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Abstract

A Methodology for Modeling theManufacturability of
Integrated Circuits

by

Eric David Boskin

Doctor of Philosophy inEngineering-Electrical Engineering and Computer Sciences

University ofCalifornia at Berkeley

ProfessorCostas J. Spanos, Chair

This thesis presents a unified approach to Design for Manufacturability (DFM). A

methodology is introduced wherein the three technology organizations within a company,

process development, circuit design, and productengineering participate in the character

ization, modeling and improvement of the manufacturability of IC products.

The methodology is based on an IC fabrication line description consisting of a small

set of measurable process parameters which describe the variation in performance seen on

a manufacturing line. These parameters are utilized in a physically based MOSFET

parameter extraction technique which accurately predicts transistor characteristics over a

wide range of process variation. The device models drive Monte Carlo circuit simulations

which, in conjunction with manufacturing data, are utilized to build applications which

improve product manufacturability.

Three specific applications are discussed. First, a performance prediction model was

developed which uses the process parameters as measured on the manufacturing floor to

predict the performance of fabricated integrated circuits before packaging and final test.

The second application uses the performance prediction model for statistical process con

trol (SPC) on product performance. Finally, design engineers use circuit simulation to sys

tematically improve the manufacturability of the EPROM product for low power



operation by decreasing the sensitivity of the circuit to process variation. The fabrication

line description, device models, and the three applications were developed and tested on a

1 Mbit EPROM produced with an industrial 1.2 [im CMOS process.

The advantages of the DFM approachdeveloped in this thesis are the focus on manu

facturing applications and the high level integration of simulation models and manufactur

ing data. The results of this thesis include production-ready applications, such as an IC

performance prediction model and an SPC procedure, which can be implemented on an IC

manufacturing line to improve efficiency and detect problems, thereby lowering costs.

Also, the use of common, measurable process parameters integrate the design and manu

facturing applications, providing additional, important cross-checks which verify the

models and applications before their use.
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Chapter 1: Introduction

Chapter 1

Introduction

In today's competitive semiconductor manufacturing environment, it is important to

anticipate the effects of processing variationduring the design of an integrated circuit (IC)

product, and then characterize and control this variation while producing it [1][2][3]. In

this work we present a methodology for characterizing process variation, enabling both

circuit design improvements and manufacturing control applications. Manufacturability

modeling includes not only techniques to improve the manufacturability of circuit designs,

such as improving circuit yield, but also tying these techniques directly to the manufactur

ing line.

The organization of a corporation involved in the manufacture of semiconductor

products typically contains three business units. Commonly referred to as design, process

development and manufacturing, these three organizations have grown to be separate sec

tors within the company. In fact, the success of the IC industry has in partbeen due to the

use of a design style, first formalized by Mead and Conway [4], which separates IC

designers from most considerations of the technology and the manufacturing process.

However, the increasing cost and complexity of a modern IC manufacturing line is neces

sitating increased communication between designers, manufacturing and technology to
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Process Circuit

Design Design

Manufacturing

Figure 1-1 The Infrastructure of Design for Manufacturability

deliverprofitable products in a timely fashion. Design for Manufacturability (DFM) tech

niques strive to impact the design and manufacture of an IC product in light of specific

technology and manufacturing processes in orderto improve the manufacturability of the

product. As shown in Figure 1-1, manufacturability implies the integration of process

design,circuit design and manufacturing activities. This integration will enhancethe com

munication between thesesectors while improving manufacturing capability.

1.1 Motivation

The semiconductor manufacturing process is best described as a series of steps, up to

300 in a modern CMOS process,whichturn a bare siliconwaferinto packagedICs. These

steps include the introduction and redistribution of impurities into the silicon, the growth

or deposition of layers on the wafer and the patterning of the these layers. Finally, the

wafer is tested and the die on the wafer are separated and put into packages. As with any

manufacturing process, there are uncontrolled variations in the process which cause prod

uct quality to vary. DFM includes the techniques for characterization of this variation and

methods to predict and minimize its effect.
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Historically, the focus of DFM work has been yield prediction and optimization. Sim

ply stated, the yield of an IC is the fraction of manufactured parts which can be sold to

customers. Yield can be further decomposed into the fractions of parts sold at different

performance levels, reflecting thedistribution of product performance caused by uncon

trolled process variation. Previous work in DFM analyzed the distribution of product per

formance, and optimized the circuit design or fabrication process for maximum yield.

DFM for circuit or processoptimization is motivated by the monetary reward of increased

yield, including both reduced scrap and having fewer products manufactured with low

performance which must be sold at a reduced price.

Recently, there has been increased focus on improving the learning curve, defined as

the amount of time from the introduction of a new process or circuit until an acceptable

level of yield is established. DFM activity, and in particular, improved communication

between process, design and manufacturing, can decrease the time required to reach high

yield levels. This bringsboth a monetary savinganda competitive advantage to an organi

zation, justifying the DFM process.

In addition to these underlying motivations, the goal of this thesis is to develop a

DFM approach which allows the development of applications foruse directly in IC manu

facturing. Such applications will improve the efficiency and reduce the cost of IC manu

facturing. Given the high cost of IC manufacturing lines and the product wafers

themselves, the potential monetary savings frommanufacturing applications is quite large.

For example, the statistical process control (SPC) application developed in this thesis will

generate an alarm if a lot is incorrectly tested. If a lot contains several thousand parts

worth an additional $10 as fast parts, $20,000 canbe gained by the successful retesting of

a single lot.
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1.2 Thesis Overview

The methodology presented in this work is based on an IC fabrication line description

consisting of a small set of measurableprocess parameters which describe the variation in

performance seen on a manufacturing line. The methodology models IC product perfor

mance in terms of this simple set of process characterization data. These parameters are

utilized in a physically based MOSFET parameter extraction technique which combines

physical measurements, global optimization and regression modeling of key fitting param

eters to accurately predict transistor characteristics over a wide range of process variation.

This straight-forward parameter extraction methodology is applied to a 1.2 u\m CMOS

EPROM process using a SPICE Level 3 MOSFET model with a resulting accuracy of bet

ter than 10%across a large range of process andtemperature variation.

The MOSFET model in conjunction with manufacturing data is used to develop DFM

applications. The first application is a model for use in manufacturing for predicting the

performance of products before final test. The same setof process parameters as is usedin

the MOSFET model canbe measured during production, both in-lineandatelectrical test,

and used to predict the performance, such as theoperating frequency of a microprocessor,

of fabricated parts. A compact, product-specific performance prediction model is built

from a combination of simulation results and manufacturing data. The performance pre

diction model developed for the access time of the EPROM achieved a standard deviation

of regression of less than 2% of the access time. This high level of accuracy is needed

becauseof the large expense of incorrect predictions.

The second application is a statistical control procedure for IC performance, which is

applied to EPROM production. Control charts based on the prediction model are devel

oped for fabrication line statistical processcontrol(SPC).These control chartscan be used

to identify process shifts orthe incorrect performance testing of EPROM product lots.
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The third, more traditional application utilizes the MOSFET model for statistical cir

cuit simulation to test and improve the manufacturability of an IC product. As an example,

the manufacturability of a 1 Mbit CMOS EPROM intended for low voltage application is

investigated. Monte Carlo experiments using circuit simulation are used to find the sensi

tivity of the EPROM to process variation.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 defines the manufacturability problem

and discusses previous work in this area. Chapters 3 and 4 present the theory underlying

manufacturability modeling. Chapter 3 discusses the fabrication line description, the

device modeling method, and Monte Carlo experiments using circuit simulation to model

circuit performance, and Chapter 4 presents the applications for improving IC manufactur

ability. The next two chapters implement the methodology presented in Chapters 3 and 4.

In Chapter 5, the fabrication line description and device models are built for a production

1.2 [im CMOS EPROM process. Then, Chapter 6 uses the models from Chapter 5 to build

the three manufacturability applications for a commercial 1 Mbit EPROM. Finally, Chap

ter 7 discusses conclusions and future work.
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Chapter 2

Problem Formulation and Previous Work

This chapter presents the formal problem definition and previous work in manufactur

ability. An understanding of the problem and previous work toward solutions will set the

context for the direction and contribution of this research. The chapter begins by introduc

ingnotation and continues by formulating the yield problem. Previous work is presented

and discussed, including the limitations which motivate the methodology pursued in this

work.

2.1 Notation and Variable Definitions

The notation used in this report is as follows. Fora variable x:

x lower-case, indicates a scalar,

x lower-case and bold, indicates acolumn vector with elements Xj,

X upper-case and bold, indicates a matrix with columns Xj and ele
ments Xjj.

This report will develop relationships between process parameters and IC product

performance. An IC process is the specific series of steps used to manufacture a semicon

ductor product, with each step requiring specific materials and settings onthemanufactur

ing equipment. Process parameters refer to measurable quantities which characterize the
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result of a small number of steps, for example, the sheet resistance or thickness of a layer

or the length andwidth of a feature. Examples of process parameters in an MOS process

include oxide thickness andpolysilicon linewidth. The result of the IC fabrication process

are circuits, which must meet certain specifications to be soldby the manufacturer. These

specifications will be referred to as the circuit performances, and include the speedof a

microprocessor or memory device, and the gain andbandwidth ofan amplifier.

Manufacturability models will explain the variation in IC product performance in

terms ofa set ofprocess parameters. The process parameters will be denoted with the vari

able x. The vector containing each parameter will be denoted x, while X is the (n xp)

matrix containing n samples of/? process parameters. Similarly, the performance of the

circuit willbe denoted by thevariable y. The range ofvariation seen onthemanufacturing

line across the group of process parameters or performances forms a multidimensional

region which willbe referred to as &process orperformance space, respectively.

The variation ofboththe process parameters and circuit performances depend on the

group which is sampled. There are several components to the variation, including die,

wafer, lot and total variation. The calculated variance of process parameters or perfor

mances will increase as the sampleis taken from within a wafer,within a lot or across sev

eral lots. It is important to usetheappropriate grouping for each application. Variance will

be denoted by a2, subscripted by either the variable name or the sampling group, as appro

priate. Whenconsidering multiple variables, it is important to consider notonlytheir vari

ances, but also how strongly their variation is related to each other. This information is

contained in the variance-covariance matrix, denoted asV(x).

2.2 The Manufacturing Yield Problem Formulation

Manufacturability is commonly associated with increasing the yield of a circuit [1],

which is formalized as a problem of yield estimation [5] with a subsequent optimization.

Yield is defined as the fraction of manufactured parts which meet all product specifica-
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tions and can therefore be delivered to customers. The range ofvariation across the prod

uct performances defines a performance space, R . In general, upper and lower bounds

are associated with each performance specification. Therefore, the region ofacceptable IC

performance, A , is defined as:

A = {ye R leach y is within specification} (1)

The performances of a given IC design are determined by the values of the process

parameters for each manufactured lot. This leads to the concept of the acceptability

region, Ax, which is the region within all process space, R , which results in acceptable

IC performance, that is:

Ax= {xe Rx\y e Ay) (2)

Given the definition ofthe acceptability region, the yield, Y, ofa circuit canbe calcu

lated as:

7= \fx{x)ax (3)
Ax

where fx is thejoint probability density function for the process variables.

Up to this point we have considered a fixed circuit design, however, the circuit topol

ogy andtransistor sizes also effect yield. In fact, choosing the sizes oftransistors for max

imum yieldunder the given performance constraints is oftenthe goal ofmanufacturability

optimization. Including the circuit design parameters, q, the overall manufacturability

optimization problem can be written as:

max \Y(x,q) = J fx(x)dx\ (4)
*f I AXU J

Modifying the circuit design parameters impacts yield by changing the acceptability

region.
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It is commonly assumed that the process parameters can bedecomposed into a nomi

nal process, x0, and the normally distributed random variation of each parameter, d, often

called the process disturbances, that is:

x = xQ + d (5)

</~7^0,a2j (6)
Therefore, the targets of optimization are the circuit design parameters, q, the nominal

process, x0, and the process variability, d.

Circuitdesign optimization improves yield by altering the circuit given a fixed pro

cess. The designparameters, q, include the length and width of transistors and the topol

ogy of the circuit. This work will include the manufacturability application of circuit

design optimization.

Previous work in manufacturability optimization has adjusted the nominal process to

optimize yield through design centering. Design centering starts by finding the region of

acceptability for a process, and moves the process targets so that nominal conditions pro

duces circuits centered in the region of acceptability, hence optimizing the yield [6]. This

work will use a fixed nominal process.

The process disturbances are mainly the result of equipment variation. Although

methods to reduce equipment variation are starting to be developed, manufacturability

work has generallyassumed the disturbances are fixed. This work will develop methods to

understand and characterize process variability, but not reduce it.

2.2.1 Parametric versus Functional Yield

The yield problem is divided into two areas, functional and parametric yield. Func

tional yield loss, definedas the fraction of manufactured parts which fail to operate at any

level ofperformance, is commonly associatedwith defects introduced during manufactur

ing that cause circuit malfunction. Parametric yield loss is the fraction of functional parts
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which do not operate to the desired performance specifications, for example, circuits

which operate only at very low speeds contribute to parametric yield loss. Parametric

yield loss is usually caused by the process disturbances, that is, the small perturbations in

the manufacturing process such as a change in the critical dimension of the transistor

geometry [7].

Good examples of functional Design for Manufacturability (DFM) techniques are

redundancy and error correction. In these techniques, circuitry isadded with the specific

goal of fixing potential functional defects. In fact, redundancy is being used in certain

applications, especially memories, to"repair" slow circuits. One design trade-off is that

the area ofthe IC is increased to add the circuitry which allows proper circuit operation in

the case of spot defects. Also, there is performance overhead associated with these tech

niques, so that the performance of the circuit decreases. However, redundancy and error

correction greatly increase the yield ofmemory ICs and they are widely used techniques.

However, there is no technique with such success in improving the parametric yield

ofintegrated circuits such as microprocessors, PALs, etc. Despite widespread concern and

papers in the literature, there are few widely accepted DFM techniques. The methodology

presented inthis report focuses onparametric yield improvement.

2.3 Previous Work

The field of statistical circuit design represents the first systematic efforts to model

and improve parametric yield [8]. The underlying concept is that perturbations in the man

ufacturing process change the performance of the silicon devices and therefore cause the

performance yield fluctuations seen in final test. There are several important components

in statistical design, as shown in Figure 2-1. First, the manufacturing process must be

described in away which characterizes the process perturbations responsible for yield

loss. Second, this manufacturing line variation must be mapped into the performance vari

ation of the fabricated devices. Often, acombination of process and device simulation is
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Manufacturing Line

Description Device Model

Optimization Algorithms

Circuit

Simulation

E

11

Figure 2-1 Elements of Statistical CircuitDesign

used to map process variation into the changes in transistor characteristics. Third, circuit

simulation provides the link between the transistor characteristics and thefinal circuit per

formance. Last,an algorithm is used to optimize theyield.

Despite these efforts, DFM still has found limited use in the semiconductor industry.

However, Motorola [9], Philips [10], Texas Instruments [1] and Harris Corporation [11]

have developed statistical design tools which influenced this project. This research will

focus onthedifficulties faced bythe application ofstatistical design techniques. In thefol

lowing subsections, each of thecomponents in Figure 2-1 will be briefly examined. This

section will finish with a discussion of the important issue of manufacturing integration.

These issues will be revisited in greater detail as themethodology is presented in Chapter

3.

2.3.1 Manufacturing Line Description

Early work in statistical modeling relied heavily on the use of process simulation to

describe the fabrication process. This use ofsimulation brings the accompanying problem

of tuning the simulator to match the actual manufacturing line [12]. For example, the

mean and standard deviationsofprocess simulationvariables such as the time in a furnace
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step or the diffusivity of boron would be adjusted so that simulation results would match

the statistics of measurements such as the MOS transistor channel length and conse

quently thedevice current. Inother words, early statistical device models were verified by

matching actual device or circuit performance distributions [10][11]. Historical electrical

test data was used to determine the mean and standard deviation of device current, and

then the tuning process would match the distribution produced in simulation to the histori

cal device current distribution.

There areseveral problems with this approach. First, tuning is often a time consuming

procedure. Second, there is no guarantee that the mapping of the process to the device

characteristics is correct simply because the distributions match. Third, this approach

assumes a stable production line which has attained a state of statistical control. Modern

fabrication lines, however, are constantly undergoing evolutionary improvements, and a

more accurate and timely verification strategy is needed. In other words, there is no mech

anism to alarm when the statistical model is no longer valid, and if there were, it is not

convenient to re-tune the models. In short, the problem with previous DFM work centers

on the fact that these methods are not sufficiently integrated with the manufacturing line.

These problems are addressed in this work by avoiding the tuning problem entirely.

This work does not rely on process simulation, instead, it uses transistor characterization

data collected during production in conjunction with straightforward device physics. The

use of performance prediction models which are used on the manufacturing line in con

junction with physically based device models improves the mapping from the process to

the device characteristics. Further, the performance prediction model will generate an

alarm when the simulation model no longer matches the manufacturing line output. In the

case of an alarm, the physical basis of the device model will allow for a simple mechanism

to align the models to the current manufacturing process. Another important feature of our

work is that the use of manufacturing data ensures that the parameters are measurable
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using production line capable techniques, and that they explain most of the variation seen

on an actual fab line. The manufacturing applications detailed in this paper show that this

method can be driven effectively by fabrication line data.

2.3.2 Device Modeling

A transistor, or any semiconductor device model, is used to calculate the response of

the device to the voltage and current conditions in a circuit. This response models the I-V

curve, which is the current versus voltage characteristic that defines the electrical proper

ties of the device. In this work, the term device model refers to a compact model such as a

SPICE transistor model, as opposed to a numerical model which simulates the physics of

the device. The device model is comprised of a set of equations with coefficients that are

specified to fit the transistor I-V curves for a specific process. This set of coefficients is

referred to as the device modelparameters, and the procedure for specifying them is

called parameter extraction.

