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Abstract

State Minimization ofFinite State Machines

usingImplicit Techniques

by

Timothy Yee-Kwong Kam

Doctor ofPhilosophy inElectrical Engineering and Computer Sciences

University of California at Berkeley

Professor Robert K. Brayton, Chair

State minimization isanimportant step insequential synthesis ofVLSI circuits. This dis

sertation addresses state minimization problems ofvarious classes offinite state machines (FSM's).
An exact algorithm usually consists of generation of compatibles and solution ofabinate covering
problem. State-of-the-art explicit minimizers fail on FSM's requiring an exponential number of
compatibles, orhuge binate tables. Such difficult examples do arise inpractice.

This dissertation first contributes a fully implicit algorithm forexact state minimization

ofincompletely specified FSM's, and asoftware implementation called ism. Novel techniques are
developed to represent and generate various subsets ofcompatibles implicitly, ism can handle sets
ofcompatibles and prime compatibles ofcardinality up to 21500. The dissertation also presents the
first published algorithm for fully implicit exact binate covering, ism can reduce and solve binate
tables with up to 106 rows and columns. The entire branch-and-bound procedure is carried out
implicitly.

Tb handle amore general and more useful class ofFSM's, the first implicit algorithm for
exact state minimization ofpseudo non-deterministic FSM's ispresented. Its implementation ism2
is shown experimentally to be superior to aprevious explicit formulation. ism2 could solve exactly
all but one problem ofaset of published benchmarks, while the explicit program could complete
approximately one halfofthe examples, and in those cases with longer running times.

Atheoretical solution ispresented for the problem ofexact state minimization ofgen
eral non-deterministic FSM's, based on the proposal ofgeneralized compatibles. This gives an
algorithmic foundation forexploring behaviors contained in anNDFSM.



Recent research in sequential synthesis, verification and supervisory control relies, as

a final step, on the selection of an optimum behavior to be implemented at a component FSM

within anetwork of FSM's. This dissertation contributes an exact condition characterizing when an

FSM-composition is well-defined. Exact and heuristic algorithms are proposed to find aminimum

behavior contained in a PNDFSM (capturing all permissible behaviors) such that it is Moore or

itscomposition with another DFSM (representing the environment) iswell-defined, and the global
behaviormeets a specification.
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Chapter 1

Introduction

VLSI (Very large scale integrated) circuits are widely used inmodemelectronic products.

Since the invention of the planar integrated circuit by Robert Noyce and Jack Kelby in 1959,

the number of transistors that can be successfully fabricated on a single chiphas doubled almost

every year. As the complexity and performance requirements of VLSI circuits are increasing

exponentially, thedesign process has tobeautomated by using computer-aided design (CAD) tools.

A CAD tool is acomputer program that can help an IC designer inthe VLSI design process. This

dissertation is concerned withtheproblem of automatically synthesizing aclass of digital circuits.

Manual Design Vs. Automatic Synthesis

lb bestmotivate theneed for automatic synthesis, let us consider, as an example of the

state-of-the-art VLSI design, the Intel's P6 microprocessor [15]. Tb stay ahead in the race for the

nextgeneration microprocessors, themostcrucial factor in such aVLSI circuit design is probably

the design time, which has a bigeffect onits time-to-market and ultimately to product success in

themarket CAD tools hold the promise of shortening thedesign cycle by automating part of it.

P6 consists of a CPU core with5.5 million transistors and a secondary cache with 15.5 million

transistors. For circuits withmillions of transistors, the design cost maybe considerable in terms

of thenumber of design engineers involved and in term of the computer resources it requires. It

is simply impossible to design such a complicated circuit manually, without any form of design

automation. A hidden cost is when some design errors are notdiscovered early inthedesign cycle.

This calls for verification tools which include simulation, and formal verification. Verification will

not be covered in this dissertation, but instead we will concentrate on logic synthesis, i.e., CAD
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tools that aids the design process.

Beside reducing the design time and cost, an important design objective is to improve

the quality of the circuit There are at least four aspects of design quality: area, delay, power

and testability. Continuing on the P6example, asSRAM has a regular structure, the 15.5 million

transistors can be packed into a die of 202 mm2. As the CPU probably contains a big portion

of random logic, a die area of 306 mm2 is used for the 5.5 milliontransistors there. Given a

specification, one would like to obtain an implementation with a small area on silicon. Clock

frequency is an important measure of theperformance of amicroprocessor. At aclock frequency

of 133 MHz, the P6 microprocessor is claimed to deliver 200 SPECint92. The maximum clock

frequency is dictated by the delay timeof the critical path in the circuit. Power consumption is

becoming more important asmore transistors are packed intoasingle package. WithboththeCPU

and SRAM dies housed in a single package, the peak power consumed by the P6 is estimated to

be20Watts ataclock frequency of 133 MHz. Testability measures theability to determine during

production testing faults that occur within achip. Note that bothdelay and power can bereduced as

we scale the operating voltage and the process technology, lb attain a small power-delay product,

P6 is fabricated using a2.9V, 0.6micron, 4-layer-metal BiCMOS process technology. Further gain

in circuitperformance canbe obtained only by the use of CAD tools.

Now let us concentrate on CAD toolsthatperform logicsynthesis.

1.1 Logic Synthesis

Logicsynthesis is adesign automation process that generates aphysical layout of adesign

from a user-input behavioral specification. In this section, we present a typical design flow and

describe briefly each synthesis stepinvolved. Each individual step can also be seen as amapping,

from amore abstract design representationtoaless abstractone. Usually higherlevels of abstraction

are used to describe behaviors while the lower levels are more structural in nature.

High Level Synthesis

High level synthesis [55] translates a behavioral specification originated from the user

intoa register transfer level (RTL) description of the design. High level synthesis usually involves

two tasks: scheduling and allocation, hi the scheduling step, a specific time slot is determined

for each of the operations in the specification such that some design constraints (such as area,
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delay, etc) are satisfied while other factors are optimized. In the allocation step, operations and

variables are assigned to functional units and memoryunits respectively. Theend result ofhighlevel

synthesis is anRTL description which consists oftwo parts: datapath and controller. The former is

aninterconnection of functional blocks (e.g., arithmetic units such as adders and multipliers), and

memory umts (e.g., registers). The control sequence for the datapath is generated by a controller

which isdescribed as a finite state machine (FSM). We willconcentrate onthedesign of thecontrol

logic, which is usuallytime consuming.

Sequential Synthesis

The goal of sequential synthesis is to optimize control-oriented designs at the level of

finite state machines. The result of sequential synthesis is a Boolean network of combinational

logicblocks andmemory elements. As the work presented in this dissertation is concerned with

design tools for sequential synthesis,we shalldiscuss it in more detail in Section 1.2.

Combinational Logic Synthesis

Aftersynthesis atthe sequential level, thenextstep is to perform an optimization onthe

combinational portionofacircuit Thegoal ofcombinational logic synthesis [8] isto find an optimal

interconnection of primitive logic gates that realizes the same functionality as theoriginal circuit.

This process involves two steps: technology independent optimization and technology mapping.

Technology independent optimization derives an optimal structure of thecircuit independent of the

gates available in a particular technology. Technology mapping is the optimization step to select

the particular gates from a pre-designed library, to implement an optimized logic network. The

optimization criteria are again: area, delay, power and testability.

Layout Synthesis

The final step in the synthesis flow is physical layout synthesis [41]. From a gate level

description, it generates mask geometries of transistors and wires to be fabricated on silicon.

Different layout tools are used for different design methodologies, such as full-custom, standard

cell and gate array (including FPGA and sea-of-gates). Some common steps inlayout synthesis are

floorplanning, placement, routing, layout editing and module generation.
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1.2 Sequential Logic Synthesis

In general, synthesistoolsworking atlowerlevelsofabstraction are moremature thanthe

onesoperating athigherlevels. The problems and solutions for layout synthesis and combinational

logic (in particular two-level logic) synthesis are quite well understood. This fact is reflected by

the wide use of commercial CAD tools in these synthesis domains. From a research perspective,

sequential synthesis represents thenext frontier inlogic synthesis. Digital circuits, in general, are

sequential innature. It is desirable to work at the sequential level because CAD tools working ata

higher level of abstraction can explore awider design space. The main challenge is to efficiently

explore this huge design space and obtain aquality solution within some reasonable memory space

and CPU time. The subject of this dissertation is the design of algorithms and techniques for

sequential synthesis withan emphasis ontheexact state minimization problem.

Finite state machine (FSM) is a restricted class of sequential circuit called synchronous

circuits which assumes the existence of a common global clock. An FSM is a discrete dynamic

system that translates sequences of input vectors into sequences of output vectors. FSM's are a

formalism growing from the theory of finite automata in computer science [32]. An FSM has aset

of states and a setof transitions between states; the transitions are triggered by input vectors and

produce output vectors. The states can be seen as recording the past input sequence, sothat when

thenext input is seen, a transition can be taken based on the information of the past history. If a

system is such that there isnoneed to lookinto past history todecide what output to produce, it has

only one state and therefore it yields a combinational circuit. On theother hand, systems whose

past history cannot be condensed in a finite number of states are notphysically realizable.

FSM's are obtained either as a by-product of high level synthesis, or are directly given

by theuser. FSM's generated by high level synthesis tools are usually notminimum inthenumber

of states. When directly specified by the user, FSM's are often designed for ease of description,

instead of for compactness inrepresentation. Itisdesirable tostateminimizethe FSM representation

because usually it is agood starting point for other sequential synthesis and verification tools. Also

asmallernumber of states might result inless memory elements and simplernextstate logic inthe

final implementation.

States in an FSM specification can either be symbolic orbinary-encoded. Usually an

FSM withsymbolic states is initially given. Tboptimize thecircuit atthe sequential level, onecan

first perform state minimization, followed by state assignment. Given an FSM, state minimization

produces another FSM whose behavior is equivalent to or contained in the behaviors) of the
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original FSM. Given anFSM withsymbolic states, state assignment encodes these symbolic states

into binary codes. An FSM can also be partitioned into a network of interacting FSM's. FSM

partitioning is usefulascurrent tools for exact state minimization and exact state assignment can

handleonly small to medium examples.

There is no theoretical guarantee thata state minimizedFSM is always a betterstarting

point for state assignment than an FSM that has not been state minimized [30], yet in practice

this leads to excellent solutions, because it couples a stepof behavioral optimization on the state

transition graph (STG) with an encoding step on a reduced STG, so that the complexity of the

latter's task is reduced.

1.3 Implicit Techniques

Efficient representation and exploration of design space is key to any sequential synthesis

tool. We say that a representation is explicit if the objects it represents are listed one by one

internally. Objects are manipulated explicitly, if they are processed one after another. Implicit

representation meansa shared representation of the objects, suchthatthe size ofthe representation

is not proportional to the number of objects in it. By implicit manipulation, we mean that in one

step, many objects areprocessed simultaneously.

Seminal workby researchers atBull [16] and improvements atU.C. Berkeley [80] pro

duced powerful techniques for implicitenumerationof subsets of states of an FSM. These techniques

are based onthe idea of operating onlarge sets of states by their characteristic functions [13] rep

resented by binary decision diagrams (BDD's) [11]. In many cases of practical interest, these

sets have a regular structure that translates into small-sized BDD's. Once the related BDD's can

be constructed, the most common Boolean operations on them (including satisfiability) have low

complexity, and thismakesit feasible to carry oncomputations unaffordable in the traditional case

where allstates mustbe explicitly represented. Of course, it maybe thecase that the BDDcannot

be constructed, because of the intrinsic structure of the function to represent or because a good

ordering of the variables is not found.

More recent workatBull [19,48] hasshown howimplicants, primes and essential primes

of a two-valued ormulti-valued function can also be computed implicitly. Reported experiments

show a suite of examples where all primes could becomputed, whereas explicit techniques imple

mented in espresso [7] failed to do so.

Therefore it is important to investigate how far these techniques based on implicitcom-
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nutations canbe pushed to solvethe core problems oflogicsynthesis and verificatioa Whenexact

solutions are sought, explicit techniques runoutof steam easily because toomanyelements of the

solution space mustbeenumerated. It appears that implicit techniques offerthemostrealistic hope

to increase the size of problems thatcan be solved exactly. This dissertation is a first step on the

application ofimplicittechniques to solve optimizationproblems inthearea of sequential synthesis.

1.4 Contributions to State Minimization

Stateminimizationis animportant stepin sequential synthesis ofVLSI circuits. This dis

sertation addresses stateminimizationproblems ofvarious classes of finite statemachines (FSM's).

An exact algorithm [60,28] usually consists of the generation of compatibles and the solution of a

binate covering problem [68]. The state-of-the-art explicit minimizer [65] fails onFSM's requiring

anexponential numberofcompatibles, orhugebinate tables. Weindicate also where suchexamples

arise in practice.

This dissertation first contributes a fully implicitalgorithm forexact state minimization

of incompletely specified FSM's, and a software implementation called ism. Novel techniques are

developed to represent and generate various subsets of compatibles implicitly, ism can handle sets

of compatibles and prime compatibles of cardinality upto21500. The dissertation also presents the

first published algorithm for fully implicitexactbinate covering. ISM can reduce and solvebinate

tables with up to 106 rows and columns. The entire branch-and-bound procedure is carried out
implicitly.

lb handle amoregeneral and usefulclass of FSM's, the first implicitalgorithm for exact

state minimization of pseudo non-deterministic FSM's is presented. Its implementation ISM2 is

shown experimentally to be superior to a previous explicit formulation [83]. ISM2 could solve

exactly all but one problem of a set of published benchmarks, while the explicit program could

complete approximately onehalf ofthe examples, and in those cases with longer running times.

A theoretical solution is presented for the problem of exact state minimization of gen

eral non-deterministic FSM's, based on the proposal of generalized compatibles. This gives an

algorithmic foundation for exploringbehaviors contained in anNDFSM.

Recent research [83, 4, 2] in sequential synthesis, verification and supervisory control

relies, as a final step, on the selection of an optimum behavior to be implemented atacomponent

FSM within a network of FSM's. This dissertation addresses the abstracted problem of finding

a minimum behavior contained in a PNDFSM (capturing all permissible behaviors) such that its
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composition with another DFSM (representing the environment) is well-defined and the global

behavior meets a specification. This dissertation contributes a necessary and sufficient condition

characterizingwhen such acompositioniswell-defined. Furthermore, exact and heuristic algorithms

areproposed forselectingsuch abehaviorcontained in aPNDFSM which is eitherMoore, or well-

defined with respect to anotherDFSM.

1.5 Organization of the Dissertation

The dissertation is divided into three parts. The first part presents some preliminary

definitions, theories and techniques related to state minimization. The second part presents an

implicit algorithm for exact state minimization of incompletely specified finite state machines

(ISFSM's). The third part addresses state minimization problems of non-deterministic finite state

machines (NDFSM's).

Chapter 2 providesa taxonomy on some useful classesof finite statemachines, andtheir

state minimization problems. At the end of this chapter, we prove the correctness of our state

minimization algorithms for pseudo non-deterministic FSM's (of which ISFSM's are asubclass).

InChapter3,weshow howwecan represent and manipulate sets and sets-of-sets efficiently

using a suite of implicit techniques.

An exact algorithm for state minimization of incompletely specified FSM's consists of

twosteps. Chapter 4 describes an implicit algorithm for the generation of compatibles and prime

compatibles. Chapter 5 presents the first published algorithm for a fully implicit binate covering
table solver.

Chapter 6 explores the state minimization problem of non-deterministic FSM's, and

presents a fully implicitalgorithm for exact state minimization of pseudo non-deterministic FSM's,

a useful subclass of NDFSM's.

Recent advances indicate that synthesis of a component machine within a network of

interacting FSM's requires the solution of specialized versions of the state minimization problem

of PNDFSM's. Chapter 7 presents solutions tothese problems, based onvariations onour implicit
minimizationalgorithm given in Chapter 6.

Finally Chapter 8 provides a conclusion of the theoretical and practical results obtained

in this research.
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Chapter 2

Taxonomy

The aims of thischapterare to providea unified notationalframeworkfor the dissertation,

andto introduce the theory behind stateminimization. In thischapter, we first define someuseful

classes of finite state machines (FSM's) and finite automata (FA's), and investigate their inter

relationship. We will show that a non-deterministic FSM (NDFSM) can be used to specify a set

of behaviors. Thenwe will describe how different behaviors can be explored within an NDFSM

specification. These concepts introduced arecentral to exact algorithms for stateminimization for

FSM's. Attheend, thecorrectness ofourstate minimization algorithms will beproved for a class

ofFSM's called the pseudo non-deterministic FSM's.

2.1 Taxonomy of Finite State Machines

We use characteristic functions proposed by Cerny [13] to represent sets and relations,

bothin theory and inpractice. In thesequel, B = {0,1}.

Definition 2.1 Given asubset S CU where Uissomefinite domain, the characteristicjunction of
S,xs-U->B, is defined asfollows. For each element x € U,

[lifxes.

Definition 22 Given a relation R C X x Y where X and Y are somefinite domains, the charac

teristicfunction ofR, xr'.X xY ->B,is defined asfollows. For eachpair (x,y) e X xY,

'x and y are not in relation R,
XR{x,y) =

x and y are in relation R.

v / Oif:
\ Uf:
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The above definition can be extended to any n-ary relations.

Definition 23 Anon-deterministic FSM (NDFSM), or simply an FSM, is defined as a 5-tuple
M = (5,/, 0, T,R) where S represents thefinite state space, I represents thefinite input space
and O represents the finite output space. T is the transition relation defined as a characteristic

function T:IxSxSxO-+B. On an input i, the NDFSM atpresent state p can transit toa

next state nand output oifand only ifT(i, p, n, o) = 1(i.e., (i,p, n,o)isa transition). There exists

one ormore transitionsfor each combination ofpresent state p and input i. R C S represents the
setofreset states. l k

Note that in this and subsequent definitions, the state space 5, theinput space / and the

output space Ocan begeneric discrete spaces and soS,I and Ocan assume symbolic values [21,70].

A special case is when 5, / and O are the Cartesian product of copies of the space B = {0,1},
i.e., they are binary variables. The fact that the FSM's have symbolic versus binary encoded input

and output variables does not change the formulation of problem, northe solution based on the

computation of compatibles. The theory extends in a straightforward manner to encoded state

spaces.

The above is the most general definition of an FSM and it contains, as special cases,

different well-known classes of FSM's. An FSM can be specified by a state transition table (STT)

which is a tabularlist of the transitions in T. An FSM defines a transition structurethat can also be

described by astate transition graph (STG). By alabeled edge p^ n, the FSM transits from state
p on input i to state n with output o.

Definition 2.4 Given an FSM M = (S,J, O,T,R), the state transition graph of Mis a labeled
directed graph, STG{M) = (V, E), where each state s € S corresponds to a vertex in V labeled

s and each transition (t,p, n, o)e T corresponds to a directed edge in Efrom vertex ptovertex n,
and the edge is labeled by the input/outputpairi/o.

lb capture flexibility/choice/don't-care/non-determinism in the next state n and/or the

output o from apresent state ponan input t, one can specify one ormore transitions (t,p,n, o) e T.

As said above, weassume that thestate transition relation T iscomplete with respect to i and p,i.e.,

there is always atleast onetransition from each state oneach input. Thisdiffers from the situation

in formal verification where incomplete automata are considered.

In subsequentdefinitions, Rrepresents diesetof reset states while r represents theunique reset state.
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Definition 2.5 Astatetransition relation T is complete if

Vt,p3n,o[T(»,p,n,o)]=l.

Vis usedto denoteuniversal quantification, whereas 3 denotes existential quantification. The above

equation is an abbreviationof the following statement:

Vt € / Vp € 5 Sn € S Bo € O suchthat T(i, p, n, o) = 1

Relational representation of T allows non-deterministic transitions with respect to next

statesand/oroutputs,andalsoallows correlations between nextstatesandoutputs. Morespecialized

forms of FSM's are derived by restricting the form of transitions that is allowed in T. FSM's can

be categorizedby answeringthe followingquestions:

1. Insteadof a single transitionrelation, can the next state information and output information

of the FSM be representedseparatelyby two functionsor relations?

2. CantheFSM be represented byfunctions instead of relations? 2

3. Are the next states and outputs in the relations and/or functions correlated? Next state

information is not correlated withtheoutput if the former is related to the inputsandpresent

states only. Uncorrelatedoutput is similarly defined.

Nowwe introduce different classesof FSM's. AnNDFSM is a pseudonon-deterministic

FSM (PNDFSM) if for each triple (i,p,o) € I x S x O, there is a unique state n such that

T(i, p, n, o) = 1. It is non-deterministic because for a given input and present state, there may be

morethan one possibleoutput;it is calledpseudonon-deterministic becauseedges(i.e., transitions)

carrying different outputs mustgo to different nextstates 3.

Definition 2.6 A pseudo non-deterministic FSM (PNDFSM) is a 6-tuple M =

(5, /, 0, £, A,R). S represents the finite state space, I represents the finite input space and O

represents thefiniteoutput space. 8 is the next statefunction defined as8:IxSxO->S where

each combination ofinput,presentstate and output ismapped toa unique next state. A is the output

relation defined as a characteristicfunction A:IxSxO-*B where each combination of input

andpresent state is related tooneormore outputs. RCS represents the setof reset states.

delations are denoted by upper-case letters (e.g., Adenotes anext state relation) while functions are denoted by
lower-caseones (e.g., S representsa next state function).

'Theunderlying finite automaton of aPNDFSM isdeterministic.
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In other words for a PNDFSM, T(», p,n, o) - 1 if and only if A(i,«,o) = 1 and n = 8(i,s, o).

Since thenextstaten is unique for a given combination of input, present state and output, it canbe

given by a nextstatefunction n = 6(i, p, o). Since the output is non-deterministic in general, it is

represented by the relation A.

Theorem 2.1 AnNDFSM ispseudonon-deterministic if

Vt,p,o!n[r(2,p,n,o)] = l

where!denotes anew operatorcalledtheuniquequantifierwMchwiUrjemtroduced inSection3.3.2.
def\x F(xy y) = {y\y is related to a unique x in F}.

Onecan extend theprevious definition to get a numerable family of machines as follows.

An NDFSM is a fc-step pseudo non-deterministic FSM (&-PNDFSM), where k € w (ie-, k is a

natural number), if at any present state, the choice of the next statecanbe uniquely identified by

observing input-outputsequences oflengthuptok. AnNDFSMisa fc-stepr^udonon-deterministic

FSM (&-PNDFSM), where k e u>, if foreach tuple (i, h,..., i*,p, o,02, ...,**)€/ x / x •••x

I xSxOxOX'-xO, thereis a unique nextstaten e S andthereare states S2, •••, sk € S

such that r(i,p,n,o) = 1 and T(i2,n,9%, 02) = T(i3,52,53,03) = ••• = T(ikl sk-Uskl ok) = 1.

Definition 2.7 A fc-step pseudo non-deterministic FSM (k-PNDFSM) is a 6-tuple M =

(5, J, 0,6, A, i2). £ w //re nccr statefunction defined as 8:Ix-xIxSxOx--xO->S

where each combination ofpresent state, k inputs and k outputs gives a unique next state. A is the

output relation defined as a characteristicfunction A:IxSxO-¥B where eachcombination of

input andpresent stateis related tooneormore outputs. RCS represents thesetofreset states.

By definition, a PNDFSM is an 1-PNDFSM. Cerny in [14] has given a polynomial

algorithm to convert a fc-PNDFSM to a PNDFSM. A fc-PNDFSM has a representation smalleror

equal to that of an equivalent PNDFSM. We shall consider the state minimization of 1-PNDFSM

only andassume that the fc-PNDFSM canbe handled by first goingthrough sucha conversion step.

Classicaltextsusuallydescribe the MealyandMooremodelof FSM's. Forcompleteness,

they are also defined here as subclasses of NDFSM. A Mealy NDFSM is an NDFSM where there

exists a next state relation 4A:/xSxS->£andan output relation 5A:IxSxO->B

"The next state relation Acan be viewed as afunction A: / x S -¥2s; n6 A(t, p) ifand only ifn isapossible next
stateofstate p on input t.

5The output relation Acan be viewed as afunction A: / x 5 -> 2°;o € A(t,p) if and only ifoisapossible output
of state p on input t.
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such that for every (t,p,n,o) elxSxSxO, T(t\p,n,o) = 1if and only ifA(i,p,n) = 1and

A(t,p,o) = l.

Definition 2.8 AMealy NDFSM isa 6-tuple M = (5, J, 0, A, A,R). S represents thefinite state

space, I represents thefinite input space and Orepresents thefinite outputspace. Ais the next state

relation defined asa characteristicfunction A:IxSxS-+B where each combination ofinput

andpresent state is related toa non-empty setof next states. A is the output relation defined as a

characteristicfunction A:IxSxO-*B where each combination of input andpresent state is

related toa non-empty setof outputs. RCS represents the setofreset states.

Note thatnextstates and outputs are notcorrelated inthestate transition relationofaMealy machine.

A Moore NDFSM is an NDFSM where there exists a next state relation AiIxSxS -» B

and an output relation A :SxO-> B such that for all (i\p, n, o) e IxSxSxO, T(i,p, n, o) = 1
ifand only if A(i, p, n) = 1and A(p, o) = 1.

Definition 2$ AMoore NDFSM isa6-tuple M = (5, J, O,A, A, R). S represents thefinite state

space, I represents thefinite inputspace and Orepresents thefinite outputspace. Ais the next state

relation defined asa characteristicfunction A:IxSxS->B where each combination ofinput

andpresent state is related toa non-empty setofnext states. A is the output relation defined as a

characteristicfunction A : S x O -> B where each present state is related to a non-empty setof
outputs. R C S represents theset ofreset states.

As a special case of Mealy machine, Moore machines have its output depends on its present state

only (but not input).

The definition of Moore machine presented here is the same as theonegiven by Moore

in [58] and followed by authors in the field (e.g., [86]). The key fact tonotice is that the output is

associated withthe present state. In other words, the common output associated to a given state,

goes on all transitions that leave that state. This is a reasonable assumption when modeling an

hardware system. However, it iscommon to find intextbooks [40,32] a"dual" definition where the

output is associated with thenext state. In other words, thecommon output associated to agiven

state, is on all edges that go into that state, while edges leaving a given state may carry different

outputs.

This second definition enjoys the nice property that it is always possible to convert a

Mealy machine into aMoore machine. Thismaybe thereason of its popularity. Instead withthe
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first definition, there areMealy machines thathave noMoore equivalent Forexample, a wire can

be consider a Mealy machine withonestate and with its input connecting directly to its output It

does not have an equivalent Moore machine.

An NDFSM is an incompletely specified FSM (ISFSM) if for each pair (t,p) e Ix S

such that T(i,p,n, o)= 1,(1) themachine can transit toa unique next state norto any next state,

and(2)themachine canproduce a unique output oorproduce any output

Definition 2.10 An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M =

(5, /, 0, A,A, R). S represents the finite state space, I represents the finite input space and O
represents thefinite output space. A is the next state relation defined as a characteristic function

A:IxSxS-tB where each combination ofinput and present state is related toa single next

stateor to allstates. A is theoutputrelation defined asa characteristicfunction A:IxSxO-> B

where each combination of input andpresent state is related to a single output or to all outputs.

RCS represents the set ofreset states.

Incompletespecification is usedhereto express sometypesof don'tcares in thenext states

and/or outputs. We warn that even though "incompletely specified" is established terminology in

the sequential synthesis literature, it conflicts with the fact that ISFSM's have a transition relation

T that is actually completely specified with respect to present state p and input i, because there is

at least one transition for each (i, p) pair in T.

A deterministic FSM (DFSM) or completely specified FSM (CSFSM) is an NDFSM

where foreachpair (i,p) e I x S, there is a unique next state n anda unique output o such that

T(t, p, n, o) - 1,i.e., there is aunique transition from (i,p). Inaddition, Rcontains a unique reset
state.

Definition 2.11 A deterministic FSM (DFSM) or completely specified FSM (CSFSM) can be

defined as a 6-tuple M = (5, /, 0,£, A, r). S represents the finite state space, I represents the

finite input spaceand O represents thefinite output space. 8 is the next stateJunction defined as

8 : I xS -> S where n e S is the next stateofpresent state p € S on input i e I ifandonly if

n = 8(i,p). Xis the outputfunction defined asX: IxS -¥0 where oeOisthe outputofpresent

statep € Son input i € / ifandonly ifo = A(t,p). r € S represents the unique reset state.

Note that an ISFSM and a DFSMare both next-state outputuncorrelated becausewe can

represent the next state and output informationseparately. But a PNDFSM (and &-FNDFSM) is

next-state outputcorrelated as the next state is correlated withthe outputby n = 8(i, p, o).
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AMoore DFSM is a Moore NDFSM where foreach pair (i, p) e IxS, there is a unique

next state n and for each p € S, a unique output o such that T(i,p, n, o) = 1. In addition, A

contains a unique reset state.

Definition 2.12 A Moore DFSM can be defined asa 6-tuple M = (5, /, 0,8} A, r). 5 represents

thefinite state space, I represents thefinite input space and O represents thefinite output space. 8

is the next statefunction defined as 8 :1 x S -+ S where n € S is the next state ofpresent state

peSon input i € / ifandonly ifn = 8(i,p). Xisthe outputfunction definedasX: S-tO where

o € 0 is the output ofpresent state peS ifand only ifo = A(p). r € S represents the reset state.

Definition 2.13 Given anNDFSM, a state s is output-deterministic iffor every input i, there exists

a unique output o such that s outputs o under input i. An NDFSM is output-deterministic (i.e., the

NDFSM is an ODFSM) if every reachable state is output-deterministic.

Theorem 22 An NDFSM is output-deterministic ifandonly if

Vi,p\o3n [T(i,p, n, o)]= 1.

Definition 2.14 An NDFSM is spuriousnon-deterministic iffor each input sequences, there is a

unique outputsequence.

A spuriousnon-deterministic FSM, as opposedto a true non-deterministic one, can be viewed as a

DFSM. Is spurious non-determinism the sameas output-determinism for NDFSM's?

Theorem 23 IfanNDFSM isspurious non-deterministic, then all itsreachable states are output-
deterministic.

Proof: Given an NDFSM that is spurious non-deterministic. Assume that a reachable state s is

notoutput-deterministic, thereis an inputi on which s can produce twodifferent outputs. As s is

reachable, saywithinput sequence a, from a reset state, themachine willproduce different output

sequences underthe inputsequence <rti. As thiscontradicts the fact that the NDFSM is spurious

non-deterministic,our assumption was false. •

2.2 Taxonomy of Finite Automata

Definition 2.15 Given afinite setof symbols 2 (i.e„ afinite alphabet), a language C is a setof
strings ofsymbolsfrom Z.
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Definition 2.16 A deterministic finite automaton (DFA), or simply finite automaton (FA), is

defined asa 5-tuple A = (5,2, £, r, F). 5 represents thefinite state space and2 represents afinite

alphabet. 8 is the next stateJunction defined as 8 : 2 x S -* S where n € Sis the next state of

present state p € S onsymbol i € 2 if and only ifn = 8(i,p). r € S represents the reset state.

F C Sis theset offinal states.

The next state function 8 can be extended to have as argument strings in 2*, (i.e„

8:irxS-^S)by 8(pi, s) = 8{i,8(p, s)).

A string x is said tobe accepted by the DFA A if8(x, r)isa state in F. The language

accepted by A,designated C(A), is the setofstrings {x\8(x,r) e F}.

Definition 2.17 A non-deterministic finite automaton (NDFA) is defined as a 5-tuple A =

(5,2, A, r, F). S represents the finite state space and 2 represents the finite alphabet. A is
thenext staterelation defined as as a characteristicfunction A:I,xSxS-> B where ne Sis a

next state ofpresent state p e S on symbol i € 2 ifand only ifne A(i, p)6. r€S represents the
reset state.

The next state relation can be extended to have as argument strings in 2* (i.e., A :

2* x 5 x S -> B) as follows: A(pa,s,s") = 1 if and only if there exists s' € S such that

A(p,5,s') = 1andA(i, s', s") = 1.

A string x is said to be accepted bythe NDFA A if there exists a sequence of transitions

corresponding tox such thatA(x, r) contains astate inF. The language accepted by A,designated

C(A), is the setofstrings{x\A(x} r)C\F ^ 0}.

Theorem 2.4 Let C be the language accepted by a non-deterministicfinite automaton. Then there

exists a deterministicfinite automaton thataccepts C.

Proof: By subset construction [32]. •

Corollary 2.5 DFA's and NDFA's (and NDFA's with e-transitions and regular expressions) accept

thesame set oflanguages.

Proof: Theclass of languages accepted byNDFA's includes thesetoflanguages accepted byDFA's

(regular sets). Converse is also true becauseof the previous theorem. •

^The next state relation Acan be viewed as afunction A:/xS->25;n6 A(t, p) ifand only ifn is apossiblenext
state of state p on input t.
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As DFA's andNDFA's accept the same set of languages, we shall referto bothas finite

automata (FA's). However given anNDFA, itsequivalent DFA mayhave anexponential number of

states as compared with the NDFA.

Whereas a DFA is restricted tohaving exactly onetransition from a stateforeachsymbol,

an NDFA may have any number of transitions for a given symbol, including zero transition. If

when processing a string, an NDFA comes to a state from which there is no transition labeled

with a symbol, thepath followed is terminated. Actually, given anNDFA with missing transitions,

an equivalent NDFA without any missing transition canbe constructed by adding a unacceptable

dummy state, andpointing all missing transitions to thisdummy state.

An NDFA allows multiple resetstates. Again given an NDFA withmultiple reset states,

an equivalent NDFA can be constructed witha newuniquereset state.

2.3 Conversions between Finite State Machines and Finite Automata

Theorem 2.6 (DFA -> DFSM) Given a DFA A = (5, J, 8, r, F), a DFSM M = (5, /, 0,8, A, r)

can be constructed such that 0 = {0,1} andfor every i € J ands € S, A(i,s) = 1 ifandonly if
8(i,s)€F.

The DFSM M will output 1 after an input string if andonly if the string readsince the

reset stateis alsoaccepted by the DFA A. We ignore the e-string (i.e., thefact thatthe resetstateof

A may be acceptable) as it cannot be modeled by a Mealy DFSM.

Theorem 2.7 (NDFSM -+ NDFA) Given an NDFSM M = (S,J,0,r, fl), an NDFA A =

(S, J x 0, A,R,S) can be constructed such that for each io e I x O (i.e., a symbol contain

ing an input and an outputpart) andforeach seS, A(io, p,n) = 1ifandonly i/T(t, p,n, o)= 1.

All states are acceptablein A.

Theorem2.8 An FSM is pseudo non-deterministic if and only if the FA associated with it is

deterministic.

Note that although a given FSM is deterministic, the constructed finite automaton can still

benon-deterministic because the next state nofapresent state p isnotalways specified underevery
io pair in J x 0.

Theorem 23 (NDFSM ->PNDFSM) Given an NDFSM M = (5, J,0, T,R), an NDFA A =
(5, J x 0, A, R,S) can beconstructed according tothe above Theorem 2.7. The NDFA can then be
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"determinized" via subset construction [32] to obtain a DFA A**1 = (25, / x 0,Ade\ Rdet, 2s).
Then consider an NDFSM Mdet = (25, /, 0, Tde\ Rde\ 2s)where each symbol ofAdti issplitted
into an input and an output, and Tdet(i,p, n,o) = 1 ifand only ifAde*(t'o,p, n) = 1. Mdei is
pseudo non-deterministic.

Theorem2.10(k-PNDFSM -• 1-PNDFSM) Construction given by Cerny in[14].

2.4 Trace Sets and Behaviors

Intheremaining sections ofthischapter, weshallintroducedifferent concepts thatleadup

to an exact algorithm for state minimization. Our discussion will be based on the state minimization

of PNDFSM'sbecausewe believeit is the largestsubclass of NDFSM'sthatour stateminimization

procedure canhandle correctly. Millerhasgiven a proofin [56] fortheclassical exact algorithm for

ISFSM minimization [28]. We contribute a concise proofforourexact stateminimizationalgorithm

for PNDFSM's, by presenting a numberof theorems in the following sections. In this section, we

first show that a DFSM realizes a behavior while an NDFSM realizes a set of behaviors.

Definition 2.18 Given afinite setof inputs I andafinite setofoutputs O,a tracebetween I and O

is apairof input and output sequences (oi,o0) where Oi € /*, o0 € 0* and \o{\ = \o0\.

Definition 2.19 A trace set is simply a set oftraces.

Definition 2JO An NDFSM M = (5, /, 0, T, R)realizes a trace setbetween I and Ofrom state

so e S,denoted by C(M\80)1, iffor every trace ({t'o, ii,.. •, t,-}, {oo, o\,..., oj}) in the trace set,
there exists a state sequence s\, «2,. ••,Sj+i such that V& : 0 < k < j, T(tjt,s*,Sk+i, Ok) = 1.

Definition 221 An ISFSM M = (5, /, 0, A, A,R)realizes a trace setbetween I and Ofrom state

so GS, denoted by /^Afl^), iffor every trace ({to, n,..., i,}, {o©, <h,..., oj}) in the trace set,
there exists a state sequence si, «2, •••, Sj+i such that Vk:Q<k<j,

• Sfc+i €A(iklsk),and

• ok eA(ik,sk).

7If the NDFSM Misviewed as aNFA Awhich alphabet is Z= / x O, the trace setofM from astate so corresponds
to thelanguage of A from so,andbothwillbedenoted by £(M|,0).
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The trace set realized by a deterministic FSM with inputs / and outputs0 is called a

behaviorbetweenthe inputs / andthe outputs 0. A formal definition follows.

Definition 2.22 Given afinite setof inputs I and afinite set of outputs O, a behavior between I

and Oisa trace set, B = {(a,, o0) 11<7,| = |<r0|}, which satisfies thefollowing conditions:

1. Completeness:

For an arbitrary sequence o{ on I, there exists a unique pair in B whose input sequence is

equal to 0{.

2. Regularity:

There exists aDFSM M = (5, J, 0,8, A, so) such that,for each ((to, ••.,*>), (oi,..., o;)) e

B, there is a sequence ofstates s\, S2,..., Sj+iwith the property that Sk+i = 8(ik, Sk) and

Ok = A(ifc, Sk)forevery k : 0 < k < j.

For each state in a deterministic FSM, each input sequence corresponds to exactly one

possible output sequence. Given a reset state, a deterministic FSM realizes a unique input-output

behavior. But given a behavior, there can be (possibly infinitely) many DFSM's that realize the

behavior. Thus,themapping between behaviors and DFSM realizations is aone-to-many relation.

Any other kinds of FSM's, on the other hand, can represent a set of behaviorsbecause

by different choices of next states and/or outputs, more than oneoutput sequence can be associated

with aninput sequence. Moreover, multiple reset states allow alternative trace sets be specified;

depending on the choice ofthe reset state, a behavior within the trace set from the chosen reset state

can be implemented. Therefore, while a DFSM represents a singlebehavior, a non-deterministic

FSM (NDFSM) canbe viewed asrepresenting asetofbehaviors. Eachsuchbehaviorwithin its trace

set is called a contained behavior of the NDFSM. Thenan NDFSM expresses handily flexibilities

in sequential synthesis. Using anNDFSM, ausercan specified thatoneoutof the set ofbehaviors

is to be implemented. The choice of a particular behavior for implementation is based on some

cost function such as thenumber of states. Other costfunctions related to implementability willbe

investigatedin Chapter7.

2.5 Machine Containment

The fact that an NDFSM represents a set of behaviors leads naturally to the notionof

behavioral containment or trace set inclusion between NDFSM's.
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Definition 223 AnNDFSM's M = {S,/,0,r, R) behaviorally contains another NDFSM Mf =

<5', /, 0, r, Rf), denoted by C(M) DC(M'), if*forevery r' € R', there exists reR such that
thetrace setofMfrom r contains thetrace set of M'from r'. i.e.,

C(M) DC(M') ifandonly if Vr'eRfBreR C(M\r) DC(M'\r,).

A different and more restrictive notion of containment is structural containment, which

requires that the state transition graph (STG)of M' be embeddedin the STG of M.

Definition 23A An NDFSM's M-(SJ,0, T, R)structurally contains another NDFSM M' =

(S", /, 0, T', R'), denoted by STG(M) D STG(M'), if there exists a one-to-one mapping <p :
S' -¥ S such that

1. Vr G R' (p(r) € R, and

2. VielVpeS'VqeS'VoeO ifT'(i,p,qyo) = lthenT{i,<p(p)}(p(q)io)=l.

Theorem 2.11 // STG(M) D STG(M') then C{M) D C(M'). The converse is not true in

general.

This theorem implies that in general, we cannot explore all behaviorcontained in the trace set of

an NDFSMby enumerating DFSM's which are structurally contained within the NDFSM. But in

Section 2.8, we shall show that all behaviors contained by a PNDFSM canbe explored by finding

DFSM'sthat are structurally contained in a derived machine called the powerNDFSM.

2.6 Behavioral Exploration in PNDFSM's

In this section, we introduce the notionof a closed coverand establish the fact that by

finding all closedcovers of a PNDFSM, we canexplore all behaviors contained in it.

Definition 2.25 Given anNDFSM M = (5, /, 0, T, R), a setofstate sets, {ci,C2,..., c„}, is a

cover ofMif9 there exists reR and Cjil <j <n such that r ecj.

Definition 226 Given anNDFSM M = (5, J, O, T,R),a setof state sets, K = {cx, C2,..., cn},

is closed in M iffor every i € / and Cj : 1 < j < n, there exists oeO and Ck : 1 < k < n such

thatfor each s € Cj, there exists s' € c* such that T(i, s, s', o) = 1. i.e.,

Vi €l\/cj6K3oeO 3ck € K Vs € c5 3s' € ck T(i,s,s',o) = 1

scf. classical definition for ISFSM minimization.
9cf. classical definition for ISFSM minimization.
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The above definition applies to all kinds of FSM's. The following lemma restricts the

definition of closure condition to the case when M is a PNDFSM. This restriction to the PNDFSM

subclassis necessary for somesubsequent theorems to hold.

Lemma 2.12 Given a PNDFSM M = (5, /, 0,8, A,R),a setofstate sets, K = {c\,cz,..., c„},

is closed inM ifand only iffor every i € / and Cj: 1 <j <n, there exists oeO such that

1. for each s € Cj, A(i, s, o) = 1,and

2. there exists Ck : 1 < k < n such thatfor every s € Cj, 8(i, s, o) € c*.

i.e., Vi e I Vcj € K 3o € 0 { [Vs € Cj A(i,s,o) = 1] •[3c* € K Vs € c,- <S(M,o) Gc*] }.

/Vw/: Bythedefinition of PNDFSM, [T(i, s, s',o) = 1] <=• [A(i, s, o) = 1] •[s' = <&(i, s, o)]. The

closure condition for PNDFSM can be derived by a series of quantifier moves starting from the

formula in Definition 2.26.

Vi € I Vcj e K 3o € 0 3c* eKVse cj 3s' € c* r(i,s,s',o) = 1

& Vi € / Vcj 6 K 3o € O 3c* <E tf Vs € Cj 3s' € c* { [A(i,s,o) = 1] •[s' = 8(i,s,o)]}

«* Vi GJ Vc, € AT 3o € 0 3ck € tf Vs € C, { [A(i,s,o) = 1] •[3s' ecks' = 8(i,s,o)]}

& Vi € / Vcj € tf 3o e O 3ck € K { [Vs € C, A(i,s,o) = 1] •[Vs € Cj 8(i,s,o) € c*] }

^ Vi G/ Vcj € K 3o e O { [Vs € c,- A(i,s,o) = 1]. \3ck € K Vs <= c,- *(*>,<>) € c*] }

Lemma2.13 GivenanISFSMM = (SJ,0,A,A,R),asetofstatesets,K = {cuC2,...,cn},is
closed m Af</wu? 0/1/y iffor every i € / am/Cj : 1 < j < n,

1. there exists oeO such thatfor each secj, A(i, s, 0) = 1,a/w/

2. f/iere exwte c* : 1 < A: < n such that for every s € Cj, there exists s' 6 c* such that
A(i,s,s') = 1.

i.e.,Vi € IVc; € K{[3o e 0Vs € c,A(i,s,o) = l].[3cjt € tfVs 6 Cj3s' € c;tA(i,s,s') = 1]}.

Proof: Bythe definition of ISFSM, [T^s.s'.o) = 1] <* [A(i,s,o) = 1] • [A(i, s, sO = 1]. The

closure conditionforISFSM canbederived byaseries ofquantifiermoves starting from theformula
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in Definition 2.26.

