equality relation evaluates true if the two sets of objects represented by positional-
sets x and y are identical, and can be computed as:

n
E=y)=[zren
k=1

Where . <> Yx = Ti - Yk + Tk + Yk designates the Boolean XNOR operation and — designates
the Boolean NOT operation.

Proof: [Tk-1 zx < yx requires that for every element k, either both positional-sets z and y contain
it, or it is absent from both. Therefore, z and y contains exactly the same set of elements and thus
are equal. ]

Lemma 3.6 The containment relation evaluates true if the set of objects represented by = contains
the set of objects represented by y, and can be computed as:

n
2y =T]n=a
k=1

where z = yi = —zi + yx designates the Boolean implication operation.

Proof: [1¢=1 yx = zx requires that for all object, if an object k is presentin y (i.e., yx = 1), it must
also be present in z (zx = 1). Therefore set = contains all the objects in y. |

Lemma 3.7 The strict containment relation evaluates true if the set of objects represented by =
strictly contains the set of objects represented by y, and can be computed as:

(zoy)=(z2y):~(z=y) (3.5)
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Alternatively, (z D y) can be computed by:

(zDy)= ﬁ[yk = 2] -i[zk oyl (3.6)
k=1 k=1

Proof: Equation 3.5 follows directly from the two previous  theorems. For Equation 3.6, the first
term is simply the containment constraint, while the second term Y"%_, [z« - —yx] requires that for
at least one object k, it is present in z (zx = 1) but is absent from y (y = 0), i.e.,  and y are not
the same. So it is an alternative way of computing (z D y). [ ]

Lemma 3.8 The equal-union relation evaluates true if the set of objects represented by z is the
union of the two sets of objects represented by y and z, and can be computed as:

n
(z=yuUz) =[] zx & (& + 2)
k=1

Proof: For each position k, zj is set to the value of the OR between z; and y;. Effectively,

[Ti=1 2k < (yx + 2) performs a bitwise OR on y and z to form a single positional-set z, which
represents the union of the two individual sets. |

Lemma 3.9 The equal-intersection relation evaluates true if the set of objects represented by z is
the intersection of the two sets of objects represented by y and z, and can be computed as:

(e=ynz)=ore (-2
k=1

Proof: For each position k, z; is set to the value of the AND between z; and y. Effectively,

ITx=1 = < (Y& - 2) performs a bitwise AND on y and z to form a single positional-set z, which
represents the intersection of the two individual sets. [ |

Lemma 3.10 The contain-union relation evaluates true if the set of objects represented by =
contains the union of the two sets of objects represented by y and z, and can be computed as:

n

(z2yUz)= ] (v +2) = 2k
k=1

Proof: Note the similarity in the computations of (z 2 yU z)and (z = yUz2). (z 2 yU=2)
performs bitwise OR on singletons y and 2. If either of their k-bit is 1, the corresponding = bit

is constrained to 1. Otherwise, . can take any values (i.e., don’t care). The outer product [J}., -
requires that the above is true for each k. |
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Lemma 3.11 The contain-intersection relation evaluates true if the set of objects represented by
T contains the intersection of the two sets of objects represented by y and z, and can be computed
as:

n
(z2ynz)=T(w-2)=> 2
k=1

Proof: Note the similarity in the computations of (z D yNz)and (z = yNz). (z 2 yN2)
performs bitwise AND on singletons y and z. If either of their k-bit is 1, the corresponding z; bit
is constrained to 1. Otherwise, z; can take any values (i.e., don’t care). The outer product [T},
requires that the above is true for each k. [ |

3.7.3 Operations on Sets of Positional-sets

The first three lemmas in this section introduces operators that return a set of positional-sets
as the result of some implicit set operations on one or two sets of positional-sets.

Lemma 3.12 Given the characteristic functions x4 and xp representing the sets A and B, set
operations on them such as the union, intersection, sharp, and complementation can be performed
as logical operations on their characteristic functions, as follows:

XAuB = XA+ XB

XAnB = XA'XB
XA-B = XA*'TXB
XA = XA

Lemma 3.13 The maximal of a set x of subsets is the set containing subsets in x not strictly
contained by any other subset in X, and can be computed as:

Mazimal:(x) = x(z)- By [(y D z) - x(v)]

Proof: The term Jy [(y D z) - x(y)] is true if and only if there is a positional-set y in x such that
z C y. In such a case, z cannot be in the maximal set by definition, and can be subtracted out.
What remains is exactly the maximal set of subsets in x(z). n

Lemma 3.14 Given a set of positional-sets x(z) and an array of the Boolean variables z, the

maximal of positional-sets in x with respect to x can be computed by the recursive BDD operator
Mazimal(x,0,z):
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Mazimal(x, k, z) {
if(x=0) return0
i (x =1) return i =i
My = Mazimal(xz, k+ 1)
M, = Mazimal(xz,,k + 1)
return ITE(z, My, My - ~M))

Proof: The operator starts at the top of the BDD and recurses down until a terminal node is reached.
At each recursive call, the operator retumns the maximal set of positional-sets within x making up
of elements from & to n. If terminal 0 is reached, there is no positional-set within x so 0 (e,
nothing) is retuned. If terminal 1 is reached, x contains all possible position-sets with elements
from k to n, and the maximum one is [T, z;. Atany intermediate BDD node, we find the maximal
positional-sets Mo on the else branch of x, the maximal positional-sets M; on the then branch of
X. The resultant maximal set of sets contains (1) positional-sets in M, each with element z. added
to it as they cannot be contained by any set in M, which has z; = 0, and (2) positional-sets that are
in Mo but not in M, because if a set is present in both, it is already accounted for in (1). Thus the
ITE operation returns the required maximal set after each call. |

To guarantee that each node of the BDD Y is processed exactly once, intermediate results
should be cached by a computed-table.

Lemma 3.15 The minimal of a set x of subsets is the set containing subsets in x not strictly
containing any other subset in x, and can be computed as:

Minimal;(x) = x(z)- By [(z D ¥) - x(v)]

Proof: The term 3y [(z D y) - x(y)] is true if and only if there is a positional-set y in x such that
z 3 y. Insucha case, z cannot be in the minimal set by definition, and can be subtracted out. What
remains is exactly the minimal set of subsets in x(z). ]
A recursive BDD operator Minimal(x, k, z) can be similarly defined.
The next three operators check set equality, containment and strict containment between
two sets of sets, whereas Lemmas 3.5, 3.6 and 3.7 check on a pair of sets only. These following
operators retums tautology if the tests are passed.
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Lemma 3.16 Given the characteristic functions x 4(z) and xg(z) representing two sets A and B
(of positional-sets), the set equality test is true if and only if sets A and B are identical, and can
be computed by:

Equalz(xa,xB) = Vz [xa(z) ¢ x8(z)]

Alternatively, Equal can be found by checking if their corresponding ROBDD’s are the same by
bdd_equal(x 4, XB)-

Proof: x4(z) and xp(z) represents the same set if and only if for every z, eitherz € Aand z € B,
orz ¢ Aand z ¢ B. As the characteristic function representing a set in positional-set notation is
unique, two characteristic functions will represent the same set if and only if their ROBDD’s are
the same. (]

Lemma 3.17 Given the characteristic functions x a(x) and xg(z) representing two sets A and B
-(of positional-sets), the set containment test is true if and only if set A contains set B, and can be
computed by:

Containg(xa,xB) = Vz [xB(z) = xa(z))

Lemma 3.18 Given the characteristic functions x4 and xp representing two sets A and B (of
positional-sets), the set strict containment test is true if and only if set A strictly contains set B,
and can be computed by:

Strict_Containg(xa, xB) = Contain,(xa, x8) - ~Fqual:(xa, xB)

Proof: The proof follows directly from previous two theorems. |
Beside operating on sets of sets, the above operators can also be used on relations of sets.
The effect is best illustrated by an example. Suppose A and B are binary relations on sets.
Contain.(xa(z,y), xB(z, z)) will retumn another relation on pairs (y, z) of sets. Position sets y
and 2 are in the resultant relation if and only if the set of positional-sets z associated with y in
relation A contains the set of positional-sets z associated with z in B.

The remaining operators in this section take a set of sets and a set of variables as parameters,
and returns a singleton positional-set on those variables.

Lemma 3.19 Given a characteristic function x () representing a set A of positional-sets, the set
union relation tests if positional-set y represents the union of all sets in A, and can be computed
by:

Unionzy(xa) = [] vk & 3= [xa(z) - z4)
k=1, )
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Proof: For each position k, the right hand expression sets y. to 1 if and only if there exists an z in
X4 such that its k-th bitis a 1 (3= [xa(z) - zx]). This implies that the positional-set y will contain
the k-th element if and only if there exists a positional-set = in A such that k is a member of z.
Effectively, the right hand expression performs a multiple bitwise OR on all positional-sets of x 4 to
form a single positional-set y which represents the union of all such positional-sets. u

Altemnatively, we implemented the set Union operation as a recursive BDD operator.
Bitwise OR is performed at the BDD DAG level, by traversing the BDD and performing OR on BDD
vertices with the variables of interest.

Lemma 3.20 Given a set of positional-sets x(x) and an array of the Boolean variables z, the union
of positional-sets in x with respect to x can be computed by the BDD operator Bitwise_ Or(x,0, z),
assuming that the variables in x are ordered last:

Bitwise Or(x, k, z) {

if (k > |z|) return x

t = top_var(x)

if (¢ < 2x) {
T = Bitwise_Or(x:, k, z)
E = Bitwise Or(xz, k, )
return ITE(t,T, E)

}else {
if (X, = 0) retum Zx - Bitwise_Or(xzg, k + 1, 2)
else retum z;, - Bitwise Or(xz, + Xz k+ 1, 2)

Proof: z denotes the k-th variable in the array z. Assuming that the variables in z are ordered
last, the above recursion terminates after all of them have been processed (k > |z|,and a0 ora1is
returned as x). At a BDD vertex where ¢ < z, the recursion has not reached a variable of interest
yet, and we simply recurse down its right and left children and merge the Bitwise_Or results by
creating a new vertex ITE(t,T, E). If t > z, we have to perform the bitwise OR operation on
variable v. If x;, = 0, variable z; never takes a value 1 in any satisfying assignments of x, so it is
set to 0 by Z. The bitwise OR of the remaining variables is given by Bitwise_ Or(xz, k + 1, 2).
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Otherwise if x, # 0, there exists a satisfying assignment of x in which z; = 1. So z; is set to 1,
while a bitwise OR is performed over all remaining satisfying assignments of , i.e., Xz, + Xz7- B

This recursive BDD operator is very fast, but unfortunately, its operation is valid only if
the variables to be bitwise OR are at the bottom of the BDD DAG. So to execute this BDD operator,
we need to perform variable substitutions before and after the operation. Experimentally, these
substitution steps are too slow to be practical and sometimes cause exponential blowup in the BDD
size. As a result, we use the computation in Lemma 3.19 instead.

Lemma 3.21 Given a characteristic function x s (z) representing a set A of positional-sets, the set
intersection relation tests if positional-set y represents the intersection of all sets in A, and can be
computed by:

n
Intersectzy(x4) = H Yk & V2 [xa(z) - 24]
k=1

Proof: For each position k, the right hand expression sets yj to 1 if and only if the k-th bit of all
z in x4 is a 1. This implies that the positional-set y will contain the k-th element if and only if
all positional-sets z in x4 have k has a member. Effectively, the right hand expression performs a
multiple bitwise AND on all positional-sets of x 4 to form a single positional-set y which represents
the intersection of all such positional-sets. |

3.74 k-out-of-n Positional-sets

Let the number of objects be #. In subsequent computations, we will use extensively
a suite of sets of sets of objects, T'uple, x(z), which contains all positional-sets z with exactly &
elements in them (i.e., |z| = k). In particular, the set of singleton element T'uple,, ;(z), the set of
pairs T'uple, (), the universal set of all objects T'upley »(z), and the set of empty set Tuple, o(z)
2 are common ones.

An efficient way of constructing and storing such collections of k-tuple sets using BDD
will be given next. Figure 3.7 represents a reduced ordered BDD of T'uples 2(z):

The root of the BDD represents the set T'uples 2(z), while the internal nodes represent
the sets T'uple; ;(z) (i < 5,7 < 2). For ease of illustration, the variable ordering is chosen such
that the top variable corresponding to T'uple; ;(z) is z;. At that node, if we choose element i to be
in the positional-set, z; takes the value 1 and we follow the right outgoing arc. In doing so, we still
have i — 1 elements/variables left to be processed: As we have put element  in the positional-set,

2Tuplen o(z) will be denoted by 9(z).
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Figure 3.7: BDD representing T'uples 2(z).

we still have to add exactly j — 1 elements into the positional-set. That is why the right child of
Tuple; ;(z) should be Tuple; 1 ;—1(z). Similarly, the left child is T'uple;_; ;(z) because element
+ has not been put in the positional-set and we have j — 1 elements/variables left. Thus, the BDD
for T'uple;, ; can be constructed by the algorithm shown in Figure 3.8.

The total number of nonterminal vertices in the BDD of T'uple,, x is (n — k +1) - (k +
1) = 1 = nk — k? + n = O(nk). With the use of the computed table [6], the time complexity of
the above algorithm is also O(nk) as the BDD is built from bottom up and each vertex is built once
and then re-used. Given any =, the BDD for T'uple,, ; is largest when k = n/2.

3.8 FSM Representation using Both Encodings

A good representation for a problem is key to the development of efficient algorithms for
it, and this is certainly true for problems in sequential synthesis and verification. A state transition
graph (STG) (Definition 2.4) is commonly used as the internal representation of FSM’s in sequential
synthesis systems, such as SIS [73]. Many algorithms for sequential synthesis have been developed
to apply to STG’s. However, large FSM’s cannot be stored and manipulated without memory
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Tuple(i, ) {
if(j <0)or (i < j) reum0
if({=j)and ({ =0) retum 1
if Tuple(i, j) in computed-table return result
T =Tuple(i-1,5-1)
E = Tuple(i - 1, )
F = ITE(z;, T, E)
insert F in computed-table for Tuple(%, j)
retum F

Figure 3.8: Pseudo-code for the T'uple operator.

usage and CPU time becoming prohibitively large. A limitation of STG’s is the fact that they are a
two-level form of representation where state transitions are stored explicitly, one by one. This may
degrade the performance of conventional graph algorithms.

Assume that the given FSM has n states. To perform state minimization, one needs to
represent and manipulate efficiently sets of states (such as compatibles) and sets of sets of states
(such as sets of compatibles). Therefore I-hot encoding is used for the states of the FSM. According
to the theory in Section 3.7, we can represent any set of sets of states (i.e., set of state sets) implicitly
as a single 1-hot encoded MDD, and manipulate such state sets symbolically all at once. Different
sets of sets of states can be stored as multiple roots with a single shared 1-hot encoded MDD,

If inputs (outputs respectively) of the FSM are specified symbolically, they can be repre-
sented as a multi-valued symbolic variable i (o respectively) where each value of i (o respectively)
represents an input (output respectively) combination. For compactness in representation, we choose
to use the logarithmic encoding for these variables. It is not a problem that different multi-valued
variables use different encodings as long as they are used consistently. However if inputs (outputs
respectively) of the FSM are already given in encoded form, each encoded bit of inputs (outputs
respectively) is represented by a single Boolean variable.

When states and transitions are represented implicitly, the 1-hot encoded MDD represen-
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tation is often much smaller than STG. There is no direct correlation between the complexity of the
STG and the size of the corresponding 1-hot encoded MDD. Using these MDD relations and the
positional-set notation, we propose new implicit algorithms in the coming chapter for generating
various subsets of compatibles for solving different state minimization problems.

3.9 Variable Ordering

We can frequently suffer from exponential time and/or space complexities if we neglect
the issue of variable ordering. As with most variants of BDD, the space and time complexities for
constructing an MDD for any discrete function is in the worst case exponential in the number of
variables of the function. Luckily in real life, most discrete functions have reasonable representations
provided that a good variable ordering is chosen. Friedman et al. in [24] found an O (n23") algorithm
for finding the optimal variable ordering where = is the number of Boolean variables. Faster variable
ordering heuristics for BDD’s have been provided by Malik et al. in [52) and Fujita et al. in [25].
Rudell [69] recently proposed an effective dynamic variable reordering heuristic which offers a
tradeoff of runtime for compactness of BDD representation.

The goal in this section is to find a good variable ordering so as to minimize the total
number of vertices used. With a mapped-BDD representation of an MDD, the ordering process
consists of two steps: order the BDD variables within each MDD variable, and then merge these
orderings into a single BDD variable ordering.

Two well-known rule-of-thumbs suggested in [52] and [25] can be used for the ordering
of BDD variables within each individual MDD variable:

1. Variables that are closely related should be ordered close to each other.
2. Variables that dominate control of the function should be ordered at the top.

There are two ways of merging these individual orderings. Cluster ordering places BDD
variables, which correspond to the same multi-valued variable, in consecutive positions in the final
ordering. Within each cluster, the binary variable which corresponds to the most significant bit
(MSB) is ordered first (i.e., highest). Then the next significant encoding variable is ordered next,
and so on. For state minimization, cluster ordering is used to merge different sets of input and output
variables. And they are ordered before (i.e., on top of) the state variables because the transition
relation depends heavily on inputs and outputs.



62 CHAPTER 3. IMPLICIT TECHNIQUES

Example In Figure 3.9, the relation ( = y) is represented as an MDD on the left and a mapped-
BDD (i.e., logarithmic encoded MDD) by cluster ordering in the middle. Variables z and y each
can take four values. Note that the multi-valued variable z is encoded into two binary variables
zo (MSB) and z; (LSB) on the right. The circled subgraph before reduction has the same number
of outgoing arcs as the MDD vertex and the two representations are equivalent. With the mapped-
BDD representation, vertices with equivalent subgraphs can be merged as shown by the two lowest
nonterminal vertices.

,,,,,,

Figure 3.9: Comparison between cluster ordering and interleave ordering.

The problem of using cluster ordering for variables with large value ranges is illustrated by
Figure 3.9. Consider the FSM named squares in the MCNC benchmark which has 371 states. Using
1-hot encoding on its states, multi-valued variables z and y each consists of 371 BDD variables. As
mentioned before, there are about 5 x 10'!! outgoing edges from the circled BDD subgraph cluster.
In the worst case, it would have 5 x 10!!! subgraphs below, each rooted at such an edge. Thus the
size of the MDD will grow exponentially in the number of binary encoded variables. .

To avoid such exponential growth, we use an interleave ordering for the BDD variables
instead, as shown on the right of Figure 3.9. The encoded variables zp and z; for z are interleaved
with yo and y; for y. The more significant bits are compared before the less significant ones as the
mapped-BDD is traversed from top to bottom. With interleaving, the width of the mapped-BDD
can be kept slim. As a comparison for our example, the mapped-BDD using cluster ordering has
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9 nonterminal vertices while interleave ordering results in 6 nonterminal vertices. For the FSM
Squares, the mapped-BDD for (z = y) have only 3 x 371 = 1113 nonterminal vertices using
interleave ordering.

For state minimization, our implicit algorithms need to operate on multiple set of state
variables, each such variable set can represent a positional-set. Interleave ordering must be used
for these sets of variables for the reason described above. To avoid exponential complexities, a
common wisdom is to use as few BDD variables as possible. In Section 4.6, we allocate only 4 sets
of state BDD variables although a total of 10 state vector names are used in the equations. This
is possible because we never have to operate on more than 4 sets of state variables simultaneously
within a single BDD operation. The actual BDD variables are reused for different purposes, by
binding at different times more than one set of variables from the equations onto a single set of
BDD variables.
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Chapter 4

Compatible Generation

4.1 Introduction

State minimization of FSM’s is a well-known problem [40]. State minimization of
completely specified FSM’s (CSFSM’s) has a complexity subquadratic in the number of states [31].
This makes it an easy problem when the starting point is a two-level description of an FSM, because
the number of states is usually less than a few hundred. The problem becomes difficult to manage
when the starting point is an encoded sequential circuit with a large number of latches (in the
hundreds). In that case the traditional method would be required to extract a state transition graph
from the encoded network and ‘then apply state minimization to it. But when latches are more
than a dozen, the number of reachable states may be so huge to make state extraction and/or state
minimization unfeasible. Recently it has been shown [49, 47] how to bypass the extraction step
and compute equivalence classes of states implicitly. Equivalence classes are basically all that
is needed to minimize a completely specified state machine. A compatible projection operator
uniquely encodes each equivalence class by selecting a unique representative of the class to which
a given state belongs. This implicit technique allows state minimization of sequential networks
outside the domain of traditional techniques.

State minimization of incompletely specified FSM’s (ISFSM’s) instead has been shown to
be an NP-hard problem [61]. Therefore even for problems represented with two-level descriptions
involving a hundred states, an exact algorithm may consume too much memory and time. Moreover,
it has been recently reported [43] that even examples with very few states generated during the
synthesis of asynchronous circuits may fail to complete (or require days of CPU time) when run
with a state-of-art exact state minimizer as STAMINA [63). Therefore it is of practical importance
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to revisit exact state minimization of ISFSM’s and address the issue of representing implicitly the
solution space.

We underline that besides the intrinsic interest of state minimization and its variants
for sequential synthesis, the implicit techniques reported in this chapter can be applied to other
problems of logic synthesis and combinatorial optimization. For instance the implicit computation
of maximal compatibles given here can be easily converted into an implicit computation of prime
encoding-dichotomies (see [71]). Therefore the computational methods described here contribute
to build a body of implicit techniques whose scope goes much beyond a specific application.

In this chapter, we address the problem of computing sets of compatibles for the exact state
minimization of ISFSM’s [37]. We show how to compute sets of maximal compatibles, compatibles
and prime compatibles with implicit techniques and demonstrate that in this way, it is possible to
handle examples exhibiting a number of compatibles up to 215%, an achievement outside the scope
of programs based on explicit enumeration [63]. We indicate also where such examples arise in
practice. The final step of an implicit exact state minimization procedure, i.e., solving a binate table
covering problem [68], will be presented in the next chapter, Chapter 5.

The remainder of this chapter is organized as follows. Section 4.2 gives an introduction
to classical exact algorithms for state minimization of ISFSM’s. An implicit version of the exact
algorithm is presented in Section 4.3. Section 4.4 describes the method to generate the implicit
binate table. It will be solved by a binate covering solver described in Chapter 5. Alternative
implicit algorithms for prime compatible generation are explored in Section 4.5. A discussion
of more subtle aspects of the implementation of the presented algorithms is given in Section 4.6.
Results on a variety of benchmarks are reported and discussed in Section 4.7.

4.2 Classical Definitions and Algorithm

Most of the terminology used in this chapter is common parlance of the logic synthesis
community [40, 7, 8]. In this section we will revise briefly the basic definitions and procedures for
exact state minimization of ISFSM'’s, as presented in the original papers and standard textbooks [60;
28, 40). First we restate the definition of incompletely specified FSM’s. Some definitions will be
restated in Section 4.3 where they will be explained in more detail.

Definition 4.1 An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M =
(5,1,0,A,A, R). S represents the finite state space, I represents the finite input space and O
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represents the finite output space. A is the next state relation defined as a characteristic function
A: IxX S XS — Bwhere each combination of input and present state is related to a single next
state or to all states. A is the output relation defined as a characteristic function A : IxSxO — B
where each combination of input and present state is related to a single output or to all outputs.
R C S represents the set of reset states.

In classical literature, no reset state is specified for an ISFSM, and it is assumed that all
states can potentially be picked as a reset state for implementation. The same is assumed in this
chapter, and this is reflected in covering conditions defined later.

In addition, unspecified next state is traditionally not represented in the next state relation
A. i.e., if the next state is not specified for present state s and input i, there is no state s’ such that
A(i, s, 8') = 1. This assumption is made in subsequent definitions and computations in this chapter.

Definition 4.2 A set of states is an output compatible if for every input, there is a corresponding
output which can be produced by each state in the set.

Two state are an output incompatible pair if they are not output compatible.

Lemma 4.1 Two states are an output incompatible pair if and only if on some input, they cannot
produce the same output.

Definition 4.3 A set of states is a compatible if for each input sequence, there is a corresponding
output sequence which can be produced by each state in the compatible.

The set of compatibles can theoretically be computed as follows:
1. Assume that every output compatible is a candidate (for compatible).

2. A candidate is not a compatible if on some input, its states cannot produce a same output and
transit to a candidate compatible set.

3. Repeat 2, until no candidate can be deleted from the set of candidate compatibles.

Practically, the number of candidates is too large to be handled by such an explicit algorithm.
Two states are a incompatible pair if they are not compatible.

Lemma 4.2 Two states are an incompatible pair if and only if
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1. they are output incompatible, or
2. on some input, their next states are an incompatible pair.

The set of incompatible state pairs can be computed as follows:
1. Compute output incompatible pairs, which are incompatible pairs.

2. A pair of states is an incompatible pair if on some input, its pair of next states is a previously
determined incompatible pair.

3. Repeat 2, until no new pairs can be added to the set of incompatible pairs.

Theorem 4.3 Given an ISFSM, a set of states is a compatible if and only if every pair of states in
it are compatible.

Proof: By Definition 4.3, if a set of states is a compatible, then each pair of state contained in it is
a compatible.

Suppose each pair of states in a set C of states is compatible. We shall prove that C is a
compatible by induction on the length k of an arbitrary input sequence. On an arbitrary input i (as
induction basis), each state in C can produce either one output or all outputs, because the machine
is an ISFSM. No two states in C produce two specified outputs which is different because they are
pairwise compatible. As a result, all states in C can produce a common output on input i. Assume
that for an arbitrary input sequence o; of length k, every states in C can again produce a common
output sequence and reach a set of states C’. As C is pairwise compatible, so must C'. By applying
an extra input 7, each state in C’ can produce either one output or all outputs. No two states in C"
produce different specified outputs, so all states in C’ can produce a common output on input 7. We
have shown that the state in C, on any input sequence of length k -+ 1, can also produce a common
output sequence. Thus C'is a compatible. |

Corollary 4.4 Given an ISFSM, a set of states which does not contain an incompatible pairisa
compatible.

Proof: 1f a set of states does not contain an incompatible pair, each pair of states in it are compatibles.
By Theorem 4.3, the set of states is a compatible. |

Definition 4.4 A set of states d; is an implied set ! of a compatible c for input i if d; =
{s'|A(i,5,8') =1, Vs € c}.

! An implied set d; of ¢ under i is simply the set of next states from state set c on input 1.
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Definition 4.5 A set C of compatibles is a cover of anISFSM if each state in the ISFSM is contained
in a compatible in C.

Definition 4.6 A set C of compatibles is closed in an ISFSM if for each c € C, all its implied sets
c; are contained in some element of C for each inpus 1.

Theorem 4.5 The state minimization problem of an ISFSM reduces to finding a closed set C of
compatibles, of minimum cardinality, which covers every state of the original machine, i.e., a
minimum closed cover.

Definition 4.7 A compatible set of states is a maximal compatible if it is not a subset of another
compatible.

A set of states is a maximal incompatible if it is not a maximal compatible.
We give as example an elegant procedure to find all maximal compatibles that can be found in [53].

1. Write down the pairs of incompatibles as a product of sums

2. Multiply them out to obtain a sum of products, and minimize it with respect to single-cube
containment.

3. For each resultant product, write down missing states to get maximal compatibles.

This is equivalent to compute all prime implicants of a unate function expressed as a product of
sums (of pairs of states). For instance:

1. Product of pairs of incompatibles:
(84 + 85) (54 + 56) (54 + 59) (55 + 87) (36 + 57) (36 + 58) (58 + o)

2. Unate function in sum of products: s48536Ss + 84565759 + 84578 + 555659
3. Maximal compatibles: s;s2835789, 8152538588, 815253553659, 515253545758

The set of all maximal compatibles of a completely specified FSM is the unique minimum
closed cover. For an incompletely specified FSM, a closed cover consisting only of maximal
compatibles may contain more sets than a minimum closed cover, in which some or all of the
compatibles are proper subsets of maximal compatibles.

Definition 4.8 An implied set d of a compatible c is in its class set if
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1. d has more than one element, and
2. d¢Zcand
3. d g d' ifd €classsetof c.
Definition 4.9 A compatible ¢’ prime dominates 2 a compatible c if
1. ¢ Dcand
2. class set of ¢ C class set of c.

i.e., ¢ dominates c if ¢/ covers all states covered by ¢ and the closure conditions of ¢’ are a subset
of the closure conditions of c.

Definition 4.10 A compatible set of states is a prime compatible if it is not dominated by any other
compatible.

The following procedure (which will be used in Section 4.5.3) generates all prime com-
patibles from the set of maximal compatibles [28].

1. Initially the set of prime compatibles is empty.
2. Order the maximal compatibles by decreasing size, say  is the size of the largest.
3. Add to the set of prime compatibles the maximal compatibles of size n.

4. Fork =n —1downto 1 do:
(@) Compatibles of size k (and their implied sets) are generated starting from the maximal
compatibles of size n to k + 1 (only those having non-void class set).

(b) Add to the set of prime compatibles the compatibles of size' k not dominated by any
' prime compatible already in the set.

(c) Add to the set of prime compatibles all maximal compatibles of size .
The following facts are true about the above algorithm:

¢ A compatible already added to the set of primes cannot be excluded by a newly generated
compatible.

?If we take Definition 2.37 as the definition of prime dominance, this Definition 4.9 represents only a sufficient
condition for prime dominance.
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o The same compatible can be generated more than once by different maximal compatibles.
The question arises of finding the most efficient algorithm to generate the compatibles.

e Only the compatibles generated from maximal compatibles with non-void class set need be
considered, because a maximal compatible with a void class set dominates any compatible
that it generates.

o A single state s can be a prime compatible if every compatible set C with more than one state
and containing s implies a set with more than one state.

Definition 4.11 A prime compatible is an essential prime compatible if it contains a state not
contained in any other prime compatibles.

The following theorem is proved in [28], and its generalization to PNDFSM has been
given in Theorem 2.24.

Theorem 4.6 For any ISFSM M, there is a reduced ISFSM M,..q whose states all correspond to
prime compatibles of M.

A minimum closed cover can then be found by setting up a table covering problem [28)
whose columns are the prime compatibles and rows corresponds to the covering and closure condi-
tions.

The following facts are useful in the state minimization of FSM’s:

e The cardinality of a maximal incompatible is a lower bound on the number of states of the
minimized FSM.

o If there is a maximal compatible that contains all states of a given FSM, the FSM reduces to
a single state.

e The cardinality of the set of maximal compatibles is an upper bound on the number of states
of the minimized FSM.

o If a maximal compatible has a void class set, it must be a prime compatible. As a result, no
compatible contained in it can be a prime compatible (result used in Section 4.5.3).

o The minimum number of maximal compatibles covering all states is a lower bound on the
number of states of the minimized FSM.
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o The minimum number of maximal compatibles covering all states and satisfying the closure
conditions is an upper bound on the number of states of the minimized FSM.

4.3 Implicit Generation of Compatibles

An exact algorithm for state minimization consists of two steps: the generation of various
sets of compatibles, and the solution of a binate covering problem. The generation step involves
identification of sets of states called compatibles which can potentially be merged into a single
state in the minimized machine. Unlike the case of CSFSM’s, where state equivalence partitions
the states, compatibles for incompletely specified FSM may overlap. As a result, the number of
compatibles can be exponential in the number of states [66], and the generation of the whole set of
compatibles can be a challenging task.

The covering step (which will be described in Sections 5) is to choose a mlmmum subset
of compatibles satisfying covering and closure conditions, i.e., to find a minimum closed cover.
The covering conditions require that every state is contained in at least one chosen compatible.
The closure conditions guarantee that the states in a chosen compatible are mapped by any input
sequence to states contained in a chosen compatible.

In this section, we describe implicit computations to find sets of compatibles required for
exact state minimization of ISFSM’s. In each of the following subsections, we shall first restate
the definition of some theoretical object, and give a logic formula to compute it, and then argue its
correctness in a proof.