Early work in statistical circuit design allowed the use of a different set of model

parameters for each value of the processparameters to be modeled. For each point in pro

cess space, process and device simulation would produce an I-V curve. Parameter extrac

tion was accomplished by simple optimization algorithms. One problem with this

approachis the large numberof parameter sets required. The second, more important issue

is the loss of physical relationships between the processand the device. With a large num

ber of optimizedmodels, it can be difficult to extract the physical cause from changes in

device performance.

The work presented in this report is based on physically based parameter extraction

techniques.The physical basis allowsa smallernumberof parameters to cover the process

space and retains the relationship between the process and devices. The techniques used in

this work have been strongly influenced by industry research in this area. Motorola has

developed a physically based bipolar model [13] which has been utilized in a statistical
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design tool which includes designed experiments to study performance variation of IC

designs [9]. Similarly, Philips has developed an analytical parameter extraction technique

[14] which was used for sensitivity and processcapability analysis [10].

2.3.3 Circuit Simulation and Optimization

The use of the SPICE circuit simulator to estimate circuit performance is common

practice and will be used in this work. Gradientand computer-based experimentaldesign

methods havebeenused to increase yield by optimizing the transistor sizesor topology of

a circuit for a specific process. The gradient method is a standard non-linear optimization

technique which can be implemented within a circuitsimulator for use in yield optimiza

tion [15]. Experimental design software packages have focused on the use of Taguchi

Robust Design methods to select optimum transistor sizes [16][17][18].

In contrast, our work does not use formal optimization techniques to improveyield, as

the focus of this work is integration with manufacturing. Instead,graphicaldescriptionsof

the process sensitivities combined with the insight of the circuit designer are used to mod

ify a design.

2.3.4 Integration with the Manufacturing Line

In general, there has been insufficientfocus in statisticaldesign and DFM research on

integrationwith manufacturing. Twogoodexamples of manufacturing applications of sta

tistical modeling have focusedon reducing the amount of testingdone at final test. Brock-

man used statistical modeling to eliminate high and low temperature testing of ICs based

on room temperature results [19]. Milor optimized the ordering of final tests to minimize

the tester time required to identify failing parts [20]. However, the development of these

prior manufacturing applications were based solely on simulation results.

Although previous efforts in physically based statistical device modeling have devel

oped MOS transistor models which are integrated with manufacturing data, they have pri-
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manly been applied to yield prediction and circuit optimization during the IC design

phase. However, there are important advantages to be obtained inimplementing manufac

turability solutions which further integrate with aspecific manufacturing line.

To address this problem, this work shifts the focus of DFM activity from IC design to

the integration of design, process development and manufacturing. To thisend, the basis

for this work is a single set of parameters, measurable on the manufacturing line which

support both design and manufacturing applications. The advantages of this approach

include the use of these parameters in the device model, which avoids the problems of

optimized parameters, and their routine measurement onthe production line, supporting

thetracking and control of product performance. Importantly, these parameters have phys

ical meaning to the process, design and manufacturing groups, fostering inter-group dis

cussion of manufacturability issues.

This work developed a manufacturing application to include in the DFM methodol

ogy, thatis, a performance prediction model for ICbinning. This application served to val

idate the manufacturing line, transistor and circuit models, as well ascontributing to the

manufacturing line itself. A design oriented application is also presented, which is usedto

improve the manufacturabilityof a 1 Mbit EPROM.

2.4 Summary

This chapter discussed the formalism of the manufacturability problem and previous

work toward solutions. The limitations of statistical circuit design were presented, focus

ing on the limited integration of manufacturing into the DFM process. Integration will be

the emphasis of the DFM methodology presented in Chapter 3, which discusses the theory

underlyingmanufacturability modeling, andspecifically eachblock shown in Figure 2-1.
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Chapter 3

Manufacturability Modeling
Methodology

This chapter gives an overview of the techniques and theory used for manufacturabil

itymodeling. The chapter begins with abrief presentation ofaspecific application devel

oped during this research - performance prediction modeling - to give thecontext for the

discussion. Then, given the application, the technique for mapping process variation into

circuit variation is presented. The mapping is comprised of three sections, the fabrication

line description, the device model and the use ofcircuit simulation.

3.1 Overview of Performance Prediction Model Building

The application developed in this work is for the performance-binning1 ofmanufac

tured parts [21]. In-line measurements and electrical test results for a manufactured wafer

can beused to predict circuit performance before final wafer test or assembly. With "just

intime" manufacturing planning, only parts which meet performance requirements need

be assembled.

1. Commodity ICs, such as memories, microprocessors, EPLDs, etc., are performance tested and divided
into speed bins, andthen priced accordingly.
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Figure 3-1 The Performance Prediction Method.

An overviewofthe manufacturing application ofthe performance prediction model is

shown in Figure 3-1. The manufacturing process is represented by a series of steps, such

as gate oxide growth, polysilicon gate definition, etc. The outcome of each step can be

measured in-line during processing, and can be used to continuously refine an estimate of

the performance ofthe produced ICs. After processing, a series ofelectrical tests are done

on each wafer. These measurements are commonlyused to monitor the fabrication pro

cess, andas a first test to assure the compliance ofthe manufactured goods.

There are important manufacturing uses for the performance prediction model. The

performance ofthecircuits onwafers can be estimated early in themanufacturing process;

first, from the in-line test data, and then from electrical test results, all before assembly of

the die into packages. In-line binning will improve manufacturing planning by providing

actual waferand lot specific yield estimates instead of a priori estimates. This improve

ment in manufacturing scheduling and planning is particularly important for fabrication

lines running at capacity with specific performance targets to produce, making it possible

to expedite higher performance wafers through the fabrication line, or scrap the lowest

performing ones [22]. After the early predictionbased on in-line measurements, electrical
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Figure 3-2 Overview of Performance Model Development

testdata canbe used to produce a more accurate estimation of performance. This can fur

ther aid inplanning, particularly inthe case where final performance testing can not occur

until after packaging. For example, fast parts can be directed tobepackaged inhigher per

formance packages.

Figure 3-2 gives an overview ofperformance prediction model development. First, a

description of the fabrication line is needed to simulate the process. This description,

including the identification of the key process variables and their nominal values, range

and correlation, iscreated from measurements taken on the manufacturing line. Using this

description, instances of the process are generated for use in a Monte Carlosimulation.

The device model, discussed in Section 3.4, isused tomap the process into a SPICE tran

sistor model for use in circuit simulation. The results ofthe simulation give the circuit per

formance at each point in the process. Using the process instances and the simulation
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Figure 3-3 Manufacturability Modeling Regimes (MOS process example)

results, a performance model isbuilt which predicts the performance of manufactured

parts from in-line process measurements.

3.2 Modeling Hierarchy

Figure 3-3 illustrates the regimes in which manufacturability modeling can be accom

plished [23]. In general, the variables listed at one level are used to model the variables at

the next level. Process simulation models usually work at the level ofequipment settings,
such as the time and temperature settings for an oxidation step. These settings, also known

as the recipe, determine the junction depth, doping level, or layer thickness, etc., which

results from the process step. Process simulators model the complex physical mechanisms

governing diffusion, oxidation, etc., to calculate the physical device characteristics from

variables defining the chamber environment. After process simulation, a device simulator

uses the cross-section, profile and Poisson's equation to calculate the device I-V character

istics. The I-V characteristics are then used for device model parameter extraction. In
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terms ofaMOS transistor model, the parameters inthe model include oxide thickness and

threshold voltage, as well as mobility reduction and short channel effects.

The advantages of combined process and device simulation include the ability to

investigate device characteristics before the manufacturing process is complete, and study

details of the device structure. However, amodern IC process uses dozens of pieces of

equipment and hundreds of steps, making itdifficult toaccurately determine these charac

teristics using simulation.

The manufacturability modeling methodology presented in this work finds the pro

cess characterization parameters by measurement rather than through simulation. This

reduction in the level of complexity is possible because these few, measurable process

characteristics can accurately determine the device properties. Further, the physical basis

of the compact device simulation models is exploited, maintaining a strong relationship

between the device model parameters and the manufacturing process. These critically

important relationships [13][23] which enable the methodologycanbe summarized as:

1. There are a few measurable process characterization parameters which accountfor

the variability seen in product performance.

2. There is a straightforward, physicalmapping between the measurableprocess charac

terization parameters and the device modelparameters.

Finally, the device model is used to determine the performance of the final circuit

product. A designed experiment is run to determine the circuit performance across the

space of process variability. In this work, the experiment was designed using a Monte

Carlo method, in orderto get even coverage of the process space regardless of dimension

ality. The Monte Carlo technique selects random points across the process space. At each

point, the process parameters are used to create a SPICE transistor model, which are used

in a circuit simulation to determine circuit performance at that point in the process. Thus,

circuit simulationis used to map the process space into the circuitperformance space.



Chapter 3: Manufacturability Modeling Methodology 21

The next three Sections of this chapter will look in detail at the theory behind each

level in this hierarchy: the fabrication line description, mapping the process to the device

model, and mapping the device model to circuit performance.

3.3 Fabrication Line Description

The objective of the fabrication line description is to help create a computer-based

experiment in order to fit response surface models that relate process measurements to

product performance. Given this, the description should capture the maximum possible

range of variation seen onthe fabrication line. For experimental economy, the concept of

parameter correlation is used to eliminate simulations for unlikely combinations ofparam

eter values.

The modern semiconductor manufacturing process, containing hundreds of steps, has

inherent variation which effects the performance of fabricated ICs. Despite the complexity

of semiconductor processing, a few measurable parameters can explain the bulkof the

variation in the performance of an IC. In other words, the process is notmodeled on the

equipment settings, but rather on a small setof parameters whichdescribe the results of

the process. These parameters can be divided into two sets, the parameters which are

important in explaining the variation for all ICs, and the set of parameters specific toeach

design.

Parameter sets suitable for general characterization of amodern MOS [1] or bipolar

process [13] have been previously described. This workextends the description for an

MOS process to include analog circuit design considerations such as the transistor body

effect. The key to formulating the parameter set for agiven process isto find the parame

ters which are both measurable and explain the performance variation seen inthe process.

Some product specific parameters must also beconsidered. For the EPROM example

presented in this work, the gate oxide used in the EPROM cell and the resistivity of the

wordline layer are included as additional parameters. In certain analog circuit designs,
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there are components which need exact matching characteristics. Characterization of the

mismatch between adjacent structures on a die is another example of a product specific

parameter which may be considered. This work has not included the effect ofmismatch,

because constraints on the test pattern used in this project did not allow the addition of a

structure to characterize mismatch in production. Good references on the subject include

[24] and [25].

3.3.1 Parameter Distribution

Statistical simulation offabrication lines is based on using random number generators

to create instances of the process parameters drawn from their distributions. Previous

work in statistical circuit design has commonlymodeledprocess variables using a normal

distribution. The model for the distribution of process parameters used in this work is

shown in Figure 3-4. Within each lot, the distribution of the parameters can be approxi

mated by a normal distribution. However, the cause ofthe distribution is not random error,

rather, there are deterministic patterns caused by equipmentvariation [26]. For example,

fixed patterns across the field ofa stepper [27] may appear as normally distributed varia

tion. This deterministic pattern takes a random walk across the allowed range of the pro-
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cess, limited by the process specifications. Over time, the overall distribution of a

parameter within reasonable control resembles a normally distributed variable, and this

approximation allows an accurate calculation ofthe yield over long production cycles.

In this work, normal distributions are used for the process control application because

anapproximation to the actual overall distribution is required. However, because there

will be periods oftime where amanufacturing line is producing lots near the specification

limits, uniform distributions are used when the goal is to capture and model performance

dependencies over the entire process range. The range of the uniform distributions are

equivalent to thestatistical process control range.

3.3.2 Parameter Correlation

The set ofprocess parameters used to model the fabrication line forms a multidimen

sional space bounded bythe range seen in each of the parameters. The region can be fur

ther limited by taking intoaccount the fact that theprocess parameters, as is shown in the

left hand side of Figure 3-5, are usually dependent on each other. Limiting the range

allows for better coverage ofprocess space with fewer experiments. The various parame

ters measured in-line and at electrical test often show strong correlation to each other,

reflecting the physical limitations of the process, such as the sharing of specific process

steps. For example, the reductions in the channel length (critical dimension) of n- and p-

channel transistors are highly correlated because they share the common processing steps

which define polysilicon linewidth.

To generate instances forsimulation of two correlated variables *j andx2 with given

means (u.) and standarddeviations (a), the following empiricalformulas were derived:

(7)

(8)
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where v, w, and z are normalized random numbers, and a, b, c and d are determined by the

correlation (p), such that:

(9)'jcl,*2
J (a2 +b2) (c2 +d2)

The values for pxy are chosen based onour experience with the process and tobe consis

tent with the objective to eliminate simulations for unlikely combinations of process

parameter values.

3.4 Device Modeling Method

To simulate the effect of process variation on a circuit, the connection between the

process parameters and the device model parameters must be established. Therefore,

given the fabrication line description, the next step is to map the process into thedevice

model parameters, creating transistor models for use in circuit simulation. One ofthe most

important activities inmanufacturability modeling is to efficiently extract device model

parameters tocover the range of the process, without losing information in the mapping.

This section will review approaches for creating the device models, and further develop

the relationships stated in Section 3.2 which underlie this methodology.

3.4.1 Previous Approaches

Traditionally, circuitdesigners have used worst-case transistor models for simulation.

Such models are optimized to fit specific process "corners," usually called "fast" and

"slow" cases. One problem with such "worst-case" models is that they overestimate the

range ofthe process, thereby increasing the design time, asdesigners create circuits which

operate under pessimistic process conditions. In addition, a modern IC process often does

not contain "corners," as there is no single combination ofprocess parameters which

results inthe "slowest" transistor for every circuit topology.
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In statistical circuit design, the process to device mapping is normally done through

coupled process and device simulators, such as SUPREM [28], MINIMOS [29] orFAB

RICS [3], however, these methods are often cumbersome. As previously described, pro

cess simulators model variation using the physics of individual process steps, and the

resulting complexity and tuning problems make it difficult to apply this method in com

mercial fabrication lines.

Inboth worst-case and statistical modeling, mapping from theprocess to thedevice is

closely tied to device parameter extraction. Parameter extraction refers to the method used

to find the values for the device model parameters. Given an I-V curve, which can bepro

duced from either a process and device simulation or a worst-case process, mapping

essentially implies extracting the parameters for the given model. Another problem with

previous approaches is the use of optimization for parameter extraction. It is a common

approach to allow all the device parameters to vary during the extraction. Although this

achieves the best fit, all physical meaning canbe lost.

Other prior work has used Principal Component Analysis2 to perform this mapping

[30]. Briefly, this strategy develops statistical models for the device model parameters in

terms of the Principal Components of the process parameters. Principal Component tech

niques have been shown toincrease the goodness of fit of the device model over the range

ofprocess variation. In fact, themethodology usedin thiswork also uses statistical models

for this purpose, although without the complexity of Principal Components. However, the

use of Principal Components in the device model adds a level of difficulty inrelating cir

cuit simulation results to specific process variables [31].

2. Principal Component Analysis will be described in more detail in Chapter 4, when it is utilized in the development of
the performance prediction model.
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3.4.2 Physically Based Parameter Extraction

The approach taken inthis work utilizes a physically based parameter extraction tech

nique. This method, introduced in the work of Davis [13] and Tuinhout [14], bases the

device model parameters on the measured process characteristics. In this method, the pro

cess characterization parameters and device model parameters have a straight-forward

mapping to measurements, allowing for easy and efficient mapping of the process to the

device model. Using this approach, a device model based on the Level 3 SPICE model

was developed for use in the simulation phase of this work.

As stated in Section 3.2, thefirst key point in this methodology is that the overwhelm

ing percentage of IC performance variation is explained by the variation in a small setof

measurable parameters. Instead of using coupled process and device simulation, the meth

odology begins with the small set of measurable process parameters. These parameters,

which characterize the range of variation seen in the process, are the basis of a statistical

transistor model. Varying these parameters across the process space allows circuit simula

tion anywhere in the range of process variation. The physically based statistical transistor

models alleviate these difficulties or process and device simulation, yet still allow circuit

simulations to be run anywhere in the range of the process.

The second key to efficiently connecting the fabrication line and device models is to

have a simple mapping among the important parameters. In this case, the measurable pro

cess parameters in the fabrication line model correspond directly to underlying device

model parameters. For example, in MOS processes, the gate oxide thickness is both a

measurable process characteristic and a specific device model parameter. This provides a

direct link between the process and device models.

The process parameters map not only to the directly corresponding device model

parameters, but also to other parameters through second order effects. For example, in an

MOS device the effective mobility is a function of the gate oxide thickness and must be
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modeled as such for accuracy over the entire range of oxide thickness variation. Prior

approaches to the second order mapping have included both physical and statistical meth

ods. The most powerful, but complex method is to use physical models for fitting parame

ters. Due to the complexity, simpler statistical techniques are used here to model key

device parameters, such as mobility reduction, in terms ofthe measured process parame

ters [33]. It is advantageous to limit the complexity ofthe relationship between the physi

cal and the device fitting parameters in obtaining a good fit, so that the communication

between manufacturing and design organizations is not lost. Importantly, the physically

correct process parameters are chosen as the variables for the statistical models.

3.5 Designed Monte Carlo Experiments using Circuit Simulation

Given a device model which describes the transistor characteristics at any point in the

process, a designed experiment can be run to investigate circuit performance over the pro

cess space. Two dimensional examples of this experimental space are shown in Figure 3-

5. The plot on the left hand side ofFigure 3-5 describes the variation in the effective chan

nel length ofn and p channel transistors. The rectangle represents "worst-case" comers for

these variables, ignoring their correlation. Each variable is described by a minimum and

maximum value, and a simulation would be run at each corner ofthe rectangle.

The striped area inside the rectangle is the region which accounts for the correlation

in the parameters . The regions inside the striped area represent regions of increasing pro

cess control. Modern IC fabrication lines occasionally run out of statistical control. There

fore, the experiment must be run on region large enough so that the results are valid

whenever the process is within specifications, even when the process is out of statistical

control.