Vi € / Vcj € K 3o € 0 3c* <= # Vs € c;3s' € ck T(i,s}s',o) = 1

* Vi € / Vcj € K 3o GO 3ck eKVs€ c, 3s' € ck { [A(i,s,o) = 1]. [A(i,s,sO = 1] }

& Vi€/Vci€A'3o€03cJb€iirVs€ci{[A(i,s,o) = l].[3s'Gc*A(i,s,s/) = l]}

<* Vi € /Vcj € /if { [3o G0 Vs € c,- A(i,s,o) = 1] -\3ck G/TVs Gc,- 3s' Gc* A(i,s,s') = 1] }

•

Definition 2.27 Aset K ofstate sets iscalled aclosed cover/or M={S,I,0, T,R) if

1. K is a cover of M, and

2. K is closed in M.

Definition2.28 LetM = (5,7,0, T,R),and K = {chq,..., c„} be aclosedcoverfor Mwhere

cj G2sfor \<j<n,andM' = <5', /, 0, T', R') where S' = {si, s2,..., sn}.
A" is represented by M' (Mf represents K) iffor every i g I and j : 1 < j < n,

there exists k:l<k<nandoeO such that, ifT'(i,Sj,Sk,o) = 1 then Vs G c, 3s' G
Cibr(i,s,s/,o) = 1.

Note that this definition implies a one-to-one mapping of K onto 5'; in particular, cj -• sj for

1 < j < n. However, manydifferent FSM'scan represent a single closed cover.

Theorem 2.14 IfK isa closed coverforaPNDFSM M,then there exists aDFSM M'representing
K. IfK is represented by M', then C(M') C C(M).

Proof: Suppose K = {cx, q, ..., cn} is aclosed cover for M = (5, /, 0, T, #). Then a DFSM

M' = (5', 7,0,21', r') representing # can be constructed as follows. Let S" = {si,s2,..., s„}
where there is a one-to-one correspondence between cj and sj for 1 < j < n. As K is a cover,

there exists a set cj; : 1 < j < n and a reset state r G fl such that r g cj. Pick one such cj and

choose r'to be the corresponding state sj. As K is closed, for each i G7and cj : 1< j < n, there
exists cA:l<fc<nandoG0 such that Vs GCj 3s> Gc^ T(i, s, s',o) = 1. Out of these possible

choices of Ck and o, wechoose an arbitrary transition (i, sj, s*, o) for T' from present state sj on

input i. As each (i, a,-) pair hasa unique transition; M' is a DFSM. With this definition of M', it

follows directly thatM' satisfies Definition 2.28 sothat AT is represented by M'.
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For thesecond part of thetheorem, suppose K = {ci, C2,..., cn}isaclosed cover for M,

and K is represented by M' = (5', J,0, 71', r'); then 5' = {sx, sz,..., s„} by Definition 2.28. lb

prove that C(M') CC(M) we mustshow that for the uniquereset stater' ofM',3r GRC(M\r) D
£(M'\r,). Asinsacover, 3r€Rr£cj forsome cj :1<j < n. Weshow£(M|r) DC(M'\aj)
by induction on the length A: of an arbitrary input sequence, t'i,t'2,..., ik. As M' is a DFSM, the

input sequence produces from state sj aunique output sequence oi,02,...,o* and aunique state

sequence «j(i)» «j(2)» •••>8j(ky We claim that the same input sequence when applied to M at r

will produce the same output sequence, via some state sequence n, ra,..., r*, where rm g c^m)
for 1 < m < k. Remember that r g cj. For the base case A; = 1, as K is closed, there exists

Cj(\)i 1<i(l) <n such that for every n 6ci(1), T(ii, r,ri, 01) = 1. As Mis aPNDFSM, there
isaunique n Gc^ corresponding tooutput 01. Assume the induction hypothesis is true for k-1

where k > 1. So r*_i Gc^-i). Again as K is closed, there exists c^k): 1< j(&) < nsuch that
for every r* Gc^, T(i*,r*_i,rfc,ojfc) = 1. rk € c^k) isunique. Thus the hypothesis isproved.

•

Theorem 2.15 Given aPNDFSM M andaDFSM M', ifX(M') C C(M) then there exists a closed

coverfor M which is representedby M'.

Proof: Let M = (SJ,0,T,R) and M' = (5,,/,0,T/,«/) where 5' = {si,s2,...,sn} .

We assume that C(M') C C(M). Let K = {cu ci,..., cn} be the set of state sets defined as

follows: s Gcj if and only if the trace set of M from s contains the trace set of M' from Sj, i.e.,

£(M|.) 2 £(M'|aj).

By the definition of £(M') C £(M), Vsj G # (1 < j < n) 3r G fi such that

C(M\r) DC(M'\3i). Byconstruction of K, r Gcj. Therefore if isacover of M.

We now show K is closed, i.e., Vi € I Vcj e K 3o € O { [(Vs G Cj A(i, s, o) =

1] • \3ck e KVs e cj <5(i, s,o) G c^)] } according toLemma 2.12. Consider an arbitrary input

i G / and anarbitrary element cj G K. As M' is a DFSM, there exists a unique o eO such that

T"(i, sj,s£, o) = 1 for some sj. Now let us concentrate on this particular o. By the definition of
K, we know for every s Gcjt C(M\3) C £(M'|a>). The trace (i, o) is in C(M'\9j), and therefore
is also in C(M\a). So Vs G cj A(i, s, o) = 1. We now prove the last term in the conjunction.

Assume 3cjt G K Vs G cj (5(i, s, o) G c* is false. For each ck G if, there exists a pair of

states {£(i,pjt, o), <J(i, ^ o)} g cA, where p*: and qk are elements of cj. Now £(M'|Sfc) is not
contained in both £(M|5(lfPfc)0)) and C(M\S{i^t0)), since {8(i,Pho),8(i,qho)} % ck\ thus on
some input sequence i\, 12,..., ip, <J(i, p*, o)and <5(i, gjfc, o)cannot produce thesame output by M.
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Then on input sequence t, t'i, i2,..., ip, pk and qk cannot produce the same outputby M. This

implies that pk and qk are not included in any cj : 1 < j < n, which contradicts the assumption

and proves 3ck G K Vs G cj £(i, s, o) G cjb. In summary, for arbitrary i and Cjt the formula

3o G0 { [(Vs Gcj A(i,s, o) = 1] •[3c* e KVs€ Cj 8(i,s, o) Gc*)] } is true. Therefore K is

closed. •

Note in Theorem 2.15, M cannot be easily generalized to an NDFSM,because the above

proof would not go through.

The following is the main theorem proving the correctness of exact state minimization

algorithms whicharebasedon closedcovers. It shows thatonecanexplore allbehaviors contained

within a PNDFSM by find all closed covers for the PNDFSM.

Theorem2.16 Let M bea PNDFSM and M' bea DFSM. C(M') C C(M) if and only if there

exists a closedcoverfor M which is represented by M'.

Proof: The only i/part immediately follows from Theorem 2.14. The i/part immediately follows

from Theorem 2.15. •

2.7 State Minimization Problems

Definition 229 Given anNDFSM M = (5, /, 0, T,R),the state minimization problem istofind

a DFSM M' = <5', /, 0, T', R') such that

J. £(M')CC{M),and

2. VM" such that C(M") C C(M), \S'\ < \S"\. 10
min

Such a case is denoted byC(M') C £(M).

M' is notrequired to bedeterministic. On the contrary, to preserve flexibility for other

sequential synthesis tools, one may extend the definition and choose the M' with maximal non-

determinism in specification, out of all state minimum machines.

Definition 2.23 of behavioral containment and Definition 2.29 of the state minimization

problem apply also to other kinds ofFSM's, which are subclasses ofPNDFSM's.

Definition 230 Aclosed cover Kfor M is called a minimum closed coverforMifevery closed

cover K' ofM has \K'\ > \K\.
10'Given asetS, \S\ denotes thecardinality of the set
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The following theorem is a companion andan extension of Theorem 2.16. It provesthe

optimality ofexact state minimizationalgorithmswhich findminimum closed covers.

Theorem 2.17 Let Mbe aPNDFSM and M' be aDFSM. £(M') mQ £(M) ifand only ifthere
exists a minimum closedcoverfor M which is represented by M'.

min

Proof: Assume C(M') C £(M). ByTheorem 2.15, thereexistsa closed coverK for M which

is represented by M'. Suppose there exists a closed cover K" for M such that \K"\ < \K\.

By Theorem 2.14, there exists a DFSM M" representing K" suchthat £(M") C £(M). This

contradicts with our initial assumption so K must be a minimum closed cover for M.

Assume K is a minimum closed cover for M. By Theorem 2.14, there exists a DFSM

M' representing Kand C(M') CC(M). If £(M") c" £(M), there exists aminimum closed
cover K" for M suchthat K" represents M". However K musthave the samenumber of setsas

K" since K is also a minimum closed cover for M. Thus M' has the same number of states as M"
min

sothat£(M') C £(M). •

The state minimization problem defined above is very different from the NDFA min

imization problem described in classical automata textbooks. Here we want a minimal state

implementation which is contained in the specification, while the classical problem is defined as:

Definition 2.31 Given anNDFSM M, the behavior-preserving stateminimization problem is to

find anNDFSM M' which represents the same setofbehavior as M but has thefewest number of

states.

The above notion of behavior-preserving state minimization may be useful in formal

verification because all behaviors specified must be verified and thus must be preserved during

minimization.

2.8 Power NDFSM and Structural Containment

Now let us revisit the question: Can we explore behaviorally contained DFSM's by

structural containment? This is aninteresting question because intuitively, structural containment is

easiertocompute thanbehavioral containment Inthissection, weshallshow thatgiven aPNDFSM

M, we can derive a new NDFSM called Mpower such that M' is behaviorally contained in M if

and only if M' is structurally contained in Mpou,er.
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Definition 232 Given a PNDFSM M = (SJ,0,T,R), the power NDFSM is Mpower =

(2s,I1OiTp<nuer1Rpou,er). TpowerisatransitionrelationinIx2sx2sxO. Tptnuer(i%Cj,ck,o) =
1 ifand only ifVs G Cj 3s' Gc* T(t, s, s', o) = 1. RPmuer C 25 indudes every state set which
contains a reset state r G R.

Note that Mpower is not pseudo non-deterministic because given any transition (t,cj,c*, o) G

rp<m,cr, for every <f* d c^, there is another transition such that Tpower(i,cj,£k,o) = 1 and
Rpow*r(c) _ j

Definition 233 Given apowerNDFSM Mpower = (2s, 110,Tpower,Rpower), thepowerNDFSM
with its state space restricted to a set K of state sets, denoted by Mpower\K, is the NDFSM

(K,I,0}Tp™r\K,Rpo™r\K). T*»»*\K(iiC%d%o) = 1 if and only if c,d G K and

Tpowr(i,c,d,o) = 1. Rpower\K(c) = 1 ifand only ifc GK and Rpower(c) = 1.

Lemma 2.18 K is a closed cover if

1. Kf\Rpower j!:<I>,and

2. forevery i e I and Cj GK, there exists CkZKandotO such that Tpower (i, c,-, ckl o) = \.

Proof: Condition 1of Lemma 2.18 is true if and only if there exists cj such that cj GRpower and

cj G K. By Definition 2.32, cj G Rpower imphes that there exists a reset state r g R such that

r G cj. As cj G #, K is a cover according to Definition 2.25. By substituting the definition of

Tpower mt0 conation 2 of Lemma2.18, the closure condition as expressed by Definition 2.26 is

satisfied. •

This lemma suggests an alternative way of finding a closed cover, K. Lookingto the

power PNDFSM Mpower, K corresponds to a setof states in 2s such that (1) atleast one state in

K is a reset statein Rpower, and (2) foreach input i, eachstatein K canhave a next statealso in

K under transitions in Tpower. This selection procedure is analogous to finding a DFSM which is

structurally containedwithin the powerPNDFSM, andcoversat least one reset state.

Lemma 2.19 K is represented by M' if the power NDFSM with its state space restricted to K

structurally contains M'. i.e., STG(Mpower\K) D STG(M').

Proof: By Definition 2.28, K is represented by M' if and onlyif for every t G/ and j : 1 < j < n,

there exists k:l<k<n and oeO such that, if T'(i,Sj, sfc, o) = 1then Tpower(i, cj,cfc, o) = 1.

Let Mpower\K be the power NDFSM of M with its state space restricted to the set K. By

Definition 2.24, K is represented by M' if and onlyif STG(Mpower\K) 2 STG(M'). •
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Nowwe are readyto extendTheorem2.16andprovideanotherwayofexploringbehaviors

contained within a PNDFSM,beside enumeratingclosed covers.

Theorem 2.20 LetM bea PNDFSM and M'bea DFSM. Thefollowing statements areequivalent:

1. C(M') C £(M).

2. There exists a closed coverfor M which is represented by M'.

3. There existsa subset K C 2s such that

• KnRpower^(H,and

• Vi G/ Vcj GK 3ck GK 3o G0 Tpower (i,Cj, c*, o) = 1,and

• 5T0(MO C STG(Mpower\K).

Proof: Equivalence ofstatements 1and 2 follows from Theorem 2.16. By applying Lemmas 2.18

and 2.19 and gathering their conditions, statement2 becomes statement 3. •

Definition 234 ADFSM M'isaminimum structurallycontainedDFSM inaPNDFSM M,denoted
min

bySTG(M') C STG(M),if

1. STG(M')CSTG(M),and

2. VM" such that STG(M") C STG(M), \S'\ < |5"|.

Theorem 2.21 Let Mbe aPNDFSMand M' be aDFSM. Thefollowing statements are equivalent:

. min
1. C{M') C C(M).

2. There exists a minimum closed coverfor Mwhich is represented by M'.

3. There existsa subset K C 2s such that

• KnRpower^^,and

• Vi G/ Vcj GK 3ck GK 3o GO Tpow*r(i, Cj, ck, o) = 1,and
_ _ . min

• STG(M') C STG(Mpower\K).
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Theorem 2.21 summarizes succinctly thetheory weknow about state minimization.

Although we have thetheory, we donot yet have anexact algorithm forstateminimization

which explores structurally contained DFSM's within the power NDFSM. However, this isnotdue

to an inability to represent Mpower compactly as it can be represented implicitly as shown in

Chapter 6. hiChapter7,we will describe aheuristic procedure tofind aminimalDFSM structurally
contained in thepower NDFSM. hi the next section, we'll outline the common steps used instate

minimization algorithms which are based on closed cover, for differentsubclassesofNDFSM's.

2.9 Exact Algorithm for State Minimization

By Theorem 2.17, the state minimization problem of PNDFSM can be reduced to the

problem of finding a minimum closed cover for the PNDFSM. From what we know so far, a closed

cover may contain any arbitrary set of states. Once such a minimum closed cover is found, a

minimum state DFSM which represents theclosed cover canbeobtained easily, and thisfinal step

is traditionally called mapping. A brute force approach to find a minimum closed coverwould

be to enumerate sets of state sets, and test each oneof them to see if it represents a closed cover

according to Definition 2.25 andLemma 2.12. Outof all theclosed covers, onewould pickoneof

minimum cardinality. Thissection willdiscuss ways to improve onthisbrute force algorithm.

In the exact method described above, each candidate closed cover includes subsets of

2s where S is the state space ofthe PNDFSM. The number ofsuch state sets to be generated is
exponential in the number of states, \S\. Actually wedonothave to consider all subsets, butonly

those that willconstitute a closed cover. Thedefinition of a closed cover requires that it contains

subsetsonly of the followingtypes.

Definition 235 Asetofstates isan outputcompatible ifforevery input, there isa corresponding
output which can beproduced by eachstate in theset.

Lemma 2.22 Every element ofa closed cover nisan output compatible.

Proof: By Definition 2.26, for eachset Cj•, : 1 < j < n on every input t G /, there is an output

o g 0 that can beproduced by each state inthe set. Therefore cj isanoutput compatible. •

Definition 236 Asetofstates isa compatible ifforeach input sequence, there isa corresponding
outputsequence which canbeproducedbyeachstatein thecompatible.

Thismore restrictive lemma is also true: Every element of aclosed setisanoutput compatible.
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Lemma 223 Every elementofa closed cover is a compatible.

Proof: The lemma can be proved by showing that if K is a closed set of output compatibles then

if is a closed set of compatibles. (The converse is trivially true because a compatible is also an

outputcompatible.) Assume K is a closed set of outputcompatibles but there exists Cj G K such

that p\ G cj and q\ G cj arenot compatible. Thus there exists some input sequence ii, t*2,..., ik to

M which produces state sequences p\, p2,..., Pk and q\, #,..., qk, respectively. And there is no

outputo G0 suchthatr(i,pjfe,p*+i,6) = 1 and T(i, ?*, git+i, o) = 1, for any pk+\ and flt+i. As

K is closed, for any m : 1 <m<n, {pm, gm} is contained in some set in K. However {p*,^}

contradicts our assumptionthat each set in K is output compatibleand proves thateach cj G K is

a compatible. •

Because of Lemma 2.23, an exact state minimization algorithm only needs to generate

compatibles. The next step of an exact algorithm after compatible generation is to select a subset

of compatibles that corresponds to a minimized machine. To satisfy behavioral containment, the

selection of compatibles should be such that appropriate covering and closure conditions are met.

The covering conditions guaranteethat some selected compatible (i.e., some state in the minimized

machine) corresponds to a reset state of the originalmachine. The closure conditions require that

for each selected compatible, the compatibles implied by state transitionsshould alsobe selected.

The stateminimization problem reducesto one that selects aminimum closed coverofcompatibles.

Instead of enumerating and testing all subset of compatibles, the selection is usually solved as a

binate covering problem. Covering and closure conditions areexpressed as binate clauses, and

the minimum solution can be searched in a systematicmanner.

The set of compatibles is still very large. For the purpose of state minimization, it is

sufficient to identify a minimum subset calledthe primecompatiblessuch that a minimum closed

cover of prime compatibles still yields a minimum behaviorallycontainedmachine. Compatibles

that arenot dominated by othercompatibles are calledprimecompatibles.

Definition237 A compatible d prime dominatesa compatible ciffor each minimum closedcover

containing c, theselectionwith c replacedby d also corresponds to a minimum closed cover.

Definition238 A compatible cisa prime compatible if there does notexists another compatible

d such thatd primedominates c.

Theorem 224 There existsa minimum closedcovermadeup entirely ofprimecompatibles.
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Proof: Suppose C is aminimum closed cover which contains acompatible cthat isnotprime, i.e.,

there exists aprime compatible 6which dominates c. By Definition 2.38, the set (C - {c}) u {£}

must be another minimumclosed cover with onemore prime compatible. One can continue this

substitution process until theminimum closed cover ismade upentirely of prime compatibles. •

The actual computations of compatibles and primeness differ for different typesofFSM's.

Also the related covering problems varyslightly.
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Chapter 3

Implicit Techniques

3.1 Introduction

In this chapter, we shallreviewandintroduce techniques forefficient representation and

manipulation of objects. We say that a representation is explicit if the objects it represents are

listedoneby one internally. And objects are manipulated explicitly, if they are processed one after

another. Implicit representation meansa shared representation of the objects, suchthat the size of

the representation is not proportional to the number of objects in it. By implicitmanipulation, we

meanthat in one step,many objectsare processed simultaneously.

The objects we need to represent include functions, relations, sets, and sets of sets. In

Section 3.2, we introduce a new data structure called the multi-valued decision diagram (MDD)

whichcan represent multi-valued inputmulti-valued output functions. MDD is angeneralization of

binary decision diagram (BDD) [11] which willbereviewed inSection 3.3, and thelatter represents

binary inputbinary output functions. Relations and sets can be expressed in terms of characteristic

functions [13] as showninSection 3.3. Wealso describe avariantof BDD called thezero-suppressed

BDD (ZBDD) in Section 3.4. The remaining of thechapter concerns withefficient representation

ofmulti-valued input binaryoutput functions. In such a case, Section 3.5 shows that an MDD can

be mapped to an equivalent BDD after choosing an encoding for each multi-valued variable, hi

Section 3.6, the logarithmic encoded MDD is described. And in Section 3.7, the 1-hot encoded

MDD is introduced. The latter is particular useful for efficient representation of set of sets, so

anextensive suiteof operators will be introduced for efficient manipulations of such sets of sets,

hi Section 3.8, MDD's are used to represent FSM's. Issues on MDD variable ordering will be

discussed in Section 3.9.
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First we give definitions pertaining to MDD's.

Definition 3.1 Let T bea multiple-valued input, multiple-valued outputfunction ofn variables -
si,32, ...,a;n.

F:PixP2.x...xPn->Y

Eachvariable, xi% maytake any oneofthe p,values from afinite setf; = {0,1,..., p,-1}.

Theoutputof T maytake mvalues from thesetY = {0,l,...,m-l}. Without loss of generality,

we may assume that the domain and range of T are integers. In particular, T is a binary-valued

output function if m = 2, and F is abinary-valued input function ifp, = 2 for every i: 1 < i < n.

Definition 32 Let T{ be asubset ofP{. xj{ represents a literal ofvariable X{ which is defined as
the Booleanfunction:

\ 1 i/a:, gi;

Definition 33 The cofactor ofTwith respect toa variable a;, taking a constant value j isdenoted
by Tj and is thefunction resulting when X{ is replaced by j:

F3j(xu..-,xn) = J:(xh...,Xi-Uj,Xi+h...ixn)

Definition 3.4 The cofactor ofTwith respect to a literal xj{ is denoted by T t{ and is the union
ofthe cofactors ofT with respect toeach value the literal represents:

^ = U *W
jeTi

Thecofactor of T is asimpler function than T itselfbecause thecofactor nolonger depends onthe

variable zt.

Definition 3.5 The Shannon decomposition ofafunction 7 with respect toa variable X{ is:

Pi-i

The Shannon decomposition expresses function T as asumof simpler functions, i.e. its cofactors

T^. This allows us to construct a function by recursive decomposition.
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3.2 Multi-valued Decision Diagrams

Thissection describes a newdatastructure - themulti-valued decision diagram [78,36]

that is used to solve discrete variable problems [36,45,84,44,3]. Our definition of multi-valued

decision diagrams closely follows that of Bryant, [111, withtwo exceptions: we do not restrict

ourselves to the Boolean domain, and the range of our functions is multi-valued. From Section

3.3onwards, we useonlybinary-valued output functions, however the theory is validfor the more

general multi-valued functions.

Definition 3.6 Anmulti-valueddecision diagram (MDD) isarooted, directedacyclicgraph. Each

nonterminal vertex vis labeledby amulti-valued variable var(v)which can take valuesfrom a range

range(v). Vertex vhas arcs directedtowards \range(v) \children vertices, denoted by childk(v)for
each k Grange(v). Each terminal vertex uis labeled a value value(u) GY = {0,1,..., m- 1}.

Eachvertex in an MDDrepresents a multi-valued inputmulti-valued outputfunction and all used-

visiblevertices are roots. The terminal vertex urepresent theconstant (function) value(u). Foreach

nonterminal vertex v representing a function F, its child vertex childk(v) represents the function

Fvk for each kGrange(v). i.e., F = £fc€ron5e(t;) vk •Fvk.
For a given assignment to the variables, the value yieldedby the function is determined

by tracing a decision pathfrom the root to a terminal vertex, following thebranches indicated by

the values assigned to the variables. The function value is thengivenby the terminal vertexlabel.

Example The MDD in Figure 3.1 represents the discrete function F = mas(0, x - y) where a:

and y are 3-valued variables.

3.2.1 Reduced Ordered MDD's

Definition 3.7 AnMDD isordered ifthere isa total order -< over the setofvariables such thatfor

every nonterminal vertex v, var(v) •< var(childk{v)) ifchildk(v) is alsononterminal.

Definition 3.8 AnMDD is reduced if

1. it contains novertex vsuch that alloutgoing arcsfrom vpointtoa same vertex, and

2. itdoes not contain two distinct vertices v andv such that the subgraphs rooted at v andv

are isomorphic.
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F= max(0, x-y)

nonterminal vertex v

child1(v) child3(v)

terminal vertex u value(u) = 2

Figure 3.1: Example of an MDD for a discrete function.

Definition 3.9 A reduced ordered multi-valued decision diagram (ROMDD) is anMDD which

is both reduced and ordered.

Henceforth, we consider only ROMDD's and the name MDD will be used to mean

ROMDD.

Variable ordering mustbe decided before the construction of anyMDD.We assume that

thishasbeendecided andthatthenaming of input variables have beenpermuted sothat i{ •< xt+i.

MDD'sareguaranteed to bereduced atanytimeduring theconstructions andoperations onMDD's.

Each operation returns a resultant MDD in a reduced ordered form.

Example TheROMDD fortheMDD inFigure 3.1 is shown inFigure 3.2. Thevariable ordering is

x -<y. Note that one redundant nonterminal vertex and six terminal vertices have been eliminated.

A verydesirablepropertyof an ROMDD is that it is a canonical representation.

Theorem3.1 For any multi-valuedJunction T, there is a unique reduced ordered (up to isomor

phism) MDD denoting T. Any other MDD denoting T contains more vertices.

Proof: The completeproofhas been givenin [78]. •

Corollary 32 TWo functions are equivalent if and only if the ROMDD's for each function are

isomorphic.
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F = max(0, x-y)

Figure 3.2: Reduced ordered MDD for the same function.

3.2.2 CASE Operator

TheCASE operator forms thebasisformanipulatingMDD's. Mostoperations ondiscrete

functions can be expressed in termsof the CASE operator on MDD's.

Definition 3.10 The CASE operator selects and returns aJunction Giaccording tothe value ofthe
function F:

Ci45£?(F1Gb,Gi,...fGm-i) = G{if(F = i)

The operator is defined only ifrange(F) = {0,1,.. .,m-l). Thefunction returnedfrom the CASE

operation hasa range ofrange(Gi). Inparticular, ifthe Giare binary-valued, the resultantfunction

will also be a binary-valued outputfunction.

Theinputparameters totheCASE operatorare, ingeneral, multi-valued functions given in

the form ofMDD's. Thetask istogenerate the resultant function H= CASE(F, Go, Gi, •••,Gm-i).
Since theselector F can beafunction insteadofavariable, we need arecursive algorithm tocompute

the CASE operator.

If the selector is a variable x, the following function returned by the CASE operator

corresponds to a vertex with a top variable x and with child functions Go, Gi,..., GPl_i. The
vertex is denoted by a (pt- + l)-tupleson the right.

C45F(x,G0,Gi,...,Gp._i) = (a:,Go,Gi,...,GPl._i) (3.1)
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Equation 3.1 and 3.2will form the terminal cases for ourrecursive algorithm.

CASF(F,0,l,...,ro-l) = F (3.2)

Notice that theShannon decomposition of H with respect to x can be realized by:

p-i

h = xy.ir,;

= CASE(x,HafitH&...,Htp-i)

= («, f^, Hx\,..., HxP-i) (3.3)

Recursion is based onthe following reasoning. Remember that wecan express acomplex

function in terms of its cofactors usingShannon decomposition. The cofactors of a function are

simpler to compute than the original function. So to compute the CASE of complex functions,

we first compute the CASE of their cofactors and then compose them together using Shannon

decomposition. More rigorously,

p-i

CA5F(F,G0,Gi,...,Gm_i) = ][V -CASE(F,G0%Gu...iGm-i)ai

p-i

t=0

p-1

•=0

p-1

= E**-(^i^V(ft*=i))
t=0

= CASE(x,

CASE(Fxo, G0 -co, G\ so,..., Gm_! ^J,

CASE(FX\, G0xi, Gx x\,..., Gm_i 3.1),

(3.4)

CASE(FxP-\,G0 xP-i, Gj a.p-1,..., Gm_j ^-1))

The pseudo-code for the recursive CASE algorithm is given in Figure 3.3. First, the

algorithm checks for terminal cases. Then if the function needed has already been computed and

stored intheuniquetable, itwillbereturned. Itnot,thecofactors Hxj ofthefunction H are computed

by calling CASE recursively withthe cofactors Fxj, G0xj,..., Gm_x xj asits arguments. These
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CAStf(F1Gb,...,Gm-i){
if terminal case return result

if CASE(F, Go,..., Gm_i) in computed-table return result

let a; be the top-variable of F, Go,..., Gm_i

let p be the number of values x takes

fori = 0to(p-l)do

Hxj = CASE(Fxj,Gq x>,..., Gm_i x;);

resuft =(»,#>,... ,#,^1)

insertresult in computed-table forCASE(Fy Go,..., Gm_i)

return resit/*

}

39

Figure 3.3: Pseudo-code for the CASE algorithm.

are composed together using Shannon decomposition. ByEquation 3.3, Shannon decomposition

with respect to a: is equivalent to the (p+ l)-tuple (x,/?^,.. .,#xp-i).

It is shown in [78] that the worst-case time complexity of the CASE algorithm is

0(pmaar.|F|.|C?o|...|Gm_1|).

3.3 Binary Decision Diagrams

TheliteralXi denotes thatvariable x, hasthevalue 1andtheliteralx\ denotes thatvariable

X{ has the value 0. Cofactors with respect toliterals are similar tothe ones in the previous section,
and are formally defined in Section 3.3.1.

Binary decision diagrams were first proposed byAkers in [11 and popularized byBryant
in [11].

Definition 3.11 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each
nonterminal vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs,
childo(v) and child\(v). Each terminal vertex u is labeled 0 or1.

Eachvertex in a BDDrepresents a binary input binary output function andallused-visible vertices
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are roots. The terminal vertices represent the constants (functions) 0 and 1. For eachnonterminal

vertex v representing afunction F, itschild vertex childo(v) represents the function F7 and itsother

child vertex child\(v) represents the function Fv. i.e., F = t; •F7 + v •Fv.

For a given assignment to thevariables, thevalue yielded by the function is determined

by tracing adecision path from theroot to aterminal vertex, following the branches indicated by

thevalues assigned to thevariables. The function value is then given bytheterminal vertex label.

Definition 3.12 A BDD is ordered if there is a total order -< over the set of variables such

that for every nonterminal vertex v, var(v) •< var(childo(v)) ifchildo(v) is nonterminal, and
var(v) -< var(child\(v)) ifchild\(v) is nonterminal.

Definition 3.13 A BDD is reduced if

1. it contains no vertex v such that childo(v) = child\ (v),and

2. it does notcontain two distinct vertices v andv such that the subgraphs rooted at v andv

are isomorphic.

Definition 3.14 A reduced ordered binarydecision diagram (ROBDD) is a BDD which is both

reduced and ordered.

Any subset S in a Boolean space Bn can be represented by a unique Boolean function

Xs : Bn ->• B, which is called its characteristic function [13], suchthat:

Xs(x) = 1 ifand only if a: in 5

Inthesequel, we'llnotdistinguish thesubset S from its characteristic function xs. and willuse5

to denote both.

Anyrelation 11 between apair of Boolean variables can also berepresented by acharac

teristic function 11: B2 -> B as:

H(x, y) = 1 ifandonly if x is in relation % to y

71 canbe a one-to-manyrelation over the two sets in B.

These definitions can be extended to any relation U between n Boolean variables, and

can be represented by a characteristic function H: J3n -> B as:

1l{x\, x2l..., xn) = 1 ifand onlyif the n-tuple (x\, »2} •••»*n) is in relation 1Z
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3.3.1 BDD Operators

A richset of BDD operators has been developed andpublished in the literature [11,6].

The following is the subsetof operators useful in our work.

The ITEoperator forms the basis for the construction andmanipulation of BDD's. The

useof theITEoperator also guarantees thattheresulting BDD is in strong canonical form [6]. The

CASE operator is themulti-valued analog of the ITEoperator.

Definition3.15 The ITE operator returnsfunction G\ iffunction F evaluates true, else it returns

function G2:

' G\ ifF = 1
7TF(F,Gi,G0)= .

Go otherwise

where range(F)={0,l}.

Definition 3.16 The substitution in theJunction T ofvariable rct with variable yi isdenoted by:

[xi -+ yi\T = T(x\,..., Xi-i,y^ xi+\,..., xn)

and the substitution in the Junction T of a set of variables x = x\xz.. .xn with another set of

variables y = y\yi... yn is obtainedsimply by:

[x -+ y]T= [x\ -> yi][x2 -»!&]...[*»-* yn]T

Inthe descriptionofsubsequent computations, some obvious substitutionswillbeomitted forclarity
in formulas.

Definition 3.17 The cofactor ofT with respect to the literal x{ (xi resp.) isdenoted by fXi (J=x-
resp.) and is thefunction resulting when Xi is replaced by 1 (0resp.):

FXi(X\, . . ., X„) = F(X\, . . ., Xt_i, 1,Xi+u -^n)

Fxi(x\,..., xn) = ?(x\,..., xt_i,0,xt+i,..., xn)

The cofactor ofT isa simpler function than T itselfbecause the cofactor no longer depends onthe
variable x,-.

Definition 3.18 The existential quantification (also called smoothing; of a function T over a
variable xt is denoted by3xi (T) andis defined as:

3xi(?) = 7k + Jrxi

-
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and the existential quantification over a setofvariables x = xi, X2,..., xn is defined as:

3x(^) = 3x,(3x2(...(3xn(^))))

Definition 3.19 The universal quantification (also called consensus; of a function T over a

variable xt- is denoted byVxt- (F) andis defined as:

^i(T) = J=x7^Xi

andthe universal quantification over a setof variables x = x\, x2,..., xn is defined as:

Vx(^) = Vx1(Vx2(...(Vxn(^))))

3.3.2 Unique Quantifier

Nowwe introduce a newBDDoperator called theunique quantifier, whichis in the same

class as the existential and universal quantifiers.

Definition 3.20 The unique quantification ofafunction T overavariable x, isdenoted by !xt (T)

and is definedas:

andtheunique quantification overa set of variables x = xi, x2,..., xn is defined as:

!x(^)=!x,(!x2(...(!xn(J-))))

Suppose .Fis a relation onx,yand z. \x?(x, y,z) = {(y,2)|apair (y,z) isrelated toa unique x}.

Someproperties of the uniquequantifier willbe presented:

Lemma 33 \x\yF*> !y !x F

Proof: \x\yF& (F^ 0 Fxy e FXy 0 Fsy) <&\y\xF

using thedistributive property of cofactor over XOR, (F ©G)x <& Fx ©Gx. •

It is well known that 3x Vy F ^ Vy 3x F. Letus investigate if similar properties hold

for the unique quantifier.

Lemma 3.4 !x 3y F => 3y !x F



3.4. ZERO-SUPPRESSED BDD'S 43

Proof:

!x3yF & (Fy^-Fy)^e(Fy+ Fy)x

& FXjj ' FXy •FXy + Fjy •FX^ •Fxy + Fgy ' FXfj •Fjy + FXy ' FXy ' Fgy

3y!xF <* (fteF.Jy+tfteFJ,,

**• FXy •FXy + i^y •FXy + FXy ' FXy + FXy ' FXy

!x3yF => 3y!xF

•

Theconverse, 3y !x F => !x3yF, isnottrue ingeneral. Consider therelation F(x, y) =

{(0,0), (0,1), (1,1)}, 3y !x F is true but !x 3y F is false. Forthesame F, !x Vy F is true but

Vy !x F is not; therefore \xVyF=> Vy !x F is not truein general. Also, IxVy F <= Vy !x F is

nottrueingeneral because of thecounterexample F(x,y) = {(0,0), (1,1)},where Vy !x Fistrue

but !x Vy F is false.

The pseudo-code in Figure 3.4 outlines the BDD unique algorithm. The BDD function

for !x F is returned bycalling unique(F, x, 1)where x = {xi, x2,..., xn}.

First, the algorithm checks for terminal cases, and checks if the result has already been

computed before. Otherwise ifthetopvariable vof F is thesame as xt then thefollowing recursive

formula is applied:

!xt-,xi+1,...,xn (F) = !xt+i,xf+2,...,xn (Fsj-) ©!xi+i,xt+2,...,xn (FXi)

If t; is below xlf F is independentof variablext and thereforethe result from the next recursion can

besimply returned. If v is above x„ we need tocompute !x F7and !x Fv and merge the results by

the ITE operator. Finally the result is stored in thecomputed-table, andreturned.

3.4 Zero-suppressed BDD's

Definition 3.21 Azero-suppressed BDD (ZBDD) isdefined identically asa BDD.

The functional interpretation of ZBDD's is the same as that for BDD's.

Definition 3.22 A ZBDD is ordered if it is ordered when viewed as a BDD.

Definition 3.23 A ZBDD is reduced */
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unique(F,xit) {

if (i > |x|) or (topJndex(F) > bottom-index(x)) retum F

if unique(F,x, i) in computed-table retum result

let u be the top variableof F

if (index(v) = index(xt)) {

T = unique(FXi,x,i + 1)

F = unique(Fxj,x, t + 1)

result = ITE(TyE1E)

} else if (topJudex(F) > index (x,)) {

result = untrue(F, x, t + 1)

} else {

T = unique(Fv,x, i)

E = wm<7«e(Fv, x, i)

result = ITE(v%T,E)

}

insert result in computed-table for unique(F, x, t)

retum result

}

Figure 3.4: Pseudo-code for the unique quantifier.
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1. itcontains novertex v such that child\(v) is a terminal vertex labeled 0, and

2. it does notcontain two distinct vertices v andv such that the subgraphs rooted at v and v

are isomorphic.

Definition3.24 A reduced ordered zero-suppressed binary decision diagram (ROZBDD) is a

ZBDD which is both reduced and ordered.

The difference between ROBDD and ROZBDD is in one reduction rule. ROBDD elim

inates all vertex whose two outgoing arc points to a same vertex. ROZBDD eliminates all vertex

whose 1-edge points to a terminal vertex 0. Once a redundant vertex is removed from a ZBDD, the

incoming edges of the vertex is directly connected to the vertex pointed to by the corresponding

terminal vertex 0.

3.4.1 ZBDD Operators

ROZBDD is designed for representing combination sets so its operators are for set op

erations, which turn out to be quite different from the common BDD operations on characteristic

functions. The following outlines some of the differences between BDD's and ZBDD's, and the

difficulties in using the latter.

UnlikeROBDD, the ROZBDDfor a universalset is not unique but it has a chain structure

on the variable space of interest. A constant-timecomplement operation is not available in ZBDD.

Complementation on a set can be performed as set difference against a universal set. But even

this is not recommended because if the original set is a sparse set having a compaa ROZBDD

representation,its complement will be dense and cannot be represented compactly.

The semantics of BDD's and ZBDD's are quite different. BDD is based on Shannon

decompositionbut ZBDD is not. As a result, BDD operators such as cofactor, smooth, consensus,

generalized cofactor, etc., do not have direct counterpartsin ZBDD.

As a result of these differences, one who has an implicit BDD algorithm cannot readily

convertit into an implicitZBDDalgorithm andexpects the latter to run efficiently.

3.5 Mapping MDD's into BDD's

The first-generation MDD package is a direct implementationof the theory presented in

Section3.2. For efficiency, our currentMDDpackage usesBDD's as its internalrepresentation. By
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hiding the mapped-BDD and its encodedvariables from the users, users can constructfunctions,

manipulate them andoutputresults interms ofmulti-valuedvariables only. ButonlyBooleanoutput

(multi-valued input)functions can be represented by mapped-BDD's.

Themapping of MDD's intoBDD's involves twodistinct steps: encoding and variable

ordering. Encoding is theprocess ofassociating anumberofbinary-valued variables toeach multi

valued variable, and assigning codes to represent the values the multi-valued variables can take.

Variable Ordering is the process of finding an ordering of the encoded binary-valued variables

such that thesize of the final BDD is minimized. Section 3.9 will bedevote to variable ordering

techniques used in ourwork, while we shall first describe theencoding process here, lb encode

each m-valued MDD vertex, we must decide on:

1. thenumber of binary variables used: n encoding variables result in 2n code points, and each

codecorresponds to a decision pathin the full BDD subgraph of thesevariables.

2. theassignments of codes to values: Atleast onedistinct code point mustbe assigned toeach

value. Therefore 2n > m must be true.

3. the treatment of unused code points: If 2n > m, there is one or more unused code points.

Each unusedcode can eitherbe left unassigned, or be associated a valuewhichanothercode

has already been assigned to. Fortheformer case, itscorresponding pathalways points tothe

terminal vertex 0. Forthe latter case, thecorresponding path canpoint to thesame place as

anotherpath in the BDD subgraph.

In the next two sections, we shall investigate two encoding schemes. Logarithmic encoding in

Section 3.6offers compact representation offunctions, e.g., characteristic functions, where as 1-hot

encoding in Section 3.7 is useful for set representation. Once an encoding and an ordering are

chosen, there is a unique way to map each MDD vertex into a BDD subgraph.

Example Figure 3.5ashows an MDD representing thefollowing function:

F= i - -'*>¥
(0 ototherwise

x and y are 3-valued variables which can take values from Px = Py = {0,1,2}. lb represent the

MDD using BDD's, each MDD nonterminal vertex must bemapped intoanumberofBDD vertices

interconnected in a subgraph. Forexample inFigure 3.5, the MDD vertex labeled byvariable x

is mapped into the BDD vertices labeled by xq and xi. In addition, different indices have to be
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F =1 lfx>y

mapping>

a) ROMDD

X1

o)-** 1

(yi
oV—iil

reduncItfit

0 1

b) Mapped ROBDD

Figure 3.5: MDD and mapped-BDD representing the relation x > y.

47
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assigned tothese binary variables. In this case, since x -< yfor the MDD, this ordering isrespected

for the associated binary variables; xo -< x\ -< yo -< yi. The mapping process dictates the encoding
used. The same encoding, as well as ordering, must beused consistently throughout all function
manipulations.

3.6 Logarithmic Encoded MDD's

In this section,logarithmic encoding (i.e., integer encoding) is used to map MDD's into

BDD's. Our prime concern here is to use the least number of variables and BDD vertices. An

m-valued MDDvertex is represented with \l0g2m] numberof Boolean variables, andis mapped to

a BDDsubgraphof m - 1 vertices. Thesenumbers are provably minimum in graphtheory.

Each value is assigned an integer code. As discretevariables in CAD problemsusually

takevalues from theordered setof integers andtheoperations between themaresometimes integer-

arithmetic in nature, integerencoding results in efficient representation andmanipulation.

Ofcourse, not all 2k code points will be used since typically m < 2k. On the other hand

the mapped-BDD will have a path for each binary code point. The decision path for each unused

code point is chosen so as to minimize the BDDsize. In fact, an unused point is assigned to the

same path as the used point whose encoding is closest to the unused code point This mapping

is related to the generalized cofactor operator in [80] which wasinitially proposed in [17] as the

constraint operator. Givena function / and a care set c, the generalized cofactorof / with respect

to c is the projectionof / that mapsa don't carepointx to thecarepoint yec whichhas theclosest

distance to x. Generalized cofactoring results in a small andcanonical BDDrepresentation of the

incompletely specified function.

Example Suppose v isa 6-valued variable taking values from Pv = {0,1,2,3,4,5}. Three binary-

valued variables «o> "i and 1*2 can be assigned to encode variable v as shown in Table 3.1. The last

column is used in the example in Section 3.6.1.

Note that if the value range is not a powerof2, somecodes will not be used, e.g., 110 and

111. These encodings are used as don't cares since the values will never occur. In this case these

don't care are mapped into the same nodes as 100and 101 respectively. The notation 1 *0 is used

to represent both encodings 100 and 110 as we don't care about the variable u\.
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Value Binary F

of Encoding =

V UoU\U2

0 000 Go
1 001 G,
2 010 G2
3 Oil G3
4 1*0 GA
5 1*1 G5

Table 3.1: Logarithmic/integerencodingwith don't cares.
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3.6.1 Relationships between CASE and ITE Operators

As the CASE and ITE operators form the basis for manipulation of MDD's and BDD's

respectively, mapping canbe conveniently performed by replacing each CASE operation by a set

of ITEoperations. Therecursion stepin Equation 3.4is ourstarting point. It gives an outerCASE

operator in terms of a top-variable u, andenables conversion to a hierarchy of ITEoperators. The

conversion can be summarized by the following recursive formulas:

ifpis even: CASE(v,G^,G^. ..,Gp_2,Gp_x)
= CASE(v\ ITE(u, G'h G'Q)JTE(u, G3, G2),..., ITE(u, G'p_h Gj,_2))

ifpis odd: CASE(v,C^G[,QG^...,G;_3,G'p_2,G'p.x)

= CASE(v\ ITE(u, GJ, G0), ITE(u% GJ, G2),..., ITE(u, G'p_2, Gj,_3), G'p.x)

The recursive use of the above two equations continues until this recursionterminates when there

areonly twochild-functions remaining in theouterCASE operator:

CASE(v,G'0,G[) = ITE(v,G\,G'0).

While pairingup child-functions with the ITE operator, these formulas replace the big

MDD vertex labeled with variable v with a smaller one, labeled with a new multi-valued variable

t/, and anumber ofBDD vertices labeled with a new binary variable u. This mapping process is
best explained by an example.

