Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



AUTOMATIC SYNTHESIS OF CMOS
ALGORITHMIC ANALOG-TO-DIGITAL
CONVERTER

by

Gani Jusuf

Memorandum No. UCB/ERL M95/27

21 April 1995



AUTOMATIC SYNTHESIS OF CMOS
ALGORITHMIC ANALOG-TO-DIGITAL
CONVERTER

by

Gani Jusuf

Memorandum No. UCB/ERL M95/27

21 April 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Automatic Synthesis of CMOS Algorithmic
Analog-to-Digital Converter

Copyright 1993
by

Gani Jusuf




Automatic Synthesis of CMOS Algorithmic
Analog-to-Digital Converter

by
Gani Jusuf

Doctor of Philosophy in
Electrical Engineering and Computer Sciences
University of California at Berkeley

ABSTRACT

The steady decrease in teclinological feature size is allowing increasing levels of
integration in analog/digital interface functions. These functions consist of analog as well
as digital circuits. While the turn around time for an all digital IC chip is very short due to
the maturity of digital IC computer-aided design (CAD) tools over the last ten years, most
analog circuits have to be designed manually due to the lack of analog IC CAD tools. As a
result, analog circuit design becomes the bottleneck in the design of mixed signal process-
ing chips. One common analog function in a mixed signal processing chip is an analog-to-
digital conversion (ADC) function. This function recurs frequently but with varying per-
formance requirements. The objective of this research is to study the design methodology
of a compilation program capable of synthesizing ADC’s with a broad range of sampling
rates and resolution, and silicon area and performance comparable with the manual

approach.

The automatic compilation of the ADC function is a difficult problem mainly
because ADC techniques span such a wide spectrum of performance, with radically differ-
ent implementations being optimum for different ranges of conversion range, resolution,
and power dissipation. We will show that a proper choice of the ADC architectures and the

incorporation of many analog circuit design techniques will simplify the synthesis proce-




dure tremendously. Moreover, in order to speed up the device sizing, hierarchical optimi-
zation procedure and behavioral simulation are implemented into the ADC module

generation steps.

As a result of this study, a new improved algorithmic ADC without the need of
high precision comparators has been developed. This type of ADC lends itself to auto-
matic generation due to its modularity, simplicity, small area consumption, moderate
speed, low power dissipation, and single parameter trim capability that can be added at
high resolution. Furthermore, a performance-driven CMOS ADC module generator,
CADICS based on design rules and spice parameters has been developed. CADICS takes
a set of input files and generates the complete ADC netlist, layout, and performance sum-

mary. A prototype of the automatically generateci ADC has also been fabricated and tested.
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CHAPTER 1 Introduction

1.1 Background and Motivation

Over the last two decades technology feature size has decreased allowing increas-
ing levels of integration in analog/digital (A/D) interface functions. These functions are
usually mixed analog-digital integrated circuits containing both analog and digital cir-
cuitry. Very high levels of integration have been achieved in mixed-signal IC’s intended
for high-volume manufacturers in dedicated high-volume applications, resulting in very
low cost of manufacturing. These examples include telephony components such as
modems and voice coder/decoders, interface components for local area networks and so
forth. This cost reduction through higher level of integration has been more difficult to
achieve in components with functionality specific to systems that will be manufactured in
low to moderate volume applications. The sophisticated automatic synthesis tools that
allow fast turn-around implementation of high-integration components in purely digital
functions, such as gate array, standard cell, and field programmable logic arrays (FPLA’s),
do not as yet exist for analog and mixed signal components. One of the objective of the

research described here is to make a contribution to that goal.




Introduction

There are several factors that complicate semi-custom analog and mixed signal
design. Because of rapid evolution in technology, design techniques and tools must adapt
to a rapidly changing technology base. Unfortunately, most analog IC products presently
have to be designed manually by expert analog IC designers due to the lack of analog
CAD tools. As a result, analog circuit design has become the bottleneck in the design of
mixed analog/digital interface chips. This has seriously hampered the effort to reduce the
product development time mentioned earlier. In the next section, a brief discussion of why
digital CAD tools progress much faster than its analog counterparts will be presented. The
progress in semi-custom applications is limited more by the lack of suitable analog CAD
tools such as mixed signal simulator, design capture, synthesis tools for commonly used

blocks, place and route, layout extraction, verification, and testing.

One common analog function in a mixed signal chips such a modems is an analog
to digital conversion (ADC) block. This function recurs frequently but with varying per-
formance requirements [(CHEC78], [TOWN80], [OHARS87]. Efforts to automate the
design of A/D conversion functions have been reporied previously [ALLES6],
[HELMB87]; however, there are some shortcomings in the implementation of these tools
which will be described in Chapter 2. Since the ADC block is one of the critical block in
the design of mixed-signal chips, we are motivated to study the approach and implementa-
tion of an ADC synthesis tool so that it can be used to improve or speed up the turn around

time of mixed signal chips

1.2 Integrated Circuit Design Automation

Integrated circ:  design can be divided into two different classes: digital and ana-
log circuits. The distinc on is mainly due to their differences in signal representations,

sensitivity, and performance trade-off.




Integrated Circuit Design Automation

In digital circuits, signals are represented by a stream of discrete voltage levels
which is usually represented in terms of binary numbers “1” or “0”. These binary levels
are usually representing a range of continuous voltages as shown in Figure 1.1(a). Typi-
cally we would like to minimize the uncertainty region shown in Figure 1.1(a) so that the
allowable disturbance voltages (noise margins) at the input of a digital block can be maxi-
mized. Figure 1.1(b) shows how the noise margins are defined based on the range of the
input voltages (Vy , maximum input voltage for logic “0” and Vy, minimum input volt-
age for logic “1”") and output voltages (Vqp, maximum output voltage for logic “0” and
Voy, minimum output voltage for logic “1”). In digital circuit, signal disturbance at the
input of a block does not get forwarded to the output as it does in analog circuit. As a
result, a substantial level of signal disturbances from noise coupling, power supply fluctu-
ation, and random noise will not degrade the digital signal level as it passes a digital block.
Furthermbre, having these discrete signal representations allows digital circuits to have a
standardized interface levels, which in turn gives a standard power supply requirement. As
a result, digital circuits have only a small set of performance measures that need to be

optimized such as power consumption, gate delay, power-delay product, and area.

Output

Amplitude Input

(a)

Figure 1.1: (a) Amplitude of digital signal (b) Noise margin definitions.
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In analog circuits, signals are represented by continuous voltages, currents or
charges as a function of time. Depending on the application, analog input signals can have
a range from a few millivolts to several tens or even hundreds of volts. Signal disturbances
which are tolerable in one application can be devastating in another. Moreover, power sup-
ply requirement will also vary depending on applications. Unlike digital circuits, analog
circuits have no standardized interface levels or standard power supply requirements. As a
result, analog circuits have a large set of performance measures that need to be optimized
such as bandwidth, power dissipation, gain, offset, dynamic range, area, noise, supply
rejection, overall accuracy, and rfnany others. These performance measures of analog cir-

cuits depend more heavily on details of device behavior than do those of digital circuits.

With the distinctions mentioned above, we can now discuss the design automation
of integration circuits which is a subset of Electronic Design Automation (EDA). The
EDA effort started in early 1950’s when digital computers were just becoming popular
[GRAHS3]. Since then, EDA has made tremendous progress and branched out into many
different specialized fields over the last forty years. One of these specialized fields is inte-
grated circuit design automation (ICDA). For the last 15 years, ICDA has evolved into
two different fields: CAD for digital IC’s and CAD for analog IC’s. Digital IC CAD has

advanced at a much faster rate than its analog counterpart for several reasons:

1. Complexity: Digital circuits are formed from a smaller number of primitives
and are described by a much smaller number of performance parameters than
analog circuits. Hence they are easier to design in many ways than analog ones

since digital circuits have far fewer optimization constraints.

2. Number of generic primitive blocks: In digital domain there exist simple and

generic block functions from which many higher level and complex digital

4
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blocks can be implemented. Examples of these simple generic blocks are
NAND and NOR gates. For analog circuits, such a simple and generic block

does not exist.

3. Size of User Community Base: Measured economically by sales, purely digi-
tal integrated circuits are about 5 times larger than the mixed signal and analog
applications. Furthermore, the digital domain is dominated by CMOS imple-
mentations of logic functions operating on 5 volts, with speed and logic density
being the main performance parameters of interest. In the analog domain, the
user base is highly fragmented into different technologies (CMOS, Bipolar,
BiCMOS), various performance domains (high frequency, low power, high
precision, high power, etc.), and supply voltage (30V, 12V, 5V, 3V, 1.5V to
name the most important standards). As a result, the cost of the research and
development of digital computer-aided design software can be amortized over
a much larger base of potential users. On the other hand, the cost of the
research and development of analog computer-aided design software, which
tends to be specific to one technology, supply voltage, and performance

domain, becomes very expensive because of the small user community.

Recently, there has been a surge of interest in the field of analog ICDA both from
universities as well as commercial laboratories. With constant scaling in technology fea-
ture size, an important motivation drive in the 90’s is to increase the level of integration in
IC chips to reduce cost. This means that the inclusion of both analog as well as digital cir-
cuits into a single chip is a must. For this to be successful, improved maturity of EDA for
analog integrated circuits is a necessary condition. With this impetus, hopefully, analog

ICDA will progress at a much faster rate.
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1.3 Thesis Contribution

With the steady decrease in the cost of designing digital VLSI and the advance-
ment of digital signal processing (DSP), more and more analog building block IC’s will be
replaced by more highly integrated mixed signal application specific integrated circuits
commonly known as ASIC’s. Some have suggested that analog circuit design will die as
an IC implementation methodology and digital circuit design will take over. This belief is
probably true in many IC applications where signal processing functions can be common
to digital circuits. However, the world around us is still analog and anything interacts with

environment needs some kind of interface blocks as shown Figure 1.2.

Cnterfalxsclzclil‘:;ncuon ) Digital World ( Interf;cizcil‘;nchoD

Figure 1.2: Analog and digital world.

In order to make use of advancements in digital VLSI, we need to convert analog
data into its digital representation. Thus .nalog data has to be interfaced with special .on-

verters in order to be processed digitally. Borrowing an example from [GRAY87] on the
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role of analog interfaces in VLSI systems, a VLSI digital system is like an egg and the
analog interfaces is the eggshell as shown in Figure 1.3. As the egg is getting bigger
(which is analogous to the advancement of digital VLSI system), thg eggshell is getting
thinner (which is analogous to more and more analog block functions being replaced by
digital circuits). But the egg will never hatch! Thus the analog interface functions will

remain as an important role in VLSI systems.

One of the most common blocks used in analog-digital mixed-signal IC’s is an
Analog-to-digital converter (ADC). Efforts to create better ADC blocks are actively pur-
sued both in academic as well as industry sectors. In this thesis, we will present a new
improved algorithmic ADC architecture that is capable of converting analog signal at a
higher rate than previously reported algorithmic ADC architecture. We will also introduce
a two-comparator scheme that allows us to use low-precision or simple comparators to do

the comparison without affecting the overall performance of the A/D converter.

In the area of analog CAD, this thesis will present a methodology to approach and
implement a module generation program for such a general function as A/D converters.
We will discuss in detail how we implement a technology-independent ADC module gen-
erator, CADICS [JUSU90] that optimizes performance, silicon area, and power dissipa-
tion so that the resulting ADC’s are comparable with a manual design. We will also show
at the end that the methodology can also be applied for implementing a general mixed sig-

nal design automation system.

1.4 Thesis Organization

In the remaining of this thesis, the study and implementation of a performance-

driven ADC module generator will be presented. In Chapter 2, a brief discussion of exist-
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Figure 1.3: Role of analog interfaces in VLSI systems [GRAY87].

ing analog block module generators and a detailed discussion of ADC blocks, previous
work in ADC module generation, and methods of attack will be presented. In Chapter 3,
an architectural study of different A/D conversion techniques will be presented. Compari-
sons in architecture, performances, trade-off, and complexities will discussed in detail. An
improved algorithmic ADC architecture will then be presented. Detailed implementations
of the circuit and layout generations of the ADC module generator will be covered in
Chapter 4 and 5 respectively. In Chapter 6, some examples and experimental results will
be presented. In Chapter 7, a summary of research and a brief discussion as what the
future direction will be discussed. Finally, an in depth discussion of the circuit design

techniques for each functional block of the ADC is presented in the Appendix A.




CHAPTER 2 Automatic
Generation of Analog

Blocks

2.1 Introduction

Automatic generation of analog blocks has become very desirable as system level
designers try to shorten the turn-around time of designing mixed signal chips. Unfortu-
nately, the lack of such tools forces the designers to utilize off the shelf components or
pre-designed analog blocks that are optimized to certain applications. Efforts to come up
with a general analog design framework that is capable of generating complete analog
block layouts from high level specifications are currently being carried out [HARJ89],
[DEGR87], [CHAN92], [GIEL92). In this chapter, we will first discuss why module gen-
eration of specific analog functions is a good starting point to the realization of a general
automatic analog design framework. Examples of existing analog block module genera-
tors will then be presented. The goals of analog-to-digital conversion (ADC) module gen-
erator developed will then be described.
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2.2 Why Do Module Generation?

As mentioned in Chapter 1, the implementation of analog CAD tools, in general, is
more difficult than the implementation of digital CAD tools, as is the analog design prob-
lem. Ideally we would like to have a general analog circuit framework similar to that of its
digital counterparts. However, analog circuits in general require more design freedom in
order to meet performance objectives. They often exploit the full spectrum of capabilities
exhibited by individual devices. In analog circuits, the individual devices often have dif-
ferent sizes and electrical characteristics. These devices require optimization of different
performance requirements. The importance of each performance requirement will depend

on circuit applications.

In digital design methodology, there are multiple abstraction levels that can be rep-
resented by a tri-partite representation of design (commonly known as the Y-chart
[GAJS86)) as shown Figure 2.1. This unified model of design representation separates the
structural, behavioral, and physical domains. The level of abstraction decreases as one
moves toward the center vertex. The procedures to go from one level of abstraction to the

next one are clearly defined since they can be structured on to several levels of hierarchy.

For analog design, there are few acceptable abstraction levels such as functional
and behavioral. The rest of abstraction levels are not clearly defined. The procedures to
move from one point to the next point in a domain will be different from one analog func-
tion to the next. Therefore, to come up with a general design methodology that can gener-
ate all possible analog blocks is very difficult if not impossible. Instead, a more realistic
goal would be to have an analog design framework or mixed signal design framework that
can generate different analog or mixed signal blocks. This kind of framework is basically
an integration of all different CAD tools written specifically for analog or mixed signal
blocks. An example of such a framework is currently being developed at U.C. Berkeley

10
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Behavioral Structural

System
specs.
Algorithms

CPU'S.,
memories

Subsystems

Silicon Compiler

Logic Simulator

Register transfers Modules

Boolean equations Gates, flip/flops

Differential equations

Physical

Figure 2.1: Domains of descriptions - Y-chart for digital design.

[CHAN92].

While it is sometimes possible to share CAD tools between digital and analog por-
tions of a circuit, such as design rule checkers and extractors, many CAD tools must be
designed for use primarily on analog circuits. Many existing analog CAD tools are the

extension of the digital tools. Generic tools such as router, placement, and compactor that

1"



Astomatic Generation of Analog Blocks

can-handle analog blocks are becoming hot research topic in university sectors. Examples
of analog routers are constrained-driven channel router, ART [CHOU90] and constrained-
driven maze router, ROAD [MALA90). These routers are also capable of routing fully dif-
ferential blocks that have become a common analog circuit design technique. Analog
placement [CHAR92] and compaction [COHNO91], [FELT92] tools have also been
reported recently. All these tools are still developing to reach maturity so that they can be

used as the generic tools in an automatic as well as manual block generation step.

Other possible tools in this mixed signal design framework would be module gen-
erators of different analog functions. It will be very desirable if we would be able to come
vup with a general design methodology for automatic generation of all aﬁal'og blocks with-
out the need of implementing different module generatdrs for different analog blocks.
Unfortunately, as it has been discussed in the previous chapter, analog circuit design is the
most knowledge intensive process of IC design tasks. The quality of a design will depend
a lot on the expertise level of circuit designers. This expertise is usually obtained over a
long period of time from the experience of doing numerous circuit designs. In order to
implement a general analog design framework, we need to be able to capture and formal-
ize the existing design knowledge entirely into the program database. This job is an

extremely difficult if not impossible task to do.

The automatic generation of known analog block functions seems to be a more
feasible goal to do since capturing and formalizing design knowledge of a specific analog
function is simpler and easier to do. As the need to automatically generate other analog
functions rise, their module generators can be implemented. In the next section, existing
module generators of two commonly used analog functions: switched-capacitor filter

(SCF) and operational amplifier (op-amp) will be described.

12
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2.3 Existing Analog Module Generators

2.3.1 Operational-Amplifier Module Generator.

The operational amplifier is one of the basic building block used in many analog
functions. Many efforts in the automatic generation of this block have been reported
OASYS [HARJ87], IDAC-ILAC [DEGRS87], OPASYN [KOH90]. All the module genera-

tors start with a given set of specifications for the op-amp and generate the device sizes.

The OASYS system is implemented using an expert system that decomposes a
given set of op-amp specifications into several sub-modules’ specifications for input
stages, output stages, or biasing circuits. These sub-specifications are then used to search
for the most suitable pre-defined sub-modules such as current sources, differential pairs, or
individual transistors. When the sub-modules are found and their specifications are met,
an op-amp will then be constructed by joining all the chosen sub-modules. This op-amp

will then be synthesized to get the op-amp specifications and its device sizes.

The IDAC-ILAC and OPASYN systems have similar implementation approach.
Both systems generate device sizes of the pre-stored op-amp topologies by optimizing
using the analytical equations. Since OPASYN will be used later as a low-level synthesis
tool for generating op-amps and comparators in our ADC module generator, we will elab-

orate on it more.

A typical set of input specifications for OPASYN would be open loop gain, power
dissipation, unity gain frequency, phase margin, and slew rate. The outputs of the op-amp
synthesis would be the op-amp netlist, layout, and performance summary. A simplified
block diagram of the procedures used in OPASYN is shown in Figure 2.2. OPASYN first
carries out a sequence of operations such as topology selection and numerical optimiza-

tion to determine the device sizes. A netlist and performance summary will then be gener-

13
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ated. The device sizes are then used to generate layout of the op-amp. Currently, the
topology database of the netlist generator consists of an output buffer, a comparator, a sin-
gle-ended basic two stage and a fully differential folded cascode op-amps. The layout gen-
eration takes the device sizes information generated by the circuit generator and outputs
the complete layout of the block. Currently, the OPASYN layout generator does not sup-
port fully differential folded cascode op-amp layouts since specific routines for this op-
amp topology need to be implemented. Efforts to enhance the layout generation capability
of OPASYN are being done. As a result, the layout generator of OPASYN will not be used
as a low level block layout generator in the ADC module generator, CADICS. The layout
generation will be described in detail in Chapter S. An example of a basic two-stage op-

amp performance summary and layout are shown in Figure 2.3(a) and (b) respectively.

Op-amp Netlist
Op-amp Layout
Op-amp pert.

summary

Op-amp Module
Generator

Topology | 1 Numerical Analytical Layout

basseed OI'?%':ﬂOO Optimization [] Models [~™]Generation

Figure 2.2: OPASYN high level flowchart.

2.3.2 Switched-Capacitor Filter Module Generator

Filtering is one of the most common block used to precede or proceed a telecom-

munications or audio systems. For example, an anti-aliasing filter is usually used to filter

14
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Performance Specs. | OPASYN

o
| |
' Power diss. (mW) | 1 0.6
b Output swing (V) | +-1.5 | 2.3/-2.2
ﬂ Sa:n rwe. ) 50200 5,200
nity freq. rd 3.1
I Slew rate (V/us) 1 1.4

| Settling time (ns) | 1000 980

L2 LJ_'
I L-
:L~

.

Gate area (mil*2 - 42

1/f noise 1.0E-07 | 1.1E-07

PSRR-dc (dB) 70 78

PSRR-1kHz (dB) 40 63

vdd (V) 25

Vss 25

Cloa ﬁpF) 5

Technology MOSIS 3um
(a) Layout (b) Performance summary

Figure 2.3: Basic two stage op-amp example.

out of band signal in the front end of an A/D converter to prevent aliasing. A decimation
filter is used to filter the out of band noise proceeding a sigma-delta modulator. One type
of filter implementation is an analog sampled data system implemented in MOS technol-
ogy commonly known as switched-capacitor filter (SCF). It is called SCF because the

building block is a switched-capacitor integrator.

Many SCF synthesis programs [SANC85], [EATO87], [TRON87], [LUCAS87],
[YAGUS86] have been reported in the literature. The popularity of SCF synthesis program
is partially due to the fact that a straight-forward method or algorithm exists to synthesize
an SCF from a given set of specifications. One of SCF module generators discussed here
is ADORE [YAGUS86] developed at U.C. Berkeley. ADORE is capable of generating
switched-capacitor filter layout from a given set of specifications such as filter type, order,

and frequency response.

15



Automatic Generation of Analog Blocks

The overall steps of the module generation are as follows. Given a set of specifica-
tions of a filter, a continuous inductor-capacitor (LC) ladder filter is generated by using a
filter synthesis program, FILSYN [SZEN77). The resulting filter is then transformed into
an equivalent SCF network. Capacitor ratio evaluation and dynamic range scaling maxi-
mization are carried out. The resulting netlist is then passed on to the layout generator to
generate the complete layout of the SCF. The layout generator will undergo a series of
operations such as generating switches, obtain op-amp module from the cell library, order-

ing capacitor array, placing all modules, and routing all channels. The high level flowchart

of ADORE is shown in Figure 2.4. A 10® order Chebychev bandpass filter layout and fre-

quency response are shown in Figure 2.5(a) and (b) respectively.

SC Specs,
Filter T
Order ype
Sampling Cap.
efc...

-] Switched-Cap.

Aesylts:
Synthesis SC Layout

FILSYN Layout Generation
Program | Generate Switches |—»f Get op-amp Modules |

' J—'
F—|Capacltor Array Ordering

- -
S etwork T*1 [Piace Each Module |—»{Route A Channeis]

Figure 2.4: ADORE high level flowchart.
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Figure 2.5: 10th order chebychev bandpass filter example.

2.4 Analog-To-Digital Conversion Module
Generator

2.4.1 Overall Goals

Analog to digital conversion function recurs frequently in mixed analog-digital
chips with varying performance requirements depending on the applications [CHEC78],
[TOWNRBO0], [OHAR87]. Due to the non-existence of highly optimized ADC module gen-
erators, this analog block can become the bottleneck of the turn-around time for the over-

all design of the chips. Just like the op-amp and SCF module generators, we would like to
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automatically generate A/D conversion block netlist and layout optimized to the given set

of specifications.

Therefore, it is very desirable to have an ADC module generator capable of gener-
ating A/D converters with a broad range of sampling rates and resolution, and silicon area
and performance comparable with a manual approach. Moreover, the module generator
has to be able to generate ADC’s for different design rules. Finally, the resulting ADC has
to be compatible with digital environment. We have developed a CMOS ADC module
generator, CADICS [IU SU90] that fulfills all of the above requirements. The overall
input/output descriptions of the ADC module generator is shown in Figure 2.6.

Floorplan Matching
Info. Info.

%lm
ADC

Layout
ADC Pert.

Process
Design Rules Parameters

Figure 2.6: Input/output descriptions of the ADC module generator.

In the remainder of this chapter, a brief description of ADC function and character-
ization (mainly static ones) will be reviewed. Many terms defined here will be used
throughout the remainder of this thesis. Finally, an overview of existing ADC module gen-

erators and our implementation methods will be discussed.
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2.4.2 Functionality

An N-bit 100kHz A/D converter is an electrical device which converts or encodes

a continuous analog signal with a granularity of 5117 into a digital representation with a

finite number of binary bits, N as shown in Figure 2.7. The higher the number of bits, the
more accurate the analog input signal can be represented. As the unit indicates 100 kHz
specifies the rate at which the A/D converter performs the conversion. The most common
performance specifications of an A/D converter are resolution, speed, linearity, and signal-

to-noise ratio (SNR).

00100...01
/\/ > ADC < 00101....00
00110....10
10010....11

Continuous Analog Signal Digital Output

Figure 2.7: Analog-to-digital conversion block.

