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Abstract

ROBDDs have traditionally been built in a bottom-up fashion, through the recursive use of Bryant's

applyprocedure [6], or the ITE [4] procedure. With these methods, the peak memory utilization is often

larger than the final ROBDD size. Though methods like Dynamic Variable Reordering [21] have been

proposed to reduce the memory utilization, such schemes have an associated time penalty.

In this paper, we show that for a large number of applications, it is more efficient to construct the

ROBDD by a suitable combination of top-down (decomposition based) and bottom-up (composition

based) approaches. We suitably select decomposition points during the construction of the ROBDD, and

follow it by a symbolic composition to get the final ROBDD. We propose two heuristic algorithms for

decomposition. One is based on a topological analysis of a given combinational netlist, while the other is

purely functional, making no assumptions about the underlying topology of the circuit. We demonstrate

the utility of our scheme on the standard benchmark circuits. Our results show that for a given variable

ordering, our method usually has significantly better time as wellas memory characteristics than existing

techniques.

Our methods are easily extended to many variants of ROBDDs, and in that sense are powerful in

their scope.



1 Introduction

Reduced Ordered Binary Decision Diagrams (ROBDDs) [6] are frequently used in various CAD problems

such us synthesis, digital-system verification, testing etc. However, the construction of ROBDDs is often

a time and memory consuming process. Accordingly, techniques that can help in a quicker construction

of ROBDDs (or other efficiently manipulable BDD schemes like FDDs [16], OKFDDs [9]) are of much

practical significance. In the traditional bottom-up {apply based) scheme of constructing ROBDDs, the

peak intermediate memory requirement far exceeds the final (canonical) representation size of the given

function, as is schematically indicated in figure 1. Although we are interested in obtaining the BDD of

the output, the intermediate peak requirements often limit our ability to construct ROBDDs. This peak

memory requirement places a limit on the complexity of circuits that can be processed using ROBDDs, and

also usually dictates the time required for ROBDD construction.

CIRCUIT LEVELS

Figure 1: Example of ROBDD Resources Required Throughout a Circuit.

Even though the final ROBDD size is an invariant under a given variable ordering, the theoretical

bounds on intermediate peak space requirements are far weaker. Accordingly, it would be very appealing

to construct ROBDDs in a fashion which reduces the intermediate peak memory requirements. This has an

attendant benefit of a reduction in the time required to construct the ROBDD. In our schemes, we introduce

suitable decomposition points, andperform all computations onthedecomposed graphs, to get a decomposed

representation of the output function. Then, we compose this function, to get the canonical ROBDD for

the output. In this manner, we avoid the intermediate memory explosion, since the graphs manipulated are



smaller. We show, by various experiments, that the peak memory and temporal behavior of our scheme is

usually better than that of a apply based scheme, for a given variable ordering.

A decomposition based approach is central to almost every technique that uses non-conventional BDD

techniques for purpose of verification. This includes gBDDs[2], XBDDs [14], IBDDs [12] and probabilistic

verification as in [13]. Research on decomposition is likely to impact these areas significantly. In these

techniques, one is required to find decompositions which make the problem of ROBDD construction compu

tationally less expensive than the bottom-up approach. Only when this can be reasonably assured can these

alternate techniques offer an improvement over ROBDD-based symbolic calculations.

We propose two separate methods to combine the top-down and bottom-up approaches. In the first, we

conduct a topological analysis to determine if an internal region of the given circuit can be classified as a

circuit waist. A waist is comprised of circuit nodes at a given level of the circuit, such that the number of

nodes is a minimum. A local alteration of the waist is done, until the ROBDD of the output in terms of

the altered waist is smaller than that of other local alterations. At this point, the ROBDDs of the (best

altered) waist nodes are composed intothe ROBDD oftheoutput, resulting in the final monolithic ROBDD.

In the second scheme, we consider functional decomposition methods. Here, a bottom-up construction of

the ROBDD is attempted; decomposition points are introduced when the ROBDD and / or the ROBDD

manager grows beyond a predetermined threshold. Finally, the decomposed variables are composed back in

to the output ROBDD, to get the monolithic ROBDD ofthe output. This approach makes no assumptions

about the underlying topology of the circuit. There is no physical correspondence between decomposition

points and the nodes in the circuit. As such, this scheme can be used in a general ROBDD package in a

manner transparent to the user.