Example Suppose visa6-valuedMDDvertex, and <70,...,G's are thesixchild-functionsconnected
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to it, the CASE to ITE mapping proceeds as follows:

CASE(vy G0, Gj, G2, G3, G4, G'5)

= CASE(v\ ITE(u2, G'„ G0), ITE(u2% G3, G2), 7TJ5(tt2, Gj,G'A))

= CASSK /TjEfoi, ITE(u2, G3, G2), JTS(tt2, G'lt G0)), /rg(u2, G'5% Gffl

= Jr£(uo, ITE(u2y GJ, Gi), /TE(mf7T£?K G3, G2), /rE(tt2) Gi,G0)))

Note that while pairing upchild-functions for ITE operations inthe first step, weeffectively replace

the original 6-valued MDD vertex with a smaller 3-valued MDD vertex. During the assignment

of BDD variables, the ordering uo •< u\ -< u2 is used. Figure 3.6 shows the bottom-up recursive

mapping process. Note that the originalMDD node labeled vhas beenmapped into aBDD subgraph
with 5 internal nodes.

Figure 3.6: Recursive mapping from an MDD vertex toamapped-BDD subgraph.

3.7 1-hot Encoded MDD's

In this section we describe how to represent and manipulate implicitly sets of objects.

This theory isespecially useful for applications where sets of sets ofobjects need tobeconstructed

and manipulated, as it is often thecase inlogic synthesis and combinatorial optimization. Inmany

applications such as FSM minimization, encoding and partitioning, the number of objects (number

of states inthese cases) tobehandled is usually not large. But their exact optimization algorithms

require exploration of many different subsets of such objects. As shown in Section 2.7, exact state

minimization requires selection of aminimum closed cover outof ahuge numberof candidate sets

of state sets. Therefore ourprime concern here istohave acompact representation for setof sets.



3.7. 1-HOTENCODEDMDD'S 51

Suppose the elements corresponds to n distinctobjects. With 1-hotencoding, a Boolean

variable is associated witheachobjectso n Boolean variables are used. Each singletonelementis

assigned a distinct1-hotcode. Obviously withthis 1-hotencoding scheme, thereare a lot of unused

codepoints. Unlike the logarithmic encoding where unused codepointsare reassigned to values,

these code points are used fora purpose other than representing elements orvalues, butto represent

sets other than singletons.

3.7.1 Positional-set Notation

Given thatthereare2npossible distinct setsofobjects, in orderto represent collections of

them it is not possibleto encodethe objectsusing login Booleanvariables. Instead,each subsetof

objects is represented in positional-set or positional-cube notation form, usinga set of n Boolean

variables, x = x\x2... xn. The presence of an element Sk in the set is denoted by the faa that

variable Xk takes the value 1 in the positional-set, whereas Xk takes the value0 if element sk is not

a member of the set. One Boolean variable is needed for each element because the element can

either be present or absent in theset1.

In the above example, n = 6, and the set with a single element 54 is represented by

000100 while thesets2S3«5 is represented by011010. The elements s\, 54, s^ which arenotpresent

correspond to 0's in the positional-set.

A set of sets of objects is represented as a set S of positional-sets, by a characteristic

function xs - Bn -t B as:

Xs(«) = 1 if andonlyif theset represented bythepositional-set x is in theset S of sets.

A 1-hot encoded MDD representing xs(x) will contain minterms, eachcorresponding to a set in

S. Operators for manipulating positional-sets andcharacteristic functions willbe introduced in the

next two subsections.

A 1-hot encoded MDD can be represented as a BDD where each Boolean variable

corresponds to a BDD variable. From now on, we use BDD to refer to 1-hot encoded MDD where

there is no ambiguity.

!The representation ofprimes proposed by Coudert etal. [19] needs 3values per variable to distinguish if the present
literal is in positive or negative phaseor in bothphases.
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3.7.2 Operations on Positional-sets

With ourprevious definitions of relations and positional-set notation for representing set

of objects, useful relational operators on sets can be derived. We propose a unified notational

framework for set manipulation which extends the notationused in [481. hi this section, each

operators Op acts on two sets of variables x = xix2.. .xn and y = y\t/z.. .y„ and returns a

relation (x Op y) (as a characteristic function) of pairs of positional-sets. Alternatively, they can

also beviewed asconstraints imposed onthepossible pairs outof two sets of objects, x and y. For

example, given two setsof sets X and Y, the set pairs (x, y) where x contains y are given by the

product of X and Y and thecontainment constraint, X(x) -Y(y)-(xDy).

Lemma 3.5 Theequalityrelation evaluates true ifthe two setsofobjects representedbypositional-

sets x and y areidentical, andcanbe computed as:

n

(x = y) = JJ xk e> yk
*=i

where Xk & yk = x* •y* + -ix* •->y* designates the Boolean XNOR operation and-> designates

theBoolean NOT operation.

Proof: nZ=i Xk & yk requires that for every element A:, either bothpositional-sets x and y contain

it, or it is absent from both. Therefore, x and y contains exactly the same setof elements and thus

are equal. •

Lemma 3.6 The containmentrelation evaluates true ifthe setofobjects representedby x contains

the setof objects represented byy, andcan becomputed as:

n

(x^y) = Y[vk=>xk
k=l

where x* =>> y* = -"X* + yk designates the Boolean implication operation.

Proof: n?=i yk => Xk requires that forallobject, if anobject k is present in y (i.e., y* = 1),it must

also be present in x (x* = 1). Therefore set x contains alltheobjects in y. •

Lemma3.7 The strict containment relation evaluates true if the setofobjects represented by x

strictly contains the setofobjects represented byy, and canbecomputed as:

(xDy) = (xDy)^(x = y) (3.5)
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Alternatively, (x D y) can becomputed by:

n n

(x Dy) = Jlfoib =$• xj •£[x* •-.yfc] (3.6)
Jk=l *=i

Proof: Equation 3.5 follows directly from the two previous theorems. For Equation 3.6, the first

term is simply thecontainment constraint, while thesecond term J2l=i lxk •-*Vk] requires that for

at least oneobject A?, it is present in x (x* = 1)butis absent from y (yk = 0), i.e„ x and y are not

the same. So it is analternative wayof computing (x D y). •

Lemma 3.8 The equal-union relation evaluates true if the setof objects represented by x is the

union of the two setsof objects represented by y andz, andcanbecomputed as:

n

(x = yUz) = JI xjfe & (yk + zk)
k-\

Proof: For each position fc, x* is set to the value of the OR between x^ and y*. Effectively,

II2=i xk <& (yk + zk) performs abitwise or on y and z to form a single positional-set z, which

represents the union of the two individual sets. •

Lemma3.9 The equal-intersection relation evaluates true ifthe setofobjects represented byxis

the intersection ofthe two setsofobjects represented by y and z, and can becomputed as:

n

(x = yC\z) = Y[ xk & (yk •Zk)
k=l

Proof: For each position A:, xk is set to the value of the and between Xk and yk. Effectively,

njj-i Xk <* (yk -zk) performs abitwise and on y and z to form a single positional-set x, which

represents the intersection of the two individual sets. •

Lemma 3.10 The contain-union relation evaluates true if the set of objects represented by x

contains the union ofthe two sets ofobjects represented by yand z, and can becomputed as:

n

(xDy\Jz) = Y[(yk + Zk)=*xk
k=i

Proof: Note the similarity in the computations of (x D y U z) and (x = y U z). (x D y Uz)

performs bitwise or on singletons y and z. If either of their A:-bit is 1, the corresponding xk bit

is constrained to 1. Otherwise, xjt can take any values (i.e., don't care). Theouter product nj=i
requires that the above is true for each k. •
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Lemma 3.11 The contain-intersection relation evaluates true if the setof objects represented by

x contains the intersection of the two setsofobjects represented byy andz, andcanbe computed

as:
n

(xDyf]z)= J[(yk -zk) => xk
k=i

Proof: Note the similarity in the computations of (x D y n z) and (x = y n z). (x D yCiz)

performs bitwise and on singletons y and z. If either of theirfc-bit is 1, the corresponding x* bit

is constrained to 1. Otherwise, x* cantake any values (i.e., don't care). Theouterproduct n?=i

requires that the above is true for each k. •

3.7.3 Operations on Sets of Positional-sets

Thefirstthreelemmasinthissectionintroducesoperators thatreturnasetofpositional-sets

as the result of some implicit set operationson one or two sets of positional-sets.

Lemma 3.12 Given the characteristic functions xa and xb representing the sets A and B, set

operations onthem such as theunion, intersection, sharp, andcomplementation canbeperformed

as logical operations on their characteristicfunctions, asfollows:

XAuB = XA + XB

XAnB = Xa • XB

XA-B = XA'^XB

Xa = ~"XA

Lemma 3.13 The maximal of a set x of subsets is the set containing subsets in x not strictly

contained byanyothersubsetin x, andcanbe computed as:

Maximalx(x) = xM" fiy [(y 3 x) •x(y)]

Proof: The term 3y [(y D x) •x(y)] is true if andonlyif there is a positional-set y in x such that

x c y. hi such a case, x cannot be in the maximal set by definition, and can be subtracted out

Whatremains is exactly the maximal set of subsets in x(x). •

Lemma 3.14 Given a set ofpositional-sets x(x) and an array of the Boolean variables x, the

maximal ofpositional-sets in x ^ith respect to x can be computed by therecursive BDD operator

Maxima/(x,0,x):
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Maximal(x, A:, x) {

if(X'-=0) return 0

if(x-=1) remmrCUa't

M0 = Maximal(x**, A; +i)
Mi = Maxima/(xa?fc, A; +i)
returrrJT£(xjfe,Mi,M0 •-M,)

}

55

Proo/;The operator starts atthe top ofthe BDDandrecurses downuntil aterminal nodeis reached.

Ateach recursive call, the operator returns the maximal set of positional-sets within x making up
of elements from k to n. If terminal 0 is reached, there is no positional-set within x so 0 (i.e.,

nothing) is returned. If terminal 1 is reached, x contains all possible position-sets with elements

from Ar to n, and themaximum one isn!U *«• A* any intermediate BDD node, we find themaximal

positional-sets M0 ontheelse branch of x. the maximal positional-sets Mi onthe then branch of

X- The resultant maximal setof sets contains (1) positional-sets inMi each with element xk added

toitas they cannot becontained byany set in Mi which has X* = 0, and (2) positional-sets that are
in M0 but not inMi because if aset ispresent inboth, itisalready accounted for in(1). Thus the
ITE operation returns the required maximal setafter each call. •

lb guarantee that each node ofthe BDD x isprocessed exactly once, intermediate results
shouldbe cached by acomputed-table.

Lemma 3.15 The minimal ofa set x ofsubsets is the set containing subsets in x not strictly
containing any other subset inx, and can becomputed as:

Minimalx(X) = *(*)• fly [(as Dy) «x(y)]

Proof: The term 3y [(x Dy) •x(y)] istrue ifand only if there isapositional-set yinx such that
x d y. Insuch acase, x cannot beintheminimal setbydefinition, andcanbesubtracted out. What

remains isexactly the minimal setofsubsets inx(x). •

Arecursive BDD operator Minima/(x, A;, x)can be similarly defined.

Thenext three operators check setequality, containment and strictcontainment between

two sets ofsets, whereas Lemmas 3.5, 3.6 and 3.7 check on a pair ofsets only. These following
operators returns tautologyif the tests are passed.
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Lemma 3.16 Given the characteristicfunctions xa(x)and xb(x)representing two sets Aand B
(ofpositional-sets), the setequality test is true ifand only ifsets AandB are identical, and can
be computed by:

Equals(xMXB) = Vx \xa(x) *> Xb(x)]

Alternatively, Equal can befound by checking if their corresponding ROBDD's are the same by

bddjequal(xA,XB)-

Proof: xa(x) and xb (x) represents thesame setif and only if for every x, either x € A and x € B,

or x i A and x £ B. As thecharacteristic function representing a set in positional-set notation is

unique, two characteristic functions will represent the same set if and only if their ROBDD's are

the same. •

Lemma 3.17 Given the characteristicfunctions xa(x) and xb(x) representing two sets A andB

(ofpositional-sets), theset containment test is true ifandonly ifset A contains set B, andcanbe

computedby:

Containx(xA,XB) = Vx [xb(x) => Xa(x)]

Lemma 3.18 Given the characteristic junctions xa andxb representing two sets A and B (of

positional-sets), theset strict containment test is true if andonly ifset A strictly contains set B,

and can be computed by:

Strict.Containx(xA,Xb) = Containx(xA,Xb) •~>Equalx(xA,XB)

Proof: The proof follows directly from previoustwo theorems. •

Beside operating on sets of sets, the above operators can also be used on relations of sets.

The effect is best illustrated by an example. Suppose A and B are binary relations on sets.

Containx(xA(x, y), Xb(x, z)) will retum another relation on pairs (y, z) of sets. Position sets y

and z are in the resultant relation if and only if the set of positional-sets x associated with y in

relation A contains the set of positional-sets x associated with zinB.

The remainingoperators in this sectiontakeasetofsetsandasetofvariables asparameters,

and returns a singleton positional-set on those variables.

Lemma 3.19 Given a characteristicfunction xa (x) representing a set A ofpositional-sets, theset

union relation tests ifpositional-set y represents the union ofall sets in A, andcanbe computed

by:
n

Unionx-+y(xA) = II V* ** 3* \Xa(x) •a?*]
fc=i .
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Proof: For each position A:, the right hand expression setsy*to 1if and onlyifthere exists anx in

XA such that its fc-th bit is a 1 (3x [xa(x) •x*]). This implies that thepositional-set y will contain

the Aj-th elementif and only if there exists a positional-set x in A such that A; is a member of x.

Effectively, the righthand expression performs amultiplebitwiseor on allpositional-sets of xa to

form a single positional-set y whichrepresents theunionofallsuch positional-sets. •

Alternatively, we implemented the set Union operation as a recursive BDD operator.

BitwiseOR is performed atthe BDDDAG level, by traversing theBDDandperforming or on BDD

vertices with the variables of interest.

Lemma 3.20 Given a setofpositional-sets x(x) andanarray ofthe Boolean variables x, the union

ofpositional-sets inx with respect tox can becomputedby theBDD operator BitwiseX)r(x, 0, x),

assuming thatthe variables in x are orderedlast:

BitwiseJDr(x, k, x) {

if (A; > |x|) return x

t = topjoar(x)

if (t<xk){

T = Bitwise.Or(xt, k,x)

E = BitwiseJOr(xj, A:, x)

return ITE(t,T,E)

} else {

if (Xxk = 0) retum x~k •BitwiseX>r(xx£, A; + 1,x)

else retumXk •BitwisejOr(xXk + Xxj, k+1, x)

}

}

Proof: Xk denotes the Ar-th variable in the array x. Assuming that the variables in x are ordered

last, theabove recursion terminates after all of them have been processed (k > |x|, and a0 ora 1 is

returned as x). At a BDD vertex where t < X*, the recursion has not reached a variable of interest

yet, and we simply recurse down its right and left children and mergethe Bitwise.Or results by

creating a new vertex ITE(t, T, E). If t > xkt we have to perform the bitwiseor operation on

variable v. If Xxk = 0, variable Xk nevertakes avalue 1in anysatisfyingassignments of x, so it is

setto 0 by xj. The bitwise OR of the remaining variables is given by Bitwise.Or(xxk, k + 1,x).
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Otherwise if Xxk # 0, there exists a satisfying assignment of x inwhich x* = 1. SoXk is set to 1,

while abitwise or isperformed over all remaining satisfying assignments ofx,i.e., Xxk + Xxj- •
This recursive BDD operator isvery fast, but uiifortunately, itsoperation isvalid only if

the variables tobe bitwise OR are atthe bottom ofthe BDD DAG. So toexecute this BDD operator,
we need to perform variable substitutions before and after the operation. Experimentally, these

substitutionsteps are too slow tobepractical and sometimes cause exponential blowup inthe BDD
size. As a result,we use the computation in Lemma3.19 instead.

Lemma 3.21 Given a characteristicfunction xa(x) representing asetAofpositional-sets, the set

intersection relation tests ifpositional-set yrepresents the intersection ofallsets in A, and can be
computedby:

n

Intersectx->y(xA) = II V* ** Var \Xa(x) •xk]

Proof: For each position A:, the right hand expression sets yk to 1if and only if the A:-th bitof all

x in xa is a 1. This implies that the positional-set y will contain the ife-th element if and only if
all positional-sets x inxa have A; has a member. Effectively, the right hand expression performs a

multiple bitwise and onallpositional-sets ofxa toform asingle positional-set ywhich represents
the intersection of all such positional-sets. •

3.7.4 fc-out-of-n Positional-sets

Let the number of objects be n. In subsequent computations, we will use extensively

a suite ofsets of sets ofobjects, Tuplenyk(x), which contains all positional-sets x with exactly A;
elements inthem (i.e., |x| = A;). Inparticular, the set ofsingleton element Tuplen%\ (x), the set of

pairs Tuplenz(x), the universal setofall objects Tup/en,n(x), and the set ofempty set T,ttp/e„,0(x)
2 are common ones.

An efficient way ofconstructing and storing such collections of Ar-tuple sets using BDD

will begiven next Figure 3.7 represents a reduced ordered BDD ofTuples^x):
The root of the BDD represents thesetTuples^(x), while theinternal nodes represent

the sets Tupleitj(x) (i < 5,j < 2). For ease of illustration, the variable ordering is chosen such
that thetopvariable corresponding to Tuples (x) is xt. Atthat node, if we choose element i tobe

inthe positional-set, xt takes the value 1and we follow the right outgoing arc. hidoing so, we still

have i - 1elements/variables left tobeprocessed. As we have put element t inthe positional-set,

2Ttip/e„,o(x) will be denoted by0(x).
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Figure 3.7: BDDrepresenting Tuples^x).

we still have to add exactly j - 1 elements into the positional-set. That is why the right childof

Tupleij(x) should beTup/et_i><7_i (x). Similarly, the leftchild isTup/et_i j(x) because element

i has not been put in the positional-set and we have j - I elements/variables left. Thus, the BDD

for Tuples canbe constructed by the algorithm shown in Figure 3.8.

The total number of nonterminal vertices in the BDD of Tuplen>k is (n - k + 1) • (A; +

l)-l = nA:-A? + ?i = 0(nk). With the use ofthe computed table [6], the time complexity of
theabove algorithm is also 0(nk) astheBDD isbuiltfrom bottom up and each vertex is builtonce

and then re-used. Given any n, theBDD for Tuplenjk is largest when A; = n/2.

3.8 FSM Representation using Both Encodings

A good representation for a problem is key to thedevelopment ofefficient algorithms for

it, and this is certainly true forproblems in sequential synthesis and verification. A state transition

graph (STG) (Definition 2.4) is commonly used as theinternal representation ofFSM's in sequential

synthesis systems, such as sis [73]. Many algorithms for sequential synthesis have been developed

to apply to STG's. However, large FSM's cannot be stored and manipulated without memory
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Tuple(iJ) {

if (j < 0) or (t < j) retum 0

if (t = j) and (t = 0) retum 1

if r«p/e(i, j) in computed-table retumresult

T = r«p/e(t-l,j-l)

E = Tuple(i-lJ)

F = ITE(xiiT1E)

insert F in computed-table for Tuple(ij)

retum F

}

Figure 3.8: Pseudo-code forthe Tuple operator.

usage and CPU timebecoming prohibitively large. A limitation of STG's is the fact that they are a

two-level form of representation where state transitions are stored explicitly, one by one. This may

degrade the performance ofconventional graph algorithms.

Assume that the given FSM has n states, lb perform stateminimization, one needs to

represent andmanipulate efficiently sets of states (such ascompatibles) and sets of sets of states

(such as sets of compatibles). Therefore 1-hotencoding isused forthe states oftheFSM. According

tothetheory inSection 3.7, wecan represent any setof sets of states (i.e., setof state sets) implicitly

asasingle 1-hot encoded MDD, and manipulate such state sets symbohcally allatonce. Different

setsof setsof states canbe stored asmultipleroots witha single shared 1-hot encoded MDD.

If inputs (outputs respectively) of theFSM are specified symbohcally, theycan berepre

sented as amulti-valued symbolic variable i (orespectively) where each value of t (orespectively)

represents aninput(output respectively) combination. Forcompactness inrepresentation, wechoose

to use the logarithmic encoding for these variables. It is not a problem that different multi-valued

variables usedifferent encodings as long as they are used consistently. However if inputs (outputs

respectively) of theFSM are already given in encoded form, each encoded bit of inputs (outputs

respectively)is represented by a singleBooleanvariable.

When states and transitions are represented implicitly, the 1-hot encoded MDDrepresen-
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tation is often much smaller than STG. There is no direct correlation between the complexity ofthe

STG and the size of the corresponding 1-hot encoded MDD. Using these MDD relations and the

positional-set notation, we proposenew implicitalgorithms in the coming chapter for generating

varioussubsetsof compatibles for solvingdifferent stateminimization problems.

3.9 Variable Ordering

We can frequently suffer from exponential timeand/or space complexities if we neglect

theissue ofvariable ordering. As with most variants ofBDD, the space and time complexities for

constructing an MDD for any discrete function is in the worst caseexponential in the number of

variables ofthe function. Luckily inreal life, mostdiscretefunctions have reasonable representations

provided that agood variableorderingischosen. Friedman etal. in[24] found an O(n23n) algorithm

forfinding theoptimalvariable ordering where n isthenumberofBoolean variables. Fastervariable

ordering heuristics for BDD's have been provided byMalik etal. in [52] and Fujita etal. in [25].

Rudell [69] recently proposed an effective dynamic variable reordering heuristic which offers a

tradeoff of runtime forcompactness of BDD representation.

The goal in this section is to find a good variable ordering so as to minimize the total

number ofvertices used. With a mapped-BDD representation ofan MDD, the ordering process
consists of two steps: order the BDD variables within each MDD variable, and then merge these
orderings intoa singleBDDvariable ordering.

Two well-known mle-of-thumbs suggested in[52] and [25] can beused for the ordering
of BDD variables within each individual MDD variable:

1. Variables that are closelyrelated shouldbe orderedcloseto each other.

2. Variables that dominate control ofthe function should be ordered atthe top.

There are two ways ofmerging these individualorderings. Cluster ordering places BDD
variables, which correspond tothe same multi-valued variable, inconsecutive positions inthe final
ordering. Within each cluster, the binary variable which corresponds to the most significant bit
(MSB) is ordered first (i.e., highest). Then the next significant encoding variable is ordered next,

and so on. Forstate minimization,clusterordering isused to merge different sets ofinput and output
variables. And they are ordered before (i.e., on top of) the state variables because the transition

relation depends heavily on inputs andoutputs.
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Example In Figure 3.9, the relation (x = y) isrepresented as an MDD on the left and amapped-
BDD (i.e., logarithmic encoded MDD) by cluster ordering inthe middle. Variables x and yeach
can take four values. Note that the multi-valued variable x is encoded into two binary variables

xo (MSB) and xi (LSB) ontheright. The circled subgraph before reduction has thesame number

ofoutgoing arcs asthe MDD vertex and the two representations are equivalent. With the mapped-

BDD representation, vertices with equivalent subgraphs can bemerged asshown bythetwo lowest

nonterminal vertices.

0 1

Figure 3.9: Comparisonbetweenclusterordering and interleaveordering.

The problemofusingclusterorderingforvariables withlargevaluerangesis illustratedby

Figure3.9. Considerthe FSMnamedsquares in the MCNCbenchmark whichhas 371states. Using

1-hotencoding on its states, multi-valued variables x and y each consists of371 BDD variables. As

mentioned before, there are about 5 x IO111 outgoing edges from the circled BDD subgraph cluster.

Inthe worst case, it would have 5 x IO111 subgraphs below, each rooted atsuch anedge. Thus the

size of the MDD will grow exponentially in the numberof binaryencodedvariables.

Tb avoid such exponential growth, we use an interleave ordering for the BDD variables

instead, as shownon the right of Figure 3.9. The encodedvariablesxo and xi for x are interleaved

with yo and y\ for y. The more significantbits are comparedbefore the less significantones as the

mapped-BDD is traversed from top to bottom. With interleaving, the width of the mapped-BDD

can be kept slim. As a comparison for our example, the mapped-BDD using cluster ordering has
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9 nonterminal vertices while interleave ordering results in 6 nonterminal vertices. For the FSM

squares, the mapped-BDD for (x = y) have only 3 x 371 = 1113 nonterminal vertices using

interleaveordering.

For state minimization, our implicit algorithms need to operate on multiple set of state

variables, each such variable set can represent a positional-set. Interleave ordering must be used

for these sets of variables for the reason described above, lb avoid exponential complexities, a

common wisdom is to use as few BDDvariables aspossible, hi Section4.6, we allocate only 4 sets

of state BDD variables although a totalof 10 state vectornames are used in the equations. This

is possiblebecausewe never have to operate on more than4 sets of statevariables simultaneously

within a single BDD operation. The actual BDD variables are reused for different purposes, by

binding at different times more than one set of variables from the equations onto a single set of

BDD variables.
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Chapter 4

Compatible Generation

4.1 Introduction

State minimization of FSM's is a well-known problem [40]. State minimization of

completely specified FSM's (CSFSM's) has acomplexity subquadratic in thenumberof states [31].

Thismakes it an easy problem when thestarting point isatwo-level description of anFSM, because

thenumber of states is usually less than a few hundred. The problem becomes difficult to manage

when the starting point is an encoded sequential circuit with a large number of latches (in the

hundreds). In that case thetraditional method would berequired to extract astate transition graph

from the encoded network and then apply state minimization to it. But when latches are more

than a dozen, the number of reachable states maybe so hugeto make state extraction and/or state

minimization unfeasible. Recently it has been shown [49,47] how to bypass the extraction step

and compute equivalence classes of states implicitly. Equivalence classes are basically all that

is needed to minimize a completely specified state machine. A compatible projection operator

uniquelyencodes each equivalence class by selecting a uniquerepresentative of the class to which

a given state belongs. This implicittechnique allows state minimization of sequential networks

outside the domain oftraditional techniques.

StateminimizationofincompletelyspecifiedFSM's (ISFSM's) insteadhasbeen shown to

be anNP-hard problem [61]. Therefore even for problems represented with two-level descriptions

involving ahundred states, anexact algorithm mayconsumetoomuchmemoryand time. Moreover,

it has been recently reported [43] that even examples with very few states generated during the

synthesis of asynchronous circuits may fail to complete (or require days of CPU time) when run

with a state-of-art exact state minimizer as stamina [63]. Therefore it is of practical importance
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to revisit exact state minimization of ISFSM's and address the issue of representing implicitly the

solution space.

We underline that besides the intrinsic interest of state minimization and its variants

for sequential synthesis, the impUcit techniques reported in this chapter can be applied to other

problems oflogic synthesis and combinatorialoptimization.For instancethe impUcit computation

of maximal compatibles given here can be easily converted into an impUcitcomputation of prime

encoding-dichotomies (see [71]). Therefore the computational methods described here contribute

to build a body of implicit techniques whose scope goes much beyonda specificapplication.

hi this chapter, we address the problem ofcomputing sets ofcompatibles for the exact state

minimizationofISFSM's [37]. Weshowhowto computesets of maximalcompatibles,compatibles

and prime compatibles with implicit techniques and demonstrate that in this way, it is possible to

handle examples exhibiting a number ofcompatibles upto21500, anachievement outside the scope

of programs based on expUcit enumeration [63]. We indicate also where such examples arise in

practice. The finalstep ofan impUcitexact state minimizationprocedure,i.e., solvinga binate table

coveringproblem [68], wiU be presented in the next chapter, Chapter5.

The remainder of this chapter is organizedas foUows. Section4.2 gives an introduction

to classical exact algorithms for state minimizationof ISFSM's. An impUcit version of the exact

algorithm is presented in Section4.3. Section 4.4 describes the method to generate the impUcit

binate table. It wiU be solved by a binate covering solverdescribed in Chapter 5. Alternative

impUcit algorithms for prime compatible generation are explored in Section 4.5. A discussion

of more subtleaspects of the implementation of the presented algorithms is givenin Section 4.6.

Results on a variety of benchmarks are reported and discussed in Section4.7.

4.2 Classical Definitions and Algorithm

Most of the terminology used in this chapter is common parlance of the logic synthesis

community [40,7,8]. hi this sectionwe wiU revise briefly the basicdefinitions andprocedures for

exactstateminimizationof ISFSM's,as presented in theoriginalpapersandstandard textbooks [60,

28,40]. First we restate the definition of incompletely specified FSM's. Some definitions will be

restatedin Section4.3 where they will be explained in more detail.

Definition 4.1 An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M =

(5, /, O,A, A,R). S represents the finite state space, I represents the finite input space and O
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represents the finite output space. A is the next state relation defined as a characteristic function

A:IxSxS-*B where each combination ofinput and present state is related toa single next
stateor toallstates. A is theoutputrelation definedasa characteristicfunction AiIxSxO-* B

where each combination of input and present state is related toa single output or to alloutputs.
RCS represents theset ofresetstates.

hi classicalUterature, no reset state is specified for an ISFSM, and it is assumedthat all

states can potentiallybe picked as a reset state for implementation. The same is assumed in this

chapter, and this is reflected in covering conditions defined later.

hi addition, unspecified nextstateis traditionally not represented in the nextstate relation

A. i.e., if the next state is not specified for present state s and input i, thereis no state s1 such that

A(i, s, s') = 1.This assumptionismade insubsequent definitions and computations inthis chapter.

Definition 42 A setofstates is an output compatible iffor every input, there is a corresponding

outputwhich can be produced by eachstate in theset.

Twostateare an output incompatible pair if they are not outputcompatible.

Lemma 4.1 Two statesare an output incompatible pair if andonlyif on some input, they cannot

produce the same output.

Definition 43 A set of states is a compatible iffor each input sequence, there is a corresponding

outputsequence which can be producedby each state in the compatible.

The set ofcompatibles can theoreticallybe computedas foUows:

1. Assume that every output compatible is a candidate(for compatible).

2. A candidate is not a compatibleif on someinput,its states cannot producea same output and

transit to a candidate compatible set.

3. Repeat 2, until no candidate can be deleted from the set of candidate compatibles.

Practically,the number of candidates is too large to be handled by such an explicit algorithm.

Two states are a incompatible pair if they are not compatible.

Lemma 42 Two states are an incompatible pair ifandonlyif



70 CHAPTER 4. COMPATIBLE GENERATION

1. theyare outputincompatible,or

2. on someinput, their next statesarean incompatiblepair.

The set of incompatiblestate pairs can be computedas foUows:

1. Computeoutput incompatible pairs, whichare incompatible pairs.

2. A pairof statesis an incompatible pairif on some input, its pairof nextstates is a previously

determined incompatible pair.

3. Repeat 2, untilno newpairscan be added to thesetof incompatible pairs.

Theorem43 Given anISFSM, a setofstates isa compatible ifand only if every pairofstates in

it are compatible.

Proof: ByDefinition 4.3, if a set of states is a compatible, then each pairof statecontained in it is

a compatible.

Suppose eachpairof statesin a set C of states is compatible. We shah prove that C is a

compatible byinduction onthelength A; of anarbitrary input sequence. Onan arbitrary input i (as

induction basis), each state in C canproduce either oneoutput or alloutputs, because themachine

is anISFSM. Notwo states in C produce two specified outputs which isdifferent because they are

pairwise compatible. Asa result, aU states in C can produce acommon output on input i. Assume

that foranarbitrary input sequence oy of length k, every states in C can again produce a common

output sequence andreach a setof states C". AsC ispairwise compatible, somustC. Byapplying

anextra input i, each state in C" can produce either one output or all outputs. Notwo states in C

produce different specified outputs, soaU states inC can produce acommon output oninput i. We

have shown that thestate in C, onany input sequence oflength k+1, can also produce a common

output sequence. Thus C is a compatible. •

Corollary 4.4 Given an ISFSM, a set ofstates which does not contain an incompatible pair isa
compatible.

Proof: Ifasetofstates does notcontain anincompatiblepair, eachpairofstates initare compatibles.

ByTheorem 4.3,thesetof states is a compatible. •

Definition 4.4 A set of states rft is an implied set 1 of a compatible c for input i if dt =

{s,|A(i,s,s') = l, VsGc}.

'Animplied set d, ofcunder t is simply the setofnext states from state set con input t.
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Definition 4.5 AsetCofcompatibles isacoverofanISFSM ifeach state intheISFSMiscontained
in a compatiblein C.

Definition 4.6 Aset Cofcompatibles isclosed in an ISFSM iffor each ceC,all its implied sets
c{ are contained insome element ofCfor each inputs i.

Theorem 4.5 The state minimization problem ofan ISFSM reduces to finding a closed set C of
compatibles, of minimum cardinality, which covers every state of the original machine, i.e., a
minimum closed cover.

Definition 4.7 Acompatible setofstates isa maximal compatible if it is not a subset ofanother
compatible.

A setof statesis a maximal incompatible if it is not a maximal compatible.

We giveas example an elegant procedure to find aU maximal compatibles thatcanbe found in [53].

1. Writedownthe pairsof ^compatiblesas a product of sums

2. Multiply them out to obtain a sum of products, and minimize it withrespect to single-cube

containment

3. Foreach resultant product, write down missing states to getmaximal compatibles.

This is equivalent to compute aU prime impUcants of a unate function expressed as a product of

sums (of pairs of states). For instance:

1. Product of pairs of^compatibles:

(«4 + S$) (S4 + S6) («4 + 59) (S5 + &j) («6 + S7) (56 + Si) (s8 + S9)

2. Unatefunction in sumof products: S4SSS6S& + 54S6S7S9 + stsjsx + sss^s?

3. Maximalcompatibles: S1S2S3S7S9, S1S2S3S5S8? S1S2S3S5S6S9, siS2S^S4^s%

Thesetofallmaximal compatibles ofa completely specified FSMis theunique minimum

closed cover. For an incompletely specified FSM, a closed cover consisting only of maximal

compatibles may contain more sets than a minimum closed cover, in which some or aU of the

compatiblesare proper subsetsof maximalcompatibles.

Definition 4.8 An implied setdofa compatible c is initsclassset if
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1. d has more than one element, and

2. d%c, and

3. d%d' ifd' € classsetofc.

Definition 4.9 Acompatible c* prime dominates 2a compatible cif

1. d D c, and

2. classsetofdC classset of c.

i.e., d dominates c if d covers allstates covered byc and the closure conditions of d are a subset
of the closure conditions of c.

Definition 4.10 Acompatiblesetofstates isa prime compatible ifitisnotdominatedby any other
compatible.

Thefollowing procedure (which will beused in Section 4.5.3) generates allprime com

patibles from the set of maximal compatibles [28].

1. Initially the setof primecompatibles is empty.

2. Order the maximal compatibles bydecreasing size, say n is the size of the largest

3. Add to thesetofprime compatibles themaximal compatibles ofsize n.

4. For k = n - 1 down to 1 do:

(a) Compatibles of size k (and their implied sets) are generated starting from themaximal

compatibles of size n to k + 1 (only thosehaving non-void classset).

(b) Add to the setof prime compatibles the compatibles of size knotdominated by any
prime compatiblealready in the set.

(c) Addto the set of primecompatibles all maximal compatibles of size k.

Thefollowing facts are trueabout the above algorithm:

• A compatible already added to the set ofprimes cannot beexcluded by a newly generated
compatible.

If we take Definition 2.37 as the definition of prime dominance, this Definition 4.9 represents only a sufficient
condition for prime dominance.
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• The same compatible can be generated more than once by different maximal compatibles.

The question arises offinding themost efficient algorithm togenerate thecompatibles.

• Only thecompatibles generated from maximal compatibles withnon-void class setneed be

considered, because a maximal compatible with a void class set dominates any compatible

that it generates.

• A singlestates canbe a prime compatible if every compatible set C withmorethanonestate

and containing s implies a set with more than one state.

Definition4.11 A prime compatible is an essential prime compatible if it contains a state not

containedinany otherprime compatibles.

The following theorem is proved in [28], and its generalization to PNDFSM has been

given in Theorem 2.24.

Theorem 4.6 ForanyISFSM M, there is a reduced ISFSM Mred whosestatesall correspond to

prime compatiblesofM.

A minimum closed cover can then be found by setting up a table covering problem [28]

whose columns are the prime compatiblesand rowscorrespondsto the covering and closure condi

tions.

The following facts are useful in the state minimization ofFSM's:

• The cardinality of a maximal incompatible is a lower bound on the number of states of the

minimized FSM.

• If there is a maximal compatible that contains all states ofa given FSM, the FSM reduces to

a single state.

• The cardinality of the set of maximalcompatiblesis an upper bound on the number of states

of the minimized FSM.

• If a maximal compatible has a void class set, it must be a prime compatible. As a result, no

compatible contained in it can be a prime compatible (result used in Section 4.5.3).

• The minimum number of maximal compatibles covering all states is a lower bound on the

number of states of the minimized FSM.
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• The minimum numberof maximal compatibles covering all statesand satisfying the closure

conditions is an upper bound on the number ofstates of the minimized FSM.

4.3 Implicit Generation of Compatibles

Anexact algorithm forstate minimizationconsistsoftwosteps: thegeneration ofvarious

sets of compatibles, and thesolution of a binate covering problem. The generation step involves

identification of sets of states called compatibles which can potentially be merged into a single

state in the minimized machine. Unlike the case of CSFSM's, where state equivalence partitions

the states, compatibles for incompletely specified FSM may overiap. As a result, the number of

compatibles can beexponential in thenumber ofstates [66], and the generation of the whole setof

compatiblescan be a challengingtask.

The covering step (which willbe described in Sections 5) is to choose a minimum subset

of compatibles satisfying covering and closure conditions, i.e., to find a minimum closed cover.

The covering conditions require that every state is contained in at least one chosen compatible.
The closure conditions guarantee that the states ina chosen compatible are mapped by any input
sequence to states containedin a chosen compatible.

Inthis section, we describe implicit computations tofind sets ofcompatibles required for
exact state minimization of ISFSM's. In each of the following subsections, we shall first restate

the definition ofsome theoretical object, and give alogic formula to compute it, and then argue its
correctness in a proof.

4.3.1 Output Incompatible Pairs

lb generate compatibles, incompatibility relations between pairs ofstates are derived first
from the givenoutput and transitionrelations of an ISFSM.

Definition 4.12 Two statesarean output incompatible pair if,forsome input, they cannotgenerate
thesameoutput.

Lemma 4.7 The set ofoutput incompatiblepairs, 01CV(y, z), can be computed as:

OTCV(y, z) = Tuple: (y). Tuplex (z) •3t flo [A(t\ y,o) •A(t, *,o)] (4.1)



4.3. IMPLICIT GENERATION OFCOMPATIBLES 75

Proof: Although yand z can represent any positional-sets, the conditions Tuple\ (y) •Tuple\ (z)
restrict them torepresent only pairs ofsingleton states. The last term is true if and only if for some

input t, there isno output pattern that both state yand zcan produce (i.e., output incompatible). •

hi the above and subsequentformulas, we will mix notationsbetweenrelations and their

corresponding characteristic functions. Strictly speaking if we used the characteristic function

notation, the above formula would have been more clumsy:

QICV(y,z) = 1 if andonlyif (Tup/ei(y) = 1). (Tuplei(z) = 1)

.3i^o[(A(t,y,o) = l).(A(i,2,o) = l)]

4.3.2 Incompatible Pairs

Definition 4.13 Two states are an incompatiblepair if

1. theyare output incompatible,or

2. onsomeinput, their next statesareanincompatible pair.

Lemma 4.8 The set of incompatible pairsis the leastfixed pointofXCV:

XCV(y, z) = 01CV(y, z) + 3i, u,v [A(i, y, u) •A(i, *, v) •lCV(u, v)]

and canbe computedby thefollowing iteration:

lCV0(y,z) = OTCV(y,z)

lCVk+\(y>z) = ICPfc(y,z)+ 3i,u,v[A(i,y,u).A(i,z,v)-lCVk(u,v)] (4.2)

The iteration can terminatewhenlCVk+\ = TCVk andthesetofincompatiblepairsisXCV(y, z) =

1CVk(y,z).

Proof: The fixed point computation starts with the set of output incompatible pairs. After the

(k + l)-th iteration of Equation 4.2, TCVk\\ (y>z) contains all theincompatible state pairs (y,z)

thatleadtoanoutputincompatiblepairin &+1 orlesstransitions. Thissetisobtainedbyadding state

pairs (y,z) to thesetTCVk(yy *).if aninput takes states (y,z) intoanalready known incompatible

pair (u, v). •
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Figure 4.1: Findingincompatiblepairs.

4.3.3 Incompatible

Sofarwe established incompatibility relationships between pairs ofstates. Thefollowing

definition introduces setsof states of arbitrary cardinalities.

Definition 4.14 Asetofstates isan incompatible ifitcontains atleast one incompatiblepair.

Lemma 4.9 The setof incompatibles can becomputed as:

lC(c) = 3y,z [XCV(y, z)-(cDyU z)] (4.3)

Proof: By Lemma 3.10, (c D y u z) = n?=i yk + zk => c* performs bitwise OR onsingletons y

and z. If eitherof their fc-th bits is 1, the corresponding ck bit is constrained to 1. Otherwise, ck

can take any values. The outerproduct n£=i requires thatthe above is true for each k. Thus, it

generates all positional-sets c which contain the union of the positional-sets y and z. The whole

computation defines all state sets ceach ofwhich contains atleast an incompatible pairofsingleton
states (y, z) eXCV. •

4.3.4 Compatibles

Definition 4.15 Asetofstates isacompatible ifitisnot an incompatible.

Lemma 4.10 The setofcompatibles, C(c), can becomputed as:

C(c) = ^Tuple0(c)'-<LC(c)

Proof: C(c) simply contains all non-empty subsets cofstates which are not incompatibles XC(c).
The empty setinpositional-setnotation isTup/eo(c) and all subsets which are not incompatible are
given by-iJC(c). •
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4.3.5 Implied Classes of a Compatible

lb set up the covering problem, we also need to compute the closure conditions for each

compatible. This is done by finding the classsetof a compatible, i.e., the set of next states implied

by a compatible.

Definition 4.16 A setofstates d{ is an implied set of a compatible cfor input i ifdi is the set of

next statesfrom thestates in c on input i.

Lemma 4.11 The implied set (in singletonform) of a compatible cfor input i can be defined by

the relation 7"(c, t, n) which evaluates toI ifand only ifoninput i, n is a next statefrom state p in

compatible c.

T(c, iy n) = 3p [C(c) -(cDP). A(t\ p, n)] (4.4)

Proof: ,F(c, i, n) associates a compatible c e Cand an input i witha singleton nextstate n. Given

c and i, n is in relation F(c, i, n) (i.e., state n is intheimplied setof compatible c under inputi) if

andonly if thereis a presentstatepec suchthat n is thenext stateof p on input i. •

Note that the implied next states are represented here as singleton states in T(c, i, n).

All singletons n in relation with a compatible c and an input i can be combined into a single

positional-set, for later convenience. This positional-set representation of implied sets associates

each compatible c with a set of implied sets d.

Lemma 4.12 The impliedsetsd(inpositional-setform)ofacompatible cforallinputs are computed

bytherelation CX(c, d) as:

CX(c, d) = 3i [3n(T(c, t, n)) •Unionn^d(T(c, i, n))]

Proof: Considering therightmost terni, T(c, i, n)relates implied next states assingletonpositional-

sets n to compatible c and input i and Unionn-td(F(c,«, n)) forms the unionof these singleton

setsby bitwise or andproduces a positional-set d. Theterm 3n(F(c, t, n)) is needed, to exclude

invalid (compatible, input) combinations. Finally theinputs i are existentially quantified from the

implied sets of c of different inputs. •

4.3.6 Class Set of a Compatible

Definition 4.17 An implied set dofa compatible c is initsclassset if
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1. d has more than one element, and

2. die,and

3. d%d! ifd' € classsetof c.

We can ignore anyimphed set which contains onlya single state, because its closure condition is

satisfied if the stateis covered by somechosen compatible. Alsoif d C c, the closure condition is

satisfied bythechoice of c. Finally, if theclosure condition corresponding to d'is stronger thanthat

of d, the imphedset d is not necessary.

Lemma 4.13 The class setofa compatible c isdefined by the relation CCS(c, d) which evaluates
toI ifand only if the impliedset d is inthe class setofcompatible c.

CCS(c,d) = -,Tuplei(d). (c g d) -Maximald(CX(c,d))

Proof: The singleton implied sets Tuple\(d) are excluded according to condition 1 in Defini

tion4.17. Bycondition2, weprune away imphed sets dwhich are contained intheircompatibles c.

Finally given a compatible c,Maximald(CX(c, d)) gives allitsimplied sets dwhich are notstrictly

contained by anyother imphedsets in CJ(c, d). •

4.3.7 Prime Compatibles

Tbsolveexactly the covering problem, it is sufficient to consider a subsetof compatibles

called prime compatibles. As proved in [28], at least oneminimum closed cover consists entirely

ofprime compatibles.