The plot on the right side of Figure 3-5 shows the performance of the manufactured

circuit, where the two dimensions used are delay and power. Depending on the perfor-

3. In the specific case ofeffective channel length, the correlation is caused by the sharing of the polysilicon etch step.
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mance of the circuit determined at final test, the manufacturer assigns it to the appropriate

bin and prices the part accordingly. Although identical in design and manufacturing cost,

the highestperformance parts are sold at a premium.

The goal ofthe designed experiment is to map the process space into the performance

space, that is, to determine what the corresponding performance will be for each point in

the process. The experiment involves selecting a set ofpoints in process space. For each

point selected, a device model is created and a circuit simulation is run to find the circuit

performance. However, unlike the simple two dimensional example ofFigure 3-5, more

parameters are required to generate a good description ofa modern MOS process. There

fore, Monte Carlo techniques are used to cover the process space with a reasonable num

ber of experiments.

Experimental designs such as orthogonal arrays and latin hypercubes have previously

been used to reduce the number of simulations required to cover this space

Power
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[9][16][17][18]. Often, ascreening experiment is utilized to limit the number of parame

ters considered inthe experiment. These experimental design techniques are not utilized in

this work because, given the parameter correlation in the fabrication line description, the

process space is no longer orthogonal.

The Monte Carlo technique requires alarge number ofcircuit simulations to converge

on accurate results for the experiment. Previous work has used macromodeling techniques

which developregression models for performance from a limited numberofcircuit simu

lations and thenuse the regression models for the larger number of simulations needed to

complete the mapping [2] [34]. Although such techniques which optimize the Design for

Manufacturability (DFM) process are important, they were not considered in this work.

Creating accurate macromodels saves simulation time, but improves neither the robust

nessof the DFM process nor the integration with the manufacturing line, which remain

the focus ofthis methodology.

3.6 Summary

This chapter developed the theory underlying manufacturability modeling. Specifi

cally, the techniques for mapping the manufacturing process to the final circuit character

istics were explored. Together, a fabrication line model, device models, and circuit

simulation enable IC DFM. Most importantly, a physically based parameter extraction

methodology for device modeling eliminates the difficulties of worst-caseand simulation

based methods, and enables theuse ofmore powerful DFM applications [9] [32].

So far, model verification has mainly been between adjacent levels of the modeling

hierarchy. For example, the device model has been verified in that the simulated I-V curve

matches the curve whichproduced the model. Chapter 4 will focus on the applications of

the manufacturability models. Additional cross-checks at the process, device and circuit

levels verify and integrate the models, closing the loop between design and manufactur

ing.
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Chapter 4

Design For Manufacturability
Applications

Chapter 3 discussed the development of a fabrication line description and device

models which give the circuit designer the ability to simulate a design across the range of

the process. Their purpose is to build applications for use in manufacturing and circuit

design. The particular manufacturing applications discussed here are driven by response

surface models which predict product performance before assembly. For the circuit

designer, the models presented in Chapter 3 enable advanced Design for Manufacturabil

ity (DFM) techniques which improve therobustness of circuit performance in light of IC

manufacturing linevariation. Importantly, these applications cross-check each other. Man

ufacturing line measurements verify the design models, improving confidence in the

model predictions, and hence thedesign improvements, before theimproved design is fab

ricated. This chapter discusses the development of applications and the verification strat

egy, as well as the CIM infrastructure necessary to implement the method.

Previous DFM workhas mainly been focused on optimizing the circuit design of an

IC product to improve yield. However, it is important to include manufacturing data and

applications in DFM work to validate the models and to effectivelybring the manufactur-
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ing organization into the DFM process. The first manufacturing application developed in

this work is a performance predictionmodel which predicts the performance of the fabri

cated parts from in-line and electrical test measurements. The use of in-line measurements

will allow estimation of productperformance early in the fabrication process, improving

manufacturing planning. Electrical test data will provide a more accurate performance

prediction, allowing fast parts to be directed into the highest performance packages.

The second application developed in this chapter utilizes the performance prediction

model as the basisof a statistical process control (SPC) procedure for the manufacturing

line. In today's IC factory, SPC charts are maintained on low level parameters for specific

piecesofequipment, suchasetchrate, deposition rate, uniformity and particle counts.The

performance prediction model raises the opportunity for a high level monitoron the entire

fabrication line. The setup and use of a control chart for product performance will be dis

cussed.

The third and final application developed in Chapter 4 utilizes Monte Carlo tech

niques which take advantage of thephysically based device models to investigate the per

formance of the circuit over the range ofvariation seen on the manufacturing line. This

stands in contrast to traditional worst-case design, where the designer only has models to

simulate at "fast" and "slow" corners of p- and n-channel device saturation currents. Sen

sitivities of critical subcircuits to process variation willbe identified, and design changes

will be tested to ensurethe yield limiting sensitivitiesaredecreased.

4.1 Statistical Methods

Before the first application is discussed, two statistical methods used in developing

the applications, Principal Component Analysis (PCA) and linearregression, will be

briefly reviewed, and the advantages of combining PCA and linear regression are pre

sented.
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4.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used to describe the

relationships within a setof variables. PCA accomplishes thisby transforming the dataset

intonew, orthogonal variables. Thenew variables, calledprincipal components, are linear

combinations of theoriginal variables, each explaining thelargest possible variation in the

original data [35]. In addition to producinguncorrelated variables, PCA can be used to

reduce the dimensionality of a problem without losing much information. Since typically

a small set of principal components explains most of the variance in a data set, the com

plexity of theproblem canbe reduced bychoosing only thefirst few principal components

foranalysis. The "rule of thumb" for including principal components in further analysis is

to retain just enough principal components to explain 80 or 90% of the variance in the

original dataset.

The principal component scores, also called simply the principal components, are

given by:

Z = XGT (10)

where X (nxp) is the matrix containing n measurements of thep process parameters,

suchas oxide thickness, G is the (p xp) matrix of principal component loads andZ is

the (« xp) matrix of theprincipal components. The principal component loads are the

eigenvectors of the correlation matrix of the original data, X.

4.1.2 Linear Regression

In contrast to PCA, which describes the relationship withina set ofvariables, linear

regression is a technique to build a relationship between independent variables and one or

more dependent variables. In this case, the relationship will be constructed between the

process parameters,X (nxp) , and the product performance, y («xl). Linear regres

sion postulates a model of the form:
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y = Xfi + z (11)

where p is the (px\) vector1 ofmodel coefficients and § is the value bywhich each

observation deviates from the model. A column of 1 's is often included in the X matrix to

produce a constant term in the model.

In statistical terminology, a linear regression implies that the model is linear in the

coefficients being estimated, that is, linear in p. The models built in this work are linear in

this sense. Another common use of the term "linear" is to describe whether the model is

linear in the variables. Better referred to as the order of the model, this work does not

include non-linear terms such as quadratic or interaction terms in the matrix of indepen

dent variables. This is not a limitation of the method, as significant results were achieved

using linear models. The use of nonlinear terms in the performance prediction model will

be discussed further in Chapter 6.

Using the method of least squares [37], which estimates the model coefficients by

minimizing the sum of squares of the errors in the model, the standard normal equations

calculate the estimates for the coefficients in the model, p as:

p = (XTX)~lXTy (12)

and the variance-covariance matrix for the estimatesofthe model coefficients is given by:

J^pJ =a2{XTX)-x (13)
where a2 is the variance of the residuals.

4.1.3 Principal Component Regression

Instead ofperforming linear regressionon the original process parameter data, X, the

regression can use the principal components of the data, Z, that is, the transformed data

can be used as the independent variable in the model. In this case, the principal compo-

1. Vectors assigned a Greek letters will have be denoted by a *~' underneath the characterratherthan a bold character.
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nents are used as inputs to build amodel for circuit performance. The form of the perfor

mance prediction model built from theprincipal components is simply:

y = PZ+§ (14)

and the standard normal equations for linear regression are used, utilizing the principal

components, Z, of the original data set. The use oftheprincipal components ofa data set

for linear regression is commonly termed principal component regression (PCR).

There are several important advantages of PCR over linear regression on the original

data. First, the presence of correlation creates difficulties inusing least squares regression

[37]. As was previously explained, theprocess parameter data is highly correlated. Corre

lation between the independent variables increases the variance in the estimates of the

regression model coefficients, increasing the difficulty in finding a statistically significant

model. It can be shown that the variance of p decreases as the eigenvalues of (XTX)'!

increase, that is, as thecolumns of X become mutually orthogonal [38].

It is insightful to lookatthe case where there are two independent variables, in which

case:

<«•) • (rb)
CT2

n

W=l J

i=l,2 (15)

where i will be 1 or 2 to signify one of the two model coefficients, n is the number of

observations and p is the correlation coefficient between the two variables [39]. This

example shows how the variance of the model coefficients decreases as the correlation

decreases. Using the uncorrelated principal components instead of theoriginal, highly cor

related data, increases the likelihood of finding a significant model.

The second advantage arises from the fact that a few principal components explain

most of thevariance in thedata. Therefore, a linear regression using the principal compo-
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nents as the independent variables will likely require fewer variables in the model than if

the original data is used. The prediction error of the fitted model increases with p, the

number of independent variables in the model, as given by:

4>-4I2 =I*w-E{x^]f+p°2 (16)
where E denotes the expectation operator and ||v[| denotes the normof vectorv [38]. This

shows that when the model is used for prediction, the expected value of the residuals,

2s|y—ATp| , tends to increase as the number ofvariables in the model increases, unless
adding the variable brings a significant reduction in the "bias" of the model.

4.2 Manufacturing Application - IC Performance-Binning

A detailed view of performance model building is shown in Figure 4-1, which

expands the overview shown in Figure 3-2. This section details the development of the

performance prediction model, discussing the Monte Carlo simulation, Principal Compo

nent Analysis, linear regression and model verification.

4.2.1 Monte Carlo Simulation

Monte Carlo simulation is used to drive a computer-based experiment for building

performance prediction models. The process description begins with the identification of

the critical model parameters. The mean value, spread and correlation ofthe parameters

are found directly from measurements made on the process. The advantage ofthe Monte

Carlo technique is that unlike experimental design techniques such as factorial orLatin

Hypercube, the accuracy ofthe Monte Carlo convergence on an estimate ofresponse is

independent ofthe dimensionality ofthe problem, depending only on the number oftrials

run [36]. This is of great value due to the high dimensionality of the fabrication line

model.
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A Monte Carlo simulation is run which covers the maximum operational range of

process variation. The process parameters are mapped into transistor models, as was

explained in Section 3.4, and then circuit simulations are run to predict circuit perfor

mance over this range ofvariation.

4.2.2 Principal Component Transformation

Using the generated process parameters as the independent variables and the access

time predicted bysimulation as the dependent performance variable, a linear regression

model can bebuilt to predict the circuit performance from themeasured parameters. PCA

was used to transform the data set in this application to produce important advantages.

First, PCA produces orthogonal variables for regression from the original, highly corre

lated dataset. Second, PCA reduces the dimensionality of the problem, as a few principal

components will likelybe sufficient to capture mostof the variationin the originaldataset,

and reduces the prediction error of the fitted model. Together, these advantages will

decrease the complexity of the linearregression and increasethe likelihoodof finding a

significant regression model.

4.2.3 Linear Regression on Simulation Results

The principal components are used as inputs to the linear regression to build a model

for circuitperformance. The issue of which principal components are used in the regres

sion equation will be discussed in more detail in Chapter 6, when a regression model is

built from production data.

4.2.4 Manufacturing Verification and Final Adjustment

When a statistical model is built from a set of data, it is important to verify the model

using data that was not used to generatethe model. In this case, the regression model built

from simulationdata will be tested and verified using data from the manufacturing line.
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This not only verifies the model itself, but forces agreement between the simulation mod

els and manufacturing data.

The inputs to the performance prediction model are the measurable process parame

ters, such as oxide thickness and effective channel length for an MOS process. These

parameters and the performance of fabricated circuits can be measured on manufactured

products. The measured process parameters are used in the model to generate a perfor

mance prediction, which canbe compared to the measured performance for that circuit.

Dueto inaccuracies in the device model, circuit model and measurements, there may

be a difference betweenthe predicted and measured performance for the verification data.

Therefore, themanufacturing data is used to estimate and correct thenominal performance

value of the model by adjusting the constant term in the model. When the performance

model prediction is in statistical agreement with the final test results, the process, device

and performance binning models are all verified to be correct, closing the loop between

design and manufacturing.

4.3 Statistical Process Control for Product Performance

The next application is a control procedure based on the performance prediction

model. A control chart for product performance would add high level monitoring capabil

ity by signaling an alarm if the process was drifting away from the predictions of the

model. The control chart would be a first step towards reducing the variability associated

with the manufacturing process, as the alarms generated could beused to invoke high

level process control algorithms tocorrect process drifts. Since this chart will bedriven by

prediction data, necessary corrections willbe signalled early. It would also allow the cal

culation ofthe capability ofthe entire manufacturing line.

Current work in theindustry focuses on equipment level control of lithography, thin

film deposition and removal, etc. [40][41]. New research in factory level control will

examine propagating specifications upand down the factory, as shown inFigure 4-2. This
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propagation must be based onthe relationships between equipment, process parameters

and product performance. The performance prediction model is a vehicle for propagating

specifications up into the factory based onthe most important metric - final product per

formance. The control chart isa step towards factory level control, as it generates analarm

which initiates corrective action.

There are two types of control procedures which could be used to monitor product

performance. The first, utilizing the performance prediction model, compares the actual

performance distribution of each lot with the model prediction. This control chart would

signal an alarm when there is a shift in the characteristics of the manufacturing line or

when a lot has been incorrectly tested. The control procedure would not raise an alarm
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with the production of fast or slow parts, rather, when the in-line and electrical test mea

surements no longer accurately predict the performance of the fabricated product.

The second control procedure would assume an overall distribution of output perfor

mance for a given product and signal an alarm when actual performance falls outside of

this desired distribution. The control limits could be set from the distribution, as in an x

chart, or if the capability of the process is high, the performance specifications could be

used, as in an acceptance chart to control fractionnon-conforming [42]. Corrective action

taken in response to the alarms generated by this controlchart wouldmove product perfor

mance back towards the target.

This section will firstpresent somebackground in the distribution and testing ofprod

uct performance,before discussingthe details of these two controlprocedures.

4.3.1 Performance Distribution

The distribution ofproductperformance mustbe specified to establish statistical pro

cess control strategies. Assuming a stationary, normal performance distribution for a man

ufacturing line is somewhat incorrect, as was the assumption of a normal distribution of

the process parameters. The main reason, as discussed in Chapter 3, is that performance

variance is not causedby random error, rather, our experience in this projectshowed that

the variance of performance within each lot was mostly causedby deterministic spatial

patterns in the manufacturingequipment [26].

However, the control procedures detailed in this work will generate control limits

assuming a normal distribution of performance at both the lot and product levels. The

assumptionofnormality greatly simplified the setup of the control chart and still allowed

good results to be achieved. Future work on control charts for performance will want to

revisit and improve upon this assumption.
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Histograms for two wafers with different average performance are shown inFigure 4-

3.The performance specification shown is the access time, or speed ofa memory IC. The

shape and range of the histograms are similar, despite a 15% difference inaverage access

time, because of deterministic equipment variation. A normal distribution is a good

approximation for the shape ofeach histogram. Importantly, the determinism inthe spread

implies that theaccurate prediction of the mean value ofperformance of thelotallows the

number ofparts in each bin to be calculated.

The setupof the control limits willutilize the normal distribution, whichdefines the

probability of a variable x beingless thanor equal to a as:

p^--°\^M^f*<^) (17)
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f(x)A

Figure 4-4 CalculatingProbabilities using the Normal Distribution

where x hasa mean \i and standard deviation a. This is illustrated graphically in Figure 4-

4.

4.3.2 Impact of Product Binning

Control procedures for product performance must account for the fact thatactual per

formance is not recorded exactly at final test, rather, parts are usually sorted into bins

which contain aspecific range of performance. For example, consumers can purchase only

33or50MHzmicroprocessors, and this greatly simplifies thetesting and marketing ofthe

part.Therefore, the fraction ofparts in a lot sorted into each bin will be utilized in the con

trol procedure to determine whether theprocess is out of control. Unfortunately, recording

only the fraction in each bin rather than the absolute performance of each part, makes it

impossible to calculate the variance of the lot and therefore acontrol chart ontherange of

performance in each lot cannot be maintained.

For example, suppose that the product shown in Figure 4-3 is sold with 120 ns2 and

150 ns specifications on access time performance. In this case, all the parts from wafer 1

and approximately halfof the parts from wafer 2 should be sold as 150 ns parts, with the

other halfofwafer2 soldas 120 ns parts. The control procedures developed in this section

2. The symbol ns stands for nanoseconds, orbillionths of asecond, thecommon timeunitin digital electronics.
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will assure that the fractions from actual testing agree with either the fractions predicted

by the performance prediction model or the overall distribution ofproduct performance.

4.3.3 Setup of a Model Based SPC Procedure for Product Performance

A model based control procedure for product performance would compare the frac

tion of parts in a lot which fell intoeachperformance bin against the fraction predicted by

the performance prediction model. It would detect process shifts which cause actual per

formance to deviate from the prediction of the model, including incorrectly tested lots. To

generatea predictionofthe bin fractions from the performanceprediction model, the elec

trical test results for eachmanufactured lot are usedto predictthe average performance of

the lot. Given this mean value, the fraction of parts which should occur within each bin

can be calculated by assuming a known variance for the performance of the lot.

The control limits will be calculated for each lot, because the expected fraction in

each bin will depend on the distance between the mean performance for the lot and the

edge of a bin. Thelimits are setby shifting themean value for the lot and calculating the

number ofparts in each bin, as shownin Figure4-4. The control procedure will issue an

alarm if the actual fraction ofparts in any bin is outside of the control limits. To calculate

the limits, both the error of the model prediction and the Type I error must be accounted

for. The Type I error, or false alarm rate, is the probability of generating an alarm even

though the process is in control. A TypeI error rate of a is obtained from a control limit

shiftedby Z0ct from the mean, where Za is the uppera percentage point of the standard

normal.