4.3.1 Output Incompatible Pairs

To generate compatibles, incompatibility relations between pairs of states are derived first
“from the given output and transition relations of an ISFSM.

Definition 4.12 Two states are an output incompatible pair if, for some input, they cannot generate
the same output.

Lemma 4.7 The set of output incompatible pairs, OICP(y, z), can be computed as:

OICP(y,z) = Tuplei(y) - Tuplei(z) -3 Bo[A(i,y,0) - A(s, 2,0)] @.1)
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Proof: Although y and z can represent any positional-sets, the conditions Tuple; (y) - Tuple; (2)
restrict them to represent only pairs of singleton states. The last term is true if and only if for some
input 1, there is no output pattem that both state y and z can produce (i.., output incompatible). W

In the above and subsequent formulas, we will mix notations between relations and their
corresponding characteristic functions. Strictly speaking if we used the characteristic function
notation, the above fonpula would have been more clumsy:

OICP(y,z) =1 ifandonlyif (Tuple;(y)=1)-(Tuplei(z)=1)
3i Bo[(AG,y,0) = 1) - (Aliyz,0) = 1)]

4.3.2 Incompatible Pairs

Definition 4.13 Two states are an incompatible pair if
1. they are output incompatible, or

2. on some input, their next states are an incompatible pair.

Lemma 4.8 The set of incompatible pairs is the least fixed point of ICP:
ICP(y, z) = OICP(y,2) + 3, v, v [A(i,y, ) - A(%, 2, v) - ICP(u, v)]
and can be computed by the following iteration:

ICPo(y,z) = OICP(y,2)
ICPrs1(y,2) = ICPi(y,2)+ F,u,v[A(sy,u)- A, 2,v) - ICPk(u, v)] 4.2)

The iteration can terminatewhen ICPi4 = IC Py and the set of incompatible pairs is ICP(y, z) =
ICPk(y, 2).

Proof: The fixed point computation starts with the set of output incompatible pairs. After the
(k + 1)-th iteration of Equation 4.2, ZCPy41(y, z) contains all the incompatible state pairs (y, 2)
that lead to an output incompatible pairin k1 orless transitions. This set is obtained by adding state
pairs (y, z) to the set ZC Pk (y, 2), if an input takes states (y, z) into an already known incompatible
pair (u, v). [ ]
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T(iy.u)

Figure 4.1: Finding incompatible pairs.

4.3.3 Incompatibles

So far we established incompatibility relationships between pairs of states. The following
definition introduces sets of states of arbitrary cardinalities.

Definition 4.14 A set of states is an incompatible if it contains at least one incompatible pair.
Lemma 4.9 The set of incompatibles can be computed as:
IC(c) = 3y, z[ICP(y,2) - (¢ 2 y U 2)] 4.3)

Proof: By Lemma 3.10, (¢ 2 y U z) = [Ti=; Yk + 2z = ¢ performs bitwise OR on singletons y
and z. If either of their k-th bits is 1, the corresponding c; bit is constrained to 1. Otherwise, cj
can take any values. The outer product [}, requires that the above is true for each k. Thus, it
generates all positional-sets ¢ which contain the union of the positional-sets y and z. The whole
computation defines all state sets c each of which contains at least an incompatible pair of singleton
states (y, z) € ICP. |

4.3.4 Compatibles
| Definition 4.15 A set of states is a compatible if it is not an incompatible.
Lemma 4.10 The set of compatibles, C(c), can be computed as:
C(c) = -~Tupleg(c) - ~ZC(c)

Proof: C(c) simply contains all non-empty subsets c of states which are not incompatibles ZC(c).
The empty set in positional-set notation is T'upleg(c) and all subsets which are not incompatible are
given by —-ZC(c). |
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4.3.5 Implied Classes of a Compatible

To set up the covering problem, we also need to compute the closure conditions for each
compatible. This is done by finding the class set of a compatible, i.e., the set of next states implied
by a compatible.

Definition 4.16 A set of states d; is an implied set of a compatible c for input i if d; is the set of
next states from the states in c on input i.

Lemma 4.11 The implied set (in singleton form) of a compatible c for input i can be defined by
the relation F(c, ¢, n) which evaluates to 1 if and only if on input i, n is a next state from state p in
compatible c.

F(e,i,n) =3p[C(c)- (¢ 2 p) - A(¢, p, )] @4

Proof: F(c,i,n) associates a compatible ¢ € C and an input i with a singleton next state n. Given
cand ¢, n is in relation 7 (c, ¢, n) (i.e., state n is in the implied set of compatible ¢ under input 3) if
and only if there is a present state p € c such that » is the next state of p on input <. [ |

Note that the implied next states are represented here as singleton states in F(c, £, n).
All singletons = in relation with a compatible ¢ and an input ¢ can be combined into a single
positional-set, for later convenience. This positional-set representation of implied sets associates
each compatible ¢ with a set of implied sets d.

Lemma 4.12 Theimplied sets d(inpositional-setform) of a compatible cfor allinputs are computed
by the relation CZ(c, d) as:

CI(c,d) = 3i [3n(F(c,i,n)) - Union,4(F(c, i,n))]

Proof: Considering the rightmost term, F (c, 7, ») relates implied next states as singleton positional-
sets n to compatible ¢ and input i and Union,_,4(F (c, 1, n)) forms the union of these singleton
sets by bitwise OR and produces a positional-set d. The term 3n(F (¢, 1, n)) is needed, to exclude
invalid (compatible, input) combinations. Finally the inputs ¢ are existentially quanﬁﬁed.fmm the
implied sets of ¢ of different inputs. [ |

4.3.6 Class Set of a Compatible

Definition 4.17 An implied set d of a compatible c is in its class set if
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1. d has more than one element, and
2.dZcand

3. d g d'ifd’ € class set of c.

We can ignore any implied set which contains only a single state, because its closure condition is
satisfied if the state is covered by some chosen compatible. Also if d C c, the closure condition is
satisfied by the choice of c. Finally, if the closure condition corresponding to d’ is stronger than that
of d, the implied set d is not necessary.

Lemma 4.13 The class set of a compatible c is defined by the relation CCS (c, d) which evaluates
to 1 if and only if the implied set d is in the class set of compatible c.

CCS(c,d) = ~T'upley(d) - (¢ 2 d) - Mazimaly(CI(c,d))

Proof: The singleton implied sets T'uple;(d) are excluded according to condition 1 in Defini-
tion4.17. By condition 2, we prune away implied sets d which are contained in their compatibles c.
Finally given a compatible ¢, Mazimaly(CZ(c, d)) gives all its implied sets d which are not strictly
contained by any other implied sets in CZ (¢, d). [ ]

4.3.7 Prime Compatibles

To solve exactly the covering problem, it is sufficient to consider a subset of compatibles
called prime compatibles. As proved in [28], at least one minimum closed cover consists entirely
of prime compatibles.

Definition 4.18 . A compatible ¢’ dominates a compatible c if
1. ¢ Dcand

2. class set of ¢ C class set of c.

i.e., ¢’ dominates c if ¢’ covers all states covered by c, and the closure conditions of ¢’ are a subset
of the closure conditions of c. As a result, compatible ¢’ expresses strictly less stringent conditions
than compatible ¢. Therefore ¢’ is always a better choice for a closed cover than c, thus ¢ can be
excluded from further consideration.
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Lemma 4.14 The prime dominance relation is given by:
Dominate(c, c) = (¢ D c) - Containg(CCS(c,d),CCS(c, d))

Proof: The two terms on the right express the two dominance conditions by which ¢/ dominates ¢
according to Definition 4.18. Since compatibles c and ¢’ are represented as positional-sets, (¢ D ¢)
is computed according to Lemma 3.7. On the other hand, class sets are sets of sets of states and
are represented by their characteristic functions. Containment between such sets of sets of states is
computed by Vd [CCS(c/, d) = CCS (e, d)), as described by Lemma 3.17. ]

Definition 4.19 A prime compatible is a compatible not dominated by another compatible.
Lemma 4.15 The set of prime compatibles is given by:
PC(c) = C(c)- A [C(c') - Dominate(c, c)]

Proof: Compatibles c that are dominated by some compatible ¢’ are computed by the expression
3¢ [C(¢') - Dominate(c’, c)). By Definition 4.19, the set of prime compatibles is simply given by
the set of compatibles C(c) excluding those that are dominated. |

4.3.8 Essential and Non-essential Prime Compatibles

Definition 4.20 A prime compatible is an essential prime compatible if it contains a state not
contained in any other prime compatibles.

Because any solution must correspond to a closed cover, each state mush be contained in a selected
compatible, and thus every essential prime compatible must be selected.

Lemma 4.16 The set of essential prime compatibles can be computed as:
EPC(c) = PC(c) - Y _{er Bc [cf - PC(c) - (c # )]}
k=1

Proof: For aset c of states to be an essential prime compatible £PC c), it must be a prime compatible
PC(c). In addition, there must be a state s such that s, € ¢ and there isno ¢/ € PC different than
csuch that s; € ¢. The positive literal c; denotes the fact si € ¢, and similary for c}. |

Definition 4.21 . A prime compatible is a non-essential prime compatible if it is not an essential
prime compatible.
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Lemma 4.17 The set of non-essential prime compatibles can be computed as:
NEPC(c) = PC(c) - ~EPC(c)

Proof: By Definition 4.21. ]

4.4 Implicit Generation of Binate Covering Table

Once the set of (non-essential) prime compatibles is generated, the problem of exact state
minimization can be solved as a binate table covering problem. Algorithms for binate covering will
be described in detail in Chapter 5. In this section, we shall describe how such a binate table can
be generated. To keep with our stated objective, the binate table is also represented implicitly. We
describe an implicit representation of the covering table, that adroitly exploits how row and columns
were implicitly computed.

We do not represent (even implicitly) the elements of the table, but we make use only
of a set of row labels and a set of column labels, each represented implicitly as a BDD. They are
chosen so that the existence and value of any table entry can be readily inferred by examining
its corresponding row and column labels. This choice allows us to define all table manipulations
needed by the reduction algorithms in terms of operations on row and column labels and to exploit
all the special features of the binate covering problem induced by state minimization (for instance,
each row has at most one 0, etc).

Definition 4.22 A column is labeled by a positional-set p. The set of column labels C is obtained
by prime generation as C(p) = PC(p).

Beside distinguishing one row from another, each row label must also contain information
regarding the positions of 0 and 1’s in the row. Each row label r consists of a pair of positional-sets
(c,d). Since there is at most one 0 in the row, the label of the column p intersecting it in a 0 is
recorded in the row label by setting its ¢ part to p. If there is no 0 in the row, c is set to the empty
set, Tupleg(c). Because of Definition 4.24 for row labels, the columns intersecting a row labeled
r = (¢,d) ina1 are labeled by the prime compatibles p that contain d. i.e.,

Definition 4.23 The table entry at the intersection of arow labeled by r = (c, d) € R and a column
labeled by p € C can be inferred by:

the table entry is a 0 iff relation O(r, p) o (p = c) is true,

the table entry is a 1 iff relation 1(r, p) -] (p 2 d) is true.
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Definition 4.24 The set of row labels R is given by:

R(r) = PC(c) -CCS(c,d) + Tupleg(c) - Tuple;(d)

The closure conditions associated with a prime compatible p are that if p is included in a solution,
each implied set d in its class set must be contained in at least one chosen prime compatible. A
binate clause of the form (p + p1 + p2 + - - - + px) has to be satisfied for each implied set of p,
where p; is a prime compatible containing the implied set d. The labels for binate rows are given
succinctly by PC (¢)-CCS(c, d). There is a row label for each (c, d) pair such that ¢ € PC is a prime
compatible and d is one of its implied sets in CCS(c, d). This row label consistently represents the
binate clause because the 0 entry in the row is given by the column labeled by the prime compatible
P = ¢, and the row has 1’s in the columns labeled by p; wherever (p; 2 d).

The covering conditions require that each state be contained by some prime compatible
in the solution. For each state d € S, a unate clause has to be satisfied which is of the form
(P1+p2+ - - -+ p;) where the p;'s are the prime compatibles that contain the state d. By specifying
the unate row labels to be T'upleo(c) - Tuple;(d), we define a row label for each state in Tuple; (d).
Since the row has no 0, its ¢ part must be set to T'upleg(c). The 1 entries are correctly positioned at

the intersection with all columns labeled by prime compatibles p; which contain the singleton state
d.

4.5 Improvements on Implicit Algorithm

The experiments, which will be reported in Section 4.7, identifies two bottlenecks in the
implicit computations described in Section 4.3:

1. the fixed point computation of incompatible pairs;
2. the handling of closure information, i.e., implied classes and class sets.

Sections 4.5.1 and 4.5.2 describes altemativé methods to perform those computations. Section 4.5.3
shows how maximal compatibles can be used with advantage in the computation of prime compat-
ibles. The reader may choose to skip this and the next section (Sections 4.5 and 4.6) without losing
continuity in reading.
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4.5.1 Incompatible Pairs Generation using Generalized Cofactor

This subsection describes a variation on the fixed point computation of incompatible pairs
ICP(y, z), presented in Section 4.3.2. Each iteration of the computation of Equation 4.2 can be
viewed as an inverse image projection from a set of state pairs in ZCPj(u, v) to a set of states pairs
in ZCPy41(y, z) via the product transition relation A(i, y, u) - A(%, 2, v). In the original method, all
state pairs in ZCPj.1 (u, v) are projected during the (k + 2)-th iteration. Some are not necessary
because if the projected pair (v, ) of ZCPx4, is actually in ZCP), as shown in Figure 4.2 3, its
projection (y", ) must have already been calculated in a previous iteration. Thus at the (k +2)-th
iteration, we need only project the new incompatible state pairs discovered at the (k +1)-thiteration.
This is done in the following modification of the fixed point computation of Section 4.3.2.

Thyu) xT,zv) A

ICPk k+1th iteration ICP k+1

Figure 4.2: An altemative way of finding incompatible pairs.

ICPo(y,z) = OICP(y,z2)
(= NEW(y,2))
TMP(y,2) 3, u { A4, y,u) - [FvA(, z,v) - NEW (u,v) ] }
NEW (y, 2) TMP(y,2) - ~ICPx(y, 2)
ICPiy1(y,2) = ICPr(y,2)+ NEW(y,2)

Instead of finding a minimum cardinality set of state pairs for projection, a minimal set of state
pairs with a small BDD representation is more desirable for our implicit BDD formulation. A small
BDD for NEW (y, z) can be obtained using the generalized cofactor [80] using ZC P (y, z) as the
don’t care set:

NEW (y,z) = NEW (y, 2)|-1cp,(y,2)

*In Figure 4.2, the direction of the arrows shows the inverse projections.
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As a result of this modification, the geometric mean of the ratio of CPU run time for computing
ICP with this generalized cofactor method versus the original method is 0.68.

4.5.2 Handling of Closure Information

For FSM’s with many compatibles, the most time consuming part of our implicit algo-
rithm is the computation of implied classes and class sets of the compatibles. The complexity arises
because these implicit computations deal with two sets of variables (c, d) in each relation, ¢ repre-
senting a compatible and d representing its implied class or class set. Since each compatible may
have a different class set, the size of the corresponding BDD’s may blowup during the computation.

A way to cope with this problem is to represent the class sets by means of singletons
n (by Lemma 4.11) instead of sets d of arbitrary cardinalities (by Lemma 4.12). This avoids
the computation of the BDD objects CZ(c,d) and CCS(c, d) which are usually large and time
consuming. The following series of computations is equivalent to and replaces the computations in
Sections 4.3.5, 4.3.6 and 4.3.7.

Theorem 4.18 The class sets of compatibles can be obtained by pruning the implied set relation
F(c, i, n) in singleton form, by the following computations:

Fle,iyn) = Jp[A(sp,n)-Cle) - (c 2 p)]
I(c,i) = 3nn'[F(ei,n): F(et,n) - (n# n')] @.5)
Fle,tyn) = F(eyi,n)- I(c,i)
J(c,3) = 3n[F(c,i,n):(c 2 n)]
Fle,iyn) = Fe,i,n)-J(c,1)
K(c,i) = 3i' {[Contain,(F(c,i,n),F(c,i,n))+-J(c,i)]
=[Contain, (F(c, i, n), F(c, i,n)) + ~J (c, )] } 4.6)
F(e,i,m) = Fle,iyn) --K(c,1)

Proof: For each input i and each compatible ¢, we must compute a unique implied set denoted
by ¢;. Each implied class c; is represented as a set of singleton-states n, i.e., ¢; = {r|F(c, ,n)}.
Definition 4.17, an implied class ¢; of a compatible c is in a class set if

1. ¢; has more than one element,

2. Cs Q C,
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3. ¢; € ¢y if ¢y € class set.

The relations I, J and K capture the implied sets that satisfy the first, second and third class set
conditions respectively. The relation I(c, ) finds all implied classes ¢; which contains at least
two distinct next states n and n’, i.e., it computes all implied classes with more than one element.
Equation 4.5 prunes the set F accordingly. Relation J(c, t) contains all remaining implied classes
not contained in c, thus satisfying the second condition.

To compute the third condition implicitly, its form needs to be transformed. From the set
of implied classes, we delete an implied class c; if ¢; C c;. We know that, ¢; C ¢y if and only if
¢; C ¢y and ¢ € c;. The Contain, (F(c,i,n), F(c,, n)) operation is used to test if ¢; C ¢;, but
since its result may include invalid (c, ') pairs (i.e., implied classes) the terms —~J(c, i) are needed
in the equation. In the last equation, the implied sets in K (c, ) are subtracted away from F because
they violate the third condition. |

Theorem 4.19 The condition that compatible ¢’ dominates compatible c can be computed as:
Dominate(c',¢) = (¢’ D ¢) - Vi’ 3i Containg (F(c, i, n), F(c, ¢, n))

Proof: By Definition 4.18, ¢’ dominates ¢ if ¢’ covers all states covered by ¢ and the conditions on
the closure of ¢’ are a subset of the conditions on the closure of c. [ |

After computing the dominance relation Dominate(c', c), the prime compatibles can be
generated using Lemma 4.15.
4.5.3 Prime Compatible Generation using Maximals

The prime compatible generation algorithm given in Section 4.3 does not rely on the
computation of maximal compatibles, whereas the classical method in [28] does. We are going to
present altemative implicit generation algorithm that does make use of maximal compatibles. The
motivation is to expedite the prime generation step, as it is usually the most time consuming step.

Theorem 4.20 The set of maximal compatibles can be computed as:
MC(c) = Mazimal (C(c))

Proof: By Definition 4.7, the set of maximal compatibles MC(c) is simply the maximal set of
positional-sets in C (c) with respect to ¢ (Lemma 3.13). |
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Theorem 4.21 The set of singleton next states implied by a maximal compatible c under input 1,
F(c,t,y), can be computed by:

.7'.(0, iy n) = 317 [MC(C) ‘ (c 2 P) A(z’ D, n)]

The class set information for the maximal compatibles can then be obtained using the class set
computation procedure as described in Theorem 4.18.

Proof: Obvious from definition. [ ]

Compatible Pruning by Maximal Compatibles with Void Class Set

When generating prime compatibles from compatibles, only the compatibles generated
from maximal compatibles with non-void class set need be considered, because a maximal compat-
ible with a void class set dominates any compatible that it generates.

Theorem 4.22 The maximal compatibles with void class set, MCV(c), can be obtained by:

MCV(c) = MC(c)- Ai K(c,1)

where K (c,1) is given by Equation 4.6.
The set of compatibles can then be pruned by MCV(c):

C(e) =C(c)- Ac [MCV(c) - (c' 2 )]

Slicing Procedure for Prime Compatible Generation

The following slicing procedure is an implicit version of the procedure outlined near the
end of Section 4.2.
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PC(c)=0
for k = n down to 1 do{
MCp(c) = MC(c) - Tuple(c)
Ci(c) = C(c) - Tuplex(c) - ~MCp(c)
Fei(c,i,n) = Prune(Ci(c),A(t, p, n))
Fre(e,t,n) = Prune(PC(c),A(%, p, n))
Dominate(c,¢) = (¢’ D c) - Vi' 3i Contain, (Fpc(e, i, n), Fe, (¢, ', n))
PCi(c) = C(c)- Ad [Dominate(c,c)-C()]
PC(c) = PC(c) + PCi(c) + MCx(c)

PC(c) is a set of prime compatibles accumulated during each iteration, and is originally
empty. MCy(c) contains maximal compatibles with cardinality k. Ci(c) contains compatibles
c of cardinality k, excluding those in MCg(c). Prune(Ci(c),A(i,p,n)) is the class set pruning
procedure described in Theorem 4.18, by substituting Cx (c) for C(c), and F¢(c, %, n) for F(c, %, n)
in the equations. Prune(PC(c),A(%, p,n)) is similarly defined. So F¢,(c, i, n) and Fpc(c, %, n)
contains the class sets of Ci(c) and PC(c) respectively. To test for Dominate(c, c), we only need
to know if a compatible ¢’ € C; is dominated by an already discovered prime compatible ¢ € PC,
because (1) for any other ¢’ € Cy, ¢ ¢ ¢/, and (2) ¢ can be dominated only by prime compatibles
with cardinalities greater than k. PCg(c) contains the newly discovered prime compatibles with
cardinality k, and this set is added to MC and PC to update the set of prime compatibles found so
far.

Experimentally during BDD construction of the prime compatibles, this slicing method
uses on average half the memory requirement as compared to the method in Section 4.5.2. This
method is particularly efficient if the sizes of the compatibles are localized to a few cardinalities.

4.6 Implementation Details

4.6.1 BDD Variable Assignment

When dealing with BDD’s, a common wisdom is to keep the number of BDD variables
used to a minimum. The rationale the smaller the number of BDD variables involved, the less
probable is that a BDD operation will cause exponential blowup in the BDD size. In our case
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1. 10 state variable vectors (p, »,y, z, 4, v, ¢, ¢, d, &) are used in all previous equations,

2. inpositional-set notation, each state variable vector corresponds to n Boolean variables where
n is the number of states.

Looking into each equation carefully reveals the fact that we never operate on more than
four sets of variables simultaneously in a single BDD operation. For example, 4 sets of variables
Y, 2, u and v are used in Equation 4.2, and 3 sets p, » and c in Equation 4.4. The idea of BDD
variable assignment is to use a set of BDD variables for more than one purpose, by binding at
different times more than one set of variables from the equations onto a single set of BDD variables.
The assignments should be made in such a way that no two sets of variables appearing in an equation
will be assigned to the same set of BDD variables. Such an assignment for our previous implicit
algorithm is shown in Figure 4.3.

BDD variable sets
0| 1|2} 3
P n

y u z v
cld || d
(4

Figure 4.3: Assignments of equation variables to BDD variables.

There is a conflict with the above BDD variable assignment in Equation 4.3. Variable
¢ is assigned the same BDD variables as variable y in these equations. To get around it, an extra
variable e is used instead:

ZC(c) = [e = c]3y, 2 [ICP(y,z) - (y 2 2V €))

Note that two functions containing different variables being assigned to the same BDD variable,
e.g., A(i, p,n) and CCS(c', d'), can co-exist within a multi-rooted BDD at the same time, without
interfering one another. Conflict will occur only when they become operands to a BDD operation.
Actually as a result of overlapping in variable supports, such unrelated functions can be constructed
and manipulated more efficiently due to sharing of BDD subgraphs, i.e., possible hits in the unique
and computed hash tables [6] in a BDD package.

4.6.2 BDD Variable Ordering

The issue of BDD variable ordering has been introduced in Section 3.9.
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The equality, containment, strict containment, maximal and minimal relations described in
Section 3.7.2 have exponential BDD’s size if the different sets of BDD variables are not interleaved
with each other. Both for space and time efficiency, the four sets of BDD variables have to be
interleaved.

It is found that the ordering between individual state variables within a set of BDD
variables (i.e., a positional-set) is also important, especially when handling the closure information.
The heuristics we use is to put the Boolean variables corresponding to states that occur most
frequently in the compatibles at the top of the BDD. This should leave the BDD sparse in the lower
part of the BDD where most state variables take a value of 0. As the set of compatibles is usually

very large, we approximate the count by counting the occurrences of states in maximal compatibles
instead.

4.6.3 Don’t Cares in the Positional-set Space

The main advantage of our positional-set representation of FSM’s is that, with a single
multi-rooted BDD, sets of sets of states can be represented. As a result, we can compactly
represent and manipulate sets of compatibles (C), prime compatibles (PC), etc. However during the
computation of OCP, OICP and ZCP, we are manipulating only sets of singleton states and so we
only care about a small portion of the encoding space. Since no positional-set of cardinality greater
than 1 will appear there, we can make use of these don’t care code points in the positional-set space.

For example, the computations involved in Equations 4.1 to 4.2 manipulate a product
of two singleton states (y, z). The don’t care condition with respect to this pair of singletons is
captured by:

DC(y, z) = ~Tupleo(y) - ~“Tupley (y) + ~Tupleg(z) - ~Tuple; (z)

and can be used to simplify the BDD computation of these sets using generalized cofactor.

4.7 Experimental Results

We implemented the algorithms described in previous sections in a program called IsSM,
an acronym for Implicit State Minimizer. We ran 1M on different suites of FSM’s. We report results
on the following suites of FSM’s. They are:

1. the MCNC benchmark and other examples,
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2. FSM’s generated by a synthesis procedure for asynchronous logic [46],
3. FSM’s from leaming I/O sequences [23],

4. FSM'’s from synthesis of interacting FSM’s [82],

5. FSM’s with exponentially many prime compatibles,

6. FSM’s with many maximal compatibles, and

7. randomly generated FSM’s.

Each suite has different features with respect to state minimization. We discuss features of the
experiments and results in different subsections. Comparisons are made with STAMINA [64], a
program that represents the state-of-art for state minimization based on explicit techniques. The
program STAMINA was run with the option -P to compute all prime compatibles.

For each example, we report the number of states in the original ISFSM, the number of
maximal compatibles if applicable, the number compatibles, the number of prime compatibles, the
number of non-essential prime compatibles if applicable, and the run time for our implicit algorithm
ISM and that for the explicit algorithm STAMINA. All run times are reported in CPU seconds on a
DECstation 5000/260 with 440 Mb of memory. The CPU run time refers to the computation of the
prime compatibles only.

4.7.1 FSM'’s from MCNC Benchmark and Others

Table 4.1 reports the resuits from the MCNC benchmark and from other academic and
industrial benchmarks available to us. Most examples have a small number of prime compatibles,
with the exception of ex2 and green. The running times of ISM are worse than those of STAMINA,
especially in those cases where there are very few compatibles in the number of states (squares is
the most striking example). In those cases an explicit algorithm is sufficient to get a quick answer
and it may be faster than an implicit one. The reason is that ISM manipulates relations having a
numbser of variables linearly proportional to the number of states. When there are many states and
few compatibles, the purpose of ISM is defeated and its representation becomes inefficient. But
when the number of primes is not negligible as in ex2 and green, ISM ran as fast or faster than
STAMINA,

The question now arises of how it is realistic to expect such examples in logic design
applications. One could object that the examples of Table 1 show that hand-designed FSM’s can
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be handled very well by an existing state-of-art program like STAMINA. If this can be true for usual
hand-designed FSM’s, we argue that there are FSM'’s produced in the process of logic synthesis
of real design applications that generate large sets of compatibles exceeding the capabilities of
programs based on an explicit enumeration. The examples of Table 2 are such a case. They
are FSM'’s produced as intermediate stages of an asynchronous logic design procedure and their
minimization requires computing very large sets of compatibles. Another case is the one reported
in Table 3, referring to the synthesis of finite state machines consistent with a collection of I/O
leaming examples.

# max # prime CPU time (sec)

machine | #states | compat. | # compat. | compat. | #A/EPC | ISM | STAMINA
arbseq 94 2 96 9 3| 12 0
bbsse 16 11 97 13 0 0 0
beecount 7 4 11 7 S 0
exl 20 2 22 19 1 1 0
ex2 19 36 2925 1366 1366 7 13
ex3 10 10 195 91 91 0 0
€x5 9 6 81 38 38 0 0
ex7 10 6 135 57 57 0 0
fsm1 256 47 302 208 0| 83 0.6
green 54 524 1234 524 524 | 90 125
lion9 9 5 20 5 2 0 0
mark1 15 12 41 18 11 0 0
scf 121 12 1201 175 87| 22 0
squares 371 45 473 307 01731 1
tbk 32 16 48 48 48 3 1
tma 20 15 35 20 4 1 0
trainl1 11 5 85 17 15 0 0
viterbi 68 5 329 57 3 6 0

Table 4.1;: The MCNC benchmark and others.

4.7.2 FSM'’s from Asynchronous Synthesis

Table 4.2 reports the results of a benchmark of FSM’s generated as intermediate steps
of an asynchronous synthesis procedure [46]. STAMINA ran out of memory on the examples
vmebus.master.m, isend, pe-rcv-ifc fc, pe-send-ifc fc, while 1SM was able to complete them. These
examples (with the exception of vbe4a) have a number of primes below a thousand. To explain
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this data reported in Table 4.2, we notice that in order to compute the prime compatibles, every
compatible has to be generated by STAMINA too. The compatibles of the FSM’s of this benchmark
are usually of large cardinality and therefore their enumeration causes a combinatorial explosion.
So the huge size of the set of compatibles accounts for the large running times and/or out-of-memory
failures. About the behavior of 1sM, we underline that the running times track well with the size
of the set of compatibles and when both programs complete, they are usually well below those of
STAMINA (pe-rev-ifc fc.m, pe-send-ifc fc.m, vbe4a). For asynchronous synthesis, a more appropriate
formulation of exact state minimization requires the computation of all compatibles or at least of
prime mmpaﬁbles and a different set-up of the covering problem [46).

# max # prime CPU time (sec)

machine # states | compat. | # compat. | compat. | #A/EPC | ISM | STAMINA
alex1 42 787 55928 787 787 | 24 16
future 36 49 [ 7.929¢8 49 49 3 0
future.m 28 16 | 2.621e7 16 16 2 0
intel_edge.dummy 28 120 9432 396 396 | 37 3
isend 40 128 22207 480 480 | 13 | spaceout
isend.m 20 15 22207 19 19 1 0
mp-forward-pkt 20 1| 1.048e6 1 0 0 0
nak-pa 56 8 | 4.741el5 8 8 9 0
nak-pa.m 18 8 44799 8 8 1 0
pe-rev-ifc.fc 46 28 | 1.528ell 148 148 | 18 | spaceout
pe-rcv-ifc.fc.m 27 18 | 1.793¢6 38 38 3 147
pe-send-ifc.fc 70 39 | 5.071el7 506 506 | 571 | spaceout
pe-send-ifc.fc.m 26 6| 8978e6 23 22 3 312
ram-read-sbuf 36 2 | 3.006e10 2 0 2 0
sbuf-ram-write 58 24 | 1.433e6 24 24| 14 0
sbuf-ram-write.m 24 12| 1.433¢6 12 12 2 0
sbuf-send-ctl 20 10 81407 10 10 0 0
sbuf-send-pkt2 21 2 622591 2 0 0 0
vbeda 58 2072 | 1.756e12 2072 2072 | 109 167
vbeda.m 22 13 73471 13 13 2 0
vbe6a.m 16 8 527 8 4 1 0
vmebus.master.m 32 10} 5.049¢7 28 28 | 16 | spaceout

Table 4.2: Asynchronous FSM benchmark.
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4.7.3 FSM'’s from Learning I/O Sequences

Table 4.3 and Figure 4.4 show the results of running a parametrized set of FSM’s con-
structed to be compatible with a given collection of examples of input/output traces [23]. These
machines exhibit very large number of compatibles.

Here ISM shows all its power compared to STAMINA, both in terms of number of computed
prime compatibles and running time. STAMINA runs out of memory on the examples from threer.35

and fourr.30 onwards and, when it completes, it takes close to two order of magnitude more time
than ISM.