Definition 4.18 . A compatible d dominatesa compatible c if

1. d D c, and

2. class set of d C class set ofc.

i.e., d dominates c if d covers allstates covered byc, and the closure conditions of d area subset

of theclosure conditions of c. As a result, compatible d expresses strictly lessstringent conditions

than compatible c. Therefore d is always a betterchoicefor a closedcover than c, thus c can be

excluded from further consideration.
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Lemma 4.14 The prime dominance relation is given by:

Dominate(d,c) = (d Dc) 'Containd(CCS(cyd)1CCS(did))

Proof: The two termson the rightexpress the two dominance conditions by whichd dominates c

according toDefinition 4.18. Since compatibles cand d arerepresented aspositional-sets, (d D c)

is computed according to Lemma 3.7. On the other hand, class sets are sets of sets of states and

are represented by their characteristic functions. Containment between such sets of sets of states is

computed byVd [CCS(d, d) =$• CCS(c, d)], asdescribed byLemma 3.17. •

Definition 4.19 A prime compatible is a compatible notdominatedbyanother compatible.

Lemma 4.15 The setofprime compatibles is given by:

VC(c) = C(c)> fld [C(d) •Dominate^', c)]

Proof: Compatibles c that are dominated by some compatible d are computed by the expression

3d [C(d) •Dominate(d, c)]. By Definition 4.19, the setofprime compatibles is simply given by

the set of compatiblesC(c) excludingthose that are dominated. •

43.8 Essential and Non-essential Prime Compatibles

Definition 420 Aprime compatible is an essential prime compatible if it contains a state not

contained in any otherprimecompatibles.

Because any solution must correspondto a closed cover, each state mush be contained in a selected

compatible,and thus every essentialprime compatiblemust be selected.

Lemma 4.16 The setofessentialprime compatibles can becomputed as:

€VC(c) =VC(c) •£>*• fid [dk •VC(d) •(c ^d))}
Jfc=i

Proof: Forasetcofstates tobeanessentialprimecompatible €VC(c)t itmustbeaprimecompatible

VC(c). In addition,theremust be a state s* suchthat Sk € c and there is no d € VC differentthan

csuch that Sk Gd. The positive literal Ck denotes the fact Sk Gc, and similarly for dk. •

Definition 4.21 . Aprime compatible isa non-essential prime compatible ifitisnot an essential
prime compatible.
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Lemma 4.17 The setofnon-essentialprime compatibles can becomputed as:

Af€VC(c) = VC(c)-^SVC(c)

Proof: By Definition 4.21. •

4.4 Implicit Generation of Binate Covering Table

Once thesetof (non-essential) prime compatibles is generated, theproblem ofexact state

minimization can besolved asabinate table covering problem. Algorithms for binate covering will

be described in detail in Chapter 5. In this section, we shall describehow such a binate table can

begenerated, lb keep with ourstated objective, the binate table is also represented implicitly. We

describe animplicit representation ofthecovering table, thatadroitly exploits how row and columns

were implicitly computed.

We do not represent (even implicitly) the elements of the table, but we make use only

of a setof row labels and a setof column labels, each represented implicitly as a BDD. They are

chosen so that the existence and value of any table entry canbe readily inferred by examining

itscorresponding row and column labels. This choice allows us to define all table manipulations

needed bythe reduction algorithms in terms of operations onrow and column labels and to exploit

all the special features of the binate covering problem induced by stateminimization (forinstance,

each row has at most one 0, etc).

Definition 4.22 A column is labeled by apositional-setp. The set0/column labelsC is obtained

byprime generation as C(p) = VC(p).

Beside distinguishingone row from another,each rowlabel must also contain information

regarding thepositions of0 and1's in therow. Each row label r consists of a pairofpositional-sets

(c, d). Since there is at most one 0 in therow, the label of the column p intersecting it in a 0 is

recorded in the row labelby setting its c partto p. If there is no0 in the row, c is set to theempty

set, Tupleo(c). Because of Definition 4.24for row labels, the columns intersecting a row labeled

r = (c,d) in a 1 arelabeled bytheprime compatibles p thatcontain d. i.e.,

Definition 4.23 The table entry atthe intersectionofa row labeledby r = (c,d) 6 Randa column

labeled bypeC canbe inferred by:

the table entry isaO iffrelation 0(r, p) = (p = c)is true,

the table entry is a I iffrelation l(r, p)=(pD d) is true.
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Definition 424 The setofrow labelsR is given by:

R(r) = PC(c) •CCS(c, d) + Ti*p/eo(c) •Tuple\ (d)

Theclosure conditions associated witha prime compatible p are that if p is included in a solution,

eachimphed set d in its class set must be contained in at leastone chosen prime compatible. A

binate clause of the form (p+ pi -f p2 H 1- Pk) has to be satisfied foreach imphed set of p,

where pi is a prime compatible containing theimphed set d. Thelabels forbinate rows are given

succinctly byW(c) -CCS(c,d). There isarow label for each (c, d) pair such that c e KMsaprime

compatible and d is one of its imphed sets inCCS(cy d). This row label consistently represents the

binate clause because the0 entry intherow is given bythecolumnlabeled bytheprime compatible

p = c,andthe row has Ts in thecolumns labeled byp, wherever (pt- D d).

The covering conditions require thateach statebecontained by some prime compatible

in the solution. For each state d € 5, a unate clause has to be satisfied which is of the form

(Pi + P2 H \-Pj) where the pt-*s are the prime compatibles that contain the state d. By specifying
the unate row labels tobeTuple0(c) •Tuple\ (a), we define arow label for each state inTuple\ (d).

Since the row has no0, itscpart must besettoTup/eo(c). The 1entries are correctly positioned at

the intersection with allcolumns labeled byprime compatibles p, which contain thesingleton state
d.

4.5 Improvements on Implicit Algorithm

The experiments,which will be reported in Section4.7, identifiestwo bottlenecks in the

implicit computations described in Section 4.3:

1. the fixed pointcomputation of incompatible pairs;

2. the handling of closure information, i.e.,imphed classes andclasssets.

Sections 4.5.1 and 4.52 describes alternative methods toperform those computations. Section4.5.3

shows how maximal compatibles can be used with advantage inthe computation ofprime compat

ibles. The reader may choose toskip this and the next section (Sections 4.5 and 4.6) without losing
continuity in reading.
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4.5.1 Incompatible PairsGeneration using GeneralizedCofactor

This subsection describes avariation onthefixed pointcomputationofincompatible pairs

XCV(y, z), presented in Section 4.3.2. Each iteration of the computation ofEquation 4.2 can be

viewed asaninverse image projection from a setofstate pairs inXCVkK v) to a setofstates pairs

inXCVk+i (y,z)viatheproduatransition relation A(i, y,u) •A(t, z,v). hi the original method, all

state pairs in XCVk+i («,v) are projected during the (k + 2)-th iteration. Some are notnecessary

because if the projected pair (y7, z!) of XCVk+\ is actually in XCVk as shown in Figure 4.23, its

projection (y", z") must have already been calculated inaprevious iteration. Thus atthe (k+2)-th
iteration, we need onlyproject thenew incompatible statepairs discovered atthe(k+1)-th iteration.

This is donein the following modification of the fixed pointcomputation of Section 4.3.2.

T(l,y,u)xT(l,z,v) 0k
ilEW

ICPk \ / k+1th iteration \ / ICPk+1

Figure4.2: An alternative wayof finding incompatible pairs.

XCVQ(y,z) = OXCV(y,z)

(= NEW(y,z))

TMP(y, z) = 3i, u { A(i} y, u)•[3vA(i,zy v) •NEW(uy v) ] }

NEW(y,z) = TMP(y,z).^TCVk(y,z)

XCVk+i(y,z) = XCVk(y,z) + NEW(y,z)

Instead of finding a minimum cardinality set of state pairs for projection, a minimal set of state

pairswitha smallBDDrepresentation is moredesirable forourimplicit BDDformulation. A small

BDD forNEW(y, z) canbeobtained using thegeneralized cofactor [801 using XCVk (y,z) asthe

don't care set:

NEW(y, z) = NEW(y, z)\„ICVkM

3In Figure 4.2, the direction ofthe arrows shows the inverse projections.
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As a resultof this modification, the geometric mean of the ratio of CPU run time for computing

XCV with this generalized cofactormethodversusthe originalmethodis 0.68.

4.5.2 Handling of Closure Information

For FSM's with many compatibles, the most time consuming pan of our implicit algo

rithm is thecomputationof imphed classes and class setsof thecompatibles. Thecomplexity arises

because theseimplicit computations dealwithtwosetsof variables (c,d) in eachrelation, c repre

senting a compatible and d representing its imphed classor classset. Since eachcompatible may

have adifferent classset,thesizeof thecorresponding BDD'smayblowup during the computation.

A way to cope with this problem is to represent the class sets by means of singletons

n (by Lemma 4.11) instead of sets d of arbitrary cardinalities (by Lemma4.12). This avoids

the computation of the BDD objects CX(c, d) and CCS(c, d) which are usually large and time

consuming. The following series of computations is equivalent to andreplaces the computations in

Sections 4.3.5,4.3.6 and 4.3.7.

Theorem 4.18 The classsetsof compatibles can beobtained bypruning the implied set relation

?(c, i, n) insingletonform, by thefollowing computations:

F(c,i,n) = 3p[A(i,p,7i)-C(c)-(cDp)]

I(c,i) = 3nri [.F(c,tln)-.F(c1tln/)-(n^n')] (4.5)

^(c, i, n) = T(c, t, n) •J(c, t)

J(c, i) = 3n [.F(c, i, n) • (c 2 n)]

?(c,i,n) = F(c,i,n)'J(c,i)

K(c,i) = 3i'{[Contain^T^i^.T^i'.nYj-k-^J^i')]

'^[Containn^c, t', n),T(c, i, n)) + -.J(c,«')] } (4.6)

T(c, i, n) = T(c, i, n) •->K(c, i)

Proof: Foreach input i and each compatible c, we must compute a unique implied set denoted

by c,. Each imphed class c,- is represented asa setof singleton-states n, i.e„ c, = {n\T(c, i, n)}.
Definition 4.17, an imphedclass c, of a compatible c is in a classset if

1. ct has more than one element,

2. c{ %c,
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3. ci %C{i if Ci> € class set

Therelations /, J and K capture the imphed sets thatsatisfy the first, second and third class set

conditions respectively. The relation /(c, i) finds all imphed classes ct which contains at least

twodistinct nextstates n and n', i.e., it computes all imphed classes withmore thanoneelement.

Equation 4.5prunes thesetT accordingly. Relation J(c, i) contains allremaining imphed classes

not containedin c, thus satisfyingthe secondcondition.

lb computethe thirdcondition implicitly, its form needs to be transformed. Fromthe set

of imphed classes, we delete animphed class c,- if c, c c,/. We know that, c,- c c^ if and only if

C{ C ct/ and c,v g c,. The Containn(F(c, t, n),T(c,*', n)) operation is used totestif c,- c c,', but

since itsresult may include invalid (c, i1) pairs (i.e., imphed classes) the terms -i7(c, i^ are needed
inthe equation, hithe last equation, the imphed sets inK(c, t) are subtracted away from T because
they violate the third condition. •

Theorem 4.19 The condition that compatible d dominates compatible c can becomputed as:

Dominate^', c) = (d Dc) •Vi' 3iContainn(F(c, i, n),T(c\ i', n))

Proof: ByDefinition 4.18, d dominates c if d covers allstates covered by c andtheconditions on

the closure of d are a subset of the conditions on the closure of c. •

After computing thedominance relation Dominate(d, c),theprime compatibles canbe

generated using Lemma 4.15.

453 Prime Compatible Generationusing Maximals

The prime compatible generation algorithm given in Section 4.3 does not rely on the

computation of maximal compatibles, whereas theclassical method in [28] does. We are going to

present alternative implicit generation algorithm thatdoes make useof maximal compatibles. The

motivation is toexpedite theprime generation step, asit isusually themost time consuming step.

Theorem 4.20 The setofmaximal compatibles can becomputed as:

MC(c) = Maximalc(C(c))

Proof: By Definition 4.7, the set of maximal compatibles MC(c) is simply the maximal set of

positional-setsin C(c) with respect to c (Lemma3.13). •
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Theorem 4.21 The set ofsingleton next states implied bya maximal compatible c under input i,

?(C)t, y),can becomputed by:

T(c, i, n) = 3p [MC(c) -(cDP)- A(t,p, n)]

The class set informationfor themaximal compatibles can then be obtained using the class set

computationprocedure as described in Theorem 4.18.

Proof: Obvious from definition. •

Compatible Pruning by Maximal Compatibles with Void Class Set

When generating prime compatibles from compatibles, only the compatibles generated

from maximal compatibles withnon-void classsetneedbe considered, because a maximal compat

ible with a voidclass set dominates any compatible that it generates.

Theorem 4.22 The maximal compatibles with void class set, MCV(c), can beobtained by:

MCV(c) = MC(cy fli K(c, i)

where K (c, i) is given byEquation 4.6.

The setof compatibles can then bepruned by MCV(c):

C(c) = C(c). fid [MCV(c) •(d Dc)]

Slicing Procedure for Prime Compatible Generation

The following slicingprocedure is an implicitversionof the procedureoutlined near the

end of Section 4.2.
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VC(c) = 0

for k = n downto 1 do{

MCk(c) = MC(c) •Tup/e^c)

Ck(c) = C(c) •Tuplek(c) •^MCk(c)

^ck(c,i,n) = Prwne(Cjfe(c),A(t,p,n))

^rc(c, t, n) = Prune(PC(c),A(t,p, n))

Dominate(d, c) = (d D c) -Vi' 3i Contain^Fpc^,i, n)^!Fck(d% i', n))

PCjfe(c) = C(c)> fid [Dominate(d, c) •C(d)]

VC(c) = TC(c) + PC*(c) + A4C*(c)

}

VC(c) is a setof prime compatibles accumulated during each iteration, and is originally

empty. MCk(c) contains maximal compatibles with cardinality k. Ck(c) contains compatibles

c of cardinality Ar, excluding those in MCk(c). Prime(Cfc(c), A(i,p, n)) is the classset pruning

procedure described inTheorem 4.18, by substituting Ck(c) forC(c), andTc(cy i, n) for T(c, i, n)

in theequations. Prune(VC(c), A(«,p, n)) is similarly defined. So Fck(c% i, n) and ^t>c(c, i, n)

contains theclass setsof Ck(c) andVC(c) respectively. To testfor Dominate(d,c), weonlyneed

to know if a compatible d e Ck is dominated byanalready discovered prime compatible c 6 VC,

because (1) for any other d 6 Ck> c <£ d, and (2) c can be dominated only by primecompatibles

with cardinalities greater than k. VCk(c) contains the newly discovered primecompatibles with

cardinahty k,andthisset is added to MCk andVC to update thesetofprime compatibles found so

far.

Experimentally during BDD construction of the prime compatibles, this slicing method

uses on average half the memory requirement as compared to the method in Section 4.5.2. This

methodis particularlyefficientif the sizes of the compatibles are localizedto a fewcardinalities.

4.6 Implementation Details

4.6.1 BDD Variable Assignment

When dealing with BDD's, a common wisdom is to keep the number of BDD variables

used to a minimum. The rationale the smaller the number of BDD variables involved, the less

probable is that a BDD operation will cause exponential blowupin the BDD size, hi our case
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1. 10state variable vectors (p, n, y, z, tt,v, c,d, d,<f) are used in all previous equations,

2. inpositional-setnotation, each state variable vectorcorresponds to n Boolean variables where

n is the number of states.

Looking intoeach equation carefully reveals the fact that we neveroperate on morethan

four sets of variables simultaneously in a single BDD operation. For example, 4 sets of variables

y, z, u and t; are used in Equation 4.2, and 3 sets p,n and c in Equation 4.4. The ideaof BDD

variable assignment is to use a set of BDD variables for more than one purpose, by binding at

different timesmore than onesetof variables from theequations ontoasingle setofBDDvariables.

Theassignments should bemade insuch awaythat notwosets of variables appearing in anequation

will be assigned to the same setof BDD variables. Such anassignment for ourprevious implicit

algorithm is shown in Figure4.3.

BDD variable sets

0 1 2 3

P n

y u z V

c d d d'

e

Figure 4.3: Assignments of equationvariablesto BDD variables.

There is a conflict with the above BDD variable assignment in Equation 4.3. Variable

c is assigned thesame BDD variables asvariable y in these equations, lb get around it, an extra
variable e is used instead:

XC(c) = [e -> c]3y,z [XCV(y}z)-(yDzUe)]

Note that two functions containing different variables being assigned to the same BDD variable,

e.g., A(i,p, n) and CCS(d, d1), canco-exist within a multi-rooted BDD at the same time, without

interfering one another. Conflict will occur only when they become operands toa BDD operation.

Actually asa result ofoveriapping invariable supports, suchunrelated functions canbeconstructed

and manipulated more efficiently due tosharing ofBDD subgraphs, i.e., possible hits intheunique
andcomputed hashtables [6] in a BDDpackage.

4.6.2 BDD Variable Ordering

The issue ofBDD variableorderinghas been introducedin Section 3.9.
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The equality, containment, striacontainment, maximal and minimal relations described in

Section 3.7.2 have exponential BDD's size ifthe different sets ofBDD variables are not interleaved

with each other. Both for space and time efficiency, the four sets of BDD variables have to be

interleaved.

It is found that the ordering between individual state variables within a set of BDD

variables (i.e., a positional-set) is alsoimportant, especially when handling theclosure information.

The heuristics we use is to put the Boolean variables corresponding to states that occur most

frequently in thecompatibles atthetopof theBDD. This should leave theBDD sparse in thelower

pan of the BDD where moststate variables take a value of 0. Asthesetof compatibles is usually

verylarge, weapproximate thecountbycounting theoccurrences of states inmaximal compatibles

instead.

4.6.3 Don't Cares in the Positional-set Space

The main advantage of our positional-set representation of FSM's is that, witha single

multi-rooted BDD, sets of sets of states can be represented. As a result, we can compactly

represent andmanipulate setsofcompatibles (C), prime compatibles (VC), etc. However during the

computation of OCV, OXCV andXCV, wearemanipulating onlysetsof singletonstatesandso we

onlycare about a smallportion of theencoding space. Since nopositional-setof cardinality greater

than1willappear there, wecanmake useofthese don'tcare code points inthepositional-set space.

For example, the computations involved in Equations 4.1 to 4.2 manipulate a produa

of two singleton states (y, z). The don't care condition with respea to this pair of singletons is

captured by:

DC(y,z) = -^Tuple0(y) •--Tuple\(y) + ->Tuple0(z) •-yTuple\(z)

andcan be usedto simplify the BDDcomputation of these setsusinggeneralized cofactor.

4.7 Experimental Results

We implemented the algorithms described in previous sections in a program called ism,

anacronym forImplicitStateMinimizer. We ranismondifferent suitesofFSM's. We report results

on the following suites ofFSM's. They are:

1. the MCNC benchmark and other examples,
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2. FSM's generated bya synthesis procedure forasynchronous logic [46],

3. FSM's from learning I/Osequences [23],

4. FSM's from synthesis of interacting FSM's [82],

5. FSM's withexponentially many prime compatibles,

6. FSM's withmany maximal compatibles, and

7. randomly generated FSM's.

Each suite has different features with respea to state minimization. We discuss features of the

experiments and results in different subsections. Comparisons are made with stamina [64], a

program that represents the state-of-art for state minimization based on exphcit techniques. The

program stamina was run with the option-P to compute all primecompatibles.

For each example, we report the number of states in the original ISFSM, the numberof

maximal compatibles if applicable, the number compatibles, the number of prime compatibles, the

numberofnon-essential prime compatibles ifapplicable, and therun time forourimplicitalgorithm

ism andthat for the exphcit algorithm stamina. All run times are reported in CPU seconds on a

DECstation 5000/260 with 440 Mb ofmemory. The CPU run time refers to thecomputation ofthe
prime compatibles only.

4.7.1 FSM's from MCNC Benchmark and Others

Table 4.1 reports the results from the MCNC benchmark and from other academic and

industrial benchmarks available tous. Most examples have a small number ofprime compatibles,
with the exception of ex2 and green. Therunning times of ism are worse thanthose of stamina,

especially in those cases where there are very few compatibles in the number ofstates (squares is

the most striking example), hi those cases an exphcit algorithm issufficient toget a quick answer

and it may be faster than an implicit one. The reason is that ism manipulates relations having a

number ofvariables linearly proportional tothe number ofstates. When there are many states and

few compatibles, the purpose of ism is defeated and its representation becomes inefficient. But

when the number of primes is not negligible as in ex2 and green, ism ran as fast or faster than
STAMINA.

The question now arises of how it is realistic to expect such examples in logic design

applications. One could objea that theexamples ofTable 1 show that hand-designed FSM's can
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be handled verywellby an existing state-of-art program likestamina. If thiscanbe tme for usual

hand-designed FSM's, we argue that there are FSM's produced in the process of logic synthesis

of real design applications that generate large sets of compatibles exceeding the capabilities of

programs based on an exphcit enumeration. The examples of Table 2 are such a case. They

are FSM's produced as intermediate stages of an asynchronous logic design procedure and their

minimization requires computing very large sets of compatibles. Another case is theonereported

in Table 3, referring to the synthesis of finite state machines consistent with a collectionof I/O

learning examples.

#max # prime CPU time (sec)
machine # states compat. # compat. compat MIVC ISM STAMINA

arbseq 94 2 96 9 3 12 0

bbsse 16 11 97 13 0 0 0
beecount 7 4 11 7 5 0 0

exl 20 2 22 19 1 1 0
ex2 19 36 2925 1366 1366 7 13

ex3 10 10 195 91 91 0 0
exS 9 6 81 38 38 0 0
ex7 10 6 135 57 57 0 0

fsml 256 47 302 208 0 83 0.6

green 54 524 1234 524 524 90 125

lion9 9 5 20 5 2 0 0
markl 15 12 41 18 11 0 0

scf 121 12 1201 175 87 22 0
squares 371 45 473 307 0 731 1

tbk 32 16 48 48 48 3 1

tma 20 15 35 20 4 1 0
trainll 11 5 85 17 15 0 0
viterbi 68 5 329 57 3 6 0

Table 4.1: The MCNC benchmark and others.

4.7.2 FSM's from Asynchronous Synthesis

Table 4.2 reports the results of a benchmark of FSM's generated as intermediate steps

of an asynchronous synthesis procedure [46]. stamina ran out of memory on the examples

vmebusjnasterjn, isend, pe-rcv-ifcfc, pe-send-ifcfc, while ism was able to complete them. These

examples (with the exception of vbe4a) have a number of primes below a thousand. To explain
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this data reported in Table 4.2, we notice that in order to computethe prime compatibles, every

compatiblehas to be generated by stamina too. The compatibles of the FSM's of this benchmark

are usually of large cardinality and therefore their enumeration causes a combinatorial explosion.

Sothehugesizeof thesetof compatibles accounts for thelarge running timesand/orout-of-memory

failures. About the behavior of ism, we underline thatthe running times track well with the size

of the set of compatibles and whenbothprograms complete, they are usually well belowthose of

stamina (pe-rcv-ifcfcjn, pe-send-ifcfcm, vbe4a). For asynchronous synthesis, amoreappropriate

formulation of exactstate minimization requires the computation of all compatibles or at leastof

primecompatibles and a different set-up ofthe covering problem [46].

#max # prime CPU time (sec)
machine # states compat. # compat. compat. M£VC ISM STAMINA

alexl 42 787 55928 787 787 24 16

future 36 49 7.929e8 49 49 3 0
future.m 28 16 2.621e7 16 16 2 0

intel_edge.dummy 28 120 9432 396 396 37 3

isend 40 128 22207 480 480 13 spaceout
isend.m 20 15 22207 19 19 1 0

mp-forward-pkt 20 1 1.048e6 1 0 0 0

nak-pa 56 8 4.741el5 8 8 9 0

nak-pa.m 18 8 44799 8 8 1 0

pe-rcv-ifcfc 46 28 1.528ell 148 148 18 spaceout
pe-rcv-ifc.fc.m 27 18 1.793e6 38 38 3 147

pe-send-ifcfc 70 39 5.071el7 506 506 571 spaceout
pe-send-ifcfcm 26 6 8.978e6 23 22 3 312

ram-read-sbuf 36 2 3.006el0 2 0 2 0

sbuf-ram-write 58 24 1.433e6 24 24 14 0

sbuf-ram-write.m 24 12 1.433e6 12 12 2 0
sbuf-send-ctl 20 10 81407 10 10 0 0

sbuf-send-pkt2 21 2 622591 2 0 0 0

vbe4a 58 2072 1.756el2 2072 2072 109 167

vbe4a.m 22 13 73471 13 13 2 0
vbe6a.m 16 8 527 8 4 1 0

vmebus.master.m 32 10 5.049e7 28 28 16 spaceout

Table 4.2: Asynchronous FSM benchmark.
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4.13 FSM's from Learning I/O Sequences

Table 4.3 and Figure4.4 showthe results of running a parametrized set of FSM's con

structed to be compatible with a given coUection of examples of input/output traces [23]. These

machinesexhibitvery large numberof compatibles.

Hereismshows all itspowercompared to stamina, bothin termsof numberof computed

primecompatibles andrunning time, stamina runs outof memory on theexamples from threer35

andfourrJO onwards and, whenit completes, it takes closeto twoorderof magnitude moretime

than ism.

# # # prime CPU time (sec)
machine state compat. compat. ISM STAMINA

threer.10 11 671 112 0 0

threer.20 21 16829 3936 1 159

threer.30 31 97849 33064 21 1344

threer.40 41 1.456e6 529420 75 spaceout

threer.55 55 3.622e7 1.555e7 1273 spaceout
fourr.10 11 2047 1 0 0

fourr.20 21 42193 12762 2 217

fourr.30 31 1.346e6 542608 20 spaceout

fourr.40 41 5.266e9 2.388e9 105 spaceout

fourr.50 51 3.643e7 1.696e7 198 spaceout

fourr.60 61 1.052el0 5.021e9 ♦18181 spaceout

fourr.70 71 9.621el0 4.524el0 ♦22940 spaceout

Table4.3: FSM's fromlearning I/O sequences.

4.7.4 FSM's from Synthesis of Interacting FSM's

It has been reported by Rho and Somenzi in [65] that the exact state minimization of the

driven machine of a pair of cascaded FSM's is equivalentto the state minimization of an ISFSM

that requires the computationof prime compatibles.

The examples ifsmO, ifsml, ifsm2 come from a set of FSM's producedby FSM optimiza

tion, using the input don't care sequences induced by a surrounding networkof FSM's [82]. They

exhibitoften largenumberof compatibles andprimecompatibles, as shownin Table4.4. For such

cases, the run times of the implicit algorithm ism are shorter than those by stamina.
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CPU sec

CPU Time Vs. # Prime Compatibles

le402 le+04 le+06
#primes

Figure 4.4: Comparison between ism and stamina on learning I/O sequences benchmark.

machine

#

state

#

compat.

# prime
compat.

CPU

ISM

time (sec)
STAMINA

ifsmO

ifsml

ifsm2

38

74

150

1064973

43006

497399

18686

8925

774

43

25

267

4253

466

356

Table 4.4: Examples from synthesis of interacting FSM's.
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4.7.5 FSM's with Exponentially Many Prime Compatibles

In theprevious examples, thenumber ofprime compatibles isnotlarge compared to the

number ofstates. Anatural question toask iswhether there are FSM's that generate a large number

of prime compatibles with respect to the number of states. We were able to constma a suite of

FSM'swhere thenumber of prime compatibles is exponential in thenumber of states.

Rubin gave in [66] a sharp upper bound for the number of maximal compatibles of an

ISFSM. He showed that M(n), the maximum number ofmaximal compatibles over all ISFSM's

withn > 1states, isgiven by M(n) = t.3m,ifn = 3.m+t. Theproofofthis counting statement is

based onthe construction ofafamily ofincompatibility graphs I(n)parametrized inthe numberof

states 4. Each I(n) is composed canonically ofanumberofconnected components. Each maximal
compatible contains exactly one state from each connected component of the graph. The number

of such choices is shown to be M(n).

The proof of thetheorem does not exhibit anFSM that has a canonical incompatibility

graph. Based ontheconstruction of the incompatibihty graphs given in the paper, we have built a

family F(n) ofISFSM's 5(parametrized inthe number ofstates n) that have anumberofmaximal
compatibles in the order of3<n/3) and anumberofprime compatibles in the order of 2<2n/3). F(n)
has 1input and n/3 outputs. Each machine F isderived from anon-connected state transition graph

whose component subgraphs Ft are defined onthe same input and outputs. Each subgraph F{ has

3states {sl0, sih sa} and 3specified transitions {et0 = (s,o, s;i), e,i = (*n, «a), ca = (s,-2, s,o)}.
Each transition under the input setto 1 asserts all outputs to -, with the exception that e,o and en

assert the i-thoutput to0 and ea asserts thei-thoutput to 1. Under theinput setto 0, thetransitions

are left unspecified.

Table 4.5 and Figure 4.5 show the results of running increasingly larger FSM's of the

family. While ism is able to generate sets of prime compatibles of cardinahty up to 21500 with

reasonable running times, stamina, based on an exphcit enumeration runs out of memory soon
(and where it completes, it takes muchlonger).

4.7.6 FSM's with Many Maximal Compatibles

Table 4.6 shows the results of running someexamples from a setof FSM'sconstructed to

have a large number ofmaximal compatibles. The examples jac4, jc43, jc44, jc45, jc46, jc47 are

TTie incompatibility graph of anISFSM F is agraph whose nodes are thestates of F, withanundirected arc between
two nodes s and £iff 5 and t areincompatible.

5Called rubin followed byn inthe table ofresults.
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#max # prime CPU time (sec)
machine # states compat. # compat. compat. QMSVC ISM STAMINA

rubinl2 12 34 2«-l 2*-l 2«-l 0 4

nibinl8 18 36 212-1 212-1 212-1 1 751

mbin24 24 38 216-1 216-1 216-1 1 spaceout
rubin300 300 3100 2200-l 2200-l 2200-l 256 spaceout

nibin600 600 3200 2m-\ 2™-\ 2400-l 1995 spaceout
rubin900 900 3300 2600-l 2600.! 2600-l 6373 spaceout

nibinl200 1200 3400 2800-l 2800-l 2800- 1 17711 spaceout

nibinl500 1500 3500 2iooo_ j 2iooo_ j 2iooo_ | 42674 spaceout
rubinl800 1800 3600 21200 _ j 2*200-1 2l200_ | 78553 spaceout

nibin2250 2250 3750 21500 _ j 21500-1 21500 _ | 271134 spaceout

Table 4.5: Constracted FSM's.

CPU Time Vs. # Prime Compatibles

le+54 le+121 le+188 le+255
#primes

Figure 4.5: Comparison between ism and stamina on constracted FSM's.
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due to R. Jacoby andhave been kindly provided by J.-K. Rho ofUniversity of Colorado, Boulder.

The example lavagno is fiom asynchronous synthesisasthose reported in Section4.7.2. Forthese

examples the program stamina was runwith the option-M to compute allmaximal compatibles.

While ism couldcompleteon them in reasonable ranning times, stamina couldnot completeon

jac4 and completed the otherones with ranning timesexceeding thoseof ism by one ortwo order

of magnitudes. Notice that ism could also compute the set of all compatibles even though the

computation of prime compatibles cannot be carriedto the end while stamina failed on both. The

primecompatibles for these examples could not be computedby eitherprogram.

#max # prime CPU time (sec)
machine # states compat # compat compat. ISM STAMINA

jac4 65 3.859e6 4.159e7 ? 34 spaceout
jc43 45 82431 1.556e6 ? 13 7739

jc44 55 4785 7.584e9 ? 20 662

jc45 40 17323 480028 ? 10 1211

jc46 42 26086 1.153e6 ? 11 2076

jc47 51 397514 1.120e7 ? 19 41297

lavagno 65 47971 9.163e6 ? 163 40472

Table 4.6: FSM's with many maximals.

4.7.7 Randomly Generated FSM's

We investigated also whether randomly generated FSM's have a large number of prime

compatibles. A program was written to generate random FSM's 6. A small percentage of the

randomlygeneratedFSM's were found to exhibitthis behavior. Table4 showsthe resultsof ranning

ism and stamina on some interesting examples with a large number of primes. Again only ism

could complete the examples exhibiting a large numberofprimes.

4.7.8 Experiments Comparing BDD and ZBDD Sizes

As mentioned before, the objects we manipulate in our implicit algorithmsare sets and

relations of positional-sets. A characteristic of our representations is that the positional-sets (e.g.,

compatibles) are usually sparse sets. Minato in [57] showed that Zero-suppressed BDD is a good

Parameters: number of states, number of inputs, number ofoutputs, don't care output percentage, don't care target
state percentage.
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#max # prime CPU time (sec)
machine # states compat. # compat. compat. #AfSVC ISM STAMINA

feml5.232 14 4 7679 360 360 2 23

feml5.304 14 2 12287 954 954 1 85

fsml5.468 13 2 4607 772 772 1 16

fcml5.897 15 2 20479 617 616 0 50

ex2.271 19 2 393215 96383 96382 21 spaceout
ex2.285 19 2 393215 121501 121500 13 spaceout
ex2.304 19 2 393215 264079 264079 93 spaceout
ex2.423 19 4 204799 160494 160494 102 spaceout
ex2.680 19 2 327679 192803 192803 151 spaceout

Table 4.7: Random FSM's.
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representation of setsof sparse sets. As a preliminary investigationofthe effectivenessofaZBDD-

based algorithm forexact state minimization, we convert somekey BDDobjectsinto ZBDD's and

observe the change in the number ofnodes used.

Experiments are performed onmachines whichrequire non-trivial covering steps forstate

minimization. During state minimization of each machine, ZBDD's are generated from BDD's

representing the set of compatibles C, the set of prime compatibles VC (which is usually also the

set of columnlabels), and the set of rowlabels R. From the rightmost two columns of the above

table, the conversion routines between ZBDD and BDDseem to execute fast enough to allow for

algorithms thatswitches between BDDand ZBDD representations and manipulations.

Out of the 18 examples, 9 of them have smaller ZBDD's than BDD's for representing

C, 13 of them have smaller ZBDD's than BDD's for representing VC (the remaining 5 examples

are all randomly generated machines), and 18 of them have smaller ZBDD representations of R.

Disregarding the second set of examples, ex2.* * *, which are randomly generated machines, the

comparison shows that ZBDD's are usually smaller than BDD's and are always comparably close

for the exceptional cases.

When converting BDD's to ZBDD's, themostreduction in sizesoccurs for the represen

tation of R, and less for VC, and the least for C. A possible explanation isthat VC ismore sparse a

setthan Cbecause all state sets that are inVC are inCbut not vice versa. A similarexplanation also

applies between R and VC. Each row label in R consist of twoparts: apositional-set representing

aprime compatible, and another positional-set representing itsclass set. As we don't expect much
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Compatibles Prime Compat. table->R

# nodes in # nodes in # nodes in CPU Time (sec)
machine BDD ZBDD BDD ZBDD BDD ZBDD bdd2zbdd zbdd2bdd

alexl 2562 1203 1243 415 167 43 0.00 0.00

ex2.271 21 51 236 286 5646 4307 0.44 0.27

ex2.285 22 38 461 471 39 2 0.00 0.00

ex2.304 22 38 787 826 56928 34263 5.66 3.19

ex2.423 29 66 675 782 40857 27060 4.66 3.32

ex2.680 23 41 1819 1953 57446 40277 8.06 4.25

ex2 161 108 222 148 4421 1521 0.18 0.16

ex3 28 33 45 41 584 290 0.02 0.01
ex5 34 31 33 26 269 111 0.01 0.00

ex7 26 30 41 39 322 159 0.01 0.01

green 197 78 194 62 211 54 0.01 0.01

keybjex2 581 173 1260 324 14539 2053 0.77 0.58
s386Jkeyb 320 188 404 175 6386 1270 0.25 0.22

room4.16 75 79 201 159 1213 501 0.05 0.04

room4.20 122 134 458 407 2863 1431 0.16 0.11

room3.20 113 110 265 228 1717 790 0.07 0.05

room3.25 220 185 544 402 3922 1567 0.18 0.12

room3.30 637 473 1205 785 9391 3389 0.59 0.38

Table 4.8: Comparison between BDD and ZBDD sizes.
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sharing between different class sets, the set of row labels (whose variable support is twice of VC

andC) shouldbe the most sparse set
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Chapter 5

Binate Covering

5.1 Introduction

At the coreofthe exact solutionofvarious logic synthesisproblems ties often a so-called

covering step that requires the choice of a set of elements of minimum cost that cover a set of

ground items, under certain conditions. Prominent among these problems are thecovering steps in

the Quine-McCluskey procedure forminimizinglogic functions, selection of a set of encodeable

generalized prime implicants, state minimization of finite state machines, technology mapping and

Boolean relations. Let us review first howcovering problems are defined formally.

Suppose that aset S —{s\,..., sn} is given. The costof selecting st- is ct where c, > 0.

By associating a binary variable x{ to s„ which is 1 if st is selected and 0 otherwise, the binate

covering problem (BCP) canbe defined as finding S' CS thatminimizes
n

t=l

subject to the constraint

A(xux2,...,xn) = 1,

where A is a Boolean function, sometimes called the constraint function. The constraint function

specifies asetof subsets of S that can beasolution. Nostructural hypothesis ismade on A. Binate

refers to the fact that A is in general abinate function (a function is binateif it has at least a binate

variable). BCP is the problem of finding an onsetmintermof A that minimizes the cost function

(i.e., asolution of minimum cost of the Boolean equation A(xi,X2i...,xn) = 1).

If A is given in product-of-sums form, finding a satisfying assignment is exactly the

problem SAT, the prototypical ATF-complete problem [26]. Inthiscase it also possible to write A
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asanarray ofcubes(that form amatrixwithcoefficients from the set {0,1,2}). Each variable of A

is a columnandeachsum (orclause) is a rowand the problem canbe interpreted asone of finding

a subsetC ofcolumnsofminimumcost,suchthatfor every row rt-, either

1. 3j suchthatatJ = 1and cj € C, or

2. 3j suchthat a,j = 0 and c, $ C.

hi otherwords,eachclausemust be satisfied by settingto 1avariable appearing in it in the positive

phase orby settingto 0 avariable appearing in it in thenegative phase. Inaunate covering problem,

the coefficientsofA are restricted to the values1and2 andonly the first conditionmust hold. In this

chapter, we shall consider the minimum binate covering problem where A is given in product-of-

sums form. In this case,the term covering is fullyjustified because one cansaythatthe assignment

ofa variable to 0 or 1 covers some rowsthatare satisfied by thatchoice. The product-of-sums A is

called covering matrix or covering table.

As an example of binate covering formulation of a well-known logic synthesis problem,

considerthe problem of finding the minimum numberof primecompatibles that are a minimum

closed cover of a given FSM. A binatecovering problem canbe set up as described in Section 5.7,

whereeachcolumnofthe tableis a primecompatible andeachrowis oneofthe covering orclosure

clausesof the problem [28]. There areas many covering clauses as statesof the original machine

andeachofthem requires thata stateis covered by selecting anyofthe primecompatibles in which

it is contained. There areasmany closure clauses asprimecompatibles andeachofthem states that

if a given primecompatible is selected, then for each imphedclass in its corresponding class set,

one of the prime compatibles containing it must be chosen too.

In the matrixrepresentation, table entry (t, j) is 1or0 according to the phase oftheliteral

corresponding to primecompatible j in clause i; if sucha literal is absent, the entry is 2.

Various techniques have been proposed to solve binate covering problems. A class of

them [10,42] are branch-and-bound techniques that build explicitly the table of the constraints

expressed as product-of-sum expressions and explore in the worst-case all possible solutions, but

avoid the generation of some of the suboptimal solutions by a clever use of reduction steps and

bounding of search space for solutions. We will referto thesemethodsasexplicit

A second approach [50] formulates the problemwith Binary Decision Diagrams(BDD's)

and reduces finding a minimum cost assignmentto a shortest pathcomputation. In that case the

number ofvariables of the BDD is the number of columns of the binate table.
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Recently, a mixed technique has been proposed in [35]. It is a branch-and-bound algo

rithm, where the clauses are represented as aconjunction ofBDD's. The usage of BDD's leads to

an effective method to compute a lower bound on the cost of the solution.

Notice thatunate covering is a special case ofbinate covering. Therefore techniques for

thelatter solve also the former, hi theother direction, exact state minimization, aproblem naturally

formulated as a binate covering problem, can be reduced to a unate covering problem, after the

generationof irredundantprime closed sets [72]. But there is a catch here: the cost function is not

anymore additive, so that the reduction techniques so convenient to solve covering problems, are

not any more applicable as they are.

In this chapter, we are interested in exact solutions ofbinate covering. Existingexphcit

methods do quitewell on small and medium-sized examples, but fail to complete on larger ones.

The reasonis that either they cannotbuild the binatetable because the number of rows and columns

is too large, or that the branch-and-bound procedure would take too long to complete. For the

approach ofbuilding a BDDofthe constraint function and computing the shortest path fails, it fails

whenthenumber of variables (i.e., columns) is toolarge because it is likely that aBDDwithmany

thousandsof variables will blow up.

The crux of the matter, when explicit techniques fail, is that we are representing and

manipulating sets that are too large to be exhaustively listed and operated upon. Fbrtunately we

know of an alternative way to represent and manipulate sets: it is by defining the set over an

appropriate Boolean space (i.e.; encoding the elements of the set), associating to it a Boolean

characteristic function and then representing this function by a binary decision diagram (BDD).

Since now on, by BDD of a set we will denote the BDD of the characteristic function of the set

over an appropriate Boolean space. As definedin Section 3.3, a BDD [11,6] is a canonical directed

acyclic graph data structure that represents logic functions. Theitems that aBDD can represent are

determined by thenumber of paths of the BDD, while the size of the BDD is determined by the

number of nodes of the DAG. There is no monotonic relation between the size of a BDD and the

numberof elements that it represents. Itisan experimental fact that often verylarge sets, that cannot

berepresented explicitly, have acompact BDD representation. Setoperations are easily turned into

Boolean operations on the corresponding BDD's. So we can manipulate setsby a series of BDD

operations (Boolean connectives and quantifications) witha complexity depending onthe sizes of

themanipulated BDD's and notonthecardinality of the sets that are represented. Thehope here is

that complex setmanipulations have as counterparts Boolean propositions that can be represented

withcompact BDD's. Of course, thisisnotalways thecase and itmayhappen that an intermediate
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BDDcomputation, in asequence ofoperations leading to a set,blowsup. The nameofthe gameis

a careful analysis ofhow prepositional sentences can betransformed intologically equivalentones,

thatcanbe computed moreeasilywith BDDmanipulations. Special care must be exercised with

quantifications, thatbring moredanger of BDDblowups. AU of thisgoes oftenunder thenameof

implicit representations and computations.

The previous insight has already been tested in a series of applications. Research at

Bull [16] and U.C. Berkeley [80] produced powerful techniques for implicit enumeration of subsets

of states of a Finite State Machine (FSM). Later work atBull [19,48] has shown howimplicants,

primes and essential primesofatwo-valued ormulti-valued function canalsobecomputed implicitly.

Reported experiments show a suite of examples where all primes could be computed, whereas

exphcit techniques implemented inespresso [7] failed todoso. Finally, the fixed-point dominance

computation in the covering step of the Quine-McQuskey procedure has been made implicit in

current work [18, 79]. The experiments reported show that the cyclic core of all logic functions

of the espresso benchmark canbe successfully computed. For someof them espresso failed the

task.

Last but not the least, we have shown in Chapter 4 how all prime compatibles of an

FSM can be computed impUcitiy. In some cases, their number is exponential in the number of

states (the largest recorded number is 21500). Once we have them, we must solve abinate covering
problem to choose aminimumclosed cover. Of course, we cannot build explicitly a table of such

dimensions and solveit (this would defeat thepurpose of computing impUcitiy prime compatibles in

the first place). So it isnecessary to extend implicit techniques tothesolutionofthebinate covering

problem. An implicit binate table solver would also be required to solve impUcitiy other problems

in sequential synthesis that we care about. One is the selection of asetof encodeable generalized

prime implicants (GPI's), asdefined in [22,50]. It is not feasible to generate GPI's and to setup

a related binate covering table by explicit techniques on non-trivial examples. Using techniques

as in [48], GPI's canbe generated implicitly. An impUcit binate table solveris therefore needed

there too. Notice that potential applications include unate covering problems, such as selecting the

minimumnumberofencoding-dichotomies thatsatisfy asetofencoding constraints [71].