We show that ourschemes usually have a smaller peak memory requirement than the apply based scheme.

For this reason, we are often able to build ROBDDs that could not be built by existing schemes, since the

peak memory requirement was larger than could be handled by existing ROBDD packages, even when the

final ROBDD size was reasonable for the ROBDD package. Keeping the peak memory requirements low has

the added advantage that the ROBDD is built in less time, since operations on large ROBDDs are avoided.

Further, our scheme can take advantage of a good static as well as dynamic ordering, as is demonstrated in



the results. So, for a given variable ordering, our scheme usually builds the resulting ROBDD in less time,

with reduced peak memory requirements.

In Section 3, we discuss the basic ideas of decomposition for efficient ROBDD composition, and in

Section 4 we discuss the problem of computing efficient decompositions. We describe our decomposition

approach in Section 5, and discuss the results obtained in Section 6. We conclude with Section 7 where we

discuss the possible applications for our techniques, and give directions for future research in this area.

2 Previous Work

Though BDDs have been researched for about four decades [17, 1], they found widespread use only after

Bryant [6] showed that such graphs, under somerestrictions, can be easily manipulated. The tworestrictions

imposed are that the graph is reduced (i.e. no two nodes have identical subgraphs), and that a total ordering

ofthe variables is enforced. The resulting BDD is called a Reduced Ordered BDD (ROBDD). The (critical)

symbolic manipulation procedures presented by Bryant were apply and compose; these techniques combine

two identically ordered ROBDDs. Apply allows ROBDDs to be combined under some Boolean operation,

and compose allows the composition of one ROBDD into another. Both algorithms require the ROBDD

variables to have an identical order.

The use of compose for the purpose of constructing ROBDDsrequires the introduction of suitable decom

position points in a function. It can also be argued that to some extent, the heuristic use of decomposition

attracted lesser attention in the past because another ROBDD problem, that of computing a good variable

ordering, was perceived to be more important. [21] contains an excellent bibliography of many such ordering

studies. Correspondingly, composition-based procedures have not been adequately studied.

ROBDDs are typically constructed using some variant of Bryant's apply procedure [6]; the ROBDD for

a gate g is synthesized by a symbolic manipulation of the ROBDDs of its inputs, basedon the functionality

ofg. The gatesof the circuit are processed in a depth-first manner until the ROBDDs of the desired output

gate(s) are constructed.

However, this exclusively bottom-up approach does not necessarily lead to the most computationally



efficient technique for constructing ROBDDs. Such a technique is oblivious to the peculiarities of a given

function, such as various simplifications that may arise later in the ROBDD construction process. As an

extreme example, if the output function can easily be checked to be unsatisfiable by analysis of the later

portion of the circuit, any construction of the ROBDDs of the earlier portions is unnecessary. In this

contrived example, we could have an exponential reduction in the total resources required, if we used a

composition-based, top-down method to construct the ROBDDs. (On the other hand, one can as easily

construct examples where a top-down scheme to construct the ROBDDs can spend exponentially more

resources in constructing the target ROBDD over the apply-based bottom-upscheme).

Further, an exclusively bottom-up approach is inadequate in accounting for regularities in the circuit

which can be used to significantly reduce the ROBDD construction time. This is largely the result of

Boolean "absorption" and "cancellation" that can potentially take place at fanout reconvergent regions.

There has been some prior research on ROBDD construction using decomposition. Fujita et. al. briefly

discussed a few interesting decomposition experiments in [10] while computing efficient variable orders to

compute ROBDDs for a given circuit. However, the results obtained by decomposition were not always

encouraging; further no intuitively sound decomposition procedure was outlined.