2.4.3 Characterization

The evaluation of the performance of an A/D converter is very crucial both from.
the circuit design stand point as well as the requirements dictated by a particular applica-
tion of the device. One of the most common tests an A/D converter undergoes is the mea-
surement of its transfer characteristic with respect to a ramp input signal as shown in
Figure 2.8 (i.e. analog voltage in - digital code out). For every analog input signal level,

there exists a corresponding binary representation. Because of the finite number of bits.
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there is a finite granularity in the digital approximation d,, d,, ..., dy_, of the actual ana-

log input signal V.

dO dl dN-l
VIN = VFS(—+§+...+F)+£

- €Q2.1)

Where V¢ = full scale input signal = Max. || £V |
d; = i" digit

€ = deviation of digital output from V;y

X
Signal Transfer
Generator AD N D/A y Curve
-e—p»| Converter +> Converter
t {1 ‘ DUT Ideal y X
Full Scale T
Input Ramp
wck
G rator
— UL

Figure 2.8: Measurement of an A/D converter’s transfer characteristics.

Quantization error is unavoidable when quantizing a continuous signal into a digi-
tal domain. The transfer curve shown in Figure 2.9(a) clearly shows each transition point
of a continuous analog input signal corresponding to each digital output code change. The
transfer curve looks like a stair case with steps at the analog transition points. This is due

to the fact that digital output of a N-bit converter has a finite number of representations

(2V distinct digital codes); whereas, the analog signal is continuous and hence has an infi-

nite number of levels. Two possible ideal transfer curves of a simple 3-bit A/D converter
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are shown in Figure 2.9.

Digital Output Characteristic Digitgl Output
8 Ip e Line 8 K D
o1 | /
(a) Mid-rise (b) Mid-tread
Figure 2.9: The ideal 3-bit ADC transfer curves.

The difference between the two depends on where the origin intersection is. The
transfer curve shown in Figure 2.9(a) is referred to as mid-rise because the origin intersec-
tion occurs in the middle of a vertical transition between 2 different digital codes. On the
other hand, the transfer curve shown in Figure 2.9(b) is referred to as mid-tread because it

intersects the origin in the middle of the tread representing the digital code for zero volts
input. Unlike a mid-rise case which has 2" digital output codes, a mid-tread case has only

2VN-1 possible codes. The rest of the discussion will use the mid-rise transfer curve as an

example.

In reality the transfer curve is affected by many non-idealities contributed by non-
ideal functional blocks. As a result, the transfer curve will have non-uniformly spaced
steps as illustrated in Figure 2.10(b). Let 1 least significant bit (LSB) be the smallest quan-

tization step for an N-bit conversion.

Let the input voltage range be between —V g and V.
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Then the residual voltage can be written as

(Vin- Vdigiral)

Residue = 1iSB (EQ2.3)
dO dl dN— 1

and plotted in Figure 2.10. Notice that the residual voltage for an ideal transfer curve fluc-

tuates between i% LSB (Figure 2.10(a)); whereas, the non-ideal one fluctuates between

+1LSB for this particular transfer characteristic (Figure 2.10(b)).

4 Digital Output 4 Digital Output
n4 o4 n 4 L
b Z
10 | 10 >
+— Vv >V
~Vis 4 01 Vs =V ¥ ~ 01:;"1{.:
7 T > fo

Residue

(a) Ideal (b) Non-ideal
Figure 2.10: Transfer function curves and their residual plots.
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2.43.1 Differential Non-Linearity (DNL)

As mentioned earlier, the voltage difference between two consecutive transition
voltages is the width of a quantization step. For an ideal transfer curve, the quantization

1

steps are all equal to at least :!:2

LSB or 1LSB in an absolute magnitude. For an actual

transfer function curve as shown in Figure 2.11, the quantization steps are not uniform at
all. As a measure of how much the actual quantization step width varies from the ideal
step width of 1 LSB, differential non-linearity (DNL) is defined.

DNL (k) = x(k) — 1LSB (EQ2.5)
Where k = the kP digital code '

k=12..,2Y-1

x (k) = the actual step width of k' digital code

DNL (k) =0 for k=0 and (2N-1)

If x (k) is equal to zero, the corresponding DNL is going to be —1LSB . When this occurs,
we have a missing code. Figure 2.11 shows that digital code 101 is skipped and therefore,
it is missing. For illustration purposes, the DNL plot of transfer function curve shown in

Figure 2.11 is shown in Figure 2.12(a).

2.43.2 Integral Non-Linearity (INL)

Integral non-linearity (INL) for each digital code is defined as the transition volt-
age between a code and the next code minus the input voltage corresponding to this code

obtained from the characteristic line. It can be shown [LEWI87b] that
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Digital Output
¥(6) =1.25LSB
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T LN B R I | B T » "IN
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Figure 2.11: Actual transfer curve and its non-linearity.

k-1
INL (x) = Y DNL (i) (EQ2.6)
i=1
Where k = 1,2,...,2¥-1
INL (0) =0

INL can also be defined as the deviation of the ideal intersection point on the characteristic

line to the actual point, as shown in Figure 2.11.

INL (k+1) =y (k) -%LSB (EQ2.7)

Where y (k) = thehorizontal distance from the beginning

of code k to the ideal characteristic line

Figure 2.12(b) shows the INL plot of the respective DNL plot in Figure 2.12(a) according

to EQ 2.6. The overall linearity of an A/D converter depends on the maximum absolute
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Gain error occurs when a gain block in an A/D converter does not multiply the sig-

4 DNL
1LSB +
V2158 - 100 101 110
0 : 4 Digital
Output
12LSB L 000 001 o010 on
-1LSB +
(a) Differential non-linearity plot
4 INL
1LSB +
VZLSB - 1m0 11 -
utpu
42Lsp L 000 001 010 o011 100 101
-1LSB +
(b) Integral non-linearity plot
Figure 2.12: Non-linearity plots.
magnitude of DNL and INL.
Gain Error

nal by the ideal value. This gain error will affect all the codes by the same percentage. As
a result, the resulting digital code center line slope differs from the ideal one. If the gain is
bigger/smaller than it is supposed to be, the slope is bigger/smaller than the ideal one as

shown in Figure 2.13.

Offset Error

Offset error can be viewed as having an additional input voltage source in the front

of an A/D converter. A detailed explanation of this error will be described in Chapter 3 and
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Figure 2.13: ADC transfer curve with gain error.

Appendix A. Thus, for an input voltage Vjy, the converter will treat it as if V) + V.,

were its input. Thus plotting the transfer curve with respect to the actual input voltage

V,n» the entire curve gets shifted to the right or left (depending on the sign of the offset

voltage) by the exact amount of the magnitude of the offset. As an illustration, Figure 2.14
shows the effect of a positive offset on the transfer curve shown in Figure 2.9(a). Notice

that the linearity and monotonicity of the A/D converter are not affected by the offset.

2.4.4 Signal-To-Noise Ratio

Signal-to-noise ratio (SNR) falls into the dynamic characterization category. It is
an important measurement for communication system performance, even though it is not
always the most accurate standard for performance comparison between two systems. A
typical SNR test configuration is shown in Figure 2.15. The SNR is the ratio of the mean
square peak-to-peak amplitude of a sinusoidal input signal to the smallest quantization
step width. If the full scale peak-to-peak amplitude is 2V then the theoretical limit of
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Figure 2.14: ADC transfer curve with positive offset voltage error.

maximum SNR for ideal A/D converter with zero DNL and INL can be found by the fol-

lowing equations [RABI76]:
Vis
2
MaxSNR = prryeewy
(1LSB)
12

MaxSNR = 1.5(2%Y)

Or in a simplified form:

MaxSNR = 6.02N +1.764B

(EQ2.8)

(EQ2.9)

(EQ2.10)
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Figure 2.15: SNR test set up.

2.4.5 Previous Work
2.4.5.1  Analog Cell Library

In many mixed-signal chips today, standard off-the-shelf analog cells are often
used in order to provide the analog functions needed. Unfortunately, these pre-designed,
hard-coded cells do not offer flexibility of requirements and technological evolution. Cell
libraries are usually optimized to a specific performance for a particular technology. As the
- technology feature size and process parameters change, these cells have to be regenerated
again. To redesign the entire analog cell libraries will be very hard, tedious, error-prone,

time consuming, and last but not least, it will require expert analog designers.

2.4.5.2 Performance-Driven Based on Standard Cells

The idea of analog-to-digital conversion module generation is not new. Allen and
Barton [ALLE86] introduced a silicon compiler for successive approximation (SA) A/D
and D/A converters. The basic approach of the program is a generalization of standard cell
approaches as in digital block design automation by incorporating a family of analog stan-

dard cells. The program takes a set of input specifications such as type of block (ADC or
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DAC), number of bits, maximum tolerable differential non-linearity (DNL), and maxi-
mum tolerable integral non-linearity (INL). It then goes through a topological selection
algorithm by first calculating non-linearity of each converter topology and then selecting
what combination of resistors and capacitors is best to realize the input specifications
while minimizing the passive component area. The non-linearity equations assume a worst
case design. If the specifications cannot be met, it will give the user the best linearity
available. If there exists a topology that meets the specifications, a layout will be gener-
ated. The layout procedure is based on digital placement and routing methods which uses

fixed height of standard cells as well as parameterized cells into a predefined structure.

An analog silicon compiler was developed as a part of the CONCORDE system
[HELMB87]. The compiler is capable of generating successive approximation and serial A/
D converters. The basic approach of this compiler is to use pre-designed analog blocks
such as op-amps and comparators. No effort was made to optimize performance of the

resulting A/D converters since no optimization was carried out. The layout procedure used

many digital tools as such the SSTAR™ state machine compiler to generate the control

logic. Special routines were developed to size the capacitor arrays and switches.

The two A/D conversion module generators described above have similarity in that
they were implemented using standard cell approach. ADC module generators based on
this approach will also have a limited range of sampling rate and resolution. Furthermore,
area and power cannot be optimized with respect to the given specifications. As a result,
the A/D converters generated will not be competitive with manual design. In other words,
a performance-driven module generator based on based standard cells is directed toward

reducing design cycle at the expense of area and performance.
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2.4.6 Methods of Attack

Unlike digital circuits, analog circuits in general require more design freedom in
order to be applied effectively. They often exploit the full spectrum of capabilities exhib-
ited by individual devices. In an analog circuit, the individual devices often have different
sizes and electrical characteristics. These devices require optimization of different perfor-
mance requirements. The importance of each performance requirement will depend on cir-

cuit applications.

For this reason alone, a performance-driven module generator based on design
rules and spice parameters is a better approach. This type of module generators can be
implemented using an expert system approach or a parameterized schematic of known
architecture approach. Examples of expert system implementation for simple analog
blocks such as operational amplifiers (op-amps) and comparators have been presented in
earlier sections. Unfortunately, A/D converter is a much more complex function then op-
amps or comparators. There is no clear way as how to set the rules for this implementation

so that the resulting A/D converters are of any use at all.

A parameterized schematic of known architecture implementation, on the other
hand, is a better approach because it can generate highly-effective circuits based on known
architectures for complex analog functions in a flexible environment by optimizing the
device sizes with respect to various performance measures. [KOH90] and [DEGR87] have

demonstrated the implementation of op-amps and other simple blocks.

Unlike switched-capacitor filter synthesis [YAGU86], [LUCA87], ADC synthesis
does not have a well-defined procedure. The module generation of A/D conversion func-
tions is a particularly difficult problem because of the wide spectrum of resolutions and
sampling rates encountered in real applications, the trade-off between area versus power

dissipation, and component matching requirements for different A/D conversion architec-
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tures. Our approach for the module generation of A/D converters is to focus on techniques
that allow design of circuits with efficiency comparable to the ones manually designed by

skilled designers.

Because of the wide range of parameter spreads in analog integrated circuits, ana-
log designers over the years have developed circuits which cancel out the first order varia-
tions in key parameters. This means, however that the analog circuits then become
sensitive functions of second order variations of such parameters, for example the capaci-
tor ratio matching in a gain of two block. We use many analog circuit design techniques
(such as auto-zeroing circuits [DEGR85], capacitor trimming array [OHAR87], fully dif-
ferential architecture, or even specifically designed 2-comparator scheme [JUSU90b]) to
further reduce or overcome these second order effects so that the module generation pro-

cedures can be simplified.

The overall implementation flowchart of our A/D conversion module generator is
shown in Figure 2.15. The module generation will be divided into three major tasks: archi-
tecture selection, netlist generation, and layout generation. The flowchart shows other
supporting inputs needed to carry out the job. Details explanation will be presented in
Chapter 3, 4, and 5 of this thesis.

2.5 Summary

In summary, analog block generation is the bottleneck of the turn around time of-
mixed signal chips. While analog standard cell libraries will give short term solution, they
do not offer flexibility to the change in technology feature size. On the other hand, perfor-
mance-driven analog block module generator based on design rules and spice parameters

will provide a long term solution. Since ADC functions are the most common analog
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Figure 2.16: Overall ADC module generator flowchart.

blocks in mixed signal chips, we chose to study the implementation of ADC module gen-

erator.




CHAPTER 3 ADC Architectures
Suitable for
Automatic
Compilation

3.1 Introduction

For A/D conversion functions, the realm of required performance maps into four
distinct classes of realizations spanning the conversion rate spectrum (integrating, over-
sampling, successive approximation, and flash/pipeline architectures) and two distinct
regions of accuracy or linearity (less than 10 bits and greater than 10 bits). Each of these
requires a different implementation in order to be reasonably competitive with hand-
crafted designs in terms of power dissipation and silicon area. Therefore, if not carefully
planned, the generation of A/D conversion module generators will require the generation

of an extremely large number of such module generators.

In the next section, five different ADC architectures (serial, successive approxima-
tion, flash, pipelined, and oversampling) will be briefly discussed. We will then point out
the desired properties of ADC architecture from the module generation point of view.
Finally, we will present an improved algorithmic A/D converter specifically designed to be

implemented into our ADC module generator.

33



ADC Architectures Suitable for Automatic Compilation

3.2 A/D Conversion Architectures

3.2.1 Serial A/D Conversion Technique

The serial A/D conversion technique has been used for many years. There are
many different implementations of this technique such as dual slope, quad slope, charge
balancing, voltage-frequency conversion, and others. Just to illustrate the idea, a ramp
run-up implementation is shown in Figure 3.1. The basic operation of this implementation
is as followed. When the start signal is high indicating the start of conversion, the ramp

generator will start generating a ramp voltage Vg, ,p. Vp4yp is then being compared to
the input voltage, V,y and the ground using two comparators: CMP1 and CMP2. As long
as Vpaymp is larger than V;y the counter will keep on incrementing its value. When
Vraup is equal to or a little larger than V, at time ¢, the counter will stop incrementing

and the ramp generator will stop ramping. The content of the counter will then be the dig-

ital representation of the analog input voltage.

The advantages of serial A/D conversion technique are that the implementation is
very simple, the results - .aherently monotonic, and linearity is independent of compo-
~ nent matching. Unioii....ately, this technique is very slow. As the number of resolution
increases, the number of clock cycles per conversion increases exponentially as 2V, where
N is the number of bits desired. As a result, this technique is usually used in low frequency

(10 to 100 Hz) applications such as general purpose digital volt meters (DMV’s) and very

low cost instruments.

3.2.2 Successive Approximation A/D Conversion Technique

The successive approximation (SA) A/D conversion technique is one of the most

commonly used technique to implement A/D converters often used to interface analog sig-
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Figure 3.1: Ramp run-up A/D converter.

nals at voiceband and above with computer peripherals such as modems. The basic opera-

tion is to do binary search through N voltage levels by using a precision digital to analog
converter (DAC). A simple SA A/D converter consists several basic building blocks (Fig-
ure 3.2(a)) such as comparator, digital to analog converter (DAC), control logic, and shift

registers for the output codes.

At the start of a conversion, all the registers will be clear and the output of the

DAC will have zero voltage. At the first cycle, the most significant bit will be determined
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Figure 3.2: Successive approximation A/D converter.

first by comparing the input voltage V,y to Vp, . If V, is larger than Vj, - then the

comparator output will output a “1” or else “‘0”. The output of the comparator is then fed
into the control logic to determine if the digital output is zero or one. This digital output

gets stored into the shift register which generates the digital code needed for the DAC to
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do the binary search. At every iteration, 1 bit of digital code is obtained. Thus the opera-
tion is repeated N times to get N bits. Figure 3.2(b) illustrates what the DAC output level

during the conversion for a 4-bit example.

This type of converter can give fairly high resolution and moderate conversion
speed (10-100 kHz) since the conversion time is fixed and linearly increases as a the reso-
lution requirement increases. Moreover, the speed is independent of input voltage and pre-

vious result. In the example above, we are assuming that the input voltage V,y varies very

slowly and noise disturbance is low to cause significant error in the conversion. If this is
not true, then a sample and hold function is needed to sample and hold the input voltage

until the conversion is completed.

As mentioned above, the advantages of this particular A/D conversion technique
are that it converts in N clock period where N is the number of desired bits and its building
block is very simple. Unfortunately, the accuracy, linearity, and speed are affected by the

DAC, Vypzr, and comparator. For N-bit resolution, the DAC requires component to match

1 VREF 1
to — and the comparator offset voltage cannot exceed N+ for =

N N 3 LSB linearity. Exam-

ples of this technique are the traditional DAC-based [MCCR75] and algorithmic
[OHARS87] A/D converters.

3.2.3 Parallel A/D Conversion Technique

The parallel A/D converter, commonly known as flash A/D converter, is capable of
converting in the shortest among different A/D conversion techniques. This type of con-
verters is used mainly in video and radar processing with low resolution (up to 9 bits) and
very high speed (10 MHz - 4 GHz). Figure 3.3 shows a 3-bit flash ADC block diagram

with a resistive-DAC. The basic operation is as follows. An input voltage V;y will be
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compared to a bank of comparators that are tapped to a resistive-DAC for their threshold

voltages. For a 3-bit resolution, usually it needs approximately 2> — 1 comparators as

shown in Figure 3.3. The outputs of the comparators are then got encoded to get 3 bit dig-

ital output codes.

The obvious advantage of this approach is that no clock is needed to do the conver-
sion and the conversion speed is limited by how fast can the comparators and digital cir-
cuitry switch. Uniortunately, this type of implementation is very costly. As the number

resolution increases the hardware requirement and area increases exponentially. For exam-

ple for a 9-bit A/D converter will need 22-1 comparators with offset voltage of less than

VRE F

P and resistor string to match to 0.1%. Over the years different implementations have

been proposed to reduce the area penalty of this type of converter such as two-step flash
[DOERS88] and pipelining several stages of fewer bit of flash converter to obtain the
desired resolution [LEWI87].

3.24 Pipelined iwversion Technique

The pipelined A/D conversion technique employs multi stages of A/D converter
block to do the conversion concurrently. Each stage consists of a sample and hold block
(S/H), an A/D converter, DAC, summer (Z ), and a gain block (G) as shown in Figure
3.4. The input voltage V;y is sampled onto the S/H and is held while the first stage is
doing the conversion of nl bit digital output. The resulting digital output is then passed
onto the DAC to generate a quantized voltage of the input signal which will be subtracted
from the held input signal. The residual is then amplified and passed on to the next stage.

While the next stage is converting this residual voltage, the first stage is sampling a new

input voltage. The resulting digital output from all stages will be accumulated and passed
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Figure 3.3: 3-bit parallel A/D converter.

out together. Therefore, each conversion can be done within one clock period. As a result,
the conversion speed is much faster than the SA and serial A/D conversion techniques and

almost as fast as the flash A/D conversion technique.

The big advantage of pipelining is that much less hardware is needed to achieve
the same throughput as flash. This is true when the number of bit is greater than 6 bit or

else the overhead cost of doing pipeline stages is not worthy. Another advantage is that
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Figure 3.4: 3-stage pipeline A/D converter.

digital correction and self-calibration can be applied so that high precision comparators
are not required. It turns out that depending on the number of bits desired, there is an opti-
mum number of bits per stage [LEWI87b]. The major disadvantage is t+ it it requires fairly
fast analog inter-stage proces: - and a sample and hold function to hold the analog sig-

nal.

3.2.5 Oversampled A/D Conversion Technique

Unlike the A/D conversion techniques described earlier, oversampled A/D convert-
crs operate at non-Nyquist sampling rate (i.e. sampling at well above the Nyquist rate).
The ratio of the sampling frequency to the Nyquist rate is commonly calledvoversampling
ratio. The basic idea of this technique is to quantize an analog signal coarsely at a sam-
pling rate much higher than the Nyquist rate of the signal. A filter in a feedback configura-

tion is arranged to spread out the quantization noise in the entire frequency band. The
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resulting coarse digital output is then passed through a digital processing block (decima-
tion filter) to obtain more accurate digital representation of the given analog signal and

therefore, filtering the out of band quantization noise.

One implementation of oversampled A/D converter is a 1-bit sigma-delta modula-
tor shown in Figure 3.5. It consists of a summer, an integrator, a 1-bit quantizer, and a 1-bit

D/A converter in a feedback loop and a decimation filter. The input voltage V;y (kT) is

subtracted by the quantized analog voltage Vp, - (kT) and then integrated by the integra-

tor. The integrated difference is then quantized by a comparator to give a logic *“1” or “0”.
This digital output is then fed back into the DAC to generate the new DAC voltage. If the
DAC is an ideal DAC, the error at the input to the integrator would be equal to the quanti-
zation error. Since the modulator is running at a much higher frequency than the Nyquist
rate, the quantization error will depend on the oversampling ratio. Thus, the resolution of
oversampled A/D converter will depend on the oversampling ratio. For example, sampling

at two times the Nyquist rate will increase the SNR by 3 dB which translates roughly to an

increase of % LSB in overall accuracy [CANDS81). The final digital output can be obtained

by feeding the digital output of the 1-bit quantizer into a decimation filter.

The big advantage of this approach is that component matching can be relaxed
while maintaining linearity since a simple comparator can be used as the quantizer. The
anti-aliasing filter needed at the front-end of the modulator can be implemented much
cheaper since the transition band of the filter can be much wider than the one for Nyquist
rate A/D converters. Furthermore, the majority of the building blocks can be implemented
digitally so that integrating both the converter and the digital signal processing on to a sin-
gle chip is very easy and cheap in CMOS technology.

Unfortunately, this technique has a lower throughput and consumes more area (due
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Figure 3.5: 1-bit ZA modulator.

to extra digital processing block) than the successive approximation (SA) approach. As the
conversion speed is getting faster, the sampling clock requirement becomes extremely
high making it difficult to generate. There have been a great interest from the academics as
well as commercial laboratories to produce high resolution A/D converters using this par-

ticular technigue. Effort to improve the quantization noise reduction in the baseband in
order to minimize oversampling ratio has led to using higher order modulators such as 229
[CANDS5], 3™ [MATS87], 4® [OPTE91], or even 5% order £A modulators. As technol-

ogy feature size scales down, these higher order implementations become more economi-
cal due to higher density bringing this type of converter performance approaches those of
SA.

3.3 Architecture Comparison

The five A/D conversion techniques can be summarized as follows. For a low fre-
quency spectrum, the serial technique is very suitable. This technique is usually used for

very low speed applications such as the digital multimeter (DMM). For low to mid fre-




Architecture Canpnrison

quency range, A/D converters are usually implemented using oversampled or successive
approximation techniques. These types of A/D converters are usually used for voiceband
and peripheral data acquisition products. At the very high frequency range, two tech-
niques: pipeline and flash are commonly used. These types of A/D converters are very
suitable for video application products. The summary of different ADC techniques and

their possible applications are shown in Figure 3.6.

Low Frequency <N D c°""°"°>'s High Frequency
. \ / Flash :
% Video
Oversampling : Pipeline :
Voice bang ' Video
Successive Approximation :
peripheral data acquisition

Algorithmic DAC Based

Figure 3.6: Analog to digital conversion techniques.

The requirements of each technique are different in that each one has its own
advantages over the other. For example, if we compare the number of bits versus the num-
ber of clock cycles needed to do the conversion, the serial A/D conversion technique -
requires the most number of clock cycles as the resolution increases. The number of clock
cycles needed increases exponentially with exponential constant of N where N is the num-

ber of bits. For a second order sigma delta modulator, the number of clock cycles per con-

version can be approximated to be 2(4¥*D "For successive approximation technique,

the number of clock cycles needed grows linearly as the number of resolution increases.

43



" ADC Architectures Suitable for Awtomatic Compilation

Finally, for pipelined and flash techniques, the number of clock cycles stays constant inde-
pendent of the number of resolution. Figure 3.7 compares the number of clock cycles

needed versus the number of resolution for the five A/D conversion techniques.

Referring back to Figure 3.7, the pipelined and flash A/D conversion techniques
are capable of the fastest conversion and the serial one is the slowest. However, there is
trade-off among these techniques, in that the pipelined and flash techniques require high
precision and more hardv -re requirements than . successive approximation technique.
As we move from the bot:  of the chart, the serial technique requires the least hardware
and the least precision requirements; whereas, the flash technique requires the most hard-
ware and the highest precision of them all. In other words, all the techniques mentioned
above complement each other. Therefore, in order to make a complete ADC module gen-

erator, one has to cover all possible spectrum of frequency and resolution.