# # | #prime | CPU time (sec)
machine | state | compat. | compat. ISM | STAMINA
threer.10 | 11 671 112 0 0
threer.20 | 21 16829 3936 1 159

threer30 | 31 97849 33064 21 1344
threerd40 | 41 | 1.456e6 | 529420 75 | spaceout
threer55 | 55| 3.622e7 | 1.555e7 1273 | spaceout
fourr.10 11 2047 1 0 0
fourr.20 21 42193 12762 2 217
fourr.30 31| 1.346e6 | 542608 20 | spaceout
fourr40 41 | 5.266e9 | 2.388¢9 105 | spaceout
fourr.50 S1| 3.643e7 | 1.696e7 198 | spaceout
fourr.60 61 | 1.052e10 | 5.021e9 | *18181 | spaceout
fourr.70 71 | 9.621e10 | 4.524e10 | *22940 | spaceout

Table 4.3: FSM’s from leaming I/O sequences.

4.74 FSM’s from Synthesis of Interacting FSM’s

It has been reported by Rho and Somenzi in [65] that the exact state minimization of the
driven machine of a pair of cascaded FSM'’s is equivalent to the state minimization of an ISFSM
that requires the computation of prime compatibles. .

The examples ifsm0, ifsml, ifsm2 come from a set of FSM’s produced by FSM optimiza-
tion, using the input don’t care sequences induced by a surrounding network of FSM’s [82]. They
exhibit often large number of compatibles and prime compatibles, as shown in Table 4.4. For such
cases, the run times of the implicit algorithm ISM are shorter than those by STAMINA.
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CPU Time Vs, # Prime Compatibles
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Figure 4.4: Comparison between ISM and STAMINA on learning I/O sequences benchmark.

# # | #prime | CPU time (sec)

machine | state | compat. | compat. | ISM | STAMINA
ifsm0 38 | 1064973 | 18686 | 43 4253
ifsm1 74 | 43006 8925 | 25 466
ifsm2 | 150 | 497399 774 | 267 356

Table 4.4: Examples from synthesis of interacting FSM’s.
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4.7.5 FSM’s with Exponentially Many Prime Compatibles

In the previous examples, the number of prime compatibles is not large compared to the
number of states. A natural question to ask is whether there are FSM's that generate a large number
of prime compatibles with respect to the number of states. We were able to construct a suite of
FSM’s where the number of prime compatibles is exponential in the number of states.

Rubin gave in [66] a sharp upper bound for the number of maximal compatibles of an
ISFSM. He showed that M (n), the maximum number of maximal compatibles over all ISFSM'’s
withn > 1 states, is givenby M (n) = i.3™,if n = 3.m <+ 1. The proof of this counting statement is
based on the construction of a family of incompatibility graphs I(n) parametrized in the number of
states 4. Each I(n) is composed canonically of a number of connected components. Each maximal
compatible contains exactly one state from each connected component of the graph. The number
of such choices is shown to be M (n).

The proof of the theorem does not exhibit an FSM that has a canonical incompatibility
graph. Based on the construction of the incompatibility graphs given in the paper, we have built a
family F(n) of ISFSM’s * (parametrized in the number of states n) that have a number of maximal
compatibles in the order of 3(*/3) and a number of prime compatibles in the order of 22"/3), F()
has 1 input and n/3 outputs. Each machine F is derived from a non-connected state transition graph
whose component subgraphs F; are defined on the same input and outputs. Each subgraph F; has
3 states {s;o, 81, si2} and 3 specified transitions {eio = (si0, si1), €1 = (i1, 52), €2 = (si2, si0) }-
Each transition under the input set to 1 asserts all outputs to —, with the exception that e;o and e;;
assert the i-th output to 0 and e;; asserts the i-th output to 1. Under the input set to 0, the transitions
are left unspecified.

Table 4.5 and Figure 4.5 show the results of running increasingly larger FSM’s of the
family. While IsM is able to generate sets of prime compatibles of cardinality up to 2% with
reasonable running times, STAMINA, based on an explicit enumeration runs out of memory soon
(and where it completes, it takes much longer).

4.7.6 FSM’s with Many Maximal Compatibles

Table 4.6 shows the results of running some examples from a set of FSM’s constructed to
have a large number of maximal compatibles. The examples jac4, jc43, jc44, jc45, jc46, jc47 are

“The incompatibility graph of an ISFSM F'is a graph whose nodes are the states of F, with an undirected arc between
two nedes s and ¢ iff s and ¢ are incompatible.
5Called rubin followed by n in the table of results.
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# max # prime CPU time (sec)
machine | # states | compat. | # compat. | compat. | #NEPC ISM | STAMINA
Tubini2 12 3 281 | 281 | 261 0 4
rubin18 18 36 221 | 221 | 212 1 751
rubin24 24 38 2161 (2167 | 216 1 | spaceout
rubin300 | 300 3100 | 2200 _ 3 | 2200 _q [ 2200 _ 256 | spaceout
rubin600 | 600 3200 | 2900 _q | 2400 _q [ 2400 _1 1995 | spaceout
rubin900 | 900 3300 | 600y | 2600_ 1 2600_1 | 6373 | spaceout
rubin1200 | 1200 | 3%00 | 2800_ g [ 2800 _ 4 | 2800 _ 1 | 17711 | spaceout
rubin1500 | 1500 | 3500 | 21000 _q | 51000 _q | 21000 _ 3 | 42674 | spaceout
rubin1800 | 1800 | 3%00 | 21200y | 51200 _ g | 21200 _ 1 | 78553 | spaceout
rubin2250 | 2250 | 3750 [ 21500 | 21500 _ g | 21500 _ 1 [ 271134 | spaceout

Table 4.5: Constructed FSM’s.
CPU Time Vs. # Prime Compatibles
CPU sec
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Figure 4.5: Comparison between ISM and STAMINA on constructed FSM'’s.
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due to R. Jacoby and have been kindly provided by J.-K. Rho of University of Colorado, Boulder.
The example lavagno is from asynchronous synthesis as those reported in Section 4.7.2. For these
examples the program STAMINA was run with the option -M to compute all maximal compatibles.
While 1sM could complete on them in reasonable running times, STAMINA could not complete on
Jac4 and completed the other ones with running times exceeding those of ISM by one or two order
of magnitudes. Notice that ISM could also compute the set of all compatibles even though the
computation of prime compatibles cannot be carried to the end while STAMINA failed on both. The
prime compatibles for these examples could not be computed by either program.

# max # prime | CPU time (sec )

machine | # states | compat. | # compat. | compat. | ISM | STAMINA
jaca 65 3.859¢6 | 4.159¢7 ? 34 | spaceout
jca3 45 82431 | 1.556e6 ? 13 7739
joAd 55 4785 7.584¢9 ? 20 662
jcAs 40 17323 | 480028 ? 10 1211
jc46 42 26086 | 1.153e6 ? 11 2076
jcA7 S1 397514 | 1.120e7 ? 19 41297
lavagno 65 47971 | 9.163e¢6 ? 163 40472

Table 4.6: FSM'’s with many maximals.

4.7.7 Randomly Generated FSM’s

We investigated also whether randomly generated FSM’s have a large number of prime
compatibles. A program was written to generate random FSM's 5. A small percentage of the
randomly generated FSM’s were found to exhibit this behavior. Table 4 shows the results of running
ISM and STAMINA on some interesting examples with a large number of primes. Again only ISM
could complete the examples exhibiting a large number of primes.

4.7.8 Experiments Comparing BDD and ZBDD Sizes

As mentioned before, the objects we manipulate in our implicit algorithms are sets and
relations of positional-sets. A characteristic of our representations is that the positional-sets (e.g.,
compatibles) are usually sparse sets. Minato in [57] showed that Zero-suppressed BDD is a good

SParameters: number of states, number of inputs, number of outputs, don’t care output percentage, don't care target
state percentage.
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# max # prime CPU time (sec)

machine | # states | compat. | # compat. | compat. | #AVEPC | 1sM | sTAMINA
fsm15.232 14 4 7679 360 360 2 23
fsm15.304 14 2 12287 954 954 1 85
fsm15.468 13 2 4607 772 772 1 16
fsm15.897 15 2 20479 617 616 0 50
ex2.271 19 2 393215 | 96383 96382 | 21 | spaceout
ex2.285 19 2 393215 | 121501 | 121500 | 13 | spaceout
ex2.304 19 2 393215 | 264079 | 264079 | 93 | spaceout
ex2.423 19 4 204799 | 160494 | 160494 | 102 | spaceout
€x2.680 19 2 327679 | 192803 | 192803 | 151 | spaceout

Table 4.7: Random FSM’s.

representation of sets of sparse sets. As a preliminary investigation of the effectiveness of a ZBDD-
based algorithm for exact state minimization, we convert some key BDD objects into ZBDD’s and
observe the change in the number of nodes used.

Experiments are performed on machines which require non-trivial covering steps for state
minimization. During state minimization of each machine, ZBDD's are generated from BDD’s
representing the set of compatibles C, the set of prime compatibles PC (which is usually also the
set of column labels), and the set of row labels R. From the rightmost two columns of the above
table, the conversion routines between ZBDD and BDD seem to execute fast enough to allow for
algorithms that switches between BDD and ZBDD representations and manipulations.

Out of the 18 examples, 9 of them have smaller ZBDD's than BDD’s for representing
C, 13 of them have smaller ZBDD's than BDD’s for representing PC (the remaining 5 examples
are all randomly generated machines), and 18 of them have smaller ZBDD representations of R.
Disregarding the second set of examples, ex2. * , which are randomly generated machines, the
comparison shows that ZBDD’s are usually smaller than BDD’s and are always comparably close
for the exceptional cases.

When converting BDD’s to ZBDD's, the most reduction in sizes occurs for the represen-
tation of R, and less for PC, and the least for C. A possible explanation is that PC is more sparse a
set than C because all state sets that are in PC are in C but not vice versa. A similar explanation also
applies between R and PC. Each row label in R consist of two parts: a positional-set representing
a prime compatible, and another positional-set representing its class set. As we don’t expect much
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Compatibles | Prime Compat. table—R

# nodes in # nodes in #nodes in CPU Time (sec)
machine | BDD | ZBDD | BDD | ZBDD | BDD | ZBDD | bdd2zbdd | zbdd2bdd
alex1 2562 | 1203 | 1243 415 167 43 0.00 0.00
ex2.271 21 51| 236 286 | 5646 | 4307 044 0.27
€x2.285 22 38 | 461 471 39 2 0.00 0.00
ex2.304 22 38| 787 826 | 56928 | 34263 5.66 3.19
ex2.423 29 66 | 675 782 | 40857 | 27060 4.66 3.32
€x2.680 23 41 | 1819 | 1953 | 57446 | 40277 8.06 425
ex2 161 108 | 222 148 | 4421 | 1521 0.18 0.16
ex3 28 33 45 41 584 290 0.02 0.01
ex5 34 31 33 26| 269 111 0.01 0.00
ex7 26 30 41 39 322 159 0.01 0.01
green 197 78 | 194 62| 211 54 0.01 0.01
keybex2 | 581 173 | 1260 324 | 14539 | 2053 0.77 0.58
s386.keyb | 320 188 | 404 175 | 6386 | 1270 0.25 022
room4.16 75 791 201 159 | 1213 501 0.05 0.04
room4.20 | 122 134 | 458 407 | 2863 | 1431 0.16 0.11
room3.20 | 113 110 | 265 228 | 1717 790 0.07 0.05
room3.25 | 220 185 | 544 402 | 3922 | 1567 0.18 0.12
room3.30 | 637 473 | 1205 785 | 9391 | 3389 0.59 0.38

Table 4.8: Comparison between BDD and ZBDD sizes.
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sharing between different class sets, the set of row labels (whose variable support is twice of PC
and C) should be the most sparse set.
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Chapter 5

Binate Covering

5.1 Imntroduction

At the core of the exact solution of various logic synthesis problems lies often a so-called
covering step that requires the choice of a set of elements of minimum cost that cover a set of
ground items, under certain conditions. Prominent among these problems are the covering steps in
the Quine-McCluskey procedure for minimizing logic functions, selection of a set of encodeable
generalized prime implicants, state minimization of finite state machines, technology mapping and
Boolean relations. Let us review first how covering problems are defined formally.

Suppose that aset S = {s1,..., s, } is given. The cost of selecting s; is c; where c; > 0.
By associating a binary variable z; to s;, which is 1 if s; is selected and 0 otherwise, the binate
covering problem (BCP) can be defined as finding S’ C S that minimizes

n
> i,

i=1

subject to the constraint

A(z1,22,...,2q) = 1,

where A is a Boolean function, sometimes called the constraint function. The constraint function
specifies a set of subsets of S that can be a solution. No structural hypothesis is made on A. Binate
refers to the fact that A is in general a binate function (a function is binate if it has at least a binate
variable). BCP is the problem of finding an onset minterm of A that minimizes the cost function
(i.e., a solution of minimum cost of the Boolean equation A(z1,z3,...,2,) = 1).

If A is given in product-of-sums form, finding a satisfying assignment is exactly the
problem SAT, the prototypical N P-complete problem [26). In this case it also possible to write A
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as an array of cubes (that form a matrix with coefficients from the set {0, 1,2}). Each variable of A
is a column and each sum (or clause) is a row and the problem can be interpreted as one of finding
a subset C of columns of minimum cost, such that for every row r;, either

1. Hjsuchthata.-,- =1 andc,- e€eC,or
2. Jjsuchthate;; =0and c; ¢ C.

In other words, each clause must be satisfied by setting to 1 a variable appearing in it in the positive
phase or by setting to 0 a variable appearing in it in the negative phase. In a unate covering problem,
the coefficients of A are restricted to the values 1 and 2 and only the first condition must hold. In this
chapter, we shall consider the minimum binate covering problem where A is given in product-of-
sums form. In this case, the term covering is fully justified because one can say that the assignment
of a variable to O or 1 covers some rows that are satisfied by that choice. The product-of-sums A is
.called covering matrix or covering table.

As an example of binate covering formulation of a well-known logic synthesis problem,
consider the problem of finding the minimum number of prime compatibles that are a minimum
closed cover of a given FSM. A binate covering problem can be set up as described in Section 5.7,
where each column of the table is a prime compatible and each row is one of the covering or closure
clauses of the problem [28]. There are as many covering clauses as states of the original machine
and each of them requires that a state is covered by selecting any of the prime compatibles in which
itis contained. There are as many closure clauses as prime compatibles and each of them states that
if a given prime compatible is selected, then for each implied class in its corresponding class set,
one of the prime compatibles containing it must be chosen too.

In the matrix representation, table entry (i, 7) is 1 or 0 according to the phase of the literal
corresponding to prime compatible j in clause ; if such a literal is absent, the entry is 2.

Various techniques have been proposed to solve binate covering problems. A class of
them [10, 42] are branch-and-bound techniques that build explicitly the table of the constraints
expressed as product-of-sum expressions and explore in the worst-case all possible solutions, but
avoid the generation of some of the suboptimal solutions by a clever use of reduction steps and
bounding of search space for solutions. We will refer to these methods as explicit.

A second approach [50] formulates the problem with Binary Decision Diagrams (BDD's)
and reduces finding a minimum cost assignment to-a shortest path computation. In that case the
number of variables of the BDD is the number of columns of the binate table.
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Recently, a mixed technique has been proposed in [35]. It is a branch-and-bound algo-
rithm, where the clauses are represented as a conjunction of BDD’s. The usage of BDD’s leads to
an effective method to compute a lower bound on the cost of the solution.

Notice that unate covering is a special case of binate covering. Therefore techniques for
the latter solve also the former. In the other direction, exact state minimization, a problem naturally
formulated as a binate covering problem, can be reduced to a unate covering problem, after the
generation of irredundant prime closed sets [72]. But there is a catch here: the cost function is not
any more additive, so that the reduction techniques so convenient to solve covering problems, are
not any more applicable as they are.

In this chapter, we are interested in exact solutions of binate covering. Existing explicit
methods do quite well on small and medium-sized examples, but fail to complete on larger ones.
The reason is that either they cannot build the binate table because the number of rows and columns
is too large, or that the branch-and-bound procedure would take too long to complete. For the
approach of building a BDD of the constraint function and computing the shortest path fails, it fails
when the number of variables (i.¢., columns) is too large because it is likely that a BDD with many
thousands of variables will blow up.

The crux of the matter, when explicit techniques fail, is that we are representing and
manipulating sets that are too large to be exhaustively listed and operated upon, Fortunately we
know of an alternative way to represent and manipulate sets: it is by defining the set over an
appropriate Boolean space (i.e.; encoding the elements of the set), associating to it a Boolean
characteristic function and then representing this function by a binary decision diagram (BDD).
Since now on, by BDD of a set we will denote the BDD of the characteristic function of the set
over an appropriate Boolean space. As defined in Section 3.3, a BDD [11, 6] is a canonical directed
acyclic graph data structure that represents logic functions. The items that a BDD can represent are
determined by the number of paths of the BDD, while the size of the BDD is determined by the
number of nodes of the DAG. There is no monotonic relation between the size of a BDD and the
number of elements that it represents. It is an experimental fact that often very large sets, that cannot
be represented explicitly, have a compact BDD representation. Set operations are easily tumed into
Boolean operations on the corresponding BDD's. So we can manipulate sets by a series of BDD
operations (Boolean connectives and quantifications) with a complexity depending on the sizes of
the manipulated BDD’s and not on the cardinality of the sets that are represented. The hope here is
that complex set manipulations have as counterparts Boolean propositions that can be represented
with compact BDD’s. Of course, this is not always the case and it may happen that an intermediate
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BDD computation, in a sequence of operations leading to a set, blows up. The name of the game is
a careful analysis of how propositional sentences can be transformed into logically equivalent ones,
that can be computed more easily with BDD manipulations. Special care must be exercised with
quantifications, that bring more danger of BDD blowups. All of this goes often under the name of
implicit representations and computations.

The previous insight has already been tested in a series of applications. Research at
Bull [16] and U.C. Berkeley [80] produced powerful techniques for implicit enumeration of subsets
of states of a Finite State Machine (FSM). Later work at Bull [19, 48] has shown how implicants,
primes and essential primes of a two-valued ormulti-valued function can also be computed implicitly.
Reported experiments show a suite of examples where all primes could be computed, whereas
explicit techniques implemented in ESPRESSO [7] failed to do so. Finally, the fixed-point dominance
computation in the covering step of the Quine-McCluskey procedure has been made implicit in
current work [18, 79]. The experiments reported show that the cyclic core of all logic functions
of the ESPRESSO benchmark can be successfully computed. For some of them ESPRESSO failed the
task.

Last but not the least, we have shown in Chapter 4 how all prime compatibles of an
FSM can be computed implicitly. In some cases, their number is exponential in the number of
states (the largest recorded number is 215%9), Once we have them, we must solve a binate covering
problem to choose a minimum closed cover. Of course, we cannot build explicitly a table of such
dimensions and solve it (this would defeat the purpose of computing implicitly prime compatibles in
the first place). So it is necessary to extend implicit techniques to the solution of the binate covering
problem. An implicit binate table solver would also be required to solve implicitly other problems
in sequential synthesis that we care about. One is the selection of a set of encodeable generalized
prime implicants (GPI's), as defined in [22, 50]. It is not feasible to generate GPI’s and to set up
a related binate covering table by explicit techniques on non-trivial examples. Using techniques
as in [48], GPI's can be generated implicitly. An implicit binate table solver is therefore needed
there too. Notice that potential applications include unate covering problems, such as selecting the
minimum number of encoding-dichotomies that satisfy a set of encoding constraints [71]. )

This chapter describes an implicit formulation of the binate covering problem and presents
an implementation. The implicit binate solver has been tested in the case of state minimization of
ISFSM’s (Chapter 4) and pseudo NDFSM s (Chapters 6 and 7), and also for optimum selection of an
encodable set of generalized prime implicants for state assignment [81]. The reported experiments
show that implicit techniques have pushed the frontier of instances where binate covering problems



5.2. RELATION TO 0-1 INTEGER LINEAR PROGRAMMING 105

can be solved exactly, resulting in better optimizations possible in key steps of sequential logic
synthesis.

In the following sections, we will review the known algorithms to solve covering problems
and then we will describe a new branch-and-bound algorithm based on implicit computations. The
remainder of the chapter is organized as follows. We have defined the minimum cost binate
covering problem in this section. In Section 5.2, we will compare this problem with 0-1 integer
linear programming. The branch-and-bound scheme will be introduced in Section 5.3 which has be
used in explicit binate covering algorithms summarized in Section 5.4. In Section 5.5, we survey
the classical reduction rules used in explicit algorithms. Our implicit binate covering algorithm is
then introduced in Section 5.6 and its program input, an implicit table representation, is described
in Section 5.7. Section 5.8 illustrates how reduction techniques can be implicitized. Other kinds
of implicit table manipulations are introduced in Section 5.9. Finally, we shall give experimental
results in Section 5.10, for solving of the state minimization problem of ISFSM’s.

5.2 Relation to 0-1 Integer Linear Programming

There is an intimate relation between 0-1 integer linear programming (ILP) and binate
covering problem (BCP). For every instance of ILP, there is an instance of BCP with the same
feasible set (i.e., satisfying solutions) and therefore with the same optimum solutions and vice
versa. As an example, the integer inequality constraint

3z) — 223 + 423 2 2,
with 0 < 7, z2, 23 < 1 corresponds to the Boolean equality constraint
T +a3=1,
that can be written in product-of-sums form as:
(z1+ 23) (T2 + 23) = 1.

Given a problem instance, it is not clear a-priori which formulation is better. It is an interesting
question to characterize the class of problems that can be better formulated and solved with one
technique or the other.

As an example of reduction from ILP to BCP, a procedure (taken from [35]) that derives
the Boolean expression corresponding to }~7_; w;.z; > T is shown in Figure 5.1.
The idea of the recursion relies on the observation that:
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LIto.BDD(I) {
letIbe 35y wj-z; 2T
if (maz(I) < T) return 0
if (min(I) > T) retum 1
1 = ChooseSplittingVar(I)
= (Cjpiwj-2 2 T — w;)
P =(Tipwi-z;27T)
Ni= LI_to_BDD(Il)
fo=LI_to_.BDD(I%

rewm f=z;- fi+%;- fo

Figure 5.1: Transformation from linear inequality to Boolean expression.

1. f=0ifand only if maz(I) =3, sowi < T}
2. f=1ifandonlyif min(l) =T, o wi 2 T;

When neither case occurs, the two subproblems I! and I9, obtained by setting the splitting variable
z; 10 1 and O respectively, are solved recursively.

5.3 Branch-and-Bound as a General Technique

Branch-and-bound constructs a solution of a combinatorial optimization problem by
successive partitioning of the solution space. The branch refers to this partitioning process; the
bound refers to lower bounds that are used to construct a proof of optimality without exhaustive
search. A set of solutions can be represented by a node in a search tree of solutions, and it is
partitioned in mutually exclusive sets. Each subset in the partition is represented by a child of the
original node. In this way, a computation tree is built. An algorithm that computes a lower bound
on the cost of any solution in a given subset allows to stop further searches from a given node, if
the best cost found so far is smaller than the cost of the best solution that can be obtained from the
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node (lower bound computed at the node). In this case the node is killed and therefore none of its
children needs to be searched; otherwise it is alive.

If we can show at any point that the best descendant of a node y is at least as good as the
best descendant of node z, then we say that y dominates z, and y can kill z.

Figure 5.2 shows the classical algorithm [59]. An activeset holds the live nodes at any
point. A variable U is an upper bound on the optimal cost (cost of the best complete solution
obtained at any given time). The branching process needs not produce only two children of a given
node, but any finite number.

We will see in the next section that BCP can be solved by the following recursive equation

BCP(Mj) = BestSolution(BCP(Mjy, ) U {z;}, BCP(M =)

where My is the binate table that corresponds to a function in product-of-sum form f, and
BCP(Mjy,,) (respectively, BCP(M fz7)) is the subproblem expressed by the function f, (re-
spectively, fz7). BCP(M;) returns an onset minterm of f that minimizes the cost function.

The previous equation can potentially generate an exponential number of subproblems,
but powerful dominance and bounding techniques as well as good branching heuristics help in
keeping the combinatorial explosion under control.

5.4 A Branch-and-Bound Algorithm for Minimum Binate Covering

We will survey in this section a branch-and-bound solution of minimum cost binate
covering. This technique has been described in [29, 28, 9, 10], and implemented in successful
computer programs [67, 64, 76]. The branch-and-bound solution of minimum binate covering is
based on a recursive procedure. A run of the algorithm can be described by its computation tree.
The root of the computation tree is the input of the problem, an edge represents a call to sm_mincov,
an internal node is a reduced input. A leaf is reached when a complete solution is found or the
search is bounded away. From the root to any internal node there is a unique path, that is the current
path for that node. In the sequel, we will describe in detail the binary recursion procedilre. The
presentation will refer to the pseudo-code sm_mincov, shown at the end of this subsection.

S5.4.1 The Binary Recursion Procedure

The inputs to the algorithm are:
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branch_and_bound() {
activeset = original problem
U=o00
currentbest = anything
while (activeset is not empty) {
choose a branching node & € activeset
remove node k from activeset
generate the children of node k: childi =1,...,n;
and the corresponding lower bounds z2;
fori=1ton; {
if (z; > U)kill child ¢
else if (child ¢ is a complete solution) {
U=z
currentbest = child ¢
else add child i to activeset

Figure 5.2: Structure of branch-and-bound.
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e acovering matrix M;
e a current-path partial solution select (initially empty);

¢ a row of non-negative integers weight, whose ¢-th element is the cost or weight of the i-th
column of M,

o alower bound /bound (initially set to 0), which is a monotonic increasing quantity along each
path of the computation tree equal to the cost of the partial solution on the current path;

e an upper bound ubound (initially set to the sum of weights of all columns in M), which
is the cost of the best overall complete solution previously obtained (a globally monotonic
decreasing quantity);

The output is the best column cover for input M extended from the partial solution select
along the current path, called best current solution, if this solution costs less than ubound. An empty
solution is returned if a solution cannot be found which beats ubound or an infeasibility is detected.
By infeasibility, it is meant the case when no satisfying assignment of the product of clauses exists.
Even though the initial problem in a typical logic synthesis application has usually at least a solution,
some subproblems in the branch and bound tree may be infeasible. When sm_mincov is called with
an empty partial solution select and initial /bound and ubound, it returns a best global solution.

The algorithm calls first a procedure sm_reduce that applies to M essential column
detection and dominance reductions. The type of domination operations and the way in which they
are applied are the subject of Section 5.5. Another more complex reduction criterion (Gimpel’s
rule) can also be applied (see Subsection 5.5.12). These reduction operations delete from M some
rows, columns and entries. What is left after reduction is called a cyclic core. The final goal is to
get an empty cyclic core. The value of the lower bound is updated using a maximal independent
set computation (see Subsection 5.4.3). If no bounding is possible and the reductions do not suffice
to solve completely the problem, a partition of the reduced problem into disjoint subproblems is
attempted (see Subsection 5.4.2) and each of them is solved recursively. When everything fails,
binary recursion is performed by choosing a branch column (see Subsection 5.4.4). Solutions to
the subproblems obtained by including the chosen column in the covering set or by excluding it
from the covering set are computed recursively and the best solution is kept (the second recursion
is skipped if the solution to the first one matches the updated lower bound).

The procedure sm_mincov returns when:
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sm_mincov(M, select, weight, lbound, ubound) {

/* Apply row dominance, column dominance, and select essentials */ (1)

if (1sm_reduce(M, select, weight, ubound)) return empty._solution

/* See if Gimpel’s reduction technique applies */ )

if (gimpel_reduce(M, select, weight, lbound, ubound, &best)) return best

/* Find lower bound from here to final solution by independent set */ A3)

indep = sm_mazimal_independent_set(M, weight)

/* Make sure the lower bound is monotonically increasing */ C)]

Ibound_new = maz(cost(select) + cost(indep), lbound)

/* Bounding based on no better solution possible */ ®)

if (lbound_new > ubound) best = empty_solution

else if (M is empty) { /* New best solution at current level */ ©)
best = solution_dup(select)

} else if (sm_block_partition(M, & My , & My) gives non-trivial bi-partitions) { Q)
bestl = sm_mincov(M,, select, weight,0, ubound — cost(select)) 8)
/* Add best solution to the selected set */ ©)
if (bestl = empty_solution) best = empty_solution

else { (10)
select = select U bestl ’
best = sm_mincov(Ma, select, weight, lbound_new, ubound)

}

} else { /* Branch on cyclic core and recur */ an
branch = select_column(M, weight, indep)

selectl = solution_dup(select) U branch

let Myranch be the reduced table assuming branch column is not in solution (12)
bestl = sm_mincov(Mpranch, select, weight, lbound_new, ubound)

/* Update the upper bound if we found a better solution */ (13)
if (best1 # empty.solution) and (ubound > cost(best1)) ubound = cost(best1)

/* Do not branch if lower bound matched */ 14
if (best1 # empty_solution) and (cost(bestl) = lbound_new) return best1

let My be the reduced table assuming branch column not in solution (15)

best2 = sm_mincov(My—;, select, weight, lbound_new, ubound)
best = best_solution(bestl, best2)

}

return best

“Figure 5.3: Detailed branch-and-bound algorithm.
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o The cost of a partial solution, found by adding essential columns to select, is more than
ubound or infeasibility is detected when applying the domination rules (line 1). An empty
solution is retumed.

o The best current solution is found by applying Gimpel’s reduction technique (line 2). Since
gimpel_reduce calls recursively sm_mincov, an empty solution could be returned too.

o The updated lower bound, determined by adding to lbound the cost of the essential primes
and of the maximal independent set, is not less than ubound (line 5). An empty solution is
retumned.

o There is no cyclic core and we are not in the previous case. The best current solution is found
by updating select with the new essential and unacceptable columns (line 6).

o The best current solution is found by partitioning the problem (line 7). The procedure
sm_mincov is called recursively on two smaller covering matrices determined by
sm_block partition (line 8 and 10). An empty solution can be returned by either recur-
sive call. If the first call to smmincov retuns an empty solution, the second one is not

invoked (line 9). If neither call returns empty, each contributes its returned value to the
current solution.

e A branching column is chosen and sm_mincov is called recursively with the branch column
in the covering set (line 12). If the recursive call of sm_mincov returns a non-empty solution
that matches the current lower Bound (lbound_new), that solution is returned as the current
solution (line 14). If the cost of the current solution is less than ubound, ubound is updated,
i.e., the current solution is also the best global solution (line 13).

e As in the previous case, but sm_mincov is called recursively with the branch column not in
the covering set (line 15). The best among the solution found in the previous case and the
one computed here is the current solution.

Notice the following facts about the procedure sm_mincov:

o The parameter lbound is updated once (line 4). The reason is that afier the computation of the
essential columns (line 1) and of the independent set (line 3), the cost of the previous partial
solution summed to the cost of the essential columns and of the independent set is potentially
a sharper lower bound on any complete solution obtained from this node of the recursion
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tree. The updated value lbound_new is used in the rest of the routine. The lower bound is a
monotonically increasing quantity along each path of the computation tree.

o The parameter ubound is updated once (line 13). At that point a new complete solution has
just been retumed by the recursive call to sm_mincov (line 12) and an updated value of ubound
must be recomputed for the following recursive call of sm_mincov (line 15). The reason is
that when a new complete solution is obtained, the current ubound is not any more valid and
therefore it must be updated before it is used again. To be updated, ubound is compared
against the cost of the newly found solution, and the minimum of the two is the new ubound.
The upper bound is a monotonically decreasing quantity throughout the entire computation.

The previous analysis proves that the algorithm finds a minimum cost satisfying assign-
ment to the problem.