To account for model prediction error, the mean is shifted relative to the standard

deviation of regression of the performance prediction model, omodei, and to ensure a low

TypeI error, the mean is shiftedrelative to the standard deviationof the performance of

the lot, ct/0/. Assuming thesesources of errorare independent, a standard error for the con

trol procedure, cspc, can becalculated as:
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= ftlodel+ °L (18)spc

In the case of two bins separated by a performance specification b, the control limits

are given by:

(b+ (y + Z a )\^ a spcJ

< Giot
LCL = O

(b+(y-Za )^

Glot
UCL = O

(19)

(20)

where >> is the performance predicted bythe model and Z is setto give ana-level sensi

tivity and false alarm rate.

In the case where the performancedistributioncovers two bins, the control limits on

the second bin are simply thecomplementary fractions from the first bin. It is a straight

forward extension to calculate the limits for the casewhere the performance distribution

spans more than two bins. However, some care must be taken in calculating the limits for

thebincontaining thepeak of the distribution. The limits for thatbinarebestobtained by

subtracting the minimum (or maximum) amounts from the other bins from the total num

ber or fraction.

4.3.4 Setup of a Control Procedure for Overall Product Performance

Thecontrol procedure for overall product performance will signal an alarm if thepro

cess is drifting to producemostly low or highperformance products. The model for this

chart is a fab producing a product whose performance is normally distributed with mean

[i, and total variance abduct. This procedure will count the number ofparts in the fast
and slow bins, generating an alarm when the fraction is over the control limit. This control

chart has a fixed control limit for eachbin. For example, with a bin specifications of b, as
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shown in Figure 4-6, the fraction ofparts which should be found in the highest perfor

mance bin should be less than:

N

CL = 1-<D
(6-u+Za

a model

product

where, again, Za isset togive an a-level sensitivity and false alarm rate.

Several lotsshould be averaged foreach point on thecontrol chart to maintain a low

false alarm rate. Asingle lot may contain a large fraction in the fast bin even with the pro

cess in control. Western Electric rules should be applied to this control chart to catch

trendsor drifts in productperformance.

(21)
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This control charthas a Type II error of:

P=M^-) (22)
^ product'

where Pis the probability ofnotdetecting the shifton the first sample and n' is the shifted

mean. For example, the probability ofnotdetecting a shift in the mean from \x to b is 0.5.

The probability ofdetecting the shift decreases as the size ofthe shift in the mean to detect

decreases.

4.3.5 Process Capability

Process capability is an increasingly important metric for establishing how suitable a

manufacturing process is for production. Process capability, Cp, is defined as:

where USL and LSL are the upper and lower specification limits and a is the standard

deviation of the process. Current industry practice is to calculate capability at the level of

a piece ofequipment orprocess step. However, there would be a great advantage to calcu

lating thecapability oftheoverall process. For example, after making achange in thepro

cess flow orapiece ofequipment, it could beverified that thecapability oftheprocess had

actually improved.

The control limits and aproduct used in the control chart for overall product perfor

mance could be used for the USL, LSL and a in acalculation of Cp for aprocess. If bin

ning is used in normal production performance testing, occasional detailed testing to

estimate CTproduct would be required. Motorola [9] and Philips [10] have implemented aCp

metric for performance usingthis concept in their DFM tool algorithms.
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4.4 Circuit Manufacturability Improvement Method

This section will describe the activities outlined inFigure 4-7, which shows an over

view ofthe DFM methodology as applied to the improvement in the manufacturability of

anICproduct. Remember, the goal of DFM is to improve a circuit design to decrease its

sensitivity to manufacturing variation. Note theparallel, coordinated activities in theman

ufacturing, process and design engineering sectors. Figure 4-7 shows the methodology

applied inthe situation where both anew process and anew circuit design are being devel

oped. If an existing product design or process is used, some of the necessary data and

models have already been generated.
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4.4.1 Fabrication Line Description and Device Modeling

The process engineering organization creates the fabrication line description and
device models. The objective is to support computer-based experiments which relate pro
cess parameters to product performance. These experiments will be used to identify the

sensitivity of IC designs to process parameter variation. The fabrication line description
and the device modeling methodology have been discussed in Chapter 3.

4.4.2 Circuit Model

The circuit design engineer generates the model of the circuit for use in simulation.

This model contains the transistors and any other devices comprising the circuit, as well as

the connectivity. In addition, the circuit model must include descriptions ofthe parasitic

loading in the circuit and any special structures in the product. The descriptions for these

structures must include models which reflect their parametric variation over the process

range. Forexample, ina memory circuit, the models ofthe word and bit lines must include

the changes in their resistive and capacitive load caused by variation in linewidth and

oxide thickness.

4.4.3 Manufacturing Data Collection

Simple integration with manufacturing is the key to this DFM methodology. Manu

facturing data forms the basis for the fabrication line description. Electrical and final test

data allow the cross-checks which verify all the models and the simulation results. The

manufacturing engineering organization collects in-line and electrical test data from the

manufacturing floor and performance data after packaging and final test. This data con

tains the mean value and range of the key process parameters which describe thefabrica

tion line, measured transistor currents to validate the device models, and performance data

whichvalidates both the performance prediction models and the circuit sensitivities.
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4.4.4 Verification

The verification of the models and circuit improvements occurs at the device, circuit

and product levels. At the device level, the Monte Carlo simulation results are used to

compare the mean value, range and sensitivity of transistor currents with the manufactur

ing data. At the circuit level, sensitivities to the variation of a specific process parameter

should appear in both simulated and manufacturing data. Finally, manufacturing data are

used in the performance prediction model built fromsimulation to verify the correctness at

the product level [43].

Note that the device model is verified by checking the range and sensitivity rather

than distributions or yield. For example, when examining circuit sensitivity, plots of per

formance versus a process parameter for manufacturing and simulation results should

show the same sloperather than the same correlation coefficient. In a process commonly

referred to as''tuning," previous work in the area of statistical circuit design devoted time

and energy to adjustingthe mean and variance of the input process parameters to match

the distributions of the output parameters from simulation and manufacturing [44].

Although tuning matches a snapshot of the process, a modern IC process is constantly

undergoing evolutionary changes making the snapshot obsolete. Further, matching output

distributions does not guarantee that the mapping between the process and performance

spaces is correct. By looking at sensitivities across a broad range of the process using

physically baseddevice models, instead of adjusting input parameter distributions, the

correct relationships between the process parameters, the device characteristics and the

circuit performance must be pursued.

When adesign improvement ismade to increase circuit manufacturability, an experi

ment should be run to verify the results before putting the new design into production.

Typically, a fractional factorial experiment [39] will be used, where a few of the critical

process parameters are varied attwoorthree levels. A fractional factorial is the appropri-
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ate experimental design in this casebecause it covers enough ofthe process spaceto ver

ify the improvement, yet is small enough to be run using a single lot split, reducing the

cost of the verification run.

4.5 CIM Infrastructure for DFM

A factory-wide ComputerIntegrated Manufacturing (CIM) infrastructure is critical to

the success ofthis DFM methodology [11]. An overview ofsucha systemis shownin Fig

ure 4-8. The CIM system3 provides the in-line data, such as linewidth and oxide thickness

for a CMOS process. Similarly, the electrical test database provides the electrical test data,

such as device currents and threshold voltages. The performance data comes from the

results of final test. In the most advanced factory-wide CIM systems, the in-line, electrical

test and final test data are all stored in a single relational database. DFM software provides

an interface with the circuit designer to run the Monte Carlo simulations. To support the

statistical characterization of the manufacturing data, the building of response surface

models and the analysis of the Monte Carlo simulation, statistical analysis software is

required.

Thisworkused theWorkstream [45] CIM System and the RS/1 [46] statistical analy

sis package. Both the in-line and electrical test databases weremanaged by customsoft

ware, including the interface intoRS/1 for analysis [47][48]. The software to runthe DFM

simulations was automated through custom software written by the author. The HSPICE

[49] circuit simulation software was used for circuit simulation.

4.6 Summary

This chapter presented the theory behind the DFM applications. Three applications

werepresented, including a performance prediction model,a control chart for product per-

3. Specifically, theCIM system is responsible for running the factory, including scheduling theequipment, recipe con
trol, in-line metrology management, etc. In general, theconcept of a CIM system is extended to include the functions
shown in Figure 4-8.
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formance, and IC DFM. These applications were built on a common set of models which

described the fabrication line and the devices. Most importantly, all three applications

strive to integrate theprocess, manufacturing and design activities in thecompany.

Chapter 4 concludes the theory behind manufacturability modeling. Next, in Chapter

5, process and device models will be built for a production 1.2urn CMOS process, and

then, Chapter6 will present the results from developing theseapplications for the manu

facturing line.
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Chapter 5

Fabrication Line and Device Models for a
Production CMOS Process

This chapter applies the methodology, developed in Chapter 3, for building a fabrica

tion line description and extracting transistor device model parameters for circuit simula

tion to a production 1.2 urn CMOS EPROM process. This chapter first develops the

fabrication line description, focusing on the set of processparameters which describes the

spread of performances seen on the fabrication line. Next, the process characterization

techniques are summarized, as a key element of this methodology is that all ofthe param

eters are measurable using production line capable techniques. The chapter then presents

the device model parameter extraction for a SPICE Level 3 MOS transistor model.

Finally, the product specific EPROM cell model is discussed.

5.1 Symbols

The symbols used in this chapter are listed in Table 5-1, except for the SPICE model

parameters, which are listed in Table 5-4.
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Table 5-1 List of Symbols Used in Chapter 5

Symbol Description Units

cgd gate to drain capacitance F/cm2

c gate to source capacitance F/cm2

Cpoly EPROM cell inter-poly capacitance F/cm2

^ox channel capacitance F/cm2

Id drain current A

La channel length cm

Nsub surface doping level _3
cm J

q electronic charge C

Txox gate oxide thickness cm

I poly EPROM cell inter-poly oxide thickness cm

vD drain voltage V

vG gate voltage V

VSB source to body voltage V

vT threshold voltage V

VTo threshold voltagewithoutbody bias V

wb channel width cm

eox oxide permittivity F/cm

esi silicon permittivity F/cm

y body effect parameter yl/2

Vs surface potential V

Heff effective mobility cm2/V-s

Mo low field mobility cm2/V-s

a. The variations AL, L^^, Leff, Lpoly and XL are explained in the text
b.The variations AW,Weffand Wextend are explained inthe text.

54



Chapter 5: Fabrication Line andDevice Models fora Production CMOS Process 55

5.2 Fabrication Line Description

As explained in Chapter 3, the fabrication line description consists ofseveral compo

nents. First, thesetofprocess parameters which explain theperformance variation seen on

the manufacturing line are identified. Second, the means, variances and correlation matrix

(or equivalently, the means and the variance-covariance matrix) of the parameters are

determined.

5.2.1 The Process Parameters

For this CMOS process, the key process parameters which effect transistor perfor

mance are the variations in channel length1 (AL), channel width (AW), gate oxide thick

ness (Tox), threshold voltage (VT) and channel surface doping level (Nsub). Althoughthis

parameter set is similar to previous process models for statistical design [1], these parame

ters differ in the use of VT instead of the flatband voltage, and the inclusion of Nsub to

model body effect, which is important for analog design. These parameters are meaningful

to the process, circuit and manufacturing engineering groups and support both the manu

facturing applications and the physical device modeling methodology employed in this

work.

Four of the parameters, AL, AW, VT and Nsub, are specified for each transistor type

(i.e. n-channel, p-channel, EPROM cell, etc.)2. There are three important gate oxide thick

nesses in this EPROM process, two separate gate oxides and the inter-poly oxide in the

EPROM cell. Polysilicon line resistance is included as a product specific parameter

because polysilicon is used as the wordline of the memory and its resistance is important

to EPROM performance. Thus, a total of 28 parameters were included in the fabrication

line description, specifically, AL, AW, VT and Nsub for each of the six transistor types,

1. The variation in channel length (and similarly, width) is best described and incorporated into the SPICE transistor
model by varying AL, which isthedifference between the drawn and effective channel length. Thiswillbedescribed in
detail in Section 5.3.2.

2. In addition to the 3 devices listed, there are 3 additional devices which have adjustments to the threshold voltage
implant.
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three oxide thicknesses and the polysilicon line resistance. The mean value, operational

spread (variance) and correlation structureoftheseparameterswas found from a combina

tion ofseveral months ofhistorical characterization data for the process and detailed char

acterization of a few samples. The variance-covariance matrix was extended slightly to

cover the process even when it is not in control. The techniques used for characterization

will be discussed in Section 5.3.

5.2.2 Process Correlation Structure

An important component of the fabrication line description is theprocess parameter

correlation structure. Table 5-2 shows the correlation structure among the 5 process

parameters foreach of then- andp-channel devices. Table 5-2 onlyincludes non-zero cor

relations which are expected from first principles. Although other correlations were signif

icant in certain data sets, they were not included in the fabrication line description to

simplify and generalize the description.

Table 5-2 Correlation Structure for a 1.2 urn CMOS EPROM Process^

ALn AWn Toxn vT„ Nsubn ALp AWp Toxp VTP Nsubp

ALn 1 0.75

AWn 1 0.8

Toxn 1 0.8 1

vTn 1

Nsubn 1

ALp 1

AWp 1

Toxp 1 -0.8

VTP 1

Nsubp 1

a. The lower lefthalfof this matrix isnot shown due tosymmetry.
b. Blank entries are not significantly different from 0.
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Note that the significance ofan estimated correlation coefficient, p, can be found by

transforming it using:

z=H\H) <24>
wherez is approximately normally distributed around:

m- Im^) (25)
with variance:

v=^h <26>
where n is the number ofsamples [50]. To test ifacorrelation coefficient is significant, the

null hypothesis isH0: p=0, inwhich case m=0. For example, if p iscalculated from 100

data points, the variance ofthe estimate is 0.01, or a standard deviation 0.1, so that any

correlation coefficient less than 0.3 is equivalent to 0at the 3sigma level ofsignificance.

5.3 Process Characterization Techniques

As this work is oriented towards the development ofmanufacturing applications, it is

important that the parameters used in characterizing the process can bemeasured on the

manufacturing line. The techniques to characterize the underlying process parameters

described in Section 5.2 will be summarized here. The extraction ofthe parameters to

complete the device model, such as mobility reduction, will require additional structures

and measurements, which will be described in Section 5.4. The process characterization

software used in this work is a modification ofMOSTCAP [51].

5.3.1 Test Pattern for Process Characterization

Asimple test pattern capable ofelectrically measuring the necessary parameters in

high volume production is shown in Table 5-3. The electrical measurements to character

ize the process are done after the processing is complete. The algorithms used to charac-
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terize the process using this set of structures will be described in the subsections below.

For each transistor type, the six transistor parameters AL, AW, VT and Nsub can be mea

sured electrically using three transistors: one long, one short and onenarrow channel.

Table 5-3 Test Pattern for EPROM Process Characterization.

Parameter Measured Test Structure

AL,AW,VT,Nsub Three sizes for each transistortype:
(W/L = 20/20,20/2,2/20)

Gate and Inter-poly Oxides 70 x 70 urn MOS Capacitors

Wordline Resistivity 800 x 2 um Poly Line

The characterization techniques rely on the basic equations underlying transistor

operation. In general, the measurements bias the device in the linearregion. The SPICE

Level3 model for the draincurrent, ID, in the linear region is givenby:

(27)
'eff

where jieff is the effective mobility, Cox is the channel capacitance, Weff is the effective

channel width, Leff is the effective channel length, VT is the threshold voltage, VG is the

voltage applied at the gate and VD is the voltageappliedat the drain. The effectivemobil

ity is defined as:

^0

'D^ef^rfWo-^^D-^]

Kff =eff \+Q(VG-VT)

where \i0 is the low field mobilityand 9 is the mobility reductioncoefficient.

The characterization techniques presented here bias thetransistor at very low VD (in

the 50-100 mV range) so that the V^ term inequation (27) can beignored.

(28)
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5.3.2 MOS Channel Length and Width Characterization

Variation inchannel length isthe single most important variable inexplaining product

performance variation. This variation inchannel length is caused by changes in the pat

terning resist, the polysilicon etch and the diffusion ofthe source and drain underneath the

gate. In this characterization of channel length, the sourceand drain diffusion under the

gate, LD, is held constant, and changes in effective channel length are attributed to

changes in the polysilicon gate dimension, XL, that is:

Leff= LdraWn~AL 09)

AL = XL+ 2LD (30)

Lpoly = Leff+2LD (3D
where Lpoiy is the final size of the polysilicon gate, also known as thecritical dimension,

CD. These relationships are illustrated inFigure 5-2. Note that for a given L^^, changes

in Leff from wafer to wafer are physically described as change in XL, and hence AL

through theSPICE transistor model. Equivalent definitions hold forthechannel width, W

The channel length shrink is extracted using Chern's method [52], which calculates

AL and the external channel resistance from a large and shortchannel transistor. The chan

nel resistance ofa MOSFET from equation (27) under low drain voltage isgiven by:

R =^ = Leff nr\
Ckan JD ^effo^eff^G-^ * }

When measuring the channel resistance, the source and drain resistance as well as the

probe resistance are also measured, that is:

Rm = ReX, +Rchan = *«+B(Ldrawr,-^ (33)
where:
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Therefore, if B is held constant (that is, fora specific value of VG - VT), a plot of L^^

vs. Rm for transistors with different Ldrawn will result in a straightline. If lines are plotted

for several gate voltages, the lines intersect at thepoint (Rext, AL), generating the desired

result.

Chera's method is an industrystandard approach and was used successfullyin this

project. However, there are several problems with the method. First, ^ieff is function of

VG, causing the relationship between Ldrawn and Rm to be non-linear. In addition, espe

cially for Lightly Doped Drain (LDD) devices, thesource anddrain resistance are strong

functions of VG, causing that component of Rext to vary. Newer methods address these

issues, but the accurate measurement of AL for small devices is still an active subject of

research [53][54].

Thechannel width shrink is extracted using an approach analogous to channel length,

based on the relationshipbetween conductance and channel width. A newer, more accu

rate approach to measuring channel width is given in [55]. Channel width is especially

important in circuits suchas memories which usea large number of minimum widthtran

sistors.