# Less Hard y
100000 3— Loss Precision

? Requirements

10000

c ] \Serlal -2 N

4 1000 — ®Lnd Sigma Delta

¢ _ / g 04N +1)

k 1 w 1 Rt ~

c ’ | I o Succ. Approx ~ N

y 10 et Pipeline & Flash

| e’ l / ~ constant

e 1 » S —

* 0 2 4 6 8 10 12 # of bits

Figure 3.7: Analog to digital conversion technique throughput rate comparison.
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3.4 Desired Properties

As mentioned before, the number of required A/D conversion module generators
can be reduced by careful selection of the architectural approach. For example, the use of
binary-weighted capacitor approach [ALLE86] requires a complex self-calibration con-
troller be added to the module for resolution above 10 bits. The technique also does not
scale gracefully to video speed or to very high resolution. In contrast, the use of oversam-
pled techniques [HAUSS85], [BOSES88] at the low speed end, digitally corrected algorith-
mic technique in the mid-range [OHARS87], [JiI SU90b], and the pipelined technique at the
high speed end [LEWI87] potentially allows spanning of the entire speed spectrum with
basic elements based on the same basic differential switched-capacitor integrator or ampli-

fier block.

The research described here is aimed at the implementation of A/D converters in
the mid-range frequency. We chose to study an algorithmic implementation and specifi-
cally have developed an improved version of it that lends itself to automatic generation.
Details of the improved algorithmic A/D converter will be presented in the next section.

The primary advantages of this particular converter implementation are:
« It is very area-efficient compared to other ADC approaches

o The trade-off between conversion rate and power can be made in a relatively
straight forward way by varying the bias currents and device sizes in the active
circuitry (such as comparators and operational amplifiers). The same comment

applies to area since area and power couple very closely.
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* The trade-off between resolution and area can be made in a straight forward

way by scaling up/down the capacitor sizes to achieve the required % noise

level and by adding the auto-calibration module if required.

* The linearity of the converter is dependent on only one parameter that can be
easily adapted to satisfy requirements above 10 bits by adding a small module
for self-calibration, poly fuse trim or EPROM trim.

o The technique uses a small amount of total capacitance which means that in
single-poly technology, metal-poly capacitors can be used without a devastat-

ing area impact.
o It has an integral sample and hold function.

* The particular type of digital correction used allows the converter to achieve

inherent monotonicity at high resolution without the need of trimming.
The properties mentioned above prove to be very important in that they simplify the

implementation of the circ:- ¢neration presented in Chapter 4.

3.5 An Improved Algorithmic A/D
Converter

In the rest of this chapter, we will discuss briefly the operation of an algorithmic A/
D converter, its limitations, and solutions leading to an improved algorithmic A/D con-
verter that is capable of converting at higher clock rate and insensitive to comparator off-
set voltages. Detailed discussion of the circuit implementation of the entire A/D converter

can be found in Appendix A.
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3.5.1 Algorithmic A/D Converter

The algorithmic A/D conversion technique is one way of implementing a succes-
sive approximation approach. The basic concept of an algorithmic A/D converter is to
repetitively perform an operation on the signal in which the signal is compared to a set of
references (usually one or two), and from that a coarse quantization decision is made.
Then the analog voltage corresponding to that encoded level is subtracted from the signal,
and the remainder is amplified and held. That remainder then becomes the new input sig-
nal to the block, and the entire operation is performed over again on the remainder. That
process is repeated repetitively (algorithmically) until the AID‘ conversion is complete.
Usually one bit is resolved on each pass through the process. A Simpliﬁed algorithmic
ADC block diagram shown in Figure 3.8 consists of a sample and hold (S/H) function, a
gain of two (2X) block, a summer, a comparator, and digital circuitry to store the result as

well as controlling the switches. The operation of the A/D converter is as follows:

At the first iteration, an analog input voltage V, is sampled onto the S/H block by
connecting switch S, to the input node. The sampled voltage is then held by the S/H block
and multiplied by two by the 2X block. The multiplied voltage V,, is then compared to the
reference voltage Vppp. If V), is larger than Vppr, the comparator will output a logic “1”
and switch S, will be connected 10 Vg, subtracting V), by the same amount. If V,, is
less than Vggp, the comparator will output logic “0”, switch S, will be connected to

ground, and V,, will be passed without any substraction. The resulting voltage V, is then

recirculated again through the same procedure until the desired number of bits is obtained.

The entire conversion can be represented analytically as follows:
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Figure 3.8: Algorithmic ADC block diagram.

From EQ. 3.8, we can obtain the lower and upper limits for the quantization error:

Veer Veer
-2N+1<8N< 2N+l (EQ3.9)

As long as &, is within this limit, the conversion result is guaranteed to have no missing

code. In summary, EQ. 3.8 describes how an analog signal is represented in an algorithmic

A/D conversion.

In spite of having many advantages as mentioned before, this particular implemen-
tations have many limitations. These limitations and their possible solutions are tabulated
in TABLE 3-1. Two of the limitations: moderate speed and comparator offset voltage have
question marks on the entries representing no acceptable solutions. In the rest of this sec-
tion, we will discuss in great detail how to improve the conversion speed and how to avoid
using high-precision comparators. Detailed derivations of all other limitations and solu-

tions are presented in Appendix A.
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TABLE 3-1 Algorithmic ADC limitations and solutions.

Limitations Solutions
Need an accurate gain of two:
-> finite op-amp gain Folded cascode or telescopic architectures
-> capacitor ratio matching Trim array or calibration

Moderate speed (3 clock cycles/bit) | 22?

Sensitive to loop offset:

-> op-amps Arrn-zero circuit
-> switches C.. )S switches and fully differential arch.
-> comparators 7?

3.5.2 Speed Improvement Solution

All of algorithmic A/D converters previously reported in the literature [LI84),
[SHIHS85], [ONOD88], [OHAR87] require on average 3 clock cycles or more to resolve 1
bit. As a result, this type of implementation is capable of resolving signals of only moder-
ate frequency. Let us analyze the conversion sequence of a typical algorithmic converter

as shown in Figure 3.9. During voltage acquisition Figure 3.9(a), input voltage V,,, at the
very first cycle or residual voltage Vp ¢ in the remaining cycles is sampled on to the sam-
pling capacitor Cg,. During this period, the op-amp of the gain of two is idling and the S/
-H block is holding the residual voltage. In the second phase (Figure 3.9(b)), the 2X block
is used as a pre-amplifier for the latch and a decision bit is generated. At this time, the S/H
is being reset by discharging its sampling capacitor Cg,. Notice that the op-amp of the S/
H block is idling during this period. Finally, in the third period the residual voltage is gen-
erated and sampled on to C, for the next bit conversion as shown in Figure 3.9(c). The

three operations get repeated N times for N resolution.

From Figure 3.9, we observe that some of the functions are idling during the con-

version. By simply adding an extra S/H block, all the blocks can be fully utilized during
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Cs1 =26 Ch=0¢

(a) Acquiring residual/input voltage mode

Cq =2C Cpy = C,
v 1 L1} 1 Il 1 mLE
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H
® = Co =C
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= 2C,
v, IDLE
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(c) Generating Residual voltage

Figure 3.9: Clocking schemes of a conventional algorithmic A/D Converter.
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the conversion cycle. The idea is basically to time multiplex two S/H blocks so that the 2X
block will never idle during the conversion. Shown in Figure 3.10 is a simplified version
of how these blocks are connected to realize the proposed algorithmic A/D converter. The
detailed clocking schemes of the proposed algorithmic A/D converter is shown in Figure
3.11. The operation of this proposed ADC is as follows:

—e .
X—S/H

1 1

Sampling
ViTy)
Figure 3.10: Time-multiplexed algorithmic A/D converter.

+ Mode 1: ¢ = HIGH in the first cycle and LOW for the rest of the conver-
sion. &, = HIGH and ®, = LOW. During this period as illustrated in Fig-
ure 3.11(a), the residual voltage V, ; is sampled on to the S/H-1 block, while

the S/H-2 and 2X blocks are in the hold and multiplication modes respectively
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for V, ;_,. The reference voltage Vppp will be added, subtracted or passed

depending on the bit decision from the previous conversion. For the very first

cycle, the S/H-1 block will sample V,y, while the rest of the blocks are in the

initialization or reset mode.

o Mode2: &; = &, = &, = LOW. During in this period illustrated in Figure
3.11(b), the amplified residual voltage V, ;_, is compared with Vpr to deter-

mine the current bit. The result will be stored in a register and used as control

signals for the reference subtraction circuits.

* Mode 3: &, = &, = LOW and ®, = HIGH. During this period illustrated

in Figure 3.11(c), all the blocks experience the same tasks as during mode 1
except that S/H-1 is doing the holding for V ; and S/H-2 is doing the sampling

for V&Hl

e Mode 4: &; = &, = ®, = LOW. This period is exactly the same as mode
2.
The conversion continue by repeating modes 1 to 3 until the desired number of bits is

obtained. Notice that there is no block that is idle through out the conversion cycles. At the

positive edge of every clock (either @, or ®,), one bit will be resolved. Thus the pro-
posed algorithmic A/D converter is capable of resolving 2 bit per one clock cycle of @, or
®,. We would like to call it a 1-bit/cycle algorithmic A/D converter because in order to
generate two non-overlap clock @, and @, of period T, two periods of the master clock

are needed. Figure 3.12 shows the complete time division of this 1-bit/cycle algorithmic
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Figure 3.11: Clocking schemes of the proposed algorithmic A/D converter.
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A/D converter converting an input signal into 8 digital bits. We can now fill in the solution
of moderate speed limitation in TABLE 3-1 with this improved algorithmic ADC architec-
ture.

KOOOOOE

th 4, b, & th  ts  tg b t3/5
B Sampling Holding [X Don’tcare [ Reset [] Multiplying [j Latch

Figure 3.12: Complete time division for 8-bit conversion.

3.5.3 Comparator Offset Solution

The overall linearity of an algorithmic A/D converter depends not only on the gain
of two accuracy but also on the performance of the comparator used. Offset voltage of
comparator which is due to device mismatch and process variation in particular affects
directly to the overall linearity of the converter. A comparator with an offset voltage V¢
can be modelled as an ideal comparator in series with a voltage source of V,, 5 as shown in
Figure 3.13(a). The transfer characteristic of the comparator output with respect to the
given input voltage V, is shown in Figure 3.13(b). For ideal comparator, the transfer

curve is a solid line with zero crossing at V;y = 0.If V3> 0 the zero crossing will shift

to right as shown in Figure 3.13(b) by a dashed-line.
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Vour
I
Vos 6619,
Vi out R
(a) Ideal comparator + of"*~* voltage model (b) Outpﬁt transfer function
Figur.  3: Comparator with offse: voltage.

If the offset voltage of the comparator exceeds 1 LSB of the converter, a wrong
digital output will be obtained. Figure 3.14 illustrates the effect of offset voltage to the

residual voltage. If the comparator is ideal, ramping the input voltage Viy from =V to
Vrer Will yield a residual plot shown by solid line in Figure 3.14(b). Let us assume that

the comparator has finite offset voltage either positive or negative then the output transfer
curve will be shifted to the right or left as shown by the shaded region in Figure 3.14(a). In
turn, the zero crossing of the residual will also get shifted to the right or left (represented
by shaded region in Figure 3.14(b)). As a result, the residual voltage will exceed the input
conversion range of the next conversion cycle. If the amount of over-range voltage

“exceeds 1 LSB, it will saturate the next bit conversion and produce missing codes.

There are éeveral ways to solve the comparator offset error. The first one is to
| design comparators with small enough offset [SO085], [SAULS82), [ALLS82]. Often such
a comparator requires complicated circuitry and consumes fairly large area. The second
one is to store the comparator offset in a capacitor before the comparison cycle
[DOERS8], [YUKASS5]. The solutions mentioned above are suitable for a manual design
in which one just has to design a comparator for a particular set of specifications. Since
our goal is to generate a wide range of A/D converters, it will be very desirable if we can

use a simple comparator circuit for different specifications so that we can simplify the
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Input
conversion
range of
the next
cycle

(a) Output transfer curve (b) Residual voltage plot

Figure 3.14: Comparator characteristic and its residual voltage.

implementation of automatic ADC circuit generation. We have designed a 2-comparator
scheme with digital error correction circuit to enable us to use low precision comparators

making it very desirable for automatic as well as manual design of A/D converters.

3.5.3.1 Two-Comparator Scheme and Digital Error Correction

As mentioned earlier, the residual voltage may saturate the next bit conversion and
produce missing codes if it is too large. But if the conversion range of the next stage is
increased to allow larger residual voltages, the results are decoded and the errors are cor-
rected, comparator offset requirements can be relaxed or even ignored. This concept is

called digital error correction [LEWI87] and was first introduced by [HORN72].

Borrowing this idea, we propose a two-comparator scheme with digital error cor-
rection to take care of the comparator offset. With a one-comparator scheme, the residual
voltage will fall into 2 regions and will have characteristic curve according to these two

equations.
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Region 1: if V20 then residue = 2 (V,,

Region 2: if V<0 then residue = 2(V,, +

VREF

2

Verer

2

(EQ3.10)

(EQ3.11)

Thus, any offset voltage from this comparator will saturate the input conversion of the

next cycle.

With a two-comparator s.  .e, for every cycle, one and a half bits are resolved

and only one bit is stored. The residual voltage, thus, has three possible regions to reside

instead of two. Figure 3.15 illustrates how the two comparators are connected and the

respective transfer function characteristic with £V as their threshold voltages.

4
» Vin
vt |
‘ 'y ?Vt
» Vin
Vin C1 C2 |Bit | Residue | DEC
Vin SVt |1 0]-1 |2vin+ Vret
Vt<Vin <Vt| 1 1] 0 2Vin N
Vin2vt |o 1 2Vin-Vref| N
Figure 3.15: Two comparator scheme.
Region 1: if V< V. then residue = 2V,y+ Voo (EQ3.12)
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Region 2: if -V <V, < V. then residue = 2V, (EQ3.13)
Region 3: if V;y 2 V. then residue = 2V, - Veer (EQ3.14)
To ensure that the residual voltage is within £V, Vy has to be between 0 and R2EF
V
Let Vp = % . The comparator transfer function characteristic and the residual voltage

plots are shown in Figure 3.16. Let V5, and V¢, be the offsets of comparators one and
two respectively. For V5, = V¢, = 0, the ideal residual voltage plot is shown in Fig-

ure 3.16(a). However, if the first and the second comparators have positive offsets

(Vos1>0 and V¢, > 0), the residual voltage will saturate the input conversion range of

the next cycle as shown in Figure 3.16(b). On the other hand, if the both comparators have

: , ~Vrer Veer .
negative offsets (V 5, < 0and V5, < 0), the residual voltage for 5 < Vi< 5 is
Vrer

always within the boundary of Vrer as shown in Figure 3.16(c). Obviously, V, = —5—

is not a good choice.

If V; = 0, then having two comparators are redundant, since the residual voliage

characteristic is exactly the same as one comparator case shown in Figure 3.14(b). It turns

V,
out that choosing V. = REF gives the maximum allowable comparator offset which is
VREF
iT as shown in Figure 3.17. Placing comparator threshold voltages at i—4— is sim-

ilar to introduce intentional offsets in the comparators and subsequently correct the error

by digital circuit. If the comparators have offsets, the residual voltage will always be
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Figure 3.16: Transfer function curves and residual plots for different offset voltages.
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within the input conversion range of the next cycle as long as the offsets are within

-VREF

VreF
<Vosi Vos2 < ——

Input ramp Input

=Vrer

Vour TResidue

conversion
V,y rangeof

the next

cycle

Figure 3.17: Optimum threshold voltage placement.

By having such a large range of allowable comparator offsets, no high precision

comparators are needed with this 2-comparator scheme. The only penalty is the require-

ment of an additional digital error correction circuit to correct the error; fortunately, this

digital error correction circuit is very simple. It will be shown in Appendix A that the digi-

tal error correction circuit consists only of simple adders and multiplexers. The conversion

algorithm for the N-bit conversion with digital error correction is as follows:

o At the beginning of the conversion, the sign is always assumed positive i.e.

dy = 1 (d, = MSB)

« The rest of the conversion is to resolve the remaining N-1 bits. Each subse-

quent cycle, the comparator outputs, C1C2, are decoded to obtain the current
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bit, reference subtraction control signals, and correction information. The

decoding and correcting decisions are as follows:

-If V, isin region 3 i.e. C1C2 =01, then the current bit is “1”.
-If Vy is inregion 2 i.e. C1C2 = 11, then the current bit is “0”.

-If V) isinregion 1 i.e. C1C2 = 10, then the current bit is “1” but the ear-
lier conversion bits are 1 bit too large. Therefore, the earlier conver-
sion bits need to be subtracted by or- .

To verify the 2-comparator scheme, two examples of a 3-b.. .,nversion will be derived.

2V,
Let N =3 bits, Vppp = 2 volts. 1 LSB = szF = 0.5 volts and comparator thresholds
VREF 1y g le has an input voltage Vi = - Vggp. Th d digi
are at —— . The first example has an input voltage V;y = — Vpzr. The expected digi-

16
tal output code and the conversion cycles are illustrated in Figure 3.18(a). Notice that in
this example no digital error correction is needed. The second example has an input volt-

age V,y = I—?VREF. The expected digital output code and the conversion cycles are

shown in Figure 3.18(b). For this particular example, digital error correction is needed.
Clearly, the resulting digital outputs of the two examples above agree with the expected

digital output codes.

3.5.4 Proposed 1-Bit/Cycle Algorithmic A/D Converter

Combining the new algorithmic conversion concept and the 2-comparator scheme
introduced in section 3.5.2 and section 3.5.3, a I-bit/cycle algorithmic A/D converter with-
out high precision comparators is proposed. This improved architecture will not only
yield a higher conversion rate but will also allow the designer to use simple comparators.
The block diagram of this proposed architecture is shown in Figure 3.19. The detailed

implementation issues of each functional block can be found in Appendix A. We can now
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o1 Cycle 2 : Residue = 2x3/16 Vref = 3/8 Vref
Reglon 3.

010 d2=1

001 Subtract by Vref 110 |1

——— Vref
-1 05 O 0.5 1
Vin = 3/16 Vref
(a) No digital error correction is needed
Digital Outputs
3
11 ] dodt d2
110 Initially : I-1-1
cle 1 : Resldue = -9/16 Vret
101 - cy g:glo{‘ 1
==
100+ Add residue by Vref
0117 Cyclo 2: Residue = {2 (-0/16) +1} Vref
- =«1/8 Vref
010 gggl%n 2
001 Vin_ Pass the residue
Vret
Vin = -8/16 Vref
(b) Digital error correction is needed
Figure 3.18: Conversion cycle examples.

fill in the question inark entries of TABLE 3-1 with the solutions described above. TABLE

3-2 tabulates a complete algorithmic ADC limitations and solutions.
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Figure 3.19: Proposed 1-bit/cycle algorithmic A/D conversion architecture.

3.6 Summary

In this chapter, a brief discussion about architectural study has been presented. Dif-
ferent A/D conversion architectures with their advantages and disadvantages are com-
pared. In order to limit the number of module generators needed, careful selection of A/D
conversion architecture is very crucial. As the first implementation, we have focused on an
algorithmic A/D conversion implementation. A new improved algorithmic A/D converter

has been implemented in order to broaden the spectrum resolution as well as conversion
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rate. This algorithmic A/D converter is capable of converting signal at three times faster
than the conventional one. With the use of two-comparator scheme, low precision compar-
ator block can be used for a wide range of resolution and conversion rates. With these
extra properties, the improved algorithmic A/D converter fits nicely for the automatic
module generation. In the next two chapter, a detailed discussion of automatic netlist and

layout generation will be presented.

TABLE 3-2 Complete limitations and solutions of algorithmic A/D converter.

Limitations Solutions
Need an accurate gain of two:
-> finite op-amp gain Folded cascode, telescopic, etc. arch.
-> capacitor ratio matching Trim array or calibration

Moderate speed (3 clock cycles/bit) | Time multiplexed 2 S/H blocks

Sensitive to loop offset:

-> op-amps Auto-zero circuit

-> switches CMOS switches and fully differential arch.

-> comparators 2-comparator scheme + digital error correc-
tion
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CHAPTER 4 ADC Circuit
Generation

4.1 Introduction

In section 2.4.4, we have discussed that the parameterized schematic of known
architecture circuit generation is a better approach because it can generate highly-effective
circuits based on known architectures for complex analog functions through optimization
of device sizes with respect to various performance measures. In this chapter, the auto-
matic generation of ADC netlist generation based on this approach will be discussed. The
overall flowchart of the module generation is again shown in Figure 4.1. The discussion
will be formatted as follows. First the architectural selection process and different circuit
synthesis approaches will be discussed. The implementation of the chosen circuit synthe-

sis approach will then be presented in depth.

4.2 Architectural Selection

In section 3.4, we have listed the desired properties for an ADC technique to be

considered a candidate of a building block in a module generator. We also mentioned that
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Figure 4.1: Overall ADC module generation flowchart.

as the first step we decided to concentrate on an ADC implementation in the mid fre-
quency range. We have chosen and specifically designed an algorithmic ADC as our first
building block in the module generator. Since this is the only available ADC topology,
architectural selection routine has not been implemented. In order to complete the discus-

sion, we will describe what could and should be carried out during this selection process.

The main function of an architecmfal selection step is to determine which ADC
architecture is the most suitable to be generated first for a given set of specifications. This
step is carried out in order to speed up the ADC generation without having to try out every
possible ADC block in the database. This selection process can be done by pruning
through sets of rules, previous runs of the module generator, exhaustive search through all

existing ADC architectures in the database, or combination of all the above.

Let us assume that we have 5 different ADC architectures (serial, sigma delta,

cyclic, pipelined, and flash) stored in the database. From the most common ADC specifi-
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cations: resolution, conversion frequency, area, and power dissipation, a selection tree can
be built. Based on resolution, a set of sub-trees can be obtained by classifying the 5 ADC’s
into low (< 6 bits), medium ( 6 < resdlution < 12 bits), and high ( 2 12 bits). For each
of this branch, 3 sets of similar trees can be also be built based on speed, power dissipa-
tion, and area. As an illustration, a selection tree for the 5 ADC'’s is shown in Figure 4.2.
The low, medium, and high specification cut-off can be chosen for a specific CMOS tech-
nology by generating different ADC’s with different specifications.

~ RESOLUTION

— | —_
Low Medium High

I 1
(" seeep ) [ SPEED N\ ( seEep )

Low Medium High Low Medium High Low Medium High

Se!'ial Cy'clic Flalsh Se!'ial Cylclic Flelsh Se!ia] Cylclic Flzlsh
ZA Pipelined ZA Pipelined

POWER POWER POWER

Low Medl \l-ﬁgh | Low Me!iium gh Low Mellium gh

I I l. 7_J I l. I I
Serial Cyclic Flash Serial A Flash Serial ZA  Flash
y Pipelined

Cyclic Pipelined Cyclic
Low/ Me!lium gh Low/ Medl Lo|w M;d; }gh
l. | I l.
Serial Cyclic Flash Serial Pxpelmed Serial A Flash
\ ’ /J \Cyclic Qchc Pipelined )

. Figure 4.2: An example of selection tree.
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For example, given the four specifications, we can narrow the ADC architecture

choices by traversing the tree.

Example 1: a 12-bit, low-power, low-speed, and small area ADC is requested.
12-bit (High resolution) -> serial, cyclic, sigma delta, pipelined
Low-power -> serial, cyclic
Low-spe: .. -> serial, sigma delta
Small area -> serial, cyclic
Selection rank: serial(3), cyclic(2), sigma-delta(1)

Example 2: a 8-bit, medium-power, high-speed, small area ADC
8-bit (Med. resolution): -> serial, cyclic, sigma delta, pipelined, flash
Medium-power -> sigma-delta, pipelined
High-speed ->fl:  ~ipelined
Small-area -> scrial, cyclic
Selection rank: pipelined(2), cyclic(1), sigma-delta(1), flash(1), serial(1).

For the first and second examples, serial and pipelined ADC’s respectively seems to be the

best candidates to be generated first.

Another way to do the selection process is by using simulators such as behavioral
simulator. But complex processes need to be included with this procedure in order to

extract information from the simulation results. A priory information regarding the behav-
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ior of subblock used inside each ADC has to be known or characterized in order to predict

the feasibility of the given specifications. The selection process using behavioral simulator

is illustrated in Figure 4.3.
( Input Spec. ) Description of Serial ADC
Description of Oversampled ADC )
Architecture " . Behavioral
Selector Description of Cyclic ADC Simulator
"] Description of Flash ADC
Chosen ioti iveli
Archi Description of Pipelined ADC

Figure 4.3: Architectural selection using behavioral simulator.