54.2 N-way Partitioning

If the covering matrix M can be partitioned into two disjoint blocks M) and M, the
covering problem can be reduced to two independent covering subproblems, and the minimum
covering for M is the union of the minimum coverings for M; and M,. Such bi-partition can be
found by putting in M; a row and all columns that have an element in common with the row (i.e., the
columns intersecting the row) and recursively all rows and columns intersecting any row or column
in M;. The remaining rows and columns (i.e., not intersecting any row or column in M) are put in
M. This algorithm can be generalized to find partitions made by N blocks, as shown in Figure 5.4.

Theorem 5.1 If a covering matrix M can be partitioned into n disjoint blocks My, My, ..., My,

the union of the minimum covers of My, Ma, ..., M,, is the minimum cover of M.

Bi-partitioning is implemented in [64, 76] as follows. When checking for a partition of
the problem (line 7), the routine sm_mincov is called recursively on two independents subproblems
(lines 8 and 10), if they exist. When solving the smaller of the two subproblems (line 8), the initial
solution is empty, the initial lower bound is set to 0, the initial upper bound is set to the difference
between the current ubound and the cost of the current partial solution. When solving the larger
of the two subproblems (line 10), the initial solution is the current solution (to which the solution
of the smaller subproblem is added, if it is not empty), the initial lower bound is set to the current
lower bound lbound_new, the initial upper bound is set to the current ubound.
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n_way_partition(M) {
while (there is a row r; not in any partition) {
put r; in a new partition M;
while (there is a row r; connected to any row in partition M ) {
put row r; in partition M

Figure 5.4: N-way partitioning.

Theorem 5.2 The upper bound set in the smaller subproblem is correct.

Proof: Let select be the partial solution along the current path. It holds that (cost of the final
solution along the current path) > (cost of solving M; + cost(select) + 1). If (cost of solving M)
> (ubound — cost(select)), then (cost of the final solution along the current path) > (ubound+1),
i.e., (cost of the final solution along the current path) > ubound. This is ruled out by setting the
upper bound when solving M; to (ubound — cost(select)), since sm_mincov returns a non-empty
solution only if it can beat the given upper bound. u

5.4.3 Maximal Independent Set

The cardinality of a maximum set of pairwise disjoint rows of M (i.e., no 1’s in the same
column) is a lower bound on the cardinality of the solution to the covering problem, because a
different element must be selected for each of the independent rows in order to cover them. If the
size of current solution plus the size of the independent set is greater or equal to the best solution
seen so far, the search along this branch can be terminated because no solution better than the current
one can possibly be found. It is also true that the size of the independent set at the first level of the
recursion is a lower bound for the final minimum cover, so that the search can be terminated if a
solution is found of size equal to this lower bound. Since finding a maximum independent set is an
NP-complete problem, in practice an heuristic is used that provides a weaker lower bound. Notice
that even the lower bound provided by solving exactly maximum independent set is not sharp.
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In [67, 64, 76), the adjacency matrix B of a graph whose nodes correspond to rows in the
cover matrix M is created. In the binate case, only rows are taken into consideration which do not
contain any 0 element. An edge is placed between two nodes if the two rows have an element in
common. While B is non-empty, a row R; of B is found that is disjoint from a maximum number
of rows (i.e., the row of minimum length in B). The column of minimum weight intersecting R;
is also found. The weight is cumulated in the independent set cost. All rows having elements in
common with R; are then deleted from B. Atthe end of the while-iteration a set of pairwise disjoint
rows (independent set) and their minimum covering cost is found. Notice that one could think to
the problem in a dual way as finding a maximal clique in a graph with the same rows as before, and
edges between two nodes representing two disjoint rows.

54.4 Selection of a Branching Column

The selection of a good branching column is essential for the efficiency of the branch and
bound algorithm. Since the time taken by the selection is a significant part of the total, a trade-off
must be made between quality and efficiency.

In[67, 64, 76), the selection of the branching variable is restricted to columns intersecting
the rows of the independent set, because a unique column must eventually be selected from each
row of the maximal independent set. Among those rows, the selection strategy favors columns with
large number of 1's and intersecting many short rows. Short rows are considered difficult rows
and choosing them first favors the creation of essential columns. More precisely, the column of
highest merit is chosen. The merit of a given column is computed as the product of the inverse of
the weight of the column multiplied by the sum of the contributions of all rows intersected in a 1 by
the column. The inverse of the contribution of a row is equal to the number of all non-2 elements
(each can contribute in covering the row) minus 1. The inverse is well-defined, because at this stage
each row has at least two-elements (it is not essential).

5.5 Reduction Techniques

Three fundamental processes constitute the essence of the reduction rules:

1. Selection of a column: a column must be selected if it is the only column that satisfies
a required constraint (Section 5.5.7). A dual statement holds for unacceptable columns
(Section 5.5.8). Also related is the case of unnecessary columns (Section 5.5.9).
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2. Elimination of a column: a column C; can be eliminated, if its elimination does not preclude
obtaining a minimal cover, i.e., if there exists in M another column C; that satisfies at least
all the constraints satisfied by C; (Section 5.5.5).

3. Elimination of a row: a row R; can be eliminated if there exists in M another row R; that
expresses the same or a stronger constraint (Section 5.5.1).

Even though more complex criteria of dominance have been investigated (for instance,
Section 5.5.12), the previous ones are basic in any table covering solver. Reduction rules have
previously been stated for the binate covering case [28, 29, 10, 9], and also for the unate covering
case [54, 68, 9]. The former set of reductions are needed for state minimization. Here we will
present the known reduction rules directly for binate covering and indicate how they simplify for
unate covering, when applicable. For each of them, we will first define the reduction rule, and then
a theorem showing how that rule is applied. Proofs for the correctness of these reduction rules have
been given in (28, 29, 10, 9], and they will not be repeated here, except for a few less common ones.
We will provide a survey comparing different related reduction rules used in the literature.

The effect of reductions depends on the order of their application. Reductions are usually
attempted in a given order, until nothing changes any more (i.e., the covering matrix has been
reduced to a cyclic core). Figure 5.5 shows how reductions are applied in [67, 64, 76])}.

5.5.1 Row Dominance

Definition 5.1 A row R; dominates another row R; if R; has all the I's and 0's of R;; i.e., for each
column Cy. of M, one of the following occurs:

o Mir=1and M) =1,
o M =0and M;; =0,
o M;r=2.

Theorem 5.3 If a row R; is dominated by another row R;, R; can be eliminated without affecting
the solutions to the covering problem.

This definition of row dominance is

YThe reductions 8-dominance and row_consensus are only in [64] and the reduction by implication is only in [76].
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sm_reduce(M, select, weight, ubound) {
do {
apply S-dominance or a-dominance
find essential columns
find unacceptable columns
if (a column is both essential and unacceptable)
return empty_solution
for each essential column {
delete each row intersecting the columnina 1
if (a row of length 1 intersects the column in a 0)
retum empty_solution
delete column
add column to select
if (cost of select > ubound)
retumn empty_solution
}
for each unacceptable column {
delete each row intersecting the columnin a 0
if (a row of length 1 intersects the column in a 1)
return empty_solution
delete column
}
apply row_consensus
apply row_dominance
} while (reductions are applicable)
return select

}

Figure 5.5: Flow of reduction rules.
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e similar to column dominance (Rule 3) in [28], except that the labels of dominator row, R;,
and dominated row, R;, are reversed (i.e., reverse definition of dominance),

e similar to column dominance (Rule 3) in [29], except that the labels of dominator row, R;,
and dominated row, R;, are reversed (i.e., reverse definition of dominance),

e equivalent to row dominance (Definition 10) in [10],

e identical to row dominance (Definition 2.11) in [9).

Row Dominance for a Unate Table

Definition 5.2 A row R; dominates another row R; if for all columns Cy, M; . =1 => M, = 1.

§.5.2 Row Consensus

Theorem 5.4 If R; dominates R;, except for a (unique) column C, where R; and R; have different
values, element M ). can be eliminated from the matrix M (i.e., the entry in position M . becomes
a 2) without affecting the solutions of the covering problem.

Proof: Suppose that entry M, is 1 and entry M; ; is 0. The argument is the same if entry M; x is O
and entry M; ;. is 1. If entry M; ;. is removed, the problem arises that we are not able to satisfy row
R; by setting z; to 1. A problem arises if a minimum-cost solution requires z, set to 1, because we
could miss the fact that setting z; to 1 satisfies also row R;. Instead we could obtain an higher-cost
solution, by selecting another column in order to satisfy row R; — M; . We now show that this
is not the case. If a minimum-cost solution requires =, set to 1, we must still satisfy row R; that
cannot be satisfied by z; set to 1. Whatever choice will be made to satisfy R;, it will satisfy also
R; — M; (since R; — M has all 1’s and 0’s of R;) and therefore no more cost will be incurred
to satisfy row R; — M; . The previous argument fails if R; — M;  is empty and there are cases in
which an higher-cost solution would be found. One could claim that if R; — M; . is empty, then
R; has only entry M; ;. and therefore z; is an essential, that is taken care by the essential column
detection. In reality it may happen that by applying row consensus many times to the same row R;
(using different rows R;) at a certain point R; is emptied. In that case the last application of row
consensus is potentially faulty and should not be done. [ |
Row consensus is applied in [64]. This criterion generalizes the one given in [33].
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5.5.3 Column a-Dominance
Definition 5.3 A column C; a-dominates another column Cy. if
® ¢; < ¢k,
e Cj; has allthe I's of C,
o Cj has allthe 0's of C;;
i.e., ¢; < ck, and for each row R; of M, none of the following can occur:
e M;;=2and M; =1,
e M;;=0and M;; =1,
o M;;=0and M;)=2.
Alternatively, c; < cx, and for each row R; of M, one of the following occurs:
o M;;=1,
o Mi;=2and M;x #1,
o M;; =0and M;; =0.
Note that these last 3 cases are exactly the complement of the cases excluded above.

Theorem 5.5 Let M be satisfiable. If a column C, is a-dominated by another column Cj. there is
at least one minimum cost solution with column C. eliminated (z; = 0), together with all the rows
in which it has 0’s.

This definition of column a-dominance is

e an extension to row a-dominance (Rule 1) in [28], because the latter doesn’t include the case
M;;=0and M;; =0,

e equivalent to first half of Rule 4 in [29]: (a) C; has all the 1's of C and (b1) C} has all the
0’s of Cj,

¢ identical to column dominance (Definition 11, Theorem 3) in [10],

e identical to column dominance (Definition 2.12, Theorem 2.4.1) in [9).



5.5. REDUCTION TECHNIQUES 119

Column Dominance for a Unate Table

Definition 5.4 A column C; dominates another columnCj;iffor allrows Ry, My ; =1 => My ; = 1.

554 Column S-Dominance

Definition 5.5 A column C; B-dominates another column C; if
® ¢ <gc
e C; hasallthe I's of C;,

e for every row R, in which C; has a 0, either C; has a 0 or there exists a row R, in which C;
has a 0 and C; does not have a 0, such that disregarding entries in columns C; and C;, R,
dominates R,.

Theorem 5.6 Let M be satisfiable. If C; -dominates C;, there is at least one minimum cost
solution with column C; eliminated (z; = 0), together with all the rows in which it has 0’s.

Proof: We must show that given a solution, one can find another solution, of cost lesser or equal,
with column C; eliminated (z; = 0). There are two cases for the original solution: either z; = 1
and z; = lorz; = 0 and z; = 1 (if z; = 0, we are done). The new solution has z; = 1 and
z; = 0 and coincides for the rest with the given solution. The case when z; = 1 and z; = 1 is easy,
because column C; has all 1’s of column C; and therefore Cj; is useless.

Consider now the case when z; = 0 and z; = 1. The clauses with a 0 in column C;
are satisfied by not choosing C; and the clauses with a 1 in column C; are satisfied by choosing
C;. Each clause with a 0 in column C; (and without a 0 in column C;) is satisfied by a proper
assignment of a column different from C; and C}, say Ci. Notice that the hypothesis that column
C; does not have a 0 in the clause is essential here, otherwise this clause would be satisfied already
by not choosing C;, without resorting to a column Cj.. Now consider the assignment with column
C; and without column C; (z; = 1and z; = 0) and the same remaining assignments as the previous
one. It costs no more than the previous one. We show that it is a solution. In order to do that we
must make sure that the 0’s covered by C; and the 1°s covered by C; by setting z; = 0and z; = 1,
are still covered in the new assignment where z; = 1 and z; = 0. The clauses witha 1 in C; are
satisfied by C;, because C; has all 1’s of C;. Each clause, say R, with a 0 in column C; is satisfied
too, because there is a corresponding clause, say R,, with a 0 in column C;, and we already noticed
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that there exists another column, Cy, that satisfies R,. But by hypothesis R, dominates R,, i.e., R,
has all the 1’s and 0’s of R, hence column Cj, satisfies also clause R, (if entry M, . = 1(0), then
entry M, ;. = 1(0) also and z;, = 1 (z; = 0) satisfies both clauses). n
This definition of column S-dominance is

e strictly stronger than column o-dominance given in 5.5.3,

e more general than row S-dominance (Rule 5) in [28], because the latter assumes that the
covering table contains only rows with no or one 0,

e equivalent to second half of Rule 4 in [29]: (a) C; has all the 1’s of C; and (b2) for every row
Ry in which C; has a 0, there exists a row R, in which C; has a 0, such that disregarding
entries in row C; and Cj, R, dominates R, (with reverse definition of row dominance),
noticing that by mistake the condition that C; does not have a 0 in row R, was omitted,

e not mentioned in [10] and [9)].

5.5.5 Column Dominance

Definition 5.6 A column C; dominates another column C; if either C; a-dominates Cjor C;
p-dominates C;.

Theorem 5.7 Let M be satisfiable. If C; dominates C}, there is at least one minimum cost solution
with column C; eliminated (z; = 0), together with all the rows in which it has 0's.

5.5.6 Column Mutual Dominance

Definition 5.7 Two columns C; and C; mutually dominate each other if
¢ C; has a0 in every row where C; hasa l,
o C; has a0 in every row where C; has a I.

Theorem 5.8 Let M be satisfiable. If C; and C; mutually dominate each other, there is at least one
minimum cost solution with columns C; and C; eliminated (z; = z; = 0), together with all the
rows in which they have 0’s. .

This definition of column mutual dominance is
e identical to rule for mutually reducible variables in [74],

¢ not mentioned in other papers.



5.5. REDUCTION TECHNIQUES 121

5.5.7 Essential Column

Definition 5.8 A column Cj; is an essential column if there exists a row R; having a 1 in column C;
and 2's everywhere else.

Theorem 5.9 If C; is an essential column, it must be selected (z ; = 1) in every solutions. Column
C;j must then be deleted together with all the rows in which it has 1's.

This definition of essential column is
e identical to essential row (Rule 2) in [28],
e identical to Rule 1 in [29],

¢ included in Definition9in [10): the row R; in the above definition corresponds to a singleton-1
essential row in [10],

e included in Definition 2.10 in [9]: the row R; in the above definition corresponds to a
singleton-1 essential row in [9].

Essential Column for a Unate Table

Definition 5.9 A column is an essential column if it contains the 1 of a singleton row.

5.5.8 Unacceptable Column

Definition 5.10 A column C; is an unacceptable column if there exists a row R; having a 0 in
column C; and 2'’s evérywhere else.

This reduction rule is a dual of the essential column rule.

Theorem 5.10 If C; is an unacceptable column, it must be eliminated (z; = 0) in every solution,
together with all the rows in which it has 0's. '

This definition of unacceptable column is
o identical to that of nonselectionable row in [28],

e identical to Rule 2 in [29],



122 CHAPTER 5. BINATE COVERING

e includedin Definition9in [10]: the row R; inthe above definition corresponds to a singleton-0
essential row in [10],

e included in Definition 2.10 in [9]: the row R; in the above definition corresponds to a
singleton-0 essential row in [9].

5.5.9 Unnecessary Column

Definition 5.11 A column of only O's and 2’s is an unnecessary column.

Notice that there is no symmetric rule for columns of 1°’s and 2’s. The reason is that selecting a
column to be in the solution has a cost, while eliminating it has no cost.

Theorem 5.11 If C; is an unnecessary column, it may be eliminated (z; = 0), together with all the
rows in which it has O’s.

This definition of unnecessary column is
o identical to Rule 4 in [28],
e identical to Rule § in [29],

e not mentioned in [10] and [9].

5.5.10 Trial Rule

Theorem 5.12 If there exists in a covering table M a row R; having a 0 in column Cj,alin
column Cy. and 2’s in the rest, then apply the following test:

o eliminate Cy, together with the rows in which it has 0’s,

o eliminate C;, which is now an unacceptable column, together with the rows in which it has
0’s,

e continue as long as possible to eliminate the columns which becomes unacceptable columns.

If at least one row of M has only 2’s at the end of this test, then column C. must be selected
(zk = 1)2. Therefore, C, can be deleted together with all the columns in which it has 1’s.

%It is possible that a row is left with only 2’s by a sequence of reduction steps.
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This reduction rule is
o identical to Rule 6 in [28],

e not mentioned in other papers.

5.5.11 Infeasible Subproblem

Unlike the unate covering problem, the binate covering problem may be infeasible. In
particular, an intermediate covering matrix M may found to be unsatisfiable by the following
theorem. When an infeasible subproblem is found, that branch of the binary recursion is pruned.

Theorem 5.13 A covering problem M is infeasible if there exists a column C; which is both
essential and unacceptable (implying z; = 1 and z; = 0).
This definition of infeasibility is

o not mentioned in [28] and [29],

¢ briefly mentioned in [10],

e identical to the unfeasible problem in [9].

5.5.12 Gimpel’s Reduction Step

Another heuristic for solving the minimum cover problem has been suggested by Gim-
pel [27]. Gimpel proposed a reduction step which simplifies the covering matrix when it has a
special form. This simplification is possible without further branching, and hence is useful at
each step of the branch and bound algorithm. In practice, Gimpel’s reduction step is applied after
reducing the covering matrix to the cyclic core.

Gimpel’s reduction can be described in terms of the product-of-sums represented by a
covering table. The product-of-sums is examined to see if any clause has only two literals of the
same cost. For example, assume the expression has the form: .

p=R(a+c)(ca+S1)...(c1+Sn)(c2+T1)...(c2+ Tm)

where c; and c; are single variables witha cost C, S;,i=1...nand Tj,j = 1...m are sums of
variables not containing c; or ¢z, and R is a product of sums of variables not containing c; or c,.
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Because the covering table is assumed minimal, if there is a clause (c; + ¢z),thenm > 1,n > 1,
and none of S; or T; is identically zero.

Note that with the expression written in this form, each parenthesized expression corre-
sponds directly to a single row in the covering table. By algebraic manipulations, the expression
can be re-written as:

p=R(cia+aT +aS)

where S = H?=1 Si,and T = H:’;l T:.
A second covering problem is derived from the original covering problem with the fol-
lowing form:

n = Rle+S+7)
= R][[[(e+Si+T))
i=1 j=1

The main theorem of Gimpel is:

Theorem 5.14 Let M, be a minimum cover for p;. A cover for p can be derived from M, according
to the rule: if S is covered by M; then add c; to M, to derive a cover of p; otherwise, add ¢; to M;
to derive a cover of p. The resulting cover is a minimum cover for p.

A proof can be found in [68], where a more extended discussion is presented.

Gimpel’s reduction step was originally stated for covering problems where each column
had cost 1. Robinson and House [34) showed that the reduction remains valid even for weighted
covering problems if the cost of the column ¢; equals the cost of the column ©2, as it has been
presented here. Gimpel’s rule has been first proposed in [27] and then implemented in [67]. In

[64, 76] Gimpel’s rule has been extended to handle the binate case. This extension has been
described in [77).

5.6 Implicit Binate Covering

The classical branch-and-bound algorithm [28, 29] for minimum-cost binate covering has
been described in previous sections, and implemented by means of efficient computer programs
(ESPRESSO and STAMINA). These state-of-the-art binate table solvers represent binate tables effi-
ciently using sparse matrix packages. But the fact that each non-empty table entry still has to be
explicitly represented put a bound on the size of the tables that can be handled by these binate
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mincov(R,C,U) {

(R,C) = Reduce(R,C,U)

if (Terminal_Case(R,C))
if (cost(R,C) > U) return empty_solution
else U = cost(R,C); retum solution

L = Lower_Bound(R,C)

if (L > U) retum _solution

¢; = Choose_Column(R,C)

S = mincov(R,;, C;, U)

5% = mincov(Rz, Cx, U)

retum Best_Solution(S! U {c;}, S%

Figure 5.6: Implicit branch-and-bound algorithm.,

solvers. For example from Section 4.7, we would not expect these binate solvers to handle many
state minimization examples requiring over 10% compatibles (up to 2!5% prime compatibles), the
selection of which would require tables with that many columns. To keep with our stated objective,
the binate table has to be represented implicitly. We do not represent (even implicitly) the elements
of the table, but we make use only of a set of row labels and a set of column labels, each represented
implicitly as a BDD. They are chosen so that the existence and value of any table entry can be
readily inferred by examining its corresponding row and column labels. In the sequel, we shall
assume that every row has a unit cost.

A binate covering problem instance can be characterized by a 6-tuple (r, ¢, R,C,0,1),
defined as follows:

e the group of variables for labeling the rows: r
o the group of variables for labeling the columns: ¢
o the set of row labels: R(r)

‘o the set of column labels: C(r)
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o the O-entries relation at the intersection of row r and column c: 0(r, ¢)

e the 1-entries relation at the intersection of row r and column c: 1(r, ¢)

In other words, the user of our implicit binate solver would first choose an encoding for
the rows and columns. Given a binate table, the user will then supply a set of row labels as a BDD
R(r) and a set of column labels as a BDD C(c), and also the two inference rules in the form of
BDD relations, 0(r, ¢) and 1(r, c), capturing the 0-entries and 1-entries.

The classical branch-and-bound solution of minimum cost binate covering is based on the
recursive procedure as shown in Figure 5.3. In our implicit formulation, we keep the branch-and-
bound scheme summarized in Figure 5.6, but we replace the traditional description of the table as a
(sparse) matrix with an implicit representation, using BDD’s for the characteristic functions of the
rows and columns of the table. Moreover, we have implicit versions of the manipulations on the
binate table required to implement the branch-and-bound scheme. In the following sections we are
going to describe the following:

e implicit representation of the covering table,
e implicit reduction,

o implicit branching column selection,

e implicit computation of the lower bound, and
e implicit table partitioning.

At each call of the binate cover routine mincov, the binate table undergoes a reduction
step Reduce and, if termination conditions are not met, a branching column is selected and mincov
is called recursively twice, once assuming the selected column c; in the solution set (on the table
R, C.;) and once out of the solution set (on the table Rz, C). Some suboptimal solutions are

bounded away by computing a lower bound L on the current partial solution and comparing it

against an upper bound U (best solution obtained so far). A good lower bound is based on the
computation of a maximal independent set.

5.7 TImplicit Table Generation for State Minimization

As the first application of our implicit binate solver, the state minimization problem of
ISFSM’s described in Section 4 is solved implicitly. In this section we shall review how its binate
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covering table is generated.

Definition 5.12 A column is labeled by a positional-set p. The set of column labels C is obtained
by prime generation as C (p) = PC(p).

Besides distinguishing a row from another, each row label must also contain information
regarding the positions of 0’s and 1’s in the row. Each row label r consists of a pair of positional-
sets (c,d). Since there is at most one 0 in the row, the label of the column p intersecting it in
a 0 is recorded in the row label by setting its ¢ part to p. If there is no 0 in the row, c is set to
the empty set, T'upleg(c). Therefore a row label r corresponds to a unate clause if and only if
relation unate.row(r) = Tupleg(c) is true. Because of Definition 5.14 for row labels, the columns
intersecting a row labeled r = (c,d) in a 1 are labeled by the prime compatibles p that contain d.
ie.,

Definition 5.13 The table entry at the intersection of a row labeled by r = (c,d) € R and a column
labeled by p € C can be inferred by:

the table entry is a 0 if and only if relation 0(r, p) def (p = c) is true,

the table entry is a 1 if and only if relation 1(r, p) %ef (p 2 d) is true.

Definition 5.14 The set of row labels R is given by:
R(r) = PC(c) - CCS(c,d) + Tupleo(c) - Tuple, (d)

The closure conditions associated with a prime compatible p are that if p is included in a solution,
each implied set d in its class set must be contained in at least one chosen prime compatible. A
binate clause of the form (p+ p1 + p2 + - - + px) has to be satisfied for each implied set of p,
where p; is a prime compatible containing the implied set d. The labels for binate rows are given
succinctly by PC(c) -CCS(c, d). There is a row label for each (¢, d) pair such that ¢ € PC is a prime
compatible and d is one of its implied sets in CCS(c, ). This row label consistently represents the
binate clause because the 0 entry in the row is given by the column labeled by the prime compatible
P = ¢, and the row has 1’s in the columns labeled by p; wherever (p; 2 d).

The covering conditions require that each state be contained by some prime compatible
in the solution. For each state d € S, a unate clause has to be satisfied which is of the form
(p1+ p2+ - - -+ p;) where the p;’s are the prime compatibles that contain the state d. By specifying
the unate row labels to be Tuplep(c) - Tuple;(d), we define a row label for each state in Tuple, (d).
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Since the row has no 0, its c part must be set to T'upleg(c). The 1 entries are correctly positioned at
the intersection with all columns labeled by prime compatibles p; which contain the singleton state
d.

From the next section, we shall describe how a binate covering table can be manipulated
implicitly so as to solve the minimum cost binate covering problem. We are going to provide
solutions to three variations of the covering problem, and they are listed below in decreasing order
of generality in the binate table specification:

1. General binate covering table

o the group of variables for labeling the rows: r

o the group of variables for labeling the columns: ¢

o the set of row labels: R(r)

o the set of column labels: C/(c)

o the O-entries relation at the intersection of row r and column c: 0(r, c)

o the 1-entries relation at the intersection of row r and column ¢: 1(r, c)
2. Binate covering table assuming each row has at most one O:

o the group of variables for labeling the rows: r

o the group of variables for labeling the columns: ¢

o the set of row labels: R(r)

e the set of column labels: C'(c)

e the O-entries relation at the intersection of row r and column ¢: 0(r, c)

o the 1-entries relation at the intersection of row r and column c: 1(r, c)
3. Specialized binate covering table for exact state minimization:

e the group of variables for labeling the rows (each label is a pair): (c,d)
o the group of variables for labeling the columns: p

o the set of row labels: R(c,d)

o the set of column labels: C(p)

o the O-entries relation at the intersection of row (¢, d) and column p:

0((e,d)sp) = (p=¢)
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e the 1-entries relation at the intersection of row (c, ) and column p:
1((c,d),p)=(p29)

In the sequel, each implicit table operation will be expressed by three BDD formulas,
each representing a realization for a different implicit binate solver. Each equation will be labeled
1, 2, or 3, depending on which of the above set of assumptions are made.

5.8 Implicit Reduction Techniques
Reduction rules aim to the following:

1. Selection of a column. A column must be selected if it is the only column that satisfies a
given row. A dual statement holds for columns that must not be part of the solution in order
to satisfy a given row.

2. Elimination of a column. A column c; can be eliminated if its elimination does not preclude
obtaining a minimum cover, i.e., if there is another column c; that satisfies at least all the
rows satisfied by c;.

3. Elimination of a row. A row r; can be eliminated if there exists another row r; that expresses
the same or a stronger constraint.

The order of the reductions affects the final result. Reductions are usually attempted
in a given order, until nothing changes any more (i.e., the covering matrix has been reduced to a
cyclic core). The reductions and order implemented in our reduction algorithm are summarized in
Figure 5.7.
In the reduction, there are two cases when no solution is generated:

1. The added cardinality of the set of essential columns, and of the partial solution computed so
far, Sol, is larger or equal than the upper bound U. In this case, a better solution is known
than the one that can be found from now on and so the current computation branch can be
bounded away.

2. After having eliminated essential, unacceptable and unnecessary columns and covered rows,
it may happen that the rest of the rows cannot be covered by the remaining columns. In this
case, the current partial solution cannot be extended to any full solution.
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Reduce(R,C,U){

repeat {
Collapse_Columns(C)
Column_Dominance(R,C)
Sol = Sol U Essential_Columns(R,C)
if (|Sol| > U) retum empty.solution
Unacceptable_Columns(R,C)
Unnecessary_Columns(R,C)
if (C does not cover R) return empty_solution
Collapse_Rows(R)
Row_Dominance(R,C)

} until (both R and C unchanged)

return (R, C)

Figure 5.7: Implicit reduction loop.
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We are going to describe how the reduction operations are performed implicitly using
BDD’s on the three table representations described in the previous section.

§.8.1 Duplicated Columns

It is possible that more than one column (row) label is associated with columns (rows)
that coincide element by element. We need to identify such duplicated columns (rows) and collapse
them into a single column (row). This avoids the problem of columns (rows) dominating each other
when performing implicitly column (row) dominance. The following computations can be seen as
finding the equivalence relation of duplicated columns (rows) and selecting one representative for
each equivalence class.

Definition 5.15 Two columns are duplicates, if on every row, their corresponding table entries are
identical.

Theorem 5.15 Duplicated columns can be computed as:

dup_col(c/, c) I= vr {R(r) = [(0(r,¢) & 0(r,¢)) - (1(r,¢) & 1(r, o))}
dup_col(c’,c) 2= Vr{R(r) = [-0(r,c)-=0(r,c) - (1(r, ¢) & 1(r, )]}
dup-col(y',p) *= AdR(p,d)- Ad R(p,d)-Vd {3 R(c,d)] = [(¢' 2 d) & (p 2 )]}

Proof: As discussed at the end of Section 5.7, the first equation computes the duplicated columns
relation for the most general binate table, and the second equation for the binate table with the
assumption that there is at most one 0 in each row, and the third equation is for the specialized binate
table for state minimization, assuming the columns are prime compatibles p, and the rows are pairs
(c,d).

For the column labels ¢’ and c to be in the relation dup_col, the first equation requires the
following conditions to be met for every row label r € R: (1) the entry (r,c) is a 0 if and only
if the entry (r,c’) is a 0, (i.e., 0(r,¢) & 0(r,c)), and (2) the entry (r,c) is a 1 if and only if the
entry (r,c) isa 1, (ie., 1(r, ¢) < 1(r,c)). Assuming each row has at most one 0 for the second
equation, condition 2 requires that the row labeled r cannot intersect either column at a 0, (i.e.,
=0(r, €) - ~0(r, ). ‘ ]

Theorem 5.16 Duplicated columns can be collapsed by:
C(e) = C(c) A [C(c) - (¢ < c) - dup_col(c',c)]
Clp) = C() A [CW): (¥ <p)- dupcol(p,p)]
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Proof: This computation picks a representative column label out of a set of column labels corre-
sponding to duplicated columns. A column label c is deleted from C if and only if there is another
column label ¢’ which has a smaller binary value than ¢ (denoted by ¢’ < c) and both label the same
duplicated column. Here we exploit the fact that any positional-set ¢ can be interpreted as a binary

number. Therefore, a unique representative from a set can be selected by picking the one with the
smallest binary value. 3 n

5.8.2 Duplicated Rows

Definition 5.16 Two rows are duplicates if, on every column, their corresponding table entries are
identical.

Detection of duplicated rows, selection of a representative row, and table updating are
performed by the following equations as in the case of duplicated columns.

Theorem 5.17 Duplicated rows can be computed as:

duprow(r',r) 12 = Vc{C(c) = [(0(+',c) & 0O(r,¢)) - (1 (', ¢) & 1(r,¢))]}
duprow(c,d',c,d) 3= (d=c) Bp[C(p)-(p2d) # (p2d))]

Proof: Similar to the proof for Theorem 5.15. For the row labels ' and r to be in the relation
dup_row, the first equation requires the following conditions to be met for every column label
¢ € C: (1) the entry (r, c) is a 0 if and only if the entry (+/,c)is a 0, (i.e., 0(+',c) < 0(r, )), and
(2) the entry (r, c) is a 1 if and only if the entry (r',c)is a 1, (ie., 1(r',c) & 1(r,¢)). [ ]

Theorem 5.18 Duplicated rows can be collapsed by:

R(r) 2= R(r)- B [R(*) - (r' < r) - dup_row(r',r)]
R(c,d) 3= R(c,d)- Ac,d'[R(c,d") - (d' < d)-duprow(c,d'c,d)]

Proof: The proof is similar to that for Theorem 5.16, except we are delete all duplicating rows here
except the representative ones. _ o

From now on, sometimes we will blur the distinction between a column (row) label and
the column (row) itself, but the context should say clearly which one it is meant.