Berman [3] looked into the problem of circuit decomposition and found a relation between the register

allocation problem and efficient circuit decomposition. For a bounded-width circuit of n variables, that is,

a circuit whose elements can be linearly ordered such that any cut crosses at most w wires, it was shown

that there exists a variable order such that the size of the ROBDD will be bounded by n * 2W. While the

decomposition problem was conceptually well analyzed, efficient and well-tested procedures to find good

decompositions were not provided. McMillan [20] generalized the results ofBerman and proved that if wj

bounds the number of cut wires in the forward direction, and wr bounds the number of cut wires in the

reverse direction, then the size of the resulting ROBDDs is bounded by nV*2""' *

Jain et. al., in [13], discussed the possibility of obtaining decompositions for the efficient "hashing" of

Boolean circuits. However no method was described to obtain such decompositions. Both McMillan [20]

1In arelated discussion, McMillan also proved thatfor bounded-width tree circuits, thesize oftheROBDD will bepolynomi
al^ bounded (in the numberof gates) if the circuit elements canbe arranged such that width of the linear order is logarithmic
in number of gates.



and Jain [13] discussed a new composition procedure based on extracting variables sequentially from a given

decomposed Boolean expression. Despite the apparent usefulness of these techniques, no results on any

benchmark circuits have been shown so far.

Experiments on using auxiliary (decomposed) variables were reported in [8] for creating more efficient

symbolic state-space traversal techniques. General decomposition techniques, however, were not reported.

The benchmarks used sequential circuits withdata paths having a very regular structure.

3 Preliminaries

In this section we establish the terminology for the rest of this paper. In the sequel, we restrict the discussion

to Reduced Ordered Binary Decision Diagrams (OBDDs) alone. However, the discussion is equally well

applicable to othermanipulable graph based representation schemes which are an improvement over ROBDDs

[18, 15, 5] or fundamentally different representation methodologies such as FDDs [16], OKFDDs [9], Typed-

Free BDDs [11] etc. (For details on OBDDs, please refer to [5, 6, 7].)

Assume we aregiven a circuit representing a boolean function F = F :Bn -* J5°, with n primary inputs

xi,..., xn, and oprimary outputs. To simplify thediscussion, we will focus ona single output G. Let Gd{$)

represent the ROBDD of G expressed in termsof a variable set tf = {fa, fa, •••, V'm}- Each fa € * has a

corresponding ROBDD, fabdd> in terms ofprimary input variables as well as (possibly) other fa € *, where

fa £ fa. Elements of \P can be ordered such that fabdd depends on fa only if i < j. These fa € * are called

Decomposition points of G. Gd(V) is the decomposed ROBDD in terms of the decomposition points.

The composition [6] of fa in Gd{$) is denoted by Gd(V).{fa <- fabdd) where Gd{V).{fa <- fabdd) =

$hdd GWj- + 1>ib<td -<2(*W For an efficient implementation of the ROBDD package, [5] is an excellent

reference.

Gd{V)tPi represents the restriction ofGd{9) at ^ = 1, and is obtained by directing all the incoming

edges to the node with variable id fa to its fa = 1 branch.

Other techniques for ROBDD composition have been proposed [20, 13]; for our purpose we will consider

the approach described above.



4 Observations on Decomposition Techniques

Cutset ¥

1

1

1

1

X
1

\ i

\ i

\ '
\ » v2

^ ©
1

1

Q
i

1 m

X
1

F

X

Figure 2: A Single Level Decomposed Circuit

As discussed in Section 2, it is easy to construct test cases where an exclusively bottom-up approach will

require exponentially lesser or greater time than an exclusively top-down approach. Suitably mixingthe two

approaches logically provides the best possibility for capturing the stage were ROBDDs start simplifying.

In deference to the intractability of such analysis problems, we note that one can work out examples where

even mixing these two techniques can require exponentially more resources than either technique used in

isolation. Thus we can at best hope to present heuristics which perform well in most cases.

4.1 Decomposition and Alternate BDD Schemes

To find a decomposition such that (under the same variable order) after composition, no more total time

and space is required over bottom-up approach, is a difficult task. This is of critical importance for the

performance of numerous non-canonical representation schemes such as gBDD [2], XBDD [14], IBDD [12]

and probabilistic analysis [13].