From the discussion above, doing an exhausted search throughout the database
might not be bad idea since the selection rules are very difficult to set and they have to be
changed or adjusted as the process parameters change. A combination of set of rules and

behavioral simulator will yield the best solution.

4.3 Circuit Synthesis

The netlist generation commonly known as circuit synthesis takes as its inputs a
set of specifications for an ADC block such as resolution, conversion speed, maximum
input signal frequency, maximum integral non-linearity (INL), total power dissipation,
supply and reference voltages, total area, layout aspect ratio, and technology file. In addi-
tion to these specifications, statistical information for capacitor and transistor matching
can also be provided. The outputs of the circuit synthesis will be the entire circuit netlist
- and the performance summary of the ADC block. The core of the circuit synthesis which

is effectively device size generation can be implemented using global or hierarchical opti-
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mization approaches. The following two sections will discuss briefly as why we chose one

over the other.

4.3.1 Optimization Approaches
43.1.1 Global Optimization Approach

A global optimization approach attempts to optimize an ADC circuit as a whole at
once. An example of this approach, DELIGHT.SPICE [NYES88] uses a circuit simulator
SPICE coupled with an optimization engine. This approach was shown to be fairly effec-
tive for simple circuits. But this is a CPU intensive approach and it relies on the circuit
simulator to guarantee convergence. For some ADC specifications which require a large
number of circuit simulations to get a data point, this method will take weeks or even

months to run (assuming no DC convergence problem in the circuit simulator).

Another example of this approach is to formulate the entire block performances in
a set of closed-form equations as a function of electrical characteristics of individual
devices. This type of implementation is known as an optimization based on a standard
schematic approach [KOH90], [HARJ89], [DEGR87]. For a simple block such as op-
amps, inp.. :uffers, or comparators, this method is quite efficient because almost all of the
behavior of the block have the closed analytical equations. Unfortunately, for complex
analog blocks such as ADC'’s, it is very difficult to derive many of specifications in closed
form equations. Some specifications such as INL and DNL do not have closed form equa-
tions. Therefore, this straight forward approach cannot be applied for complex analog
blocks. A modified version of this abproach described in the next section will solve this

problem.

4.3.1.2 Hierarchical Optimization Approach

ADC blocks are fairly complex analog circuits. An attempt to optimize the design
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of this block as a whole will be a very difficult task to do. If we examine the overall block
diagram of typical ADC blocks, we can easily recognize that an ADC block can be broken
into several different functional blocks in which each block performs a certain task and
has certain requirements depending on the overall specifications. These functional blocks
are called subblocks. For the ADC architecture proposed in Chapter 3, these subblocks are
sample/hold (S/H), gain of two (2X), comparators (CMP), and digital circuitry.

For a given set of ADC specifications, there is a mapping from the overall specifi-
cations to the subblocks’ specifications. In order to ease the optimization of the design,
each subblock can be optimized individually to meet the mapping specifications. The
resulting performances of each subblock can then be combined to be used as evaluation
variables for the overall performances. If the overall performances are not met, a new set
of subblocks’ specifications will be generated. Therefore, effectively we will have several
optimizations within an optimization. This type of optimization is what we call a hierar-
chical optimization approach. A simple flowchart of a 2- level hierarchical optimization

approach is shown in Figure 4.4.

Referring to Figure 4.4, for a given set of input specifications, the circuit synthesis
will undergo a sequence of operations. First, the ADC specifications and their relative pri-
orities will be mapped into subblocks’ specifications and their respective relative priori-
ties. This mapping function can be realized by a set of rules given by experience analog
designers or running a behavioral simulation of the ADC circuit or a combination of both.
Then the specifications and priorities of each subblock are fed into the local optimizer to
generate the device sizes. This local optimizer can be a low-level synthesis block such as
OPASYN [KOH90] and LAGER [BROD90] to generate op-amps and digital circuitry
respectively, or a user can specify a certain library cell with its performance summary.

This step allows flexibility for a user to use other desirable tools. The results of each local
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Figure 4.4; Hierarchical optimization flowchart.

optimization are then fed into the evaluation routine to do global verification. This evalua-
tion routine can be a monte carlo simulation, worst case design, circuit simulator, or
behavioral simulator. Because the global evaluation step will be carried out repeatedly
during the outer loop of the optimization phase, we would like to be able to evaluate the
results very quickly. To do monte carlo simulation or spice simulation will take a very
long time to do. The behavioral simulation, on the other hand, generates performance pre-
dictions in a very short time. This behavioral simulator will be explained in great details in

section 4.4.4.1.

To speed up the overall optimization process, design parameters for the ADC block
have to be chosen carefully. If all the input specifications are used as design parameters, it
will take a very long time for the optimization to find the solution points. We ought to find
a set of design parameters that directly affects the performance of the ADC blocks. For the
ADC architecture proposed in Chapter 3, we can find that total power consumption and
total area directly dictate the block performance. Of course, there are other factors that

will affect the performance of the ADC such as types of op-amp used, device matching, or
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process parameters. These factors always exist even if we design the ADC’s manually.

In order to make sure that the resulting ADC circuits are those of practical ones, we
have to set a limit for the two design parameters. In this case, we have to set the upper
limit values for them. Obviously, the objective now is to minimize the power consumption
as well as the total area needed such that the given specifications are met. This type of
optimization is commonly known as one-sided limit or inequality type constraints. The
optimization algorithm implementation and cost function selection will be discussed later

in section 4.4.2.

The circuit synthesis approach just described consumes very little time. Moreover,
it has the expansion capability of using other available low-level synthesis tools to opti-
mize low-level subblocks and of allowing incorporation of standard cell blocks if desired.
Keep in mind that this hierarchical optimization concept can also be applied to other ana-

log or mixed signal function module generations as well.

4.4 Implementation

Figure 4.5 shows the flowchart of circuit synthesis based on the hierarchical opti-

mization approach. Detailed discussion of each block will be presented next.

4.4.1 Inputs and Outputs

The inputs to the circuit generator are a set of ADC specifications and their relative’
priorities, spice process parameters, device matching information, design rules, and place-
ment information files. This section will summarized briefly what each input file consists

of.

The ADC specification file consists of 2 types of inputs: szatic and variables speci-

fications. Static specifications such as supply voltages (2.5 volts or 5.0 volts), technol-
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Figure 4.5: Circuit synthesis flowchart.

ogy types (MOSIS 2 um or 3 um CMOS process), and maximum input signal frequency

(default to half the sampling rate) are .ed as the conditions in which the remaining speci-
fications are optimized around. The scifications would always be the same throughout
the optimization. On the other han_.  :able specifications such as resolution, conversion
speed, silicon area, power dissipation, differential non-linearity, integral non-linearity,
aspect ratio, maximum reference voltage magnitude ;viu be optimized according to the

priorities given at the beginning the circuit generation.

The spice process parameters are basically used as device parameter values during
the calculation of individual block performances. These parameters are technology and
vendor dependent. The device matching values are the information reg -ding how accu-
rate the matching of two identical devices. Currently, only two values ure provided into
this file: capacitor ratio accuracy and transistor matching. These values will also be tech-

nology and vendor dependent. Device matching information is usually not available from
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the vendor. Thus characterization process needs to be carried out in order to gather these
information. Due to the unavailability of the matching information, these values are cur-

rently estimated roughly for the technologies used. A 30 value is used as the matching
accuracy for the ratio of two 1 picofarad capacitors. Ideally, a table of 36 values for dif-
ferent capacitor values should be available. As a result, when matching ratio of capacitor
value othgr than 1 picofarad is needed, the 36 value will be extrapolated from the existing

one using statistical formula. More discussion on the capacitor scaling will be discussed

later in this chapter.

Design rules and floorplan information files are needed in order to estimate the
actual silicon area during the circuit generation more accurately. These two files are uéed
mainly by the floorplan optimizer. Design rules are provided by the vendor depending on
the technology. The floorplan information file is a file that stores the information of the rel-
ative placement of all the blocks. Usually this file has been optimized to a specific block
architecture. Modification to this file is allowed but not recommended. A detailed discus-

sion of this file will be presented in Chapter 5.

4.4.2 Optimization

We mentioned earlier that reducing the number of design parameters is a very
important step in shortening the optimization process. Besides carefully choosing the
design parameters, selecting the cost function to evaluate the resulting specifications is

very important as well.

The optimization type for the outer loop is a non-linear optimization with one-

sided constraints or bounded constraints. We can specify the optimization in the form:

minimize f(x) (EQ4.1)
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subjectto xe Q (EQ4.2)

where f= areal-value function
Q = the feasible set and a subset of R"

x = the chosen design parameters

The outer loop of the optimization was implemented using an iterative descent
algorithm: steepest descent. This algorithm is one of the simplest and easiest to imple-
ment. The basic idga iS that the algorithm generates a series of points from the preceding
points iteratively and the cost or objective function decreases in value when it is evaluated
directly or indirectly using the generated points. The process to find the optimum points is
what we usually call line searching. One very popular and simple line search is search by
Golden Section [LUEN84]. This type of line search is very suitable for function that has
boundary points ahd has unknown degree of smoothness even though it converges linearly

with convergence ratio of 0.618.

The algorithm of the steepest descent algorithm for two design parameters can be

summarized as follows:

Letx = E‘j be the design variables and x, = [x"] be the initial points.
Yo

Define dx and dy as small steps on x and y axes.
[ fixg+dx) - f(x,)

A% dx y=y |

= b . 4.3
[Vj f(yo+dy) =f(yo) (FQ4
dy

x= Xy
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fo
Vi) = |1 VA (EQ 4.4)
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| VAI

where ||Vf] = ,/Vf+V)f
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Figure 4.6: (a) Cost function curves (b) Cost function with constant y (c) Cost func-
tion with constant x.

a1 = % -0 Vi(x) (EQ4.5)
0<a,Se (EQ4.6)
- The solution set: x where Vf(x) = 0 (EQ4.7)

Figure 4.5 illustrates the equations just described. We have pointed out that the conversion
rate of the steepest descent is linear. The convergence ratio can be formulated in terms of

the eigenvalues of the cost function [LUEN84].

R=[552] €Q4D
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where a = the smallest eigenvalue of fand a > 0

A = the largest eigenvalue of fand A> 0

The cost function at the & iteration for our circuit synthesis is chosen to be the sum of

exponential functions:
n
f(z) = Y exp(d) (EQ4.9)
i=1
d; =% ,-x; given for minimizing specification (EQ4.10)
d; = X; given — X; ; fOr maximizing specification (EQ4.11)

where x;, =the i® specification at the ¥ jteration

x = the i®® given specification

i, given
n = the total number of specifications

If n = 3, the Hessian of fis:

exp(d;) O 0
Vif=| 0 exp(d) O (EQ4.12)
0 0 exp (d,)

Since the specifications have different unit values, the largest eigenvalue will be much
larger than the smallest eigenvalue. As a result the convergence ratio will be roughly unity

and the speed of the steepest descent will be very slow.

In order to avoid this problem, we introduce scaling to the variables, 4 so that they

are roughly of the same magnitudes. The specifications are normalized to their given spec-

ifications:
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d = Xi,k ~ X, given

i
xi, given

for minimizing specification (EQ4.13)

X: . -X;
d; = __éx""—ii‘ for maximizing specification (EQ4.14)

i,given

In order to incorporate the specifications’ priorities, weight factor can also be
introduced to the cost function by multiplying the normalized exponential constant with
the weight factor. Default values for this weight factor should be 1. For specifications that
are high on priority list, weight factor greater than unity can be applied. However, there
‘should be a reasonable limit as how big the weight factor can be since the exponential

function is very sensitive to its exponential constant.

The steepest descent algorithm is also used in OPASYN [KOH9_0]. Thus, we try to
reuse the existing optimization code of OPASYN with some modifications. OPASYN uses
an enhanced version of steepest descent with a golden section line search. A history heu-
ristic intended to detect the steepness of the gradient is also added to speed up the search.
For detailed information of the algorithm, please refer to [KOH89). Figure 4.7 summa-

rizes the steepest descent algorithm used in OPASYN as well as our circuit synthesis.

The overall implementation of the outer optimization loop can be summarized in a
pseudo- routine shown in Figure 4.8. At the beginning of the circuit generation, all the
necessar; input files will be read in. A set of starting points for the optimization will then
be selectec. A user can select the starting points or use the default values. Using these
starting points, the optimization of the ADC circuit generation is executed until the
requested specifications are satisfied or the number of optimization cycles exceeds the
maximum number of iterations. Within the optimization loop, netlist module generator

routine will be called, the current cost function will be calculated and if necessary a new
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Inputs:
f(x) withx,, Sx<x ..
A starting point x,
Outputs:
A local optimal point 1,
Algorithm:
Set A to INIT-LAMBDA (=5.0)
Set 1 to GOLD-SECTION (=0.8)
Set STEEP-HISTORY and VALLEY-HISTORY to 0
Xo = X
while (|| V]| > END-FACTOR or stop # true ) do {
if (STEEP-HISTORY 210) then A = A x3
if (VALLEY-HISTORY 25) then A = A% 0.3
Get V£ (x,)
31 = 3p— AVSf ()
X, = Xo—MAVS(x)
if (f(x,) <f(x,)) thendo {

STEEP-VALLEY = STEEP-VALLEY + 1
VALLEY-HISTORY =0

' loundl (f(x,) <f(x,)) {
=X

n =1?
if (n SETA-LIMIT) then stop = true

VALLEY-HISTORY = VALLEY-HISTORY + 1
STEEP-HISTORY =0

X; = X—NAVf(x,)
} end else
X0 = X

} end while

Rewm x,,, = X,

'Figure 4.7: An enhanced steepest descent algorithm.
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set of points will be determined.

optimization()
{
readAllNecessaryInputFiles();
selectStartingPoints();
while (not_optimized |l within_iteration_limit) do {
netlistModuleGenerator();
calculateCostFunction();
determineNextPoints();
} /* end of while */ ’
} 7* end of optimization() */

Figure 4.8: A pseudo-C routine of the overall optimization.

4.4.3 Netlist Module Generator

In order to coordinate the process of generating all the necessary subblocks’
requirements, calling appropriate tools, generating results, and many others, a customized
routine for each ADC architecture needs to be implemented. This routine is called netlist
module generator. The content of the netlist module generator (NMG) will be architecture
specific. Thus the number of NMG’s will depend on the number of ADC topologies stored
in the database. Many analog design knowledge are incorporated into writing this routine.
The remaining of this section will briefly discuss the flow of the NMG for the algorithmic
ADC preposed in Chapter 3.

Insidie the NMG, several tasks will be executed in order to generate ADC netlist
based on the current set of points in the optimization loop. These tasks are the mapping of
" ADC specifications into subblock specifications, generating op-amps, comparators,
switches, capacitors, and digital circuitry, and finally evaluating the overall ADC block

using a behavioral simulator. Some of these tasks will be discussed in the following sec-
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tions. The simplified pseudo-C routine of the algorithmic ADC NMG is shown in Figure
49.

netlistModuleGenerator()

{
mapping();
generateOpamp();
generateComp();
generateSwitchCaps();
generateDigCkts();
caliBehSim();
generateADCNetlist();

} /* end of r;etlistModuleGenerator{ ) ¥

Figure 4.9: A simplified pseudo-C routine of netlist module generator.

4.43.1 Mapping Function

Before we implement a lmapping function for a particular ADC architecture, we
have to understand the effect of different non-idealities to the overall ADC performances.
Examples of these non-ideaﬁﬁés are limited op-amp gain, offset voltages from op-amps
and comparators, or capacitér matching accuracy. Monte carlo simulations of the
improved algorithmic ADC dc.;eribed in Chapter 3 were carried out separately in order to
find out which subblock is ihe critical one or what combination of offset voltages yields
the worst performances. With the help of the behavioral simulator described later in this
chapter, we are able to understand the sensitivity of the ADC block with respect to op-amp
gains and offset voltages, capacitor matching, and comparator offset vo;tsigés. Many of

these requirements and mapping equations are derived analytically in Appendix A.

Referring back to Figure 4.5, the mapping function takes two different sets of

specifications: user’s given specifications, §,;,,, and current specifications at (i+1)® itera-
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tion, §;, - The basic function of the mapping function is to map or to generate all the

required subblocks’ specifications from either §;,,, or §;, ;. The simplified pseudo-C

routine of the mapping function is shown in Figure 4.10 and the explanation of it is to fol-

low.

mapping()
{
if (iteration == 0) {
genMinReq(givenSpecs);
genRelPrior();
} /* end of if */

genSubblockReq(currentSpecs);
} /* end of mapping() */

genMinReq(givenSpecs)

{
initLocalSpecs();
genMinOpampGain();
genMaxOpampOffset();
genMaxCompOfTset();
genMinCapacitor();

} /* end of genMinReq() */

genSublockReq(currentSpecs)

{
genOpampSpecs();
genCompSpecs();
genDigSpecs()

} /* end of genSubblockReq() */

Figure 4.10: A pseudo-C routine of the mapping function.

At the very first iteration, the mapping function uses § to generate all the

Ygiven

extreme requirements necessary for the critical blocks (op-amps, comparators, and capac-
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itor sizes) in order to achieve the requested specifications. These extreme requirements are
the minimum op-amp gain needed, maximum op-amp offset voltages, minimum capacitor
size allowed, or maximum comparator offset voltages. These limits are set independently
by assuming that the other factors are non-existence and the linearity specifications for the
ADC are twice better than the requested ones. All limits except minimum capacitor
requirement are obtained using the behavioral simulator, ADSIM described in

section 4.4 .4,

The minimum capacitor requirement is determined by selecting the larger of the

. . kT . ... . . .
two capacitor values obtained from ol noise limitation and capacitor ratio matching

extrapolation tor the requested specifications.

I-ECZ Noise Limitation: The minimum capacitor size due to this limitation is

determined by using the total input referred mean square noise derived in
Appenc: . A. The minimum capacitor allowed is determined by making sure

the inpui eferred noise voltage is less than a quarter LSB of the ADC block.

. kT _ . -
,?,,pu,szs ( “*LSB)? (EQ4.15)
2V, - 2
kT REF,
M= < [ 2”””“] (EQ4.16)
2N+2 2
c2 MkT[z———] (EQ4.17)
REF,,\

Where N = the number of bits

Ver,,, = the minimum reference voltage requested

M = a constant that is a function of the feedback factor of a block
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C = the minimum capacitor allowed.

ForN=9, V, EFy = 1 volt, M =2.5, and T = 27 °C, Cyyyy = 43 femto-farads.

Thus, for low resolution ADC specifications, the %1: noise is negligible.

Capacitor Matching Ratio Extrapolation: The capacitor used in the ADC

module generator is a SiO, capacitor type. The capacitor generator is capable

of generating poly to poly or metal to poly capacitors for arbitrary values and
aspect ratios. Further capacitor layout generation discussion can be found in

Chapter 5. A SiO, capacitor is chosen because it has the smallest temperature

coefficient (+25 ppm/°C [McCR75]) among different types of capacitors.
Moreover, the process technology has matured so much that the oxide thick-
ness can be made fairly uniform. In order to reduce the fringing effect, a
grounded guard ring is added to enclose the capacitor as shown in Figure 4.11.
The capacitor is placed on the top of a well that is connected to the quiet analog
ground so that the noise coupling from the substrate can be minimized. Fur-
thermore, to reduce the undercut effect on different capacitor sizes, an undercut
insensitive geometry capacitor is used. As an example, if we try to match 2
capacitors of value 2 picofarads and 1 picofarad, 2 1-picofarad capacitors are

used to realize the 2-picofarad capacitor.

Thus the ratio capacitor error between two capacitors can be approximated to
depend on the matching of two equal value capacitors. Due to the unavailabil-

ity of matching information for capacitor ratio of different values, the 1 pico-
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Figure 4.11: Poly to poly capacitor layout generated by capacitor generator.
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farad capacitor ratio 30 mismatch value is used to extrapolate different

capacitor mismatch values. Let Cj and C, be two 1-picofarad capacitors.

C,+C
C = 1 2
AC = C,-C,
AC
C1=C e
AC
AC AC
C1_C 5 l*3¢
C, . AC AC
C_T I—E

(EQ4.18)

(EQ4.19)

(EQ 4.20)

(EQ4.21)

(EQ4.22)
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%‘z 1+xforx«l (EQ4.23)
C, AC 2 AC AC.?
Z'_zz(l."ﬁ = 1+T+('2—C:) (EQ4'24)
C, AC
Fz =1+ < (EQ4.25)

The matching requirement of two equal capacitors for N-bit resolution ADC -
has to be within half LSB of the ADC.

1
2N+1

A
TC < (EQ4.26)

-1
N <3.32log (A—C?) -1 (EQ4.27)

A
For —CS = 0.001, N <9 bits. If different capacitor value ratio is required, the
36 mismatch value can be scaled accordingly. Thus the ratio mismatch of two
A -picofarad capacitors can be found to be:
AC
C

30 = (EQ 4.28)

=~

where 30 = the ratio mismatch value of the scaled capacitors

A = the scaled factor

A . .
TC = the given ratio mismatch value of two 1-picofarad capaci-

tors.
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From EQ 4.26 and EQ 4.28, we can then determine the minimum capacitor

AC
allowed for a given mismatch information, < and resolution, N.

1 AC 1
—_——c<
A C S (EQ4.29)
r :»/+1AC'|2
A2 1_2 ol ‘EQ4.30)
AC . .
For N = 10 and < = 0.1%, A 24.194. Thus, the smallest unit capacitor

allowed is 4.194 picofarads.

In the remaining of the iterations, the current specifications, §;, , are used to gen-

erate all subblocks’ requirements such as op-amps, comparators, and digital circuitry. This

process is carried out using analytical formulas that map input specifications to subblocks’

specifications. Some mapping requirements are obtained using behavioral simulator as

mentioned earlier. All the equations used can be found in the Appendix A. As examples,

the unity gain frequency, @, , output swing-Voyr power dissipation -PWR, and area -

AREA of the up-amp can be obtained by the following equations:

AV
%= | 3Py (T+Ay (EQ4.31
2.8N
Vour = Vrer,, (EQ4.32)
P
PWR = £ (EQ 4.33)
kp
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Ac
AREA = o (EQ4.34)
A
where Ay, = the minimum open loop gain of the op-amp obtained from the
behavioral simulator

P"s = the duration of sampling pulse width extracted from the con-
version speed and resolution specifications

f = the feedback factor of the closed-loop block
N = the desired number of bits

VRer,,, = the given minimum voltage reference

P = the current total power value

kp = a constant equating total power to individual op-amp power
A = the current total area value

k, = a constant equating total area to individual op-amp area.

The resulting subblocks’ specifications will then be used to generate the low-level blocks.

4.4.3.2 Generating Operational Amplifiers

Op-amp generation is being carried out by an op-amp synthesis, OPASYN
described in Chapter 2. A fully differential folded cascode op-amp described in Appendix
A has been added into the OPASYN topology database since a fully differensal architec-
ture is used throughout the ADC circuit. The specifications are generated by the mapping
function and then fed into OPASYN. The simplified pseudo-C routine of the routine is
shown in Figure 4.12. Within the op-amp generation routine, OPASYN is called several
times in an attempt to choose the optimum value of unit capacitor with the sample/hold
and gain of two blocks. The reason why OPASYN is called several times is that the load

capacitor of the requested op-amp is not optimized yet. Basically, the loading capacitor
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value for the op-amp is set by multiplying a known constant to the allowable unit capaci-

. kT . Co .
tor, Cg chosen from the two determining factors: C hoise and ratio mismatch. Since the

allowable unit capacitor is usually fairly small, the resulting op-amp input capacitance,

C;y Wwill be compared to the allowable unit capacitor, Cg. If C;y, is bigger than Cg, a ncw
value for Cg will be adjusted so that the attenuation at the input of the block is minimized.
The value of C cannot be increased to much because it will eventually affect the speed of

the op-amp. All of these are carried within checkCsVsCl procedure. In order to avoid infi-

nite loop for some specifications, a maximum iteration limit is set.

generateOpamp()
{
initLoadingCap();
while (not_done && (iteration < MAX_ITER_LIMIT)) {
callOpasyn();
checkCsVsCI();

} /% end of while */
} /* end of generateOpamp() */

Figure 4.12: A simplified pseudo-C routine of op-amp generation.