Thischapterdescribes animplicitformulation of thebinate covering problem and presents

an implementation. The impUcitbinate solver has been tested in the case of state minimization of

ISFSM's (Chapter 4) and pseudo NDFSM's (Chapters 6and 7),and also for optimum selectionofan

encodable setof generalized prime impUcants for state assignment [81]. The reported experiments

showthatimpUcit techniques have pushed the frontier of instances where binate covering problems
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can be solved exactly, resulting in better optimizations possible in key steps of sequential logic

synthesis.

InthefoUowing sections, wewiU reviewtheknown algorithmsto solvecovering problems

and thenwe wiU describe anewbranch-and-bound algorithm based on impUcit computations. The

remainder of the chapter is organized as foUows. We have defined the minimum cost binate

covering problem in this section. In Section 5.2, we wiU compare this problem with0-1 integer

linearprogramming. The branch-and-bound scheme will be introducedin Section 5.3 which has be

used in exphcit binate covering algorithms summarized in Section 5.4. In Section 5.5, we survey

the classical reduction rules used in exphcit algorithms. OurimpUcit binate covering algorithm is

thenintroduced in Section 5.6 and its program input,animplicittablerepresentation, is described

in Section 5.7. Section 5.8 iUustrates how reduction techniques canbe impUcitized. Other kinds

of implicit table manipulations are introduced in Section 5.9. FinaUy, we shaU give experimental

results in Section5.10, for solvingof the state minimization problem of ISFSM's.

5.2 Relation to 0-1 Integer Linear Programming

There is an intimate relation between0-1 integer linear programming (ILP) and binate

covering problem (BCP). For every instance of ILP, there is an instance of BCP with the same

feasible set (i.e., satisfying solutions) and therefore with the same optimum solutions and vice

versa. As anexample, the integerinequalityconstraint

3xi -2x2+4x3 > 2,

with0 < xi, X2, X3 < 1corresponds to the Boolean equahty constraint

X1X2 + X3 = 1,

that can be written in product-of-sums form as:

(xi + X3)(x2-\-X3) = 1.

Given a problem instance, it is notclear a-priori which formulation is better. It is an interesting

question to characterize the class of problems that can be better formulated and solved with one

technique or the other.

As anexample ofreduction from ILPto BCP, a procedure (taken from [35]) thatderives

the Boolean expression corresponding to£J=i wj.xj > T is shown inFigure 5.1.

The idea of the recursion reUes on the observation that:
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LUo-BDD(I) {

tetlbejv^wj-xj >T

if (max(I) < T) return 0

if(mm(/)>r) return 1

t = ChooseSplittingVaHJ)

I1 = (Ej^vJj'Xj>T-wi)
I°=(Z#iwrxj>T)
/i =LUo.BDD(Il)

fo = LlJo-BDD(I°)
retum / = Xi • f\ + xj • /o

Figure 5.1: Transformation from tinear inequaUty to Boolean expression.

1. / = 0 if and only if max(I) = £ti/,.>o wt- < T\

2. /= 1if and onlyif min(I) = Eu,.<0 w{ > T\

When neither case occurs, the twosubproblems I1 and 1°, obtained by setting the spUtting variable

xt- to 1 and0 respectively, aresolved recursively.

5.3 Branch-and-Bound as a General Technique

Branch-and-bound constructs a solution of a combinatorial optimization problem by

successive partitioning of the solution space. The branch refers to this partitioning process; the

boundrefers to lower bounds that are used to constma a proofof optimaUty without exhaustive

search. A set of solutions can be represented by a node in a search tree of solutions, and it is

partitioned in mutually exclusive sets. Each subset in the partition is represented by a childof the

original node. In this way, a computation tree is built. An algorithm that computesa lowerbound

on the cost of any solution in a given subset allowsto stop further searches from a given node, if

the best cost found so far is smaller than the cost of the best solution that can be obtained from the
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node Cower bound computed at the node). In this case the node is killed and therefore none of its

children needs to be searched; otherwise it is alive.

If wecanshow at any point thatthebestdescendant of a nodey is at leastas good as the

bestdescendant of node x, thenwesay that y dominates x, and y cankill x.

Figure 5.2 shows the classical algorithm [59]. Anactiveset holds the livenodes at any

point A variable U is an upper bound on the optimal cost (cost of the best complete solution

obtained at any given time). Thebranching process needs notproduce onlytwochildren of a given

node, but any finite number.

We wiU seein thenextsection thatBCPcanbesolved bythe foUowing recursive equation

BCP(Mf) = BestSolution(BCP(MJs.) U{x,},BCP(Mf-))

where M/ is the binate table that corresponds to a function in product-of-sum form /, and

BCP(MIx.) (respectively, BCP(Mf-)) is the sub-problem expressed by the function fx. (re

spectively, fa). BCP(Mf) returns anonset minterm of / thatminimizes thecostfunction.

The previous equation canpotentially generate an exponential number of subproblems,

but powerful dominance and bounding techniques as weU as good branching heuristics help in

keeping the combinatorial explosionunder control.

5.4 A Branch-and-Bound Algorithm for Minimum Binate Covering

We wiU survey in this section a branch-and-bound solution of minimum cost binate

covering. This technique has been described in [29, 28, 9, 10], and implemented in successful

computer programs [67, 64, 76]. The branch-and-bound solution of minimum binate covering is

based ona recursive procedure. A run of the algorithm can be described by its computation tree.

Therootof thecomputation tree is theinput of theproblem, anedge represents a caU to smjnincov,

an internal node is a reduced input A leaf is reached when a complete solution is found or the

search isbounded away. From theroottoany internal node there is a unique path, thatis thecurrent

pathfor that node. In the sequel, we wiU describe in detail the binary recursion procedure. The

presentation wiUrefer to the pseudo-code smjnincov, shown at the end of this subsection.

5.4.1 The Binary Recursion Procedure

The inputs to the algorithm are:
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branchjandJboundQ {

activeset = original problem

U = oo

currentbest = anything

while (activeset is not empty) {

choose a branchingnode k e activeset

remove node k from activeset

generate the children ofnode k: child i = 1,..., n*

and the correspondinglower bounds z{

for i = 1to 71* {

if (zi>U)m. child i

else if (child i is a completesolution) {

U = zi

currentbest = child i

else add child i to activeset

}

}

}

Figure 5.2: Structure ofbranch-and-bound.
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• a covering matrix M;

• a current-path partial solutionselect (initiaUy empty);

• a rowof non-negative integers weight, whose t-th elementis the costor weightof the i-th

column of M;

• alowerbound Wound (initiaUy setto 0),which is amonotonic increasing quantity along each

path of the computation treeequal to the costof the partial solution on the current path;

• an upper bound ubound (initiaUy set to the sum of weights of aU columns in M), which

is the cost of the best overall complete solution previously obtained (a globaUy monotonic

decreasing quantity);

The outputis the best columncoverforinput M extended from the partial solutionselect

along thecurrent path, called bestcurrent solution, if thissolution costs lessthan ubound. An empty

solution is returned ifasolution cannot be found which beats ubound oran inflexibility is detected.

By ^feasibility, it is meantthe case whenno satisfying assignment of the product of clauses exists.

Eventhoughtheinitial problem in atypical logicsynthesis applicationhasusually atleastasolution,

some subproblems in the branchandboundtreemay be infeasible. When smjnincov is calledwith

anempty partial solution selectand initial Wound and ubound, it returns abest global solution.

The algorithm calls first a procedure smjeduce that apphes to M essential column

detection and dominance reductions. The typeof domination operations and the wayin whichthey

are applied are the subject of Section 5.5. Another more complex reduction criterion (Gimpers

rule) canalso be applied (see Subsection 5.5.12). Thesereduction operations delete from M some

rows, columns and entries. What is left after reduction is caUed a cycUc core. The final goal is to

get anempty cycUc core. The value of the lowerbound is updated usinga maximalindependent

set computation (see Subsection 5.4.3). If no bounding is possibleandthe reductions do not suffice

to solve completely the problem, a partition of the reduced problem into disjoint subproblems is

attempted (see Subsection 5.4.2) and each of them is solved recursively. When everything fails,

binary recursion is performed by choosing a branch column(see Subsection 5.4.4). Solutions to

the subproblems obtained by including the chosen column in the covering set or by excluding it

from the covering setare computed recursively and thebest solution is kept (the second recursion

is skipped if the solution to the first onematches theupdated lowerbound).

The procedure smjnincov returns when:
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8tnjmincov(M', select, weight, Ibound, ubound) {

/* Apply row dominance, column dominance, and select essentials */ (1)
if (lsmjreduce(M, select, weight, ubound)) return empty-solution
/* See if Gunnel's reduction technique appUes */ (2)

if (gimpel.reduce(M, select, weight, Ibound, ubound, &best)) retum best
/*Find lower bound fiom here to final solution byindependent set*/ (3)
indep = 8mjmaximal-independentset(M, weight)
I* Make sure the lower bound ismonotonicaUy increasing */ (4)
Iboundjnew = max(cost(select) + cost(indep),Ibound)
I* Bounding based onnobetter solution possible */ (5)
if (lbound.new > ubound) best= empty-solution

else if (M isempty) { /*New best solution atcurrent level */ (6)
best = 8olution-dup(select)

}else if (smMock-partition(M, &.M\, &M2) gives non-trivial bi-partitions) { (7)
bestl= sm.mincov(M\, select, weight,®, ubound - cost(select)) (8)
/*Add best solution tothe selected set*/ (9)

if (bestl = empty-solution) best = empty-solution

else { (10)
select = select U bestl

best —sm-mincov(M2, select, weight, Ibound-new, ubound)

}

}else { /* Branch on cycUc core and recur */ (11)
branch = select-column(M, weight, indep)
8electl = solution-dup(select) Ubranch

letMbranCh bethereduced table assuming branch column isnotinsolution (12)

bestl = 8m-mincov(Mbranch} select,weight,Ibound-new, ubound)
/*Update theupper bound if we found abetter solution */ (13)

if (bestl ^ empty-solution) and (ubound > cost(bestl)) ubound = cost(bestl)
/* Do notbranch if lower bound matched */ (14)

if (bestl ^ empty-solution) and (co8t(bestl) = Ibound-new) return bestl

let^branch ^ mereduced table assuming branch column not insolution (15)
bestl = sm-mxncov(M-^^^, select, weight, Ibound-new, ubound)
best= be8tsolution(bestl, bestl)

)
return best

-Figure 5.3: Detailed branch-and-bound algorithm.
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• The cost of a partial solution, found by adding essential columns to select, is more than

ubound or infeasibihty is detected when applying the domination rules (tine 1). An empty

solution is returned.

• The best current solutionis found by applying Gimpers reduction technique(line 2). Since

gimpeljeduce callsrecursively smjnincov,anempty solutioncouldbe returned too.

• The updated lower bound, determined by adding to Wound the costof the essential primes

and of themaximal independent set, is notless than ubound (line 5). An emptysolution is

returned.

• There is no cycticcoreand we are not in the previous case. The bestcurrent solutionis found

by updating select withthenewessential and unacceptable columns (line 6).

• The best current solution is found by partitioning the problem (line 7). The procedure

smjnincov is caUed recursively on two smaUer covering matrices determined by

smMockjyartition (tine 8 and 10). An empty solution can be returned by either recur

sive caU. If the first caU to smjnincov returns an empty solution, the second one is not

invoked (tine 9). If neither caU returns empty, each contributes its returned value to the

current solution.

• A branching column is chosen and smjnincov is called recursively withthebranch column

inthe covering set (Une 12). If the recursive caU of smjnincov returns anon-empty solution

thatmatches the current lowerbound (Ibound jiew), that solution is returned as the current

solution (line 14). If the cost of the current solution isless than ubound, ubound isupdated,

i.e., thecurrent solution is also thebestglobal solution (line 13).

• As in the previous case, butsmjnincov is caUed recursively with the branch column notin

the covering set(Une 15). Thebest among the solution found in the previous case and the

one computed here is the current solution.

Notice the foUowing facts aboutthe procedure smjnincov:

• The parameter Wound isupdated once (line 4). The reason isthat after the computationofthe

essential columns (Une 1) and of the independent set (Une 3), the cost of the previous partial

solution summed tothe cost ofthe essential columns and ofthe independent set ispotentiaUy
a sharper lower bound on any complete solution obtained from this node of the recursion
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tree. The updated value WoundJtew is used in the rest of the routine. The lower bound is a

monotonicaUy increasing quantity along each pathof thecomputation tree.

• The parameter ubound is updated once(Une 13). At thatpointa newcomplete solution has

justbeenreturned bytherecursive caU tosmjnincov (line 12)andanupdated value of ubound

must be recomputed for the foUowing recursive caU of smjnincov(line 15). The reason is

that when a new completesolutionis obtained, the currentubound is not any more valid and

therefore it must be updated before it is used again, lb be updated, ubound is compared

against the cost ofthe newly found solution, and the minimum ofthe two is the new ubound.

The upper bound is a monotonicaUydecreasing quantity throughout the entire computation.

The previous analysis proves that the algorithm finds a minimum cost satisfying assign

ment to the problem.

5.4.2 JV-way Partitioning

If the covering matrix M can be partitioned into two disjoint blocks Mi and M2, the

covering problem can be reduced to two independent covering subproblems, and the minimum

covering for M is the union of the minimum coverings for Mi and M2. Such bi-partition can be

found by putting in Mi a row and all columns that have an element in common with the row (i.e., the

columns intersecting the row) and recursively aUrows and columns intersecting any row or column

in Mi. The remaining rows and columns (i.e., not intersecting any row or column in Mi) are put in

Mi. This algorithm can be generalized to findpartitionsmade by N blocks, as shown in Figure 5.4.

Theorem 5.1 Ifa covering matrix M can bepartitioned into n disjointblocks M\, M2,..., Mn,

the union ofthe minimum covers ofMi, M2,..., M„ is the minimum cover ofM.

Bi-partitioning is implemented in [64,76] as foUows. When checking for a partition of

the problem (line 7), the routine smjnincov is called recursivelyon two independents subproblems

(lines 8 and 10), if they exist. When solving the smaller of the two subproblems (Une 8), the initial

solution is empty, the initial lower bound is set to 0, the initial upper bound is set to the difference

between the current ubound and the cost of the current partial solution. When solving the larger

of the two subproblems (line 10), the initial solution is the current solution (to which the solution

of the smaller subproblem is added, if it is not empty), the initial lower bound is set to the current

lower bound WoundJiew, the initial upper bound is set to the current ubound.
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njway-partition(M) {

while (there is a row r, notin any partition) {

put r, in a new partition M*

while (there isa row rj connected toany row inpartition M*) {

put row rj in partitionM*

}

}

}

Figure 5.4: AT-way partitioning.

Theorem 5.2 The upper boundset inthesmaller subproblem is correct.

Proof: Let select be the partial solution along the current path. It holds that (cost of the final

solution alongthe currentpath) > (costof solving Mi + cost(select) +1). If (costof solvingMi)

> (ubound - cost(select)), then (cost ofthefinal solution along thecurrent path) > (ubound +1),

i.e., (cost of the final solution along the current path) > ubound. This is ruled out by setting the

upperboundwhensolvingMi to (ubound - cost(select)), sincesmjnincov returns a non-empty

solution only if it can beat the given upper bound. •

5.4.3 Maximal Independent Set

The cardinality of a maximum set ofpairwise disjoint rows of M (i.e., no Ts in the same

column) is a lower bound on the cardinality of the solution to the covering problem, because a

different element must be selected for each of the independent rows in order to cover them. If the

size of current solution plus the size of the independent set is greater or equal to the best solution

seen so far, the search along this branch can be terminated because no solutionbetter than the current

one can possibly be found. It is also true that the size of the independent set at the first level of the

recursion is a lower bound for the final minimum cover, so that the search can be terminated if a

solution is found of size equal to this lower bound. Since finding a maximum independent set is an

NP-complete problem, in practice an heuristic is used that provides a weaker lower bound. Notice

that even the lower bound provided by solving exactly maximum independent set is not sharp.
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hi [67,64,76], the adjacency matrixB of a graphwhosenodescorrespondto rows in the

covermatrix M is created. In the binate case,only rowsare takeninto consideration whichdo not

contain any 0 element An edge is placed between two nodes if the two rows have an element in

common. WhileB is non-empty, a row i?t of B is found that is disjointftom a maximum number

of rows(i.e., the row of minimum length in B). The column of minimum weight intersecting Ri

is also found. The weightis cumulated in the independent set cost AU rows having elements in

common withRiarethendeleted from B. Attheendofthew/it/e-iterationasetofpairwise disjoint

rows(independent set) and their minimum covering cost is found. Noticethat one couldthink to

theproblem in a dualway as finding a maximal cUque in a graph withthesame rows asbefore, and

edgesbetween twonodes representing twodisjoint rows.

5.4.4 Selection ofa Branching Column

Theselection of agood branching column isessential fortheefficiency ofthebranch and

bound algorithm. Since the time taken bythe selection is a significant part ofthetotal, a trade-off
mustbe madebetween qualityandefficiency.

hi [67,64,761, the selectionofthe branching variable isrestricted tocolumns intersecting

the rows of the independent set, because a unique column must eventually beselected from each

row ofthe maximal independent set. Among those rows, the selection strategy favors columns with

large number of Ts and intersecting many short rows. Short rows are considered difficult rows

and choosing them first favors the creation ofessential columns. More precisely, the column of

highest merit ischosen. The merit ofa given column iscomputed as the product ofthe inverse of
the weight ofthe column multiplied by the sum ofthe contributions ofall rows intersected ina1by
the column. The inverse ofthe contribution ofa row isequal tothe number of aU non-2 elements

(each can contribute incovering the row) minus 1. The inverse isweU-defined, because atthis stage
eachrow has at leasttwo-elements (it is notessential).

5.5 Reduction Techniques

Threefundamental processes constitute the essence of the reduction rules:

1. Selection of a column: a column must be selected if it is the only column that satisfies
a required constraint (Section 5.5.7). A dual statement holds for unacceptable columns
(Section 5.5.8). Also related isthe case ofunnecessary columns (Section 5.5.9).
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2. Eliminationofacolumn: acolumn d can be eliminated, ifits elimination does not preclude
obtaining aminimal cover, i.e., if there exists inM another column Cj that satisfies atleast
aU the constraints satisfied by C, (Section 5.5.5).

3. Elimination ofa row: a row Jfc can be eliminated if there exists in M another row Rj that
expresses the sameor a strongerconstraint (Section 5.5.1).

Eventhough more complex criteria of dominance have been investigated (for instance,

Section 5.5.12), the previous ones are basic in any table covering solver. Reduction rules have

previously been stated for thebinate covering case [28,29,10,9], and also for theunate covering

case [54, 68, 9]. The former set of reductions are needed for state minimization. Here we wiU

present the known reduction rules directly for binate covering and indicate howthey simplify for

unate covering, when appUcable. Fbr each of them, we wiU first define the reduction rule, and then

a theoremshowinghow that rule is applied. Proofs for the correctnessofthese reduction rules have

beengivenin [28,29,10,9], andtheywiU notbe repeated here,exceptfor a fewless commonones.

We wiU provide a surveycomparingdifferent related reduction rules used in the Uterature.

The effectof reductions depends on theorderof their application. Reductions are usually

attempted in a given order, until nothing changes any more (i.e., the covering matrix has been

reduced to a cyctic core). Figure 5.5shows how reductions areapplied in [67,64,76]l.

5.5.1 Row Dominance

Definition 5.1 Arow Ridominates another row Rj ifRj has all the I's andO's ofRa i.e.,for each

column CkofM, one ofthefollowing occurs:

• Mgb = 1 and Mi%k = 1,

• Mitk =0and Mj^ = 0,

• Mt-,jk=2.

Theorem 53 Ifa row Rj is dominated by another row Ri, Rj can beeliminated without affecting

thesolutions to thecoveringproblem.

This definition of row dominance is

1The reductions ^-dominance and rowxonsensus are only in[64] and the reduction byimplication isonly in[76].



116 CHAPTER 5. BINATE COVERING

smjreduce(M, select,weight,ubound) {

do{

apply ^-dominance or a-dominance

find essential columns

find unacceptablecolumns

if (acolumn is bothessential andunacceptable)

return empty-solution

for eachessential column{

delete each row intersectingthe column in a 1

if (a row oflength 1 intersects the column in a 0)

retum empty-solution

delete column

add column to select

if (cost of select > ubound)

retum emptysolution

}

for each unacceptable column {

delete each row intersecting the column in a 0

if (arow oflength 1intersects the columnin a 1)

return empty-solution

delete column

}

apply row.consensus

apply rowjdominance

} while (reductions are applicable)

retum select

Figure 5.5: Flow of reduction rules.
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• simUar to column dominance (Rule 3)in [28], except that the labels ofdominator row, Ri,
and dominated row, Rj,are reversed (i.e., reverse definition ofdominance),

• similar to column dominance (Rule 3) in [29], except that thelabels of dominator row, Ri,

anddominated row, Rj, arereversed (i.e., reverse definition of dominance),

• equivalentto row dominance(Definition 10)in [10],

• identical to row dominance(Definition 2.11) in [9].

Row Dominance for a Unate Table

Definition 5.2 Arow Ri dominates another row Rj ifforallcolumns Ck, M;,* = 1 ^ M,,* = 1.

5.5.2 Row Consensus

Theorem 5.4 IfRi dominates Rj,exceptfora (unique) column Ck where Riand Rjhave different

values, element Mjtk can beeliminatedfrom the matrix M (i.e., the entry inposition Mjtk becomes

a 2) without affecting thesolutions ofthecovering problem.

Proof: Suppose thatentryMjtk is 1andentry Mlt* is0. Theargument is the sameif entryMj,* is 0

and entry Mt-,& is 1. If entry Mj-,* is removed, the problemarisesthat we are not able to satisfy row

Rj by setting xkto 1. A problemarises if a minimum-cost solutionrequiresxk set to 1, because we

couldmiss the fact that settingxk to 1 satisfies alsorow Rj. Insteadwecouldobtain an higher-cost

solution, by selecting another column in order to satisfy row Rj - Mj^. We now show that this

is not the case. If a minimum-cost solution requires xk set to 1, we must still satisfy row Ri that

cannot be satisfied by xk set to 1. Whatever choice will be made to satisfy Ri, it wiU satisfy also

Rj - Mj,k (since Rj - Mjtk has all Vs and0's of Ri) and therefore no more cost wiU be incurred

to satisfyrow Rj - Mjtk. The previous argument fails if Rj - Mjtk is empty and there are cases in

whichan higher-cost solution would be found. Onecould claim that if Rj - Mjtk is empty, then

Rj has only entry Mjyk and therefore xk is an essential, that is taken care by the essential column

detection, hi reality it may happenthat by applying rowconsensusmany times to the same row Rj

(usingdifferent rows Ri) at a certain point Rj is emptied. In that case the last application of row

consensus is potentially faulty and should not be done. •

Row consensus is appUed in [64]. This criterion generalizes the one given in [33].
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5S3 Column a-Dominance

Definition S3 A column Cj a-dominates another column Ck if

• Cj < ck,

• CjhasallthersofCk,

• CkhasalltheO'sofCj;

i.e., cj < ck, andfor each row Ri ofM, none of thefollowing can occur:

• Mitj=2andMitk=l,

• Mitj = OandMitk = l,

• Miij = 0andMi1k = 2.

Alternatively, Cj < Ck, andfor each row Ri ofM, one ofthefollowing occurs:

• Mifj = 1,

• Mij = 2andMi,k^l,

• Mij = 0 andMiik = 0.

Note that these last3 cases are exactly the complement ofthe cases excluded above.

Theorem 55 LetMbe satisfiable. Ifacolumn Ck is a-dominated by another column Cj, there is
atleast one minimum cost solution with column Ck eliminated (xk = Oj, together with allthe rows
inwhichithasO's.

This definition ofcolumn a-dominance is

• an extensionto row a-dominance (Rule 1)in [28],becausethe latter doesn't includethe case

Mij = 0 and Mifk = 0,

• equivalemtofirsthalfofRule4in[29]: (a) Cj;has aU the l's of Ck and (bl) Ck has aU the
O'sofCj,

• identical tocolumn dominance (Definition 11, Theorem 3)in [10],

• identical to column dominance (Definition 2.12, Theorem 2.4.1) in [9].
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Column Dominance for a Unate Table

Definition5.4 AcolumnQdominatesanothercolumnCjijforallrowsRk,Mkj = 1=» Mk,i = 1.

5.5.4 Column ^-Dominance

Definition SS Acolumn Q ^-dominates another column Cjif

• Ci < Cj,

• dhasalltheVsofCj,

• for every row Rp inwhich C, hasaO, either CjhasaOorthere exists a row Rq inwhich Cj

hasaO and d does not have a 0, such that disregarding entries incolumns Ci and Cj, Rq

dominates Rp.

Theorem 5.6 Let M be satisfiable. If Ci ^-dominates Cj, there is at least one minimum cost

solution with column Cj eliminated (xj = 0), together with all the rows inwhich ithasO's.

Proof: We must show that given a solution, one can find another solution, of cost lesser or equal,

withcolumn Cj eliminated (xj = 0). There are twocases for the original solution: either zt- = 1

and xj = 1 or xi = 0 and xj = 1 (if xj = 0, we are done). The new solutionhas xt- = 1 and

xj = 0 and coincides for the restwiththe given solution. The casewhenXi = 1 and xj = 1 is easy,

because columnC,- has all l's of column C, andtherefore Cj is useless.

Consider now the case when zt- = 0 and xj = 1. The clauses with a 0 in column C,

are satisfied by not choosing C, and the clauses with a 1 in column Cj are satisfied by choosing

Cj. Each clause with a 0 in column Cj (and without a 0 in column Ct) is satisfied by a proper

assignment of a columndifferent from Ct- and Cj, say Ck. Noticethat the hypothesis that column

Ci does not have a 0 in the clause is essential here, otherwise this clause would be satisfied already

by not choosing C,-, without resorting to a column Ck. Now consider the assignment with column

d andwithoutcolumn Cj (x, = 1andXj = 0)andthesameremaining assignments astheprevious

one. It costs no more than the previous one. We show that it is a solution. In order to do that we

mustmake sure that the O'scovered by C, and the 1's covered by Cj by setting Xi = 0 and xj = 1,

are stillcovered in the new assignment where £,- = 1 and Xj = 0. Theclauses witha 1 in Cj are

satisfied by C„ because Ct hasall l's of Cj. Eachclause, say Rp, witha 0 in columnd is satisfied

too, becausethereis a corresponding clause, say Rq, witha 0 in columnCj, and we alreadynoticed
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thatthere exists another column, Ckt thatsatisfies Rq. Butbyhypothesis Rq dominates Rp, i.e.,Rp

has aU the VsandO's of Rq, hence column Ck satisfies also clause Rp (ifentry Mq>k = 1(0),then

entryMPyk = 1(0) alsoand Xk = 1 (xk = 0) satisfies bothclauses). •

This definition of column /^-dominance is

• strictly stronger than column a-dominance givenin 5.5.3,

• more general than row ^-dominance (Rule 5) in [28], because the latter assumes that the

covering table contains only rows with no or one 0,

• equivalent tosecond halfofRule 4 in[29]: (a) C,has aU the 1'sofCjand (b2) for every row

Rp in which C, has a 0, there exists a row Rq in which Cj has a 0, such that disregarding

entries in row Ct- and Cj, Rp dominates Rq (with reverse definition of row dominance),

noticing that by mistake the condition that C,does not have a0 inrow Rg was omitted,

• not mentioned in [10] and [9].

5.5.5 Column Dominance

Definition 5.6 Acolumn d dominates another column Cj ifeither C« a-dominates Cj or C,
(3-dominates Cj.

Theorem 5.7 Let Mbe satisfiable. Ifd dominates Cj, there isatleast one minimum cost solution
with column Cj eliminated (xj = 0), together with all the rows inwhich ithas O's.

5.5.6 Column Mutual Dominance

Definition 5.7 TWo columns d and Cj mutually dominate each other if

• Ci has a 0 in every row where Cjhas a I,

• Cj hasa 0 in every row where d nasal.

Theorem 5.8 LetMbe satisfiable. Ifd and Cj mutually dominate each other, there isat least one
minimum cost solution with columns Ci and Cj eliminated (x{ = xj = 0;, together with all the
rows in which theyhave O's.

This definition of column mutual dominance is

• identical to ruleformutually reducible variables in [74],

• not mentioned in other papers.
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5.5.7 Essential Column

Definition 5.8 Acolumn Cj is an essential column ifthere exists arow Ri having a1in column Cj
andl's everywhere else.

Theorem 5.9 IfCj isan essential column, itmust be selected (xj = 1) in every solutions. Column
Cj must then bedeleted togetherwith all the rows inwhich ithas Vs.

This definition of essential column is

• identical to essential row (Rule 2) in [28],

• identical to Rule 1 in [29],

• included inDefinition9 in [10]: the row#tin theabove definitioncorresponds to a singleton-1

essential row in [10],

• included in Definition 2.10 in [9]: the row Ri in the above definition corresponds to a

singleton-1 essential row in [9].

Essential Column for a Unate Table

Definition 5.9 A column is an essential column if it contains the I ofa singleton row.

5.5.8 Unacceptable Column

Definition5.10 A column Cj is an unacceptable column if there exists a row Ri having a 0 in

column Cj andl's everywhere else.

This reduction rule is a dual of the essential column rule.

Theorem 5.10 IfCj is an unacceptable column, itmust be eliminated (xj = 0) in every solution,

togetherwith all the rows in which it has O's.

This definition of unacceptable column is

• identical to that of nonselectionable row in [28],

• identical to Rule 2 in [29],
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• included in Definition9 in [10]: the rowi?^mthe abovedefinitioncorrespondsto a singleton-0

essential row in [10],

• included in Definition 2.10 in [9]: the row Ri in the above definition corresponds to a

singleton-0 essential row in [9].

5.5.9 Unnecessary Column

Definition5.11 A column ofonlyO's and2's is anunnecessary column.

Noticethat there is no symmetric rale for columns of l's and 2*s. The reason is that selecting a

columnto be in the solutionhas a cost, whileeliminating it has no cost

Theorem 5.11 IfCjisan unnecessary column, itmay be eliminated (xj = 0), togetherwith allthe
rows in which it has O's.

This definitionof unnecessarycolumn is

• identical to Rule 4 in [28],

• identical to Rule 5 in [29],

• not mentioned in [10] and [9].

5.5.10 Trial Rule

Theorem 5.12 Ifthere exists in a covering table Ma row Ri having a 0 in column Cj, a I in
column Ck and 2'sin the rest, then apply thefollowing test:

• eliminate Ck together with the rows inwhich ithasO's,

• eliminate Cj,which is now an unacceptable column, together with the rows in which ithas
O's,

• continue as long aspossible toeliminate the columns which becomes unacceptable columns.

If at least one row of M has only 2's at the end of this test, then column Ck must be selected

(xk = l)2. Therefore, Ck can be deleted together with all the columns in which ithas Vs.
Itispossible that arow is leftwith only 2'sbyasequenceofreduction steps.
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This reduction rule is

• identical to Rule 6 in [28],

• not mentionedin other papers.

5.5.11 Infeasible Subproblem

Unlike the unate covering problem, the binate covering problem may be infeasible. hi

particular, an intermediate covering matrix M may found to be unsatisfiable by the foUowing

theorem. When an infeasible subproblem is found, thatbranch of thebinary recursion is pruned.

Theorem 5.13 A covering problem M is infeasible if there exists a column Cj which is both

essential and unacceptable (implying xj = I and xj = 0).

This definition of infeasibitity is

• not mentioned in [28] and [29],

• briefly mentioned in [10],

• identical to the unfeasible problem in [9].

5.5.12 Gimpel's Reduction Step

Another heuristic for solving the minimum cover problem has been suggested by Gim

pel [27]. Gimpel proposed a reduction step which simplifies the covering matrix when it has a

special form. This simpUfication is possible without further branching, and hence is useful at

each step of the branch and bound algorithm. In practice,Gimpel's reduction step is applied after

reducing the covering matrix to the cycUccore.

Gimpel's reduction can be described in terms of the product-of-sums represented by a

covering table. The product-of-sums is examined to see if any clause has only two literals of the

same cost. For example, assume the expression has the form:

P=i2(ci + P2)(ci+5i)...(ci+5»)(c2 + Ti)...(c2 + rm)

where c\ and ci are singlevariables witha cost C,Si,i= I ...n and Tj,j = 1.. .m are sums of

variables not containing c\ or ci, and R is a product of sums of variables not containing c\ or ci.
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Because the coveringtable is assumed minimal,if there is a clause (c\ + cz), then m > 1, n > 1,

andnone of Si or Tj is identicallyzero.

Note that with the expression written in this form, each parenthesized expression corre

sponds directly to a single row in the covering table. By algebraic manipulations, the expression

can be re-written as:

p =i2(ciC2+ CiT+ C2S)

where S = n?=i Sit andT = nELi T{.

A second covering problem is derived from the original covering problem with the fol

lowing form:

Pi = <R(c2 + 5 + T)
n m

»=i;=i

The main theorem ofGimpel is:

Theorem 5.14 Let M\ beaminimum coverfor p\. Acoverforpcan bederivedfrom M\ according

to the rule: if S is covered by M\ thenadd ci to M\ to derive acover of p; otherwise, add c\ to M\

to derive acover of p. The resulting cover is a minimum coverfor p.

A proof can be found in [68], where amore extended discussion is presented.

Gimpel's reduction step was originaUy stated for covering problems where each column

had cost 1. Robinson and House [34] showed that the reduction remains valid even for weighted
covering problems if the cost of the column c\ equals the cost of the column oi, as it has been

presented here. Gimpel's rale has been first proposed in [27] and then implemented in [67]. hi

[64, 76] Gimpel's rale has been extended to handle the binate case. This extension has been

described in [77].

5.6 Implicit Binate Covering

The classical branch-and-bound algorithm [28,29] for minimum-costbinate covering has

been described in previous sections, and implemented bymeans of efficient computer programs
(espresso and stamina). These state-of-the-art binate table solvers represent binate tables effi

ciently using sparse matrix packages. But the fact that each non-empty table entry stiU has tobe
expUcitly represented put a bound onthe size of the tables that can be handled by these binate
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mincov(R,C, U) {

(R,C) = Reduce(R1C,U)

if (TerminaLCase(Ry C))

if (cost(R,C) > U) retum empty-solution

else U = cos*(iE, C); retumsolution

L = LowerJ3ound(R,C)

if (L>U) retum .solution

Ci = ChooseJColumn(R, C)

S1 = mtncot;(/2c.,Cc,.,C/)
S° = mtncov(%,<%,£/)
return BestSolution(Sl U{ct}, 5°)

}
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Figure 5.6: ImpUcit branch-and-bound algorithm.

solvers. For example from Section 4.7, we would not expect thesebinate solvers to handle many

state minimization examples requiring over IO6 compatibles (up to 21500 prime compatibles), the

selection ofwhich wouldrequire tables with thatmanycolumns.To keep with ourstated objective,

the binatetablehasto be represented implicitly. We donot represent (even implicitly)the elements

ofthe table,but we make use only of a setof rowlabelsanda setofcolumn labels,eachrepresented

implicitly as a BDD. They are chosen so that the existence and value of any table entry can be

readily inferred by examining its corresponding row and column labels. In the sequel, we shall

assume that every row has a unit cost.

A binate covering problem instance canbe characterized by a 6-tuple (r, c, R, C, 0,1),

defined as foUows:

• the group ofvariables for labeling the rows: r

• the group ofvariables for labeling the columns: c

• the set of row labels: R(r)

• the set ofcolumn labels: C(r)
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• the 0-entries relation atthe intersection of rowr and columnc: 0(r, c)

• the 1-entries relation atthe intersection ofrowr and columnc: l(r, c)

In otherwords, the user of our impUcit binatesolverwould first choose an encoding for

the rows and columns. Givenabinatetable, the userwiU thensupplya setof rowlabels asa BDD

R(r) and a setof column labels as a BDD C(c), and also thetwoinference rules in the form of

BDDrelations, 0(r, c) and 1(r, c),capturing the0-entries and 1-entries.

Theclassical branch-and-bound solutionof minimum costbinate covering isbased onthe

recursive procedure as shown in Figure 5.3. Inour impUcit fbimulation, wekeep thebranch-and-

bound scheme summarized inFigure 5.6, butwereplace thetraditional description of the table as a

(sparse) matrix withanimpUcit representation, using BDD's for thecharacteristic functions of the

rows and columns of thetable. Moreover, we have impUcit versions of the manipulations on the

binate table required to implement the branch-and-bound scheme. In the foUowing sections weare
goingto describe the foUowing:

• impUcit representation of the covering table,

• impUcit reduction,

• implicit branching column selection,

• impUcitcomputationofthe lowerbound,and

• impUcit tablepartitioning.

At each caU of the binate cover routine mincov, the binate table undergoes a reduction
step Reduce and, if termination conditions are not met, abranching column isselected and mincov
iscaUed recursively twice, once assuming the selected column cf in the solution set (on the table
Rci, CCi) and once out of the solution set (on the table %, Cy. Some suboptimal solutions are
bounded away by computing alower bound Lon the current partial solution and comparing it
against an upper bound U (best solution obtained so far). A good lower bound is based on the
computation ofamaximalindependent set

5.7 Implicit Table Generation for State Minimization

Asthe first application of our impUcit binate solver, the state minimization problem of
ISFSM's described in Section 4 is solved implicitly. In this section we shaU review how itsbinate
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covering table is generated.

Definition 5.12 Acolumn islabeled by apositional-setp. The set o/column labels C isobtained
by prime generation as C(p) = VC(p).

Besidesdistinguishinga row from another, each row label must also contain information

regarding the positions ofO's and l's inthe row. Each row label r consists ofa pair ofpositional-

sets (c, d). Since there is at most one 0 in the row, the label of the column p intersecting it in
a 0 is recorded in the rowlabel by setting its c part to p. If there is no 0 in the row, c is set to

the empty set, Tupleo(c). Therefore a row label r corresponds to a unate clause if and only if

relation unate.row(r) - Tupleo(c) is true. Because of Definition 5.14for rowlabels, the columns

intersecting a row labeled r = (c,d) in a 1 are labeled by the prime compatibles p thatcontain d.

i.e.,

Definition 5.13 The table entry atthe intersectionofa row labeled byr=(cid)eR anda column

labeledbypeC can be inferred by:

the table entry is a0ifand only ifrelation 0(r, p)^£ (p= c) is true,
the table entry is aI ifand only ifrelation 1(r, p)d= (p2 d) is true.

Definition 5.14 The set of row labels R is given by:

R(r) = VC(c) •CCS(c, d) + Tuple0(c) •Tuple\(d)

The closure conditions associated with a prime compatible p are that if p is included in a solution,

each implied set d in its class set must be contained in at least one chosen prime compatible. A

binate clause of the form (p + pi + P2 H h Pk) has to be satisfied for each implied set of p,

where pi is a prime compatible containingthe imphed set d. The labels for binate rows are given

succinctlyby VC(c) -CCS(cy d). Thereis a row label foreach (c,d)pairsuchthatceVC is aprime

compatible and d is one of its implied sets in CCS(c, d). This rowlabel consistently represents the

binate clausebecause the 0 entry in the rowis givenby the columnlabeledby the prime compatible

p = c, and the rowhas l's in the columns labeled by p« wherever (pt- D d).

The covering conditions require that each state be contained by some prime compatible

in the solution. For each state d € S, a unate clause has to be satisfied which is of the form

(pi + Pi H \-Pj) where thep,'s aretheprime compatibles thatcontain thestated. Byspecifying

the unaterowlabels to be Tup/eo(c) •Tuple\(d),wedefine a rowlabelforeachstatein Tuple\ (d).
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Sincethe rowhasno 0, its c partmust be set to Tupleo(c). The 1entries are correctly positioned at

the intersection with aU columns labeled by prime compatiblesp,- which contain the singleton state

d.

From the next section, we shall describehow a binate covering table can be manipulated

impUcitiy so as to solve the minimum cost binate covering problem. We are going to provide

solutionsto three variations of the coveringproblem, andthey are Usted below in decreasing order

of generality in the binate table specification:

1. General binate covering table

• the groupofvariables for labelingthe rows: r

• the groupofvariables for labelingthe columns: c

• the set of rowlabels: R(r)

• the set ofcolumn labels: C(c)

• the0-entries relation atthe intersection of row r and column c: 0(r, c)

• the 1-entries relation atthe intersection of row r and column c: l(r, c)

2. Binatecovering tableassumingeachrowhasatmost one 0:

• the groupofvariables for labelingthe rows: r

• the groupofvariables for labelingthe columns: c

• the set of rowlabels: R(r)

• the set ofcolumnlabels: C(c)

• the 0-entries relation at the intersection of row r and column c: 0(r, c)

• the 1-entries relation at the intersection of row r and column c: 1(r, c)

3. Specialized binate covering table forexact state minimization:

• the group ofvariables for labeling the rows (each label isapair): (c, d)

• the group ofvariables for labeling thecolumns: p

• the setof rowlabels: R(cyd)

• the setofcolumnlabels: C(p)

• the0-entries relation atthe intersection of row (c, d)and column p:
0((c,d),p)=(p = c)
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• the 1-entries relation attheintersection of row (c, d) and column p:

l(M),p)=(pDd)

In the sequel, each impUcit table operation wiU be expressed by three BDD formulas,

each representing a realization for a different impUcit binate solver. Each equation wiU be labeled

1,2, or 3,depending on whichof the above setof assumptions are made.

5.8 Implicit Reduction Techniques

Reduction rulesaim to the foUowing:

1. Selection of a column. A column must be selected if it is the only column that satisfies a

given row. A dual statementholds for columns that must not be partof the solution in order

to satisfy a given row.

2. Eliminationof a column. A column ct- canbe eliminated if its elimination does not preclude

obtaining a minimum cover, i.e., if there is another column cj that satisfies at least all the

rows satisfied by ct.

3. Elimination ofa row. A rowr; can be eliminated ifthere existsanother rowrj thatexpresses

the same or a stronger constraint.

The order of the reductions affects the final result. Reductions are usually attempted

in a given order, until nothing changes any more (i.e., the covering matrix has been reduced to a

cyclic core). The reductions and order implemented in our reduction algorithm are summarized in

Figure 5.7.

In the reduction, there are two cases when no solution is generated:

1. The added cardinality of the set ofessentialcolumns, and of the partialsolution computed so

far, Sol, is largeror equal than the upper bound U. In this case, a better solution is known

than the one that can be found from now on and so the current computation branch can be

bounded away.

2. After having eliminated essential, unacceptableand unnecessary columns and covered rows,

it may happen that the rest of the rows cannot be covered by the remaining columns, hi this

case, the current partial solution cannot be extended to any full solution.
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Reduce(R,C,U){

repeat {

Collapse-Columns(C)

ColumnJ)ominance(R, C)

Sol = Sol U Essential.Columns(R, C)

if (|So/1 > U) retumempty-solution

Unacceptable-Columns(R, C)

Unnecessary.Columns(R, C)

if (C does not cover R) retum empty-solution

CollapseJ{ows(R)

Row-Dominance(R, C)

} until(both 12 and C unchanged)

return (12,0

}

Figure 5.7: Implicit reduction loop.
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We are goingto describe how the reduction operations are performed impUcitiy using

BDD'son the threetablerepresentations described in theprevious section.

5.8.1 Duplicated Columns

It is possible that more than one column (row) label is associated with columns (rows)

that coincide element byelement. We need toidentify such dupUcated columns (rows) and coUapse

them into a single column (row). This avoids theproblem ofcolumns (rows) dominatingeach other

when performing impUcitiy column (row) dominance. ThefoUowing computations can be seenas

finding theequivalence relation of dupUcated columns (rows) and selecting onerepresentative for

each equivalence class.

Definition 5.15 TWo columns are duplicates, ifon every row, their corresponding table entries are
identical.

Theorem 5.15 Duplicatedcolumns can becomputed as:

dup.col(d} c) l = Vr {R(r) =* [(0(r,c*) *• 0(r,c)). (l(r, d) <* l(r,c))]}

dup.col(d, c) 2= Vr {R(r) =* [-.0(r, d) •-iO(r, c) •(l(r, c') <* l(r, c))]}

dup.col(p\p) 3= fidR(p',dy /BdR(p,d).Vd{\3cR(c,d)]=i>[(p,Dd)&(pDd)]}

Proof: Asdiscussed at theend of Section 5.7, thefirst equation computes theduplicated columns

relation for the most general binate table, and the second equation for the binate table with the

assumption thatthere is atmostone0 ineach row, and thethird equationis forthespecialized binate

table for state minimization, assuming the columns are prime compatibles p,and the rows are pairs

M).