In any alternate representation scheme, to synthesize the graph for some Boolean operation 0, one must

repeat a procedure such as apply for the ROBDDs. Now, given graphs Gi, G2, in the worst case one must

at least match every node in the first graph with each node in the other graph. For ROBDDs this bound is

tight [6]. Hence, typically, onecan only hope for an improvement in an alternate scheme if the graphs being



manipulated are smaller. For this reason, the approach adopted by schemes such as gBDDs, XBDDs, IBDDs

and probabilistic analysis techniques for gainingadvantage over ROBDDs has typically been to decompose

the circuit; working with smaller representations, they try to create a suitable graph which can sometimes

be manipulated moreefficiently. Just as these alternateschemes are sensitive to input variable ordering, bad

decompositions can make ROBDD construction extremely inefficient.

4.2 Decomposition for ROBDDs

During a typical ROBDD synthesis procedure there is frequent functional simplification due to Boolean

Absorption: x V (x Ay) = x, and Boolean Cancellation: x Ax Ay = 0. This appears to be the heart of the

reason why decomposition techniques can be useful. In the following discussion we will consider a circuit

level representation but the principles are applicable to higher or more abstract models as well. We consider

the circuit to be levelized, where a level L at gate g denotes the length of the longest path between any

primary input and the gate g.

On a circuit without any reconvergence the size of ROBDDs must monotonically increase towards the

primary output. Such circuits can be represented by ROBDDs using polynomial resources. In a circuit,

when some signals reconverge at a gate, the input functions to the gate must have a non-null intersection of

their respective support sets. This raises the possibility that the resulting function may now be "simpler" (of

course reconvergence can also make the resulting functions much "harder"). Capturing each such instance

where the function simplifies is the task of an efficient decomposition procedure.

Asdiscussed in Section 1, the total space requirements while processing intermediateROBDDs of a given

circuit can far exceed the actual (canonical) size of the final function. Hence it is worth investigating if

the memory utilization, which dictates the time required for ROBDD construction as well, can be reduced

through decomposition techniques.

4.2.1 Boolean Absorption and Cancellation

Given two DNFexpressions ofequalsize, the greater the number ofvariables common amongdifferent terms,

the higher (on average) is the likelihood that the disjunction of two terms is simplerbecause of applications



of boolean absorption. When an internal signalfans out to a large number of gates in a circuit, and is used

as a decomposition point, this decomposition point is more likely to be present in many expressions. If \P0

and $6 are two decomposition sets discovered in the same locality of the circuit and if variables of Va have

a larger fanout, then typically |*0| < |fy,|. Hence, finding a decomposition set with a smaller cardinality

usually ensures that the decomposed variables will have a higher average fanout. We have experimentally

observed that decomposing a circuit at its waist often leads an efficient decomposition.

If there is a decomposition point which is present in many terms of a CNF expression, in both its phases,

then there is a likelihood that a large number of terms will cancel out, simplifying the function. In this

fashion, boolean cancellation also plays an important role in the selection of decomposition points.

4.2.2 Location of Waists

If a waist is very close to primary inputs or primary outputs then almost all ROBDD resources spent in

constructing Gdi the decomposed ROBDD, will be spent in either only a bottom-up or only a top-down

procedure. In this case, since the growth behavior of Gd closely mirrors that of G, any contribution of

decomposition is negated.

Hence we focus our attention on obtaining a waist in the circuit which is not located extremely close to

either ends of the circuit.

4.2.3 Choice of Decomposition

According to Bryant [6], composing ROBDD H within a ROBDD Gd can require 0(\Gd\2\H\) resources.2

Clearly, given the option of choosing to decompose a function at any one of gates H\, H2,.. •, Hi for \H\\ «

\H2\ « ... « \Hi\, we must choose to decompose at Hj (1 < j < t), if \Gdj\ = min(\Gdl |,. •., \Gd,\); where

Gdj represents the decomposed graph if we chose to decompose the function at gate Hj.

Thus, if *a and $6 have the same size and the same average fanout, and if the sizes of the ROBDDs

of the decomposition set members are more or less the same, the smaller decomposed ROBDD should yield

the more effective of the two decompositions. This analysis is easily verified on practical circuits.