4.4.3.3 Generaﬁng Comparators

Comparator generation is fairly simple because the two-comparator scheme pro-

posed in Chapter 3 is used in the ADC block. The maximum allowable comparator offset

Vrer

voltages are + 3

volts. If Vg = 1 volt, the comparator offset voltage magnitude can

be as large as 250 mV. Thus, this simple comparator can be used for a wide spectrur Hf
resolution and sampling rates. In order to simplify the comparator generation, a simpie

comparator topology described in Appendix A has been added into the OPASYN-topology
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database. The comparator specifications generated by the mapping function can then fed

into OPASYN to generate the comparators.

4.43.4  Generating Switch and Capacitor Sizes

The generation of switch and capacitor sizes are done after the op-amps and com-

parators are generated. The final allowable unit capacitance, C s obtained during op-amp

generation will then be used as the value as the unit capacitor for many capacitors such as -
sampling, integrating, and reference capacitors. All switch sizes can then be also deter-
mined. Detailed derivation of the equations used in the routine can be found in Appendix
A.

4.4.3.5 Generating Digital Circuitry

For digital circuitry, a standard cell approach is used since it is the least critical of
all and the standard cell library exists for the supported technologies. The only variable
block of the digital circuitry is the digital error correction register. It increases linearly as
the number of bits increases. The logic diagram of all digital circuitry used can be found in

Appendix A.

4.4.4 Evaluator

Evaluation of the optimization is carried out not only by the built in functions
within the optimization topology but also by using behavioral simulator and floorplan .
optimizer. For specifications such as power dissipation and maximum reference voltages
are easily calculated. For specifications such as conversion rate, resolution, differential
non-linearity, integral non-linearity, and gain error are obtained by using behavioral simu-
lator. Total silicon area is estimated by passing the netlist to the floorplan optimizer. The
following to sections will discuss the behavioral simulator and floorplan optimizer imple-

mentations.
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4.44.1 Behavioral Simulator

We have argued that evaluating the performance of complex analog blocks using
circuit simulator such as SPICE is not very practical because not only it will take very
long time to execute a simulation but also it might have convergence problems. Moreover,
the evaluation will be executed many times during the optimization cycles. The time
needed to do the worst case DNL/INL simulation for an N-bit ADC proposed in Chapter 3

can be approximated to be

Time = §-2V.log (47}) (EQ4.35)
where N = the number of bits
§ = time needed by SPICE to simulate an N-bit A/D conversion
A = the requested DNL-INL precision
For N =9 bits, A = 0.01, and § = 0.5 hour, the time needed is 1701 hours. Of course, the
actual value of § is much longer then the given number. The time needed to convert an
analog signal through a 9-bit new-improved algorithmic ADC using SPICE on DEC5000

is found to be around 19 hours. For these reasons, we have decided to implement a behav-

ioral simulator for the ADC evaluation so that we can speed up the optimization cycles.

Behavioral simulation is an effort to predict the performance of a system by
macro-modelling each functional block by its analytical model. An example of a func-
tional block is an operational amplifier. For the folded cascode op-amp described in
Appendix A, we can ignore the higher order poles and assume that the op-amp has a sin-
gle-pole transfer function. From the low-level synthesis tool, OPASYN, we can extract
information regarding the small signal parameter values of the op-amps such as input

capacitance- C;,, transconductance-g,,, output resistor-R,,,, output capacitance-C, ,.

These parameters are then used to estimate the response of blocks such as sample/
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hold and gain of two blocks. Figure 4.13 illustrates how the gain of two block is macro-
modelled. For a given input step voltage at time #,, we can estimate what the output volt-

age would be at time 7 based on an analytical model of the block.

C
Cs = | Ci V"f"' Verror (1)
vy 1 - 2V }
. OTA
Cp v
'L' I > L (}I-T 1V
% v Ny " I
Vx ) Cin== Em Y x Rout out Vy e tgc'veu‘""“"""
[ .. tO tl
(a) Gain of two macro model (b) Its response
Figure 4.13: Macro model of gain of two.
(1-1,)
Vour(t) = - Cs l—e ™ |Vt (EQ 4.36)
our Cs+C,+Cp+C,, INY0
+(,
ngout
T = Rour (C1+ CL+ CO“') (EQ 4'37)
* 1+g R €
*&m ow(cs+ C,+Cp+ C,.,,)

where Cg = sampling capacitor
C, = integrating capacitor
Cp = total parasitic capacitor on the summing node

C,, = input capacitor of the op-amp
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C, = load capacitor at the output node.
8, = transconductance of the op-amp
C,.: = output capacitance of the op-amp
R, = output resistance of the op-amp

For a given time-¢

given» WE Can then approximate what the error voltage at the output

would. This information can then be used as one of the variables-to predict the resolution
of the given time which effectively is the pulse width of the sampling clock of the ADC
block.

c
Verror (1) = éVIN(to) = Vour (1) (EQ4.38)

For the ADC proposed in Chapter 3, we are only interested in the values of node
voltages at the end of pulse width, i.e. at the end of the sampling or holding time. As a
result, we only have to know the starting voltages, time duration, and the voltages at the
end of the time duration. Since the time duration or pulse width is known throughout the

conversion, we can model the ADC by using a discrete event time model.

For the proposed 1-. cycle algorithmic A/D conversion architecture that is used
as the building block for the module generator, we only need to model the time when Q,
®,, and @ goes from high to low and low to high. These transition points are shown in
Figure 4.14 as ¢, 1., 1,, 15, 1,..., tg for a 4-bit A/D conversion example. Due to the cyclic
nature of the ADC architecture, only 4 distinct time points: #y, #,, £,, #; that needs to be

coded with minor addition on 1 and t.

By carefully analyzing the behavior of the ADC in between these time points




Implementation

d -d
] SHD>—s o Dig._'?_, ‘
v D, o, Ckt.
IN
T—..Y_ ST VREF
J
s, -
Sampling Sampling
VirTy) ViMT)

Figure 4.14: Proposed 1-bivcycle algorithmic A/D conversion architecture.

(please refer to Chapter 3 for detailed operation of the ADC), the behavioral model can be

further simplified. The behavioral model between t,- ¢, time period is equivalent to the

one between #,-¢, time period. The same is true between #,-7, and 3-,. As a result. the

number of behavioral modelling between time period is reduced by half and the imple-

mentation of the simulator for the ADC is greatly simplified. The equivalencies of transi-

tion points and time duration model are shown in Figure 4.15.

Critical equations for complex chain of blocks need to be derived and verified
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(a) (b)

Figure 4.15: (a) Transition point equivalency for 4-bit example (b) time duration
model equivalency for N-bit ADC.

against the actual circuits to make sure that they behave as they are supposed to be. Refer-

ring back to Figure 4.14, when ®, is low and @, is high or between time #,and¢;, S/H-1

is holding the sampled voltage from the previous cycle, 2X is multiplying the output volt-
age of S/H-1, and the S/H-2 is sampling the output voltage of 2X. Since the sampling of a
voltage only involves the sampling capacitor and the switch, we can treat this operation as
a load capacitor at the output node of 2X to simplify the discussion. Detailed discussion of
the circuit implementation of the entire ADC block can be found in Appendix A. The

entire operation during the period #, — #; can be modeled as shown in Figure 4.16.

It is not trivial to model the behavioral model for two consecutive op-amps in
closed loop configurations accurately. The usual approach would be to approximate the

settling time of these two blocks to be the sum of each block. But this is not true, because
as the S/H block is in the hold mode, Vy starts slewing, and at the same time the 2X block
is doing the multiplication of this slewing signal. Let us assume that the two op-amps are
the same and have a single pole transfer function. If we apply a step function at the input

voltage, V,y during the sampling mode, the voltage is then held and multiplied by 2. We
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Figure 4.16: The modelling chain to estimate the settling behavior of S/H and 2X
blocks in series.

can then derive the following equations.

Vx Asn
V.. (s) = T+stey (EQ4.39)
Vour Agx
— = 4,
7 (EQ4.40)
where A; = the closed loop gain of the i-block
T, = the closed loop output time constant of the i-block
Vour Vx Vour
—— (8) = 7= (s) - —— (s) (EQ4.41)
Vin Vin Vx :
Applying the Laplace transform to EQ 4.41, and solve for V,;,7, we get:
_ 1 Py (-B)1yy
Your(s) = AS"A”‘(E 1 +5Tgy T +5T,y ) (EQ4.42)
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If we transform EQ 4.42 back to time domain, we obtain:

14 !

Vour(t) = As,,Azx(l —Be - (1-B)e ‘")V,N(x) (EQ 4.43)

To verify the validity of EQ 4.43, a spice simulation of the two blocks and a behavioral
simulation based on the equation above are compared assuming the two op-amps are the

same and the unit capacitors are of the same values. The value of 1,, can then be approx-
imated to be 1.6Tg,. The results of the spice simulation and behavioral simulator track

very closely as shown in Figure 4.17.

In order to accurately model the two blocks, process variation effects such as
capacitor mismatch, offset voltages from op-amps and comparators, sampling circuit finite
bandwidth, and many other are taken into account in the behavioral simulator. For detailed

implementation, please refer to CADICS users’ manual [JUSU93].

44.4.2 Floorplan Optimization

Besides evaluating the performances using behavioral simulator, we would like to
be able to predict or estimate what the total area of the final layout would be. This is very
important since area is one of the chosen design parameters. We will defer the discussion
of the floorplan optimization to the next chapter when we discuss the layout generation
aspect of the module generation. We will explain why we choose to do fixed floorplan

rather than arbitrary floorplan and how we do the floorplan optimization.
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Figure 4.17: Results from macro-modelling and spice simulation.

4.4.5 Scheduler

All the functions discussed in the earlier section can then be summarized in a flow-
chart shown in Figure 4.18. We call this flowchart as a customized routine since it is spe-
cific to a particular technology. In this flowchart, the capacitor size selected is checked if
its matching is met. If it is not, then a trim-array needs to be added. Currently, the trim-
array generator has not been implemented. In Appendix A, a suggested trim array and how

to calibrate these capacitors are described.

4.4.6 Quality of the circuit synthesis
The quality of the circuit synthesis will depend on how accurate the analytical
equations and the behavioral models describe the circuits. The same problem will also

appear in a manual design. The generated ADC netlist is not intended to be used as is but
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Figure 4.18: Scheduler or customize routine flowchart.

further simulation using different spice files for slow-slow and fast-fast models are recom-
mended. Besides the above factors, other effects such as op-amp and comparator topolo-
gies, device matching, and process technology also play important roles in determining

the quality of the circuit synthesis.

4.5 Summary

In this chapter, we have presented the approach and implementation of the netlist
generation of ADC module generation. A method of doing the architectural selection has
been proposed. A hierarchical optimization is introduced to do the device sizing. This type

of optimization allows the use of other low level synthesis tools to generate the subblocks.
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In order to predict the performances of the generated ADC circuit, a ﬁoorplan optimizer
and a behavioral simulator are added. The behavioral simulator is a discrete time event
simulator based on macro-modelling each functional subblock of the ADC by its analyti-
cal model. The outputs of the circuit synthesis are the complete netlist and performance
summary of the ADC. The methodology introduced here can be extended to do perfor-
mance-driven hierarchical top-down design of other complex analog blocks as well as
mixed analog-digital systems. Currently, effort to do just this is underway at Berkéley

[CHANS2]. The outline of the implementation can be summarized as follows:
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O—

Ateach level i® in the hierarchy do {

Select architecture based on a given set of specifications;

Map level it specs. to lower level (+1)® specs.;
If subblock is at the lowest level do {
if exits in the library and meets the specs. do {
Get it from cell library if it meets the specs.;
} else if low-level synthesis block exits do {
Call the low-level synthesis block;
} else {
Optimize the device sizes;
} /* end of else */
} else {
Keep on traversing down the tree: i +=1;
} /* end of else */
Verify with behavioral simulation;

Figure 4.20: Performance-driven hierarchical top-down circuit design strategy.
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CHAPTER 5 ADC Layout
Generation

5.1 Introduction

In this chapter, a discussion regarding the approach and implementation of the
ADC layout generation based on a spice netlist generated by the circuit synthesis will be
presented. The layout generation takes the same set of input files as the circuit synthesis
with two additional ir;put files: an ADC netlist generated by the circuit synthesis and
device structure information file as a result of floorplan optimization. The final output will
be a complete layout of the block. The overall flowchart of ADC module generation is

shown again in Figure 5.1.

5.2 Approach

Layout generation of analog blocks is not as simple as the one for digital blocks.
Many CAD tools written for digital blocks cannot be applied directly to generate analog
blocks. In chapter 1, we have discussed why analog CAD tools are not as matured as the

digital ones. Many analog CAD tools for automatic layout generation are currently being
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| Figure 5.1: Overall ADC module generation flowchart.

implemented and not readily available to be used within our layout generator. When this
project was started many of the tools were not available; as a result, the methodology of
the layout generation chosen was adapted to suit each issue in doing the implementation of
the automatic layout generation. The following two sections discuss two possible
approaches for doing automatic layout generation: flat and hierarchical constraint-driven

layout procedures.

5.2.1 Flat Layout Procedure

One common approach for doing automatic layout generation is to do a flat layout
approach. The basic procedures of this approach is shown in Figure 5.2. For a given
netlist or connectivity information, it will first generate all the necessary devices such as
transistors and capacitors. All the generated devices are then placed randomly and simulta-
neously using a placement program. The placed cells are then routed and compacted. The

layout generation steps just described have one objective: minimize the total silicon area
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of the final layout. Unfortunately, analog circuits depend heavily on fine details of layouts.
Careless action while doing the layout generation will degrade the performance of the
final circuits regardless how superior the performance of the circuit itself. Therefore, the

flat approach just discussed is not suitable for automatic generation of analog blocks.

[Netiist | ltﬁl_,le 3

Figure 5.2: A flat approach layout generation.

Mask Layout

§.2.2 Hierarchical Constraint-Driven Layout

Another approach would be to do a hierarchical constraint-driven layout proce-
dure as shown in Figure 5.3. The basic idea for this approach is that for a given circuit
netlist, the layout generator will undergo a sequence of operations before producing final

layout.

o

Figure 5.3: Hierarchical constraint-driven layout procedure.
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5.22.1 Circuit Partitioning

A circuit partitioning step is carried out in order to group devices into functional
blocks so that sensitive analog blocks can be grouped together and be separated from the
noisy digital blocks. Ideally, the partitioning will be carried out automatically until the
block consists of low-level devices. A pseudo-C routine for this step is shown in
Figure 5.4(a). Unfortunately, to write a circuit partitioning program that can do this job is
almost impossible to do. Therefore, this step is usually done manually. Once we have
established the block partition or hierarchy, the layout generation can proceed. In the next
section, a structured-netlist will be introduced to represent the circuit partitioning of com-

plex analog or mixed analog-digital blocks.

§.2.2.2 Constraint Generation

Once the circuit has been partitioned, constraint generation for these blocks will be
carried-out to gather information among the blocks such as coupling between sensitive
signals and allowablé parasitic capacitances on the interconnects. The constraint genera-
tion is done recursively from the lowest level block and up. At each level of the hierarchy,
specifications are passed on to the next level down to be used as the input of the next level
blocks. At the lowest level, the constraint is generated by maximizing the constraint and it
was then passed up to the next level of the hierarchy so that all constraints from the lower
level blocks are included in the higher blocks. The constraint generation can be done
recursively from the lowest level block and up. A pseudo-C routine to do hierarchical con-

straint generation is shown in Figure 5.4(b).

While the pseudo code of the hierarchical constraint generation looks very simple,
the actual implementation of it is very difficult and is a subject of extensive research
project. The methodology and implementation to do constraint generation for a simple

block such as op-amps has been reported CHOU93]. Effort to extend the capability of this
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circuitPartitioning(block)
{
if (block!= device_level) {
partitionBlock(block, &number_of_subblock);
for (i=1; i<= number_of_subblock; i++) {
circuitPartitioning(subblock;); /* recursive call to itself */
} /* end of for ¥/
} /* end of if ¥/
} /* end of cktPartitioning() */

(a)

constraintGeneration(block, specifications, constraint)
{
constraint = NULL;
if (block != lowest_level) {
mapSpecification(block, specifications);
for (i=1; i <= number_of_subblock; i++) {
constraintGeneration(subbblock;, specifications;, constraint;);
constraint += constraint;;
} /* end of for ¥/
} /* end of if */
constraint += maximizeConstraint(block, specifications);
} /* end of constraintGeneration() */

(b)

Figure 5.4: Pseudo-C routines for (a) circuit partitioning (b) constraint generation.
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constraint generator is currently being studied at U.C. Berkeley [CHAN92], [CHAR92].

5.2.2.3 Device Generation, Placement, and Routing

Once all the constraints are generated, it will then proceed to do automatic floor-
planning, area optimization., and device generation. The devices are then placed using a
~constraint-driven placement [CHAR92] and routed using constraint-driven router
[CHOU93], [MALA90] to build subblocks. It will then hierarchically traverse up to com-
plete the place and route of the entire block in the same manner. At each level of the
hierarchy, the generated constraint is used to drive the placement and router program. To
optimize the final layout even further, compaction can be executed at each level of the

) hierarchy or on the final layout.

This layout generation procedure just described is commonly known as top-down
and bottom-up layout procedure. In the remaining of this chapter will discuss a simplified
version of this hierarchical layout procedure to ease the implementation of the layout gen-

eration and to produce as good and dense quality of layout as a manual approach.

52 Jiementation

In this section. ,.cmentation of the layout generator that takes a spice-liked
netlist as its input and generates the complete layout of the block is presented. First, indi-
vidual topics relating to the implementation will be discussed in great details. At the end,
the overall algorithm of the implemented layout generator will be shown and a summary

will be given.

5.3.1 Circuit Partitioning and Floorplanning
Ideally we would like to use automatic circuit partitioning program to do the cir-

cuit partitioning, but such a tool does not exist. Automatic circuit partitioning program is
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not an easy program to write since it needs to capture many variety of analog blocks for
the tool to be useful. For this reason, we chose to do customized circuit partitioning i.e. the
ADC block is manually partitioned into subblocks. This step is very easy to do since we
have identified and broken the ADC into its functional subblocks when generating its cir-
cuit netlist. Figure 5.5(a) illustrates how the ADC block proposed in Chapter 3 can be par-
titioned. The figure only shows the partitioning at one level of the hierarchy. Further
partitioning can be done for each blocks until the lowest level of the hierarchy is reached. -
Figure 5.6(a) shows how SH2 block is partitioned into two blocks: SC and OTA. In tumns,

OTA consists of many transistors.

Cc g-f-»
2X ([l ¢

(©)

Figure 5.5: The proposed ADC (a) block partitioning (b) floorplanning
(c) decomposition tree.
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5.3.1.1 Structured-Netlist

To ease the partitioning process, we decided to generate a structured-netlist that
reflects accurately the block partitioning of the ADC block. The structured-netlist is basi-
cally a complete spice-liked netlist generated by the circuit synthesis by defining each sub-
block using subcircuit definition (SUBCKT) available in SPICE. An example of a
structured-netlist of the proposed ADC is shown in Figure 5.6(b). At the top level, the
spice netli:: calls a subcircuit: ADC. Subckt ADC in turn calls a bunch of subcircuit such
SH1, SH2, BY2, and others. Traversing down the subcircuit call for SH2, we can then find
that it calls two other subcircuits: OTA and SCSH1. And finally, at the lowest level, OTA
subcircuit lists the actual device sizes. This style of circuit netlisting turns out to be very
useful since one can look at the netlist and be able to find out how a block is being parti-
tioned. Moreover, it will also simplify the required data structure of the layout generation
program (as it will be shown later in this chapter). Figure 5.6 illustrates details of circuit
partitioning of the ADC block that is reflected by the structured-netlist.

53.2 F. ‘rplanning

Due to the lack of automatic placement tool for analog blocks, we have decided to
have a fixed-floorplan layout. We have studied the optimum floorplan of the proposed
ADC by manually designed and laid-out the complete ADC in order to study its layout
morphology as well as verifying the functionality of the ADC circuitry. A slicing structure
floorplan design is chosen here because it is well-suited for hierarchical layout, easy to do
the routing, compact representation of the floorplan information, and moreover algorithm
exists for optimal shape and orientation of modules. The circuit partitioning and floorplan-
ning for the proposed ADC block is shown in Figure 5.5(a) and (b). Notice that all the ana-
log blocks: SH1, SH2, 2X, and BIAS are gathered on right side of the layout away from
the noisy digital blocks.
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Structured Netlist

2 1l m"l]l St * Complete A/D circuit

c XADC 2 4 3 43 56 ... - ADC

& 2x :subckt ADC 20 21 3045 ..

: S de-

E ] vese

S E SH2 xBY2 404142... BY2
XCMP1 1314 15.... CMP
xCMP2 13 14 15 ._. CMP
.ends ADC

cll oTA .subckt SH2 30 31 32 ...

XOTA 2426 3...0TA
xSC 1723 21 .... SCSH1

M IMms w1 0 .end SH2

[we] o] W L M1 2450 PMDE o2 ™

[v] v ] M2 563 1 PMOS ...

™3] O
.ends OTA

(a) (b)

Figure 5.6: (a) Hierarchical partitioning (b) structured-netlist of the proposed ADC.

5.3.2.1  Slicing Structure

One of the advantages of a slicing structure floorplan is that information can be
stored in a simple data structure of a binary tree or commonly known as decomposition
tree. A decomposition tree for the floorplan of the higher level ADC block is shown in Fig-
ure 5.5(c). Each node of the decomposition tree can be assigned V for vertical or H for
horizontal to indicate how the region is sliced. The left and right children of a node repre-
sents the left and right slices of a vertical cut respectively or the bottom and 1op slices of a
horizontal cut respectively. By convention the first slice will always be the left-most and
the top-most so that the resulting tree will be in one-to-one correspondence with the actual
slicing structure of the block. Moreover, other information such as the width and height of

the enclosing rectangle can also be stored there.

The top node of the tree which is commonly called roor represents the top level of
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the hierarchy of the block. At the end of each branch of the tree, there will be a leaf node
which contains a single module such as a transistor or a capacitor. As a result, all the

nodes that are not leaf nodes will have two children attached to them.

In order to allow user’s to have the flexibility of changing device placement, place-
ment information files are made available to be modified. This floorplan files will then be
parts of the inputs of the layout synthesis as shown in Figure 5.1. These files consist of
block names at higher level of hierarchy and device names at the lowest level of the hier-
archy. A pre-order listing or pre-order traversal is used to stored the data in the files.

Looking at Figure 5.7, pre-order listing can be defined as follows:

Definition: The pre-order listing of the nodes of T is the root n of T followed

by the nodes of Ty in pre-order, then the nodes of T, in pre-order, and so on, up

to the nodes of Ty in pre-order.

Figure 5.7: A tree with root n and nodes Ty, T»,..., Tk

In other words, as we traverse down the tree from the top node, we list a node the first time
we pass it. Referring to Figure 5.5(c), the pre-order traversal can be found by travelling
through the left child first recursively and then to the right child or simply draw a path on
the outer edges of the tree and list the node as the first time we pass it (Figure 5.8). The

floorplan file for the tree would be:

VDECHHH V CTRL BIAS VCMP2 SH2 V CL 2X V CMP1 SH1
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0 SH1

CTRL|/(|BIAS SH2

Figure 5.8: Pre-order traversal for the ADC decomposition tree.

Inspite of the freedom to change the floorplan file, one is not recommended to
modify the floorplan files of high level blocks other than those of lowest ones such as op-
amps, comparators, switches and capacitors since the floorplan files stored now are very
optimum. The flexibility of changing the floorplan files will enable one to add different

ADC architectures with different floorplannings into the module generation program.

§.3.2.2 Layout Style

In order to improve the performance of the ADC, fully differential circuits are used
throughout the analog path. As a result, the layout generation of all analog blocks has to be
done as symmetrically as possible to preserve this property. One technique that is com-
monly employed is mirroring. The basic idea is to layout the top half of the block and then
inirror it to get the other half. This technique is very simple conceptually if it is done man-

ually. Sometime a single block has multiple symmetry axis for its devices. Method to han-
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dle multiple symmetry axis by using virtual axis can be found in [MALA91]. For our
layout style, we assume we only have a single symmetry axis. Since we have adopted a
fixed floorplan layout, we just have to ensure that the devices are placed symmetrically

along an axis.

An example of the circuit placement of a folded cascode op-amp used in the ADC
is shown in Figure 5.9 respectively. The symme!try axis is chosen to be the horizontal one.
The layout style that we adopt here is to place a:  nsistors with their gates parallel to the
axis so that drain or source abutment between 1. ransistors can be carried out if possi-
ble. The advantages of source or drain abutment of (wo transistors is to reduce the drain or

source to substrate capacitance of the joint node.

Figure 5.9: Fully differential folded cascode op-amp device placement.