Forthe column labels d and ctobeinthe relation dup.col, thefirst equation requires the

foUowing conditions to be met for every row label r € R: (1) the entry (r,c) is a 0 if and only

if the entry (r,d) is a 0, (i.e., 0(r,d) & 0(r,c)), and (2) the entry (r,c) is a 1 if and only if the
entry (r, d) is a 1, (i.e., l(r, d) <* l(r, c)). Assuming each row hasat most one0 for thesecond

equation, condition 2 requires that the row labeled r cannot intersect eithercolumn at a 0, (i.e.,

-iO(r,cO--.0(r,c)). •

Theorem 5.16 Duplicated columns can becollapsed by:

C(c) W= C(c)- fid [C(d) •(d -< c) •dupjcol(d, c)]

C(p) 3= C(py£p'{C(p').(p'*p)-dup-col(p',p)]
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Proof: This computationpicks a representative columnlabel out of a set of columnlabels corre

sponding to dupUcated columns. A column label c is deleted from C if andonly if there is another

column label d which has a smaUerbinary value than c(denoted byd •< c)and both label thesame

dupUcated column. Here weexploit thefact that any positional-set ccanbeinterpreted asa binary

number. Therefore, a unique representative from a setcanbe selected bypicking theonewiththe

smaUest binary value.3 •

5.8.2 Duplicated Rows

Definition 5.16 Two rows are duplicates if, on every column, their corresponding table entries are
identical.

Detection of dupUcated rows, selection of a representative row, and table updating are

performed by the foUowing equations as in thecaseof dupUcated columns.

Theorem 5.17 Duplicated rows canbe computed as:

dupjrow(r', r) 1-2 = Vc {C(c) =* [(0(r', c) <* 0(r, c)) •(l(r',c) ^ l(r,c))]}

dup.row(c\d\c,d) 3= (d = c)-j&p [C(p) •((p Dd!) &(pD d))]

Proof: Simtiar to the proof for Theorem 5.15. For the row labels r' and r to be in the relation

dupjrow, the first equation requires the foUowing conditions to be met for every column label

ceC: (1) theentry (r, c)is a 0 if and only if the entry (r', c)is a 0, (i.e., 0(r', c) <* 0(r, c)), and

(2) theentry (r, c)is a 1if and only if theentry (r', c) isa 1,(i.e., 1(r', c) & 1(r, c)). •

Theorem 5.18 Duplicated rows canbecollapsed by:

R(r) 1* = R(r)- fir' [R^*). (r' -< r) •dupjrow(r', r)]

R(c, d) 3= R(c, dy jBd, d! [R(c\ d') •(d' < d) •dupjrow(c\ d\c, d)]

Proof: The proofis similarto that forTheorem 5.16, except wearedelete aU duplicating rows here

except the representative ones. •

From now on, sometimes we wiU blur the distinction between a column(row) label and

the column(row) itself,but the contextshouldsayclearly which one it is meant.

Alternatively, onecouldhave usedthecprojectBDD operator introduced in[49] topickarepresentative column out
ofeach set of duplicatedcolumns.
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5.83 Column Dominance

Some columns need not be considered in a binate table, if they are dominated by others.

Classically, there are two notions of column dominance: a-dominance and ^-dominance.

Definition 5.17 A column d a-dominates another column cifd hasall the l's ofc, and c has all

the O's ofd.

Theorem 5.19 The a-dominance relation canbe computed as:

a.dom(d, c) x= fir {R(r) •[1 (r,c) •-.1 (r,d)] + [0 (r,d) •-i0(r, c)]}

a.dom(d,c) 2= fir{R(r).[l(r,c).^l(r^ + 0(r,d)]}

a-dom(p\ p) 3= fie, d [R(c, d)-(pDd)- (p' 2 d)]- fid R(p\ d)

Proof: For column d to a-dominate c, the first equation ensures that there doesn't exists a row

r e R suchthat either(1) the tableentry (r, c) is a 1butthetableentry (r, d) is not, or (2) the table

entry (r, d) is a 0 butthetable entry (r, c)is not. Assuming each row hasat mostone0, condition

2 canbe simplified to the second equation thattable entry (r, d) is a 0. •

Definition5.18 A column d /^-dominates another column c if (I) d has all the l's of c, and (2)

for every row r' in which d contains a 0, there existsanother row r in which c has a 0 such that

disregarding entries in column d, r' hasall the l's ofr.

Theorem 5.20 The ^-dominance relation canbe computed by:

Mom(c\c) »* = fir,{R(r')'[l(r\c)^l(r\d) +

0(r', dy fir [R(r). 0(r,c). fie" [C(c"). (c" ± d). l(r, c"). -nl(r',c")] ]]}

p.dom(ptJp) 3= fid! {3d (R(d, d')) •(p Dd!) •(p' 2 <*')}

. jar {«&/, <*')• fid[R(p, dy fiq [c(q]. (9 ^ P'). (q d d) •(9 2 <*')] ]}}

Proof: Accordingto thedefinition, the tableshouldnotcontaina row r* e R if eitherofthe foUowing

twocases is true at that row: (1) tableentryat columnc is a 1 whileentry at column d is not a 1 (i.e.,

l(r', c) •-'lfr', d)), or(2) d hasa 0 in row d (i.e., 0(r', d)) butthere does notexist a row r £ R

such that its column c is a 0 and disregarding entries in column d, row r' has aUthe 1's of row r.

Rephrasing thelastpartofthecondition2,theexpression fie" [C(d')>(d' ± d)-l(r, c")—«l(r', c")]

requires that there is no column c" € C apartfromcolumnd such that c" has a 1 in row r, but not

in row r\ •
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The conditions for a-dominance are a strict subset of those for ^-dominance, but a-

dominance is easier to computeimpUcitiy. Either of themcan be used as the columndominance

relation coLdom.

Theorem 5.21 The setofdominated columns in a table (i2, C) can be computed as:

D(c) »•* = C(c)'3d[C(d)'(d^c)-coljdom(c\c)]

D(p) 3= C(p)'3pt[C(p,)'(pt^p)'CoUom(jpt1p)]

Proof: A column c € C is dominated if there is another d 6 C different from c (i.e., d ^ c)which

columndominates c (i.e.,colJ.om(d, c)). •

Theorem 5.22 Thefollowing computations delete a setofcolumns D(c)from a table (R,C) and

all rowsintersecting thesecolumns in a 0.

C(c) l* = C(c)^D(c)

R(r) W= R(ryfic[D(c).0(r,c)]

C(p) 3= C(p)^D(p)

R(c}d) 3= R(c,d)-^D(c)

Proof: The first computation removes columns in D(c) from the set of columns C(c). The

expression 3c [D(c) •0(r, c)] defines aU rows r intersecting the columns in D in a 0. They are

deleted from the set of rows R. •

5.8.4 Row Dominance

Definition 5.19 Arow r'dominates another row r if r has all the l's and O's ofr'.

Theorem 5.23 The row dominance relation can becomputed by:

rowjdom(r',r) l^ = fic{C(c) •[l(r',c) -^l(r,c) + 0(r',c) --»0(r,c)]}

rowjdom(c\ d!, c, d) 3= fip [C(p) •(p Dd') •(p 2 <*)] •[unate.row(d) + (d= c)]

Proo/:Fbrr' todominate r, theequation requires that there isnocolumn ceC such thateither (1)

the table entry (r;,c) isa 1but the entry (r, c) isnot, or (2) the entry (r;,c)isa0 but the entry (r, c)
is not. •
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Theorem 5.24 Given a table (R(r), C(c)), the setof unate row labels r canbe computed as

unate.row(r)1|2 —fie [C(c) •0(r,c)].

Given a table (R(c,d),C(p)), the setof unate row labels c canbecomputed as

unate.row(c)3 =fip[C(p) -(p = c)] =ficC(c).

Theorem 5.25 The setof rows notdominated by other rows canbecomputed as:

R(r) i*= R(ryfir'[R(r')'(r'±r)-rowjAom(r',r)]

R(c, d) 3= R(c, d)- fid, d' {R(c\ d') •[(</,d!) ± (c,d)] •rowjdom(dy d',c,d)]}

Proof: Theequation expresses that any row r 6 R,dominated by another different row r' e R, is

deleted from the set of rows R(r) in the table. •

5.8.5 Essential Columns

Definition 5.20 Acolumn c isan essential column ifthere isa row having a 1 in column cand 2
everywhereelse.

Theorem 5.26 The setofessential columns can be computed by:

ess.col(c) l = C(c) •3r{R(r). l(r,c)- fid[C(d) •(d ± c) •(0(r, d) + l(r, cO)]}

ess.col(c) 2= C(c) •3r{i?(r). l(r, c) •«naie_row(r). fid [C(d) •(d # c) •l(r, c')]}

ess.co/(p) 3= C(p) •3c, d{iE(c, d) •(p Dd). itna«e.ro«;(c). ^p' [C(pO . (p' ^ p) •(p' Dd)]}

Proof: For a column c e C tobeessential, there must exist a row r e Rwhich (1) contains a 1in

column c(i.e., 1(r, c)), and (2) there isnot another different column intersecting the row ina 1or0
(i.e., fid [C(d) .(d?c)- (0(r,d) + l(r,</))]).

Assuming that a row can have atmost one 0, a column c 6 C is essential if and only if
there isa row r 6 # which (1) contains a 1incolumn c(i.e., l(r, c)), and (2) does not contain any
0 (i.e., unate.row(r)), and (3) there isnot another different column intersecting the row ina 1(i.e.,
fid[C(d)-(d?c).i(rid)]). m

Theorem 5.27 Essential columns must be in the solution. Each essential column must then be

deletedfrom thetable together with all rows where it has l's.
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Thefollowing computations add essential columns to the solution, delete themfrom the
setofcolumns and delete allrows inwhich they have 1's:

solution(c) l* = solution(c) + ess.col(c)

C(c) l*= C(c)>-*ess.col(c)

R(r) »* = R(ry fic[ess-col(c)-l(r,c)]

solution(p) 3= solution(p) + ess.col(p)

C(p) 3= C{p) •->ess.col(p)

R(cy d) 3= R(c, d) •-iess_co/(c)

Proof: The first two equations move the essential columns horn the column set to the solution set.

The third equation deletes from the set of rows R all rowsintersectingan essential column c in a 1.

5.8.6 Unacceptable Columns

Definition5.21 A column cisan unacceptable column if there is a row having a 0 in column c

and 2 everywhere else.

Theorem 5.28 The set of unacceptable columns canbe computed by:

unacceptable.col(c) ! = C(c) •3r {R(r) •0(r,c). fid [C(d) -(d # c) •0(r,d)]}

•fid[C(d).l(r,d)]}

unacceptable.col(c) 2= C(c) -3r {R(r). 0(r,c). fid [C(d) •l(r,cO]}

unacceptablejcol(p) 3= C(p) -3d{R(p,dy fip' [C(p') • (p' Dd)]}

Proof: For column c € C to be unacceptable, there must be a row r eR such that (1) it intersects

the column c at a 0, and (2) there does not exists another column d different from c which intersects

thatrow r at a 0 (i.e., fid [C(d) -(d ^ c) •0(r, d)]),and (3)nocolumn d intersects that row r in

a 1 (i.e., jBd [C(d) • l(r, c')]). Condition 2 is not needed if we assume that each rowcontains at

most one 0. •
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5.8.7 Unnecessary Columns

Definition 5.22 Acolumn isan unnecessary column ifitdoes not have any 1 in it.

Theorem 529 The set ofunnecessary columns can be computed as:

unnecessary.col(c) l•* = C(c)• fir [R(r) •1(r,c)]

unnecessary.col(p) 3= C(p)- fie, d[R(c, d)-(pD d)]

Proof: A column c € C is unnecessary if no row r € R intersectsit in a 1. •

Theorem 5.30 Unacceptable and unnecessary columns shouldbe eliminatedfrom the table, to

gether with all the rows in which such columnshave O's.

The table (#, C) is updated according toTheorem 522 bysetting

D(c) l* = unacceptablejcol(c) + unnecessary,col(c)

D(p) 3= unacceptablejcol(p) + unnecessary-col(p)

Proof: Obvious. •

5.9 Other Implicit Covering Table Manipulations

lb have a fully impUcit binate covering algorithm as described in Section 5.6, we must

also compute impUcitiy a branching column and a lower bound. These computations as weU as

table partitioning involve solving a common subproblemof finding columns in a table which have

the maximum number of 1 's.

5.9.1 Selection of Columns with Maximum Number of l's

Givena binary relation F(r, c) as a BDD, the abstracted problem is to find a subsetof c's

each of which relatesto the maximumnumberof r's in F(r> c). An inefficientmethod is to cofactor

F with respect to c taking each possible values ct, count the number of onset minteims of each

F(r, c)|c=C), and pick the c,'s with the maximum count. Instead our algorithm, Lmax, traverses

each node of F exactly once as shown by the pseudo-code in Figure 5.8.

Lmax takes a relation F(r, c) and the variables set r as arguments and returns the set G

of c's which are related to the maximum number of r*s in F, together with the maximum count.
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Lmax(Fyr) {

v = bddJop.var(F)

if (v e r)

retum ().)bdd-count-onset(F))

else { /* u is a c variable */

(T,cotm*_T) = Lmax(bddJhen(F),r)

(E% countJ5) = Lmax(bddjelse(F), r)

count= max(countJ1,countJE7)

if (countJT = count-E)

G = ITE(v,T,E)

elseif (count = couniJT)

G = Jr£(t;,r,0)

elseif (count = count-E?)

G = ITE(v,0,E)

retum (G, count)

}

}

Figure 5.8: Pseudo-code for the Lmax operator.
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Variables incare required tobe ordered before variables inr. Starting from the root ofBDD F, the
algorithm traverses down the graph by recursively calling Lmax on its then and else subgraphs.
This recursion stops when the top variable vofF iswithin the variable setr. Inthis case, theBDD

rooted atvcorresponds toacofactor F(r, c) Ic^. for some ct. The mintenns initsonset are counted

andreturned as count, which is thenumber of r's thatare related to c,-.

During the upward traversal of F, we construct a new BDD G in a bottom upfashion,

representing the set of c's with maximum count. The two recursive calls of Lmax return the sets

T(c) and E(c) with maximum counts countJ? and countJ? for the then and the else subgraphs.
The larger of the two counts is returned. If the two counts are the same, the columns in T and E

are merged by ITE(v, T, E) and returned. If countJT is larger, only T is retained astheupdated

columns of maximum count. And symmetricaUy for the othercase, lb guarantee that each node

of BDD F(r, c) is traversed once, the results of Lmax and bddxountjonset are memoized in

computed-tables. Notethat Lmax returns a set of c's of maximum count. If we need only one c,

some heuristic can be used to break the ties.

Example lb understand how Lmaxworks, consider theexpUcit binatetable:

00 01 10 11

00 1 2 1 1

01 2 1 1 2

10 2 1 2 1

11 2 1 2 1

with four rows and four columns. The columns that maximize the number of l's are the second and

the fourth. If the rowsandcolumnsareencoded bytwoBooleanvariables each,usingthe encodings

given on top of each columnand to the left of each row, the 1 entries of the table are represented

impUcitiy bythe relation F(c,r)4 whose minterms are:

{0000,1000,1100,0101,1001,0110,1110,0111,1111}.

The BDDrepresenting F is shown in Figure 5.9. The resultof invoking Lmax on F(r, c) is a BDD

representing the relationG(c) whose minterms are: {01,11}, corresponding to the encodings of

the second and fourth column.

5.9.2 Implicit Selection of a Branching Column

The selection of a branchingcolumn is a key ingredientof an efficientbranch-and-bound

covering algorithm. A good choice reduces the number of recursivecaUs, by helping to discover

4rand c are swapped in F sothat minterms are listed inthe order of theBDD variables.
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F(r,c)

Figure5.9: BDDof F(r, c) to iUustrate the routine Lmax.

more quickly a good solution. We adopt a simplified selection criterion: select a column with

a maximum number of l's. By defining F'(r,c) = R(r) •C(c) • l(r, c) which evaluates true if

and only table entry (r, c) is a 1, ourcolumn selection problem reduces to one of finding the c

related to themaximum number of r's inthe relation F'(r, c),and soit can befound implicitly by

calling Lmax(F'1 r). Amore refined strategy istorestrict our selection ofabranching column to
columns intersecting rows ofamaximal independent set, because aunique column must eventuaUy

beselected from each independent row. Amaximal independent setcan becomputed asfoUows.

5.93 Implicit Selection of a Maximal Independent Set of Rows

Usually a lowerbound isobtained bycomputing amaximum independent setof theunate

rows. A maximum independentset of rows is a (maximum) set of rows,no two of which intersect

thesame column at a 1. Maximum independent set is anNP-hard problem and an approximate

one(only maximal) canbe computed by a greedy algorithm. Thestrategy is to select short unate

rows from the table, so we construct a relation F"(cy r) = R(r) •unatejrow(r) •C(c) • l(r, c).
Variables in r are ordered before those in c. The rowswiththe minimumnumberof l's in F" can be

computed by Lmin(F":, c), by replacing inLmax the expression max(countJr, counts) with
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min(countJT, count-E). Once ashortest row, shortest(r), is selected, aU rows having 1-elements
incommon with shortest(r) are discarded from F"(c} r) by:

F"(c, r) = F"(c, r). fid {3d [shortest(r'). F"(c', r')] •F"^, r)}

Anothershortest row canthen beextracted fiom theremaining table F"and soon,until F"becomes

empty. The maximum independent setconsists ofaU shortest(r) soselected.

5.9.4 Implicit CoveringTable Partitioning

If a covering table can be partitioned into n disjoint blocks, the minimum covering for

the original table is the unionof the minimum coverings for the n sub-blocks. Let us define the

nonempty-entry relation 01(r, c) = 0(r, c)+1(r, c).TheimpUcit algorithm inFigure 5.10takes a

table description in terms of its set of rows R(r), its set of columns C(c) andthenonempty-entry

relation 01(r, c), partitions it into n disjoint sub-blocks, and retum them as n pairs of (R\ C*),

each corresponding to the rows and columns for the i-th sub-block.

n-way partitioning can be accomplished by successive extraction of disjointblocks from

the table. When the foUowing iteration reaches a fixed point, (Rk,Ck) corresponds to a disjoint

sub-block in (Ry C).

jRo(r) = Lmax(R(r) •C(c) •01(r, c), c)

Ck(c) = CM-Srl^M-Ol^c)}

Rk(r) = i*(r).3c{C*(c).01(r,c)}

This sub-block is extracted from the table [R, C) and the above iteration is applied again to the

remainingtable, until the table becomesempty.

Givena covering table,a singlerowRo(r),whichhas the maximum numberofnonempty

entries, is first picked using LmaxQ. The set of columns C\(c) intersecting this row at 0 or 1

entries is given byC(c) •3r [Ro(r) •01(r, c)](wewantceC suchthatthereis a rowr € -Ro which

intersects c at a 0 or 1). Next we findthe setofrows R\ intersecting the columns in C\ via nonempty

entries, by a simtiar computation R(r) •3c [Ci(c) • 01(r,c)]. Then we can extract all the rows

Ri(r) which intersects C\(c),and soon. Thispairofcomputations is iteratively appUed within the

repeat loop in Figure 5.10 until no new connected row or column can be found (i.e., Rk = Rk-i)-

Effectively, starting from a row, we have extracted adisjoint block (Rl,C1) from the table, which

wiU laterbe returned. The remaining table after bi-partition simply contains the rows R - Rl and
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n.way-partition(R(r),C(c), 01(r, c)) {

n = 0

wlule (R not empty) {

k = Q

Ro(r) = Lmax(R(r) -C(c) •01(r,c))

repeat {

k = k + l

Cjk(c) = C(c).3r{/2)k_1(r).01(r,c)}

Rk(r) = R(r).3c{Ck(c).01(r,c)}
}wtil(Rk = Rk-i)

Rn = Rk

Cn = Ck

R = R-Rk

C = C-Ck

n = 7i+ 1

}

return {(#, C'): 0 < i < n -1}

}

Figure 5.10: ImpUcit n-way partitioning of acovering table.
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the columns C- Cl. If the remaining table is not empty, we wiU extract another partition (^C2)
by passing through the outer while loop asecond time. If the original table contains n disjoint
blocks, the algorithm isguaranteed to retum exactly the nsub-blocks by passing through the outer
while loop n times.

5.10 Experimental Results

In this section we report results of an implementation of the impUcit binate covering

algorithm, described in the previous sections. We use the benchmarks already introduced in

Section 4.7and concentrate ontheexamples where prime compatibles are needed to find aminimum

solution of the state minimization problem s. Here weprovide data for asubset of them, sufficient

to characterize the capabilities ofour prototype program.

Comparisons are madewithstamina. The binate covering stepof stamina wasrunwith

no row consensus, because row consensus has not yet been implemented in our impUcit binate

solver. OurimpUcit binate program currently lacks also routines forGimpers reduction rule, that

was instead invoked in the version of stamina used for comparison. This might sometimes favor

stamina, but for simpUcity we wiUnot elaborate furtheron this effect. In the near future we wiU

implement betadominance, rowconsensus and table partitioning in ourpackage. AUruntimes are

reported in CPU seconds on a DECstation 5000/260 with 440 Mb ofmemory.

The foUowingexplanations refer to the tables of results:

• Undertablesize we provide the dimensions of the original binatetableandof its cyclic core,

i.e., the dimensions of the table obtainedwhen the first cycle of reductionsconverges.

• # mincov is the number of recursive calls of the binate cover routine.

• Dataarereportedwith a * in front, when only the first solution was computed.

• Dataare reported with a f in front, when only the first table reductionwas performed.

• # cover is the cardinality of a minimum cost solution (when only the first solution-has been

computed, it is the cardinality of the first solution).

• CPU time refers only to the binate covering algorithm. It does not include the time to find

the prime compatibles.

3Otherwise, aminimum solution ofmaximal compatibles isclosed and therefore isarninimum solution.
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5.10.1 Minimizing Small and Medium Examples

Withthe exceptionofex2,ex3,ex5,ex7,the examplesfiom the MCNC and asynchronous

benchmarksdonot requireprime compatiblesforexactstateminimizationandyieldsimplecovering

problems6. Table 5.1 reports those few non-trivial examples. They were aU run tofuU completion,
with the exceptionof ex2. In the case of ex2, we stopped bothprograms at the firstsolution.

table size (rows x columns) # mincov #cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 a 0 a 0 a 0 a 0
ex2 4418x1366 3425x1352 ♦6 •14 •6 ♦4 ♦10 •12 •10 ♦9 ♦58 ♦293 •116 ♦91
ex2 4418x1366 3425x1352 ♦6 ♦14 *6 286 ♦10 ♦12 ♦10 5 •58 •293 •116 2100
ex3 243x91 151x84 201 37 91 39 4 4 4 4 78 33 0 0
exS 81x38 47x31 16 6 10 6 3 3 3 3 4 3 0 0
ex7 137x57 62x44 38 31 37 6 3 3 3 3 8 12 0 0

Table 5.1: Examples from the MCNC benchmark.

These experimentssuggest that

• the number of recursive caUs of the binate cover routine (# mincov) of ism and stamina

isroughly comparable, showing that our impUcit branching selection routine issatisfactory.
This isanimportant indication, because selecting agood branching column isamore difficult
task in the implicit frame.

• the running times are better for stamina except in the largest example, ex2, where ism is

sUghtly faster than stamina. This is to be expected because when thesize of the table is

smaU the implicit approach has no special advantage, but it starts topay off scaling up the
instances. Moreover, our implicit reduction computations have not yet been fuUy optimized.

5.10.2 Minimizing Constructed Examples

Table 5.2 presents a few randomly generated FSM's. They generate giant binate tables.
The experiments show that kmis capable ofreducing those table and ofproducing a minimum
solution oratleast a solution. This isbeyond reach ofan explicit technique and substantiates the
claim that implicit techniques advance decisively the size ofinstances that can be solved exactly.

Moreover, in the case ofthe asynchronousbenchmark amore appropriate formulation ofstate rninimization requires
all compatibles and adifferent set-up of the covering problem.
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tablesize (rows x columns) # mincov #cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 a 0 or 0 a 0 a 0
ex2.271 95323x96382 0x0 1 1 . . 2 2 . . 1 55 fails fails
cx2.285 1x121500 0x0 1 1 • . 2 2 . . 0 0 fails fails
ex2.304 1053189x264079 1052007x264079 2 . - . 2 . . . 463 fails fails fails
ex2.423 637916x160494 636777 x 160494 •2 . . . *3 . . . ♦341 fails fails fails
ex2.680 757755x192803 756940 x 192803 2 - - - 2 - - - 833 fails fails fails

Table 5.2: Random FSM's.

5.10.3 Minimizing FSM's from Learning I/O Sequences

Examples in Table 5.2 demonstrate dramatically the capability of impUcit techniques to

build and solvehuge binatecovering problems on suitesof contrived examples. Do similarcases

arise in real synthesis applications? The examples reported in Table 5.3 answer in the affirmative

the question. They are the simplest examples from the suite of FSM's described in Section 4.7.3.

It is not possibleto build and solve these binate tables with expUcit techniques. Instead we can

manipulate themwithour impUcit binatesolverand find a solution. In the examplefourr.40, only

the first table reduction was performed.

table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 Or 0 or 0 a 0 a 0 a 0
threer.20 6977x3936 6974x3936 *4 *6 *5 *3 *5 *5 *6 *6 •13 *26 •1996 ♦677

threer.25 35690x 17372 34707x17016 *3 *6 - - *5 ♦6 - - ♦69 *192 fails fails

threer.30 68007x33064 64311x32614 ♦4 ♦9 - - *8 *8 - . •526 *770 fails fails

threer.35 177124x82776 165967x82038 *8 •9 . . •12 *10 - - •2296 *2908 fails fails

threer.40 1.21e6x5.29e5 1.15e6x5.27e5 *8 - - - *12 - - - ♦6787 fails fails fails

fourr.16 6060x3266 5235x3162 *2 ♦3 *3 *3 *3 *3 *4 *4 •6 ♦23 ♦1641 •513

fourr.16 6060x3266 5235x3162 *2 623 ♦3 377 •3 3 *4 3 •6 9194 ♦1641 1459
fourr.20 26905x12762 26904x 12762 *2 *4 - - *4 •4 . - *31 •68 fails fails

fourr.30 1.40e6x5.43e5 1.39e6x5.42e5 *2 *5 - . *4 *5 - . •1230 ♦1279 fails fails

fourr.40 6.78e9x2.39e9 6.78e9x2.39e9 tl t- f723 fails fails fails

Table 5.3: Learning I/O sequences benchmark.

5.10.4 Minimizing FSM's from Synthesis of Interacting FSM's

Prime compatibles are required only for the state minimization of ifsml and ifsml. Fbr

ifsml, ism can find a first solution faster than stamina using a-dominance. But as the table sizes

are not very big, the run times ism take are usually longer than those for stamina.
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table size (rows x columns) # mincov #cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 or 0 a 0 a 0 a 0 a 0
ifsml 17663x8925 16764x8829 *4 2 •10 3 •14 14 ♦15 14 ♦388 864 •17582 80S
ifsml 17663x8925 16764x8829 •4 2 24 3 •14 14 14 14 ♦388 864 40817 805
ifsm2 1505x774 1368x672 4 3 41 44 9 9 9 9 136 230 49 3

Table 5.4: Examples from synthesis of interactive FSM's.
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Chapter 6

State Minimization of Non-deterministic

FSM's

Non-determinism is a valuable tool in the direct specification of behaviors. In an FSM

specification, it captures choices in the behavior to be implemented which a user allows. It can

be used both to capture conditions that cannot arise in a certain situation(extending the usage of

don't care conditions) and to postpone implementation choices. The most general form of non-

determinismcan be expressed as an NDFSM. Our goal is to explore different behaviors contained

withinanFSMspecification andchooseanoptimumonewithrespectto somecost function,e.g., one

with the minimum number of states. In this chapter we address the problem of findinga minimum

containedbehaviorwithin a stand-aloneFSM. In Chapter7, we consider a feedbackcomposition of

FSM's and the problem of finding a minimum well-defined/Moorebehavior at an FSM node within

a network of FSM's.

The state minimization problem of the general NDFSM will be described in Section 6.1

and some new algorithms related to its minimization are presented in Section 6.2. In Section 6.3, we

will describe an implicit algorithm for state minimization of PNDFSM's, a subclass of NDFSM's.

This research will appear in [39]. First, we would like to find out if an efficient exact algorithm

exists for the state minimization ofNDFSM's.

6.1 State Minimization of NDFSM's

Definition 6.1 A non-deterministic FSM (NDFSM), or simply an FSM, is defined as a 5-tuple

M = (5, J, O, T, R) where S represents thefinite state space, I represents the finite input space
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and O represents the finite output space. T is the transition relation defined as a characteristic

function T:IxSxSxO-+B. On an input i, theNDFSM at present state p can transit to a

nextstate n andoutput o ifandonlyifT(i, p, n, o) = 1(i.e., (t, p, n,o)isa transition). There exists

oneor more transitionsfor eachcombination ofpresentstate p and inputi. RC S represents the

set ofreset states.

Is it possibleto applythe classical procedurebasedoncomputingcompatiblestoNDFSM's?

The answeris: yes, the notions ofcompatiblesandselection of a minimum subsetcarry throughto

NDFSM's; but, no, thatprocedure is not guaranteed to produce abehaviorwith aminimumnumber

of states. In termsof the theorydeveloped in Chapter 2, someDFSM behaviorally contained in an

NDFSM may not corresponds to a closed coveras defined by Definitions 2.25 and 2.26. This fact

is illustratedby the counter example in Figure 6.1.

o/i

<M NT

(a) M (c) M2

Figure 6.1: A counter example, a)the NDFSM M, b) theminimum state DFSM contained in M,
c) oneDFSM contained in M found using compatibles.

Example Given the NDFSM M as shown in Figure 6.1a, the minimum state DFSM Mi, as

shown in Figure 6.1b, contained in M, cannot be found using compatibles alone. According to

Definition2.36, states B and Care notcompatible (and any state setcontaining B and Ccannot form

aclosed set). As aresult, any minimized machine Mi obtained by compatible-based algorithms

will have at least four states, one of the two such minimized machines being shown inFigure 6.1c.
However with the non-deterministic transitions into states B and C, wecan choose their outgoing

transitions in away as shown in Figure 6.1b such that B and C are merged together as one state.

This merged state iscompatible tostate D. This merging possibility isnotexplored bycompatibility.

The minimum state DFSM M\,whose behavior iscontained inthe original NDFSM, has only two
states.
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6.1.1 Generalized Compatibles

Bythe following definition, we generalize thenotion of a compatible (Definition 2.36)

which is a set of states, to one that is a set of state sets. Each individualstate set containsstates that

can be merged because they can be non-deterministically reached from a reset state. By merging,
we mean that the state set canbe considered a new merged state in a reduced machine which on

each input, has a transition copied from a state in the set. If the original FSM doesn't have any

non-detenninistic transition, each such state set will beasingleton. Insuch acase, each generalized

compatible is a setofsingleton-states, corresponding to a classical compatible.

In terms of trace setsas defined in Section 2.4, a generalized compatible can be viewed

asa compatible setofmerged states. Each state setwithin a generalized compatible corresponds to

a merged state. The trace set from a merged state is the union of the trace sets fiom states in the

corresponding stateset. Thetrace setassociated with thegeneralized compatible is the intersection

oftrace sets from allmerged states which correspond tostate sets within thegeneralized compatible.

Definition 62 Asetofstate sets isa generalized compatible ifforeach input sequence, there isa

corresponding output sequence which can beproduced by at leastonestatefrom each stateset in

thegeneralizedcompatible.

Given an NDFSM, the definition of generalized compatible requires that for all input

sequences, there is a common output sequenceagreed by at least one state out of each state set in

the generalized compatible.

Example {A}, {B}, {C}, {D}, {E}, {F}, {BC}, {BC,D} are generalized compatibles. The

enumeration of input sequences for {BC,D} are as follows: {B,D} ^ {D£>}; {C,D} -^+ {D,D};
{B,D} S$ {D,D} n {D,D}; {B,D} *% {D,D} i£ {D«; {C,D} ^ {D.D} !% {D,D};
{C,D}i4{D,D}i4{D,D};...

Thefollowing theorem shows a recursive characterization of generalized compatibles that

expresses the compatibility of a set of state sets in terms of the compatibilities of its sets of next

state sets.

Theorem 6.1 AsetK ofstate setsisa generalized compatibleifandonly iffor each input i, there

exists an output o such that

1. for each stateset in K, itssetof transitions under input i andoutput o is non-empty, and
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2. fromtheset K ofstatesets, theset K' ofsetsofnext statesunder i ando is also a generalized

compatible.

Note the similarity with the generation ofclassical compatibles (Lemma 2.12), where we require a

set of states to be (1) output compatible,and (2) its next state set to be compatible.

Now, the problem of state minimization of NDFSM's can be reduced to one of selecting

a minimum subset of generalized compatibles. The selectionmust satisfy the following covering

and closure conditions.

6.1.2 Generalized Covering and Closure Conditions

Definition 63 A set ofgeneralized compatibles covers the reset state(s) if it contains at leastone

generalized compatible c such thattheset ofresetstates contains at least one stateset in c (i.e., at

leastoneofits statesets is made upentirely ofreset states).

Thisdefinition is similartoDefinition 2.25except hereeachcompatible is ageneralized compatible.

Westill requirethat anelementin a selected compatiblemustbehave likea resetstatebutanelement

is nowa setof statesto be merged, lb makesurethatwhatever transition wechoose forthemerged

state,it willstillcorrespond to a transition from a reset state, werequire thatits corresponding state

sets be made up entirely of reset states.

Example Onlygeneralized compatible {A} covers the reset state.

The closurecondition of a classical compatible requires that the set of next statesfrom

thecompatible becontained in another selected compatible. With ourgeneralized compatibles, we

first have to extend this notion of containment to sets of state sets.

Definition 6.4 AsetK ofstate sets contains another setK' ofstate sets iffor each state setS' in

K', thereis state set S in K such that S' containsS.

Let us define the trace set ofa set of state set to be the intersectionof the trace sets of the state sets,

and the trace set of each state set is in turn the union of the trace sets from the states in the set. If

K contain K' according to the Definition 6.4, then the traceset of K containsthe trace set of K'.

Fbr the traceset of K to contain the trace set of K\ we require that set containments in the form

VS'eK'ISeKS'CS.

Definition 6.5 A set Qof generalized compatibles is closed iffor each generalized compatible
K e Q,for each input i, there exists anoutput osuch that
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1. for each state set inK, itssetof transitions under input i and output o is non-empty, and

2. fromtheset K ofstatesets, theset K' ofsetsofnext statesunder i ando is contained in a

generalized compatible ofQ.

Example Theset of generalized compatible Q= {{A}, {BC, D}} is closed. Closure condition

for{A} requires the following generalized compatibles tobeselected (represented bytheclauses):

({A}) •({B}+ {C}+ {BC}+ {BC, D}). Closure condition for {BC, D} requires that ({D}+
{F}) • ({D}) • ({£?} + {£>}). These closure conditions are satisfied by Q.

6.1.3 Relationship to Determinization and PNDFSM Minimization

Definition 6.6 Asetofstates is a mergeable if it corresponds toa state label onthe determinized

state transition graph.

Example The meigeables of NDFSM M in Figure6.1a are A, BC, D, E, F, whichare state labels

on the determinizedstate graph shownin Figure 6.2.

Figure 6.2: Determinized state transition graph of M in Figure 6.1a.

Theorem 62 At leastoneminimum closedcoverconsists entirely ofgeneralizedcompatibles whose
state sets are mergeables.

Example Theminimum closed cover {{A},{BC,D}} is made upof mergeables only.

Therefore toform thecovering table andsolve thecovering problem exactly, it is sufficient

to generate onlythe generalized compatibles made up of mergeables. Therefore if one replaces

the words "state sets" with "mergeables" in theprevious definitions oneobtains a more compact

representation of the set of generalized compatibles.
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6.2 Algorithms for State Minimization of NDFSM's

6.2.1 Determinized Transition Relationand Implicit Subset Construction

Explicitalgorithmfor subsetconstructionis well-known [32]. Hereweoutlinehowsubset

construction can be performed implicitly.

Given the transition relation T(i,s, s', o) of anNDFSM M = (S,/, O,T,R), first we

compute the transition relation Tdet(i, c,d,o) of the determinized PNDFSM Mdtt. A 4-tuple
(i,c, d,o) is inrelation Tdtt if and only if the set ofstates con input i can transit to another set
of states d, and simultaneously produce output o. The advantage of using a 1-hot encoding (i.e.,

positional-set notation) to represent states in the original NDFSM, e.g., s, is that a state in the

determinized PNDFSM, e.g., c, (corresponding toa setof states in theNDFSM) canbe represented

by aminterm inthe encoded space. Tdet can becomputed by the following formula:

Tdet(i, c, d, o) = Vs {[Tuplex (s) •(s Cc)] =» Bs' [T(i, s,s', o) •(s' Cd))}

•Vs' {[Tuplex (s') •(*' C d)] =* 3s [T(i, s, s',o) •(s C c)]}

•-0(c).-*((/)

= r/roon,/->e#{3* [(c 3 s) •T(i, s, s', o)]} •-10(c) •-.0(c')

Given a 4-tuple (t, c,d, o), the first clause onthe right requires thatforeach singleton state s (i.e.,

Tup/ei(s) = 1; see Section 3.7.4) contained in c, there is a next state s' according to T which is

contained in d. As a result, the nextstateset of c is a subset of d. Withalsothe second clause, the

4-tuples in the relation will be suchthatd is exactly thenext state setof con input i and output o.

Finally, weeliminate all4-tuples expressing thefact thattheempty state setcantransit to theempty

set under any input/output combination. Alternatively, Tdet can becomputed using the set Union
operator (given by Lemma 3.19) as shown in the second formula.

The powerof the abovecomputationis that wehaveeffectively determinized the NDFSM

M into the PNDFSM Mdet = (2s, I, O, Tdet, rdei) where the new reset state isthe union ofreset
states inthe NDFSM, rdet(c) = Uniona^cR(s). Compared with explicit subset construction, no
iterationnor state graph traversal is needed.

The above relation Tdet (i,c,d,o), derived from the transition relation T, isuseful inthe

computation of compatibles and closure conditions for PNDFSM's in Section 6.4. Tdet contains

many 4-tuples, asccan beany output compatible setofstates. During compatiblegeneration, Tdet
willbe restricted to relation r by forcing c andd to be compatibles:
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r(i, c, d,o) = Tdet(i, c, d, o) •C(c) •C(d)

If some applications other than state minimization need to know the reachable state

space Sdet C 2s ofthe determinized PNDFSM, itcan be computed by the following fixed point
computation:

• Sdei(c) = rdet(c)

• Sffi (c) = Sdk«(c) + [d-+c] 3c, i,o{Sdk«(c) •T^(i, c, d,o)}

The above iterationcan terminate when for some j,Sffi = Sfet and the least fixed point is reached.
The set ofreachable states of the determinized PNDFSM is given by Sdei(c) = Sfet(c).

6.2.2 Exact Algorithms for State Minimization

We do not yet know how to implicitize the algorithm described in Section 6.1. The

main difficulty is to find a compact representation forsets of generalized compatibles. Given that

generalizedcompatibles are already sets of sets ofstates, there is one more level ofset construction

complexity thanfor state minimization of ISFSM's orPNDFSM's. If sucha representation exists,

Theorem 6.1 gives aconstructive definition ofgeneralized compatible, and thecovering and closure

conditions in Section 6.1.2 canbesolved asa binate covering problem.

As an alternative, suggested in [83], onecan convert anyNDFSM to a PNDFSM (Theo

rem 2.9) byanimplicit determinization (via subset construction) stepasdescribed in Section 6.2.1

and then apply to the PNDFSM ourimplicit (or any) state minimization algorithm which will be

presented inSection 6.3. Itgoes without saying that subsetconstructionmay introduce a blow-upin

thenumber of original states; thiscanhurttheefficiency of theimplicit PNDFSM state minimizer

whose computations are onavariable support whose cardinality islinearly proportional tothenum

berof states of thePNDFSM. It is anopen problem whether a better procedure canbe devised, or

instead this exponential blow-up is intrinsic to theproblem of minimizing NDFSM's. It must also

bestressed that we donothave yet good sources ofgeneral NDFSM's insequential synthesis, while

thework in [83] has shown the pivotal importance ofPNDFSM's inthesynthesis ofinterconnected
FSM's.
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623 Heuristic Algorithms for State Minimization

It has been shown that exact minimization of NDFSM's requires computation of the

generalized compatibles, insteadof theusualcompatibles. If werestrict ourattention onlyto the set

of compatibles (against generalized compatibles), the algorithm givenin Section 6.3 for exaa state

minimizationof PNDFSM'swill still serveas a heuristic algorithm for NDFSM minimization.

The PNDFSMminimizationalgorithmis a heuristicfor the stateminimizationofNDFSM,

because the algorithm chooses only from a subset of the generalized compatibles, namely the

classical compatibles. For the NDFSM example in Figure 6.1, such a heuristic algorithmcannot

find the2-state reduced machine Mi (asthissolutioncontains thegeneralized compatible {BC, D})

but will only find the 4-state machine M2. However, the heuristic algorithm is guaranteed to find

at lease one solution made up entirely of classical compatibles, because the original NDFSM is

such a candidate solution (made up of compatibles that are singletons). The hope is that most

non-determinismexpressedin an NDFSM is pseudonon-deterministic in nature, and as a result, the

heuristic can find near optimum solutions most of the time.

6.3 State Minimization of PNDFSM's

An NDFSM is a pseudonon-deterministic FSM (PNDFSM) if for each triple (i, p, o) €

I x S xO, there is a unique staten such thatT(i, p,n,o) = l. It is non-deterministic because for

a giveninput and present state there may be morethan one outputand next state; it is calledpseudo

non-deterministicbecause edges carrying differentoutputsmust go to differentnext states.

Definition 6.7 A pseudo non-deterministic FSM (PNDFSM) is a 6-tuple M =

(S,1,0,6, A,R). 8 is the next statefunction definedas6:IxSxO-> S where each combination

of input, present stateandoutput is mapped toa unique next state. A is theoutput relation defined

by its characteristicfunction A:IxSxO-¥B where each combination of input andpresent

state is relatedto one or moreoutputs. R C S represents theset ofresetstates.

Explicit algorithms for exact state minimization for PNDFSM's have been proposed by

Watanabe et al. in [86] and by Damiani in [20]. In this section, we contribute the first fully

implicit algorithms for exact state minimization of PNDFSM's. The theory for PNDFSM state

minimization has already been given in Chapter 2. Unlike NDFSM minimization, it has been

proved in Theorem 2.17 that the PNDFSM state minimization problem can be reduced to the
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problem of finding a minimum closed cover. As a result, the algorithm for state minimization of

PNDFSM's consistsoftwosteps: compatiblegenerationand binatecovering. Itismorecomplicated

than the one for ISFSM minimization [38] because the definition ofcompatibles and the conditions
for a closed cover aremorecomplex.

Example ThePNDFSM Mp shown in Figure 6.3 willbe used in thissection to illustrate various

concepts. It is a PNDFSM because on input 1, state D can output0 and transits to state B, or

outputs 1 and transits to state A.

Figure6.3: A PNDFSM, Mp.

This sectionis dividedinto twoparts: the first halfgivesdefinitions andtheoremsrelating

to the generation of compatibles, prime compatibles, covering and closure conditions for state

mimmization of PNDFSM's. The second halfdescribes in more detail how the prime compatible

generation step andthe binatecovering stepcanbe performed implicitly.

6.3.1 Compatibles

The following theorem servesas anequivalent, constructive definition of compatibles (cf.

Definition 2.36). The theorem yieldsan implicitcompatible generation procedure in Section6.4.1.

Theorem 63 Aset c of states is a compatible ifandonly iffor each input i, there exists an output

o such that

1. eachstatein c has a transition under input i andoutput o, and

2. from the set c ofstates, the setd ofnext states under i ando is alsoa compatible.

Example A,B, C, D, AB are compatibles of Mp of Figure 6.3. AB is a compatible because on

input0, it loopsback to itself, and on input 1, it goesto C whichis also a compatible.
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632 Covering and Closure Conditions

Definition6.8 Given a compatible c,pcis thepositive literal tosignify thatcompatible c isselected,

and% is thenegative literaltosignify that compatible c is notselected.

Definition6.9 A set of compatibles covers the reset state(s) if at leastone selected compatible

contains a reset state.

ExampleThecoveringconditionforMp requires eithercompatible Aorcompatible ABbeselected.

It canbe expressed by the simpleclause (pa + pab) where the positive literal pa evaluates to 1 if

and only ifcompatible A is selected.