In practice this bound is never observed but one does, at times, observe quadratic resources in the size of G<j and H.

10



4.2.4 Trading off sizes of Gd and fas

Given two alternate circuit decompositions, we need to resolve whether a larger decomposed graph Gd with

a smaller S}=f \fabdd | is preferable over a smaller Gd with a larger E}=y*|̂ M-|.

Also, one must determine if the given function needs be decomposed at all. For either of the above two

questions, one must analyze the rate with which graph Gd grows as it is constructed beginning from the

primary output, proceeding towards the decomposition points, followed by successive composition. Here

a decomposed graph at level L + 1 in the circuit is composed in terms of gates (pseudo-inputs) at level

L to obtain Gdh, the new decomposed graph at level L. One similarly needs to analyze the total size of

intermediate graphs constructed during the computation of ROBDDs fabdd, Vfa € $. The above analysis

can then indicate when the ROBDDs "blow up" along a certain direction, as well as the average rate at

which the graphs are growing in either direction.

This allows one to heuristically decide the difficult choice posed above. If the decomposed graph Gdh

at some level L in the circuit is much smaller than the predicted size while graph GdK is larger than its

predicted size at level K, GdL can be considered superior to decomposed graph GdH even if \GdL\ > \OdK\-

Similarly one can account for the increases in the size of graphs of decomposed points fabdd.

4.2.5 Functional Decomposition

We still have not resolved how a given pair offabdd will fare when composed in some Gd, or if such a method

will be superior to constructing ROBDDs using apply exclusively. Also the above framework is often geared

towards a netlist based representation of Boolean functions, and may not be suitable for processing other

abstract representations of boolean functions.

Since the primary purpose for decomposition was to circumvent an intermediate explosion if possible,

one can choose decomposition points based on the increase in the graph size during the intermediate stages

of ROBDD construction. Beginning with primary input variables, as the graphs are built using apply, one

can decompose them whenever any operation increases the total graph size by certain factor. The resulting

graphs are typicallymultiplydecomposed; a decomposed variableis usually a functionof other decomposition

variables. The approach does not perform a decomposition if the bottom-up technique does not result in

11



the explosion factor being exceeded.

5 Our Approach

In this section we will outline useful circuit decomposition procedures by piecing together observations

detailed in the previous sections. We will discuss a structural (topology based) approach augmented using

functional information. We also discuss a purely functional approach.

5.1 A Structural Analysis Based Decomposition Approach

We observe empirically that the resources required for obtaining the ROBDDs for Gd as well as all fabdd,

for 1 < i < m are significantly less than the time spent constructing the function G. In our experience, any

decomposition that is typically not located at either extreme of the circuits can be computed in a very short

frame of time. Thus one can typically afford to experiment with various decompositions without payingan

excessive space or time penalty.

The structural heuristicattempts to locate a suitablewaistin the circuit representation. By the arguments

detailed in Section 4, any waist close to the primary inputsor primaryoutputs is ignored. For the remaining

circuit, also called a candidate region, there are two techniques that can be used to locate a set of candidate

waists \&i,..., tfc. The selection of candidate waists is made by analyzing their decomposed ROBDDs as

explained in Section 4.

We construct the decomposed ROBDDs Gd{9) by a top-down approach, where the ROBDD at the

output of a gate is progressively composed in terms of its input gate variables, and the composition proceeds

recursively until we reach the given decomposition set. If during construction of some decomposed ROBDD

Gdi^i), for some candidate waist ty, one observes a sharp decrease in the peak graph size between two

intermediate ROBDDs then there is indication of the presence of a region of functional simplification. A

good decomposition will typically precede such an area of simplification.

We compute a cut set such that its members are present essentially at the same level. We begin by

computing the width profile of the given circuit which is the size of the cutset at each level of the circuit

12



(figure 3). The cutset sizeat level L is computed as cutsize^ = jmpL +9L> where jmpL gives the numberof

jump gates at level L, that is, all gates at any level p\p < L which fanout to some gate at any level q\q > L.

gi gives the total number of gates at level L.