5.3.3 Threshold Voltage and Doping Profile

The linear extrapolation approach was used to measure the threshold voltage. This

method extrapolates the maximum slope of the drain current vs. gatevoltage curveto the

intercept of the gate voltage axis [56]. The maximum slope is used because mobility

reduction increases with VG, creating a non-linear relationship between ID and VG. A

common technique for finding the pointof maximum slope is to plot the transconductance

(gm) against VG, andthen use thevalue of VG at thepoint of maximum transconductance

[57].
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The surface doping level, Nsub, iscalculated through measurement of the body effect.

The body effect, y, describes thechange in threshold voltage with applied substrate bias,

VSB, that is:

where VT0 is the unbiased threshold voltage, ¥s is the surface potential under strong

inversion, and y is given by:

y-pg± (36)
[56]. Tocalculate Nsub, VT is measured for several values of VSB, and Nsub is calculated

from the value ofy.

Alternative techniques for calculating doping levels often involve the addition of an

operational amplifier in the test setup [58]. Although more accurate and detailed profile

information is obtained, the additional hardware increases the complexity for use in high

volume production.

5.3.4 Oxide Thickness Measurement

There are three critical oxide thicknesses in the EPROM, including the two separate

gate oxides and the inter-polyoxide in the EPROMcell. The thickness of the oxide layers

can be measured on large MOS devices (capacitors) using capacitance-voltage (CV) tech

niques, wherein a DC voltage is applied to the gate ofthe device to bias it in accumulation

and the small-signal capacitance is measured [56]. A large device is used so that fringing

fields and changes in the dimensions of the device can be ignored. The oxide thickness is

calculated using:

ox r
^ox

where A is the area of the device.
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5.3.5 Extension to Simulation of Interconnect Variation

Previous work in the field of statistical circuit design has focused on transistor param

eters as the cause of performance variation [1][2][19]. Performance in current IC technol

ogies, however, is also strongly affected by the interconnect parasitics. In fact, accurate

modeling of interconnect parasitics is critical for the high speed operation of ICs and is an

increasingly active field of research. The wordline resistance plays a key role in the per

formance of the EPROM circuit discussed here. Therefore, this resistance is measured by

a polysilicon line in the test structure and its variation is included in the process model.

Although one interconnect test structure is sufficient for this EPROM circuit, in gen

eral, the performance of analog and logic circuits will be sensitive to changes in the resis

tances and capacitances associated with routing on all the polysilicon and metal

interconnect layers. A test structure capableof determining these parasitics is described in

[59].

5.3.6 In-line Measurements

In-line measurements refer to process characterization completed during the IC man

ufacturing process. Although this section has focused on electrical characterization com

pleted after processing, it is desirable to make measurements as early as possible in the

manufacturing process, for both early prediction of the performance of the fabricated cir

cuits and early detection of process variation. As it is difficult to make electrical contact

with test structures before the deposition of themetal layers, in-line measurements tend to

depend upon optical techniques, which are less accurate than electrical techniques. Optical

techniques can be used for the measurement of linewidths and thicknesses. In particular,

the polysilicon linewidth and gate oxide thickness can be measured in-line.

In-line linewidth measurements are made by scanning a light or laser bean across a

line and measuring the intensity of the reflected light. The difference in reflected intensity

between the interconnect layer and the underlying layer can be detected and used to calcu-
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late the width ofthe drawn line. The accuracy ofthis technique is limited by the sensitivity

of the detection algorithm to the slope and smoothness of the transition in thereflected

intensity of the two layers at the edge of the line [57].

The gate oxide thickness can be measured using ellipsometry. Anellipsometer shines

a beamof monochromatic, polarized light at a wafer and calculates the thickness of the

top layer from the angles of minimum and maximum reflection intensity [57]. Ellipsome

tryrequires a fairly large area sample. In the case of athermally grown gate oxide, ablank

wafer is included in the furnace for characterization. The monitor wafer has a different

doping profilethan the actual products, andtherefore will have a different oxide thickness.

However, the monitor wafer thickness willbe highly correlated with the gate oxide in the

product wafers, makingthese measurements suitable for performance prediction and Sta

tistical Process Control.

5.4 Device Models

In this section, the physicallybased statistical SPICE level 3 MOSFET model param

eter extraction is described, which completes the mapping of the fabrication line parame

ters to device characteristics. The model parameters are separated into three groups, as

shown in Table 5-4 [13]. The first group contains physical constants. The second group

includes the measurable process parameters, such as gate oxide thickness. It is this second

group which has been described up to this point in Chapter 5. The third group consists of

the fitting parameters, which will be either extracted or globally optimized, and possibly

modeled on the measurable process parameters.
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Table 5-4 SPICE Model Parameters

Category Parameter Description Units

Constants

(from the process)
"0 low field mobility cm2/V-s

XJ junction depth cm

NFS • number of fast surface states cnfV1

LD source/drain diffusion under gate cm

Directly Measured
Physical Process
Parameters

XL poly gate length shrink cm

Nsub surface doping .3
cm"3

Tox gate oxide thickness cm

vT large device threshold voltage V

xw channel width shrink cm

Fitting Parameters
(adjusted to fit I-V
calculation to mea

surements)

Theta mobility degradation V"

Eta short channel effect

Delta narrow channel effect

Kappa channel length modulation V1

Vmax saturation velocity cm/s

5.4.1 Overview of the Parameter Extraction Method

Thephysically based parameter extraction requires I-Vcurves measured on devices

covering awide range ofthe variability seen for the process. The following steps are taken

to complete the extraction.

1. The parameters representing the constants ofthe process are assigned their measured

values.

2. The physical process parameters were measured on these devices, and the correspond

ing model parameters were set accordingly. This isa key step inphysically based

parameter extraction, as actual measured values are used in the corresponding SPICE

model parameter, for example, the Tox parameter would be set equal to the measured
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oxide thickness. These values are not allowed to vary during subsequent optimization

phases.

3. The extracted fitting parameters are assigned their measured values. Regression mod

elsare built for any fitting parameters which are a function ofthe process parameters.

4. The remaining fitting parameters are determined by a global optimization.

5. Theresults are checked against the original I-Vcurves toverifytheextraction process.

To subsequently determine parameter values for a transistor at any point in the pro

cess space, the process parameters mustbe measured. Then, the corresponding model

parameters are setaccordingly, and values for fitting parameters dependent on the process

are calculated. The constants and optimized fitting parameters are setto their global value.

The remainder of this section will describe thetechniques for characterizing the con

stants oftheprocess and determining the fitting parameters. Also,extraction ofthe capac

itance related parameters is discussed. The characterization of the directly measured

physicalprocess parameters hasalready been described in Section 5.3.

5.4.2 Constants of the Process

The constants of the process include the junction depth, source and drain diffusion

under the gate and low field mobility. The junction depth is found by taking a cross-sec

tion of a device and staining the junction [57]. The extraction of mobility will be

explained later in this section along with the fitting parameter mobility reduction. The

source and drain diffusion under the gate, LD, is calculated from the overlap capacitance,

Cgd, ona large device with aknown width and oxide thickness, using:

LD =MlSL (38)
OX

The measurement ofCgd will include both the parallel plate and fringing field capacitance,

andtherefore this calculation will overestimate LD. The correction factor to compensate

for the fringing field, whichis dependent on the oxidethickness, is derived in [60].
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5.4.3 Fitting Parameters

Givenvalues for the constants ofthe process and the physical processparameters, the

values for the fitting parameters are determined next. Fitting parameters can be found

through extraction or optimization, and theymaybe a function of the physical process

parameters. This subsection will focus on theextraction of mobility and the mobility deg

radation coefficient. Mobility degradation is both extracted andfunctionally dependent on

the oxide thickness, so it is a goodillustration of the physically based extraction method

ology. The proper modeling of mobility and mobility degradation is also critical for

achieving a good fit across the process space. Low field mobility is extracted from the

same data, so it is also discussed here.

5.4.3.1 Extraction of Mobility and the Mobility Degradation Coefficient

Figure 5-1 shows the data curves used to extract low field mobility, \i0, and mobility

degradation, 0.This data, taken from the large 20/20 n-channel device, plots the reciprocal

of effective mobility against VG - VT for small VD, where theeffective mobility is calcu

lated, using Equation (27), as:

l C w

iv/tx^-^ (39)
The y-intercept is the reciprocal of low field mobility and the slope of the line is 6/|x0,

whichcan be seenby rewriting Equation (28) as:

nL =r+ir(F<*~FV) (40)
Although in thiscase thedata shows little deviation from a straight line, mobility degrada

tion will often increase with increasing gate voltage. SPICE Level 3 models onlyhave a

linear mobility reduction term andcannot account for this effect. Improved models such as

BSIM3 model are needed to correctly account for mobility degradation [61].
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Figure 5-1 Extraction ofMobility and Mobility Degradation

There are several important advantages to extracting u0 and 0 in this manner. The use

ofalarge device for extraction correctly separates the bulk MOS mobility properties from

any geometric effects. In addition, the physically correct extraction of these terms from

actual device measurements, as opposed to simply optimized parameter values, allows the

physics in the device model to calculate geometry and temperature effects correctly. Oth

erwise, ifgeometric effects are confounded with bulk properties or optimized parameters

are used, the model prediction will show much greater deviation from actual device char

acteristics when geometry andtemperature arevaried.

5.4.3.2 The Dependence of Mobility Degradation onOxide Thickness

Using the physical parameters in conjunction with single values for the fitting param

eters across the process space is not sufficient for accurate modeling across the entire

67
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range ofvariation. Therefore, to obtain a SPICE model which fits across the process, the

device fitting parameters must have a functional dependence on the physical parameters.

As was previously explained in Chapter 3, the functional dependence canbe derived from

device physics or statistical regression techniques. Here, regression models for the device

fitting parameters in terms of the measured process parameters were used.

The most important effect is that as the oxide thickness decreases, the saturation cur

rent decreases from that predicted by the Level 3 model due to velocity saturation effects

[62]. Therefore, the mobility reduction parameter, 6, was made a function of the oxide

thickness. A statistical linear regression equation was developed for 0 in terms of the

oxide thickness. Foronedevice in this process, with oxide thickness Tox (inAngstroms), 0

is given by:

0 = 0.25-0.0005 x Tox (41)

5.4.3.3 Global Optimization

Using the I-V curves collected from across the process space, global optimization was

used to find a single value for the other fitting parameters. A numerical optimizer [49] pro

duced a value for each fitting parameter to obtain the best fit across the process range.

5.4.4 Capacitance Device Model

The parameterized Modified Meyer gate capacitance model was used [49]3. The gate

to channel capacitance (Cox), and the drain and source overlap capacitances (CGSO,

CGDO) were the appropriate function of Tox. The effect of transistor width variation on

the capacitances is handled internally by HSPICE [49]. Note that CGSO and CGDO had

no variation due to overlap distance because LD is a constant for the process.

3. In HSPICE, set CAPOP=2.
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Junction capacitance is modeled as an abrupt junctionand the sidewall capacitance as

a linear graded junction. Thejunction andsidewall diffusion capacitances wereheld con

stant, consistent with the view that the source and drain diffusions show little variation.

5.4.5 Final Comments

There are several advantages to the physically based modeling method. First, this

model allows accurate circuit simulation atany point in process space, not just atprocess

corners. The resulting SPICE model had a worstcase drain current fit of about 8% across

geometry and the 3 sigma process range of the key parameters. Second, the method uti

lizes measured data directly inthe compact transistor model, without the need of a device

and process simulator. This makes the method particularly attractive to foundry users.

These advantages give the user the ability to select a wafer from the fab, measure the nec

essary parameters, and produce the SPICE model for that wafer. As was explained in

Chapter 3, the physically based models connect manufactured wafers and simulation mod

els,enabling themanufacturing applications.

5.5 Product Specific Models

There are two product specific models, the EPROM cell model and the interconnect

models. The important point is not these particular models, as many designs will include

unique structures which require aproduct specific model. Rather, the author contends that

any structure can be handled using aphysically based model, defined at the appropriate

level ofabstraction. It is important to emphasize that the structure be defined interms of

measurable parameters.

5.5.1 EPROM Cell Model

An extension of the device model isused todescribe the EPROM cell. The extension

is based on the capacitive coupling of the four MOSFET terminals to the floating gate, as
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Figure 5-2 EPROM Cross-Section and Floating Gate CapacitanceModel

shown in Figure 5-2. The EPROM cell is modeled as an n-channel device, with the float

ing gate (Polyl) acting as the gate terminal of the device. The voltage on thefloating gate

is determined from the voltages on the gate and drain, and the capacitive coupling ratios,

which act as a capacitive voltage divider [63]:

GateCoupling =

DrainCoupling =

Cpoly

c ,+ c +c +cgd gs ox poiy

C
gd

C ,+ C +c +cgd gs ox poiy

(42)

(43)

The capacitance values are calculated from the device dimensions and oxide thicknesses,

as simple parallel plate capacitors:

Cpoly= (^/V+2^«w)i.
ox

eff extend' polyf
poly

C.„ = W_,l rr^
OX

1 0X
tfreffr

ox

Cnt1 = C = WfiLD^-
gd gs efr T

ox

(45)

(46)
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The dimensions ofthe plates are functions ofLeff, Lpoly, LD (all shown in Figure 5-2),

Weff and Wextend (the extension ofthe floating gate beyond the electrical width). Cur

rently, Leff and Weff are measured electrically, while LD and Wextend are assumed con

stant. Future models will be based on the in-line measurement of the polysilicon

dimensions. Again, a small setof measurable parameters allows the creation of a simula

tion model over the range ofthe process for the EPROM cell with similar accuracy tothe

n- and p-channel device types.

5.5.2 Interconnect Models

Theword andbit lines of theEPROM require detailed models due to theirlarge con

tribution to the memory access time. The resistance of the wordline is significant, and

therefore it is measured in the test structure. Thecapacitance of the wordline is dominated

by the large number of EPROM gates connected to it. This gate capacitance is accounted

for by the measurement of the two EPROM oxide thicknesses. Therefore, a lumped RC

parameter model is used for the word lines, whose resistance values are based on the mea

sured resistivity and capacitance values are functions of the oxide thicknesses.

The resistance of the metal bit line is small. The capacitance of the bit line has com

ponents from both the EPROM cell drain junctions attached to it and the metal line.

Therefore, the bit line is modeled as a combination of a large fixed capacitorand diodes

which represent the junctions.

5.6 Temperature Effects

Accuracy over temperature is a very important feature of a transistor model, as cir

cuits are specified to operateover a wide temperature range. Given the proper physical

specificationofthe bulk silicon properties, the SPICE Level 3 model will account for tem

perature changes through default parameter temperature dependencies. The most impor

tant temperature dependent parameters are the low field mobility, threshold voltage and
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Figure 5-3 Low Temperature Cell Characterization

the saturation velocity. However, the adjustment of the saturation velocity isbased on the

VMAX parameter, whose value was strictly optimized for the room temperature I-V

curves in this work.

The device model was evaluated at 85 °C and -40 °C. The simulated and measured

waveforms for -40 °C are shown inFigure 5-3. The model, using parameters extracted at

room temperature, gives results with only 2% additional inaccuracy over temperature.

Again, there were no adjustments to anyparameters other than the Level 3 internal tem

perature dependencies, and there were no temperature related fitting parameters specified.

The physical modeling method along with the straightforward approach to temperature

modeling in the Level 3 model is veryaccurate.
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More complex SPICE models force theuserto tune temperature related fitting param

eters to achieve this levelof fit. Although thistuning will improve the fitovertemperature,

it does require additional work. In [64], physical and statistical models for the SPICE tem

perature parameters are combined to achieve an accurate fit over temperature.

5.7 Summary

This chapter presented the fabrication line description for a CMOS EPROM process

and completed the parameter extraction for a SPICE Level 3 transistor model. The focus

ofthechapter was the techniques used tomeasure orcharacterize themodel parameters. In

particular, mobility andmobility degradation, andthe EPROM cell model, were used as

examples of the physically based modeling methodology. Next, Chapter 6 will discuss

building themanufacturability applications from the models developed inthis chapter.
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Chapter 6

Design For Manufacturability
Application Examples

Chapter 5 completed the discussion of the fabrication line description and device

models which underlie manufacturability applications. This chapter now reports on the

development of the applications presented in Chapter 4, a performance prediction model,

a control procedure for performance, and an IC Design For Manufacturability (DFM)

study. The statistical device models, the parameter distributions from the fabrication line

characterization and the circuit simulation model were used together, often in designed

experiments, to build the applications. These applications are all developed on a 1 Mbit

EPROM product. The applications were built on several generations of a CMOS process,

but each generation wascharacterized using themethodology shown in Chapter 5.

6.1 EPROM Architecture and Circuit Sensitivity

Before developing the applications, the EPROM used as the examplecircuitwill be

described. First, the architecture of the 1 Mbit EPROM circuit will be discussed. Second,

Monte Carlo results are presented which show the sensitivity of EPROM circuit perfor

mance to process variation.
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Figure 6-1 Schematic Overview of an EPROM

6.1.1 EPROM Architecture

An overview of the EPROM architecture is shown in Figure 6-1.1 The incoming

memory address is split to control the two decoder blocks. The x-decoder selects one of

the wordlines, and each EPROM cell on the wordline puts a "1" or a "0" onto a bitline,

depending on whether the cell is programmed or unprogrammed. The y-decoder selects

one of the bit lines, and that value is sensed by the sense amplifier and driven off chip by

the output driver.

1. Figure6-1 shows the read path for the memory, because the read access time is the focus of the DFM work. Writing
the non-volatile EPROM cell is a slow, one time operation.
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Figure 6-2 Monte Carlo Result: Address Access Time versus Effective Channel
Length for 1 Mbit EPROM

The circuit performance modeled in this chapter is the address access time (denoted

"tacc") of the EPROM, which is defined as the time between a valid address at the

EPROM inputs and the data becoming valid at the DATA OUT pin. Typically, EPROMs

are binned based on access time, which varies with the process, with the other perfor

mance specifications, such as the input and output DC levels, being fixed. Therefore, the

access timewaschosen as theperformance metric to model in theEPROM circuit.