116



Implementation

5.3.3 Floorplan Optimization

Floorplan optimization is carried out in order to optimize the silicon area of the
final layout. Recall that area is one of the input specifications of the module generator and
is one of the design parameters for the circuit synthesis. Therefore, accurate prediction of
what the final layout area will be desirable. Techniques to reduce the area consumption
such as slicing a transistor into several transistors of smaller width and abutting two or
more transistors are incorporated into the optimization step. Detailed discussion of these
techniques will be presented in the next section. Moreover, an algorithm introduced by
Stockmeyer[STOC83] will be use to determine the optimum shape of the modules given

their relative positions as a slicing structure.

§.3.3.1 Device Structure and Shape

The structure and shape of devices used in the layout generator need to be chosen
so that they fit into the chosen layout style. For instance, a MOSFET cell will have to have
its terminals accessible from both sides of the channel as shown in the op-amp example
(Figure 5.9). Moreover, if necessary a transistor will be sliced into several transistors of
smaller width to get a much compact layout. The number of slices is commonly known as
finger number. Thus a transistor generator has to be able to generate transistor layout for a
given type, width, length, and finger number. Examples of transistors with different finger

numbers generated by the transistor generator are shown in Figure 5.10.

For capacitor layout, we have chosen to create a low-noise capacitor by placing a -
well underneath the bottom plate. The capacitor is then enclosed within the well contact
that is connected to a quite analog supply of the circuit so that the fringing effect can be
minimized. Three types of capacitors can be generated based on top and bottom layers:
poly-poly, metall-poly, and metal2-metall. A layout of capacitor generated by the capaci-

tor generator is shown in Figure 5.11.
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B Metall
IS SRR
: “ K Metar2
(a) X via
Poly
: B MI1-poly contact
[ ] Diffusion
M1-diffusion
contact
(c) d

Figure 5.10: Different transistor layouts (a) 1 (b) 2 (c) 3 (d) 4 fingers.

. Metall
X i R B Metal2
:::z:::>=\ 3 E Via

Poly
M1-poly contact

B poly2

B M1-poly2 contact

E M1-well contact

Figure 5.11: Poly to poly capacitor layout generated by capacitor generator.
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The well/substrate contact layout is very simple and therefore will be omitted here.

A summary of the device generator headers are summarized in Figure 5.12.

createCapacitor() generates capacitor given:
name: capacitor name (if it is not given then a generic name will be used
ex. CAPPN.WxH -> CAP Poly-Poly on N-well of WxH size.)
value: capacitor value in Farads
ratio: capacitor aspect ratio (width/height)
top: type of top layer ex. POLY2, MET1, or MET2
bottom: type of bottom layer ex. POLY1 or MET1
wellType: type of well ex. NWELL or PWELL
unitVal: unit value of lum X lum capacitor value
octTech: OCT technology file ex. dpmos or scmos

(a)

createTransistor() generates transistor given:
mType: transistor type ex. NMOS or PMOS
gateWidth: total gate width in lambda unit
gateLength: length in lambda
finger: number of transistor slices
transName: transistor name
octTech: OCT technology file ex. dpmos or scmos

(b)

Figure 5.12: (a) Capacitor (b)transistor generator headers.
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533.2 Modified Stockmeyer’s Algorithm

Stockmeyer’s algorithm for determining the optimal shape and orientation of mod-

ules with slicing structure placement is very well known. This operation can be carried out

in polynomial time with the worst case complexity of O(n?) where n is the number of
modules. In 1987 Otten[OTTEN87] defined a shape constraint relation of modules in the
x-y plane for the shape determination. We will explain by giving an example of how the

algorithm is used in the floorplan optimization step.

Let us assume we have a module of 3 iransistors: M1, M2, and M3. The placement
and decomposition tree are shown in Figure 5.13. M1, M2, and M3 have gate widths and
lengths (W}, L;), (W2, Lp), and (W3, L3) respectively. The objective is té find the opti-
mum shapes of the M1, M2, and M3 for a given aspect ratio or width or height of the final
module while minimizing the area. Due to our layout style, a transistor will only have a

single orientation since 90 degr: rotation is not allowed and mirroring the device with

respect to x or y axis will not yic -nt dimension. However, as we mention earlier a
M1
M3
M2
(a) (b)
Figure 5.13: (a) Placement (b) decomposition tree of a module.

transistor can be sliced to yield more compact layout. Thus we can define a function that
generates a transistor actual width and height for a given (W,L) and finger number. Let

this function be:
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f(W,L,i) .—-> (wy, h) (EQS.1)
where i is the number of finger
W and L are the gate width and length of the transistor
w; and h; are s the transistor actual width and height with finger = i

For a transistor the number of possible (w, h)’s for different finger numbers is lim-
ited by the lower bound of the minimum width allowable by a design rule of a particular

given technology. If the minimum width allowed is w,,;,,, the largest finger number would

be:

L EQ5.2)

wmin

fingery y = int(

where W = the gate width of a transistor
For capacitor, the list of possible width and height is continuous since it is a function of
aspect ratio. Thus to limit the number of possible (w,h)’s, a minimum and maximum
aspect ratio of capacitor will be set for a given technology. Usually, the maximum and
minimum aspect ratios are determined by the matching of capacitor ratio. Furthermore, to
get a piece-wise linear function, the change of the width and height of the capacitor will be

based on an increment of smallest dimension allowed or lambda unit.
For a module with n different width and height, the relation can be defined as:

R={(xy)|((y2hx2w) U (y2hyx2wy)) V..U (y2h,x2w,)) } (EQS.3)
For illustration, let us assume (W,L;) = (16, 2) and w,,;, = 4, the number of possible
width and height will be 4. Referring to Figure 5.10, as the number of finger increases the
actual transistor height will also increase on the other hand, the actual width decreases.

Thus we can assume that w, 2w, 2 ... 2w, and h, £ h, < ... < h,. The shape constraint

relation of this example is shown in Figure 5.14 with shaded area.
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Figure 5.14: A shape-constraint relation for a transistor with fingeryax = 4.
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Referring back to Figure 5.13, M1 and M2 are placed on the top and bottom of
each other respectively. We can then find the shape-constraint relation graph for the two
modules combined. The shape-constraint relation of the resulting block is given by the fol-

lowing equation:

Ry = { (%) (x,y,) € Ry and (x,y,) € Rypandy=y,+y,} (EQS5.4)
where R, andR,,, = the shape constraint relations of M1 and M2

If we assume that M1 and M2 have fingerjysax = S and the shape-constraint relation graphs

are shown in Figure 5.15(a) and (b) respectively, the combined shape-constraint relation

can be obtained by graphically adding the two graphs in the y-axis direction. The shape-

constraint relation of the combined module, M12 is shown in Figure 5.15(c).

The combined module, M12 and M3 are the left and right of each other. The equa-
tion describing the combined shape-constraint relation for two modules placed the left and

right of each other is given by the following equation:

Ryi23 = { (x,9)| (x;,y) € Rypand (x5, y) € Ryzandx=x, +x,} (EQS5.5)
where R, ,andR,, = the shape-constraint relations of M21 and M3

By the same method, we can find the combined module of M12 and M3 by graphically
adding the shape-constraint relation graphs of the two in the x-axis direction. If the shape-
constraint relation of M3 is as shown in Figure 5.15(d), the resulting shape-constraint rela-
tion is shown in Figure 5.15(e). For a given width, the final height can be obtained from
the graph and transistor structures within the module can then be gotten by traversing
down the shaped-constraint relation graph in a reserve operation. If the module has final
width = W and the final height = H as shown in Figure 5.15(f), M1, M2, and M3 have fin-
ger numbers of 2, 1, and 2 respectively.

Often for a given final shape-constraint relation graph, the given starting point falls
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Figure 5.15: The shape-constraint relation of (a) M1 (b) M2 (c) M12
(d) M3 (e) M123 and (f) the final dimension of the module.

either within or outside the solution space. Thus a search needs to be carried out in order to

find the solution point. Let us assume that we have a shape-constraint relation, R; as shown

in Figure 5.16(a) and a starting point (W, Hp) based on the given area (A) and aspect ratio
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(R) of the requested final block.

Case 1: (W, Hp) is in the solution space as shown in Figure 5.16(b). There
exists a point or points p; € S, where § is a set of feasible point on R ; bounded

on the x-axis by W, and on the y-axis by H,.

pi = (xpy) (EQS5.6)
x<W, (EQS5.7)
y;SH, (EQ5.8)

Since the solution points, p,, p;, andp, lie inside the rectangular region

bounded by the starting point, the solution points will yield an area which is
smaller than the requested one. As a result, to choose an optimum solution
point, we would like to find a point that has the closest aspect ratio to the

requested aspect ratio. In other word, we would like to find a point, p,,,, € §

such that the aspect ratio error is minimized.

H, y;

Wo x| Q>3

Min

Case 2: (W,, H,) is outside the solution space as shown in Figure 5.16(c).

There exists a solution point, p,,,, € R where

Xops S Woandy,,, 2 H, (EQ5.10)

or x,,,2 Woandy,,, < H, (EQS5.1D

opt
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(a)

(®)

()

Figure 5.16: (a) A shape-constraint relation example (b) with starting point inside the
solution space (c) with starting points outside the solution space.
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The solution point can be determined by minimizing the resulting area and

minimizing the aspect ratio error.

Min (x; - y;) and Min (EQS5.12)

o Xi

=

Thus, the possible solution point(s) is always in the vicinity of the starting

point. Referring to Figure 5.16(c), for starting point (W, H,), there will only
be one possible solution point, p, and for starting point (W, H,), there are
two possible solution points: p;and p,. Finally, for starting point (W,, H,),

Ps is the only possible solution point.

In order to predict accurately what the total area is, the algorithm needs to be mod-
ified a little to take into account the area used for channel routing. Fortunately, this is an
easy modification to do. The information about the channel area routing can be attached
on to the nodes implicitly since the node representing horizontal or vertical cut can be
viewed as a horizontal or vertical channel. The channel area can then be added directly to
the shape-constraint relation graph. For vertical node, the addition is done to the x-axis
and for horizontal node it is done to the y-axis. This channel area addition will show up on
the graph as a constant shift in the x or y direction. In the next section, we will discuss how

we do the channel area estimation.

5333 Channel Area Estimation

There are many different ways to estimate the channel area needed to do the rout-
ing [KURDS86], [ZIMM88]. These techniques are mainly geared toward reducing the
number of horizontal tracks needed while doing the routing. Usually, they involve sophis-
ticated database structures, graph theories, or algorithms. What we need for our channel

area estimation is a quick and simple way of predicting the channel width needed to assure
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that all nets within the channel will successfully be routed. The channel width information
is then passed on to be used to modify the width and height of the final silicon area. As a

result the tcial area estimation of the entire block will be much more accurate.

We chose to use a simplified version of zone representation of horizontal segments
[YOSH82] to find the maximum density in a channel. The algorithm of this procedure will
be given in the form of example. Let us consider a channel with two rows of terminals
along its top and bottom edges as shown in Figure 5.17. Eac- terminal is represented by a
netlist name which it belongs. For instance net-1 is a two-terr:.inal net and net-2 is a three-
terminal net. We assume that there are two layers for routing. One for horizontal tracks

and one for vertical tracks.

2 5 2 3 5 3 4

Figure 5.17: A channel with 6 nets.

Let S¢) be the set of nets whose horizontal segments intersect column i. Starting
from the most left column to the most right column, we can tabulate S¢) as shown in

h

TABLE 5-1. The number of nets in S¢) is called local density of the i" column. By find-

ing the maximum number of nets among S(/), we obtain the maximum channel density
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needed to guarantee 100% completion. TABLE 5-1 shows that S(4) has the densest nets

which is 6. Thus the number of horizontal tracks needed to complete the routing is
6.

TABLE §-1

Column S@)

1 1,2
1,2,4,5
1,2,4,5,6
1,2,3,4,5,6
2,3,4,5,6
2,3,4,6
4,6

N O v e WwWoN

§.3.4 Data Structure

Due to the complexity of the input data that needs to be stored, a special data struc-
ture has been implemented. This data structure is designed so that input data can be stored
and retrieved fairly quickly and efficiently. There are three types of input data: structured-
netlist, floorplan information, and device structure information. All this inférmation are
stored within the data structure. Figure 5.18 shows a simplified version of the data struc-

ture used.

5.3.5 Routing

Channel routing is currently carried out by using a gridless channel router, GLIT-

TER [CHENS6] developed here at Berkeley. Currently, a constraint-based channel router.
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typedef struct blockCell {

blockName; /* name of the block */

nodeName_list; /* list of node names in ASCII */

netlistType; /* SUBCKT, SUBCKT_CALL, NMOS, PMOS, CAP, RES */

cellType; /* LEAFCELL, SUBBLOCK, TOP_BLOCK *

lib; /* STD_CELL, MOD_GEN, DON'T_CARE %/

union { /* Information about a device such as: */
transistor; /* transistor type, width, length, number of slicing */
capacitor;  /* width, height, ratio, value */

resistor; /* reserve for future use */

cell; /* width, height, number of nodes */
} device;
leafCell; /* is the lowest level of a block where devices are defined */
device_property; /* information such as merged devices, rotation */
net_property; /* information such as matching nets */
floorplan_tree; /* floorplan information tree */
struct blockCell *psubblock;
struct blockCell *pnext;

} =_MlockCell;

Figure 5.18: Simplified data structure for storing layout information.

ART [CHOU90] is being implemented into the layout synthesis as an alternative channel

router. We are also studying the possibility of using a constraint-based maze router, RoOAD

[MALAB9Q] to route the subcircuit.

The overall layout generation step can be summarized in the form of pseudo-C

routine as shown in Figure 5.19. The layout generator is implemented according to the
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OCT [HARRS6] database. The complete flowchart of layout generator and netlist genera-

tor can be combined and is shown in Figure 5.20. Notice that the floorplan optimizer is

layoutGeneration()
{
spice2db(); /* Store spice netlist into database */
checkDb(); /* Make sure all subck: calls are defined */
readFloorplan(); /* Store floorplan info into database */
rearrangeNode(); /* for possible abutment and well/substrate contact */
if (modified == true) then {
optimizeFloorplan(); /* Generate new device structure */
}Mendofif ¥
generateDevice();
recursively {/* From bottom-up */
placeCell();
routeCell();
} /* end of recursion ¥/
} 7* end of layourGeneration() */

Figure 5.19: A pseudo-C routine for layout generation.

shared between the circuit synthesis and the layout synthesis. The idea is to give user a
flexibility of modifying the generated ADC nedist before generating the layout. If the
netlist is modified, the floorplan optimization needs to be executed again in order to gener-
ate a new set of device structure information. The outputs of this ADC module generator
are complete ADC netlist, layout, and performance summary. In order to complete the

loop, manual extraction of the layout needs to be done. The extracted netlist is then simu-
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lated if desired before it is being fabricated. Evaluation results of the fabricated can then

be obtained to improve the quality of the module generation.

) ( ~
INPUTS ol ¢
cyY
| N Fl |
OUTPUTS ® N [F|optmizer
Leaf-Cell
UE Generation
1| |
Extraction, ocks
Simulation, S Plac‘g'gbs::ute
Fabrication, [* LAYOUT
and
Evaluation N’ \MIHE&I.S_J
ADC SYNTHESIS
Figure 5.20: Complete flowchart of ADC module generation.

5.4 Summary

We have discussed an implementation of the layout generator that takes a spice
netlist and generates a complete layout. Different implementation steps such circuit parti-
tioning, floorplanning, floorplan optimization, and routing techniques are presented. Algo-
rithms and pseudo-C routines of many of the techniques are also given. In the next
chapter, examples from different input specifications will be presented. Evaluation results

of a fabricated ADC prototype will then be summarized.
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CHAPTER 6 Examples and Test
Results

6.1 Introduction

In the following chapter, several ADC examples manually designed as well as
automatically generated will be presented. One of the automatically generated examples

has been fabricated in a 2- um CMOS process through MOSIS. The test set-up as well as

test results will also be shown.

6.2 Examples

6.2.1 Manually Designed Example

In order to understand the behavior and layout morphology of the new-improved
algorithmic ADC proposed in Chapter 3, we chose to design and layout complete ADC
block manually. While we were doing the layout, we have explored different ways of
arranging subblocks and have chosen the one that gives the best floorplan and has the most

efficient area. Many of the knowledge obtained are then implemented within the module
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generator. We feel that this exercise is very important for one to understand what it takes

to design and to implement an ADC module generator.

The manually designed ADC prototype was designed and fabricated in a 3-pm

"CMOS process through MOSIS. The specifications of this prototype is tabulated in
TABLE 6-1 under manual design header. The layout is shown in Figure 6.1.

TABLE 6-1 : ADC specifications for MOSIS 3 um CMOS process.

MOSIS 3 pm!
Specifications , . Units
Manual Design | Synthesized '

Resolution _9—=9==T
Conversion speed 100 109 kHz
Maximum DNL 0.5 0.40 LSB
Maximum INL 0.5 0.49 LSB
Gain error - 0.729 -
Power dissipation 7.00 8.05 mWatts
Total area 7200 8826 mils?
opect ratio (WiH; 1.0 1.19 .
Supply voltage ‘ 2.5 2.5 Volts
Maximum VRgr 1.0 1.2 Volts
Time ~10 months? ~3 minutes’ -
Note 2: T spent o fearsan desig maneally fom soric
Note 3: CPU time needed on DEC 5000
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Figure 6.1: Layout of a manually designed and laid-out ADC block.

6.2.2 Automatically Generated Examples

We first generated an ADC from a set of specifications similar to the one that was
used for the manually designed prototype. TABLE 6-1 tabulates the performance sum-
mary of the generated ADC block for a given set of specifications. The priorities were

given to the first four rows of the specifications and they are resolution, conversion speed,
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maximum differential non-linearity (DNL), and maximum integral non-linearity (INL).

[13E%,

Figure 6.2: Automatically generated ADC layout.

All the specifications requested are met by the module generator except the total
area and power dissipation. What it means is the module generator needs more area and
power than the given specifications in order to fulfill the higher priority specifications. The

total area required is some how much larger than the specified one. The automatically gen-
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erated layout of the ADC is shown in Figure 6.2. This is expected because the automati-
cally generated layout methodology is based on a hierarchical top-down and bottom-up
layout procedure. As each subblock is built from the lower level blocks, there will be a
bounding box called frame defining the boundaries of the rectangular region enclosing the
block. Within the frame, there will be empty area that was unused while the subblock is
generated. Ho@ever, this empty space is invisible from the current level since only formal
terminals of the lower blocks and the frame are visible during the placement and routing.
As a result, once an empty space exists in a subblock, it will remain unused in the final

layout.

A possible solution for this problem would be to do compaction to every block at
each level of hierarchy as we traverse up to build the complete layout. We have tried avail-
able compaction program, SPARCS [BURNS6] to compact each block at each level of
hierarchy. Unfortunately, the result is very poor since the program is implemented for dig-
ital blocks. Symmetry property of devices and signals will be altered in the process of
squeezing every empty spaces possible. On some blocks, the program halted due to over-
constrained problem. Efforts to implement an analog compaction program is currently
going on at Berkeley [FELT92]. Upon completion of this program, it could be integrated

in the layout synthesis step of the module generator to get much denser layout.

Besides the performance summary, CADICS also provides worst case estimation
of DNL and INL graphs generated by the behavioral simulator as shown in Figure 6.3(a)
and (b). As a comparison, 3 different ADC specifications: 6, 8, and 10 bits were given to
the ADC module generator and the resulting layouts are shown in Figure 6.4(a). (b), and
(c) respectively. Notice that the sizes of the resulting layout scale appropriately. The digi-
tal error correction registers on the left hand side of each layout get bigger as the number

of bits increases.
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(a) Differential non-linearity
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o

0.14 Digital outputs
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(b) Integral non-linearity

Figure 6.3: Simulated linearity graphs.
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(c) 10-bit

(b) 8-bit

(a) 6-bit

ADC layouts of different specifications.

Figure 6.4
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The ADC specifications for a 2-pm CMOS process is shown in TABLE 6-2. The
resulting performance summary is also tabulated in this table. Semi automatic pad place-
ment using MOSAICO [CASO89] was performed to the final layout in order to shield sen-
sitive analog signals away from the digutal signals. As a result, some blocks were adjusted
to ease the final routing to the pads. This automatically generated ADC prototype has fab-
ricated and evaluated. Test set-up ai. .. .5 will be presented in the following two sec-

tions.

TABLE 6-2 ADC specifications for MOSIS 2 um CMOS process.

MOSIS 2pum!
Specifications Units
Requested | Synthesized
Conversion speed 100 125 kHz
Maximum DNL 0.5 0.395 LSB
Maximum INL 0.5 0.486 LSB
Gain error 2.0 1.7 -
Power dissipation 4 414 mWatts
Total area 6000 5191 | mils?
Aspect ratio (W/H) 1.0 1.2 -
Maximum Vpgp 1.0 1.1 Volts
Supply voltages 2.5 2.5 Volts
Time - ~200 Seconds
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6.3 Test Set-up

The prototype is packaged in a 28-pin DIP. The bonding diagram is shown in Fig-
ure 6.5 and pin assignment is shown in TABLE 6-3. The test set-up shown in Figure 6.6
consists of clock generation circuitry, power supply and reference voltage generators, and
a digital-to-analog converter (DAC) circuitry to convert digital signal back to its analog
voltage. A wired-wrapped test board was designed to do the testing, unfortunately, the
board was very noisy. Preliminary results using this board were shown in the next section.
As an alternative, a printed-circuit board (PCB) was also designed to see if better perfor-
mance can be obtained. The board was designed carefully so that analog ground and digi-

tal ground are isolated from each other. Details schematic of the test board will be not be

shown here.

TABLE 6-3 Pin assignment.
Pin # | Pin Name Descriptions
== =
1 AVSS Analog VSS supply voltage
2 | VREFP Positive voltage reference supply
3 VREFN_4 | One fourth of negative reference supply
4 AGND Analog ground
5 VREFP_4 | One fourth of positive reference supply
6 | VREFN | Negative reference voltage supply
7 VINN Negative input voltage
8 VINP Positive input voltage
9 AVDD Analog VDD supply voltage
10 | DVSS Digital VSS supply voltage
11 | D7 Most significant bit active low
12-18 | D6-DO Bit 6 to 0 of the digital outputs
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TABLE 6-3 Pin assignment.

Pin # | Pin Name Descriptions

19 | CMP2 Comparator2 output

20 | CMPI Comparatorl output
21 | PHI2CM | PHI2 common mode clock

22 | PHI2 PHI2 clock
23 | PHIICM | PHIl common mode clock
24 | PHIl PHI1 clock
25 | PHISCM | PHIS common mode clock
26 | PHIS PHIS clock

27 | DVDD Digital VDD voltage supply
28 | IBIAS Bias current node

6.4 Test Results

Two different tests were performed using the wire-wrapped test board. The first
test was to input a 2 kHz sinusoidal waveform and to sample the ADC at 100 kHz. The
collected digital output data was reconstructed to get the sine-wave as shown Figure
6.8(a). A 1024-point discrete fourier transform (DFT) of the collected digital data was per-
formed to find the dynamic range of the ADC. The result is shown in Figure 6.8(b). The
result is not as good as we expected. The SNDR is around 38 dB which is slightly less than
7 bit resolution. We suspect that the noise radiation on the wire wrapped test board is so
severely that it degrades the SNDR performance. Noise spike greater than 20 mV was
observed. We expect to be able to obtain SNDR higher than 40 dB using the new test

board.

A beat frequency test was carried out with input frequency of 92 kHz and sampling
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Figure 6.6: Test set-up block diagram.

frequency of 90 kHz. The reconstructed digitized input waveform and the DFT graph are
- shown in Figure 6.8(a) and (b) respect:-  The noise floor is quite low but the harmonic
distertions are still quite L .. We tri veak the input signal amplitude to obtain better

dynamic range but no significant im. . .cment was observed.

We believe that the ADC prototype can have as high as 7.5 bit resolution. In the
area of layout, we need to improve the layout of the ADC so that sensitive analog signal
can be isolated much better than the digital signal. In the area of circuit generation, the op-
amp gain requirements should probably be overestimated in order to guarantee the linear-
ity and accuracy of the op-amp. Two crucial requirements would be to slightly over-esti-

mated open-loop gain and to shorten the settling time of the op-amp.
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6.5 Summary

Examples of ADC blocks of different specifications have been presented. Layouts
of manually designed as well as automatically generated ADC blocks were also shown. An
automatically generated ADC prototype has been fabricated in a 2 pm CMOS process
through MOSIS. The prototype has been tested and it functions as it is supposed to. The
result of measurements are not as good as expected due to noise radiation in the wire-

wrapped test board.
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CHAPTER 7 Conclusion

7.1 Summary of Research Results

This research has shown that the module. generation of analog blocks in general
and ADC in particular can be simplified by careful selection of architectural approach or
implementation. An improved algorithmic ADC architecture that lends itself nicely into
automatic generation has specifically been designed as the first building block of the ADC
module generator, CADICS. The research results will be summarized into two different

parts: the improved algorithmic ADC architecture and ADC module generation.