We now compute the gradient of the circuit, which is computed as the rate at which the cutset size of

the circuit decreases as we traverse the circuit from the level 1 to the primary output. A circuit may have a

set of gradients characterizing different regions in it.

A waist is defined as the cutset in the candidate region whose width (1) is relatively small (2) decreases

by a rate significantly greater than the average gradient of its surroundings. We generate a set of candidate

waists and select the final waist by analyzing their decomposed ROBDDs as discussed earlier.

Simply selecting the minimum number ofgates / wires at any level is not enough forcomputing the waist

(for single outputs, the minimum number ofgate / wires will always be at the primary output). For tree-like

circuits, we can not obtain the "waist". Here we select the waist based on the gradient analysis.

Experimentally, selecting the decomposition points at 65% of the maximum level seems to work well. So,

we try to compute the waist weighted by how close the level is to 65% of the maximum level.

•** LEVELS

Figure 3: Circuit width profile and "waists" for efficient decomposition

5.2 A Functional Decomposition Approach

For certain boolean operations during theconstruction ofthe ROBDD ofthe output, the graph size increases

by a disproportionate measure. We decompose the function at precisely these points. Decomposition is

required when we are processing a function F which requires prohibitive computational resources.

Since the above decomposition point only captures instances ofdifficult functional manipulations, any

13



simplification ofgraphs made on such decomposition variables will likely decrease total resource requirements

as well. Also in the above scheme no decomposition is done when the function can be very easily processed

without any memory explosion.

In ourcurrent implementation, we decompose a function when the total ROBDD manager size increases

by more than a presettable factor due to some Boolean operation. This check is only done if the manager

size is larger than a predetermined minimum. Also, decomposition points are added when the individual

ROBDD grows beyond another threshold value.

In this approach, decomposition points are frequently nested inside another decomposition point. To

decrease total number of compositions required, we compose all such decomposed variables which are not

nested within any other similar variable. This method of composition is now recursively applied till a fully

composed graph is obtained.

6 Results

In this section we discuss the implementation results of our structural and functional decomposition methods.

We use the ISCAS85 benchmark circuits. Results are reported for the outputs which are considered 'hard'

for building ROBDDs. The implementation is done in the SIS [23] environment. Results are obtained on

DEC station5000/260 with 128MB of memory.

The "size" entry in all the following tables refers to the maximum ROBDD manager size. Table 1

and Table 2 show the results of the structural decomposition techniques. Tables 3 4 5 and 6 show the

results of the functional decomposition approach. We use different variable ordering schemes to show that

our approach works equally well under various schemes. Table 1 uses Malik's ordering [19](MO) without

dynamic variable (DR) reordering[22]. Table 2 uses MO along with DR. Table 3 uses natural input ordering

(NO) without DR. Table 4 uses MO without DR while Tables 5 6 use MO and NO respectively with DR.

In all the tables, the first column shows the peak memory utilization and the time taken by the reference

algorithm. The reference algorithm builds the monolithic ROBDD of the outputs in terms of the primary

inputs in a depth first order. If an ROBDD of a node is not required in subsequent computations it is freed

14



to reduce the memory requirements.

The second column in Tables 1 and Table 2 (denoted by "XTop") gives the results for our algorithm

where we do the local refinements of the best cutset to obtain a small decomposed graph (Gd). The third

column presents the best results obtained after considering three different candidate cutsets and "XTop".

In almost all the cases in Tables 1 and Table 2, the "XTop" algorithm provides better results than the

reference algorithm. Overall memory gains are about 40% and the time gains are about 22% averaged

over all examples. The reference algorithm is unable to make the ROBDD for the 13th output of C6288

(multiplier) in 500K nodes while the XTop algorithm finishes it in less than 28 seconds. In the absence of

DR (Table 1), "XTop" usually gives the best results. When DR is invoked, "XTop" gives the best result

less often. This is because of the fact that a small Gd selected under one variable ordering may not be small

under a different variable ordering. Despite this, the "XTop" algorithm performs satisfactorily compared to

the reference algorithm with substantial gains in both time and memory (22% gain in memory and 30%gain

in time). The few cases where the "XTop" algorithm performs poorly compared to the reference algorithm

are typically those where the intermediate memory requirements are small.