3 Alternatively, one could have used the cproject BDD operator introduced in [49] to pick a representative column out
of each set of duplicated columns.
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5.8.3 Column Dominance

Some columns need not be considered in a binate table, if they are dominated by others.
Classically, there are two notions of column dominance: a-dominance and -dominance.

Definition 5.17 A column ¢’ a-dominates another column c if ¢ has all the I's of ¢, and c has all
theO's of ¢

Theorem 5.19 The a-dominance relation can be computed as:

Ar {R(r) - [1(r, ¢) - =1(r, )] + [0(r, ) - =O(r, )]}
adom(c,c) 2= PAr{R(r)-[1(r,¢c) -1(r,¢) +0(r,c)]}
a.dom(p',p) *= pBc,d[R(c,d)-(p2d)-(p' 2 d)]- Ad R(p,d)

a.dom(c,c) !

Proof: For column ¢’ to a-dominate c, the first equation ensures that there doesn’t exists a row
r € R such that either (1) the table entry (r, c) is a 1 but the table entry (r, ¢’) is not, or (2) the table
entry (r, ') is a O but the table entry (r, c) is not. Assuming each row has at most one 0, condition
2 can be simplified to the second equation that table entry (r,c’) isa 0. [ ]

Definition 5.18 A column ¢’ -dominates another column c if (1) ¢’ has all the I's of c, and (2)
for every row ' in which ¢’ contains a 0, there exists another row r in which c has a 0 such that
disregarding entries in column ¢, r' has all the I's of r.

Theorem 5.20 The $-dominance relation can be computed by:
B-dom(c',c) 2= PAr' {R(r') [1(+,c) --1(,c) +

0(r',c)- Ar[R(r)- 0(r,c)- A" [C(c") - (" # ) - 1(r, ") - ~1(r', "] 1)}
Bdom(p’,p) *= Pd {3 (R(c\d))-(p2d)- (¥ 2 d)}

- Ad' {R(p',d)- Ad[R(p,d)- Bq[C(q)-(¢# ') -(¢2d)-(¢2d)]1}}
Proof: According to the definition, the table should not contain arow ' € Rifeither of the following
two cases is true at that row: (1) table entry at column cis a 1 while entry at column ¢/ isnota 1 (i.e.,
1(r',¢) - ~1(r', ), or (2) ¢ has a 0 in row ' (i.e., 0(r', ¢’)) but there does not existarow r € R
such that its column c is a 0 and disregarding entries in column ¢/, row r has all the 1’s of row r.
Rephrasing the last part of the condition2, the expression Ac” [C(c¢")-(¢" # ¢/)-1(r, ¢")--1(r', "))

requires that there is no column ¢”’ € C apart from column ¢’ such that ¢’ has a 1 in row r, but not
in row ' [ |
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The conditions for a-dominance are a strict subset of those for S-dominance, but a-

dominance is easier to compute implicitly. Either of them can be used as the column dominance
relation col_dom.

Theorem $.21 The set of dominated columns in a table (R, C) can be computed as:
D(c) 2= C(c)-3[C(c) - (¢ # ¢) - col_dom(c', c)]
D(p) *= C(p)-3I[CH)- (¢ #p)-col-dom(p',p)]

Proof: A column ¢ € C is dominated if there is another ¢ € C different from ¢ (i.e., ¢’ # ¢) which
column dominates c (i.e., col_.dom(c, c)). : ]

Theorem 5.22 The following computations delete a set of columns D(c) from a table (R, C) and
all rows intersecting these columns in a 0.

C(c) 2= C(c)--D(c)
R(r) 2= R(r)- Be[D(c)-0(r,c)]

Ct) *= C)--Dlo)
R(c,d) 3= R(c,d)--D(c)

Proof: The first computation removes columns in D(c) from the set of columns C(c). The

expression 3c [D(c) - 0(r, c)] defines all rows r intersecting the columns in D in a 0. They are
deleted from the set of rows R. a

5.8.4 Row Dominance
Definition 5.19 A row r’ dominates another row r if r has all the I's and 0's of '
Theorem 5.23 The row dominance relation can be computed by:

rowdom(r',r) 2= Ac{C(c)-[1(r',c)--1(r,c)+0(r',c) - =0(r,c)]}
rowdom(c,d,c,d) 3= Ap[C(p)-(p2d)(p 2 d)]-[unate_row(c') + (¢ = c)]
Proof: For r' to dominate r, the equation requires that there is no column ¢ € C such that either (1)

the table entry (r/, c) is a 1 but the entry (r, c) is not, or (2) the entry (', c) is a 0 but the entry (r, c)
is not. |
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Theorem 5.24 . Given a table (R(r), C(c)), the set of unate row labels r can be computed as
unate_row(r) 2 = Ac [C(c) - O(r, ¢)).
Given a table (R(c, d), C(p)), the set of unate row labels c can be computed as
unate_row(c) > = Ap [C(p) - (p = ¢)] =Be C(c).
Theorem 5.25 The set of rows not dominated by other rows can be computed as:
R(r) '?= R(r)- Ar'[R(r)- (' #r) - row_dom(r',r)]
R(c,d) 3= R(c,d)- Bd,d {R(c,d')-[(c',d') # (c,d)] rowdom(c,d’, c,d)]}

Proof: The equation expresses that any row r € R, dominated by another different row ' € R, is
deleted from the set of rows R(r) in the table. ]

5.8.5 Essential Columns

Definition 5.20 A column c is an essential column if there is a row having a 1 in column c and 2
everywhere else.

Theorem 5.26 The set of essential columns can be computed by:

ess.col(c) '= C(c)-3r {R(r) - 1(r,c)- A[C(c) - (¢' # ¢) - (O(r, ) + 1(r, )]}
ess-col(c) 2= C(c)-3r {R(r)-1(r,c)- unate_row(r)- Ac' [C(c)- (c' # ¢)-1(r, N}
ess.collp) *= C(p)-3c,d{R(c,d)- (p 2 d)- unate_row(e) By’ [CW)- (7 #p)- (7 2 d)]}

Proof: For a column ¢ € C to be essential, there must exist a row r € R which (1) contains a 1 in
column c (i.e., 1(r, ¢)), and (2) there is not ahother different column intersecting the row ina 1 or 0
(e A [C(¢) - (¢ # ) (0(r, @) + 1(r, ).

Assuming that a row can have at most one 0, a column ¢ € C is essential if and only if
there is a row r € R which (1) contains a 1 in column ¢ (i.e., 1(r, c)), and (2) does not contain any
0 (i.e., unate_row(r)), and (3) there is not another different column intersecting the row ina 1 (i.c.,

Al [C(¢)- (¢ #c) - 1(r,)). u

Theorem 5.27 Essential columns must be in the solution. Each essential column must then be
deleted from the table together with all rows where it has 1's.
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The following computations add essential columns to the solution, delete them Jfrom the
set of columns and delete all rows in which they have 1's:

solution(c) %= solution(c) + ess_col(c)
C(c) M= C(c)-esscol(c)
R(r) 2= R(r)- Bcless-col(c) 1(r,c)]

solution(p) 3= solution(p) + ess_col(p)

Cp) 3= C(p)-—esscol(p)
R(c,d) 3= R(c,d)-—ess_col(c)

Proof: The first two equations move the essential columns from the column set to the solution set.
The third equation deletes from the set of rows R all rows intersecting an essential column cina 1.

5.8.6 Unacceptable Columns

Definition 5.21 A column c is an unacceptable column if there is a row having a 0 in column c
and 2 everywhere else.

Theorem 5.28 The set of unacceptable columns can be computed by:

unacceptable_col(c) ' = C(c)-3r {R(r)-0(r,c)- A’ [C(c)- (' # ¢)-0(r, )]}
- B [C(d) - 1(r, )]}

unacceptable_col(c) 2= C(c)-3r {R(r)-0(r,c)- A [C(c)-1(r,c)]}

unacceptablecol(p) * = C(p)-3d {R(p,d)- Bp' [C(¢) - (¢' 2 d)]}

Proof: For column ¢ € C to be unacceptable, there must be a row r € R such that (1) it intersects
the column c at a 0, and (2) there does not exists another column ¢’ different from ¢ which intersects
thatrow rata0 (ie., Ac' [C(c) - (¢ # ¢) - 0(r,¢)]), and (3) no column ¢’ intersects that row r in

al(e., Ac [C()-1(r,c)]). Condition 2 is not needed if we assume that each row contains at
most one 0. o u
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5.8.7 Unnecessary Columns

Definition 5.22 A column is an unnecessary column if it does not have anylinit.
Theorem 5.29 The set of unnecessary columns can be computed as:

unnecessary_col(c) 2= C(c)- Ar[R(r)-1(r,¢c)]
unnecessary-col(p) 3= C(p)- Be,d[R(c,d)- (p 2 d)]

Proof: A column ¢ € C is unnecessary if no row r € R intersectsitina 1. [ ]

Theorem 5.30 Unacceptable and unnecessary columns should be eliminated from the table, to-
gether with all the rows in which such columns have 0's.
The table (R, C) is updated according to Theorem 5.22 by setting

D(c) 2= unacceptable_col(c) + unnecessary-col(c)

D(p) 3= unacceptable_col(p) + unnecessary-col(p)

Proof: Obvious. [ ]

5.9 Other Implicit Covering Table Manipulations

To have a fully implicit binate covering algorithm as described in Section 5.6, we must
also compute implicitly a branching column and a lower bound. These computations as well as
table partitioning involve solving a common subproblem of finding columns in a table which have
the maximum number of 1’s.

59.1 Selection of Columns with Maximum Number of 1’s

Given a binary relation F'(r, c) as a BDD, the abstracted problem is to find a subset of ¢’s
each of which relates to the maximum number of r’s in F(r, ¢). An inefficient method is to cofactor
F with respect to ¢ taking each possible values c;, count the number of onset minterms of each
F(r,c)|c=c;» and pick the ¢;’s with the maximum count. Instead our algorithm, Lmaz, traverses
each node of F exactly once as shown by the pseudo-code in Figure 5.8.

Lmaxz takes a relation F(r, c) and the variables set r as arguments and retumns the set G
of ¢’s which are related to the maximum number of r’s in F, together with the maximum count.
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Lmaz(F,r) {
v = bdd_top_var(F)
if(ver)
retumn (1, bdd_count_onset(F))
else { /* vis a c variable */
(T, countT) = Lmaz(bdd_then(F),r)
(E,count_E) = Lmaz(bdd_else(F), r)
count = maz(count_T, count_F)
if (count_T = count_E)
G = ITE(v, T, E)
else if (count = count_T')
G = ITE(v,T,0)
else if (count = count_E)
G = ITE(v,0, E)
return (G, count)

Figure 5.8: Pseudo-code for the Lmax operator.



5.9. OTHER IMPLICIT COVERING TABLE MANIPULATIONS 139

Variables in c are required to be ordered before variables in r. Starting from the root of BDD F, the
algorithm traverses down the graph by recursively calling Lmaz on its then and else subgraphs.
This recursion stops when the top variable v of F is within the variable set r. In this case, the BDD
rooted at v corresponds to a cofactor F(r, ¢)| .=, for some ¢;. The minterms in its onset are counted
and retuned as count, which is the number of r’s that are related to c;.

During the upward traversal of F, we construct a new BDD G in a bottom up fashion,
representing the set of ¢’s with maximum count. The two recursive calls of Lmaz retum the sets
T(c) and E(c) with maximum counts count_T and count_E for the then and the else subgraphs.
The larger of the two counts is retuned. If the two counts are the same, the columns in 7 and E
are merged by ITE(v, T, E) and retumned. If count_T is larger, only 7 is retained as the updated
columns of maximum count. And symmetrically for the other case. To guarantee that each node
of BDD F(r,c) is traversed once, the results of Lmaz and bdd_count_onset are memoized in
computed-tables. Note that Lmaz returns a set of ¢’s of maximum count. If we need only one c,
some heuristic can be used to break the ties.

Example To understand how Lmaz works, consider the explicit binate table:

00 01 10 11
00 1 2 1 1
01 2 1 1 2
10 2 1 2 1
11 2 1 2 1

with four rows and four columns. The columns that maximize the number of 1°s are the second and
the fourth. If the rows and columns are encoded by two Boolean variables each, using the encodings
given on top of each column and to the left of each row, the 1 entries of the table are represented
implicitly by the relation F(c, r) 4 whose minterms are:

{0000, 1000, 1100,0101, 1001,0110,1110,0111,1111}.

The BDD representing F is shown in Figure 5.9. The result of invoking Lmax on F(r, c) is a BDD
representing the relation G(c) whose minterms are: {01, 11}, corresponding to the encodings of
the second and fourth column.

5.9.2 Implicit Selection of a Branching Column

The selection of a branching column is a key ingredient of an efficient branch-and-bound
covering algorithm. A good choice reduces the number of recursive calls, by helping to discover
*r and c are swapped in F" so that minterms are listed in the order of the BDD variables.




140 CHAPTER 5. BINATE COVERING

Figure 5.9: BDD of F(r, c) to illustrate the routine Lmaz.

more quickly a good solution. We adopt a simplified selection criterion: select a column with
a maximum number of 1’s. By defining F'(r,c) = R(r) - C(c) - 1(r, ¢) which evaluates true if
and only table entry (r,c) is a 1, our column selection problem reduces to one of finding the ¢
related to the maximum number of r’s in the relation F'(r, c), and so it can be found implicitly by
calling Lmaz(F',r). A more refined strategy is to restrict our selection of a branching column to
columns intersecting rows of a maximal independent set, because a unique column must eventually
be selected from each independent row. A maximal independent set can be computed as follows.

5.9.3 Implicit Selection of a Maximal Independent Set of Rows

Usually a lower bound is obtained by computing a maximum independent set of the unate
rows. A maximum independent set of rows is a (maximum) set of rows, no two of which intersect
the same column at a 1. Maximum independent set is an NP-hard problem and an approximate
one (only maximal) can be computed by a greedy algorithm. The strategy is to select short unate
rows from the table, so we construct a relation F”(c,r) = R(r) - unate_row(r) - C(c) - 1(r,c).
Variables in r are ordered before those in ¢. The rows with the minimum number of 1’s in F* can be
computed by Lmin(F”, c), by replacing in Lmaz the expression maz(count_T, count_E) with
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min(countT, count_E). Once a shortest row, shortest(r), is selected, all rows having 1-elements
in common with shortest(r) are discarded from F"(c, r) by:

F(c,r) = F'(¢,r). Ac {3r' [shortest(r') - F"(c', )] - F"(c,r)}

Another shortest row can then be extracted from the remaining table F* and so on, until F/ becomes
empty. The maximum independent set consists of all shortest(r) so selected.

5.94 Implicit Covering Table Partitioning

If a covering table can be partitioned into » disjoint blocks, the minimum covering for
the original table is the union of the minimum coverings for the n sub-blocks. Let us define the
nonempty-entry relation 01(r, ¢) = 0(r, ¢) + 1(r, c). The implicit algorithm in Figure 5.10 takes a
table description in terms of its set of rows R(r), its set of columns C(c) and the nonempty-entry
relation 01(r, c), partitions it into n disjoint sub-blocks, and return them as = pairs of (R, CY),
each corresponding to the rows and columns for the :-th sub-block.

n-way partitioning can be accomplished by successive extraction of disjoint blocks from
the table. When the following iteration reaches a fixed point, (R, C) corresponds to a disjoint
sub-block in (R, C).

Ro(r) = Lmaz(R(r)-C(c)-01(r,c), c)
Ci(c) C(c) - 3r {Rk-1(r) - 01(r,c)}
Ry(r) R(r) -3¢ {Ci(c) - 01(r, c)}

This sub-block is extracted from the table (R, C) and the above iteration is applied again to the
remaining table, until the table becomes empty.

Given a covering table, a single row Rg(r), which has the maximum number of nonempty
entries, is first picked using Lmaz(). The set of columns C|(c) intersecting this row at O or 1
entries is given by C(c) - 3r [Ro(r) - 01(r, c)] (we want ¢ € C such that there is arow r € Rg which
intersects cat a 0 or 1). Next we find the set of rows R intersecting the columns in C) via nonempty
entries, by a similar computation R(r) - 3¢ [Ci(c) - 01(r,c)]. Then we can extract all the rows
Ry(r) which intersects Cj(c), and so on. This pair of computations is iteratively applied within the
repeat loop in Figure 5.10 until no new connected row or column can be found (i.e., Rx = Ri_1).
Effectively, starting from a row, we have extracted a disjoint block (R!,C"!) from the table, which
will later be returned. The remaining table after bi-partition simply contains the rows R — R! and
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n_way_partition(R(r),C(c),01(r,c)) {
n=0
while (R not empty) {
k=0
Ro(r) = Lmaz(R(r) - C(c) - 01(r, c))
repeat {
k=k+1
Cik(c) =C(c) - 3r {Rk-1(r) - 01(r, )}
Ri(r) = R(r) - 3¢ {Ck(c) - 01(r, c)}
} until (Ry = R;_y)
R™ = Ry,
C" =Cy
R=R- R;
C=C-C
n=n+1
}
return {(R',C%):0< i< n -1}

Figure 5.10: Implicit n-way partitioning of a covering table.
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the columns C — C". If the remaining table is not empty, we will extract another partition (R2, C?)
by passing through the outer while loop a second time. If the original table contains n disjoint

blocks, the algorithm is guaranteed to retum exactly the n sub-blocks by passing through the outer
while loop n times.

5.10 Experimental Results

In this section we report results of an implementation of the implicit binate covering
algorithm, described in the previous sections. We use the benchmarks already introduced in
Section 4.7 and concentrate on the examples where prime compatibles are needed to find a minimum
solution of the state minimization problem 5. Here we provide data for a subset of them, sufficient
to characterize the capabilities of our prototype program.

Comparisons are made with STAMINA. The binate covering step of STAMINA was run with
no row consensus, because row consensus has not yet been implemented in our implicit binate
solver. Our implicit binate program currently lacks also routines for Gimpel’s reduction rule, that
was instead invoked in the version of STAMINA used for comparison. This might sometimes favor
STAMINA, but for simplicity we will not elaborate further on this effect. In the near future we will
implement beta dominance, row consensus and table partitioning in our package. All run times are
reported in CPU seconds on a DECstation 5000/260 with 440 Mb of memory.

The following explanations refer to the tables of results:

o Under table size we provide the dimensions of the original binate table and of its cyclic core,
i.e., the dimensions of the table obtained when the first cycle of reductions converges.

e # mincov is the number of recursive calls of the binate cover routine.
e Data are reported with a * in front, when only the first solution was computed.
o Data are reported with a { in front, when only the first table reduction was performed.

e # cover is the cardinality of a minimum cost solution (when only the first solution-has been
computed, it is the cardinality of the first solution).

o CPU time refers only to the binate covering algorithm. It does not include the time to find
the prime compatibles.

3Otherwise, a minimum solution of maximal compatibles is closed and therefore is a minimum solution.
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5.10.1 Minimizing Small and Medium Examples

With the exception of ex2, ex3, ex5, ex7, the examples from the MCNC and asynchronous
benchmarks do not require prime compatibles for exact state minimizationand yield simple covering
problems®. Table 5.1 reports those few non-trivial examples. They were all run to full completion,
with the exception of ex2. In the case of ex2, we stopped both programs at the first solution.

table size (rows x columns) # mincov # cover CPU time (sec)

FSM before after first IsM STAMINA ISM STAMINA ISM STAMINA

reduction o reduction o B| a B o [i] al B o B o B
ex2 | 4418x1366 | 3425x1352 | *6 [ *14 [ *6 | %4 | *10 | *12 | *10 | *O | *58 | *293 | *116 | *91
ex2 | 4418x1366 | 3425x1352 | *6 | *14 | *6 | 286 | *10 | *12 | *10 | 5 | *58 | *293 | *116 | 2100
ex3 243x 91 151x 84 201 | 37|91 39 4 4 4] 4| 78 33 V] 0
exs 81x38 47x31 16 6|10 6 3 3 3| 3 4 3 0 0
ex7 137x 57 62x 44 38 | 31|37 6 3 3 31 3 8 12 0 0

Table 5.1: Examples from the MCNC benchmark.
These experiments suggest that

e the number of recursive calls of the binate cover routine (# mincov) of ISM and STAMINA
is roughly comparable, showing that our implicit branching selection routine is satisfactory.
This is an important indication, because selecting a good branching column is a more difficult
task in the implicit frame.

e the running times are better for STAMINA except in the largest example, ex2, where ISM is
slightly faster than STAMINA. This is to be expected because when the size of the table is
small the implicit approach has no special advantage, but it starts to pay off scaling up the
instances. Moreover, our implicit reduction computations have not yet been fully optimized.

5.10.2 Minimizing Constructed Examples

Table 5.2 presents a few randomly generated FSM’s. They generate giant binate tables.
The experiments show that ISM is capable of reducing those table and of producing a minimum
solution or at least a solution. This is beyond reach of an explicit technique and substantiates the
claim that implicit techniques advance decisively the size of instances that can be solved exactly.

$Moreover, in the case of the asynchronous benchmark a more appropriate formulation of state minimization requires
all compatibles and a different set-up of the covering problem.
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table size (rows x columns) #mincov # cover CPU tme (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction o reduction alf|a B|l alB]| a g a <] £

ex2.271 95323 x 96382 0x0 111} - -1 2127 - - 1 $5 | fails | fails
ex2.285 1x 121500 0x0 1(1] - -1 2121 - - 0 0 | fails | fails
ex2.304 | 1053189x 264079 | 1052007x264079 | 2| - | - -1 21 -1 - - | 463 | fails | fails | fails
€x2.423 | 637916x 160494 | 636777x160494 | *2 | - | - -1 %3 -] - - | *341 | fails | fails | fails
ex2.680 | 757755x 192803 | 756940x 192803 2] -] - -1 2] -] - - | 833 | fails | fails | fails

Table 5.2: Random FSM’s.

5.10.3 Minimizing FSM’s from Learning I/O Sequences

Examples in Table 5.2 demonstrate dramatically the capability of implicit techniques to

build and solve huge binate covering problems on suites of contrived examples. Do similar cases
arise in real synthesis applications? The examples reported in Table 5.3 answer in the affirmative
the question. They are the simplest examples from the suite of FSM’s described in Section 4.7.3.
It is not possible to build and solve these binate tables with explicit techniques. Instead we can
manipulate them with our implicit binate solver and find a solution. In the example fourr40, only

the first table reduction was performed.

1able size (rows X columns) # mincov # cover CPU time (sec)
FSM before after first isM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction o Bl a B8 o Bl a B o J<] o B8
threer.20 6977 x 3936 6974 x 3936 *| *6|*S| *3| *S| *5]| *6 | *6 *13 *26 | *1996 | *677
threer.25 | 35690x 17372 | 34707x17016 | *3 | *6 - -] *5] *6 - - *69 | *192 fails | fails
threer.30 | 68007x33064 | 64311x32614 | *4 | *9 - -| *8 | *8 - - %526 | *770 fails | fails
threer.35 | 177124x 82776 | 165967x82038 | *8 | *9 - -1 *12 | *10 - - | %2296 | *2908 fails | fails
threer.40 | 1.21e6x 5.29eS | 1.15¢6x 5.27e5 | *8 - - - | *12 - - - | *6787 fails | fails | fails
fourr.16 6060 x 3266 ~ 5235x 3162 %2 %3 | *3 | *3 *3 3| *4| *4 *6 *23 | *1641 | *513
fourr.16 6060 x 3266 5235x 3162 *2 1623 | *3 | 377 | *3 3|1%4]| 3 *6 | 9194 | *1641 | 1459
fourr20 | 26905x 12762 | 26904x 12762 | *2 | *4 - -] *4] *4 - - *3] *68 fails | fails
fourr.30 | 1.40e6x 5.43e5 | 1.39e6x542e5 | *2 | *5 - -] *4 ] *S - - | *1230 | *1279 fails | fails
fourr40 | 6.78¢9x2.39¢9 | 6.78¢9x2.39¢9 | t1 - - - - - - - {723 fails fails | fails

Table 5.3: Leamning I/O sequences benchmark.

5.10.4 Minimizing FSM’s from Synthesis of Interacting FSM’s

Prime compatibles are required only for the state minimization of ifsm! and ifsm2. For

ifsml, ISM can find a first solution faster than STAMINA using a-dominance. But as the table sizes
are not very big, the run times ISM take are usually longer than those for STAMINA.
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table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first ISM STAMINA IsM STAMINA ISM STAMINA
reduction a reduction al|pB al| B al B al|l B o [} a B
ifsml | 17663x 8925 | 16764x8829 | *4 | 2 [ *10 | 3 | *14 | 14 | *15 | 14 | *388 | 864 | *17582 | 805
ifsml | 17663x8925 | 16764x8829 | *4 | 2| 241 3 | *14 | 14| 14| 14 | #3838 | 864 | 40817 | 805
ifsm2 1505x 774 1368 x 672 413)] 41| 44 9] 9 911 9 136 | 230 49 3

Table 5.4: Examples from synthesis of interactive FSM’s.
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Chapter 6

State Minimization of Non-deterministic
FSM’s

Non-determinism is a valuable tool in the direct specification of behaviors. In an FSM
specification, it captures choices in the behavior to be implemented which a user allows. It can
be used both to capture conditions that cannot arise in a certain situation (extending the usage of
don’t care conditions) and to postpone implementation choices. The most general form of non-
determinism can be expressed as an NDFSM. Our goal is to explore different behaviors contained
within an FSM specification and choose an optimum one with respect to some cost function, e.g., one
with the minimum number of states. In this chapter we address the problem of finding a minimum
contained behavior within a stand-alone FSM. In Chapter 7, we consider a feedback composition of
FSM'’s and the problem of finding a minimum well-defined/Moore behavior at an FSM node within
a network of FSM’’s.

The state minimization problem of the general NDFSM will be described in Section 6.1
and some new algorithms related to its minimization are presented in Section 6.2. In Section 6.3, we
will describe an implicit algorithm for state minimization of PNDFSM'’s, a subclass of NDFSM’s.
This research will appear in [39]. First, we would like to find out if an efficient exact algorithm
exists for the state minimization of NDFSM'’s.

6.1 State Minimization of NDFSM’s

Definition 6.1 A non-deterministic FSM (NDFSM), or simply an FSM, is defined as a 5-tuple
M = (S,1,0,T, R) where S represents the finite state space, I represents the finite input space
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and O represents the finite output space. T is the transition relation defined as a characteristic
JunctionT : I x S x S x O — B. On an input i, the NDFSM at present state p can transit to a
next state n and output o if and only if T (i, p, n, 0) = 1 (i.e., (i, p, », 0) is a transition). There exists
one or more transitions for each combination of present state p and input i. R C S represents the
set of reset states.

Isit possible to apply the classical procedure based on computing compatibles to NDFSM’s?
The answer is: yes, the notions of compatibles and selection of a minimum subset carry through to
NDFSM'’s; but, no, that procedure is not guaranteed to produce a behavior with a minimum number
of states. In terms of the theory developed in Chapter 2, some DFSM behaviorally contained in an
NDFSM may not corresponds to a closed cover as defined by Definitions 2.25 and 2.26. This fact
is illustrated by the counter example in Figure 6.1.

Figure 6.1: A counter example, a) the NDFSM M, b) the minimum state DFSM contained in M,
¢) one DFSM contained in M found using compatibles.

Example Given the NDFSM M as shown in Figure 6.1a, the minimum state DFSM M;, as
shown in Figure 6.1b, contained in M, cannot be found using compatibles alone. According to
Definition 2.36, states B and C are not compatible (and any state set containing B and C cannot form
a closed set). As a result, any minimized machine M, obtained by compatible-based algorithms
will have at least four states, one of the two such minimized machines being shown in Figure 6.1c,
However with the non-deterministic transitions into states B and C, we can choose their outgoing
transitions in a way as shown in Figure 6.1b such that B and C are merged together as one state.
This merged state is compatible to state D. This merging possibility is not explored by compatibility.
The minimum state DFSM M), whose behavior is contained in the original NDFSM, has only two
states.
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6.1.1 Generalized Compatibles

By the following definition, we generalize the notion of a compatible (Definition 2.36)
which is a set of states, to one that is a set of state sets. Each individual state set contains states that
can be merged because they can be non-deterministically reached from a reset state. By merging,
we mean that the state set can be considered a new merged state in a reduced machine which on
each input, has a transition copied from a state in the set. If the original FSM doesn’t have any
non-deterministic transition, each such state set will be a singleton. In such a case, each generalized
compatible is a set of singleton-states, corresponding to a classical compatible.

In terms of trace sets as defined in Section 2.4, a generalized compatible can be viewed
as a compatible set of merged states. Each state set within a generalized compatible corresponds to
a merged state. The trace set from a merged state is the union of the trace sets from states in the
corresponding state set. The trace set associated with the generalized compatible is the intersection
of trace sets from all merged states which correspond to state sets within the generalized compatible.

Definition 6.2 A set of state sets is a generalized compatible if for each input sequence, there is a
corresponding output sequence which can be produced by at least one state from each state set in
the generalized compatible.

Given an NDFSM, the definition of generalized compatible requires that for all input

sequences, there is a common output sequence agreed by at least one state out of each state set in
the generalized compatible.
Example {A}, {B}, {C}, {D}, {E}, {F}, {BC}, {BC,D} are generalized compatibles. The
enumeration of input sequences for {BC,D} are as follows: {B D} {D,D} {CDh} — LILY {D,D};
{80} 25 (pp} & (Do} 8.0} L5 D0} L (D) {CD} L (DD} X3 (DD):
{co} 24 oo} 4 (DDY; ...

The following theorem shows a recursive characterization of generalized compatibles that
expresses the compatlblhty of a set of state sets in terms of the compatibilities of its sets of next
state sets.

11

Theorem 6.1 A set K of state sets is a generalized compatible if and only if for each input i, there
exists an output o such that

1. for each state set in K, its set of transitions under input i and output o is non-empty, and
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2. fromthe set K of state sets, the set K' of sets of next states under i and o is also a generalized
compatible.

Note the similarity with the generation of classical compatibles (Lemma 2.12), where we require a
set of states to be (1) output compatible, and (2) its next state set to be compatible.

Now, the problem of state minimization of NDFSM's can be reduced to one of selecting
a minimum subset of generalized compatibles. The selection must satisfy the following covering
and closure conditions.

6.1.2 Generalized Covering and Closure Conditions

Definition 6.3 A set of generalized compatibles covers the reset state(s) if it contains at least one
generalized compatible c such that the set of reset states contains at least one state set in c (i.e., at
least one of its state sets is made up entirely of reset states).

This definition is similar to Definition 2.25 except here each compatible is a generalized compatible.
We still require that an element in a selected compatible must behave like a reset state but an element
is now a set of states to be merged. To make sure that whatever transition we choose for the merged
state, it will still correspond to a transition from a reset state, we require that its corresponding state
sets be made up entirely of reset states.
Example Only generalized compatible {A} covers the reset state.

The closure condition of a classical compatible requires that the set of next states from
the compatible be contained in another selected compatible. With our generalized compatibles, we
first have to extend this notion of containment to sets of state sets.

Definition 6.4 A set K of state sets contains another set K' of state sets if for each state set S' in
K/, there is state set S in K such that S’ contains S.

Let us define the trace set of a set of state set to be the intersection of the trace sets of the state sets,
and the trace set of each state set is in tum the union of the trace sets from the states in the set. If
K contain K' according to the Definition 6.4, then the trace set of K contains the trace set of K"
For the trace set of K to contain the trace set of K’, we require that set containments in the form
VS'e K'3Se KS'CS.