6.1.2 EPROM Sensitivity to Process Variation

The first step tounderstanding the manufacturability ofa circuit is to establish the

sensitivity ofcircuit performance to process parameters variation. Figure 6-2 shows ascat-
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terplot ofaddress access time versus the effective channel length ofthe EPROM cell for a

50 point Monte Carlo simulation of the EPROM. The Monte Carlo shown in Figure 6-2

includes the variation ofall process parameters, but the results are plotted against one spe

cific parameter, the effectivechannel length ofthe EPROM cell. As the valueof effective

channel length increases, the EPROM gets slower and starts to fail.2 In other words, per

formance yield decreases when the process is producing longer channels. However, there

is a lot of variance in the access time even at shorter channel lengths, due to the effects of

other process parameters, specifically, the oxide thicknesses and hence the thresholdvolt

ages ofthe transistors.

To more clearly show the effectof the different process parameters in the results of

Figure 6-2, aMonte Carlo simulation was run varying only the effective channel length

parameters. Figure 6-3 shows the results of the second Monte Carlo. Note that the address

access time varies at a given value for the channel length of the EPROM cell because of

the variation in the channel lengths of the other transistor types, which are highly, butnot

perfectly correlated with the channel length of the cell. Figure 6-3 clearly illustrates the

strong dependence ofperformance onchannel length variation. Also notethatthe variance

inperformance isgreatly reduced, showing how the variation of the other process parame

ters, such as oxidethickness and threshold voltage, also effect circuit performance.

In light of these results, the goal of the performance prediction model is to predict

product performance across the range of the process from the measurement ofthe process

parameters. Incontrast, the goal of the DFM changes is to reduce thesensitivity of perfor

mance to these variations in the process.

2. Parts with a400nsaccess time in Figure 6-2 are either very slow parts orparts which fail to switch.
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6.2 Development of a Performance Prediction Model for
Manufacturing

The first application is a model that predicts the performance of manufactured cir

cuits, as was shown in Figure 4-1. A Monte Carlo experiment was used as a computer-

based experiment to develop a model for performance in terms of the measurable process

parameters. A manufacturing line experiment wasrun to verify the results.

6.2.1 Monte Carlo Simulation

To cover the range of process variation seen in the manufacturing line, a100point

Monte Carlo simulation experiment was run on the 1 Mbit EPROM. Uniform distributions
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were used for the process parameters, and parameter correlation was includedto limit the

process space ofthe model. For each ofthe 100 points, correlated process parameters were

generated for each of the six transistor types (n channel, p channel, EPROM cell, etc.) in

the circuit. SPICE Level 3 transistor models were generated from the process parameters,

as described in Section 5.4. Combining the device models with the circuit netlist for the

EPROM, 100 circuit simulations were run and then the access times were extracted from

the results.

The simulations were run on a SUN SPARCstation 690 server with four processors.

Two simulations, rather than four, were run simultaneously, to allow other users access to

CPU time. Each simulation took approximately four minutes, so the Monte Carlo required

an elapsed time of3hours and 20 minutes. Many circuit designers have even more proces

sors available for running circuit simulation, which will linearly decrease the elapsed time

required. Monte Carlo simulation isan excellent application toparallelize, aseach simula

tion can run on an individual processor.

6.2.2 Principal ComponentTransformation and Regression on Simulation

Using the process parameters generated for the Monte Carlo as the independent vari

ables and the access time predicted by HSPICE as the dependent variable, a linear regres

sion model was built to predict the access time of the EPROM from the measured

parameters. Toaid in themodel building, a Principal Component rotation of the correlated

input parameters was employed. The 28 correlated process parameters required seven

Principal Components to explain 80%of theirvariance, as shownin Table 6-1.
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Table 6-1 TableofPrincipal ComponentVariance

PC 1 2 3 4 5 6 7

% Variance

Explained
22.2 20.8 17.6 7.3 4.7 4.0 3.8

Cumulative

Variance

Explained

22.2 43.0 60.6 67.9 72.6 76.6 80.4

80

Using step-wise regression, three Principal Components (numbered 1, 2 and 4 in

Table 6-1) were chosen to obtain a highly significant model for the address access time of

the EPROM. The fact that a significant model wasachieved with only 50%of the variance

of theprocess parameters shows theimportance ofeffective channel length in determining

circuitperformance. It also shows that largeportions of the observedvariance did not cor

relate with the productperformance. However, as each Principal Component is a linear

combination of the 28 process parameters, this model encompasses all the original vari

ables.

The ANOVA table is summarized in Table 6-2. The model explains the variation in

performance, as is shown by itshigh significance. The model has anexcellent R-squared

of 0.95 and a standard deviation of regression of 1.6ns, or just over 1% of the 120 ns

access time of the part.

Table 6-2 ANOVA Table for Performance Prediction Model.

Error Source SumofSq. DF F Sig.

Regression

Residual

4249.4

242.1

3

96

561.7 0.0

R-Squared

Std Dev ofRegression

0.95

1.6 ns
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Figure 6-4 Factorial Design for ModelVerification

6.2.3 Manufacturing Verification

So far, we have described the statistical circuit model, and how we used acomputer-

based Monte Carlo experiment to build the performance prediction model from simula

tion. To complete the integration with manufacturing, an experiment was designed and

executed on the manufacturing line. The experiment explicitly varied the process parame

ters on production wafers. After manufacturing, the process parameters were measured

and used as inputs to the performance prediction model developed from simulation. The

correct prediction of manufactured product performance verified the manufacturability
models andthemethodology.

The experimental design, as shown in Figure 6-4, was afull factorial experiment with

center point replication in the four most important parameters: AL, AW, and two ofthe

oxide thicknesses [21]3. The process flow accounts for the fact that only two out of the

3. In fact, the experiment originally sought to build such aperformance prediction model directly from manufacturing
data. Combining simulation and manufacturing data isclearly more effective.



Chapter 6: Design For Manufacturability Application Examples 82

three gate oxide thicknesses are independently varied. The minimum and maximum val

ues used in the factorial design were chosen to represent the true excursions ofthe process

over an extended length of production, thus verifying the model over awide range of con

ditions.

After the experiment was run through the manufacturing line, the 28 process parame

ters were measured at electrical test at four sites on each of the wafers. Measurement out

liers, including bad data, were replaced bythe appropriate average, that is, single points on

a wafer were replaced by the average for that wafer and a missing wafer average was

replaced by the split orglobal mean. Rather than the usual performance testing, where the

die are placed into a bin based on theirperformance, detailed histograms of the address

accesstime ofthe EPROMs from eachwaferwere recorded after packaging.

The performance test results showed that each wafer has a deterministic spread in

speed ofapproximately 8 ns, independent ofthe absoluteperformanceofthe wafer. There

fore, it must be caused by equipment specific, non-random radial variation on the wafers

[26]. As this deterministic spread is consistent, it does not affect the prediction capability

of the model, which predicts the average performance of the wafer. The average perfor

mance for each wafer is a function of the non-deterministic, but measurable variation of

the key process parameters in manufacturing.

The measured parameters were put through the Principal Component transformation

determined in the development of the model from simulation. Recall that the Principal

Component transformation is based on the correlation structure of the data, as was dis

cussed in Chapter 4. Since the simulated data is based on the correlations found in manu

facturing, applying the same transformation to the manufacturing data is appropriate. The

principal components were then used in the model built from simulation data. The perfor

mance model was used to predict the averageaccess time for each wafer from its average

electrical test values.
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To account for the cumulative inaccuracy of the simulator, the tester, etc., we allow a

change in the constant term of the model in predicting the performances of the manufac

tured wafers. In this case, the shift in the constant termwas 15 ns. A significant portion of

this shift was attributed to the redundancy circuits, which are not included in the circuit

simulation model but are active in themanufactured parts. Future workon performance

prediction for memories willrequire improvements to correctly handle the implications of

redundancy circuits.

To graphically display thegoodness of fit, thepredicted performance versus theactual

average performance for these wafers is shown against the simulation results inFigure 6-

83

O C)

140.0



Chapter 6: Design For Manufacturability Application Examples 84

5. Figure 6-5 shows the access time predicted by the linear model plotted against the
"measured" access time for these wafers. The "measured" access time is extracted from

SPICE for the 100 Monte Carlo points, and is measured at performance test on the manu

factured wafers. Again, the manufacturing data points represent the mean access time for

the die on that wafer. The predicted access time is the prediction ofthe model from the

process parameters, using different constant terms for the simulation and manufacturing

data. Agood fit can be seen over the entire range ofperformance. It is important to empha
size that the manufacturing data was not used to build the model (except the constant

term), and therefore the good fit is an indication of both the accurate predictive capability
of the model and that the statistical device model and the performance prediction model
are valid across the range of process variation.

6.2.4 Analysis of Residuals

The regression residuals are often good indications of relationships between the

dependent and independent variables which have not been properly included in the model

[65]. Figure 6-6 plots the residuals from the model for both the simulation and manufac

turing data against the predicted access time4. Although the residuals from the simulation

data appear to be identically, independently and normally distributed (IIND), the residuals

from the manufacturing data show a decreasing trend as the predicted access time
increases.

From a statistical modeling point of view, trends in residuals are most likely indica

tions that additional terms should be added to the model. Although adding non-linear

terms would improve the distribution of the residuals, this is not the root cause, because

this model results from both simulation and a statistical regression model building proce

dure. In fact, this trend in the residuals was more pronounced in the early stages of this

4. Residual plots against the dependent variable should always plot against the fitted results, rather than the actual
results, as there is an expected relationship betweenthe residuals and the actual resultsused to build the model.
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project, and also showed in a plot ofresiduals against oxide thickness. The problem was

reduced by improving the handling ofmobility degradation (G) in the device model. The

residual trend in Figure 6-6 is most likely an indication that further improvements to the

mobility degradation model are needed.

In general, the addition ofnon-linear effects to improve the model was not pursued in

this project. This project focused on the issues related to applying manufacturability mod

eling to an actual fabrication line. The author believes that other issues, such as measure

ment capability, device modeling and CIM infrastructure, need further consideration

before the lack of fit of the model becomes a priority issue. In addition, non-linear terms
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can potentially amplify measurement noise, rendering the predictions meaningless. Work

in this area which has included nonlinear effects can be found in [6] and [66], however,

theseworks makelimited use of actual manufacturing data.

6.3 Statistical Process Control for Product Performance

Thesecond application developed wasa model based control chartforproduct perfor

mance, which utilized a performance prediction model to predict the fraction of a lot

which should occur in each bin. The model used in this applicationwas based simply on

device currents, rather than the process parameters, as the currents for each lot were more

readily available through the CIM system. Table6-3 shows the bin specifications for the

access time of the 1 Mbit EPROM.

Table 6-3 Bin Specifications for the 1 Mbit EPROM

Bin Access Time

(inns)

1 120

2 150

3 170

A total of 7 lots were put through the control procedure. Table 6-4 shows the actual

test results and the upper and lower limits for the fraction occurringin each bin, as calcu

lated byequations (19) and (20) with Za =2.

Table 6-4 Control Procedure Results8

Lot Lower Control Limit Actual Bin Fractions Upper Control Limit

Binl Bin 2 Bin 3 Binl Bin 2 Bin 3 Binl Bin 2 Bin 3

1 0.0 0.4 0.0 0.02 0.94 0.04 0.6 1.0 0.0

2 0.0 0.0 0.0 0.0 0.96 0.04 1.0 1.0 0.0

3 0.0 1.0 0.0 0.0 0.98 0.02 0.4 1.0 0.0

4 0.0 1.0 0.0 0.0 0.02 0.98 1.0 1.0 0.0
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Table 6-4 Control Procedure Results2

Lot Lower Control Limit Actual Bin Fractions Upper Control Limit

Binl Bin 2 Bin 3 Binl Bin 2 Bin 3 Binl Bin 2 Bin 3

5 0.0 0.4 0.0 0.0 0.99 0.01 0.6 1.0 0.0

6 0.0 0.4 0.0 0.0 0.95 0.05 0.6 1.0 0.0

7 0.0 0.0 0.0 0.0 0.97 0.03 1.0 1.0 0.0

a. All entries in this table denote fractions of the lot in a bin.

Lot 4 generated an alarm because theactual testresult was slower than the prediction

of the model. As these lots were all shipped immediately to customers, the assignable

cause ofthealarm could notbe determined. Lot4 had thesmallest CDand the largest cur

rents of all the lots in the control chart, therefore, it is likely that the lot was incorrectly

tested. However, it is possible that noise induced by high current switching actually

reduced the performance ofthis lot.

The other lots all had small fractions of product in Bin 3. Although the control chart

limit for Bin 3 was always 0 because the process was producing faster parts during this

time, the small fraction for Bin 3 found in actual testing should not generate an alarm.

There is often a long tail on the actual performancedistribution, because a small number

of cells in a lot will have low currents and produce slow parts. This is not a symptom that

the process is out ofcontrol.

These results illustrate the value of instituting a model based control procedure for

product performance. On most final test floors, although severe drops in yield will gener

ate an alarm, there is generally no mechanism for detecting when a lot has been incor

rectly tested. However, given a model between electrical test and product performance,

final test results can easily be verified by the CIM system. Increased sensitivity to test

problems and process shifts represents the importantbenefits of process control.
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6.4 DFM Application for Low Voltage EPROM

The final application tobe discussed isan improvement tothemanufacturability ofan

IC product. The circuit chosen to demonstrate DFM was a commercial 1 Mbit EPROM.

This product was designed to operate with a 5V supply, however, market demand for ICs

which operate at lower voltages is increasing, driven by the need for portable, battery

powered devices [67]. The goal of this project was toimprove the manufacturability when

theEPROM was operated from a3V supply. Currently, theEPROM design operates at3V

over acertain range of the process, and a subset of production selected by an appropriate

performance prediction model can be shipped to customers for operation at 3V. However,

the product performance at this lower supply voltage is sensitive to process variation.

Therefore, the 1 Mbit EPROM was selected to test the DFM methodology developed in

this work.

This situation is typical of a common industrial decision - given the demand for a

product tooperate at alower supply voltage or higher performance level, can the design

bemodified tomeet this need, or isare-design required? A complete re-design will result

ina longer time to market for the product, however, making only minor modifications to

the design brings the risk of only slightly increasing the performance yield. The DFM

methodology presented here is intended to address theses concerns by improving the re

design process. DFM will allow the circuit designer to complete the task faster and more

effectively, lowering the riskof the re-design.

Memory circuit performance is critically dependent onthecharacteristics ofthemem

orycell. However, it is very expensive to change the fabrication process to alter thecell

characteristics and then verify reliable product operation. Therefore, the DFM effort

focused on the circuits surrounding the cell, including the wordline driver and the sense

amplifier, as was shown inFigure 6-1. Limited circuit details will bepresented due to the
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proprietary nature of these production circuits, however, the results of the methodology

are independent of the circuit details.

This section will present a circuit overview, the DFM analysis, circuit modifications

andverification results for the wordline driver and sense amplifier circuits. This section

will conclude with a discussion of this DFM methodology.

6.4.1 Wordline Driver Circuit

Given the architecture and sensitivities of the EPROM, the first circuit chosen for

analysis was the wordline driver. The wordline driver circuit is shown in Figure 6-7. The

wordline is driven through an n-channel device with a lower threshold device, which acts

as the final stage of decoding. The gates of the EPROM cells are connected to the word-

line.
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6.4.1.1 Word Line Driver Circuit Analysis

The voltageon the word line is applied directly to the gateof the EPROM cell. There

fore, the wordline voltage should be as close to the supply voltage as possible. Forprod

ucts specified to operate at 3V with +/- 10% operating margins, the worst-case supply

voltage for simulation and testing is 2.7V. The cell hasa high threshold voltage to protect

againstbreakdownduringhighvoltageprogramming, and the EPROM modelshowedthat

the threshold voltage for the cell was over 2V underthe worst-case process conditions.

The Monte Carlo simulations showed circuit failures, as small VG - VT values for the cell

were causing low cell currents. The goal of the circuit change to the wordline driver is to

increase the voltage on the gate of theEPROM cells, andthereby increase the cellcurrent

and improvethe circuitperformance for all process conditions.

6.4.1.2 Word Line Driver Circuit Modifications

Examining the circuitry driving the word line, thevoltage on the word line is limited

to the supply voltage minus thethreshold voltage drop required to turnon transistor Ml in

Figure 6-7. Although this threshold voltage drop is not a problem with a 5V supply, this

voltage drop becomes critical for low voltage operation. To improve the word line voltage

level, the threshold voltage of device Ml was lowered. However, lowering the device

threshold voltage results inexcessive leakage inthe case where theoutput of theword line

driver is highandthefinal decoding stage is notselected (SELECT is lowandSELECT is

high). This leakage caused the power to exceed the specification. The leakage problem

was solved byinserting anadditional transistor between the n-channel device and ground.

6.4.1.3 Word Line Driver Verification Results

A single split lotexperiment was run through the fabrication line to verify the design

change. One halfof thewafers contained theoriginal design, andtheother halfcontained

thedesign improvement, including the lower threshold voltage on device Ml. Thewafers
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with the new design had an improvement in the lowest power supply level for fully func

tional operation equal tothe threshold voltage difference of the two designs. This increase

inthe power supply margin will improve the yield of lots across a wide process range for

3V operation.

6.4.2 Sense Amplifier Circuit

Thenextcircuit to be discussed is the sense amplifier, shown in Figure 6-8. This is a

current sensing circuit, wherein thepresence of cellcurrent (an unprogrammed cell)pulls
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the node labeled "INPUT" to a lowvoltage level and theabsence of cell current (a pro

grammed cell) allows the current source and transistor Ml to pull the node"INPUT" to a

high voltage level. The amplifier ismade differential and compensated for changes in cell

current across the array through the use ofanunprogrammed reference cell,whose current

is multiplied to provide a reference current tothesense amplifier.

The sense amplifier is characterized by three voltages, all related to the node labeled

"INPUT" in Figure 6-8. These voltages are the low and high DC levels and the level

which switches the amplifier stage. The levels are called the lower window, the upper win

dow and the trip point, respectively. The final amplifier stage is designed to set the trip

point in the middle of the window voltages.