Ckt Out Reference "XTop" Best Waist % gain, XTop % gain, B. Waist
# Time Size Time Size Time Size Time Size Time Size

C880 26 3.36 23818 2.53 21246 2.44 21194 24.70 10.84 27.38 11.05
C1355 32 1.82 25482 1.14 13223 1.14 13223 37.36 48.11 37.36 48.11

C1908 24 5.80 34205 3.38 18102 3.38 18102 41.72 47.02 41.72 47.02

C1908 25 4.29 18288 4.36 17189 4.20 17185 01.63 6.01 2.1 6.03

C2670 140 - - - - - - - - - -

C3540 22 - - - - - - - - - -

C5315 123 28.80 300035 17.47 174632 17.47 174632 39.34 41.80 39.34 41.80

C6288 13 - - 27.18 108538 27.18 108538 inf inf inf inf

C6288 12 39.78 289344 12.73 65978 12.27 65978 68.00 77.20 69.16 77.20

Total 83.85 691172 68.79 418908 68.08 418852 21.89 39.39 23.16 39.40

Table 1: Structural Methods, Malik Ordering without dyn. reorder, 500K limit

In Tables 3, 4, 5 and 6, the first column is again for the reference algorithm while the second column

represents the time and memory requirements for the functional decomposition approach. Once again,

excellent time and space improvements are observed in almost all cases. Average improvements in time

and memory are between 40%-70%. For 2 cases in Table 3, 1 case in Table 4 and 1 case in Table 5, our

15



Ckt Out Reference "XTop" Best Waist % gain, XTop % gain, B. Waist
# Time Size Time Size Time Size Time Size Time Size

C880 26 7.15 4598 8.29 4530 7.12 4764 -15.94 1.48 0.42 -3.61
C1355 32 137.37 32600 139.02 29360 137.53 32600 -1.20 9.94 -0.12 0.00
C1908 24 31.0 8863 15.24 8876 14.82 8866 50.84 -0.15 52.19 -0.03
C1908 25 14.59 8870 14.93 8887 14.72 8873 -2.33 -0.19 -0.89 -0.03

C2670 140 127.53 12609 434.72 111907 130.39 13065 -240.88 -787.52 -2.24 -3.62
C3540 22 2446.89 311658 2392.94 285800 2333.73 270873 2.20 8.30 4.62 13.09

C5315 123 25.99 9934 6.87 9601 6.25 9530 73.57 3.35 75.95 4.07
C6288 12 1781.4 286992 155.10 63904 142.92 62524 91.29 77.73 91.98 78.21

Total 4571.92 676124 3167.11 .522865 2787.48 411095 30.73 22.67 39.03 39.20

Table 2: Structural Methods, Malik Ordering with dyn. reorder, 500K limit

algorithm builds the output where the reference algorithm fails (for a 1 million node limit). Note that the

% improvement figures do not reflect these outputs. Therefore the actual gains are even better than what

these numbers suggest. Interestingly, space and time improvements are more prominent for bigger circuits

and circuits which are known to be difficult for ROBDDs (like C6288).

Ckt Out # Reference Algo. Functional %gain, Functional
Time Size Time Size Time Size

C880 26 9.56 120236 2.44 49405 74.48 58.91

C1908 24 3.58 25546 4.77 44082 -33.24 -72.56

C1908 25 5.57 30587 3.78 29139 32.14 4.73
C2670 140 - >1000000 - >1000000 - -

C3540 21 - >1000000 173.11 775137 inf inf

C3540 22 129.23 647893 87.28 301731 32.46 53.43

C6288 12 39.55 261156 11.16 140414 71.78 46.23
C6288 13 110.36 761008 30.86 324514 72.04 57.36

C6288 14 - >1000000 85.06 764686 inf inf

Total 298.15 1546426 140.29 889285 52.95 42.49

Table 3: Functional Methods, Natural Ordering without dyn. reorder, 1 Million node limit
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Ckt Out# Reference Algo. Functional. %gain, Functional
Time Size Time Size Time Size