Definition 6.5 A set G of generalized compatibles is closed if for each generalized compatible
K € G, for each input i, there exists an output o such that
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1. for each state set in K, its set of transitions under input i and output o is non-empty, and

2. from the set K of state sets, the set K' of sets of next states under i and o is contained in a
generalized compatible of G.

Example The set of generalized compatible G = {{A}, {BC, D}} is closed. Closure condition
for { A} requires the following generalized compatibles to be selected (represented by the clauses):
({A}) - ({B} + {C} + { BC} + { BC, D}). Closure condition for { BC, D} requires that ({D} +
{F}) - ({D}) - ({E} + {D}). These closure conditions are satisfied by G.

6.1.3 Relationship to Determinization and PNDFSM Minimization

Definition 6.6 A set of states is a mergeable if it corresponds to a state label on the determinized
State transition graph.

Example The mergeables of NDFSM M in Figure 6.1a are A, BC, D, E, F, which are state labels
on the determinized state graph shown in Figure 6.2.

Figure 6.2: Determinized state transition graph of M in Figure 6.1a.

Theorem 6.2 Atleast one minimum closed cover consists entirely of generalized compatibles whose
State sets are mergeables.

Example The minimum closed cover {{A},{BC,D}} is made up of mergeables only.

Therefore to form the covering table and solve the covering problem exactly, it is sufficient
to generate only the generalized compatibles made up of mergeables. Therefore if one replaces
the words “state sets” with “mergeables” in the previous definitions one obtains a more compact
representation of the set of generalized compatibles.
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6.2 Algorithms for State Minimization of NDFSM’s

6.2.1 Determinized Transition Relation and Implicit Subset Construction

Explicit algorithm for subset construction is well-known [32]. Here we outline how subset
construction can be performed implicitly.

Given the transition relation T'(%, s, &/, 0) of an NDFSM M = (S,1,0,T, R), first we
compute the transition relation T9¢(i, ¢, ¢/, 0) of the determinized PNDFSM M¢t, A 4-tuple
(i,¢,¢, 0) is in relation T9** if and only if the set of states ¢ on input ¢ can transit to another set
of states ¢/, and simultaneously produce output o. The advantage of using a 1-hot encoding (i.e.,
positional-set notation) to represent states in the original NDFSM, e.g., s, is that a state in the
determinized PNDFSM, e.g., ¢, (corresponding to a set of states in the NDFSM) can be represented
by a minterm in the encoded space. T%** can be computed by the following formula:

T (i,c,c',0) = Vs {[Tuple(s)- (s C c)]=>3s'[T(i,s,5,0) (s C )]}
Vs' {[Tupley(s') - (' € ¢')] = 3s [T(4, 8,5, 0) - (s C ¢)]}
~0() - ~0(¢)

= Uniong,o{3s[(c 2 s)-T(i,s,s',0)]} - =0(c) - ~0(c)

Given a 4-tuple (3, ¢, ¢/, 0), the first clause on the right requires that for each singleton state s (i.e.,
Tuple;(s) = 1; see Section 3.7.4) contained in c, there is a next state s’ according to T’ which is
contained in ¢. As a result, the next state set of c is a subset of ¢’. With also the second clause, the
4-tuples in the relation will be such that ¢’ is exactly the next state set of ¢ on input ¢ and output o.
Finally, we eliminate all 4-tuples expressing the fact that the empty state set can transit to the empty
set under any input/output combination. Altematively, T'%* can be computed using the set Union
operator (given by Lemma 3.19) as shown in the second formula.

The power of the above computation is that we have effectively determinized the NDFSM
M into the PNDFSM M?t = (25, 1,0, T4, rd¢t) where the new reset state is the union of reset
states in the NDFSM, r?*(c) = Union,—, R(s). Compared with explicit subset construction, no
iteration nor state graph traversal is needed. .

The above relation T'9¢(4, ¢, ¢/, 0), derived from the transition relation T, is useful in the
comp’utation of compatibles and closure conditions for PNDFSM’s in Section 6.4. T contains
many 4-tuples, as ¢ can be any output compatible set of states. During compatible generation, 7%
will be restricted to relation 7 by forcing ¢ and ¢’ to be compatibles:
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7(i,¢,¢,0) = T%*(i,c,c,0) - C(c) - C(c)

If some applications other than state minimization need to know the reachable state
space S%* C 25 of the determinized PNDFSM, it can be computed by the following fixed point
computation:

o Sget(c) = riet(o)
o 58%(c) = 5{t(c) + [¢ = d ey, 0 {SeH(c) - T%! (i, , ¢, o)}

The above iteration can terminate when for some j, S7¢} = S¢* and the least fixed point is reached.
The set of reachable states of the determinized PNDFSM is given by $%(c) = S%(c).

6.2.2 Exact Algorithms for State Minimization

We do not yet know how to implicitize the algorithm described in Section 6.1. The
main difficulty is to find a compact representation for sets of generalized compatibles. Given that
generalized compatibles are already sets of sets of states, there is one more level of set construction
complexity than for state minimization of ISFSM’s or PNDFSM’s. If such a representation exists,
Theorem 6.1 gives a constructive definition of generalized compatible, and the covering and closure
conditions in Section 6.1.2 can be solved as a binate covering problem.

As an altemative, suggested in [83], one can convert any NDFSM to a PNDFSM (Theo-
rem 2.9) by an implicit determinization (via subset construction) step as described in Section 6.2.1
and then apply to the PNDFSM our implicit (or any) state minimization algorithm which will be
presented in Section 6.3. It goes without saying that subset construction may introduce a blow-up in
the number of original states; this can hurt the efficiency of the implicit PNDFSM state minimizer
whose computations are on a variable support whose cardinality is linearly proportional to the num-
ber of states of the PNDFSM. It is an open problem whether a better procedure can be devised, or
instead this exponential blow-up is intrinsic to the problem of minimizing NDFSM’s. It must also
be stressed that we do not have yet good sources of general NDFSM's in sequential synthesis, while
the work in [83] has shown the pivotal importance of PNDFSM’s in the synthesis of interconnected
FSM'’s.
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6.2.3 Heuristic Algorithms for State Minimization

It has been shown that exact minimization of NDFSM’s requires computation of the
generalized compatibles, instead of the usual compatibles. If we restrict our attention only to the set
of compatibles (against generalized compatibles), the algorithm given in Section 6.3 for exact state
minimization of PNDFSM'’s will still serve as a heuristic algorithm for NDFSM minimization. .

The PNDFSM minimizationalgorithm is a heuristic for the state minimization of NDFSM,
because the algorithm chooses only from a subset of the generalized compatibles, namely the
classical compatibles. For the NDFSM example in Figure 6.1, such a heuristic algorithm cannot
find the 2-state reduced machine M; (as this solution contains the generalized compatible { BC, D})
but will only find the 4-state machine M,. However, the heuristic algorithm is guaranteed to find
at lease one solution made up entirely of classical compatibles, because the original NDFSM is
such a candidate solution (made up of compatibles that are singletons). The hope is that most
non-determinism expressed in an NDFSM is pseudo non-deterministic in nature, and as a result, the
heuristic can find near optimum solutions most of the time.

6.3 State Minimization of PNDFSM’s

An NDFSM is a pseudo non-deterministic FSM (PNDFSM) if for each triple (¢, p, 0) €
I x S x O, there is a unique state n such that T'(i, p, n, 0) = 1. It is non-deterministic because for
a given input and present state there may be more than one output and next state; it is called pseudo
non-deterministic because edges carrying different outputs must go to different next states.

Definition 6.7 A pseudo non-deterministic FSM (PNDFSM) is a G6-tuple M =
(S,1,0,6,A, R). §isthe next statefunctiondefined as & : I x S x O — S where each combination
of input, present state and output is mapped to a unique next state. A is the output relation defined
by its characteristic function A : I x S x O — B where each combination of input and present
state is related to one or more outputs. R C S represents the set of reset states.

Explicit algorithms for exact state minimization for PNDFSM’s have been proposed b);
Watanabe et al. in [86] and by Damiani in [20]. In this section, we contribute the first fully
implicit algorithms for exact state minimization of PNDFSM’s. The theory for PNDFSM state
minimization has already been given in Chapter 2. Unlike NDFSM minimization, it has been
proved in Theorem 2.17 that the PNDFSM state minimization problem can be reduced to the
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problem of finding a minimum closed cover. As a result, the algorithm for state minimization of
PNDFSM'’s consists of two steps: compatible generation and binate covering. Itis more complicated
than the one for ISFSM minimization [38] because the definition of compatibles and the conditions
for a closed cover are more complex.

Example The PNDFSM M, shown in Figure 6.3 will be used in this section to illustrate various
concepts. It is a PNDFSM because on input 1, state D can output O and transits to state B, or
outputs 1 and transits to state A.

Figure 6.3: A PNDFSM, M,

This section is divided into two parts: the first half gives definitions and theorems relating
to the generation of compatibles, prime compatibles, covering and closure conditions for state
minimization of PNDFSM’s. The second half describes in more detail how the prime compatible
generation step and the binate covering step can be performed implicitly.

6.3.1 Compatibles

The following theorem serves as an equivalent, constructive definition of compatibles (cf.
Definition 2.36). The theorem yields an implicit compatible generation procedure in Section 6.4.1.

Theorem 6.3 A set c of states is a compatible if and only if for each input i, there exists an output
o such that

1. each state in c has a transition under input i and output o, and

2. from the set c of states, the set ¢’ of next states under i and o is also a compatible.

Example A, B,C, D, AB are compatibles of M, of Figure 6.3. AB is a compatible because on
input 0, it loops back to itself, and on input 1, it goes to C which is also a compatible.
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6.3.2 Covering and Closure Conditions

Definition 6.8 Given a compatible c, p. is the positive literal to signify that compatible c is selected,
and ¢ is the negative literal to signify that compatible c is not selected.

Definition 6.9 A set of compatibles covers the reset state(s) if at least one selected compatible
contains a reset state.

Example The covering condition for M, requires either compatible A or compatible A Bbe selected.
It can be expressed by the simple clause (p4 + pap) where the positive literal p4 evaluates to 1 if
and only if compatible A is selected.

Definition 6.10 A set C of compatibles is closed if for each compatible ¢ € C, for each input 1,
there exists an output o such that

1. each state in c has a transition under input i and output o, and

2. from the set c of states, the set d of next states under i and o is contained in a compatible in
C.

Definition 6.11 Assuming a compatible c is selected, the closure condition for c, denoted by

closure(c), is a logic formula expressing the requirement that some other compatibles be selected
according to Definition 6.10.

Example Consider the closure condition for compatible D. On input 0, D transits to B. For state
B 10 be in a selected compatible, we must select either compatible B or AB. On input 1, D can
(output 1,) transit to A or (output 0,) transit to B. We must select a compatible which contains either
Aor B, i.e., we must select either compatible A or B or AB. Thus, the closure condition for D is
the conjunction of disjunctions (pp + p4B) : (P4 + pB + pap). Similarly, closure condition for A
is (pB + paB) - (pc), for Bis (pa + pas) - (pc), for C'is (pp) - (P8 + pap) and for compatible
ABis (pc).

During binate covering, the covering table should guarantee that for each compatible c,
either c is not selected (i.e., Pc is true), or its closure condition closure(c) is satisfied. In other
words, P; + closure(c). This expression can be represented as a conjunction of binate clauses
which will be discussed in more detail later. Here we'll introduce the concept through the example.
Example For compatible D, the binate covering table should require that

Pp+closure(D) = Pp+ (pB+PpaB) - (Pa+PB+PAB) = (PD+PB+PAB) - (PD+PA+PB+PaB)
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and actually it can be simplified to (P5 + pa + pB + paB).
Here we restate a main theorem for state minimization of PNDFSM'’s, Theorem 2.17.

Theorem 6.4 The state minimization problem of a PNDFSM reduces to the problem of finding a
minimum set of compatibles that covers the reset state(s) and is closed.
6.3.3 Prime Compatibles

For runtime efficiency, we compute the set of prime compatibles which is a subset of the
compatibles. Here we restate its related definitions and theorems from Section 2.9.

Definition 6.12 A compatible ¢’ prime dominates a compatible c if for each minimum closed cover
containing c, the selection with c replaced by ¢’ also corresponds to a minimum closed cover.

Definition 6.13 A compatible c is a prime compatible if there does not exists another compatible
¢ such that ¢ prime dominates c.

Theorem 6.5 There exists a minimum closed cover made up entirely of prime compatibles.

The above theorem justifies our exact state minimization algorithm to consider only prime compat-
ibles.

A sufficient condition for prime dominance (Definition 6.12) is given by the following
theorem:

Theorem 6.6 A compatible ¢’ prime dominates a compatible c if
L if(cNR)#0then(CNR)+#0,and
2. the closure condition for c implies ! the closure condition for ¢, and

3.¢d>oe

Proof: Assume that ¢’ does not prime dominate c, i.e., there is a minimum closed cover containing
¢ which is not any more a closed cover when c is replaced by ¢’ (Definition 6.13). We show that at
least one of the above three conditions is false.

!Condition A implies condition B if and only if the satisfaction of condition A automatically guarantees the satisfaction
of condition B. In other words, A is not less restrictive than B.
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Consider any set of compatibles C such that C U {c} is a minimum closed cover 2. As
C U {c} and C U {¢} have the same cardinality, in order that C' U {¢’} is not a minimum closed
cover, either (1) C'U {c’} does not cover the reset state(s) or (2) C U {¢’} is not closed. For case
(1), C U {c} is a cover but C U {¢’} is not a cover if and only if (cN R) # @ and (¢ N R) = 9,
i.e,, condition 1 of the above theorem is false. For case (2), C U {c} is closed but C U {¢} isnot .
closed if one of the two situations arises: (2a) C satisfies the closure condition for ¢ but not the
closure condition for ¢/. This happens if and only if condition 2 is false. (2b) c is needed to satisfy
the closure condition for some compatible in C, but ¢’ does not satisfy such a condition. This is the
case only if ¢ 2 ¢, i.e., condition 3 is false. [ |
The converse of the theorem is not true in general, because condition 3 is a sufficient condition, but
not a necessary condition, for case (2b) above.
Example Compatible A B prime dominates compatible B because all conditions of Theorem 6.6 are
met. In particular, closure condition for B implies closure condition for AB because [(p4 + paB) -
(pc)] = [pc). Similarly, AB dominates A. As a result, the prime compatibles are AB, C, D.

6.3.4 Logical Representation of Closure Conditions

We now construct a set of logical clauses expressing the closure requirement that a next
state set d is contained in at least one selected compatible, as stated in Definition 6.10. Since we
will generate the set of prime compatibles, we express also part 2 of Theorem 6.6 that refers to the
implication between closure conditions.

The notion of next state sets d is important for expressing closure conditions and testing
prime dominance.

Definition 6.14 d.; , is the set of next states from compatible c under input i and output o.

Given a triple (c, i, 0), the set d.;,, is unique in a PNDFSM. We associate to each d..;, a clause
whose positive literals are the prime compatibles that contain d,; .. This clause will be part of the
binate clause representing the closure condition for compatible ¢. For simplicity in notation, we
designate by d.;,, both the set of next states and the clause associated to it. It will be clear from the
context which one it is meant. )

Example The next state set from D on input 0 and output 0, dp o, is B and it corresponds to the
clause (pB + paB). dp,,1 is A and it corresponds to the clause (pa + paB). dp,1pis B and it
corresponds to the clause (pg + p4B).

It is possible that no such C exists, and the theorem is trivially true.
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The following property is key to evaluating implications between logical clauses by set
containments. The latter can be performed implicitly as d_ , is represented as a positional-set in
Section 6.4.2.

Theorem 6.7 If the set of next states d.1 i1 » 2 the set of next state set d.; o,
then clause do i o = clause d.; ,.

Proof: If the set of next states d.;» . 2 the set of next states d.; ., then each prime compatible
that contains d.,;» » contains also d..; .. Since each literal in a clause d is a prime compatible that
contains the next state set d, it means that the clause d..;,, has all the literals of the clause d.s ;s o
and so each assignment of literals that satisfies the clause d.s i/ .+ satisfies also the clause d.; ., i.e.,
clause do i o» = clause d,; o. ]
The converse does not hold.

For a PNDFSM, a set of compatible states ¢ under an input ¢ may go to different sets of
next states depending on the choice of output o. For at least one choice of o, the corresponding next
state set d..;,, must be contained in some selected compatible. This is expressed by the clause (or
disjunctive clause or disjunction), disjunct(c, ¢), defined as:

disjunct(c,i) = o € outputsat cunderi, d.;,

Example disjunct(D, 1) represents the clause (dp,1,0+dp1,1) = (pa + B + PaB).

For a PNDFSM, the closure condition for a compatible ¢, denoted by closure(c), has
the form of a conjunction of disjunctive clauses. According to Definition 6.10, the conjunction is
over all inputs 7, while the disjunction is over specified outputs o, such that A(%, s,0) = 1. Given a
compatible c, the following product of disjunctions must be satisfied (one disjunction per input):

closure(c) = Vieinputs, disjunct(c,?)

In summary, the closure condition for compatible c is fulfilled if and only if for each input
i, there is an output o such that the next state set d. ; , from compatible ¢ under input and output o
is contained in a selected compatible. In logical terms, the closure condition for c is fulfilled if and
only if the product-of-sums

closure(c) = Vi€ inputs 3o € outputsat cunder¢, d.;, 6.1

is satisfied. These closure conditions are tested against a certain selection of compatibles.
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Example Closure condition for compatible D is

closure(D) = (dp,oo+ dpo,1) - (dp,10+ dp,1,1) = (PB + paB) - (P + PB + PaB)-

We present now the prime dominance condition of Theorem 6.6. Part 1 and 3 are
already expressed as simple logic formulas. Notice that the implication between closure conditions
mentioned in part 2 of Theorem 6.6 translates exactly to logical implication (=>) between clauses,
i.e., given compatibles c and ¢/, the closure condition for ¢ implies the closure condition for ¢’ if and
onlyif closure(c) = closure(c). This implication cannot be readily tested by first evaluating each
closure condition according to Equation 6.1, because each closure condition is in a product of sums
form. We would like to express it in terms of set containment between next state sets using Theorem
6.7. What follows gives such a useful characterization of the formula closure(c) = closure(c’).

We first prove two useful lemmas for manipulating logical clauses.

Lemma 6.8 [Vz F(z)] = [Vz' F'(z')] ifandonlyif Vz'3z [F(z) = F'(z')).
Proof: By using some fundamental validities of logic:

Vz F(z)] = [V’ F'(z")]  ifandonlyif Vz'[Vz F(z) = F'(z')]
ifandonlyif  Vz'3z [F(z) = F'(')).

|
Lemma 6.9 (32’ F'(z')] = [3z F(z)] ifandonlyif VYz'3z [F'(z') = F(z)).
Proof: By using some fundamental validities of logic:
(32’ F'(z')] = [3z F(z))  ifandonlyif Vz'[F'(z') = 3z F(z)]
ifandonlyif  Vz'3z [F'(z') = F(z)].
o

Theorem 6.10 Given compatibles c and ¢,

closure(c) = closure(c’) ifandonlyif Vi' 3i[disjunct(c,i) = disjunct(c’,i)).
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Proof: Substituting z = 1, 2’ = ¢/, F(z) = disjunct(c, i), F'(z') = disjunct(c,i')inLemma6.8,
one gets that

Vi disjunct(c, i) = Vi’ disjunct(c’, i) if and only if Vi’ 3i [disjunct(c, i) = disjunct(c’, ')].

The former is by definition closure(c) = closure(c). n

Now that we have expressed implication between closure conditions in terms of impli-
cation between disjunctive clauses, the following theorem gives a useful characterization of the
formula disjunct(c/, ') = disjunct(c, i).

Theorem 6.11 Given compatibles ¢, c and inputs ', 1,
disjunct(c,i') = disjunct(c,i) ifandonlyif Vo' Io[dy o = deiy)-
Proof: Substituting z = 0, z' = o', F(z) = d.; o, F'(z) = do ¢ o+ into Lemma 6.9, one gets
3o’ desjrr = Jod. i, ifandonlyif Vo' Jo[dy o = deio)-

The former is by definition disjunct(c, ') = disjunct(c, 7). [ |

By substituting Theorem 6.11 into Theorem 6.10 and using Theorem 6.7, we have ex-
pressed the implication between closure conditions of two compatibles (i.e., part 2 of Theorem 6.6)
in terms of a logic formula on the next state sets from the two compatibles.

Theorem 6.12 If Vi’ 3iVo' Jo (dy o 2 dejio) then closure(c) = closure(c’).

Proof: By Theorems 6.11, 6.10 and 6.7. u
The following two theorems simplify the closure conditions. In our implicit algorithm,
they are applied before the implication between the conditions is computed.

Theorem 6.13 Given a compatible c and inputs i and i, if disjunct(c,i) = disjunct(c,i),
then disjunct(c,t) can be omitted from the conjunction closure(c) because of the existence of
disjunct(c,’).

Proof: If disjunct(c, i) = disjunct(c, ), the conjunction of disjunct(c, i) and disjunct(c, i) is
simply disjunct(c, i'). Therefore disjunct(c, ¢) can be omitted from the conjunction closure(c).
|

Theorem 6.14 A set of next states d is not needed to be part of the clause disjunct(c, i), if
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1. dis a singleton reset state 3, or
2.dCcor

3. d 2 d'ifd' is part of disjunct(c, ).

Proof: (1) If d is a reset state, the covering condition would automatically imply this closure
condition expressed by d, and thus the latter is not needed and, even more, the closure condition is
vacuously true. (2) d expresses the condition that if ¢ is chosen, a selected compatible must contain
the state set d. If d D ¢, cis such a compatible, and the closure condition is vacuously true. (3)
d 2 d’ by Theorem 6.7 means d = d'. The disjunction of d and d’ is simply &, so d can be omitted
from disjunct(c, 1). [ |

The order the next state sets are pruned in disjunct(c, ¢) is important, especially if these
pruning rules are executed implicitly (i.e., simultaneously). For proper removal of next state sets,
one should find all the d’s that satisfy condition 1 or 2 first and remove them from disjunct(c, ©).
Then on a separate step remove all the d’s containing other d’ according to condition 3.

6.4 Implicit State Minimization Algorithm for PNDFSM’s

In this section, we will show how the state minimizationalgorithm described in Section 6.3
can be implicitized.

First, we outline the differences between the state minimization algorithm of PNDFSM'’s
and the state minimization algbrithm for ISFSM'’s presented in Chapter 4. Theorem 4.3 does not
hold for PNDFSM’s. The fact that a set of states may not be a compatible even though it is
pairwise compatible is illustrated by the following counter example. As a result, Corollary 4.4
also doesn’t hold for PNDFSM's and the set of compatibles cannot be generated from the set of
incompatible pairs as in Chapter 4. In addition, the computations for closure conditions as well as
prime dominance are more complicated than those for ISFSM’s.

Example The following PNDFSM has three states {A, B, C}, no input and an output with three

values {z,y, z}. All state pairs are compatibles but the set ABC is not a compatible because they
cannot agree on an output in one transition.

*Condition 1 is valid only if a unique reset state is specified.
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Figure 6.4: A PNDFSM which doesn’t have a compatible ABC.

6.4.1 Implicit Generation of Compatibles

As we cannot generate compatibles from incompatible pairs, we have to start with output
compatibles (i.e., state sets) of arbitrary cardinalities. First we compute the transition relation Trdet
between sets of states, using the implicit procedure described in Section 6.2.1.

Theorem 6.15 The set C of compatibles of an NDFSM can be found by the following fixed point
computation:

e mo(i,¢,¢) = 3o T (i, c, ', 0)
o Initially assume all subsets of states to be compatible: Cp(c) = 1,
e ByTheorem 6.3,

- Te41(8, ¢, &) = 1 (iy e, &) - Cr(c)

= Cr41(c) = Vi3 1r41(3,¢,¢)

The iteration can terminate when for some j, C;y1 = C;, and the greatest fixed point has been
reached. The set of compatibles is given by C(c) = Cj(c) and the transition relation on the
compatibles is 7(i, ¢, ) = Tj41(3, ¢, ¢) - Cj(c).

6.4.2 Implicit Generation of Prime Compatibles and Closure Conditions

In our implicit framework, we represent each next state set as a positional-set d. The
fact that a next state set d is part of disjunct(c, ) can be expressed by the transition relation on
compatibles, 7(¢, ¢, d). The following computation will prune away next state sets d that are not
necessary according to Theorem 6.14, and the result is represented by the following relation B.
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Theorem 6.16 The disjunctive conditions can be computed by the following relation B:
A(c,i,d) = ITE(3d {r(i,c,d)- [R(d) + (d C )]}, (d), 7(i, c,d))
B(c, i,d) = Minimaly(A(c, i, d))

Proof: The first equation corresponds to conditions 1 and 2 of Theorem 6.14. Given a compatible ¢
and an input {, if there exists a d which is a next state set from c under ¢ such that R(d) + (d C ¢) is
true, then the disjunct(c, ¢) is set to the empty set §(d), else we keep the original d in the relation
7(i, ¢, d). The second equation tests condition 3 and prunes all the d’s that are not minimal (i.e.,
containing some other d’ that is part of disjunct(c, ¢)). [
In summary 7 (i, c, d) represents the set of disjunctive clauses, while B(c, {, ) represents the pruned
set of disjunctive clauses: d is in the relation B with (c, #) if and only if d is part of the disjunctive
clause for c under : after pruning.

The following theorem computes the set of disjunctive clauses according to Theorems 6.11
and 6.7, that are used to express the closure conditions. Then the set of prime compatibles is
computed according to Theorem 6.6.

Theorem 6.17 If D(c,#,¢,i) =Vd' {B(c,#,d") = 3d [B(c,i,d)- (d' 2 d)]},
then disjunct(c,i) = disjunct(c,1).
The set of prime compatibles can be computed by:

PC(c) = C(c)- B{C(c')-[3s (R(s)-(s C c)) = 3s' (R(s)-(s' € )] Vi'3i (D(e,i, ¢, i"))-(¢' D

Proof: To evaluate disjunct(c’, ') = disjunct(c, i), by Theorems 6.11 and 6.7, it is sufficient to
check

Vo' € outputs at ¢’ under i’ 3o € outputs at cunder i [dy ;1 o D de i o)-

In other words, we want to check that for all next state set d’ from compatible ¢’ on input i’ (on
some output o), there exists a next state set d from compatible c on input ¢ (on some output o) such
that d’ contains d. This corresponds to the condition

vd' {B(Cl, il; d’) = 3d [B(cv t, d) ) (d’ 2 d)]}

Therefore D is a sufficient condition for disjunct(c', ') = disjunct(c, ).
The second equation defines PC/(c) as the set of non-dominated primes. The right sub-
formula within { } expresses the three conditions in Theorem 6.6. A positional-set ¢ has a non-empty
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intersection with the set of reset states R if and only if there exists a reset state 3s R(s) such that
s C ¢. For condition 1, 3s (R(s) - (s C ¢)) = 3s' (R(¢') - (¢ C ¢)) requires that (¢ N R) # 0
if (cN R) # 0. By Theorem 6.10, condition 2 of Theorem 6.6 is checked by Vi’ 3i D(c', ¥, ¢, )
according to the first part of this theorem. Condition (3) is simply (¢’ D ¢). |

The following theorem computes the pruned set of disjunctive clauses according to The-
orems 6.13 and 6.17. They will be used in the next subsection to set up the binate rows of the
covering table.

Theorem 6.18 Given a compatible c, the inputs 1’s associated with ¢ which are involved in non-
trivial disjunctive clauses are expressed by the following relation E :

E(c,i) = A" [(i # ') - D(c,#, ¢, )] + H'eprojecti(D(c, i ¢, 1) - D(c, i, ¢, )
And the corresponding pruned set of disjunctive clauses is given by relation I:
1(07 iid) = B(c’ i7d) * PC(C) ' E(c, i) : _'w(d)

Proof: Given a compatible ¢, Theorem 6.13 states that if disjunct(c,?’) = disjunct(c,?) then
disjunct(c,i) can be omitted from closure(c). And disjunct(c,i) = disjunct(c,?) if the
two pairs are in relation D(c, ¢, ¢, i), according to by Theorem 6.17. The first term Ai’ [(i #
i') - D(e,, ¢,1)] deletes all pairs (c, ) such that there is an input i’ where (i # i) such that
disjunct(c,i’) = disjunct(c,t). But this would eliminate two many (c, ¢) pairs because it is
possible that (i # ¢), and moreover disjunct(c,i’) = disjunct(c,i) and disjunct(c,i) =
disjunct(c, ') are both true. Such pairs are defined by D(c, ¥, ¢, i) - D(c, ¢, ¢, ). In such a case,
we must choose and retain exactly one of the two. A unique (¢, #) out of each set of “co-implying”
pairs is chosen as representative by the BDD cproject operator. And the representative is added
back to relation E by the last term of the first equation.

For the second equation, the pruned set of disjunctive clauses contains the clauses in
B(c, ¢, d), constrained to have compatibles c that are primes in PC/(c), and pairs (c, i) given by
relation E. Also, triples with empty set d are vacuously true clauses, and thus are pruned away. B

6.4.3 Implicit Binate Table Covering

Selection of prime compatibles is performed by the implicit binate covering solver de-
scribed in Chapter 5. In particular, we use the binate table solver which assumes each row has at
most one 0. To use the solver, one has to specify four BDD’s: two characteristic functions Col
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and Row representing a set of column labels and a set of row labels respectively; and two binary
relations 1 and 0, one relating columns and rows that intersect at a 1 in the table, and another
relating columns and rows that intersect at a 0.

Similar to the case for ISFSM’s, each prime compatible corresponds to a single column
labeled p in the covering table. So the set of column labels, Col(p), is given by:

Col(p) = PC(p)

Each row can be labeled by a pair (c, ¢) because each binate clause originates from the
closure condition for a compatible ¢ € PC under an input . And the covering condition for a reset
state is expressed by a single unate clause, to which we assign a row label (¢, 1) = (0, 0). cischosen
to be the empty set to avoid conflicts with the labels of the binate rows, while the choice of ¢ = @ is
arbitrary. The set of row labels, Row(c, i), is given by a binate part and a unate part:

Row(c,?) = 3d I(c,,d)+ B(c) - 0(3)

Each binate clause associated with a compatible ¢ and an input ¢ expresses the condition
that for at least one output o, the next state set must be contained in a selected compatible d. The
corresponding next state relation is I(c, ¢, d).

Next, let us consider the table entries relations 1(c, ¢, p) and 0(c, ¢, p). If (c, ¢) labels a
binate row, the expression 3d [(p 2 d) - I(c, 4, d)] evaluates to true if and only if the table entry is a
1 at the intersection of the row labeled (c, ¢) and the column labeled p, i.e., the row can be satisfied
if next state set d is contained in a selected compatible p. There is an entry 0 at column pif (p = ¢),
i.e., the row can also be satisfied by not selecting a column labeled c.

The row labeled by (@,0) represents the disjunction of compatibles p each of which
contains at least a reset state R(s). On such a row, a table entry is a 1 if and only if 3s [@(c) - 0(3) -
R(s) - (s € p)).

As a summary, the inference rules for table entries given a row (c, ¢) and a column p are:

1(c,i,p) € 3d [(p 2 d) - I(cyi, d)]+ 35 [B(c) - 0() - R(s) - (s € p)]

0(c,i,p) & (p=¢)

6.5 Experimental Results
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We have implemented an implicit algorithm for exact state minimization of PNDFSM'’s
in a program called ISM2, a sequel to ISM. Prime compatibles and the binate table are generated
according to the algorithm described above; then a minimum cover of the table is found by our
implicit binate covering solver presented in Chapter 5. We perform and report experiments on the
complete set of examples obtained by Watanabe in [83]. Each PNDFSM is an E-machine derived
from an arbitrary connection of two completely specified deterministic FSM’s, M; and M, from
the MCNC benchmark. The product machine M = M) X M, is used as the specification. The
E-machine which contains all permissible behaviors at M is derived using the procedure in [85].
Our problem is to find a minimum state machine behaviorally contained in the E-machine.