7.1.1 An Improved Algorithmic A/D Conversion Architecture

«The conventional algorithmic implementation does not fully utilized the conver-
sion time. Idling periods exist among blocks during each conversion. Time-mul-
tiplexed two sample/hold blocks can remove the idling states and increase the
overall throughput of the algorithmic ADC. The improvement in speed can be as

high as a factor of 3 higher than the single sample/hold implementation.
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7.1.2

«The performance of the algorithmic ADC is very sensitive to loop offset voltages.
Offset voltage contribution from op-amps can be reduced by employing an auto
zero amplifier that can be done at the beginning of every conversion. The offset
voltage effect due to comparators is totally eliminated by using the proposed 2- |
comparator scheme and digital error correction. This comparison scheme allows

us to use simple comparators for a wide range of sampling rates and resolution.

Vv,
The allowable comparator offset voltage is as large as i%’ , where Voo is the

reference voltage of the ADC.

» Algorithmic ADC has a single parameter capability that can be easily adapted to
satisfy requirements above 10 bits by adding a small module for self-calibration.
It has been shown that the improved algorithmic ADC has very small numbers of
variables that contributes to the overall linearity [LTU91]. Thus this type of ADC
architecture is very suitable for automatic generation since the implementation of

the netlist module generator will be made easier and simpler.

oThe algorithm: DC implementation is very area efficient compared to other
ADC approac...s. The trade-off between resolution and area can be made in

straight forward way by scaling up/down the capacitor sizes to achieve the

required % noise level and by adding the auto-calibration module if required.

ADC Module Generation
« Analog block generation is the bottleneck of the turn around time of mixed signal
chips. While analog standard cell libraries will give short term solution, they do

not offer flexibility to the change in technology feature size. It will be very desir-

able to have a general design methodology that can generate all possible analog
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blocks automatically. Unfortunately, this is very difficult to do due to analog cir-
cuit design complexity. Thus module generation of commonly used analog func-
tions such as ADC’s is a good starting point to the realization of a general

automatic mixed-signal design framework.

oA parameterized schematic of known architecture implementation is a better
approach because it can generate highly-effective circuits based on known archi-
tecture for complex analog functions in a flexible environment by optimizing the
device sizes with respect to various performance measures. CADICS is a perfor-
mance-driven CMOS ADC module generator based on design rules and spice

parameters.

«For ADC functions, the realm of performance maps into several classes of real-
izations spanning the conversion rate spectrum and two distinct regions of accu-
racy or linearity. Therefore, architectural study of different ADC blocks is a
crucial part of the module generation implementation because careful selection
of ADC blocks will limit the number of module generators needed in order to

cover the widest spectrum of resolution and sampling rates.

At least 5 different ADC implementations (serial, oversampled, algorithmic,
pipelined, and flash) are needed to cover a wide spectrum of resolutions and sam-
pling rates. As the first step, we developed an algorithmic ADC module genera-

tor.

« ADC module generation does not have a well-defined algorithm to do the synthe-
sis making it very difficult to implement. In order to ease the development of the

software, many analog circuit design techniques are incorporated into the module
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generation. A new improved algorithmic ADC without high precision compara-

tors was developed as the first ADC technique in CADICS.

»The module generator takes a set of ADC specifications, spice parameters, device
matching information, design rules, and floorplan information. It generates the
complete ADC nedlist, layout, and the overall performance summary. It consists
of three major steps: architectu ' selection, netlist generation, and layout genera-

tion.

«The netlist generation is implementec ..sing a hierarchical optimization approach.
The hierarchical optimization procedure is very suitable for block functions that
can be partitioned into distinct subblocks. This procedure allows the flexibility to
include other low-level block synthesis tools such as OPASYN to generate op-
amps and comparators. Moreover, this type of implementation is much faster

than doing a global optimization of the circuits all at once.

«Behavioral simulator is an important part of the module generation of complex
blocks since some specifications can only be obtained through simulation runs. A
discrete event simulation program of the new algorithmic ADC has been written

and used within the netlist generator.

«Coupling between netlist and layout generation is an important aspect of analog
block module generation since analog circuit performances depend on a fine
detail of layout. Attempt to link the two generators is done by sharing an area

optimizer.

« A top-down, bottom-up layout generation was implemented. The flooplanning is

based on a slicing structure. A fixed floorplan is used throughout the layout gen-
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eration but flexibility of changing the lower level block floorplan is allowed but

not recommended.

« A structured-netlist using sub-circuit definition has been adapted. This style of
netlisting accurately reflects the block partitioning of the ADC block. A data

structure that stores the netlist efficiently has also been chosen.
« A fully differential layout style is used throughout except in the digital blocks.

*A modified Stockmeyer’s algorithm is used to do the floorplan optimization.
Channel area is also estimated in order to predict the actual silicon area of the

final layout.

«The methodology introduced here can be extended to do a performance-driven

hierarchical top-down design of mixed signal systems.

7.2 Future Work

The ADC module generator, CADICS needs to be improved by adding more ADC

netlist module generators. More ADC topologies need to be added into the CADICS data-

base in order to cover as wide range of resolution and sampling rates. More research to

come up with high performance ADC implementation that is insensitive to small number

of parameters is very important. This is very crucial because it will simplify the module

generation implementation. More ADC’s need to be fabricated and characterized in order

to improve the quality of the existing module generator. Implementation of self-calibration

module to extend the existing ADC topology to go beyond 10 bits is also very desirable.

The continuation of research in the area of generic analog tools such as router,

placement, compaction, verification, and testing needs to be intensified in order to achieve

183



Conclusion

the maturity as those of digital circuits. In the future, a mixed-signal design framework
will consist of many different module generators. This design framework effectively will
function as a design manager that coordinates the generation of the requested mixed-sig-

nal blocks.
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APPENDIX A:Building Blocks

A.1 Introduction

In this appendix, a detailed discussion of all the basic building blocks used in
implementing the 1-bit/cycle algorithmic ADC will be presented. Discussion on Sample
and Hold (S/H), Gain of 2 (2X), operational amplifier (op-amp), comparator (CMP), and
digital circuitry will be discussed in succession. We will only derive in details equations

that are not commonly used.

A.2 Sample and Hold Block

In this section the design of a capacitor mismatch insensitive sample and hold (S/

H) circuit will be described. The design of the op-amp will be described in section A.4.

A2.1 S/H Circuit

One of the simplest form of sample and hold circuit can implemented using a

switch and a capacitor as shown in Figure A.1(a). During the sampling period, switch §)
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Vin C I Vour

(a) Ideal S/H

+ +
Vin C I Vour

>t

=~ (e) Idea: S/H putput voltage
(®) NMOS S/H vhtis e
R : '

+° VNV T o g B

+  Finite BW
Vin C I Vour . Traasition! VOUT

- Nq‘_'. Z ? 7
(c¢) S/H model sogpisition; Ag;:;e
(f) Non-ideal S/H output voltage

Figure A.1: Simple sample and hold circuits and their transfer functions.

connects the input to the output nodes charging/discharging the capacitor C to the current

Vin. After a finite time T, Voyrwi' 'k Viy. When the switch is turned off, the input

voltage has been sampled onto C is now being held as shown in Figure A.1(e). One
simple implementation of the swiich is using NMOS transistor (Figure A.1(b)). Unfortu-

nately, when @, is high the switch has some finite resistance (Figure A.1(c)) that will con-

tribute to some errors such as non-zero acquisition time, aperture delay, transition error,
and tracking error as illustrated in Figure A.1(f). A detailed discussion of these errors can
be found in [LEWI87b). Besides the errors mentioned above there are two other errors that
affect the sampling mode, they are charge-injection voltage and thermal noise. These
problems can be reduced by doing bottom-plate sampling, fully differential architecture,
and CMOS switches.
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One S/H implementation that was often used is shown in Figure A.2. When &,
and @, , are high and @, is low, the input voltage V, is sampled onto capacitor C¢ while
capacitor C, is being discharged to ground. When @, switches from high to low, the

instantaneous input voltage at this time is being stored in Cg and a delay later @,

switches to low. The reason for doing this delay switching on the sampling mode will be

discussed in details later in this section. When &, goes from low to high, the charges

stored in Cg are transferred to C,. This period is called the hold mode.

The overall closed-loop transfer function during the hold mode can be written as:

VOUT CS
Vmw | T Cs+C+C, (EQA.L)
Crt——Fg—"

v
Where Cg= sampling capacitor
C; = integrating capacitor
C,= total parasitic capacitance on the summing node
A, = open loop gain of the op-amp
Assuming the switches are ideal and the op-amp gain A, is infinite, the transfer
Cs

function will depend on the ratio of the two capacitors: T For a unity gain sample and
1

hold function, Cg = C;. However, due to the imperfection in photolithography and process

variation, these two capacitors will have some variations.
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Figure A.2: Capacitor matching sensitive sample and hold block.

A better S/H circuit is the one that is independent of capacitor ratio and therefore,
is insensitive to capacitor matching as shown in Figure A.3. The switching sequence,
transfer function, error sources of the circuit, and calculation of switch and capacitor sizes

will be discussed next.

to 4 tz il'l'T

Figure A.3: Capacitor matching insensitive S/H block.
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A.2.2 Switching Sequence

The S/H circuit shown in Figure A.3 has 4 different clocks: ®,, ®, ,, ®,,, and ®,.
Effectively there are only two clocks since @, is a delayed version of ®,, which in tum is
a delayed version of @, . During the sampling mode, V, is sampled onto Cg by closing
$1: 85 S5, Sg, and S switches (Figure A.4(a)). At the end of sampling period, @, , will go
low first and therefore, Ssand S get turned off first isolating the summing nodes of the op- |
amp (Figure A.4(b)). The charge injected by SsandS, will then reside in the summing
nodes. Ideally Ssand S¢ have exactly the same width and length, but due to limitations in

photolithography and the etching process there will be a slight mismatch. As a result, the

charge injected by SsandS are not exactly equal. The difference will become a differen-

tial error voltage at the summing nodes.

To minimize the difference, §, is added, connecting the two summing nodes so
that turning off §, after S5 and S, equalizes the differential error voltage between the two
nodes (Figure A.4(c)). Moreover, having S5 will make SsandS¢ smaller in sizes because
S, will now function as the sampling switch instead of Sgand §¢. Therefore, Ssand S can

be made small to minimize the amount of charge injection. The total charge injection from

S5, Sg, and S, will contribute to a common offset voltage to the op-amp. As a result,

proper switch size needs to be chosen to minimize this effect. To disconnect the sampling

capacitor from the input voltage, ®, goes from high to low turning off §;andS,. Turning
off S, S¢, and S, prior to §;andS, results in no sampled charge injection due to turning

off §,andS$,.
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When ®, goes from low to high, S;and S, will be on, closing the loop by connect-

ing nodes A and B to the outputs to do the hold mode (Figure A.4(d)). The size of

S;and S, are determined by the allowable additional phase shift at the output nodes and

the settling time of the op-amp.

v

A CS\)Ss
M AL
Vin s S; Vin 'S., OTA
.-37—"-—
B Cs

rigure A.4: Modes of operation.

A.2.3 Transfer Function

The S/H transfer function can be analyzed using charge conservation. For simplic-

ity, a single ended version is used. When @, goes from high to low at time t) (Figure A.3),

the input voltage is being sampled onto the capacitor Cg. The total charge at node X dur-

ing the sampling mode (Figure A.5(a)) can be written as:

Ox(t)) = Cs- [0=V\(1))] (EQA.2)
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where  V,,\(t,) is the sampled voltage

When the S/H block goes into the hold mode at time ¢, + T (Figure A.3) (the simplified

hold mode configuration is shown in Figure A.5(b)), the total charge at node X is

Oyt +T) = Cs- [Vylt,+ ) = Vourt, + D] +Cp- Vylt, + 1) (EQA.3)

where V(1) = voltage at node X at time ¢
Vour{?) = output voltage at time ¢
Cp = total capacitance at summing node excluding Cy

Assume that the open loop gain of the operational amplifieris A,

By conservation of charge, the total charge at node X during sample mode is equal to hold

mode since node X has no dc path to the ground. Equating EQ A.2 and EQ A.3:

Ox(t) = Ox(t, + 1) (EQA.S)
=Cs-Vpft) = Cg- [Vlty + D) = Vo, + D] + Cp- Vit + T) (EQA.6)

Substituting Vy in term of V), using EQ A.4 and solve for V1, we get

Vourt, +T) = -—gsTG V) EQA.T)

1+ 4, Cs

EQ A.7 shows that the output of this S/H block is independent of any capacitor ratio other

than Cp. The above derivation can easily be extended to cover the fully differential case.
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(@) ®)
Figure A.S: (a) Sample mode and (b: "!~!'d mode configurations.

A.2.4 Noise Source

The noise sources of the S/H circuit (assuming an ideal op-amp) are the thermal
noise generators due to non-zero channel resistance of the switches that get sampled onto
the sampling capacitors. The only significant noise source of the S/H block shown in Fig-

ure A.3 comes from the middle switch §,. The reason is very obvious because S, is the

switch that disconnects the sampling path, thus its thermal noise gets sampled onto the
sampling capacitors [SHIEH81], [GRAY84].

Let us assume the S/H is sa’ 'g a zero input voltage. Right before S is turned
off, the noise model of this sw' . an equivalent non-zero resistance R with thermal
noise voltage generator ¥> = 4k TRAf as shown in Figure A.5(a). When §, is turned off,

the thermal noise is sampled onto both capacitors.

o _ kT
Va = 30 c; (EQA.8)
-2 _ kT
B = 3¢ o (EQA9)

where Cr = Cg+ Cp.
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TC
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1|
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I¢r
(a)

Figure A.6: Thermal noise due to middle switch (a) sample and (b) hold modes.

A.2,5 Switch Size Calculation

The following analysis will discuss how each switch size is determined. During the sam-

pling mode, S5 and Sg (Figure A.3) will be turned off first. The switches will be in the

configuration shown in Figure A.4(b). Due to the finite “on” resistance of the switches, we

can simplify the network as RC network as shown in Figure A.S.

Rg, G5
— MW
Vin % Rs,
—W
Rsz CS
Figure A.7: Sampling mode RC model.

This RC network has to  “tle to within half LSB of input voltage when the middle switch

S, is opened. This acq.. .uon time, f,, can be written as:

aq
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laq

< _1 2
e T < 3 2—” (EQA.16)
tanN-1~ln(2) (EQA.17)
t
ag
1< NIn (D) (EQA.18)
where 1 = the time constant of the RC network
N = the number of bits
1,4 = the acquisition time
T=R;-Cr (EQA.19)
Cr=05-Cg (EQA.21)
Substituting EQ A.19 and EQ A.21 into EQ A.18 and solve for Ry:
R.< _ fag EQA.22
TSN Cr-In(2) (EQA-22)
. <t 1 (EQA.23)
=2 f :
R;< 1 (EQA24)

N-f,-Cs-In(2)
Another requirement that needs to be considered is the distortion due to this sampling net-
work. This requirement is usually specified in term of maximum allowable phase shift, ¢.
The phase shift requirement is very important in video applications. Typically it is in the
order of 4° or less. Based on this requirement, another equation for R can be derived.

Detailed derivation of the phase shift equation can be found in [LEWI87b].
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¢ < —atan ( fﬁ:a) (EQA.25)
fi
f-3a82 gng (EQA.26)

where ¢ = phase shift
f;n = input frequency
f-34p = -3 dB frequency of the RC network, (27 - R,.- Cp)~!

According the Nyquist theory, the maximum allowable input frequency for the A/D con-

verter that we are discussing should be less than or equal to conversion frequency,

f conversion*

1
f;'u s 2 £ conversion (EQA.27)

The conversion frequency can be related to the sampling frequency, f; to be

f
f conversion = 1\; +1 (EQ A.28)
int ( )
2
EQ A.28 is only valid for 1 bit/cyclic lgorithmic ADC discussed in this thesis. Substitut-
ing EQ A.27 and EQ A.28 into EQ A.26 and assuming f;, = A f,,nersion (fOr A<0.5)

and solve for R;:

N+1
5—) - tang

“‘l‘fs’cs

int(

(EQA.29)

Rp<

Assuming ¢ = 4°, we can then compare EQ A.24 and EQ A.29 for all N. If
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A = 0.5, for N <8 it will be phase shift limited and for N > 8 it will be time acquisition

limited. Since the A/D converter is intended for mid-frequency application, the phase shift

requirement is much more relax. Moreover, most of the time the input frequency is much

slower than the Nyquist rate i.e. A<0.5. For ¢ = 4% and A <0.3, for all N, the switch

size will be time acquisition limited. For the remaining of the discussion of this section
will be assuming that this is in fact true. Therefore, EQ A.24 will be used when calculating
the switch sizes.

Let us assume that Rg = & Rg = 0. Rg = R where o> 1. Since §, is an

NMOS switch, the on resistance of switch Rg, can be approximated by

1 W,
E; =M, Coy L_-, (Vy= V) (EQA.30)
?

where p_ =mobility electron in the n-channel
C,, = gate oxide capacitor per unit area

W, .
7 =aspectratio of the gate
7

Vy = gate to source voltage applied to turn the switch on
Vry = threshold voltage

Substituting EQ A.30 into EQ A.24 and solve for the aspect ratio, we obtain the following

equation:
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2
Wy LB L D EQA3D)
L™ G (Vy-Vpy
For §; and S§,, we can solve for their equivalent resistor of CMOS switch with the same

width and length. When a CMOS switch is on, we can model it as two resistors, R, and

R, in parallel as shown in Figure A.8.

(a) (b)
Figure A.8: (a) CMOS switch (b) ON model of the switch.

i 1 1

; R—,.+R—,, (EQA.32)
i=l1 .c. % (Vae = Vo) (EQA.33)
Rn n “ox Ln GS, TN -
L e X v - (EQA.34)
sz - u'p ox Lp l GS,l I TPI) g

where p_ = electron mobility in the n-channel
Hp = hole mobility in the p-channel
C,. = gate oxide capacitor per unit area
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W, = the gate width of the NMOS
L, = the gate length of the NMOS
W, = the gate width of the PMOS
L, = the gate length of the PMOS
Vs = the gate to source voltage to turn the switch on
Vry = n-channel threshold voltage
Vrp = p-channel threshold voltage

Let us assume:

By =b-H,
Ves, = |Ves| = Vu
W, W, W,
L, L, L,

Substituting EQ A.33 - EQ A.38 into EQ A.32, we obtain:

L o a4y op-Co v
R—s-—( + )"J'n' ox'L—l'( H™ T)
1

(EQA.3S)
(EQA.36)
(EQA.37)

(EQA.38)

(EQA.39)

Since Rs = a- Ry, , we can solve for the aspect ratio of §, by substituting EQ A.31 into

EQA.39.
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W,_ N-In(2)-f,-Cs- (2+a)
LT+0 0, G, Vg-Vp) EQA4D)

In order to calculate the ground switches S, and S, we can simplify the analysis

by ignoring the middle switch. When these switches are on, they again form an RC net-
work as shown in Figure A.9. The requirement for this RC network is different from the
previous one discussed. The acquisition time for this network is a function of the common
- mode frequency, f,, of the input signal. Usually fcu is at a much lower frequency than
fin- Since the amplitude of the common mode input voltage swing is usually much smaller

than the differential input voltage, we can choose the RC network to have a bandwidth as

large as fc),.

VemUew) Ry

Figure A.S -etwork model for calculating ground switches.

1

(RS|+RS’) ¢ Css 2—__—1t~k-f‘.n

(EQAA4I)

where k = the multiplication factor, k< 1

1

Substituting EQ A.27, EQ A.28, EQ A.30, and EQ A.40 into EQ A.42 and solve for the
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aspect ratio of NMOS switch §g, we obtain

W, .C
LS fs Cs (EQ A.43)
L _ N+1

int(=5—) 1

un'co.x'(VH-VT)' 2n-A-k -(2+a)-N'ln(2)

By Assuming a =2, A=, N26, and worst case k =1, we can ignore

DI

1
(2+a) -N-In(2)

contribution. EQ A.43 can be approximated to be

WS ﬂ'fs' CS o
-L-; 2 : N+l (EQA.44)
un'cox' (VH—VT)°lnt( 3 )

Finally, during the hold mode, S; and S, (Figure A.4(d)) will be on. These

switches can be modeled as a feedback resistor shown in Figure A.10. The sizes are deter-
mined by the settling time of the operational amplifier (op-amp). These switches will also
contribute an additional phase shift to the overall loop of the block. Usually the contribu-
tion of these switches to the additional phase shift is negligible. Thus, the switches size

will be a function of the op-amp settling time. Let © be the settling time of the op-amp.

tyg = N-Ryp- Cp1n(2) (EQA.45)

where ¢, = acquisition time
N = the ADC resolution
R,, = the on resistance of the switch

C,, =total load capacitor at the output node
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LN
>

Figure A.10: Hold mode RC model.

For the holding network to settle as quickly as possible and contribute negligible phase

shift, the switch size has to be chosen so that tg«T. Lett,, = B -t where B« 1. Since
§3 and S, are CMOS switches, EQ A.39 can be used. Substituting t,, and R,, into EQ

A.45, and solve of the aspect ratio of the switch, we obtain

w32 N-C;-In(2)
Ly"B-t- (1+b) -n,- C,pr (Vg=Vp)

All equations obtained indicate t+ e larger the switch size the better the perfor-

(EQA.46)

mance of the S/H block. Unfortunately.  : are factors that give the upper limit as how
large the switch sizes can be. The first 15 the charge injection voltage resulting from turn-
ing the switches on and off. For this particular S/H circuitry, the charge injection contribu-

tion will be from Sg, S¢, and S, will be the critical ones. One needs to determine how

much charge injection voltage can be injected to the summing before its affects the perfor-
mance of the op-amp. Usually, it is dictated by the input common mode range of the op-
amp. The second factor is the parasitic capacitance contribution from a large switch will
be larger. Usually, for mid-frequency applications, the switch size will be fairly small and

therefore, the parasitic capacitance contribution is negligible. Thus, the combination of the
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two factors mentioned above will determine the upper limit of the switch.

Notice that all the equations derived above are for calculating the switch sizes of
the input S/H block (S/H-1). For the second S/H block (S/H-2), all equations are valid
except the requirements are much more relax. For example, the resolution is reduced by
one, the input signal is pretty much dc, and the common mode input frequency is non-

existence. Therefore, all the switch sizes in S/H-2 will be much smaller than S/H-1.

A.2.6 Amplifier

Ideally the S/H-1, S/H-2, and 2X blocks have different op-amp performance since
the requirements of these blocks are different. But to simplify the design procedure, the
three blocks use the same op-amp. Among the three blocks, the 2X block is the critical one
in that its op-amp gain requirement has to be better than the S/H blocks due to its large
feedback factor. Thus the discussion of amplifier design will be described in section A.3.2

A.3 Gain of Two Block

In the following section, the gain of two block circuitry and switching scheme will

be presented. Transfer function and the noise source of this block will also be discussed.

A3.1 2X Circuit

The gain of two circuit is the same as shown in Figure A.2 except the capacitor

C
ratio Fs is equal to two. In order to fully utilize this 2X block, the reference subtraction
I

circuit is also integrated inside by adding reference capacitors Cppr and CMOS switches

which select Vg, GND, or =V pgr. The complete 2X block is shown in Figure A.11.
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Figure A.11: Gain of 2 block.

A.3.2 Switching Scheme

At the beginning of each bit conversion, all the capacitors in the block will be ini-
tialized to zero by closing switches £ -. S4, S7, Sg So, S1g, S11, S12, S;3 (Figure A.12(a)).
During this period, the op-amp a!  indergoes an initialization period where the common
mode voltage for the outputs are  .uialized, and the offset voltage and noise of the op-amp
are stored. The details of the op-amp initialization will be discussed later. The initializa-
tion period is carried out during the sampling of the input signal. Just like the S/H block,
the ground switches Sg and §;, are turned off first (Figure A.12(b)), followed by S;; (Fig-
ure A.12 (c)). The initialization period is completed when S7 Sg §;; and §;; are turned off
and S;4 and S5 are turned on, connecting the integrating capacitors to the outputs (Figure
A.12(d)). At this time, the 2X block is ready to perform multiplication for the rest of the
conversion cycles. The reference subtraction switches S;, S;, §3, S¢ Ss, and Sg will be

controlled by the comparator outputs of the previous cycle. Only one switch pair (i.e. S; -
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Sz or §3-S40r S5-Sg) will be on at any given time.

c F.\Ts; 12
] ij,
‘ ' (fi 4}?11

=

(a) Initialization mode (b) Disconnect ground switches S9 and S10

c F\T,;g E__F%z V‘&’.".’."_QSC F
e i~

-W
aw =
c; \,Tu OTA > Vour Vin éN\s
s . s 1l
| : ) Voro A_“
c F w—. C F
e L s
-)j-m 13 TVREF
(c¢) Turn off middle switch S11 (d) Active mode
Figure A.12: Switching modes.