Monte Carlo simulations were run, including all process parameters across the range

of process variation, to determine the lower window, trip point, upper window and access

time for the sense amplifier. The results for the window and trip point levels for the origi

nal design are shown in Figure 6-9. Each vertical column of three points represents the

results from asetof simulations run at aspecific point inthe process. For improved visual

ization, the results are sorted in the order of increasing cell current. There is adecreasing

trend in the level of the upper window and trip point, showing that these levels are set by

circuits sensitive to overall current levels. The lower window is flat over the process, with

fluctuations caused by changes inthe threshold voltage of the n-channel transistors. Figure

6-9 also shows a reduction in margins at lowercell currents.

Section 6.4.2 and its subsections, which cover themodification, analysis and verifica

tion of the sense amplifier, compare two circuit implementations of the sense amplifier.

The first implementation, which has already been presented, is the original design. The

second is aminor modification which will be named thenewdesign. At the timethenew

design was proposed, a problem with the DFM software made it appear that the new

design would improve the performance yield of the circuit. In fact, this was not the case.
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Figure 6-9 Monte Carlo: Window Levels for Sense Amplifier - Original Design

All thesimulation results reflect the corrected software. This problem with theDFM soft

ware will be discussed in Section 6.4.3.

6.4.2.1 Sense Amplifier Circuit Modifications

The EPROM product under consideration isa high volume, low cost product. To limit

the cost involved inthe design improvement, circuit changes were allowed only inthe pol

ysilicon mask, which limited changes to thedrawn length andwidth of thetransistors. The

circuit designer selected 4 transistors in the sense amplifier for size modification, includ

ing the zero threshold devices labeled Ml in Figure 6-8 and 3 transistors in the voltage

generator. The goal of the design changes were to modify the DC voltage levels of the
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windows depicted inFigure 6-9. The exact sizes were chosen with the aid ofthe optimizer

in HSPICE.

To explain the circuit changes in the reference voltage generator, a simplified equiva

lent circuit is shown in Figure 6-10. The voltage bias levels at the gates of transistors Ml

and M2 are set bythe voltage drops across controlled impedances, shown schematically as

Rl and R2. The amplifier ispart of a circuit which clamps the voltage on the bit line, as

any voltage swing on the bitline would slow down the access time due tothe large capac

itance on the bit line. The circuit changes in the reference voltage generator were to

decrease the resistance ofRl and R2 and lower the current flowing through them. This

reduces the effect on the reference voltage levels ofthe small changes in the output volt

age ofthe amplifier caused byvariation inthe threshold voltage ofthe transistors. Another

effect of these changes was to raise the DC level of the upper and lower windows.

94
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The other circuit change was to reduce the size of the load transistor Ml. As can be

seen in Figure 6-8, the current source andtransistor Ml are both supplyingcurrent to the

INPUT node for the case when the EPROM cell is unprogrammed (i.e. the cell transistor

is on). In the case of low cell currents, the low impedance of the load slows the pulldown

ofthe INPUT node, so the impedance ofMl wasraised to increase the switching speed.

The Monte Carlo results for the windows and trip point of the new design are shown

in Figure 6-11. The circuit changes raised the upper window level by about 250mV and

the lower window raised by about 125 mV, with the trip point unchanged. Further, the

variability of the upper window hasbeen reduced. This design change has moved the trip
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Figure 6-12 Monte Carlo: Read Access Time versus Cell Current - Original and
New Designs

point offofcenter, which will have the effect ofslowing the transition from the upper to

the lower window with respect to the transition from the lower to the upper window, that

is, the transition from the lower to the upper window will reach the trip point faster.

6.4.2.2 SenseAmplifier AC Analysis

To further analyze the sensitivity ofthe original and new circuit designs, Monte Carlo

simulations were run, again over allprocess parameters, to determine the address access

time ofthe original and new designs. The results are shown in Figure 6-12, which plots the

address access timeof the EPROM against thecell current. Cell current is used as the x-

axis in this graph, instead ofeffective channel length as was used in Figure 6-2 and Figure

1.0
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6-3, because cell current represents the combinedeffect of all process parameters. Figure

6-12 shows that the average value and the variance of the EPROM access time increase as

the cell current decreases. Figure 6-12 does not indicate that there is a significant differ

ence in the performance of the original and the new designs.

However, Figure 6-13 gives additional insight into the new design. Figure 6-13 plots

the address access time against cell current for the new and original designs, for a Monte

Carlo simulation which varied only the channel length of the transistors. Figure 6-13

shows that the new design actually has an increased sensitivity to channel length variation.

For EPROM circuits having cell currents with scaled values between 0.55 and 0.65, there
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is a group of 8 simulations which operate at approximately a 275 ns access time for the

originalcircuitdesign,but these simulations are eitherslowor fail completely for the new

design.

6.4.2.3 Sense Amplifier Verification Results

To verify the simulation results for the original and new sense amplifier circuit

designs, a fractional factorial experiment was run on the manufacturing line. The experi

ment, summarized in Table 6-5, varied the polysilicon linewidth at three levels toproduce

samples with slightly longer, nominal and slightly shorter channel lengths. These three

levels produced transistors with low, medium and high device currents. Both the original

and new designs were fabricated, resulting in a total ofsix splits, which were processed

within a single lot. The access time for approximately 80 samples5 from each range ofcell

current was characterized through detailed performance testing to examine the sensitivity

ofthe two designs to processvariation.

Table 6-5 Sense Amplifier Verification Experiment

Factor

Number of

Levels

Description ofLevel

1 2 3

Design 2 original new

Cell Current 3 high nominal low

a. The cell current was varied by process changes which effected the
polysilicon linewidth. This change effected all transistor types.

The results ofthe verification experiment are summarized in Table 6-6. The average

address access time for the original design increases from 108 ns to 135 ns, and its stan

dard deviation increases, over the range ofcell current. The shows good agreement with

the simulation results shown in Figure 6-12, as the range ofcell current variation seen in

5. The entire lot was not performance tested due to amixing ofthe splits during packaging. Instead, the cell currents
the packaged EPROMs were measured and separated into ranges for testing.

in
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the experiment corresponds to the scaled range from 0.7 to 0.9 in Figure 6-12. However,

theaccess times for the new design are 15 ns slower than the original design.

Table 6-6 Sense Amplifier Verification Results

Cell Current

Range
PerformanceMean (in ns) Standard Deviation (in ns)

Original Design New Design Original Design New Design

High 108.0 122.3 9.4 12.6

Nominal 118.6 129.3 9.6 11.3

Low 135.1 151.3 16.1 16.6

The increase in access time for the new design is explained bythe simulation shown

in Figure 6-13. The Monte Carlo simulation shown in Figure 6-13 represents the process

space ofthe experiment, as channel length was varied over abroad range with no variation

in oxide thickness or threshold voltage. Because there is adistribution ofcell currents in a

1Mbit memory, manufactured parts in the higher cell current ranges still have some cells

with lower cell current [68]. Therefore, even higher cell current parts have cells which

enter the region ofhigh performance sensitivity, producing the lower performance shown

in Figure 6-13. In other words, performance is dominated at all current ranges by the low
est currentmemory cells in the part.

Table 6-6 also shows that the standard deviation ofthe new design increased with

respect to the original. The change in variance can be tested for statistical significance by
calculating the ratio ofthe variances, which follows the Fdistribution. Therefore, for the
high cell current case:

^£^ =liML2=1.8>,
&*"current v** v

Based on this we conclude that the variance has indeed increased. We cannot reach this

conclusion forthe cases ofmedium and low currents.

0.05, 79, 79 = 1.5 (47)
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6.4.3 Discussion

The analysis ofthe EPROM circuit, experimental verification and the explanation of

the results was completed over the course ofone year. There were important insights

gained into the EPROM circuit and the DFM process as a result ofthis project. This sec

tion will discuss three issues surrounding the DFM method, including issues with the ver

ification experiment, the process model, the effect of mismatch, and interactions between

the DFM tool and the circuit designer.

6.4.3.1 The Verification Experiment

The verification experiment was designed to vary only the channel lengthparameter

and the circuit topology. The oxide thickness was kept constant to keep the cost of the

experiment low. In light of the effect of oxide thickness on performance, the experiment

should have been extended to include oxide thickness variation, as was done in the exper

iment to build the performance prediction model. Since the oxide thicknesses in a given

has little variation, additional variation should have been introduced to study the design

change.

6.4.3.2 The Process Model

The process model used in this work extends to cover the range of variation seen in

production, and uniform distributions were used to ensure even coverage over this entire

space. The issues with this model focus on how well it represents unlikely combinations

ofprocess parameters.

During the initial Monte Carlo simulation of the EPROM, the results showed a larger

percentage of failures than were seen on the manufacturing line. The failures in the simu

lation were traced to instances where there was a large mismatch between the cell and the

n-channel device currents. Further, as these device types have highly correlated channel

lengths, this mismatch occurred when the two independent oxide thicknesses were at their
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opposite extremes. Comparing the variance inthe oxide layer thicknesses used in simula

tion with manufacturing data, itbecame clear that the range specified bythe fabrication

line model was larger than what was currently being produced bythe manufacturing line.

The process and design engineers involved resolved the issue by decreasing the specified

variation in the oxide thickness, and the failure rate seen in simulation was reduced to

more closely match manufacturing data.

This ease with which thisproblem was solved illustrates two advantages ofourDFM

methodology. First, theuse ofprocess parameters with physical meaning allowed the pro

cess and design engineers to identify and solve the problem. In contrast, many industrial

modeling schemes use oxide thickness as a fitting parameter, which would have made it

impossible to identify the problem or communicate so effectively between groups. Also,

the integration of the CIM system which made manufacturing data readily available was

critical to the rapid identification and solution of this problem.

In addition, this problem is important in light of the failure in the DFM experiment.

This incident showed the importance of oxide thickness mismatch in causing the sense

amplifier to fail. DFM algorithms must account for how frequently the process exhibits a

condition, as there is little value in improving a circuit failure based on a very infrequent

process condition. The use of uniform, rather than gaussian distributions, increases the

visibility of unlikely process parameter combinations. Although uniform distributions

worked well in developing the performance predictionmodel and were successful in find

ing circuit sensitivities, they over-emphasize potentially infrequent process conditions.

This was seen in the increased failure rate for the EPROM for the potentially infrequent

case of oxide thickness mismatch. Gaussian distributions must also be used in the DFM

tool, after a sensitivity is identified, to gauge its importance through the use of yield pre

diction.
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One way to solve the problem with thesedistributions is to use bootstrapingmethods.

To bootstrap the simulation, samples would be drawn from the empirical distribution

rather than using a random number generator and a theoretical distribution. In other

words, actual samples from the characterized processwouldbe used in the simulation. As

long as enough historical data was available, using the bootstrap would cover the process

space of the manufacturing line and add importance to each sample because it could be a

potential yield limiting point. Further work inthis area should explore the trade-offs in the

distributions used by the DFM tool.

6.4.3.3 Transistor Mismatch

The problem with the initial simulations ofthe sense amplifier, mentioned in Section

6.4.2, was a problem with the Monte Carlo software which mistakenly introduced a mis

matchbetween the memory cell beingaccessed and the reference cell. Recall that the

sense amplifier has a current source based on a reference cell which compensates for cell

current variation across the array. The circuit requires that the cell being accessed and the

reference cell be closelymatched in theircharacteristics.

The Monte Carlo software incorrectly introduced a difference between the reference

cell and the accessed memory cell transistor models in agiven simulation. Figure 6-14

shows the Monte Carlo simulation result for the sense amplifier window including mis

match. It can beseen that the level ofthe lower window issensitive tothe mismatch caus

ing the window to collapse atlow cell current. Although the mismatch in the simulation of

these transistors was larger than what would be seen on the manufacturing line, aproblem

with mismatch has since been identified in manufacturing, confirming the simulation
result.

It was noted inChapter 3 that this work did not include the mismatch between transis

tors. Clearly, in light ofthe problems with mismatch, it is important to characterize mis

match and include its effect in future simulations of the EPROM circuit. Future work
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should include a characterization ofmismatch and an exploration ofcircuit changes to

minimize its impact.

6.4.3.4 Interactions Between the DFM Tool and the Circuit Designer

This section will discuss two problemsrelated to the interaction between the DFM

software and the circuit designer. The first problem was that the designer created a new

transistor model for the reference cell. This model was identical to the existing cell model

but had a new name. As the DFM software keys on the name of the model, the reference

cell was not correctly modifying, contributing to the mismatch problem in the software.
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Although the physically based DFM methodology presented in this work encourages the

circuit designer to understand and vary the SPICE transistor models, this problem indi

cates that limitsshould be imposed on the designer. Forexample, changes to the transistor

models should be communicated to the DFM tool support personnel, and the software

should warnthe user of the presence of an unrecognized model.

The second interaction between the DFM tool and the designer involved the new

designchanging the correlation structure between the different transitions. Often, after

working with a design, the circuit designer establishes a subset of possible transitions

which represent the worst-case transitions of the circuit. These transitions become the

focus for improving the design. Especially when running Monte Carlo simulations, the

number of cases must belimited to decrease the simulation time. In this experiment, the

improved design slowed down a transition which was not being analyzed. The complexity

surrounding the DFM software prevented the designer from seeing the assumptions under

lying the tool, and therefore this problem was not detected until after the verification

experiment. This issue needs to be addressed in future work.

6.5 Summary

This chapter developed three manufacturability applications - a performance predic

tion model, a control chart for product performance and a circuit DFM analysis. The first

two applications can be used to improve the capability of the manufacturing line. The

DFM analysis contributed to a greater understanding of the effect of the EPROM cell

characteristics onlow voltage operation, leading toa circuit improvement in theword line

driver. Although this particular change might have been obtained through the use ofworst

case models, themethodology presented here led usdirectly to theproblem. However, the

insight into the sense amplifiercould not have been achieved without the Monte Carlo

simulation. The circuit sensitivityto oxidevariation would never have been seen with

only "fast" and "slow" simulations.
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The initial analysis of the circuits took approximately three months and the manufac

turing of the experiment required another three months. While the experiment was being

fabricated, the circuit designer started work on a complete re-design of the EPROM for

low voltage operation. After testing the circuit change, it was clear that the DFMmodifi

cations would not bring enough performance yield improvement. Even though this was a

negative result, there was a large amount of experience gained in the DFM process which

was applied to the new design. In addition, it was important to verify the limits of

improvements which could be made in small modifications of the sense amplifier, justify

ing the time required for the re-design process.



Chapter 7: Conclusions and Future Work 106

Chapter 7

Conclusions and Future Work

This research has developed a methodology for modeling the manufacturability of IC

products. The method utilizes a fabrication line description based on a few key measur

able process parameters to explain the performance variation seen in IC manufacturing.

These process parameters are used for a physically based device model parameter extrac

tion, which describes transistor performance over the range of the process. The combina

tion of the fabrication line description and device model enables circuit simulation which

maps the process space into the performance space, supporting the construction of DFM

applications. This fabrication line and device modeling methodology was applied to a

high volume 1.2 pm CMOS EPROM process, and results were presented.

Given these underlying models, three applications were developed. First a perfor

mance prediction model was presented which uses electrical test measurements to predict

the performance of manufactured parts. The model built for the access time of the 1 Mbit

EPROM had a standard deviation of regression of less than 2% of the access time of the

product. The model can use manufacturing line measurements to predict performance

early in the manufacturing cycle.
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This model was utilized in a second application, a model-based Statistical Process

Control for product performance. This control chart can detect shifts in the process or

problems with the testing of the final product.

The third application addressed the manufacturability of the EPROM under low volt

age operation. The product suffered from low parametric yield over a range of the process

space. The circuit design was investigated and two critical subcircuits were identified, the

wordline driver and the sense amplifier. The product was redesigned and experiments

were run to test the new circuits. The design change to the wordline driver resulted in

improved margins.

This chapterwill discuss several importantdirections for future work. These areas are

improvements in fabrication line measurement and characterization capability, device

modeling, and the software infrastructure for DFM.

7.1 Process Characterization

Measurement capability, both in-line and at electrical test, is an area of ongoing

research. Accurate in-line measurement capability will allow the performance prediction

model to be used much earlier in the production cycle. Today, optical thickness measure

ments suitable for gateoxides are available. However, optical linewidth measurements are

either imprecise or expensive. Given the high correlation between polysilicon linewidth

and effective channel length, an accurate in-line measurement for polysilicon would be

highly advantageous for in-line binning estimation, allowing early prediction of product

performance for fabrication line scheduling and packaging decisions.

At electrical test, further investigation is needed into the measurement of the effective

channel length andthe source anddrain resistance of submicron LDD devices. In particu

lar, improved methods must be ableto work through a probecardon a production line and

correlatewell with device currents. The accurate measurement of channel length is impor

tant for effective physical device models.
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Another important area for continuing research is the characterization of mismatch.

The final analysisof the sense amplifier clearly shows the importance of mismatch in ana

log circuits. Memory arrays are particularly sensitive to mismatch because reference

devices are located at relatively large distances from the matched device. In general, the

methods for characterizing mismatch have required detailed characterization which is not

suitable for production fine monitoring. Future work in the area of mismatch characteriza

tion should focus on test patterns and analysis techniques capable of monitoring mismatch

on the manufacturing line.

7.2 Device Modeling

There are currently inaccuracies in the SPICE MOSFET models which must be

addressed. One issue of primary concern to analog designers is accurate small signal

parameters [69], such as transconductance (gm) and output resistance (r0). These prob

lems have started to be addressed in the new BSIM3 model [61]. In addition, current

researchon a methodology for BSIM3 model parameter extractionis addressing the phys

ical mapping of process parameters to the device fitting parameters such as mobility

reduction and channel length modulation [70]. The addition of physically based parameter

extraction methods to widely used device modeling tools is critical for the applicability of

this DFM methodology.

Although the characterization described in this chapterwas sufficient for this process,

a submicron process with LDD MOSFETS will require additional parameters to ade

quately account for the variation in performance of products built using those processes.