Watanabe’s minimizer, PND_REDUCE, does not compute prime compatibles but finds all
compatibles instead. In its exact mode, compatible selection is performed by an explicit binate
table solver available in the logic synthesis package sis. In its heuristic mode, it finds instead a
Moore # machine in the E-machine, by ‘expand’ and ‘reduce’ operations [83] on a closed cover of
compatibles. As the heuristic looks only to Moore solutions, it is understandable that it will give a
worse solution than the minimum contained machine if the latter is not Moore. Also the run times
might not be directly comparable. They are reported in the table for completeness.

Table 6.1 summarizes the results of PNDFSM minimization. For each PNDFSM, we
report the number of states in the original PNDFSM, the number of states in a heuristic Moore
solution obtained by PND_REDUCE, the number of states in a minimum contained FSM, the size
of the binate table for PND_REDUCE and for ISM2, and the overall run time for state minimization
for PND_REDUCE (in both heuristic and exact modes) and 1sM2. All run times are reported in CPU
seconds on a DECstation 5000/260 with 440 Mb of memory. For all experiments, timeout is set at
10000 seconds of CPU time, and spaceout at 440Mb of memory.

Out of the 30 examples, PND_REDUCE in exact mode failed to complete on 8 examples
because of timeouts, and failed on 4 examples because of spaceout. It can handle all PNDFSM'’s
with less than 16 states. PND_REDUCE in heuristic mode has a timeout on one example, and spaceout
on three. Note that some Moore solutions found heuristically are far from the optimum contained
ones, although the heuristic solutions may be close to the minimum Moore solutions. Cur program
ISM2 can handle more examples than PND_REDUCE and only failed to find an exact solution on
2 examples because of timeouts. In those two cases, ISM2 did succeed in computing the prime
compatibles as well as building the binate covering table. Furthermore, for the example pm41, it

4State minimization algorithms for finding Moore behaviors will be presented in Chapter 7.
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found a solution with 9 states after 4844.7 seconds (whereas PND_REDUCE heuristic took 4011.9
seconds to find a 19-state Moore solution). For pm50, it found a first solution with 4 states in 150.7
seconds, and the minimum one with 3 states in 7309.5 seconds, while optimality was concluded
in 49181 seconds after the complete branch-and-bound tree was searched (whereas PND_REDUCE
heuristic can only find a Moore solution with 13 states). It is encouraging to note that our implicit
exact algorithm has run times at least comparable to the heuristic one in PND_REDUCE, and in some
cases, much faster.

Note that many exact minimum solutions had only one state, i.e., the solution is pure
combinational logic. Such is a Mealy machine unless the logic is a constant. It is believable that
the minimum Moore behavior is much larger in general as indicated possibly by the results of
PND_REDUCE.

Note also that each compatible results in a column of the binate table by PND_REDUCE in
exact mode whereas ISM2 has one column for each prime compatible. The fact that most examples
have very few prime compatibles shows the effectiveness of our prime compatibles computation
for PNDFSM minimization. Even in these cases, state minimization may not be trivial because
compatible generation and prime dominance may take a long time, e.g., pm04 and s3p1.
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no. | #statesinsol. | table size (rows x columns) CPU time (seconds)

of heur. | exact | PND_REDUCE ISM2 PND_REDUCE ISM2
PNDFSM | states | Moore | Mealy exact exact heur. exact exact
L3 17 2 2 10x4 126.2 | timeout 174
am9 13 12 1 1x1 13.7 | timeout 23
ax4 11 1 1 26 x 28 1x1 2 0.7 0.7
ax7 20 2 2| 334x308 20x6 28 15.6 7.6
bx7 23 2 2| 254x216 20x6 3.2 99 9.0
damiani 5 5 3 21x24 17x10 0.1 0.1 13
edat2 14 11 1 1x1 5.5 | timeout 1.1
edbpl 11 1 1| 1064 x 995 1x1 24 308.1 0.8
edtl 6 1 1{ 103x120 1x1 1.1 0.7 0.3
€69 8 1 1| 551x501 1x1 03 105 03
e6tm 21 8 1 1x1 26.1 | timeout 3.1
ex10 13 4 1 23x28 1x1 0.6 05 0.6
ex12 13 1 1| 1451x 1019 1x1 1.1 | 16149.1 08
mc9 4 1 1 7x11 1x1 0.1 0.1 0.1
mtS1 16 10 1 1x1 8.9 | timeout 3.8
mt52 9 4 1| 256x639 1x1 3.7 394 0.8
pm03 15 1 1| 1203x 1019 1x1 1.2 | 1751.1 0.8
pm04 79 1 1x1 spaceout | spaceout 120.6
pmll 9 1 1| 331x395 1x1 435 29.7 13
pm12 7 3 1 8x19 1x1 9.8 04 04
pm31 22 1 1x1 timeout | spaceout 3.6
pm33 21 13 1 1x1 3327.3 | timeout 6.6
pm41 33 19 <9 12050x 4774 | 40119 | spaceout | *4844.7
pmS50 22 13 3 1249 x 515 322 | timeout | 49181
s3pl 38 1 1x2 spaceout | spaceout 915.8
s3t2 36 1 389x 18 spaceout | timeout 39.9
tmO1 10 1 1| 476x767 1x1 1.2 409 0.8
tm02 7 1 1| 155x211 1x1 04 3.1 04
tm31 9 1 1| 125x113 1x1 0.3 1.1 03
tm32 9 3 2| 106x 143 37x9 04 1.2 29

* best solution before timeout

Table 6.1: State minimization of PNDFSM’s.
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Chapter 7

State Minimization of PNDFSM’s for
FSM Networks

7.1 NDFSM’s in Logic Synthesis

NDFSM’s are useful in sequential synthesis as a formalism to capture a set of sequential
functions. Of all such sequential functions, those that satisfy given criteria of correctness are valid
candidates for implementation (design verification stage). Of all valid candidates, one maximizing
a given optimization criterion is implemented (synthesis stage). Recent papers [86, 85, 20] have
proposed specific applications of NDFSM's, especially PNDFSM s, to sequential synthesis. Some
examples are presented in [20].

NDFSM’s arise in sequential synthesis when capturing all the flexibility that is in a node of
anetwork of FSM’s. We will summarize the related theory, which was first proposed by Watanabe et
al. in [86, 85]. We review in the sequel these applications that explore permissible behaviors in
networks of FSM’s. We detail all those parts of the theory that are important for the step of state
minimization (i.e., to select an optimal behavior of all permissible ones). We present also a more
comprehensive analysis of the conditions of the existence of a related feedback composition.

Given asynchronous system of interacting FSM s and a specification, consider the problem
of finding the complete set of permissible behaviors at a particular component of the system !, The
problem is illustrated in Figure 7.1, where M; is the FSM associated with the component to be
optimized, M, represents the behavior of the rest of the system, and M gives the specification.

!This extends to the sequential case the problem of finding the maximum set of permissible Boolean functions at a
node of a combinational network.
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r
|
[ ] v
x E—— M1 —— -3
M2
M

Figure 7.1: Interaction between two machines.

A behavior, as defined in Section 2.4, is a set of input/output strings that can be produced
by a DFSM. More than one DFSM may produce the same behavior. We say that such a DFSM
represents that behavior. An NDFSM will represent in general more than one behavior. When
not confusing, we will refer interchangeably to a behavior and a DFSM that represents it. Loosely
speaking, a behavior is permissible if the resulting entire system meets the specification, in the
hypothesis that the other components are fixed. In other words, a behavior is permissible at a
node of an interconnection, say at M), if the system obtained by placing at that node a DFSM
that represents the behavior works according to the original specification. Such a replacement is
allowed if the composition is well-defined and the global behavior is the one expected. In the
Section 7.1.1, relevant formal definitions will be given. In particular, a more restricted notion of
permissible behavior proposed in [86, 85) will guarantee that the composition is well-defined, i.e.,
that potentially hazardous implementations are ruled out.

The maximal set of permissible behaviors can be captured by the E-machine and its related
theory in [83] will be reviewed in Section 7.1.2. If the set of behaviors permissible at M is found,
a ‘best’ one can then be chosen. Its optimality is usually evaluated by the estimated compactness
of a final implementation; for instance, one might choose a behavior with a minimum number of
states. Different minimization problems will be described in Section 7.2. Implicit algorithms will
be proposed for these problems in Sections 7.3, 7.4 and 7.5.

Similar formulations of this problem have been called model matching of FSM’s in the
context of the supervisory control problem for discrete event processes [62, 4, 5].

Given an FSM M, called the reference model, that describes some desired input-output

behavior and another FSM M,, called the plant, with a given behavior, the problem of model
matching is to find a compensator FSM M, that modifies the behavior of M in such a way that the
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controlled system, that is the composition of M) and M,, matches the desired behavior. If both the
inputs and the outputs of M are allowed to be modified by M, as shown in Figure 7.1, the problem
is termed generalized strong model matching when a unique reset state for each of M, M, and M,
is specified, and generalized asymptotic model matching when the reset states of M; and M are
arbitrary. If M, is not allowed to modify the outputs of M;, then the above problems are termed
strong model matching and asymptotic model matching respectively.

Figure 7.2 shows an example of model matching problem of the latter type, since M,
is not allowed to modify the outputs of M. Notice that the extemal inputs X drive directly the
flexible component (M,). This simplifies the computation of the permissible behaviors.

2
1

Figure 7.2: Supervisory control problem.

Finally a related problem is the division problem for FSM’s: given an FSM M and a
divisor M, find the quotient Q of the two as shown in Figure 7.3. This is the core problem in the
context of factorization and decomposition of FSM’s.

M1

Figure 7.3: FSM Boolean division.
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7.1.1 Well-defined Composition of DFSM’s

Unless otherwise specified, from now on please refer to the network in Figure 7.1.

Suppose M) = (U, V, S1, A1, 61, 71),and My = (XUV,UUZ, S5, A3, &, r2) are given as
DFSM’s. M takesinput u and outputs v, and M, takes input z and v and outputs « and z. The output
function of M3, Ay, is often splitted in A§ : S, x BIXWI 5 BlUl and A2 : §; x BIXWVI _, B2l
such that Az(s2, zv) = (A3(s2, 2v), Aj(s2, zv)). It is not always possible to connect M; and M,
according to the topology shown in Figure 7.1 in such a way that the connected machines together
represent a deterministic (or output deterministic) FSM with respect to input z and output z. The
reason is that the present value of v is a function of the present value of v, as shown by

v = A1(s1, u) = A (81, A3(s2, 20));
and, the present value of  is a function of the present value of u, as shown by:
u = A3(82, V) = A3 (82, 2\ (81, v)).

It is not true a priori that there is a solution of the first equation in v for every choice of s;, s, z.
If there is unique solution, one can write explicitly v as a function of the other variables: v =
f(s1, 82, ) ?; similarly, for the the second equation. So we ask the question: when is the connection,
called product-machine, well-defined?

If M) or M can be guaranteed to be Moore machines 3, there is a unique (u, v) pair for
each (s1, s, z) combination. A sufficient condition for well-definedness, called implementability,
has been proposed in [83). We shall review it later. Here we introduce a more general condition
under which a product is well-defined.

Well-defined product DFSM

Definition 7.1 Given DFSM M, = (U,V, Sy, M,61,71), and DFSM M, = (X UV,U U Z, S5,
A2, 82, 12), the reachable product DFSM of M; and M,, denoted by My x My, is the DFSM
(X, Z, Sp, Ap, 8p, rp) where p def (r1,72), Sy is defined as the set of reachable states * in Sy x Sa,
and there are functions A, : Sp x X — Z and 8, : S, X X — S, such that for each state pair
(81,82) € Sp and an z € X, there exists u and v such that A,((s1, 82), %) &f 3(s2,zv) and
8p((31,82), 2) & (61 (51, ), Ba(52, 7v)).

>There is an analogy here with the implicit function theorem in real analysis.

3As observed in [2], we only need M, to be Moore in v, but it can be Mealy in z.
*A detailed constructive definition of S, will be given in Theorem 7.3.
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Note that the reachable product DFSM is well-defined only if A, and &, are well-defined
functions. Functions A, and J, might not exist because of the dependence on u and v.

The above definition was conceived independently from a similar notion of well-defined
composition presented earlier in (4, 5], when characterizing by means of a pre-post dynamic
state compensator all solutions to the model matching problem in a closed plant-compensator
configuration. Analysis of combinational cycles in circuits has been reported in [51, 12, 75).
Example Consider A,((s1,s2), z) = 2. We have that z = M}(sz, zv) depends on v, which in tum
is given by v = Ay (s, u), where u = ,\i‘(sg; zv). Given (s), s;) and z, it is not guaranteed that
there are u and v such that the last two equations are satisfied. If they exist, v can be plugged into
the first equation to generate z. A similar analysis holds for 4.

Theorem 7.1 Given DFSM’s My and M, with their corresponding state transitions represented
by Ti(u,s1,81,v) and Tx(zv, 83, 8}, uz), the product machine My x M, has state transitions
represented by Tp(, (s1, 52), (8}, 83), 2) = Ju, v [T1(u, 81, 8}, v) - T2 (zv, 52, 85, u2)). The product
machine My x M, is a well-defined DFSM if and only if for each reachable product state pair
(s1,82) € Sp and for each input z, there exists a unique next state pair (s}, s}) € Sp and a unique
output z such that T,(z, (s1, 52), (51, 83), 2) = 1.

To test the above condition implicitly, we check that the following predicate is true (for
all 81,82 and z):

Sp(s1,82) = 'sia 35: z Ju, v [T1(x, 51, 3,11 v) - Ta(zv, &, 35’ uz))
where ! denotes the unique operator: 'z F(z,y) &f {yly is related to a unique z in F}.

As shown in Section 3.3.2, the unique operator can be implemented as a primitive BDD operator.
As a result, the above well-definedness test can be performed with only a few BDD operations.

Definition 7.2 Given DFSM M, = (U,V, 8, A d1,11), and DFSM M, = (X UV,UU Z, S,,
A2, 82, 12), the reachable product ODFSM (output-deterministic FSM) of M, and M, denoted
by My x My, is the NDFSM (X, Z, Sp, Ap, Ay, 1,) where rp, & (r1,12), S, is defined as the
set of reachable states in Sy x Sz, and there is a functions Xy : S, x X — Z and a relation
Ap 1 Sp x X x Sp — B such that for each state pair (s),s3) € Sp and an z € X, there exists u
and v such that Ap((s1, 52), z) & N (52, zv) and (81(s1, u), 2(s2, 2v)) € Ap((51, 52), 7).

Note that the reachable product ODFSM is well-defined only if ), is a well-defined
function. Contrasting to well-definedness of reachable product DFSM, we do not require here that
the product next state relation be a function.
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Theorem 7.2 Given DFSM’s M, and M, with their corresponding state transitions represented
by Ti(u,s1,81,v) and Tx(zv, s, 85, uz), the product machine My x M, has state transitions
represented by Ty(z, (81, 82), (51, 83), 2) = 3u, v [T1(u, 81, 8}, v) - T2(2v, 82, &, uz)]. The product
machine My x M, is a well-defined ODFSM if and only if for each reachable product state pair
(s1,52) € Sp andfor each input z, there exists one or more next state pairs (s}, 85) € S, and there
exists a unique output z such that Ty(z, (s1, 82), (8}, 8), 2) = 1.

To test the above condition implicitly, we check that the following predicate is true:

Sp(81,82) = 12 3s], 85, u, v [T1(u, 81, 81, v) - Ta(zv, 82, 85, uz)]

The only difference of the above predicate than the one in Theorem 7.1 is here we do not require s;
and s; to be unique.

Theorem 7.3 Given DFSM M, and M, the set S, of product reachable states in Sy x S, can be
computed by the following fixed point computation:

Spe1,2) = {(r1,r2)}
Skl (s1,8) = SE(s1,9) +[(s],8) = (s1,8)]

Ju,v,z,2,8,8 [S,’,’(sl, 82) - T (u, 81,81, v) - Ta(2v, 82, 85, uz)]

Implementable FSM’s

In [83], a definition of product machine is given, based on the existence of a unique pair
u, v such that the equations are satisfied. Moreover, a sufficient condition, called implementability,
for the existence of such a unique pair u, v is introduced.

Definition 7.3 Given DFSM My = (U,V,S1,\1,61,r1), and DFSM M, = (X UV, U U Z, S3,
A2, 82,12), the product DFSM of M, and M,, denoted by My x My, is the DFSM (X, Z, S x
S2, Ap, 8y, ) Where r, def (r1,72), and there are functions A, : (S1 x $3) x X — Z and
0p 1 (81X 82) x X — (S X S2) such that for each state (s1,82) € Sy x S, andanz € X, thereisa
unique pair (u, v) where v = \;(s1, u) and u = M§(sz, 2v), such that Ap((31, 82), z) & A3 (82, zv)
and 8,((s1, s2), z) & (81(s1,v), 62(s2, 2v)).

Definition 7.3 is more restrictive than Definition 7.1, because the uniqueness of minterms
u, v is a sufficient, but not necessary condition to obtain a well-defined feedback composition of
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M, and M,. Moreover, in Definition 7.3 it is requested that the sufficient condition holds also for
unreachable states.

The following example shows a feedback composition that is well-defined according to
Definition 7.1, but does not satisfy Definition 7.3.
Example Consider the DFSM M; that has a unique state s;, an input » and an output v. Let
the output function at s; be A;1(s1,0) = 0, A\1(s1,1) = 1. Consider the DFSM M, that has a
unique state s, inputs z,v and outputs u, z. Let the output function at s; be Az(s2,00) = 00,
A2(s2,01) = 10, Az(s2,10) = 01, Az(s2,11) = 11. The product machine is well-defined as the
DFSM M; x M, that has a unique state (s, 2), an input z and an output z. The output function
at (s1, 82) is Ap((51,82),0) = 0, Ay((s1,82),1) = 1. But there are two pairs of u, v such that the
equations are satisfied,i.e.,, u=0,v=0andu =1,v=1.

In [86, 85] a sufficient condition called implementability is imposed on M, to ensure that
for each present state pair and each input, there is a unique (z, v) pair.

Definition 7.4 Given My = (X UV,UU Z, 83, X3, &, 12), a DFSM My = (U,V, 81, A\, 81,11) is
implementable with M, if there exists a pair of circuit implementations of M, and M such that
no combinational loop is created by connecting them together at u and v.

A combinational loop is a cycle of gates and wires, with no latch or flip-flop to break the cycle.

Theorem 7.4 For an implementable machine My, and for an arbitrary sequence of B'X|, say
o = (zo,...,2:), if we denote by (s1,2) € Si X Sy the pair of states of My and M led to by
(20, - - -, %¢-1), then z, defines a unique pair (u,v) € BVl x BWV| such that v = A{*)(s,, zv) and
v = A(s1,u).

Proof: Suppose that no combinational loop exists between the variables of U and V. Then either
the variables of V' do not depend on those of U or vice versa. Suppose w..0.g the former case.
Then for a state s; of M) a unique value of v, say T, is determined. In M, given s;, z and T, a
unique value of u, say %, is determined. Therefore for each state z, (s1, s2), a unique pair %, T is
determined such that © = My (s1,%) and T = A" (s, 29). |
The following example shows a feedback composition that is well-defined according to
Definition 7.1, but does not satisfy Definition 7.4.
Example Consider the DFSM M; that has a unique state s, inputs v, u2 and outputs v, vo. Let
the output function at sy be A(s1,00) = 00, Ai(s1,01) = 10, A (s, 10) = 01, A\y(s1,11) = 10.
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Considerthe DFSM M3 that has aunique state s, inputs z, vy, v; and outputs u;, uz, z. Let the output
function at s; be A2(s2, —00) = 100, Az(s2, —01) = 001, Az(s2, —10) = 011, Az(s2, —11) = 010.
The product machine is well-defined as the DFSM M x M, that has a unique state (sq, s2), an
input z and an output 2. The output function at (sy, s2) is Ap((s1, 82), =) = 1, since there is a
unique pair u;, u2, v1, v; such that the equations are satisfied, i.e., u; =0,u3 = 1,1 = 1,15 = 0.
M, is not implementable because there are combinational loops (for instance between u; and v3).

Note that if M, is a Moore machine or M, is restricted to be Moore, then the imple-
mentability of M; with M, is guaranteed, because the existence of a unique u, v is guaranteed.

A necessary and sufficient condition for M; to be implementable is given in [86, 85).
Consider a directed bipartite graph G (U UV, E), where the node set of G is divided into two classes
U and V and anode of U (respectively a node of V') corresponds to a variable of the input variables
u (respectively the output variables v) of M;. The edges of G are defined as follows:

[ui,v;]€ E <« )Y’ dependson u;,
[vj,u;]€ E 4 )} depends on v;,

where we denote by A}’ the function of the j-th output variable v; in M. The graph G is referred
to as a dependency graph. Then the following theorem holds.

Theorem 7.5 M, is implementable if and only if G is acyclic.

In the previous theory there is an hidden hypothesis that « and v are binary variables. If «
and v are symbolic variables, cyclic dependency is not an invariant of the encoding process, therefore
an appropriate encoding in an actual implementation could break cyclic dependency found at the
symbolic level. This statement implies that Watanabe’s criterion would be even more conservative
when » and v are symbolic variables.

7.1.2 Permissible Behaviors at a Component FSM

Let M = (X, Z,5,Ty,r) and Mz = (X UV,UU Z, 53, My, 8, r2) be given. M can
be a non-deterministic machine (to specify a set of behaviors, rather than a single behavior, for the
entire system), while M is a completely specified deterministic machine. However, Watanabe only
considered M that is completely specified and deterministic in his implementation.

A synthesis problem is to find the complete set of behaviors, such that the product of each
DFSM M, representing a behavior in the collection, with the fixed DFSM M; (i.e., M} x My) is
well-defined and represents a behavior contained in the NDFSM M. If M is a DFSM, the behavior
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of My x M, must be equal to the behavior of M. The property of M, that the behavior of M; x M,
is one of the behaviors of M (i.e., is contained in M) is called containment property of M;.

A DFSM that satisfies both implementability and containment is a valid choice for M;
and is taken as the definition of permissible DFSM in [86, 85].

Definition 7.5 Given M = (X, Z,S,Tr, ) and My = (X UV,U U Z, S3, A3, 82, 12), a DFSM
M, = (U,V, 51, \1, 61, 1) is permissible if M, is implementable and the behavior of My x M, is
contained in M.

We have defined a permissible machine replacing implementability with the less restrictive
condition that the (reachable) product machine of M; and M, is well-defined.

Definition 7.6 Given M = (X, Z,S,Tm,r) and My = (X UV,U U Z, S, Xz, 83, 12), a DFSM
M, = (U,V, 51, A1, 81,11) is permissible if the (reachable) product machine of My and M, is
well-defined and the behavior of My X M, is contained in M.

xv/uz
1-/11 —-0/01 ° 1M x/z
@ . 0/0
e B
-n
M2 M

Figure 7.4: Watanabe’s example of M, and M.

Given M and M (e.g., consider Figure 7.4 from [83]), many permissible behaviors can
be implemented at M;. The problem is how to compute all of them and how to represent them in
the most compact way. Notice that a DFSM represents (i.¢., contains) a unique behavior, while the
same behavior may be represented (i.e., contained) by many DFSM’s, potentially an infinite number
of them. Therefore our objective is to find the complete set of permissible behaviors at M;, and not
the complete set of permissible machines at M;.

We will see that one can represent them with an NDFSM computed by a fixed point
computation. By determinizing the underlying NDFA (applying a subset construction algorithm),
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the NDFSM can be coverted into a PNDFSM. It is also possible to define a fixed point computation
that builds directly the PNDFSM. The latter computation has been proposed in [85] and the PNDFSM
so obtained has been called the E-machine 5. Similarly, the result of the former computation has
been called the NDE-machine.

Since determinization could lead to an exponential increase of the state space, the first
approach seems more attractive. On the other hand, in the case of PNDFSM s it has been possible
to extend traditional algorithms to find a minimum-state contained behavior, while such a direct
extension seems to fail for general NDFSM’s. It is a matter of current research to compare more in
depth the two approaches and explore algorithms that work directly on NDFSM’s. We will review
next both types of computations.

Instead of capturing the permissible behaviors with an NDFSM and then determinizing
it to obtain a PNDFSM, one can perform the two steps together by means of a unique fixed point
computation, that is a modification of the one needed to compute the NDFSM. In this section M is
not restricted to be a DFSM as in the previous section, but it can be an NDFSM.

Consider the transition relation of a non-deterministic machine given by the following
fixed point computation. Let S© = {(r, {r})} and compute T*+!) and S(t+) for a given
S ¢ 2(5, x 25). Let X, and £, be subsets of S; x 25, respectively, and  and v minterms of
BlUland BIVI, T(t+1) (3, u,v,X,) = 1if and only if the following three conditions are satisfied:

1) Z,es0
@) VY(z,5,8) € BXIx $ x25 : (5,5*) € T, and u= A (5, 2v)
L@ M(8;,2v) € A(5*, 2)
®) (82(5, 2v),A(5, 2, N (52, 2v))) € I,
(3 V(s2,8") €852 x2% : (s,8%)€Z,
= 3(z,5,5*) € BXIx 5 x25:

@) (32,8*) €%,

b)u= )é") (82, 2v)

() 82 = &2(32, zv)

@) s = A(*, 7, (52, 2v)).

If the antecedent of the implication (2) is false, then the implication is true and ,, = 0.
If the antecedent of the implication (2) is true, and condition (2)(a) of the consequent is false, then
the implication is false and so the transition is not added to the relation. Condition (2)(a) rules out

Sthe prefix E stands for environment.
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transitions such that M; would violate the condition that M; x M is contained in M. Condition
(2)(b) instead builds the set =,,. Condition (3) is necessary to restrict Z,, to those sets of pairs that
have their predecessor in Z,,.

By condition (2), for each pair (3, §*) € Z,, there might exist more than one z € BlX!
suchthat u = /\g‘) (82, 2v). ,

Since the pair of next states may be different for different z, more than one pair
(82(32, zv), A(5*, 2, A{) (82, zv))) is added to the next state ., for each (5, 5*) and (u, v).

In each computation, S®) is a set of subsets of S x 25. Note that the empty set {$} may
be in S(). Given T(*+1), we compute S+ as follows. St1)(E,) = 1ifand only if SB(Z,) = 1
or there exists £, € $), u € BIUl, and v € B!V such that T+ (£, u,v,%,) = 1.

Let K be the smallest positive integer such that S(X) (2,) = SK-1)(Z,). Such K always
exists since the number of the elements of the set S(*) is not decreasing during the computation and
the number of subsets of S, x 29 is finite. Let § = S\K) U {¢}.

LetT : S x BlUI x BIVl x § — B be a relation such that T'(Z,, u, v, £,,) = 1if and only
if

M) Z,=Z,={¢}or
@ TH®)(Z,,u,v,Z,) =1

The resulting PNDFSM is defined as a S-tuple T = (U,V,S,T,Z,), where X, =
{(r2,{r})}. Each state represents a subset of S, x 25. If M is a DFSM, a state is a subset
of S, x S.

Figure 7.5: E-machine for M5 and M of previous example.

If the global inputs X drive directly M;, then each state of the PNDFSM corresponds to a
single pair (s, s*) € Sz x 25. A slightly modified version of the previous fixed point computation
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builds the transition relation T(*+1)(Z,, zu, v, £,) = 1. In this case it is expected that the PNDFSM
has a smaller number of states than when the global inputs X are not available directly to M;.

It has been proved formally in [83] that a behavior implementable at M, is permissible
if and only if the behavior is contained in the PNDFSM obtained by the fixed point computation
presented in this section.

It is obvious by construction that a behavior implementable at M; contained in the
PNDFSM is pemissible. Itis less straightforward to show the converse, i.¢., that for each pemmissible
machine M, there exists an equivalent machine contained in the E-machine. The latter is proved
by using a previous result stating that for each implementable machine M; there is an equivalent

prime machine. Then the bulk of the proof is to show that such prime machine is contained in the
PNDFSM built by the fixed point computation.

Since the PNDFSM is obtained by a constructive procedure, one can conclude that if a
DFSM is implementable at M, then it is permissible if and only if there is an equivalent DFSM
contained in the PNDFSM obtained by the fixed point computation.

Note that the previous results hold also if one replaces implementability with the condition
that the product machine of M, and M, exists.

One could raise the question whether, in the special case of the E-machine computation,
it is possible at all that there are contained behaviors M, such that the product of M; and M,
is not well-defined (or M; is not implementable). The answer if yes, as the following case of a
non-implementable behavior contained in a E-machine shows.

Example Consider the DFSM M that has a unique state s, an input z and an output z. Let the
output function at s be Ay(s,0) =0, A,(s, 1) = 1. Consider the DFSM M, that has a unique state
82, inputs z, v and outputs u, 2. Let the output function at s; be A2(s2,00) = 00, \z(sz,01) = 11,
A2(s2,10) = 00, Xz(s2, 11) = 11. Consider the behavior contained in the E-machine represented
by the DFSM M; that has a unique state sy, an input « and an output v. The output function at s, is
A1(s1,0) = 1, A (s1,1) = 0. M, is notimplementable and M, x M is not well-defined either. The
reason is that the output z cannot be uniquely defined for any input value z, because z is oscillating
(there is no pair , v such that the equations are satisfied 5). Notice that the counterexample is built
using the don’t cares transitions defined by the implication (2) when the antecedent is false.

One could show a variant of this example where z cannot be uniquely defined, because there are two pairs of stable
points u, v defining different 2’s.
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7.2 State Minimization Problems for PNDFSM’s

As a summary to the synthesis problem in Figure 7.1, a behavior is permissible at M if
and only if

1. M, is behaviorally contained in the E-machine, and
2. the product machine M; x M, is well-defined.

Given DFSM’s M; and M, Watanabe [85] provided an algorithm and a program to generate the
E-machine, whichis a PNDFSM. Assuming that we have an E-machine, we address in the remaining
sections in this chapter the following problems of selecting one behavior for implementation:

¢ P1: Find a minimum behavior that is contained in the E-machine

¢ P2: Find a Moore behavior that is contained in the E-machine

¢ P3: Find a minimum Moore behavior that is contained in the E-machine

e P4: Find a well-defined behavior that is contained in the E-machine

¢ P5: Find a minimum well-defined behavior that is contained in the E-machine

In Figure 7.1, if M, is a Moore machine 7, we can choose any behavior at M;, e.g., one
with the minimum number of states, from the E-machine. M; x M, is guaranteed to be well-defined
because of the existence of unique (u, v) pairs. As a result, problem P1 can be solved exactly by
our implicit state minimization algorithm for PNDFSM's as described in Section 6.3.

Note that problems P2 and P3 of selecting Moore behavior are easier to solve than
problems P4 and PS of selecting well-defined behavior. One reason is that when selecting a well-
defined Mj, we must check against the given M, whereas for solving P2 and P3, we can ignore
M,. But algorithms for P4 and PS5 can give better solutions than those for P2 and P3 respectively.
We are not going to consider here the problem of finding an implementable behavior out of the
E-machine because it cannot give a better solution than P4 or PS, and it is not obvious that it can
lead to a simpler algorithm.

As compared with P1, the problems P2 to P5, which we shall address, have the extra
constraint that M, should be either Moore or well-defined when connected to M>. As we are still
exploring behaviors contained in a PNDFSM (i.e., E-machine), the theory on closed covers leading

7 Again we only need M, to be Moore in v.
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up to Theorem 2.20 is still valid for these problems. But Theorem 2.17 cannot be applied because
we cannot restrict our attention only to minimum closed covers. Here we are interested in all closed
covers that satisfy the Moore or well-definedness property. One consequence is that compatible
dominance cannot be used for prime compatible generation, nor table column dominance. Another
consequence is that a selected compatible may be mapped into more than one state in an optimum
solution.