Definition 6.10 Aset C of compatibles is closed iffor each compatible c e C,for each input i,

there existsan output o such that

1. each state in c hasa transition under input i and output o,and

2. from the setc ofstates, the setdof next states under i and o is contained ina compatible in
C.

Definition 6.11 Assuming a compatible c is selected, the closure condition for c, denoted by

closure(c), isa logicformula expressing the requirement that some other compatibles be selected
according to Definition6.10.

Example Consider theclosure condition forcompatible D. Oninput 0, D transits to B. Forstate

B to be in a selected compatible, we must select either compatible B or AB. Oninput 1, D can

(output 1,)transit to Aor(output0,)transit to B. We must select acompatible which contains either

Aor B, i.e., we mustselecteithercompatible Aor B or AB. Thus,theclosure condition for D is

theconjunction ofdisjunctions (pb + pab) -(?a+Pb + Pab)- Similarly, closure condition forA

is (pb + pab) •(pc), for B is (pa + pab) •(pc)* for C is (pd) •(pb + Pab) and for compatible
AB is (pc).

During binate covering, the covering table should guarantee thatfor each compatible c,

either c is not selected (i.e., %is true), or its closure condition closure(c) is satisfied, hi other

words, p£+ closure(c). This expression can be represented as a conjunction of binate clauses

which will bediscussed inmore detail later. Here we'llintroduce theconcept through the example.

Example Forcompatible D, thebinate covering table should require that

PD+closure(D) =Pd+{pb+Pab)-(pa+Pb+Pab) = (pd+pb +Pab) •(Fd+Pa +Pb+Pab)
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and actually it can besimplified to (p© + pa+ Pb+ Pab)-

Herewe restateamain theorem for stateminimization of PNDFSM's, Theorem2.17.

Theorem 6.4 The state minimizationproblem ofaPNDFSM reduces to the problem offinding a
minimum setofcompatibles that covers the reset statefs) andis closed.

633 Prime Compatibles

Fbrruntime efficiency, wecompute thesetofprime compatibles which is a subset of the

compatibles. Here we restate its related definitions and theorems from Section 2.9.

Definition 6.12 Acompatible d primedominates a compatible cifforeach minimum closedcover

containing c, the selection with c replaced byd also corresponds toa minimum closedcover.

Definition 6.13 Acompatible cisa prime compatible ifthere does not exists another compatible
d such that d prime dominates c.

Theorem 6.5 There exists a minimum closed cover made up entirely ofprime compatibles.

Theabove theorem justifies ourexact state minimization algorithm toconsider only prime compat

ibles.

A sufficient condition for prime dominance (Definition 6.12) is given by the following

theorem:

Theorem 6.6 A compatible d prime dominatesa compatible c if

1. if(cdR) ^ 0 then (dnR)^ 0,and

2. the closure conditionforc implies* the closure conditionford, and

3. dDc.

Proof: Assume thatd does notprime dominate c, i.e., there is a minimum closed cover containing

c whichis not anymorea closedcoverwhenc is replaced by d (Definition 6.13). We showthat at

least one of the above three conditions is false.

'Condition Aimplies conditionBifandonly ifthe satisfactionofcondition Aautomatically guarantees the satisfaction
ofcondition B. In other words, A is not less restrictive than B.
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Consider any setof compatibles C such that C U{c} is a minimum closed cover 2. As

C U{c} and C U{</} have thesame cardinality, inorder that C U{d} is nota minimum closed

cover, either (1)C U{d} does notcover the reset state(s) or (2) C U{c7} is notclosed. Forcase

(1), C U{c} is a cover butC U{d} is nota cover if and only if (cn R) ^ 0 and (dnR) = 0,

i.e., condition 1 of the above theorem is false. Forcase(2),C U{c} is closed but C U {c7} is not

closed if one of the two situations arises: (2a) C satisfies the closure condition for c but not the

closure condition for d. Thishappens if and onlyif condition 2 is false. (2b)c is needed to satisfy

the closure condition for somecompatible in C, butd doesnotsatisfy sucha condition. This is the

caseonly ifd^c, i.e., condition3 is false. •

The converseof the theorem is not true in general,becausecondition3 is a sufficientcondition,but

not a necessary condition, for case (2b) above.

Example Compatible AB primedominatescompatible B because allconditionsofTheorem 6.6are

met Inparticular, closure condition forB implies closure condition forAB because [(pa + pab) •

(pc)] => \pcl Similarly, ABdominates A. As a result, the prime compatibles are AB, C,D.

63.4 Logical Representation of Closure Conditions

We nowconstruct a set of logical clauses expressing the closure requirement that a next

state set d is contained in at least one selected compatible, as stated in Defimtion 6.10. Sincewe

will generate thesetof prime compatibles, weexpress also part 2 ofTheorem 6.6thatrefers to the

implication between closure conditions.

Thenotion of nextstatesets d is important forexpressing closure conditions and testing

prime dominance.

Definition 6.14 dC|tf0 is the setofnext statesfrom compatible cunder input i and output o.

Given a triple (c, i, o), the set dc>t,0 is unique ina PNDFSM. We associate toeach rfc,t> a clause
whose positive literals are theprime compatibles that contain dc^0. This clause will bepart of the

binate clause representing theclosure condition for compatible c. For simplicity in notation, we

designate by <2C|t|0 both the set of next statesandtheclauseassociated to it. It willbe clearfromthe

context which one it is meant.

Example The next state setfrom D oninput 0 and output 0, <fo,o,o is B and it corresponds to the

clause (pB + pab)- <*d,i,i is A and it corresponds to the clause (pA + Pab)- <*iu,o is B and it
corresponds to the clause (ps + pab)•

2It is possible that no such Cexists, and the theorem is trivially true.
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The following property iskey toevaluating implications between logical clauses by set
containments. The latter can be performed implicitly as <fc>,,0 is represented as a positional-set in
Section 6.4.2.

Theorem 6.7 If the set ofnext states dc/tl»t0/ Dthe set ofnext state set dCtit0,
then clause t^w =*> clause dc,t|0.

Proof: If the setof next states d^^^ D the setof next states dc^0, then each prime compatible

that contains d^^^ contains also dCtiy0. Since each literal ina clause d is a prime compatible that

contains the next state set d, it means that the clause dc,,|0 has all the literals of the clause djjj
and soeach assignment ofliterals that satisfies the clause dew satisfies also theclause <fc,t,0, i.e.,

clause rfc'.t'.o' ^ clausedCiit0. •

The converse does not hold.

For a PNDFSM, a set of compatible states c under an input i may go to differentsets of

nextstates depending onthechoice of output o. Forat leastonechoice of o, the corresponding next

state set dC}ii0 mustbe contained in some selected compatible. Thisis expressed by the clause (or

disjunctive clause or disjunction), disjunct(c, i), defined as:

disjunct(c, i) = So Goutputs at c under i, rfc>tj0

Example disjunct(D, 1)represents the clause (d£>,i,o + ^d.i.i) = (pa + Pb+ Pab)-

For a PNDFSM, the closure condition for a compatible c, denoted by closure(c), has

the form of a conjunction of disjunctive clauses. According to Definition 6.10, the conjunction is

overall inputs i, while thedisjunction is over specified outputs o,such thatA(i, s, o) = 1. Given a

compatible c, the following produa of disjunctions mustbe satisfied (onedisjunction per input):

closure(c) = Vi € inputs, disjunct(c,i)

In summary, theclosure condition forcompatible c is fulfilled if andonlyif foreachinput

i, there is anoutput osuch thatthenext state setdC)t> from compatible cunder input i and output o

is contained in a selectedcompatible. In logical terms,the closurecondition for c is fulfilledif and

only if the product-of-sums

closure(c) = Vi € inputs Bo Goutputs at cunder i, rfCjt|0 (6.1)

is satisfied. Theseclosure conditions aretested against a certain selection of compatibles.
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Example Closure condition forcompatible D is

closure(D) = (dDt0t0 + dD,oti) •(dD,ifl + <*£>,i,i) = (pb + Pab) -(pa+Pb+ Pab)-

We present now the prime dominance condition of Theorem 6.6. Part 1 and 3 are

already expressed assimple logic formulas. Notice that theimplicationbetween closure conditions

mentioned in part 2 ofTheorem 6.6translates exactly to logical implication (=*) between clauses,

i.e., given compatibles cand d, theclosure condition for cimplies theclosure condition for d ifand

only if closure(c) =*> closure(d). This implicationcannot be readily tested byfirst evaluatingeach

closure condition according toEquation 6.1, because each closure condition isinaproduct of sums

form. We would like toexpress itinterms ofset containmentbetween next state sets usingTheorem

6.7. What follows gives such auseful characterization ofthe formula closure(c) =^ closure(d).
We first prove two useful lemmas for manipulating logical clauses.

Lemma 6.8 [Vs F(x)] =» |V»' F'(x')] ifand only if Vx' 3x [F(x) =* F,(x')].

Proof: By using some fundamental validities of logic:

IV* F(x)] =» [Vx' F'(x')] if and only if V*' [Vx F(x) =• F,(x')]

if and only if Vx' 3x [F(x) =s> F'(x')].

Lemma 63 [3x' F'(x')] =* [3x F(x)] ifand only if Vx' 3x [F'(x') =* F(x)].

Proof: By using some fundamental validities of logic:

[3x' F'(x')] =* [3x F(x)] ifand only if Vx' [F'(x') => 3x F(x)]

if and only if Vx' 3x [F'(x') => F(x)].

Theorem 6.10 Given compatibles c andd,

closure(c) => closure(d) ifand only if Vi' 3i [disjunct(c, i) =$> disjunct(d, i')].
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Proof: Substituting x = i, x' = %', F(x) = disjunct(c, i), F'(x') = disjunct(d, i') inLemma6.8,

one gets that

Vi disjunct(c, i) =* Vi' disjunct(d, i') ifand only ifVi' 3i [disjtmct(c, i) => disjunct(d, i')].

Thefbmier is bydefinition c/osure(c) ^ closure(d). •

Now that we have expressed implication between closure conditions in terms of impli

cation between disjunctive clauses, the following theorem gives a useful characterization of the

formula disjunct(d, i') => disjunct(c, i).

Theorem 6.11 Given compatibles d, candinputs i', i,

disjunct(d, i') => disjunct(c, i) ifand only if Vo' 3o [dc*^^ => dc,»,o]-

Proof: Substituting x = o,x' = o', F(x) = dc^0, F'(x) = dc',,/|0' into Lemma 6.9, onegets

3o'dew =* 3odCtl>0 if and only if Vo' 3o[dc>,tv>0» =* dC|i>]-

The former is by definition disjunct(d, i') =» disjunct(c, i). •

By substituting Theorem 6.11 into Theorem 6.10 and using Theorem 6.7, we have ex

pressedthe implicationbetweenclosureconditionsof two compatibles(i.e., part 2 of Theorem 6.6)

in terms of a logic formula on the next state sets from the two compatibles.

Theorem 6.12 If Vi'3i Vo' 3o (dc',,'|0' 2 dc,i,o) then closure(c) => closure(d).

Proof: By Theorems 6.11,6.10 and 6.7. •

The following two theorems simplify the closure conditions, hi our implicit algorithm,

they are appliedbeforethe implication between the conditions is computed.

Theorem6.13 Given a compatible c and inputs i' and i, if disjunct(c,ir) =>• disjunct(c,i),

then disjunct(c,i) can be omittedfrom the conjunction closure(c) because of the existence of

disjunct(c, i').

Proof: 1fdisjunct(c, i7) =» disjunct(c, i), theconjunctionof disjunct(c,i1) and disjunct(c, i) is

simply disjunct(c, i'). Therefore disjunct(c, i) canbeomitted from theconjunction closure(c).

•

Theorem 6.14 Asetof next states d is notneeded tobepartof the clause disjunct(c, i), if
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1. disa singleton reset state 3,or

2. dCc,or

3. dDd' ifd' ispart ofdisjunct(c, i).

Proof: (1) If d is a reset state, the covering condition would automatically imply this closure

condition expressed by d, and thus the latter is not needed and, even more, the closure condition is

vacuously true. (2)dexpresses thecondition thatif c ischosen, a selected compatiblemust contain

thestate set d. If d D c, c is such a compatible, and the closure condition is vacuously true. (3)

dDd'byTheorem 6.7 means d=$> d'. The disjunction ofdand d! issimply d',sodcan beomitted
from disjunct(c, i). •

The order thenext state sets are pruned indisjunct(c, i) is important, especially if these

pruning rules are executed implicitly (i.e., simultaneously). For proper removal ofnext state sets,

one should find all the d's that satisfy condition 1or2 first and remove them from disjunct(c, i).
Then ona separate step remove allthed's containing other d' according tocondition 3.

6.4 Implicit State Minimization Algorithm for PNDFSM's

Inthissection, wewill showhow thestateminimizationalgorithm described inSection 6.3

can be implicitized.

First, we outline thedifferences between the state minimization algorithm ofPNDFSM's

and the state minimization algorithm for ISFSM's presented in Chapter 4. Theorem 4.3 does not

hold for PNDFSM's. The fact that a set of states may not be a compatible even though it is
pairwise compatible is illustrated by the following counter example. As a result, Corollary 4.4
also doesn't hold forPNDFSM's and thesetof compatibles cannot be generated from the setof

incompatible pairs asin Chapter 4. Inaddition, the computations for closure conditions aswell as
primedominance are morecomplicated than thosefor ISFSM's.

Example The following PNDFSM has three states {A, B,C}, no input and an output with three
values {x, y, z). All state pairs are compatibles but the set ABC isnot acompatible because they
cannot agree on an output in one transition.

Condition 1isvalid onlyif aunique reset state is specified.
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Figure6.4: A PNDFSM which doesn'thave a compatible ABC.

6.4.1 Implicit Generation of Compatibles

As wecannotgeneratecompatibles from incompatible pairs,we haveto start withoutput

compatibles (i.e., state sets) ofarbitrary cardinalities. First we compute thetransition relation Tdet

between sets of states, using the implicit proceduredescribedin Section 6.2.1.

Theorem 6.15 The set C of compatibles ofanNDFSM can befound by thefollowing fixed point

computation:

• r0(i, c,d) = 3oTdet(i, c, d, o)

• Initially assume all subsets ofstatesto be compatible: Cq(c) = 1,

• By Theorem 6.3,

- r*+i (i, c,d) = rk(i, c, d) -Ck(d)

- Ck+\(c) = Vi 3d Tfc+i (i, c,d)

The iteration can terminate when for some j, Cj+i = Cj, andthe greatest fixed point has been

reached. The set of compatibles is given by C(c) = Cj(c) and the transition relation on the

compatibles is r(i, c,d) = rJ+i (i, c,d) •Cj(c).

6.42 Implicit Generation of Prime Compatibles and Closure Conditions

hi our implicit framework, we represent each next state set as a positional-set d. The

fact that a next state set d is part of disjunct(c, i) can be expressed by the transition relation on

compatibles, r(i, c,d). The following computation will prune away next state sets d that are not

necessaryaccordingto Theorem 6.14, and the result is represented by the following relation B.



166 CHAPTER 6. STATE MD^IMIZAnONOFNON-DETERMINISTJC FSM'S

Theorem 6.16 The disjunctive conditions canbe computed bythefollowingrelation B:

A(c,i,d) = ITE( 3d {r(i,c,d) •[R(d) + (d C c)]}, 0(d), r(i, c,d))

B(c, i, d) = Minimald(A(c, i, d))

Proof: The firstequationcorresponds to conditions 1and2 of Theorem 6.14. Givena compatible c

andaninput i, i/there existsa d which is a nextstatesetfrom c underi suchthat R(d)+ (d C c) is

true, then the disjunct(c, i) is setto theempty set0(d),else wekeep theoriginal d in the relation

r(i, c, d). The second equation tests condition 3 andprunes all the d's that are not minimal (i.e.,

containing some otherd' that is partof disjunct(c,i)). •

hisummary r(i, c,d) represents thesetofdisjunctiveclauses, while B(c,i, d)represents thepruned

set of disjunctive clauses: d is in the relation B with (c, i) if andonlyif d is partof the disjunctive

clause for c under i after pruning.

Thefollowing theorem computes thesetofdisjunctiveclauses according toTheorems 6.11

and 6.7, that are used to express the closure conditions. Then the set of prime compatibles is

computed according to Theorem 6.6.

Theorem 6.17 // D(d, i',c, i) = Vd' {B(d, i', d') => 3d[B(c, i, d) • (d' 3 d)]},

then disjunct(d, i') => disjunct(c, i).

The setofprime compatibles canbe computed by:

PC(c) = C(c). fid{C(d)-[3s (R(s)-(s C c)) =* 3d (R(s')-(s' C c'))].Vi'3i (D(c, i, d, i'))-(d Dc)}

Proof: To evaluate disjunct(d, %') => disjunct(c, i), byTheorems 6.11 and 6.7, it is sufficient to

check

Vo' 6 outputs atd under i' 3o € outputs at cunder i [dc*,,-^ DdCtt|J.

In other words, wewant to check thatfor all next state set d' from compatible d on input i' (on

some output o'), there exists anext state set dfrom compatible coninput i (on some output o) such
that d' contains d. Thiscorresponds to the condition

Vd' {B(d, i',d') =* 3d [B(c, i, d) •(d' Dd)]}

Therefore D is a sufficient condition for disjunct(d,i') =*• disjunct(c, i).

The second equation defines PC(c) as the set of non-dominated primes. The rightsub-

formula within {}expresses thethreeconditions inTheorem 6.6. Apositional-setchasanon-empty
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intersection with thesetof reset states R if and only if there exists a reset state 3s R(s) such that

s C c. Forcondition 1, 3s (R(s) • (s C c)) =» 3s' (R(d) • (s* C d)) requires that (d n J2) # 0

if (cn JS) ^ 0. By Theorem 6.10, condition 2 ofTheorem 6.6 is checked byVi' 3i D(d, i',c,i)
according to the first partof thistheorem. Condition (3)is simply (d D c). •

The following theorem computes the pruned set of disjunctive clauses according to The

orems 6.13 and 6.17. They will be used in the next subsection to set up the binate rows of the

covering table.

Theorem 6.18 Given a compatible c, the inputs i's associatedwith c which are involved in non-

trivial disjunctive clausesare expressed bythefollowingrelation E:

E(c, i) =jBi' [(i ^ i'). D(c,i',c,a)] + 3i'cprojecti(D(c, %', c, i) •D(c, i, c,i*))

Andthecorrespondingprunedset ofdisjunctive clauses is givenby relation I:

I(c, i, d) = B(c, i, d) •PC(c) •E(c, i). -.0(d)

Proof: Given a compatible c, Theorem 6.13 states that if disjunct(c, i') => disjunct(c, i) then

disjunct(c, i) can be omitted from closure(c). And disjunct(c, i1) =>> disjunct(c, i) if the

two pairs are in relation D(c, i', c, i), according to by Theorem 6.17. The first term /3i' [(i ^

i') • D(c, i',c, i)] deletes all pairs (c,i) such that there is an input i' where (i' ^ i) such that

disjunct(c, i') =» disjunct(c, i). But this would eliminate two many (c,i) pairs because it is

possible that (i' / i), and moreover disjunct(c,i') => disjunct(c,i) and disjunct(c, i) =>

disjunct(c, i*) are bothtrue. Such pairs aredefined by D(c, i',c, i) •D(c, i, c, i7). In sucha case,

we must chooseand retainexactlyone of the two. A unique (c, i) out of each set of "co-implying"

pairs is chosen as representative by the BDD cproject operator. And the representative is added

back to relation E by the last term of the firstequation.

Fbr the second equation, the pruned set of disjunctive clauses contains the clauses in

B(c, i, d), constrained to have compatibles c that are primes in PC(c), and pairs (c, i) given by

relation E. Also, triples with empty set d are vacuously true clauses, and thus are pruned away. •

6A3 Implicit Binate Table Covering

Selection of prime compatiblesis performed by the implicit binate covering solver de

scribed in Chapter 5. In particular, we use the binate table solver which assumes each row has at

most one 0. lb use the solver, one has to specify four BDD's: two characteristic functions Col
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and Row representing a set of column labels and a set of row labels respectively; and two binary

relations 1 and 0, one relating columns and rows that intersect at a 1 in the table, and anotiier

relatingcolumns and rows that intersect at a 0.

Similar to the case for ISFSM's, each prime compatible correspondsto a single column

labeled p in the covering table. So the setof columnlabels, Col(p), is givenby:

Col(p) = PC{p)

Eachrow can be labeled by a pair (c, i) because each binate clause originates from the

closurecondition for a compatiblec € PC underaninput i. And the covering condition for a reset

state is expressed by asingle unate clause, to whichweassign arowlabel (c, i) = (0,0). cischosen

to be the empty set to avoid conflicts with the labels of the binate rows, while the choice of i = 0 is

arbitrary. The set of rowlabels, Row(c, i), is givenby abinatepart andaunatepart:

Row(c, i) = 3d I(c, i, d)+ 0(c) •0(i)

Eachbinate clauseassociated with a compatible c andan input i expresses the condition

that for at leastone output o, the next state set must be contained in a selected compatible d. The

corresponding next staterelation is I(c, i, d).

Next, let us consider the table entries relations l(c, i,p) and 0(c, i,p). If (c, i) labels a

binate row, theexpression 3d [(p D d) •I(c, i, d)] evaluates to true if and onlyif the table entryis a

1 atthe intersection of the row labeled (c, i) andthe columnlabeled p, i.e., the rowcanbe satisfied

ifnextstate setdis contained inaselected compatible p. There is an entry 0 atcolumn pif (p = c),

i.e., the row can alsobe satisfiedby not selectinga columnlabeled c.

The row labeled by (0,0) represents the disjunction of compatibles p each of which

contains atleastareset state R(s). Onsuch arow, atable entry is a 1ifand onlyif 3s [0(c) •0(i) •

R(s)-(sCp)].

As a summary, the inference rules for table entries given a row (c,i) and acolumnp are:

l(c, i,p) ^ 3d [(p Dd) •I(c, i, d)] +3s [0(c) •0(i) •R(s) •(s Cp)]

0(c,i,p) = (p=c)

6.5 Experimental Results
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We have implemented an implicitalgorithm fbrexact stateminimizationof PNDFSM's

in a program called ism2, a sequel to ism. Prime compatibles and the binate table are generated

according to the algorithm described above; then a minimum cover of the table is found by our

implicit binate covering solver presented in Chapter 5. We perform and reportexperiments on the

complete set of examples obtained by Watanabe in [83]. Each PNDFSM is an E-machine derived

from an arbitrary connection of two completely specifieddeterministic FSM's, Mi and M2, from

the MCNC benchmark. The produa machine M = Mi x Mi is used as the specification. The

E-machine whichcontains all permissible behaviors at M\ is derived usingthe procedure in [851.

Ourproblem is to find a minimum state machinebehaviorally contained in the E-machine.

Watanabe's minimizer, pnd_reduce, does not compute prime compatibles but finds all

compatibles instead. In its exact mode, compatible selection is performed by an explicit binate

table solver available in the logic synthesis package sis. hi its heuristicmode, it finds instead a

Moore 4machine inthe E-machine, by'expand' and 'reduce' operations [831 on aclosed cover of
compatibles. As the heuristic looks only to Moore solutions, it isunderstandable that it willgive a

worse solution than the minimum contained machine if the latter is not Moore. Also the run times

might notbedirectly comparable. They are reported inthe table for completeness.

Table 6.1 summarizes the results of PNDFSM minimization. Fbr each PNDFSM, we

report the number of states in the original PNDFSM, the number of states in a heuristicMoore

solution obtained by PND.reduce, the number of states in a minimum contained FSM, the size

of the binate table for pnd_reduce and for ism2, and the overall run time for state minimization

for pnd_reduce (in both heuristic and exact modes) and ism2. Allrun times are reported inCPU

seconds onaDECstation 5000/260 with 440 Mb of memory. For all experiments, timeout is setat
10000 seconds of CPU time, and spaceout at 440Mb ofmemory.

Out of the 30 examples, pnd.reduce inexact mode failed to complete on 8examples
because of timeouts, and failed on4 examples because of spaceout. It can handle all PNDFSM's

with less than 16 states, pnd.reduce in heuristic mode has atimeout on one example, and spaceout
on three. Note that some Moore solutions found heuristically are far from the optimum contained
ones, although the heuristic solutions may be close to the minimum Moore solutions. Our program
ISM2 can handle more examples than pnd.reduce and only failed to find an exact solution on

2 examples because of timeouts. In those two cases, ism2 did succeed in computing the prime
compatibles as well as building the binate covering table. Furthermore, for the example pm41, it

State minimization algorithms for finding Moore behaviors will be presented in Chapter 7.
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found a solution with9 states after 4844.7 seconds (whereas pndjieduce heuristic took 4011.9

seconds to find a 19-state Moore solution). For pm50, it found a first solution with4 states in 150.7

seconds, and the minimum one with 3 states in7309.5 seconds, while optimality was concluded
in 49181 seconds after the complete branch-and-bound tree was searched (whereas pnd_reduce

heuristic can only find aMoore solution with 13 states). Itisencouraging to note that our implicit
exact algorithm has ran timesatleast comparable to theheuristic onein pnd-REDUCE, and in some

cases, much faster.

Note that many exact minimum solutions had onlyone state, i.e., the solution is pure

combinational logic. Such is a Mealy machine unless the logic is a constant It is believable that

the minimum Moore behavior is much larger in general as indicated possibly by the results of

PNDJREDUCE.

Note also thateachcompatible results in acolumnof thebinate table by pnd_reduce in

exactmodewhereas ISM2 hasonecolumnfor each prime compatible. The fact thatmostexamples

havevery few prime compatibles shows the effectiveness of our prime compatibles computation

for PNDFSM mimmization. Even in these cases, state minimization may not be trivial because

compatible generation andprimedominance may takealong time, e.g., pm04 ands3pl.
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no. # states in sol. table size (rows x columns) CPU time (seconds)
of heur. exaa PND.REDUCE ISM2 PND.REDUCE ISM2

PNDFSM states Moore Mealy exact exact heur. exact exact

L3 17 2 2 10x4 126.2 timeout 17.4

am9 13 12 1 lxl 13.7 timeout 2.3

ax4 11 1 1 26x28 lxl 2 0.7 0.7

ax7 20 2 2 334x308 20x6 2.8 15.6 7.6

bx7 23 2 2 254x216 20x6 3.2 9.9 9.0

damiani 5 5 3 21x24 17x10 0.1 0.1 1.3

e4at2 14 11 lxl 5.5 timeout 1.1

e4bpl 11 1 1064x995 lxl 2.4 308.1 0.8

e4tl 6 1 103 x120 lxl 1.1 0.7 0.3

e69 8 1 551x501 lxl 0.3 10.5 0.3

e6tm 21 8 lxl 26.1 timeout 3.1

exlO 13 4 23x28 lxl 0.6 0.5 0.6

exl2 13 1 1451x1019 lxl 1.1 16149.1 0.8

mc9 4 1 7x11 lxl 0.1 0.1 0.1

mt51 16 10 lxl 8.9 timeout 3.8

mt52 9 4 256 x 639 lxl 3.7 39.4 0.8

pm03 15 1 1203 x1019 lxl 1.2 1751.1 0.8

pm04 79 lxl spaceout spaceout 120.6

pmll 9 1 331x395 lxl 43.5 29.7 1.3

pml2 7 3 8x19 lxl 9.8 0.4 0.4

pm31 22 lxl timeout spaceout 3.6

pm33 21 13 lxl 3327.3 timeout 6.6

pm41 33 19 <9 12050x4774 4011.9 spaceout M844.7

pm50 22 13 1249x515 32.2 timeout 49181

s3pl 38 1x2 spaceout spaceout 915.8

s3t2 36 389x18 spaceout timeout 39.9

tmOl 10 1 476x767 lxl 1.2 40.9 0.8

tm02 7 1 155x211 lxl 0.4 3.1 0.4

tm31 9 1 125x113 lxl 0.3 1.1 0.3

tm32 9 3 2 106x143 37x9 0.4 1.2 2.9

* best solution before timeout

Table 6.1: State minimization ofPNDFSM's.
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Chapter 7

State Minimization of PNDFSM's for

FSM Networks

173

7.1 NDFSM's in Logic Synthesis

NDFSM's are useful in sequential synthesis asa formalism to capture a set of sequential

functions. Of all such sequential functions, thosethatsatisfy given criteria of correctness are valid

candidates for implementation (designverification stage). Of allvalid candidates, one maximizing

a given optimizationcriterion is implemented (synthesis stage). Recent papers [86, 85,20] have

proposed specific applications of NDFSM's, especially PNDFSM's, to sequentialsynthesis. Some

examples are presented in [20].

NDFSM's arise in sequential synthesiswhencapturing allthe flexibilitythatis in anodeof

anetworkofFSM's. We will summarizethe related theory, which was first proposed by Watanabe et

al. in [86, 85]. We review in the sequel these applications that explore permissiblebehaviors in

networks of FSM's. We detail all those parts of the theory that are important for the step of state

minimization (i.e., to select an optimal behaviorof all permissible ones). We present also a more

comprehensiveanalysisofthe conditionsof the existenceof a related feedbackcomposition.

Given asynchronoussystemofinteractingFSM's andaspecification,considerthe problem

of finding thecomplete setof permissible behaviors ataparticular component of thesystem *. The

problem is illustrated in Figure 7.1, where Mi is the FSM associated with the component to be

optimized, Mi represents the behaviorof the restof the system, and M gives the specification.

'This extends to the sequential case the problem of finding the maximum setof permissible Boolean functions at a
node of a combinational network.
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• •

Ml

M2

M _ j

Figure 7.1: Interaction between two machines.

A behavior, as defined in Section 2.4, is a set of input/output strings that can be produced

by a DFSM. More than one DFSM may produce the same behavior. We say that such a DFSM

represents that behavior. An NDFSM will represent in general more than one behavior. When

not confusing, we will refer interchangeably to a behavior and a DFSM that represents it. Loosely

speaking, a behavior is permissible if the resulting entire system meets the specification, in the

hypothesis that the other components are fixed. In other words, a behavior is permissible at a

node of an interconnection, say at Mi, if the system obtained by placing at that node a DFSM

that represents the behavior works according to the original specification. Such a replacement is

allowed if the composition is well-defined and the global behavior is the one expected. In the

Section 7.1.1, relevant formal definitions will be given. In particular, a more restricted notion of

permissiblebehavior proposedin [86,85] will guarantee that the composition is well-defined, i.e.,

that potentially hazardous implementations areruledout.

The maximal setofpermissiblebehaviors canbe captured by the E-machineandits related

theoryin [83] will be reviewed in Section7.1.2. If the setofbehaviors permissible at Mi is found,

a 'best' one can then be chosen. Its optimalityis usuallyevaluated by the estimated compactness

of a final implementation; for instance, one might choose a behavior with a minimum numberof

states. Different minimizationproblems will be described in Section 7.2. Implicitalgorithms will

be proposed for these problems in Sections7.3,7.4 and7.5.

Similar formulations of this problem havebeen called modelmatching of FSM's in the

contextofthe supervisory controlproblem fordiscrete event processes [62,4,5].

Given an FSM M, called the reference model, thatdescribes some desired input-output

behavior and another FSM Mi, called the plant, with a given behavior, the problem of model

matching is to find a compensator FSM Mi thatmodifiesthe behaviorof Mi in sucha way thatthe
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controlledsystem, that is the compositionof Mi and M2, matches the desiredbehavior. If both the

inputs and theoutputs of Mi are allowed tobemodified by M2 as shown inFigure 7.1,theproblem

is termed generalized strong model matching when aunique reset state for each of M, Mi and Mi

is specified, and generalized asymptotic model matching when the reset states of Mi and M are

arbitrary. If Mi is not allowed to modifythe outputs of Mi, thenthe above problems are termed

strong model matching andasymptotic model matching respectively.

Figure 7.2 shows an example of model matching problem of the latter type, since M2

is not allowed to modifythe outputs of Mi. Notice that the external inputs X drive directly the

flexible component (Mi). This simplifies thecomputation of the permissible behaviors.

II

Ml

•t

M2

M

Figure 7.2: Supervisorycontrol problem.

Finally a related problem is the division problem for FSM's: given an FSM M and a

divisor Mi, find thequotient Q of thetwoas shown in Figure 7.3. This is the core problem in the

context of factorization and decompositionofFSM's.

Figure 7.3: FSM Boolean division.
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7.1.1 Well-defined Composition of DFSM's

Unless otherwise specified, fiom now onplease refer to thenetwork inFigure 7.1.

Suppose Mi = (C7,V,5i,Ai,(Ji,ri),andM2 = (XUV,^UZ,52,A2,^,r2) are given as
DFSM's. Mi takes inputuand outputs v,and Mitakes input xand vand outputs uand z. Theoutput

function ofM2, A2, isoften splitted in Ag : Si x £l*uVl -> BM and A|: Si x Bl*uVl -+ #lzl
such that A2(s2, xv) = (AJ(s2, xt;),A|(s2, xv)). It is not always possible to connect Mi and M2

according to thetopology shown inFigure 7.1 in such a way that theconnected machines together

represent a deterministic (or output deterministic) FSM with respect to input x andoutput z. The

reason is thatthepresent value of v is a function ofthepresent value of v,asshown by

v = Ai(si,u) = Ai(«i, \%(si,xv))',

and, thepresent value of u is a function of thepresent value of u,as shown by:

u = \l(si,xv) = A;(s2,sAi(si,u)).

It is nottrue a priori that there is a solution of the first equation in v for every choice of si, s2, x.

If there is unique solution, one can write explicitly v as a function of the othervariables: v =

f(si,si,x)2; similarly, for the the second equation. So we ask the question: when isthe connection,
called product-machine, well-defined?

If Mi or Mican beguaranteed tobeMoore machines3, there isa unique (u, v) pair for
each («i, si, x) combination. Asufficient condition for well-definedness, called implementability,

has been proposed in [83]. We shall review it later. Here we introduce a more general condition

under which a product is well-defined.

Well-defined product DFSM

Definition 7.1 Given DFSM Mi = (U, V, SuXhSh n), and DFSM M2 = (X UV, U UZ,S2,

A2, Si,ri), the reachable product DFSM of Mi and M2, denoted by Mi x M2, is the DFSM

(X,Z,Sp, Ap, Sp, rp) where rp = (n, r2), Sp isdefined asthe set ofreachable states 4in Si x Si,
and there arefunctions \p : Spx X -> Z and6p : Spx X -+ Sp such thatfor each state pair

(si,si) € Sp and an x € X, there exists u and v such that \P((si,si),x) == Xi(s2,xv) and
SP((si,s2),x) = (Si(si,u),S2(s2,xv)).

^eie is an analogy here with the implicit function theorem in real analysis.
3As observed in [2], we only need M% to be Moore in v, but itcan be Mealy in x.
4A detailed constructive definition of Sp will begiven inTheorem 73.
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Note that thereachable product DFSM iswell-defined only if Ap and Sp are well-defined

functions. Functions Ap and Sp might notexist because of thedependence on u andv.

Theabove definition was conceived independently from a similar notion of well-defined

composition presented earlier in [4, 5], when characterizing by means of a pre-post dynamic

state compensator all solutions to the model matching problem in a closed plant-compensator

configuration. Analysis ofcombinational cycles incircuits hasbeen reported in [51,12,75].

Example Consider Xp((si,s2), x) = z. We have that z = X^(s2, xv) depends ont>, which inturn

is given by t; = Ai(si, u),where u = X^(s2, xv). Given (si, si) and x, it is notguaranteed that

there are uand vsuch that the last two equations are satisfied. If they exist, vcan beplugged into
the first equation togenerate z. Asimilar analysis holds for 6P.

Theorem 7.1 Given DFSM's Mi and Mi with their corresponding state transitions represented
by Ti(u,si,s[,v) and T2(xv,s2,s'2,uz), the product machine Mi x Mi has state transitions

represented by Tp(x, (sus2), (s[,s2),z) = 3u, v[Ti(u,shs[, v) -Ti(xv,s2,s2,uz)]. Theproduct
machine Mi x Mi isa well-defined DFSM ifand only iffor each reachable product state pair
(si, si) € Sp andfor each input x, there exists aunique next statepair (s[, a£) e Sp and a unique
output z such mat Tp(x, (sh s2), (s[, stf, z) = 1.

To test the above condition implicitly, we check that the following predicate is true (for
all si, s2 and x):

Sp(si,s2) => \s'i,si,z 3u,v [Ti(u,si,s\,v) •T2(xv,s2,s2,uz)]

where !denotes the unique operator: \x F(x, y) = {y\y isrelated to a unique x in F}.

As shown in Section 3.3.2, the unique operator can be implemented asa primitive BDD operator.

As a result, the above well-definedness test can be performed with only a few BDD operations.

Definition 7.2 Given DFSM Mx = (U, V, Sh Xh Sh n), and DFSM M2 = (X UV, UUZ, Si,
A2, Si, r2), the reachable product ODFSM (output-deterministic FSM) of Mi and M2, denoted
by Mix Mi, is the NDFSM (X,Z,Sp,Xp,Ap,rp) where rp = (r,,r2), Sp is defined as the
set ofreachable states in Si x S2, and there is afunctions Xp : Sp x X -> Z and a relation
Ap : Sp x X x Sp -f B such thatforeach state pair (*i, «a) 6 Sp and anx e X, there exists u
and vsuch that Xp((Si, s2), x) = A|(s2, xv) and (Si(s{, u), h(s2, xv)) eAp((si,si),x).

Note that the reachable product ODFSM is well-defined only if Ap is a well-defined
function. Contrasting towell-definedness ofreachable product DFSM, we do not require here that
the product next state relation be a function.



178 CHAPTER 7. STATE MINIMIZATION OFPNDFSM'S FORFSM NETWORKS

Theorem 12 Given DFSMs Mi and Mi with their corresponding state transitions represented

by Ti(u,si,s\,v) and Ti(xv, si, sj, uz), the product machine Mi x Mi has state transitions

represented by Tp(x, (susi), (si, s£), z) = 3u, v[Ti(u, si, s[, v) •T2(xv, si, sj, uz)]. Theproduct

machine MixM2isa well-defined ODFSM ifand only ifforeach reachable product statepair

(si,si) € Sp andfor each input x,there exists one ormore next statepairs (s\,4) € Sp and there
exists a unique output z such that Tp(x, (si, si), (s\, sj), z) = 1.

To test the above condition implicitly, wecheck that thefollowingpredicate is true:

Sp(si,s2) => \z3s\,s2,u,v[Ti(u,si,s[,v) •T2(xv,s2,4,uz)]

Theonlydifference of theabove predicate than theoneinTheorem 7.1 is here wedonotrequire si

and 52to be unique.

Theorem 13 Given DFSM Mi and M2, the setSp ofproduct reachable statesinSi x S2 can be

computed bythefollowingfixedpoint computation:

S^(sus2) = {(ri,r2)}

S^+1(sus2) = S$(sus2) + [(«J,4) ->(si,s2)]
3u,v,x,z,si,s2 [Sfoi,s2) •Ti(u,si,s\,v) •T2(xv,s2,s2,uz)]

Implementable FSM's

In [83], a definition of product machine is given, based on the existence of a unique pair

u, v suchthat the equations aresatisfied. Moreover, a sufficient condition, called implementability,

for the existenceof such a unique pair u, v is introduced.

Definition 13 Given DFSM Mi = (U, V, Sh Xh Su n), and DFSM M2 = (X UV, U UZ,S2,

X2, S2, r^), the product DFSM qfMi and M2, denoted by Mi x M2, is the DFSM (X,Z, Si x
S2,Xp,Sp,rp) where rp = (ri,r2), and there are functions Xp : (Si x S2) x X -> Z and
Sp : (Si x S2) x X -> (Si x S2) such thatforeach state (si, sj € Si x S2 andan x € X, there isa
uniquepair (u, v) where v = Ai (si, u) and u= AJ^, xv), such that Xp((si, s2) ,x) = X% fa, xv)
andSp((si,s2),x) - (Si(si,u),Si(s2,xv)).

Definition 7.3 is morerestrictive thanDefinition 7.1,because the uniqueness of minterms

«, v is a sufficient, but not necessary condition to obtain a well-defined feedback composition of



7.1. NDFSM'S INLOGIC SYNTHESIS 179

Mi and M2. Moreover, in Definition 7.3 it is requested that the sufficient condition holdsalso for

unreachable states.

The following example shows a feedback composition that is well-defined according to

Definition 7.1, but does not satisfyDefinition 7.3.

Example Consider the DFSM Mi thathas a unique state si, an input u and an output v. Let

the output function at si be Ai(si,0) = 0, Ai(«i, 1) = 1. Consider the DFSM M2 that has a

unique state s2, inputs x, v and outputs u,z. Let the output function at si be A2(s2,00) = 00,

A2(s2,01) = 10, A2(s2,10) = 01, A2(s2,11) = 11. Theproduct machine is well-defined as the

DFSM Mi x Mi thathas a unique state (si, sj, an inputa: and an outputz. Theoutputfunction

at (si, si) is Ap((«i, s2), 0) = 0, Ap((5i, s2), 1) = 1. But there are two pairs of u,v such that the

equations are satisfied,i.e., « = 0,u = Oandw = l,t;=l.

In [86,85] a sufficient conditioncalledimplementability is imposedon Mi, to ensurethat

foreachpresent state pairand each input, there is a unique (u,v) pair.

Definition 7.4 Given M2 = (XuV,UUZ, S2, X2, S2, r2), a DFSM Mx = (U, V,Si,Xi,Suri)is

implementable with M2 if there exists apairofcircuit implementations of Mi and M2 such that

no combinational loopis created byconnecting them together at u andv.

A combinational loopis a cycle of gates and wires, withno latch or flip-flop to break thecycle.

Theorem 7.4 For an implementable machine Mi, andfor an arbitrary sequence of £•*', say
o = (xo, ...,xt),ifwe denote by (si, s2) e Si x Si the pair ofstates of Mi and M2 led to by
(xo,..., xt-i), then xt defines auniquepair (u, v) e BW x B'v' such that u= X^fa, xtv) and
v = Xi(si,u).

Proof: Supposethat no combinational loop existsbetween the variables of U and V. Then either

the variables of V do not depend on those of U or vice versa. Suppose wJ.o.g the former case.

Then for a state si of Mi a unique value of v, say v, is determined. In M2, given s2, x and v, a

unique value of u, say %is determined. Therefore for each state x, (si, si), a unique pair u,v is
determined such that v= Ai (si, H) and ¥ = A^fa,xv). •

The following example shows a feedback composition that is well-defined according to

Defimtion 7.1, but does not satisfyDefinition 7.4.

Example Consider the DFSM Mi that has aunique state si, inputs tti, u2 and outputs vi,vi. Let

the output function at sx be Ai(si,00) = 00, Ai(si,01) = 10, Ai(*i, 10) = 01, Ai(*i, 11) = 10.
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ConsidertheDFSM M2 thathasauniquestate s* inputs x, vi,viand outputs ui,ui, z. Lettheoutput

function atsi be X2fa, -00) = 100, A2(s2l -01) = 001, A2(s2, -10) = Oil, X2fa, -11) = 010.

The product machine is well-defined as the DFSM Mi x M2 thathas a unique state fa, si), an

input &and an output z. The output function at (si, s2) is Ap((si, s2), -) = 1, since there is a

unique pair ui, u2, vi, vi suchthat the equations aresatisfied, i.e., ui = 0, u2 = 1,vi = 1,vi = 0.

Mi is not implementable because therearecombinational loops (fbrinstance between u\ andvi).

Note that if M2 is a Moore machine or Mi is restricted to be Moore, then the imple-

mentability of Mi with M2 is guaranteed, because theexistence of a unique u, v is guaranteed.

A necessary and sufficient condition for Mi to be implementable is given in [86, 85].

Consider a directed bipartite graphG(UUV, E), where thenodesetofG is divided intotwoclasses

U andV andanodeof U (respectively a node of V)corresponds toavariable of theinput variables

u (respectively the outputvariables v) of Mi. The edgesof G are defined as follows:

[«,-, vj] GE <& AjJ depends onUi,

[vj, ui] € E & X2{ depends onvj,

where we denote by X\' the function ofthe j-thoutput variable vj inMi. The graph Gisreferred
to as a dependency graph. Then the followingtheorem holds.

Theorem 7.5 Mi is implementable ifandonly ifG is acyclic.

In the previous theorythere is an biddenhypothesis that u and v arebinaryvariables. If u

andvaresymbolicvariables, cyclic dependency isnotaninvariantoftheencodingprocess, therefore

an appropriate encoding in an actual implementation could break cyclicdependency found at the

symbolic level. This statement implies that Watanabe's criterion would be even more conservative

when u and v are symbolic variables.