C880 26 0.20 6467 0.19 6468 5.00 -0.02
C1908 24 0.86 11307 0.63 12276 26.74 -8.57
C1908 25 1.01 13904 0.72 12059 28.71 13.27

C2670 140 1.40 29282 1.33 15590 5.00 46.76
C3540 22 - >1000000 - >1000000 - -

C6288 12 30.59 268076 13.90 160498 54.56 40.13
C6288 13 64.57 633423 37.28 378995 42.56 40.17

C6288 14 - >1000000 109.66 878639 inf inf

Total 98.63 962459 54.05 585886 45.20 39.13

Table 4: Functional Methods, Malik Ordering without dyn. reorder, 1 Million node limit

Ckt Out# Reference Algo. Functional. %gain, Functional
Time Size Time Size Time Size

C880 26 6.45 9871 2.53 10002 60.78 -1.33
C1908 24 6.22 12111 8.99 9635 -44.53 20.44
C1908 25 3.94 9879 3.88 11025 1.52 -11.60
C2670 140 121.72 12864 377.22 23141 -209.91 -79.89
C3540 22 269.48 83760 496.93 102904 -84.40 -22.86
C6288 12 1224.77 248453 218.75 76881 82.14 69.06
C6288 13 3109.29 727006 969.46 135894 68.82 81.31
C6288 14 - >1000000 2734.45 217759 inf inf

Total 4741.87 1103944 2077.76 375782 56.18 65.96

Table 5: Functional Methods, Natural Ordering with dyn. reorder, 1 Million node limit

Ckt Out# Reference Algo. Functional. %gain, Functional
Time Size Time Size Time Size

C880 26 0.29 6467 0.44 6468 -51.72 -0.02
C1908 24 1.71 11307 1.37 12276 19.88 -8.57
C1908 25 11.12 10679 5.64 9795 49.28 8.28
C2670 140 49.76 9566 52.37 9578 -5.25 -0.13
C3540 22 2856.73 331653 1572.94 178436 44.94 46.20
C6288 12 1821.21 280845 726.07 77775 60.13 72.31
C6288 13 7237.81 735401 1378.26 133426 80.96 81.86
C6288 14 - >1000000 - >1000000 - -

Total 11978.63 1385918 3737.09 427754 68.80 69.14

Table 6: Functional Methods, Malik Ordering with dyn. reorder, 1 Million node limit
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7 Conclusion

In this paper we have studied the problem of efficient ROBDD construction using decomposition based

techniques. The problem was to construct the ROBDD of a target function in terms of the primary inputs

so that the intermediate peak memory requirement and the time taken for the ROBDD construction is small.

In our approach, we first suitably decompose the given function and construct the ROBDD of the target

function in terms of the decomposed variables. Next, we compose the decomposed variables to get the final

ROBDD. The main conclusions of our work are as follows:

• We have suitably combined the bottom-up and top-down approaches of building ROBDDs to circum

vent the memory explosion problem commonly encountered while constructing ROBDDs.

• Two new schemes for determining decompositions, one based on structural information, and another

on functional information have been presented.

• The structural approach performs a topological analysis of the circuit to find good decomposition

points.

• Functional approach makes no underlying assumption about the topology of the circuit in finding

decomposition points. This approach is applicable to any arbitrary set of ROBDD operations and can

be easily incorporated into any existing general purpose ROBDD package.

• Results on ISCAS85 benchmark circuits show excellent improvements over the conventional bottom-up

procedures of building ROBDDS.

• Results are reported for different variable ordering schemes includingdynamic ordering and are con

sistently better than the conventional method.

• In many cases, our method was able to build ROBDDs where the existing schemes failed.

• We show impressive reductions in both memory and time utilization in many cases where existing

schemes are able to build the ROBDD. This is starkly in contrast to dynamic variable ordering where

a significant time penalty is associated with the memory reduction.
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• Gains in time and memory are more prominent for examples which are particularly bad for ROBDDs,

like multipliers.

Future research is directed towards identifying better decomposition techniques and studying various

computational issues in efficient function composition. Also, we plan to use this approach to reduce the

resources required in computing transition relations, reachability, and also for alternate BDD approaches.
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