There are two approaches that we can use to handle this added constraint. All algorithms
first generate the set of compatibles using the implicit method as described in Section 6.4.1 and
subsequently solve a binate covering problem. They differ on how the table is set up, and also if the
classical branch and bound algorithm needs to be modified.

One approach proposed in [83] to solve P3 and PS is by expanding on the number of
table columns so that the problems can be cast exactly as a binate covering problem. For problem
P3, each column corresponds to a pair (¢, v) where c is a compatible and v is an output minterm.
For problem PS5, each column corresponds to a pair (c, f) where ¢ is a compatible and f is an
output function. Using these pairs as columns, the Moore and well-definedness conditions can be
expressed as binate clauses. Along with the binate closure clauses and the unate covering clauses,
a classical branch and bound algorithm for binate covering can explore solutions that satisfy all
conditions simultaneously. Such an implicit algorithm for P3 is presented in Section 7.3. The
disadvantage of this approach is that the width of table is larger than necessary. We will show in any
minimum solution to P3, no two selected columns (corresponding to states in a minimized machine)
will have the same compatible ¢ associated to two different output v parts. For problem PS5, it is
highly unlikely that a practical (explicit or implicit) algorithm can represent and manipulate tables
whose columns are labeled by (c, f) pairs because there is a huge number of such pairs and it is
difficult to enumerate the functions f.

Alternatively, we propose to use as many columns as compatibles for P2 and P3. And we
use at most |.Sz| copies of each compatible as columns for solving problems P4 and PS. Furthermore,
we shall argue that only a subset of these columns which satisfied the Moore or well-definedness
conditions, called the pruned set, needs to be considered for a solution. To find a solution in P2
or P4, we do not need to solve a binate table, but can always find a solution by a single traversal of
the transition graph of the power machine M?°¥“¢" as defined in Section 2.8. To find a minimum
solution for P3 or PS, we first form a binate table that represents the covering and closure conditions
only. Once an intermediate solution (a closed cover) to this binate table is found, we check further
to see if it also satisfies the Moore or well-definedness conditions. If so, we have found a true
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solution which may still be non-optimum. Then we can continue our branch and bound procedure
to search for the globally minimum solution.

As a summary of our second approach, the following outlines a typical algorithm:
o First generate a pruned subset of compatibles
o For P2 or P4, to find a Moore/well-defined contained behavior:

1. if no pruned compatible covers a reset state, no contained behaviors is Moore

2. else any closure under 77°“*" from a pruned compatible containing a reset state is a
solution

e For P3 or PS5, to find a minimum-state Moore/well-defined contained behavior:

1. form a binate table from covering and closure conditions
2. apply table reductions but not the column dominance nor collapse columns rules

3. if table reduced to a cyclic core, select a column, and branch to the two subproblems
recursively

4. else table reduced to nothing (no cyclic core)

(a) check if at least one reduced machine represented by the selected closed cover is
Moore/well-defined with respect to M,

(b) if so, a solution has been found, set upper bound; continue another branch

(c) else, no solution has been found; continue another branch

Sections 7.4 and 7.5 will describe in detail this approach of finding Moore and well-defined behavior.
In each section, a subsection will be devoted to each of these three subtasks.

Note that the above procedure for P3 and PS is less efficient than the classical branch and
bound algorithm for P1 because (1) we cannot perform dominance between compatibles (therefore
we cannot compute prime compatibles nor column dominance), (2) it may take longer to find a real
solution as some solutions to the binate table do not satisfy the required behavior, (3) the lower
bound is still valid but is relatively weaker. But this method should be more practical than the ones
proposed by Watanabe because we have much smaller tables to be covered.
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7.3 State Minimization of PNDFSM’s for Moore Behavior: 1st Approach

Watanabe defines each compatible to be a pair (g, v) where g represents a set of compatible
states, and v an output minterm. The state minimization algorithm presented in this section is joint
work with Watanabe. Whenever a compatible is selected, we have chosen a set of mergeable
states as well as an output minterm associated with their outgoing transitions. This more complex
notion of compatibles leads to simpler binate covering. In the next section, we shall show that the
compatible can be defined without associating an output minterm with it.

7.3.1 Implicit Compatible Generation

Balarin et al. in [2] observed the following fact that improves the efficiency of compatible
generation - a state that cannot produce a same output for all inputs is not involved in any compatible
in any reduced Moore machine. As a result, we can simply delete such states from the original
machine along with all transitions leading to such pruned states, before we generate compatibles.

The set of compatibles, i.e., (g, v) pairs, is computed using the following fixed point
computation:

CO(‘]) v) = 1
Ck+1 (q’ v) = Vu aql [(avl Ck (q'a v’)) : Tdet(ua q, q'a v)]

where T'%* is the transition relation over subsets of states, as computed in Section 6.2.1.

First we assume that every pair (g, v), where g is any state set and v is any minterm, is a
candidate compatible and so it is in Cp. After the first iteration, C} (g, v) captures all the state sets ¢
that are output compatibles; each state which can produce the same output minterm v for all inputs.
During the k-th iteration, (g, v) will be in Cj4, if and only if on output v, for every input u, there
exists a next state set ¢' € Cj, from set g. The iteration can terminate when Cj4; = Cj and then
the set of compatibles is given by C(g, v) = Ck(g, v).

7.3.2 Implicit Covering Table Generation

We want to construct the set of column labels Col and the set of row labels Row in a
format usable by our specialized binate solver as presented in Section 5.7. Using our terminology
in Chapter 5, columns are labeled by variables p and rows by pair of variables (c, d). The numbers
of Boolean variables used for p, ¢ and d are the same. At the intersection of row (c, d) and column
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p, the table entry is a 1 if and only if p D d, and the table entry is a 0 if and only if p = c. As any
entry cannot be both 0 and 1 simultaneously, we disallow the case ¢ D d.
Each column p in our table is a compatible (i.e., a pair of (g, v)).

Col(qv) = C(g,v) - -9(q)

Each row label consists of two parts ¢ and d. To match the width of p, the row label is
defined so that ¢ = (g, v) and d = (r, w) where g and r represent positional-sets of states, and v
and w represent output minterms. None of the clauses involves the w variables so they are always
assigned the empty set §(w). Rowynat. represents the unate rows corresponding to the covering
conditions of the reset states. With the following definition, we have a 1-entry if and only if the state
set part ¢ in the column label (g, v) contains a reset state r, i.e. ¢ D r and reset_states(r) = 1.

Rowynate (qv, rw) = B(g) - O(v) - reset_state(r) - O(w)

Rowpinate represents the binate rows corresponding to the closure conditions. In par-
ticular, (g, v) must be a compatible (C(g,v) = 1), and w must be a state set in a compatible
(3w C(r, w)), and they are in the Rowpinate(qv, rw) relation only if r is the set of next states of ¢
under output minterm v (3u [T9%(u, g, r, v)]) .

Rowbinate (qva r'w) = [au Tdet (uv q,r, v)] : C(Qv v) ° [aw C(r’ w)] ° 0(w)
Finally we collect all these clauses as the set of Row labels, and make sure that ¢ 2 d.
Row(qu, rw) = [Rowunate(qV, rw) + Rowpinate (qu, rw)] - (qv 2 rw)

After the implicit table is generated, our specialized binate table solver (for ISFSM minimization)
is called for implicit exact binate covering. A first solution from the binate solver is a solution to
P2 whereas the minimum solution of binate covering corresponds to an optimum solution to P3.

7.4 State Minimization of PNDFSM’s for Moore Behavior: 2nd Ap-
proach
State minimization algorithms assumes that at least one minimum machine corresponds

to a minimum closed cover of compatibles, in the classical sense. This assumption is true for
the state minimization of ISFSM’s and PNDFSM’s. This assumption cannot be true for the state
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minimization problem of general non-deterministic FSM, because each state of a reduced machine
corresponds instead to a generalized compatible.

The above assumption is still true for state minimization of PNDFSM’s for Moore behav-
ior. For the sake of contradiction, assume that there are two distinct states in a reduced machine
which corresponds to one compatible state set. And the states cannot be merged because they have
different output functions. If we replace one by the other and remove compatibles that become un-
reachable, the remaining set of compatibles is still a closed cover, and also it is Moore. Furthermore,
it corresponds to a solution with a smaller cardinality, thus contradicting the assumption. So if a
solution exists for problems P2 and P3, there must be a reduced machine which states corresponds
to distinct compatible state sets.

A similar concept was mentioned by Watanabe in the second half of Section 5.4.3 in [83]
but he didn’t continue to give an algorithm after noting that the problem reduces to a 0-1 integer
non-linear programming problem.

74.1 Moore Compatible Generation

To explore behaviors that are behaviorally contained in a PNDFSM M, Theorem 2.20
shows that we can construct its power machine MP°¥*" and explore DFSM’s which are struc-
turally contained in the power machine whose state space is restricted to the compatibles (i.e.,
MPOer| ompatibles). Here we can confine our attention only to the subset of compatibles that can
produce Moore behaviors. This pruned set of compatibles is called the M-compatibles.

Definition 7.7 A set c of states is an M-compatible if there exists an output v such that for each
input u

1. each state in c has a transition under input u and output v, and

2. from the set c of states, the set ¢’ of next states under u and v is also an M-compatible.

The above definition of M-compatibles is different from that of the classical compatibles in Theo-
rem 6.3 in that the order of quantification here is 3o Vi but Vi 3o in Theorem 6.3. Note that 3 and V
are not commutable, and the former definition expresses a stronger condition than the latter, which
accounts precisely for the Moore condition at c.
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Implicit Generation

Theorem 7.6 The set C of M-compatibles of a PNDFSM can be computed by the following fixed
point computation:

o Initially assume all subsets of states to be M-compatible: Co(c) =1,
e By Definition 7.7, Ci41(c) = v Vu 3¢ [Ci(c') - T (u, ¢, d, v)]
The iteration can terminate when C;41 = C;; and the set of M-compatibles is C(c) = C;(c).

Initially, all subsets of states are assumed to be M-compatibles, Co(c). On the k-th
iteration, according to Definition 7.7, we consider a set ¢ to be an M-compatible if and only if there
is an output v such that for every input «, ¢ can transit to a C, M-compatible under « and v.

Note that Balarin’s method [2] of trimming the state space to Moore states can also be
applied here, but it will generate more compatibles than our set of M-compatibles.

7.4.2 Selecting a Moore Contained Behavior

In this subsection, we consider the problem of finding a Moore behavior that is contained
in the E-machine while we will find the exact state-minimum Moore solution in the next subsection.

Definition 7.8 A set K of M-compatibles covers the reset state(s) if at least one M-compatible in
K contains a reset state.

Definition 7.9 A set K of M-compatibles is closed if for each M-compatible ¢ € K, for each input
u, there exists an output v such that the set of next states from c under u and v is contained in an
M-compatible € K. i.e., if

Ve {K(c) = Yu Jv 3c' [K () - TP°¥*" (u,¢,c,v)]} =1
where T?P**" is defined in Section 2.8.

Definition 7.10 A set K of M-compatibles is Moore closed ® if for each M-compatible ¢ € K,
there exists an output v such that for each input u, the set of next states from c under v and v is
contained in an M-compatible ¢’ € K. i.e., if

Ve {K(c) = v Vu 3c' [K(c') - TP*¥*" (u,c,c,v)]} =1
8 A Moore closed set is represented by a Moore DFSM.
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Given a set of M-compatibles, the closure condition (Definition 7.9) is strictly weaker
than the Moore closure condition (Definition 7.10) (because 3v Yu F = Yu Jv F), and thus it is
sufficient to test the latter in order to guarantee the former.

Definition 7.11 A set K of M-compatibles is Moore closed cover if K covers a reset state and is
Moore closed.

The power machine MP°“*" with its state pace restricted to the M-compatibles (pruned
set of compatibles) is denoted by MP°*"|as_ compatibies- The following theorem shows that we can
find a Moore behavior by a traversal of TP°*" | pr_ compatibles-

Theorem 7.7 If no M-compatible contains a reset state, the E-machine does not contain any Moore
behavior.

' Otherwise, the states marked by the following algorithm form a Moore closed cover
contained in the E-machine:

e mark an M-compatible that contains a reset state
e for each unprocessed marked state

— choose an output minterm v arbitrarily such that for every input v, there is a transition

under (u, v) in T'P° werlM—compatiblea

~ mark every state in its corresponding next state set

Each minimum Moore closed cover can be enumerated by the algorithm by appropriate
choices of the initial M-compatible and the output minterms v when processing each marked state.

Proof: 1f no M-compatible contains the reset state(s), there is no way we can construct a Moore
closed cover.

Provided at least one M-compatible contains a reset state, the algorithm will always
terminate because it processes each state at most once, and for each state, we have at least one valid_
choice of v because the state corresponds to an M-compatible. The set of marked states is a cover
because the initial M-compatible marked contains a reset state. The set is also Moore closed by
construction.

Given any minimum Moore closed cover, the above algorithm can find it with the following
execution steps to obtain the corresponding set of marked states. First, mark any M-compatible
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that contains a reset state. For each marked state, choose output v such that the corresponding next
state set is contained in the given Moore closed cover. By definition, this can always be done. This
algorithm will terminate with the minimum Moore closed cover. |

A greedy heuristic can be applied to the above algorithm to find a minimal Moore closed
cover as follows: pick an initial M-compatible with minimum cardinality, and for each unprocessed
marked state, choose the output minterm that results in a smallest number of next states that have
not been marked so far.

7.4.3 Selecting a Minimum Moore Contained Behavior

In this subsection, we want to find the exact minimum-state Moore behavior that is
contained in a given PNDFSM. We propose an implicit state minimization algorithm that first
generates the M-compatibles, and then selects an optimum subset of M-compatibles using an
augmented binate table covering procedure. The classical closure condition in Definition 7.9 can
be expressed as binate clauses, but the Moore-closure condition in Definition 7.10 cannot.

Figure 7.6: A counter example.

Example Figure 7.6 is a counter example, showing that a closed cover of Moore compatibles does
not always correspond to a Moore DFSM. There are four M-compatibles: c0, 1, ¢2 and. c3. The
selection {c0, c1, c3}is closed and covers the reset state s0. But the corresponding reduced machine
is not a Moore DFSM, because from c1, it outputs O on input 1 but outputs 1 on input 0. As a result,
we must check Definition 7.10 on each candidate solution returned by a standard branch and bound
algorithm for binate covering. Note that {c0, c1, c2} is a closed cover of Moore compatibles which
corresponds to a Moore DFSM.
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Note that the heuristic algorithm presented in the last subsection gives a Moore DFSM
because at each step, Moore closure is always maintained at a partial solution.

Implicit Selection of M-Compatibles

The selection problem of a minimum subset of M-compatibles virhich satisfies the covering
and Moore closure condition cannot be solved as a binate covering problem, as noted in [83]. This
is because the form of each Moore condition requires a disjunction of conjunctions of disjunctions
of literals (i.e., M-compatibles) which arises from the quantifications 3v Vu 3¢’ in Definition 7.10.

However, the problem can be solved by augmenting the classical branch and bound
procedure for binate covering with Moore checks. Once a solution (closed cover in the classical
sense) is found, the M-compatible selection is tested to see if it represents a Moore DFSM by the
formula in Definition 7.10. The test can be performed implicit using a few BDD operations. If so,
we have actually found a Moore solution to our problem. Only then we shall use the Moore-solution
as a new upper bound for the continuing search of a better solution.

Note that this augmented branch and bound procedure is correct only if we do not perform
column dominance nor column label collapsing (nor prime compatible generation). This is because
even if a compatible ¢/ dominates another compatible ¢ in the classical sense, we cannot disregard
the compatible c. It is possible that there is a minimum Moore solution containing compatible c,
but by replacing ¢ with ¢/, the modified selection ceased to be Moore-closed (though we know it is
still a closed cover).

7.5 State Minimization of PNDFSM’s for Well-defined Behavior

In this section, we consider the problem of state minimization of a PNDFSM M, for
some required behavior (e.g., well-defined behavior) when connected to another machine M.
The unstated assumption of state minimization, each state in the reduced machine corresponds
to one compatible set of states, is not true in general here. Classical compatible selection is no
longer sufficient because a single compatible ‘may correspond to more than one state in the reduced
machine. Different states in M, may require the compatible in M, to be associated with different
output functions. Watanabe et al. proposed we select a set of pairs (c, f) where cis a compatible and
f is an output function associated with that compatible. By using as many table columns as there
are such pairs, his method gives the binate solver the full flexibility of choosing combinations of
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compatibles and output functions, so that a selection of compatibles guarantees a closed cover while
satisfying some property associated with its output functions. Because it is difficult to represent the
f part of the column pair (¢, f), Watanabe’s proposal is never seen as a practical algorithm.

7.5.1 Well-defined Pairs

We propose an altemative method which uses pairs (¢, s2) as columns in our binate table,
where s; € S; is a state in M °. By representing pairs of the form (c, s;) instead of (c, f), we
have effectively reduced the size of the binate table to be solved. To explore well-defined behaviors
contained in a PNDFSM, we must first justify that it is sufficient to consider only such (c, s) pairs.
In particular, we show that for this problem, there is a one-to-one correspondence between each
(c, s2) pair and a potential state in a reduced DFSM.

Given a PNDFSM M, Theorem 2.20 shows that each behaviorally contained DFSM
corresponds to a closed set of compatibles. This property is still true for the E-machine M which
captures all permissible behaviors, in which we are to pick one which forms a well-defined product
machine with M;. Though it is sufficient to consider classical compatibles (for a PNDFSM), a
compatible may be required (by well-definedness with M) to carry different conflicting output
functions (and different sets of transitions) when it is associated with different states in M,. As a
result, this compatible would correspond to more than one state in the reduced machine M;. Thus
we associate each compatible ¢ with a state s; of M, such that a different output function (and a
different set of transitions) can be associated to each such (c, s;) pair. With a similar motivation as
Watanabe's, this column representation gives the binate solver the full flexibility to select a solution
to our problem.

Now we derive a pruned set of such pairs, each of which may correspond to a state in
a reduced machine M), and when composed with DFSM M, will produce a well-defined product
with DFSM M,. By Theorem 2.20, each DFSM representing a contained behavior within M
is structurally contained in MP°¥*", Taking account of well-defined composition, each DFSM
representing a well-defined contained behavior within M is structurally contained in MP defined
as follows. The STG of M? is an unrolling of the STG of MP°“*" as many times as the number
states in M,. More formally, M? = (C X S2,U, V,T?, (r., 1)) is defined where C is the set of
compatibles, r. is a compatible containing a reset state, and T*(x, (c, s2), (¢, 83),v) = 1 if and
only if TP°" (u, ¢, ¢, v) = 1. Note that M? still captures the same set of permissible behavior as

9Later, we will show that we acmally use a subset of (c, 32) pairs. Pruning is applied in two steps, basing on the
reachability and well-definedness properties.
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in the PNDFSM M (E-machine). The unrolled STG T is not in any way related to T3, yet.

It is obvious that we only need to consider (c, s2) pairs which are reachable from a reset
pair (rc,r2) in M?. Let S, denote the set of such reachable pairs. M,, will be used to denote the
machine derived from M? with its state space restricted to S,,.

We can prune the set of (c, s) pairs further by considering only those that can result in
well-defined behaviors. Theorem 7.2 gave a efficient test for well-defined product between two
DFSM’s. Here we address a more difficult problem: Given a DFSM M; and a PNDFSM M, we
want to check the existence of a DFSM M which is behaviorally contained in M such that M; x M,
is well-defined.

Theorem 7.8 A DFSM M, structurally contained in a PNDFSM M, derived from an E-machine,
is well-defined with respect to M if and only if

V(s1, 82) reachable from (r1,r2) Yz Iz 3s} ) Juv T (u, 81, 81, v) - Ta(2v, 82, 85, uz)
Proof: By Theorem 7.2, the first part of the statement (the part in English) is true if and only if
V(s1, 52) reachable from (ry, r3) Vz !z 3s|s) Juv Tj (u, 81, s}, v) - Tz (v, 82, 85, uz).

Considering the additional fact that M, is behaviorally contained in the E-machine, for
each present state pair (s;, s2) and for each input z, there can be no more than one z value such that
above formula is true. So we can safely replace the unique quantification over z by an existential
quantification. [ |

Instead of checking one behavior (i.e., one DFSM) at a time for well-definedness, we
would prefer to check the E-machine as a whole, and find out if there is a DFSM behaviorally
contained in it that is well-defined.

Theorem 7.9 If there exists a DFSM M, structurally contained in PNDFSM M,, which is well-
defined with respect to M, then

¥(s1,92) € Sp Vz 32 3c's) Juv Tp(u, (¢, 82), (¢, 83), V) - T2 (20, 82, 55, u2),

ie.,

Y(s1,82) € Sp Vz 32 3c'sy Juv TP¥*" (u, ¢, ', v) - Ta(2v, 52, 85, uz),

where Sy, denotes the set of reachable state pairs.
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If the previous test fails, there is no DFSM associated with S, that is contained in M,, which is
well-defined with respect to M,. Given this well-definedness test, we defined our pruned set of
pairs as well-defined pairs as follows.

Definition 7.12 Given a PNDFSM M and a DFSM M,,
a state set c in M and a state sy in M3 form a well-defined pair (c, s;) if

1. there exists a function f. .,y : U = V such that
2. Vz Juz Iwell-defined pair (', 83) TP (u,¢,¢, fic ) (¥)) * To(2 fic,0) (¥), 52, 85, u2).

Unfortunately, the above test cannot be trivially evaluated as a propositional formula. It tests the
existence of a function that makes a formula true. We have to enumerate different functions and
evaluate the formula for each functional assignment.

Theorem 7.10 The set of well-defined pairs P(c, s2) can be computed by the following fixed point
computation:

e Fy(c,s2) = 1 if and only if c is a compatible of M and s, is a state in Ms, and the pair is
reachable from reset states, i.e., (c, 82) € Sp

® Pri1(c, 82) = 1if and only if there exists a function f(c:22) : U = V such that

Vz 3uz 3(c, 83) € Pi TP (u, ¢, ¢, f(o,00)(v) - Ti(z fe,0) (1), 82, 85, uz).

The iteration can terminate when for some j, Pjz1 = P; and the set of well-defined pairs is
P(c, 82) = Pj(c, s3).

For convergence to P, iterative formula testing is necessary because it is possible that the
test first passes on a pair (c, s2) and then one of its implied next state set (¢, s4) is removed during
another iteration. As a result the pair (¢, sz) will no longer satisfy the test. So it should be removed
also.

Ateach step of the above fixed point iteration, foreach (c, s2) € Py, we have to enumerate
each function f.,,) and test if it satisfies the logic formula. It seems to be computationally
prohibitive because there can be many such functions possible. But the actual number of functions
needed to be checked should be much smaller than expected. This is because for most values of
U, f(c,,)(u) is constrained to take exactly one v value. As a result, we only have to enumerate
functions by supplying different output values v for a small number of input values 1.
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7.5.2 Selecting a Well-defined Contained Behavior

After generating the set of well-defined pairs, we explore well-defined behaviors by
finding DFSM’s structurally contained in M,. Given M,, the following procedure will either (a)
find a DFSM M, structurally contained in M,, which is well-defined with respect to M, or (b)
conclude that no DFSM structurally contained in M, is well-defined with respect to M,.

If the reset state (r., r2) has been deleted, then no DFSM structurally contained in the
original M, is well-defined with respect to M,.

Else any DFSM structurally contained in the reduced M,, with reset state (r., ) is well-
defined with respect to M (and structurally contained in the original M,). Such a structurally
contained DFSM can always be found because (1) it has a reset state, (2) no matter which state
(c, s2) is chosen, we can always select an output function for it, and all its next states (¢, s}) € P
can also be chosen. To find sucha DFSM M) = (51, U, V, T, (r, r2)), we simply start with an M,
having a state (rc, r2) but without any transitions; at each state (c, s2), an output function f, )
that passes the test is chosen arbitrarily !, and the corresponding next states reached are added to S
while the corresponding transitions chosen are added to 7}. This iterative procedure can terminate
when no new states are reached/added. Then M; is a solution to P4. We are not claiming optimality
with this method.

The above procedure is similar to the one in Section 7.4.2 for minimal Moore behavior.
A greedy strategy can also be applied here to obtain a heuristically minimal well-defined contained
behavior.

7.5.3 Selecting a Minimum Well-defined Contained Behavior

To find a minimum well-defined contained behavior for PS, we solve the problem by
augmenting the classical branch and bound algorithm for binate covering with well-definedness
checks. The covering and closure clauses are expressed in terms of the first part of the selected
well-defined pairs (i.e., compatibles ¢). A solution to this binate covering problem needs to be
checked for well-definedness by testing Definition 7.12. This is necessary because closed cover of
well-defined pair may not corresponds to a well-defined behavior. If the binate covering problem is
such that many solutions have to be visited before we can conclude with an optimum one, the total
time spend for performing this non-trivial well-definedness test may be considerable.

1%For minimum well-defined behavior, f cannot be arbitrarily chosen. In this case, backtracking is necessary, e.g.,
using branch-and-bound procedure as in Section 7.5.3.
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Chapter 8

Conclusions

This dissertation has focused on the state minimization of various kinds of finite state
machines (FSM’s). In particular, implicit algorithms were presented for state minimization of
ISFSM’s, PNDFSM’s, and a PNDFSM within a network of FSM'’s.

In Chapter 2, we first presented a complete taxonomy on different kinds of FSM’s and
other related concepts. This served as a unified notational framework on which we developed new
theories and new algorithms for state minimization. A proof of correctness was given for our state
minimization algorithm for PNDFSM'’s in Chapter 6. Because an ISFSM is also a PNDFSM, our
corresponding minimization algorithm in Chapters 4 and 5 is therefore proved as well.

The multi-valued decision diagram (MDD) was introduced in Chapter 3. MDD is an
extension of BDD for representing multi-valued functions, and has many useful applications (see
[36]). To explore sequential behaviors in a non-deterministic specification, 1-hot encoded MDD’s
were used as a compact representation of sets of sets (e.g., to represent subsets of compatibles).
A suite of implicit techniques was developed for manipulating these set-theoretic objects. An
assumption was made that the number of elements (i.e., states) is small as compared to the number
of sets of elements (i.e., state sets). The computational time and space complexities for our
representation and manipulation of such sets of sets are not directly proportional to their cardinalities,
and in practice they are very efficient. The only explicit dependency is on the number of elements
(ie., states). | '

An exact state minimization algorithm consists of two steps: compatible generation and
compatible selection. Chapter 4 presented an algorithm that implicitly generates the various subsets
of compatibles needed to solve exactly the state minimization problem of ISFSM’s. Compatibles,
maximal compatibles, prime compatibles and implied classes are all represented implicitly using
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1-hot encoded MDD’s. If it is possible to construct these MDD’s, computations on these sets of
compatibles are easy. We have demonstrated with experiments from a variety of benchmarks that
implicit techniques allow us to handle examples exhibiting a number of compatibles up to 215%,
an achievement outside the scope of minimization programs based on explicit enumeration [63].
We have shown, when discussing the experiments, that ISFSM’s with a very large number of
compatibles may be produced as intermediate steps of logic synthesis algorithms, for instance in the
cases of asynchronous synthesis [46], of learning /O sequences [23], and of synthesis of interacting
FSM’s [65]. This shows that the proposed approach has not only a theoretical interest, but also
practical relevance for current logic synthesis applications.

A fully implicit exact algorithm for solving the binate covering problem [68] was presented
in Chapter 5. This is used as the final step of an implicit exact state minimization procedure for
ISFSM’’s, to select a minimum closed cover of compatibles. A literature survey has been given for
table reduction rules currently known to us. A complete formulation of an implicit binate covering
algorithm has been worked out. A novel encoding scheme has been proposed where a binate table
is represented by a set of row labels and a set of column labels, and as a result, individual table
entries are not represented. We also showed how table reductions and various branch-and-bound
operations can be performed on the binate covering table implicitly. Our implementation includes
(1) a generic binate covering table solver, (2) a binate covering table solver which assumes each
row has at most one 0, and (3) a specialized binate table solver fine-tuned for state minimization of
ISFSM’s. Results on binate covering were reported for our ISFSM state minimization application
where tables with up to 10° rows and columns have been solved implicitly.

In Chapter 6, we have presented both theoretical and practical contributions to the problem
of exploring contained behaviors and selecting one with a minimum number of states for classes
of NDFSM’s. In particular, we have contributed the following: (1) A theoretical solution to the
problem of exact state minimization of general NDFSM'’s, based on the proposal of a notion of
generalized compatibles. This gives an algorithmic foundation for exploring behaviors contained
in a general NDFSM. (2) A fully implicit algorithm for exact state minimization of PNDFSM’s.
The results of our implementation are reported and shown to be superior to the explicit formulation
described in [86]. We could solve exactly all the problems of the benchmark used in [83] (except
one case, where a minimal solution not guaranteed to be the minimum was found). The explicit
program could complete approximately one half of the examples, and in those cases with longer
running times.

Current research in synthesis and verification requires the analysis and optimization of an
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FSM operating within a network of interacting FSM’s. Chapter 7 addressed the abstracted problem
where two DFSM’s M and M; are interconnected in a feedback composition. We first characterize
the necessary and sufficient condition when the composition M = M; x M, is a well-defined
FSM. Previously known conditions, such as requiring M; or M to be Moore, or requiring M, to
be ‘implementable’ as defined in [86), are sufficient conditions only. Then we considered a dual
problem of practical interest: given a DFSM M; and a specification M, find a behavior permissible
at M such that M x M, is well-defined. Watanabe proved in [85] that the E-machine captures
the maximum set of permissible behaviors. Our contribution is to propose improved algorithms to
find such a behavior contained in the E-machine which is either (1) Moore, or (2) well-defined with
respect to Ma. The first problem is intrinsically easier as M> need not be considered. The second
problem requires checking the existence of well-defined behavior within a PNDFSM, which we
reduced to checking the existence of a function which makes a formula true. For future work, an
implementation is needed to show that this proposed method can be made efficient in practice.

To solve each of the two problems, we proposed both a heuristic procedure to find a
minimal-state behavior and an exact algorithm to find a minimum-state behavior. The heuristic
procedure holds the promise of being turned into an efficient computer program as future work.
It involves forming a special power machine, pruning its state space, and then finding a DFSM
structurally contained in the pruned power machine. The exact algorithm, on the other hand,
requires classical binate table covering, augmented with Moore/well-definedness checks.

A key concept used throughout the dissertation is that of a behavior of a DFSM, and that
an NDFSM specifies a set of behaviors. We showed that for a PNDFSM, each closed cover of
compatibles corresponds to a contained behavior, and vice versa. Animmediate consequence is that
our two-step procedure of compatible generation and compatible selection is a complete procedure
forexploring all sequential behaviors contained in a PNDFSM. In the case of state minimization, one
wants a minimum cardinality closed collection of compatibles. But one can replace the requirement
of minimum cardinality with any other desired cost function or property (such as well-definedness)
and obtain a new behavior selection problem. Therefore the exploration of all contained behaviors
is a key technology for future applications in the synthesis of sequential networks.

Itis worth while to underline that besides the intrinsic interest of state minimization and its
variants for sequential synthesis, the implicit techniques reported in this dissertation can be applied
to other problems of logic synthesis and combinatorial optimization. For instance similar techniques
are used in an implicit algorithm [81] for exact state encoding based on generalized prime implicants
(GPI's). Also, the implicit computation of maximal compatibles given here can be easily converted
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into an implicit computation of prime encoding-dichotomies (see [71]). Moreover, the binate
covering problem is at the core of many CAD problems, and our general implicit binate covering
algorithm should be useful in solving large binate tables for those applications as well. Therefore
the computational methods described here contribute to build a body of implicit techniques whose
scope goes much beyond a specific application.
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