7.1.2 Permissible Behaviors at a Component FSM

LetM= pf,Z,S,rAf,r)andM2 = (X U V, U UZ,S2, X2, Si,r2) be given. Mean

be a non-deterministic machine (to specify a set of behaviors, ratherthana singlebehavior, for the

entiresystem), while M2 is acompletely specified deterministic machine. However, Watanabe only

considered M that is completely specified anddeterministic inhis implementation.

A synthesis problem is to find thecomplete setof behaviors, suchthattheproductof each

DFSM Mi, representing a behavior in the collection, with the fixed DFSM M2 (i.e., Mi x M2) is

well-defined and represents a behavior contained in the NDFSM M. If M is a DFSM, the behavior
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of Mi x Mi mustbe equalto thebehaviorof M. Theproperty of Mi that thebehavior of Mi x M2

is oneof thebehaviors of M (i.e., is contained in M) is called containment property of Mi.

A DFSM that satisfies both implementability and containment is a valid choice for Mi

and is takenas the definition of permissible DFSM in [86,85].

Definition 7.5 Given M = (X,Z,S,TM, r) and M2 = (X UV,UU Z,Si, X2, S2, r2), a DFSM

Mi = (U, V,Si,Xi,Si,ri)is permissible if Mi is implementable and the behavior of Mi x M2is
contained in M.

We havedefined apermissiblemachine replacing implementabilitywiththelessrestrictive

condition that the (reachable)product machineof Mi and M2is well-defined.

Definition 7.6 Given M = (X,Z,S,TM, r) and M2 = (X UV, UUZ,Si, X2, S2, r2), a DFSM
Mi = (U, V, Si, Ai, 6*1, ri) is permissible if the (reachable) product machine of Mi and M2 is

well-defined andthebehavior ofMi x Mi is contained in M.

-0/00

M2 M

Figure 7.4: Watanabe's exampleof M2and M.

Given M and M2 (e.g„ consider Figure 7.4 from [83]), many permissible behaviors can

be implemented at Mi. The problem is how tocompute all of them and how to represent them in

themost compact way. Notice that a DFSM represents (i.e., contains) a unique behavior, while the

same behaviormay berepresented (i.e., contained) bymany DFSM's, potentially aninfinite number

of them. Therefore ourobjective is to find the complete setofpermissible behaviors at Mi, and not

the completeset of permissible machines at Mi.

We will see that one can represent them with an NDFSM computed by a fixed point

computation. By determinizing theunderlying NDFA (applying a subset construction algorithm),
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theNDFSM can becoverted intoaPNDFSM. It is also possible todefine a fixed point computation

thatbuildsdirectly thePNDFSM.Thelattercomj^tationhasteenprop^

so obtained has been called the E-machine s. Similarly, the result of the former computation has
been called the NDE-machine.

Since determinization could lead to an exponential increase of the state space, the first

approach seems more attractive. Ontheother hand, inthecase ofPNDFSM's it has been possible

to extend traditional algorithms to find a minimum-state contained behavior, while such a direct

extension seems to fail for general NDFSM's. It isamatter of current research to compare more in

depth the two approaches and explore algorithms thatwork directly on NDFSM's. We will review

next both types ofcomputations.

Instead of capturing the permissible behaviors with anNDFSM and then determinizing

it to obtain a PNDFSM, onecan perform the two steps together by means of a unique fixed point

computation, thatis a modification ofthe oneneeded to compute the NDFSM. In this section M is

not restricted to be a DFSM as in the previous section,but it canbe an NDFSM.

Consider the transition relation of a non-deterministic machine givenby the following

fixed point computation. Let S^ = {(r2,{r})} and compute T(t+l) and «S('+1) for a given

£(') C 2<S2 x 25). Let Zp and I„ be subsets of52 x 25, respectively, and uand v minterms of
BW and BlvL T^<+1) (Zp, u, v,I„) = 1if and only ifthe following three conditions are satisfied:

(1) Zp€5W

(2) V(x,§2,s*)€Bl*lx52x25 : (S2,s*) €lpandu= X2u)fa,xv)
(a) X2z)(h,xv)eA(£*,x)
(b) (Si(h,xv),A(s~*,x,x!2z)(si,xv)))eTn

(3) V(s2,s*)<=S2x25 : fa,s*)el,n

=> 3(x, s2, £*) € BW x S2 x 2s :

(a)(§2,s*)6Zp

Qj)u = xiu)(s2,xv)
(c)s2 = Si(si,xv)

(d) s* =A(£*, x, A^fe, xv)).

If the antecedent of the implication (2) is false, thenthe implication is trueand£„ = 0.

If theantecedent of theimplication (2) is true, and condition (2) (a) of theconsequent is false, then

theimplication is false and sothetransition isnotadded tothe relation. Condition (2) (a) rules out

sthe prefix Estands for environment
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transitions such that Mi would violate the condition that Mi x M2 is contained in M. Condition

(2) (6) instead builds the setZ„. Condition (3) is necessary torestrict Z„ tothose sets of pairs that

have theirpredecessor in Zp.

Bycondition (2), for each pair (S2, £*) € Zp, there might exist more than one a? 6 £'*'
such that u=X^fa, xv).

Since the pair of next states may be different for different x, more than one pair

(Sifa, xv),A(sm, x, xSf'fa, xv))) is added to the next state Z„, for each fa, s?) and (u, v).
In each computation, S® isaset ofsubsets of52 x 2s. Note that the empty set {<f>} may

beinSW. Given T^t+1\ we compute «S(*+1) as follows. 5<t+1)(Zp) = lifandonlyifS^Zp) =1
or there exists Zp e £<<>, u€ bM, and v € B'vl such that T('+1)(Zp, u, v, Zp) = 1.

Let If be the smallest positive integer such that 5^(Zp) = 5^_,)(Zp). Such K always
exists since the numberof the elements ofthe set £(') isnot decreasing during the computation and

the number of subsets of 52 x 2s is finite. Let S =5^ u {</>}.

LetT: Sx B^ x B^ xS -• Bbe arelation such that T(Zp, u, v, Z„) = 1ifand only
if

(1) Zp = Z„ = {<£}or

(2) T<*)(Zp,W,t;,Zn) = l.

The resulting PNDFSM is defined as a 5-tuple T = (U,V,S,T,I,r), where Zr =

{(r2> {r})}. Each state represents a subset of Si x2s. If M is a DFSM, a state is a subset

of Si x S.

Figure 7.5: E-machine for M2 and M of previous example.

If theglobal inputs X drive directly Mi, then each state ofthePNDFSM corresponds to a

single pair fa, s*) € Si x 2s. Aslightly modified version ofthe previous fixed point computation
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r/undsmetrar^tionrelationT^+^fZpjXttjV.Zn) = 1. In this case itisexpected that the PNDFSM
has asmaller numberof states than when theglobal inputs X are notavailable directly to Mi.

It hasbeenproved formally in [83] that a behavior implementable at Mi is permissible

if and only if thebehavior is contained in thePNDFSM obtained by the fixed point computation

presented in this section.

It is obvious by construction that a behavior implementable at Mi contained in the

PNDFSMispermissible. Itislessstraightforwardtoshowthe converse, i.e., that for each permissible

machine Mi, there exists an equivalent machine contained inthe E-machine. The latter is proved

by using a previous result stating that for each implementable machine Mi there is an equivalent

prime machine. Thenthebulk of the proofis to show that such prime machine is contained in the

PNDFSM builtby the fixed pointcomputation.

Since the PNDFSM is obtained by a constructive procedure, one can conclude that if a

DFSM is implementable at Mi, thenit is permissible if and onlyif there is an equivalent DFSM

contained in the PNDFSM obtained by the fixed point computation.

Notethat theprevious results holdalso ifonereplaces implementabilitywiththecondition

that the product machine of Mi and M2 exists.

Onecould raise the question whether, in the special case of theE-machine computation,

it is possible at all that there are contained behaviors Mi such that the produa of Mi and M2

is not well-defined (or Mi is not implementable). The answer if yes, as the following case of a

non-implementable behavior contained in a E-machine shows.

Example Consider the DFSM M that has a unique state s, an input a: and an output z. Let the

output function ats be Ap(s, 0) = 0, Ap(s, 1) = 1. Consider theDFSM M2 that has aunique state

s2, inputs x,v and outputs u,z. Lettheoutput function at s2 be X2fa, 00) = 00, A2(s2,01) = 11,

A2(s2,10) = 00, A2(s2,11) = 11. Consider the behavior contained inthe E-machine represented

by theDFSM Mi thathas aunique state s\, an input uand an output v. Theoutput function ats\ is

Aifa, 0) = 1, Aifa, 1) = 0. Mi isnotimplementable and Mi x M2 isnotwell-defined either. The

reason is thattheoutput z cannot beuniquely defined for any input value x,because z is oscillating

(there isnopair u,v such that the equations are satisfied 6). Notice that the counterexample isbuilt

using thedon'tcares transitions defined by theimplication (2) when theantecedent is false.

One could show avariant of this example where z cannot beuniquely defined, because there are twopairs of stable
points u, v definingdifferent z's.
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7.2 State Minimization Problems for PNDFSM's

As asummary to thesynthesis problem in Figure 7.1, abehavior is permissible atMi if
and only if

1. Mi is behaviorallycontainedin the E-machine, and

2. the product machine Mi x M2 is well-defined.

Given DFSM's M2 and M, Watanabe [851 provided an algorithm and a program to generate the

E-machine, which isaPNDFSM. Assumingthatwehave an E-machine, weaddress intheremaining

sections inthis chapter the following problems of selecting onebehavior for implementation:

• PI: Find a minimum behavior that is contained in the E-machine

• P2: Find a Moore behavior that is contained in the E-machine

• P3: Fmd a minimum Moore behavior that is contained in the E-machine

• P4: Fmd a well-defined behavior that is contained in the E-machine

• P5: Find a minimum well-defined behavior that is contained in the E-machine

In Figure 7.1, if M2 isaMoore machine 7, we can choose any behavior at Mi, e.g., one
withtheminimum numberof states, fiom theE-machine. Mi x M2 isguaranteed tobewell-defined

because of theexistence of unique (u, v) pairs. As aresult, problem PI can besolved exactly by

ourimplicit stateminimizationalgorithm forPNDFSM's as described in Section6.3.

Note that problems P2 and P3 of selecting Moore behavior are easier to solve than

problems P4 and P5 of selecting well-defined behavior. One reason is that when selecting awell-

defined Mi, wemust check against the given M2, whereas for solving P2 and P3, we can ignore

M2. But algorithms for P4 and P5 can give better solutions than those for P2 and P3 respectively.

We are not going to consider here the problem of finding an implementable behavior out of the

E-machine because it cannotgive a bettersolution than P4 or P5, andit is not obvious that it can

lead to a simpler algorithm.

As compared with PI, the problems P2 to P5, which we shall address, have the extra

constraint that Mi should be either Moore or well-defined whenconnected to M2. As we are still

exploring behaviors contained inaPNDFSM (i.e., E-machine), the theory onclosed covers leading

7Again weonly need Mz tobeMoore inv.
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up to Theorem 2.20is stillvalid for these problems. ButTheorem 2.17 cannot be applied because

we cannotrestrictour attentiononly to minimum closedcovers. Here we are interested in allclosed

covers that satisfy the Moore or well-definedness propeity. One consequence is that compatible

dominance cannot be used forprimecompatible generation, nortable columndominance. Another

consequence is thata selected compatible maybemapped intomore than onestate in an optimum

solution.

There are two approaches thatwe can useto handle thisadded constraint. All algorithms

first generate the set of compatibles using the implicitmethod as described in Section 6.4.1 and

subsequently solveabinate covering problem. Theydiffer onhowthetable is setup,and also ifthe

classical branch andbound algorithm needs to be modified.

One approach proposed in [831 to solve P3 and P5 is by expanding on the number of

table columns so that the problems can becast exactly as a binate covering problem. For problem

P3, each column corresponds to a pair (c, v) where c is acompatible and t; is an output minterm.

For problem P5, each column corresponds to a pair (c, f) where c is a compatible and / is an

output function. Using these pairs as columns, the Moore and well-definedness conditions can be

expressed asbinate clauses. Along with the binate closure clauses and the unate covering clauses,

a classical branch and bound algorithm for binate covering can explore solutions that satisfy all

conditions simultaneously. Such an implicitalgorithm for P3 is presented in Section 7.3. The

disadvantage of thisapproach is that thewidth of table islarger than necessary. Wewillshow inany

minimumsolution to P3,no two selected columns (corresponding tostates inaminimizedmachine)

will have the same compatible c associated to two different output v parts. For problem P5, it is

highly unlikely thata practical (explicit orimplicit) algorithm can represent and manipulate tables

whose columns are labeled by (c, /) pairs because there is a huge number of such pairs and it is

difficult to enumerate the functions /.

Alternatively, we propose to useasmanycolumns ascompatibles forP2and P3. And we

useatmost|52| copies ofeach compatible as columns for solving problems P4and P5. Furthermore,

we shall argue that only a subset of these columns which satisfied the Moore or well-definedness

conditions, called the pruned set, needs to be considered for a solution, lb find a solution in P2

orP4,we do notneedto solveabinate table, butcanalways find asolution by asingle traversal of

the transition graphof the power machine Mpower as defined in Section 2.8. lb find a minimum

solution forP3orP5,we first form abinatetable thatrepresents thecovering and closure conditions

only. Once an intermediatesolution (a closed cover)to this binatetable is found, we check further

to see if it also satisfies the Moore or well-definedness conditions. If so, we have found a true
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solution which maystillbenon-optimum. Then wecan continue ourbranch and bound procedure

to search for the globally minimum solution.

As a summary ofoursecond approach, the following outlines atypical algorithm:

• First generate a pruned subsetofcompatibles

• For P2 or P4, to find a Moore/well-defined contained behavior.

1. ifno prunedcompatiblecovers a resetstate,no containedbehaviors is Moore

2. else any closure under Tpower from a pruned compatible containing a reset state is a

solution

• For P3 or P5, to find a minimum-state Moore/well-defined contained behavior:

1. form abinate table from covering andclosureconditions

2. apply table reductions butnotthecolumn dominance norcollapse columns rules

3. if table reduced to a cyclic core, select a column, and branch to the two subproblems

recursively

4. else table reduced to nothing (no cyclic core)

(a) check if at least one reduced machine represented by the selected closedcoveris

Moore/well-definedwith respect to M2

(b) if so, a solution hasbeen found, setupper bound; continueanother branch

(c) else, no solution has been found; continue another branch

Sections 7.4and 7.5willdescribe indetail thisapproach of finding Moore and well-defined behavior.

In each section, a subsection will be devoted to each of these three subtasks.

Note thatthe aboveprocedure forP3 and P5is less efficientthanthe classical branch and

bound algorithm for PI because (1) wecannot perform dominance between compatibles (therefore

wecannot compute prime compatibles norcolumn dominance), (2) it maytakelonger to find areal

solution as some solutions to the binate table do not satisfy the required behavior, (3) the lower

bound is still valid butis relatively weaker. But this method should bemore practical than theones

proposed by Watanabe because we have much smaller tables to be covered.
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73 StateMinimization ofPNDFSM's for Moore Behavior: 1stApproach

Watanabe defines eachcompatibletobeapair(q, v)where qrepresents asetofcompatible

states, andv anoutput minterm. Thestate minimization algorithm presented in thissection is joint

work with Watanabe. Whenever a compatible is selected, we have chosen a set of mergeable

states aswell as anoutput minterm associated with their outgoing transitions. This more complex

notionof compatibles leadsto simplerbinatecovering. In thenextsection, we shallshow that the

compatible can be defined withoutassociating anoutputminterm withit

13.1 Implicit Compatible Generation

Balarin etal. in [2] observed thefollowing fact thatimproves theefficiency ofcompatible

generation - a statethatcannot produce a same output forallinputs isnotinvolved in any compatible

in any reduced Moore machine. As a result, we can simply delete such states from the original

machine along withall transitions leading to suchpruned states, before wegenerate compatibles.

The set of compatibles, i.e., (q, v) pairs, is computed using the following fixed point

computation:

Cbfa.v) = 1

Ck+i (q, v) = Vu 3q' [(3v' Ck(q', v')) •Tdet(u, q, q', v)]

where Tdet isthe transition relation over subsets ofstates, as computed inSection 6.2.1.

First we assume that every pair (q, v),where qis anystateset and t; is anyminteim, is a

candidate compatible and soit is in Co. After thefirst iteration, C\(q, v)captures allthestate setsq

thatareoutput compatibles; eachstatewhich canproduce thesame output minterm v forall inputs.

During the fc-th iteration, (q, v) willbe in C*+i if andonly if on output v, for every inputu, there

exists a nextstate set a* € C* from set q. The iteration canterminate when Ck+i = Ck and then

thesetof compatibles is given by C(q,v) = Ck(q, v).

132 Implicit Covering Table Generation

We want to construct the set of column labels Col and the set of row labels Row in a

format usable by our specialized binate solver as presented in Section 5.7. Using our terminology

in Chapter 5, columns arelabeled byvariables p and rows bypairofvariables (c,d). Thenumbers

of Boolean variables used forp, c anddare thesame. Attheintersection of row (c,d)and column
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p, tiietable entry is a 1if and onlyif p D d, and thetable entry is a0 if and onlyif p = c. As any

entrycannotbe both 0 and 1 simultaneously, we disallow the casecD d.

Each column p in ourtable is acompatible (i.e., a pair of (q, v)).

Col(qv) = C(q,v).^(q)

Eachrow label consists of two parts c and d. lb matchthe width of p, the row label is

defined so that c = (q, v) and d = (r,w) where q and r represent positional-sets of states, and v

and w represent output minterms. None of theclauses involves the w variables sotheyare always

assigned theempty set0(w). Rowunate represents the unate rows corresponding to the covering

conditions of thereset states. Withthe following definition, wehave a 1-entry ifand onlyifthestate

setpart qin thecolumn label (q, v) contains areset state r, i.e. q D r and reset.states(r) = 1.

Rowunate(qv,rw) = 0(g) •0(v) •resetstate(r) •0(w)

Rowbinate represents the binate rows corresponding to the closure conditions. In par

ticular, (q, v) mustbe a compatible (C(q, v) = 1), and w mustbe a state set in a compatible

(3w C(r, w)),and they are inthe Rowbinate(qv, rw) relation only if r is the setof nextstates of q
under output minterm v (3u [Tdet(u, q, r,v)]).

Rowbinate(qv, rw) = [3w Tdet(u, q, r, v)] •C(q, v) •[3w C(r, w)] •0(w)

Finally wecollect all these clauses as the setof Row labels, and make sure that c 2 d.

Row(qv, rw) = [Rowunate(qv, rw) + Rowbinate(qv, rw)] • (qv 2 rw)

Afterthe implicit table is generated, ourspecialized binate table solver (for ISFSM mimmization)

is called for implicit exactbinate covering. A first solution from the binate solveris a solution to

P2whereas theminimum solution of binate covering corresponds to an optimum solution to P3.

7.4 State Minimization of PNDFSM's for Moore Behavior: 2nd Ap

proach

State minimization algorithms assumes that atleast one mimmum machine corresponds

to a minimum closed cover of compatibles, in the classical sense. This assumption is true for

the state minimization of ISFSM's and PNDFSM's. This assumption cannot be true for the state
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minimizationproblem ofgeneral non-deterministic FSM, becauseeach state of a reduced machine

corresponds instead to a generalized compatible.

The above assumption is still true for state minimizationofPNDFSM's for Moore behav

ior. For the sake of contradiction, assume that there are two distinct states in a reduced machine

which corresponds to onecompatible state set And thestates cannot bemerged because they have

different output functions. If wereplace onebytheother and remove compatibles thatbecome un

reachable, the remaining setof compatibles is stilla closed cover, andalsoit is Moore. Furthermore,

it corresponds to a solution witha smaller cardinality, thus contradicting the assumption. So if a

solution exists forproblems P2 and P3,there mustbea reduced machine which states corresponds

to distinct compatible state sets.

A similarconceptwasmentioned by Watanabe in the secondhalf of Section5.4.3in [83]

buthe didn'tcontinue to give an algorithm after noting that theproblem reduces to a 0-1 integer

non-linear programming problem.

7.4.1 Moore Compatible Generation

lb explore behaviors that are behaviorally contained in a PNDFSM M, Theorem 2.20

shows that we can construct its power machine Mpower and explore DFSM's which are struc

turally contained in the power machine whose state space is restricted to the compatibles (i.e.,

Mvower\compatihlea). Here wecan confine ourattention only to thesubset of compatibles that can

produce Moore behaviors. Thispruned setof compatibles is called theM-compatibles.

Definition 7.7 Aset c ofstates is an M-compatible if there exists anoutput v such thatfor each
input u

1. each state in c hasa transition under input uand output v,and

2. from the set c ofstates, the setd of next states under u and v isalsoanM-compatible.

Theabove definition of M-compatibles is different fiom thatof theclassical compatibles inTheo

rem 6.3 in that the order ofquantificationhere is 3o Vibut Vi3o in Theorem 6.3. Note that 3 and V

are not commutable,and the formerdefinitionexpresses a strongerconditionthan the latter,which

accounts precisely for the Moore condition at c
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Implicit Generation

Theorem 7.6 The set C ofM-compatibles of a PNDFSM canbe computed bythefollowingfixed

point computation:

• Initially assume all subsets ofstates tobeM-compatible: Cb(c) = 1,

• By Definition 7.7, Ck+i(c) = 3v Vtt Be* [Ck(d) •Tdet(u, c,cf, v)]

The iteration can terminate when Cj+i = Cjand the setofM-compatibles is C(c) = Cj(c).

Initially, all subsets of states are assumed to be M-compatibles, Co(c). On the Jb-th

iteration, according to Definition 7.7, weconsider a set c to be anM-compatible if andonlyif there

is anoutput v suchthatforevery inputu, c cantransit to a Ck M-compatible underu and v.

Note that Balarin's method [2] of trimming the state space to Moore states can also be

applied here, but it willgenerate more compatibles thanour set of M-compatibles.

7.42 Selecting a Moore Contained Behavior

In this subsection, we consider the problem of finding a Moorebehavior that is contained

in the E-machine while we will find the exaa state-minimum Moore solution in the next subsection.

Definition 7.8 AsetK ofM-compatibles covers the reset state(s) ifat least one M-compatible in
K contains a reset state.

Definition 7.9 AsetK ofM-compatibles isclosed ifforeach M-compatible c € K,foreach input

u, there exists an output v such that the set of next statesfrom c under u andv is contained inan

M-compatible d € K. i.e., if

Vc {K(c) =» Vw 3v3d [K(d) •rpou,er (u, c,d, v)]} = 1

whereT*ower is definedin Section2.8.

Definition 7.10 Aset K ofM-compatibles is Moore closed 8 iffor each M-compatible c € K,
there exists an output v such thatfor each input u, the set of next statesfrom c under u andv is

contained inan M-compatible d e K. i.e„ if

Vc {K(c) =* 3vV« 3c' [K(d) •Tpower (u, c,d, v)]} = 1

8A Moore closed set isrepresented byaMoore DFSM.
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Given a set of M-compatibles, the closure condition (Definition 7.9) is strictly weaker
than theMoore closure condition (Definition 7.10) (because 3v Vu F =» Vu 3v F), and thus it is

sufficient to test the latter in order to guarantee the former.

Definition 7.11 AsetK ofM-compatibles is Moore closed cover ifK covers a reset state and is
Moore closed.

The power machine Mvower withits state pace restricted to the M-compatibles (pruned

setof compatibles) isdenoted by Mpower \m-compatible The following theorem shows that wecan

find aMoore behavior by atraversal of Tpoxver\M-comPatibiea'

Theorem 7.7 IfnoM-compatible contains a reset state, the E-machine doesnotcontain anyMoore

behavior.

Otherwise, the states marked by thefollowing algorithm form a Moore closed cover

contained in the E-machine:

• mark an M-compatible thatcontainsa resetstate

• for each unprocessed marked state

- choosean output minterm v arbitrarily such thatfor every input v, there is a transition

under (u,v) in Tr°wer\M-compatibles

- mark every state in its corresponding next stateset

Each minimum Moore closedcover canbe enumerated bythealgorithm byappropriate

choices of the initialM-compatible andthe output minterms v when processing each marked state.

Proof: If no M-compatible contains the reset state(s), there is no way we can construct a Moore

closed cover.

Provided at least one M-compatible contains a reset state, the algorithm will always

terminate because it processes each state atmost once, and for each state, we have at least one valid

choiceof v becausethe statecorresponds to anM-compatible. The set of markedstates is a cover

because the initial M-compatible marked contains a reset state. The set is alsoMoore closed by

construction.

Givenanyminimum Mooreclosedcover, theabove algorithm canfind it withthe following

execution steps to obtain the corresponding set of marked states. First, mark any M-compatible
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that contains a reset state. Fbr each markedstate, chooseoutput v such that the correspondingnext

state set is contained in the givenMoore closed cover. By definition,this can always be done. This

algorithm will terminate with the mimmum Moore closed cover. •

A greedyheuristiccan be appliedto the abovealgorithmto finda minimalMoore closed

coveras follows: pickan initialM-compatible withminimum cardinality, andforeachunprocessed

marked state, choose the output minterm that results in a smallest number of next states that have

not been marked so far.

7.4.3 Selecting a Minimum Moore Contained Behavior

In this subsection, we want to find the exact minimum-state Moore behavior that is

contained in a given PNDFSM. We propose an implicit state minimization algorithm that first

generates the M-compatibles, and then selects an optimum subset of M-compatibles using an

augmented binate table covering procedure. The classical closure condition in Definition 7.9 can

be expressed as binate clauses, but the Moore-closure condition in Definition 7.10 cannot.

/o

•/i

Figure7.6: A counterexample.

Example Figure 7.6 isacounter example, showing that aclosed cover ofMoore compatibles does

notalways correspond to a Moore DFSM. There are four M-compatibles: cO, cl, c2 and c3. The

selection {cO, cl, c3} isclosed and covers the reset state sO. Butthe corresponding reduced machine
isnotaMoore DFSM, because from cl, itoutputs 0oninput 1but outputs 1oninput 0. As aresult,

wemust check Definition 7.10 oneach candidate solution retumed byastandard branch and bound

algorithm for binate covering. Note that {cO, cl, c2} isaclosed cover ofMoore compatibles which
corresponds to a Moore DFSM.
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Note that theheuristic algorithm presented in thelastsubsection gives a Moore DFSM

because ateachstep, Moore closure is always maintained ata partial solution.

Implicit Selectionof M-Compatibles

Theselectionproblem ofaminimum subsetofM-compatibleswhich satisfies thecovering

andMooreclosure condition cannot be solvedas a binate covering problem, as notedin [83]. This

is becausethe form of each Mooreconditionrequires a disjunction of conjunctions of disjunctions

of literals (i.e.,M-compatibles) whicharises from the quantifications 3v Vu3d in Definition 7.10.

However, the problem can be solved by augmenting the classical branch and bound

procedure for binate covering with Moore checks. Once a solution (closed cover in the classical

sense) is found, the M-compatible selection is tested to see if it represents a Moore DFSM by the

formula in Definition7.10. The test can be performedimplicit using a few BDD operations. If so,

we have actuallyfound a Moore solutionto our problem. Onlythen we shalluse the Moore-solution

as a new upper bound for the continuing search of a better solution.

Note that this augmented branch and bound procedure is correct only ifwe do not perform

column dominance nor column label collapsing (nor prime compatible generation). This is because

even if a compatible d dominates anothercompatible c in the classical sense,we cannotdisregard

the compatible c. It is possible that there is a minimum Moore solution containing compatible c,

but by replacing c with d, the modified selectionceasedto be Moore-closed (thoughwe knowit is

still a closed cover).

7.5 State Minimization of PNDFSM's for Well-defined Behavior

In this section, we consider the problem of state minimization of a PNDFSM Mi for

some required behavior (e.g., well-defined behavior) when connected to another machine M%.

The unstated assumption of state minimization, each state in tiie reduced machine corresponds

to one compatible set of states, is not true in general here. Classical compatible selection is no

longer sufficientbecause a single compatible may correspond to more than one state in the reduced

machine. Different states in M% may require the compatiblein Mi to be associated with different

outputfunctions. Watanabe etal. proposedweselecta setofpairs (c, f) wherec is a compatible and

/ is an output function associated with that compatible. By using as many table columns as there

are such pairs, his method gives the binate solver the full flexibility of choosing combinations of



7.5. STATE MINMIZAnON OFPNDFSM'S FOR WELL-DEFINED BEHAVIOR 195

compatiblesand output functions,so that a selectionofcompatiblesguaranteesa closedcover while

satisfyingsome propeity associatedwithits outputfunctions. Becauseit is difficultto representthe

/ partof the column pair (c, /), Watanabe's proposal is never seenas a practical algorithm.

7.5.1 Well-defined Pairs

Wepropose an alternative method which usespairs (c,52) as columns in our binatetable,

where 82 € S2 is a state in Mi9. By representing pairs ofthe form (c, S2) instead of (c, /), we
haveeffectively reduced the sizeof the binatetable to be solved. Tbexplorewell-defined behaviors

contained in a PNDFSM, wemustfirst justifythatit is sufficient to consideronlysuch (c,$2) pairs.

In particular, we show that for this problem, there is a one-to-one correspondence between each

(c, S2) pair and a potentialstate in a reduced DFSM.

Given a PNDFSM M, Theorem 2.20 shows that each behaviorally contained DFSM

corresponds to a closed set of compatibles. This propeity is still true for the E-machine M which

captures allpermissible behaviors, in which wearetopickonewhich forms a well-defined product

machine with Mi. Though it is sufficient to consider classical compatibles (for a PNDFSM), a

compatible may be required (by well-definedness with M2) to carry different conflicting output

functions (and differentsets of transitions) when it is associated with differentstates in M%. As a

result, this compatible would correspond to more than one state in the reduced machine Mi. Thus

we associate each compatible c witha state 52 of M2 suchthat a different outputfunction (and a

different setof transitions) canbe associated to each such (c,s2) pair. With a similar motivation as

Watanabe's, thiscolumnrepresentation gives thebinatesolverthe full flexibility to selecta solution

to our problem.

Now we derive a pruned set of such pairs, each of which may correspond to a state in

a reduced machine Mi, and when composed withDFSM Mi will produce a well-defined product

with DFSM Mi. By Theorem 2.20, each DFSM representing a contained behavior within M

is structurally contained in Mpower. Taking account of well-defined composition, each DFSM

representing a well-defined contained behavior within M is structurally contained in Mp defined

as follows. The STG of Mp is an unrolling of the STG of Mpower as many times as the number

states in M2. More formally, Mp = (C x 52,U, V, Tp, (rc, r2)> is defined where C is the set of

compatibles, rc is a compatible containing a reset state, and Tp(u, (c,s2), (d,s2), v) = 1 if and

only if Tpower (u,c,d,v) = l. Note that Mp still captures thesame setof permissible behavior as

'Later, we will show that we actually use asubset of (c, 52) pairs. Pruning is applied in two steps, basing on the
reachability andwell-definednessproperties.
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inthePNDFSM M (E-machine). The unrolled STG Tp isnotinany way related to T2, yet

It is obvious that we onlyneed toconsider (c, 82) pairs which are reachable fiom a reset

pair (rc, n) in Mp. Let Sp denote the set ofsuch reachable pairs. Mp will be used todenote the
machine derived fiom Mp with itsstate space restricted to Sp.

We can prune the set of (c,82) pairs further by considering onlythosethatcan result in

well-defined behaviors. Theorem 7.2 gave a efficient test for well-defined product between two

DFSM's. Here weaddress amore difficult problem: Given aDFSM M2 and aPNDFSM Mp, we

wanttochecktheexistence ofaDFSM Mi whichisbehaviorally contained in M suchthatMi x M2

is well-defined.

Theorem 7.8 A DFSM Mi, structurally contained in a PNDFSM Mp derivedfrom anE-machine,

is well-defined with respectto Mi if andonlyif

V(si, S2) reachable from (n, ri) Vz 3z 3s\4 3uvTi(u, si, s\, v) •Ti(xv, S2,4» «z)

Proof: By Theorem 7.2, the first part ofthe statement (thepart in English) is trueif and only if

V(«i, S2) reachable from (ri,ri) Vs \z BsJsJ 3uv Ti(u,si,s\, v) •T2(a;u, S2, s^i wz).

Considering the additional fact that Mi is behaviorally contained in the E-machine, for

each present statepair(51,52) and foreach inputx, there canbe nomorethanone z valuesuchthat

above formula is true. So we can safely replace the uniquequantification over z by anexistential

quantification. •

Instead of checking one behavior (i.e., one DFSM) at a time for well-definedness, we

would prefer to check the E-machine as a whole, and find out if there is a DFSM behaviorally

contained in it that is well-defined.

Theorem 13 If there exists a DFSM Mi structurally contained inPNDFSM Mp which is well-

defined with respect to Mi, then

V(si, S2) € Sp Va: 3z 3c'4 3uvTp(u, (c, S2), (d, sj), v) •Ti(xv, S2, sj, «*)>

i.e.,

V(si,«2) € SpVx3z3ds23uvTpower(u,c,d,v)'T2(xv,S2,S2,uz),

where Spdenotes theset ofreachable statepairs.



7.5. STATEMINIMIZATION OF PNDFSM'S FOR WELL-DEFINED BEHAVIOR 197

If the previous test fails, there is no DFSM associated with Sp that is contained in Mp which is

well-defined with respect to Mi. Given this well-definedness test, we defined our pruned set of

pairsas well-defined pairsas follows.

Definition7.12 Given a PNDFSM M anda DFSM M2,

a state setc inM and a state S2 inMiform a well-defined pair (c,si) if

1. there exists afunction /(C|fl2): U-> Vsuch that

2. Vs 3uz 3well-definedpair (d, s'2) T^(W,c, d,f{Ctai)(u)). T2(xf(Ct82)(u), S2,4, uz).

Unfortunately, the above test cannot be trivially evaluated as a prepositional formula. It teststhe

existence of a function that makes a formula true. We have to enumerate different functions and

evaluate the formula foreach functional assignment.

Theorem 7.10 The setofwell-definedpairs P(c,S2) can be computed by thefollowingfixedpoint
computation:

• Pb(c, S2) = 1 ifand only ifcisa compatible ofM and s2is a state in Mi, and the pair is
reachablefrom reset states, i.e., (c,52) € Sp

• Pk+i (c, S2) = 1ifand only ifthere exists afunction /(c>a2): U-> Vsuch that

Vs 3uz 3(d, s2) € Pk Tp™r(u,c,d, f(CtS2)(u)) •T2(xf{cM(u), s2, s2, uz).

The iteration can terminate when for some j, Pj+i = Pj and the set of well-defined pairs is
P(c,S2) = Pj(c,s2).

For convergence to P, iterative formula testing isnecessary because it is possible that the

test first passes onapair (c, S2) and then one ofits implied next state set (d, s2) isremoved during

another iteration. As aresult thepair (c, s2) willnolonger satisfy thetest So it should be removed

also.

Ateach step of theabove fixed point iteration, for each (c, 52) € P*, wehave toenumerate

each function /(ca2) and test if it satisfies the logic foimula. It seems to be computationally

prohibitive because there can bemany such functions possible. But the actual number of functions

needed to be checked should be much smaller than expected. This is because for mostvalues of

u> f(c,»2)(u)is constrained to take exactly one v value. As a result, we only have to enumerate
functions by supplying different output values v for asmall number of input values u.
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7.5.2 Selecting a Well-defined Contained Behavior

After generating the set of well-defined pairs, we explore well-defined behaviors by

finding DFSM's structurally contained in Mp. Given Mp, the following procedure will either (a)

find a DFSM M\ structurally contained in Mp which is well-defined with respect to M2, or (b)

conclude thatnoDFSM structurally contained in Mp is well-defined with respect to M2.

If the reset state (rc, r2) has been deleted, then no DFSM structurally contained in the

original Mp is well-defined with respectto M2.

Else any DFSM stracturally contained inthereduced Mp with reset state (rc, r2) is well-

defined with respect to M2 (and stmcturally contained in the original Mp). Such a structurally

contained DFSM can always be found because (1) it has a reset state, (2) no matter which state

(c, S2) ischosen, we can always select an output function for it, and all its next states (d,sj) € P
canalso bechosen, lb find sucha DFSM Mx = (Si, U, V, 2i, (rc, r2)),wesimply startwithan Mi

having a state (rc, r2) but without any transitions; at each state (c, $2), an output function f^n)
that passes the test ischosen arbitrarily10, and the correspondingnext states reached are added toSi
while the corresponding transitions chosen areadded to T\. This iterative procedure can terminate

when nonewstates arereached/added. ThenMi is a solutiontoP4. We arenotclaiming optimality

with this method.

The above procedure is similar to the one in Section 7.4.2 for minimal Moore behavior.

A greedy strategy can alsobe applied hereto obtaina heuristicaUy minimal well-defined contained

behavior.

7J53 Selecting a Minimum Well-defined Contained Behavior

lb find a mimmum well-defined contained behavior for P5, we solve the problem by

augmenting the classical branch and bound algorithm for binate covering with well-definedness

checks. The covering and closure clauses are expressed in terms of the first part of the selected

well-defined pairs (i.e., compatibles c). A solution to this binate covering problem needs to be

checkedfor well-definedness by testing Definition 7.12. This is necessary becauseclosed cover of

well-defined pair may not corresponds to a well-defined behavior. If the binatecovering problem is

suchthat manysolutionshaveto be visitedbeforewe can conclude with an optimum one, the total

timespendfor performing thisnon-trivial well-definedness testmaybe considerable.

For minimum well-defined behavior, / cannot be arbitrarily chosen. In thiscase, backtracking is necessary, e.g.,
using branch-and-boundprocedureas in Section 7.53.
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Chapter 8

Conclusions

This dissertation has focused on the state minimization of various kinds of finite state

machines (FSM's). In particular, implicit algorithms were presented for state minimization of

ISFSM's, PNDFSM's, and a PNDFSM within a network ofFSM's.

hi Chapter 2, we first presented a completetaxonomy on different kinds of FSM's and

otherrelated concepts. This served asaunified notational framework on whichwe developed new

theories and new algorithms for state minimization. A proofof correctness wasgiven for ourstate

minimization algorithm for PNDFSM's in Chapter 6. Because an ISFSM is alsoa PNDFSM, our

corresponding minimizationalgorithm in Chapters 4 and5 is therefore proved as well.

The multi-valueddecision diagram (MDD) was introduced in Chapter 3. MDD is an

extension of BDD for representing multi-valued functions, and hasmanyuseful applications (see

[36]). lb explore sequential behaviors in anon-deterministic specification, 1-hotencoded MDD's

were used as a compact representation of sets of sets (e.g., to represent subsets of compatibles).

A suite of implicit techniques was developed for manipulating these set-theoretic objects. An

assumption wasmade thatthenumber of elements (i.e., states) is small ascompared to the number

of sets of elements (i.e., state sets). The computational time and space complexities for our

representation and manipulationofsuch setsofsetsarenotdirectly proportional totheircardinalities,

and in practice they are very efficient. The onlyexplicit dependency is on the numberof elements

(i.e., states).

An exact state minimization algorithm consists of two steps: compatible generation and

compatible selection. Chapter 4 presented an algorithm that implicitlygenerates thevarious subsets

of compatibles needed to solve exactly the state mimmization problem of ISFSM's. Compatibles,

maximal compatibles, prime compatibles and implied classes are all represented implicitly using
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1-hot encoded MDD's. If it is possible to constma these MDD's, computations on these sets of

compatibles are easy. We havedemonstrated withexperiments fiom a variety ofbenchmarks that

implicit techniques allow us to handle examples exhibiting anumber of compatibles upto 21500,

an achievement outside the scope of minimization programs based on explicit enumeration [631.

We have shown, when discussing the experiments, that ISFSM's with a very large numberof

compatiblesmay be produced asintermediate stepsoflogicsynthesis algorithms, forinstance in the

cases ofasynchronous synthesis[461, oflearning I/Osequences [23], and ofsynthesisofinteracting

FSM's [65]. This shows that the proposed approach hasnot only a theoretical interest, but also

practical relevance forcurrent logic synthesisapplications.

A fullyimplicitexactalgorithm for solvingthebinatecovering problem [68] waspresented

in Chapter 5. This is used as the final stepof an implicit exact state minimization procedure for

ISFSM's, to selectaminimum closedcoverofcompatibles. A literature survey hasbeengiven for

table reduction rules currently knownto us. A complete formulation of animplicitbinate covering

algorithm hasbeen workedout. A novelencoding scheme hasbeen proposed where abinate table

is represented by a set of row labels and a set of column labels, and as a result, individual table

entries are not represented. We also showed how table reductions and various branch-and-bound

operations canbe performed on the binate covering table implicitly. Ourimplementation includes

(1) a generic binate covering table solver, (2) a binate covering table solver which assumes each

row has at most one 0, and (3) a specializedbinatetablesolver fine-tuned for stateminimization of

ISFSM's. Resultson binatecovering werereported forourISFSM state minimization application

where tables with upto IO6 rows and columns have been solved implicitly.

hi Chapter 6, we havepresented boththeoretical and practical contributionstotheproblem

of exploring containedbehaviors and selectingone with a minimum number of states for classes

of NDFSM's. In particular, we have contributed the following: (1) A theoretical solution to the

problem of exact stateminimizationof general NDFSM's, based on the proposal of a notion of

generalized compatibles. This gives an algorithmic foundation for exploring behaviors contained

in a general NDFSM. (2) A fully implicit algorithm for exact stateminimizationof PNDFSM's.

The resultsofour implementation arereported andshownto be superiorto the explicit formulation

described in [86]. We could solve exactlyallthe problems of the benchmark used in [83] (except

one case, where a minimal solution not guaranteed to be the minimum was found). The explicit

program could complete approximately one half of the examples, and in those cases with longer

running times.

Current research in synthesisandverification requires the analysis andoptimizationofan
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FSMoperating withinanetwork ofinteracting FSM's. Chapter 7 addressed the abstracted problem

wheretwo DFSM's M\ and M2 are interconnected in a feedback composition.We first characterize

the necessary and sufficient condition when the composition M = Mi x Mi is a well-defined

FSM. Previously known conditions, suchasrequiring M\ or Mi to be Moore, or requiring Mi to

be 'implementable' as defined in [86], are sufficient conditions only. Then we considered a dual

problem of practical interest: given aDFSM Mi and aspecification M, find abehavior permissible

at Mi such that Mi x Mi is well-defined. Watanabe proved in [85] thatthe E-machine captures

the maximumset of permissible behaviors. Ourcontribution is to propose improved algorithms to

findsuch abehaviorcontainedin the E-machinewhich is either (1) Moore, or (2) well-defined with

respect to Mi. The first problemis intrinsically easieras Mi need not be considered. The second

problem requires checking the existence of well-defined behavior within a PNDFSM, which we

reduced to checking the existence of a function which makes a formula true. For future work, an

implementation is needed to showthatthis proposed methodcanbe madeefficient in practice.

lb solve each of the two problems, we proposed both a heuristic procedure to find a

minimal-state behavior and an exaa algorithm to find a minimum-state behavior. The heuristic

procedure holds the promise of being turned into an efficient computer program as future work.

It involves forming a special power machine, pruning its state space, and then finding a DFSM

structurally contained in the pruned power machine. The exact algorithm, on the other hand,

requires classical binatetablecovering, augmented with Moore/well-definedness checks.

A key concept used throughout the dissertationis that of a behavior of a DFSM, and that

an NDFSM specifies a set of behaviors. We showed that for a PNDFSM, each closed cover of

compatibles corresponds to acontained behavior, and viceversa. An immediate consequence is that

ourtwo-step procedure ofcompatible generation andcompatible selectionis a completeprocedure

forexploring all sequentialbehaviorscontainedin aPNDFSM. In the caseofstateminimization, one

wantsaminimumcardinality closed collection of compatibles. Butonecanreplace therequirement

ofminimumcardinality with anyotherdesired cost function or property (such aswell-definedness)

andobtain anew behavior selection problem. Therefore the exploration of allcontained behaviors

is akey technology for future applications in thesynthesis of sequential networks.

It is worth while to underline thatbesides the intrinsic interestofstate minimizationand its

variants for sequential synthesis, theimplicit techniques reported in thisdissertation can be applied

tootherproblemsoflogicsynthesisand combinatorialoptimization. For instance similartechniques

are usedinanimplicitalgorithm [81 ]for exactstate encoding based on generalized prime implicants

(GPI's). Also,the implicitcomputation of maximal compatibles given here can beeasily converted
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into an implicit computation of prime encoding-dichotomies (see [71]). Moreover, tiie binate

covering problem is at the coreof many CAD problems, andour general implicit binatecovering

algorithm shouldbe useful in solvinglarge binate tables forthoseapplications as well. Therefore

the computational methods described herecontribute to builda body of implicit techniques whose

scope goes much beyond a specific application.
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