A.3.3 Transfer Function

The transfer function of the 2X block can also be analyzed by using conservation
of charge on the capacitors. Once again the analysis is simplified by considering a single
ended case. During the initialization mode (Figure A.13(a)), the charge at node X is zero

since all the capacitors are discharged.
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Figure A.13: (a) Initialization and (b) active mode configurations.

Qr=0 (EQA.47)
Let us assume nodes A and B are connected to V4 and Vg respectively when the 2X

block is in the active mode (Figure A.13(b)). Therefore, the total charge at node X at this
time is

Oryq1 = Cs [Vy(T+1) =V, (T+1)] +Cppp- [Vy(T+1) = Vy(T+1)]

+Cp [Vyg(T+1) =Voup(T+ 1)1 +Cp- Vy(T+1) (EQA.48)

where V() = voltage at node i at time ¢

Vour () = =[Ay- Vy(9)] (EQA.49)

Equating the charge at node X before and after the initialization:

+Cp [Vg(T+1) = Vour(T+ 1)1 +Cp- Vy (T+1) (EQA.50)
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Substituting EQ A.49 into EQ A.50 and solve Vpyrin terms of V4 and Vg, we get

C
Vour(T+1) = - S |-V (T+1) |-
C,+ ;‘:"’
C
“‘"TFd Ve(T+1) | (EQA.S1)
C,+ ==
1 AV

where Crya1 = Cs+ Cr+ Crer + Cp

EQ A.51 clearly shows that the 2X block functions as a pure multiplier. The accuracy of
the multiplier will depend again not only on the matching between Cg and Cj, and Cger

and C; but also on the gain of the op-amp Ay At high resolution, the accuracy of the multi-

plier will become critical in determining the overall linearity of the conversion. If the

capacitor matching is not good enough, trim arrays for Cs and Crer can be added. A

method of calibration of two capacitors using trim arrays will be discussed at the end of

this section.

A.3.4 Noise Source
Just like the S/H block, the thermal noise for this block comes from the middle

switch §j;. Carrying out the same derivation, the total input referred mean square noise

contribution for this block is

C 2
R = 2- '(‘:—: [é] EQA.52)
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If Cpgr = Cy= Cp= C and Cg = 2C, then C7 = 5C and the total input referred mean

square noise is:

3 5 kT
vzinpm = 3°'C (EQA.53)

Comparing the mean square input referred noise between the S/H and 2X blocks for the

same value of unit capacitor, t.c .. . - is bigger by a factor of 2.5. Therefore, determina-

tion of the size of the smallest uni. >itor based on % noise will be dominated by

noise contributed by the 2X block.
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A4 Amplifier

Ideally the S/H-1, S/H-2, and 2X blocks have different op-amp performances since
the requirements of these blocks are different. But to simplify the design procedure, the
three blocks use the same op-amp. Among the three blocks, the 2X block is the critical one
in that its op-amp gain requirement has to be better than the S/H blocks due to its large
feedback factor. Thus the following discussion of amplifier design will be intended for 2X
block.

A.4.1 Amplifier Specifications

The specifications of the 2X block amplifier depend directly on the resolution and

conversion speed of the A/D converter. Referring back to Chapter 3, the accuracy of the

gain block has to be within € = 2—1\11-_1 For an 8-bit A/D converter, this means

¢ = 0.78%. The effective gain from input to output of the 2X block (see Figure A.11) can

be written as
Vour Cs
in = -2UT _ _ >-(2- A.54
Gain = -~ C;+Cs+Cp+ Crpr (2-¢) (EQA-54)
A, 1

2-(2-¢) (EQA.55)

Gain = -2
142
Ay
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-1
€
(1- 5)
If 1= 14xforx«l, then (EQA.57)
Ap26(2Y) = 6 (EQA.58)

From the above calculation, the op-amp has to have open loop gain greater than 1536. At
higher resolutions, capacitor mismatch also degrades gain accuracy. One way to solve
capacitor matching problem is to add a capacitor trim array (this will be discussed later in

this appendix).

To achieve an 8-bit accuracy at 125kHz, clocks @, and @, shown in Figure 3.19

have to have a period of 2 us. Assuming the clocks have a 47% duty cycle, the total set-
tling time for 2 op-amps (i.e. S/H and 2X blocks) is approximately 940 nanoseconds. A

detailed clock division is shown in Figure A.14. The non-overlap time between &, and
®, is approximately 60 nanoseconds, during which the comparators make their decisions

and then latch the current bit into the register.
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Teonversion = 8 US feonversion = 125 kHz

 940ns | | 940ms

> <> -
60 ns 60 ns

T =2000 ns
f = 500 KHz
Figure A.14: Time allocation.

Referring to Figure A.15, Let 1, be the time required to acquire an input signal to
N-bit accuracy for an op-amp in gain block configuration. 7, can be approximated

[LEWI87b] to be

1,207-N-1pp (EQA.59)

where T, = output time constant with feedback

Let t5; and 1, be the settling times for S/H and 2X blocks respectively.

For the 2X block:
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Cf-l

9

Vin c
Al

Figure A.1S: (a) S/H block in holding mode and (b) 2X block in multiplying mode.

Ty

Trp2 = o (EQA.60)

+ay: [CS+CI+CREF+ CP]

where T,= the o ~ut time constant of the 2X block
Ay=. Jpen-loop gain
For the S/H block:

i3
Tepy = (EQA.61)

¢
iy [Cz"'cp]

T, = Royr (CLi+C) (EQA.62)

where N = number of bits
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Royr= the open-loop output resistance of the op-amp
C,; = total loading capacitor at the output of the op-amp

i = the S/H or 2X block

Therefore, 940 ns is the total time #,; + ¢, for both blocks to settle within N bits of
accuracy. The assumption here is not exactly accurate since while the S/H block is in the -
hold mode, the 2X block is in the multiplication mode. The output of the S/H block is con-
nected to the input of 2X block. Therefore, as the output of the S/H block (the input of the
2X block) is slewing and settling, the 2X block is also slewing and settling. Effectively,
the total slewing and settling time for the combined two blocks are less than 2 op-amp set-
tling times. For illustration purpose, the 2 op-amp settling time is used. If Cg = Cp = 2(;

=2Cggrand T, = T,, Tpp, and Ty, can be approximated by:

T
Y = T (EQA.63)
I+ =5
T T
Trp2 = A, =a. (EQA.64)
1+— Y
6 6
Trp2 =3 e (EQA.65)
tTole Iatin= 0.7-N- (tpgl + tFB2) =28-N- Tra1 (EQA.66)

For N = 8 and tp,,,,2 940ns, 1.5, <42ns, corresponding to a closed-loop -3 dB band-

width of about 3.8 MHz.
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From EQ A.65, the time for the 2X block to settle is around % of 940 ns which is

around 705 ns. Assuming half of the 705 ns is for slewing and the other half is for settling,
for Cp + Cy= 5 pF and 4 Volts peak-to-peak swing, the slew rate has to be least 11.36

Volts
us

and output charging current 71 pA. The necessary input transconductance of the

_ op-amp G, would then be approximately G,,; = 0.4 mA/volt.

In the remaining of this section, the chosen op-amp topology and the techniques to

reduce the offset and noise of the amplifier will be presented.

A.4.2 Basic Op-amp Topology

Before analyzing the op-amp behavior, all the symbols used in the equations are
defined below.

A,  =dcopen loop gain

Ryp»  Juivalent output resistance

Z, = the zero of the transfer function
p; = the dominant pole of the op-amp
p,  =the first non dominant pole

p;  =the second non dominant pole

C,x = total capacitance at node X
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8. = transconductance of transistor i
8,;  =output conductance of transistor i
C . = gate to drain capacitor of transistor i

8

C,si = gate to source capacitor of transistor i
C,p;  =drain to bulk capacitor of transistor i
C,,; =source to bulk capacitor of transistori
Vvpsari = saturation voltage of transistor i

Vgs = gate to source voltage

V,;  =threshold voltage of transistor i

AV:(i-—,) =V;-Vy

(%, ) = the aspect ratio of transistor i
i

u4 w
D,

Li4
Dy~ 2
w w w
A(—+ = (+) - (+
D oy = DD,
v} =equivalent input referred noise for transistor i
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K, = flicker noise coefficient, 3 x 10712V4pF

Ry  =equivalent resistance at node X

A fully differential folded-cascode CMOS amplifier shown in Figure A.16

[GRAY84] is chosen because it can achieve high gain and is simple in topology. The trans-

_ fer function of the folded cascode is

Vdd O
Vp1 [
Vp2 ¢
Vine o-“:m MZ |- Vin- lesscl [+ Vout -
vn2 o
‘Is
]
Vol o | S
Vss
Figure A Fully differential folded cascode amplifier without common
mode feedback circuit
s
1+ —
( zl)

(EQA.67)

Vv

“,’m‘” (s) = Ay(s) = A . y -
1+ ) (1+2)(1+ 2
( +p3)( +p2)( +P1)

o 1
oUT = G 3G,+G,
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- (gol+go4)306
U 8me+ 8mbe+ 806

= 888010
2 8010+808+gm8+8mb8

= (gol+go4)8068010
3 (gm6 + 8mb6 +806) (go 10 + 8,8 + 8ms + gmbS)

_ 8510+ 808+ 8ms ¥ 8mbs
Lc

1
p B amm—
' RourCus

= 81 +8o4+806 +gm6+gmb6
2 CLA

- 8010 + 808 + 8ms + 8mbs
CLC

P

Cra = Coai+ Capy + Coaa+ Cyee+ Cops

Crp = Coa+ Caps+ Cous+ Cars + C1.

Crc = Cys+ Cagt Coaro+ Capro

Design procedures for this type of op-amp is summarized in Table A-1.

195



Building Blocks

Table A-1: Op-amp performance summary.

Specification Equation
m
Unity gain frequency &m1
m —
° = Coa
Phase margin (0]
PM = _ -atan (—9)
23
Slew rate Ig
SR = 3C -
LB
Cascode bias current 1 o
I osc = MAX (I, imoVDSAT“m (PM))
Output swings Vour = Vob—|Vpsard —|Vpsare
Vour = Vss+|Vpsariol +|Vpsars|
Total power PWR = (21 ,,.+15) (Vpp—Vgs)
The input referred offset voltage is:
Vos = AV,q_y +
w w w
A~ hid Aid
(Vgs=Vy) (1-2) (L) (-2 L)(4-5) L (10-11) (EQA.68)
L -2 L’ (4-5) L7 qo-11)
The equivalent input referred noise is:
2 2
-2(8ma &m10 -2 1 2
.= 2| v+ 2(—)+ ( )+v( )+ (——— )} (EQ A.69)
[ i Emi1 V10 8m1 6 8miRa '8 8mRc
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7= [4kT3_L + ——kf-—}sf (EQA.T0)
38mi WiliColf

A.4.3 Common Mode Feedback Circuit

The common mode feedback (CMFB) circuit is needed in order to control the
common mode voltage of the output node [SEND82]. There are two types of CMFB cir-
cuits: continuous [KANE83] and dynamic [LEWI87b], [HOST84], [CAST84]. The differ- -
ence between the two types is that the dynamic approach needs clocks, whereas, the
continuous one does not. However, the continuous CMFB circuit is not very desirable

because it limits the output swing of the op-amp.

A simple dynamic CMFB circuit can be obtained by using only two capacitors and
a CMOS switch as shown in Figure A.17. The operation of the CMFB circuit is as follows:
during the initialization cycle, the voltages across capacitors are initialized to their respec-
tive voltages. When the op-amp is in the active mode, S1 will be opened and the two
capacitors Ccyy; and Ccyyz Will sense the output common mode voltage. If the common

mode output voltage is higher(lower) than the initial voltage, V4 will also go up/down. As
a result, more/less current will be drawn by M10 and M11 to pull down/up the output
common mode voltage. If there is a mismatch between Ccps; and Cpp, noise from the
supply line Vg will be injected or coupled to the output nodes through Cps;0-Cemi and C
gsi1 - Ccmz and it will appear as a differential output voltage. At high resolution, the

amount of noise injected through the supply line may affect the linearity of the conversion.

Figure A.18 illustrates a more complicated CMFB circuit in that it consumes more
area and power; however, power supply noise is not a problem. The basic operation is the
same as before. During the initialization, S1 and S2 are closed to initialize the voltages at

nodes Al and A2. Then, S1 and S2 are opened and S3 is closed. Thus, Ccps; and Ceap2
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Figure A.17: Simple common mode feedback.

function as output common mode voltage sensors. In order to cover a broad spectrum of
resolution of A/D converters (i.e. from 6 up to 12 bits), this CMFB circuit is implemented
in this 8-bit algorithmic ADC prototype even though the simple CMFB circuit is suffi-

cient.

A.4.4 Biasing Circuit
A high swing foldcd cascode biasing circuit generating the bias voltages Vy; and
V2 for NMOS transistors is shown in Figure A.19. The basic circuit is similar to the one

reported previously [OHAR87] with some modifications. Transistor M2 is designed to be
in the linear region by making its aspect ratio larger than that of M1. The purpose is to

make the Vpgof M2 to be a low impedance voltage source and set the V; of transistor M3.
The resulting Vz3 can be used to bias the cascode NMOS transistors of the core op-amp.
In order to guarantee that the two bias lines Vjy; and Vjy, track, M4-M7 are added. Transis-

tor M4 forms a feedback loop from V4 so that M6 can operate in deep saturation region.
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] wmiob | mi1b
. Output Stage ,' "\\ Common mode feedback circuit ~ ~

S1,82 l
S3 I

Figure A.18: Common mode feedback circuit with better PSSR.

Unfortunately, this biasing circuit requires more power and area. The complementary bias

circuit is used to generate biasing voltages Vp; and Vp,.

Figure A.19: High swing folded cascode biasing circuit.
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A.4.5 Auto-Zero Circuit

At high resolution, offset voltages and charge injection due to op-amp and CMOS
switches will affect the overall linearity of algorithmic A/D converter. In order to reduce
these effects, an auto-zero circuit can be added into the op-amp [OHARS87], [DEGR85] as
shown in Figure A.20. This auto-zero circuit can be treated as an auxiliary op-amp (A3)
with its inputs conne*2d to the outputs of the main op-amp (A;) to form a feedback loop.
* The storing of these ¢ 2t voltages can be carried out during the initialization of the block,

thus no extra clock periods are needed to include the auto-zero circuit.

Figure A.20: Op-amp with auto-zero circuit.

Let V,g; be the offset vol' . >f the op-amp. When ¢, ¢,, and ¢_ go high, all

switches are closed, and V,,;; gets amplified by A;, fed back by A5, and eventually an equi-

librium is established. The voltage across node 3 and 4 is stored on capacitor C,, and is

equal to

-Alvosl
Vi_a= T+A, (EQA.71)

When ¢, and ¢, go low, S1,52 and S3 will get turned off and inject charges into node 1
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and 2. The differential error voltages AV, between these two nodes will also get amplified

by A; and stabilized since the feedback mechanism is still active. Therefore, the voltage

across node 3 and 4 will be

Vs = Fn (EQA.T2)

When ¢, goes low, S4 and S5 will inject charge into node 3 and 4. This injected charge

results in a voltage across nodes 3 and 4. The total voltage difference across nodes 3 and 4

due to these 3 error sources is given by

-A, (V. +AV)
Vig = — 10:-1142 1 \ (EQA.73)
Across the output nodes of the op-amp, the voltage will be equal to
V A [(V°”+AV')+AV A’] (EQA.74)
out 1 1+ A2 2 Al g

This voltage can be referred back to the input by dividing EQ A.74 by -A}, resulting in an

input referred offset of

Vs +AV A
_ osl 1+AV 2

= TeA tAVag (EQA.75)

Therefore, the offset voltage due to op-amp and charge injection at the input nodes

are attenuated by (1 + Ap), and the charge injection due to switch S4 and S5 is reduced by

A
a factor of A_2 . The optimum value forA, turns out to be 1 of A, or in other words, g,,,
1

10
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Em1

is equal to 10

where g,,, and g, are the input transconductances of the main and aux-

iliary op-amps respectively. For an 8-bit resolution A, 2 1536 and A, = 154. The offset

voltage due to the op-amp and switch charge injection at the input nodes is 0.65% of the
actual value, whereas, those from S4 and S5 is 10% of the initial value. Thus the charge
injection due to S4 and S5 will dominate the offset error. Careful design is needed to

ensure that AV, is small enough.
A.4.6 Noise Reduction

The beauty of the auto-zero circuit described above is that it reduces the noise in
the 2X block by a factor of @. Let us assume the equivalent mean square noise at the

m2

input of the op-amp be

V2 a2 Af (EQA.76)

ml
where b = a constant factor

This noise voltage will then get amplified and appear across v; _ 4.

=2 8mi1 2-2 Emi1 2 b
B[] = 3] er EQATD

Let us also assume that the -3dB frequency of the auxiliary circuit is equal to

Em2

202



Comparator Blocks

1 8m2 '
s =33, EQA.T9)

The equivalent noise bandwidth can then be approximated {GRAY 84]

n 18m2
= —fam = o (EQA.80
fa 2f 48 = 3T, Q )

Substituting fy for Af in EQ A.77, the mean square noise across node 3 and 4

-2 _ Emi1 kT '
LA ®aAs

When switches S4 and S5 are tumed off, this noise is sampled onto C,,. Referring this

2
noise back to the op-amp input by dividing EQ A.81 by [%} , we get
ml
2 pf8m2][ kT |
Veq, input = b[gml] [Caz] (EQA.82)

Therefore, the % noise on C,, gets attenuated by the same factor as the ratio between

Em2
8mi1

A.5 Comparator Blocks

Figure A.21 shows a comparator block. At the beginning of the conversion i.e.

when the input signal is sampled onto the S/H-1 block, the comparators are being initial-
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V,
ized. The threshold voltages (:!:—‘:E-f ) are sampled onto capacitors C, and Cz. by closing

switches S1, S2, S5, and S6. At the end of the initialization, S5 and S6 are opened first,
followed by the opening of S1, S2 and the closing of S3 and S4. Now the comparator is
ready to do the comparison. At the beginning of the next input sample, the comparators

will again be initiafized.

Figure A.21: Comparator block.

The comparator design is very simple since the offset voltage of the comparator is
not an issue here. As long as the comparators make decisions in less than the allowable
time slot which is 60 ns, any type of comparator will do the job. Figure A.22 shows the
schematic of a comparator circuit where the comparator is realized by a simple regenera-

tive latch [DOER88], [WU88]. The operation of the comparator is as follows:

1. When ¢, ,,p is low, the PMOS transistors M8 an M9 are disconnected from

the NMOS transistors (M1-M4) by M6 and M5. M7 and M10 are on, and thus
they set the output voltage to high. During this time, the inputs of the compara- |
tor are changing and settling which in tumns affect the values of effective resis-
tors of M1 and M4. M7, and M10.
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vdd

CMPout ]

Vin+ o

Vss ¢ o

CMPout

Figure A.22: Comparator circuit.

2. When ¢,,,p 80es high, the comparator outputs will go to logic 1 or 0 depend-

ing on the resistances and capacitances on the drains of M1-M10. To avoid
unbalanced parasitic capacitance at the output nodes due to routing, two invert-

ers are added.

A.6 Digital Circuits

All the necessary digital circuitry and combination logic are integrated into the
final ADC netlist. Referring back to section 3.5.3.1, the decision bits from comparators are
used to decide the current bit, the correction of previous bits if necessary, and for control-
ling the reference subtraction circuit switches. Table A-2 shows how the comparator out-
puts are decoded.The complete digital error correction block is shown in Figure A.23. The

details of the reference clock logic schematic is omitted since it is trivial.
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0, +0, ; 1 ) Dn-2 R
Load Toed Load
o1 d o 9 p ¢
02 I E om:I in E outfe-roe —afin E Outfs
: Cin  Cout Cin  Coutff™ === =% Cin Cout™*
Select Select Select
c183 A [
“ =
o ! " !
-hod in St d U -
(Bog: a  am :|‘|‘F
Adder
Cin cull
BMtsiice DEC
Figure A.23: Digital error correction block.
Table A-2: Decoder summary.
C1 | C2 | Reference Clock | CurrentBit | SELECT
Reset 010 CONNECT to 0 PASS
GND
;s VeEi 0 [ 1 | SUBTRACT Vppr 1 PASS
IN®S 7~
Vo< Veer 110 ADD Vppr 1 CORRECT
IN=~ ¢
Veer Veer | 1| 1 CONNECT to 0 PASS
-— <Vy<—
4 4 GND
206




Trim Array

A.7 Trim Array

The capacitor trim array module has not been implemented in the ADC module
generator, CADICS. In this section, a calibration step for the gain of two block will be pre-
sented. The calibration sequence for this 1-bit/cycle algorithmic A/D converter is different
from the regular ones [OHARS7], [LEE84] because both Cg and Cppp need to be

trimmed with respect to C,. As a reminder, Cg = 2C; = 2Cpg. The calibration of these .

capacitors will be carried out in two different procedures.

1. Calibrating Cpy to be equal to C;. Refer back to Figure A.11 (for simplicity a
single ended case is discussed here), initially capacitor Cpgy is initialized to
Vg by connecting the top plate of Cppp to Vpep and C; and Cy are dis-
charged as shown in Figure A.24(a). The total charges, Qr at node X at this
time will be

Or = Crer(0 = Vggp) (EQA.83)

The charges stored in Cppp is then transfer to C; by connecting the top plate
of Cpgr to ground. At the same time, the summing node of the op-amp node X
is left floating and the top plate of C, is connected to V. as shown in Figure

A.24(b). At this time, the total charges at node X will be
Qr = C;(Vy=Vagr) (EQA.84)
By conservation of charge, we can equate the two equations.

—CrerVrer = CiVx = CiVier _ (EQA.85)

207



Building Blocks

Cc
Vy=1- %‘l‘"‘-’ Veer (EQA.86)

If Cppr# C;, Vi will be non-zero. If Cppp> C,, Vy <0. As a result, the op-
amp arranged as a high-gain comparator will give a logic “0”. Cpgp can then
be trimmed down by adjusting the capacitor trim switches, eventually the out-
put of the open-loop op-amp will switch from logic “0” to logic “1”. At this
time, the value of Cppp should be very close to C;. The AC increments in the

trim array can be designed so that it is good enough for the resolution speci-

fied. If Cppp < C;, Vy > 0. The opposite operation should be performed.

con
|fe+

Vout Vret Cs Vout

Cs/Ci=2
© @

Figure A.24: (a-b) Reference and (c-d) sampling capacitor trimming steps.
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2. Calibrating Cgto be 2C,. The same method described above can be applied to
adjust Cg. First, Cppr and Cg are discharged and C, is set to V- as shown

in Figure A.24(c). The total charges, Q at node X will be
Or = C(0-Vigp) (EQA.87)

Then the summing node is open to float the summing node X, and the top '

plates of Cg and C; are connected to Vppp and =V respectively as shown

in Figure A.24(d). At this time, the total charges, QO at node X will be

Qr = C;(Vy+ Vagp) + Cs(Vy= Vagr) (EQA.88)

By conservation of charge, we can again equate the two equations.

=CiVrer = CiVy+ CVpgp+ CsVy = CsVer (EQA.89)
Cs,, Cs
~Vrer = Vx+Vpert ¢, x” [ VreF (EQA.90)
Cs Cs '
Cs
VRer (Fz - 2)
v, = EQA92)
1458
¢
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If Cg#2C,, Vy will be non-zero. The same trimming technique described ear-

lier can again be applied here to adjust Cg value.

Thus, the improved algorithmic ADC requires two trimming arrays in order to
achieve higher resolution ADC. The current process, the capacitor mismatch is good up to
9 bit resolution. An example of a 3-bit trim array [LIN90] is shown in Figure A.25. As a
. rule of thumb, the number of bits needed for the trim array is roughly equal to N-8 where
N is the number of bits and N2 9.

Cref
II
*—e
: 1; i 7.1‘
Vin y J{I
o—o
H
Cret
Figure A.25: 3-bit trimming array.
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