First, due to the shrinking of the device size and the addition of the resistive LDD region,

the resistance of the source and drain regions requires improved characterization. The low

doping level in the LDD regions implies not only higherresistance, but also that this resis

tance is a strong function of the applied gate voltage as the region accumulates charge.
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The changes in source anddrain resistance with VG are best described within the device

model. In addition, their statistical variation must be measured and accounted for.

Another problem is related to the fact that current SPICE transistor models do not

accurately model subthreshold current. In an effort to maintain current capability with low

gate voltage, IC manufacturers will be pushed to lower Vj, hence increasing the impor

tance of subthreshold current. Accurate subthreshold modeling is required for two rea

sons. First, circuit designers are biasing MOS devices in this region to take advantage of

the higher gain in this region. Second, subthreshold current describes one importantcom

ponent of leakage current, which must be properly accounted for to maintain low power

consumption in an IC.

An extension of the statistical characterization pursued in this work would be to

develop statistical macromodeling for subcircuits. The IC industry is making increased

use of standard subcircuits, such as standard cells for digital applications and pre-defined

operational amplifiers, comparators, etc., for analog applications. These subcircuits are

combined, often times in automatic synthesis tools, to produce specific functionality

[71] [72]. It would very useful to statistically characterize and verify the performance of

these subcircuits. First, this would improve simulation time, as the subcircuits would not

require detailed simulation. More importantly, manufacturing verification of subcircuit

performance would potentially reduce worst-case performances which result from

unlikely combinations of process parameters.

7.3 Software Infrastructure for DFM

This project utilized several manufacturing databases, relied on schematics generated

from the circuit CAD tools, used the HSPICE circuit simulator and RS/1 statistical pack

age and spanned several computer systems. The DFM software developed in this project

interfaced with all the necessary packages. However, the DFM system required user famil

iarity with several subsystems, each with its own interface. Further integration is neces-
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sary to provide a user friendly system, including providing common interfaces and

moving the algorithms inside the existing applications. Software integration and ease of

use is the most important area for improvement in future research.

73.1 Process Simulation for DFM

Process simulation was notapplied because of thedifficulty in tuning thesimulator to

the specific manufacturing process used in this work. However, the potential advantages

of process simulationinclude allowingthe manufacturability modelingto begin before the

process is running on the fabrication line, and a large reduction in cost by reducing the

number of wafers manufactured to characterize the process and verify DFM results.

Simulation and analysis tools, such as PDFAB [73], are beginning to address the

problems with the process and device simulation described in Chapter 2. For example,

these tools integrates process and device simulation results with manufacturing data, mak

ing it easier to match an actual process. These analysis tools also perform physically based

parameter extraction. The so-called "virtual wafer fabrication line" allows a user to easily

simulate a process across a wide of parameter variation and extract transistor models for

use in circuit simulation.

In addition, process simulation frameworks are starting to emphasize manufacturing

applications and support statistical methods such as Principal Component Analysis and

linear regression. Examples of the applications include support for the development of

performance prediction models and producing diagnostic information fromthe analysis of

electrical test data [73]. These applications will extend the use of process simulators into

productengineering, in addition to their use in process development and devicemodeling

groups.
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7.3.2 Infrastructure for Performance Prediction Modeling

Performance prediction modeling could also be further integrated with statistical

analysis software. Integrating such software with manufacturing databases would provide

theuserwith simple butpowerful commands tocombine in-line, electrical testandperfor

mance data for a set of lots. Theresulting datasets could then be analyzed usingstatistical

techniques such as Principal Component Analysis and linear regression. Also, rather than

separate design and manufacturing interfaces, a single interface would most directly pro

vide the ease of use necessary to supportboth the manufacturing and design communities.

7.3.3 Software Tools for Circuit DFM

There were several problems with the software tools developed for this project.

Firstly, the software was difficult to use, requiring the user to be an expert in both the pro

grams utilized to perform DFM and the algorithms inside the DFM software. Secondly,

the tool requires intelligent input from the circuit designer to interpret the Monte Carlo

results, find the process sensitivities, identify critical transistors or subcircuits, and finally

modify the design and verify the changes. Thirdly, unless the user has established SPC to

automatically verify the mapping from process space to performance space, these complex

relationships must be verified by other, manual methods.

To alleviate these problems, the DFM software algorithms should be implemented

inside a circuit CAD software system. An integrated CAD/DFM system should support

the fabrication line description and transistor models, run Monte Carlo simulations and

allow the user to view the results. This integration must include intelligent validation steps

to separate the designer from the algorithms and methods inside the DFM tool.

In addition, the tools must bring a better interface with the circuit designer. The soft

ware developed in this work suffered from a complex user interface, and did not give the

user enough feedback on which process parameters or transistors were causing the perfor

mance sensitivities. Daoud [16] presents an improved interface for DFM, and Hocevar
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[74] presents a good example of an improved user interface for a circuit optimizer. A sim

ple, usable interface for these complex tools is critical for user acceptance of DFM. The

designer should be able to easily specify circuit performance metrics to examine, and the

tool automatically extract the performance from the simulation output.

Given a sensitivity in circuit performance, the DFM software tool should automati

cally identify the process parameters and the transistors or subcircuits which underlie this

sensitivity. Research continuing from this project intends to use the Monte Carlo circuit

simulation results to accept or reject hypotheses about the design. For example, the

designer could hypothesize that a certain process parameters was the cause of a circuit

sensitivity, or that a specific transistor shouldbe modified for improved manufacturability,

and the DFM software would accept or reject this hypothesis. The goal is for the DFM

tool to automatically find the important process parameters and circuit elements, rather

thanrely on the expertiseof the circuitdesigner.
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Appendix A

Monte Carlo Software Manual

MC - the Monte Carlo Circuit Simulation Package

Version 2.0

A.l Introduction

MC is a UNIX software package,written in shell scripts and the C programming lan

guage, which generates, runs, and analyzes the results for a Monte Carlo circuit simula

tion. The Monte Carlo simulation varies the process parameters in the transistor models,

allowing the user to see the change in the performanceof the circuit over the fabrication

line variation seen during manufacturing. MCmustbe customized to account for the spe

cifics of a given circuit. This document will describe both use and the customization of the

MC software package.

MC utilizes HSPICE, and therefore must be run on a computer with an HSPICE

license. The transistor models must be physically based transistor models, so that chang

ing the values of the physical parameters will accurately represent the changes in the

device characteristics. In general, MC will be run on a circuit towards the end of the

design phase, to ensure it behaves properly over range of variation it will see in the fab.
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Monte Carlosimulation is not meant to be used early in thedesign phase, when many dif

ferent signals must be examined.

The general flow of the Monte Carlo software system is shown in Figure A-l. First,

the specified numberof HSPICE input files are generated from the template file. Specific

items suchas the device models andspecific circuit elements aremodified to simulate pro

cess variation. Next, the simulations are run, generating performance results. Finally, the

results of the simulation are summarized from theHSPICE output. Afterrunning MC, the

results can be analyzedgraphically or usinga statistical package.

A.2 User Manual for the MC Software Package

This section will describehow to run the MC software package.
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A.2.1 Preparing to run the Simulation

MC should be run with a separate directory for each run. As MC uses fixed filenames

for the large number of simulation files, separate directories are necessary. Monte Carlo

simulations can use up a large amount of disk space, so the user should delete simulations

after they have been supercededor are no longer needed.

MC requires an input file named "SPICEdeck." This file must be a "flat" representa

tion of the circuit including all subcircuits and models. A flat representation implies only

that there are no "included" files. It does NOT imply that there are no subcircuits, which

are acceptable. If the circuit is normally split among several files, simply combine all the

files into one file and comment out the include statements. The transistor models must be

in this single file, and not be brought in with a ".lib" command in HSPICE. It does not

matterwhich model (i.e. slow, fast, nominal) is brought into the deck, as the MC program

will alter the model parameters.

Before running the MonteCarlo, the SPICEdeck shouldbe edited to set the tempera

ture desired for the simulations. Statements which generate large output files should be

commented out, for example,".optionpost=l" statements, which generate the graphical

output files. If graphics are desired, a few of the Monte Carlo simulations whichrepresent

interestingcases shouldbe run with this option enabled, in order to get a detailed look at

signals. Whenever possible, ".measure" statements should be used to produce the specific

desired result, and make it easy to obtain the desired specification from the simulation.

In addition, it will often be appropriate to modify the input signal transitions and

length of a transient analysis, in orderto produce only the worst case specification or tran

sition, rather than all the transitions normally examined during design. The key thing to

remember is that many simulations will be run which generate a lot of data - try and make

it manageable.
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A.2.2 Running the Monte Carlo

The Monte Carlo is run using the MC command.MC calls a series of programs which

generate the spice decks for simulation, run the HSPICEsimulations, and then post-pro

cess the results. The command line format is:

mc <-s sample count> <-i id> <-m maxjobs> <-p post processor (pp) string>

MC can be run with any combination, or none of the options. Below are the arguments to

MC.

-s sample count

Specifies the sample count, that is, how many simulations to run in the Monte

Carlo. Sample count should be an integer. As rules of thumb, 20 is a small num

ber, 100 is a large number. The default is 50.

•lid

Specifies the id, which is the seed for the random number generator. The ability

to specify the seed will allow you to run several simulations at exactly the same

points in the process, so you can directly compare the results. If no id is specified,

MC will pick one for you. Typically, the first simulation will be run with no id

specified and MC will generate and print the id chosen. Further simulations will

be run with the id specified as the value printed in the first simulation. The id

should be an integer between 1 and 30000.

-m maxjobs

Specifies the maximum number of jobs to run in parallel on the HSPICE server.

The default is 2. If MC is running on a multiple processor machine, it is not

advisable to run more jobs than the number of processors at a time. Running less

than that is advisable to be courteous to your fellow HSPICE users.

-p post-processor string
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Specifies the post-processor to extract results from the simulation output file. MC

expects the custom post-processor to have the name ppstring, i.e. ppl, pp2,

ppfalltime, etc., it is this number which is specified here.

A.3 Customization of the Package

MC was created to be flexible, however, most circuits will require customization of

the code to properly simulate the effect of process variation on your circuit.

Important Note: Rather than customize the MC package, the reader should con

sider utilizing the Monte Carlo features within HSPICE. The ".param" statement

can be used to both create samples of process parameters from gaussian or uni

form distribution, and also to specify other variables, such as coupling ratios or

fitting parameters, as functions of those parameters. The outputs from ".measure"

statements can then be graphed in HSPLOT.

There are four main categories of changes which may be required. Each category will be

discussed in detail in the subsections below.

1. Process variation - MC requires the means and standard deviations of the critical pro

cess parameters to generate the Monte Carlo simulation files.

2. Transistor model names - MC modifies the transistor models based on the model

names. Currently, MC uses six transistor names from an EPROM process.

3. Circuit elements - In addition to varying the transistor models, there are other circuit

elements which need to vary to reflect process variation. Examples include the coupling

ratios used to model the EPROM cell, and lumped capacitors which model the effect of

many MOS gate capacitors on an address, bitline, wordline or data line.

4. Performance extraction - After the Monte Carlo simulations are completed, the circuit

performance of interest, for example access time or D.C operating point, will be con-
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tained within the HSPICE output files. The user must customize a simple shell script

which extracts the performance metric from the output file.

A.3.1 Process Variation

The default process parameters (and the correspondingHSPICE MOS Level 3 model

parameter names) varied by MC are change in channel length (xl), change in channel

width (xw), threshold voltage (vtO) and oxide thickness (tox). The mean and standard

deviation of each of these parametersfor each transistortype is specifiedin a file. The MC

software simulates +/- 3 sigma from the mean, covering the process space with a linear

distribution of these parameters. The process variation file is currently named "fab

param.18*" and is included in the source file inputs.c. The program inputs.c contains an

include statement which must be modified to refer to the proper filename.

A.3.2 Transistor Models and Circuit Elements

This is the most difficult part of the package to customize. Again, the user should

investigate the use of ".param" statements to include this variation in the HSPICE circuit

or device models, which may simplify this customization.

The names of the transistor models are declared in the file "gendecks.c." The source

code must be modified to recognize the models used in the circuit simulation input file and

be consistent with the names in the processdescription file.

To handle the variation of circuit elements, C language code must be written. Exam

ples of circuit elements which are functions of the processparameters are lumped resistors

and capacitors, like word or bit line models, and coupling ratios in floating gate subcir

cuits. The basic algorithm behind changing circuit elements is that the program recognizes

these elements, and replaces the value, such a resistance, with a number that the program

1. The "18" is meant to be an abbreviation for the process,forexample, fabparam. 18 specifies the ATMEL 18000 pro
cess. This is just notation, any filename will work.
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calculates. In order for the user to customize MC, the user must write asegment ofcode

which performs this function.

As a historical note, the coupling ratios in the EPROM cell model used to be circuit

elements calculated in theprogram, as described above. However, in thecurrent cell mod-

els , the coupling ratios are automatically calculated within the HSPICE file through the

use of ".param" statements. In fact, the ".param" statements are powerful enough tocap

ture more of themodeling functions. Theuser should consider using thismethod to calcu

lateothercircuit element values directly in the SPICE deck.

A.3.3 Performance Extraction

After running HSPICE, the performance parameter of interest, such as access time or

the DC sense amp window levels, are contained in the HSPICE output files. Usually, the

best way to convey the manufacturability information is through plotsgraphing the perfor

mance of interest against a process or circuit parameter, such as oxide thickness or cell

current.Therefore, a simple script shouldbe written which extracts the parameter from the

HSPICE output file.

This script will most likely be written using the UNIX utilities awk, grep and sed,

rather than the C programming language. This script is run as a post-processor to the

HSPICE runs, and hence the existing performance extraction routines are called "ppn,"

where n is a number. This naming convention also simplifies running the post-processor,

as the -p switch to MC specifies the number, n, of the post-processor to run. The existing

post-processors in should serve as sufficient examples for writing new performance

extraction scripts.

2. The models were produced by T. Randazzo.
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A.3.4 Compiling the Software

During the customization of the MC software, the C language files "inputs.c" and

"gendecks.c," and the include file "fabparam.xx" were likely modified, and therefore the

software must be re-compiled. The "fabparam.XX" and "inputs.c" are in one directory and

"gendecks.c" in a second. There are "Makefiles" in each directory, therefore, type "make"

in the "inputs.c" directory, then type "make" in the "gendecks.c" to re-compile. Even if

"gendecks.c" was not modified, you must also type "make" in the gendecks directory to

rebuild the high level executable. Finally, copy the "gendecks" executable into the "bin"

directory. The rest of the MC software package consists of UNIX scripts which do not

require compilation.

A.4 MC Utilities

There are several utilities available which perform support functions for the Monte

Carlo analysis.

graphmaker

Graphmaker takes columns from several files and combines them into a single

file of columnar data forplotting. Graphmaker prompts theuser for the name of

the file, and then the column to take from the file. If the filename given is

"inputs," the program assumes it is the file ofprocess parameters produced by

MC, and the user is prompted for device type and/or process parameter name,

and maps thename to theappropriate column in the file. Graphmaker terminates

when an empty filename is given (justhit return), or when the limit of four col

umns is reached. The output is in thefile named "plotout."

Known bug: all files must be in thecurrent directory.

xvgr

xvgr is free software which plots columnardata files.
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A.5 Site Specific Details

The program source, executable programs and example are contained on olympus

under the directory -eboskin/spice/code. In this directory, there are four subdirectories:

bin, doc, gendecks, and inputs. The bin directory contains the executable programs and

should be added to your unix path. The doc directory contains documentation, such as this

file. The gendecks and inputs directories contain the source code.

The directory ~eboskin/spice/code/bin also contains the other shell scripts which

from the MC software package, and example post-processors. The directory ~glen/bin4

contains the xvgr plotting utility, and many other useful packages.
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Appendix B

Performance Modeling Software Manual

Electrical Test, In-Line and Performance Data Collection and Analysis

Version 2.1

B.l Introduction to the Performance Analysis System

A set of programs has been developed to tabulate and analyze in-line, electrical test

and performance data collected during the manufacturing of products. The main purpose

of the analysis is to generate models which predict the performance of manufactured parts

from the in-line and electrical test data collected during the manufacture of the product.

The software system utilizes the RS/1 statistical package and programs which access the

manufacturing databases. The databases required for performance analysis include the

electrical test, in-line data and final test databases.

This manual describes the important software modules needed, and includes the step-

by-step procedure for creating a performance prediction model from in-line and electrical

test data. In general, the user will be generating tables of data in RS/1, and then using RS/

1 to analyze the data and build the performance prediction model. This manual, after sev

eral introductory sections, will discuss how to build a table of in-line data, how to build a

table of electrical test data, how to then combine the tables with performance data and use

\
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RS/1 to build the model. There are several sections at the end of this Appendix which

briefly summarize some useful VMS (the VAX operating system) and RS/1 commands.

B.2 Computer Access at ATMEL

This manual is specific to the softwareand hardware used in the ATMEL CIM system

and is being included as an Appendix to this thesis for completeness. The general reader

can use this Appendix to get an ideaof the implementation of a performance analysis sys

tem, but few specific details will apply outside of ATMEL.

At ATMEL, the performance modeling software runs on the VAX named "CEDAR"

in Colorado springs. The program usedto access the electrical test database is the Keithly

Database Extractor (KDE), which extracts data from the Keithly Electrical Test Database.

The Engineering Database Extractor (EDE) allows users to access the database produced

by the Workstream software system running in the fab, which contains the in-line data.

Both KDE and EDE were written and supported by Nelson Ingersoll. The manuals for

these programs shouldbe obtained beforeusing the programs.

The performance prediction model is created using data and programs on the VAX.

To access the data and run the programs,one must have an account on the VAX and access

to the SJ_ENG, KDE and EDE RS/1 group homes.l Mary Zawacki is the person to contact \

to obtain an account and the group home access privileges. A manager's approval is

required to obtain the account.

To access CEDAR, you can use a lat port on a PC (there is a"public" lat port in the

PC areausing the PC Print Station 2), or, you can connect to CEDAR from a window on a

UNIX workstation. To get to the VAX from the lat port, use the program ST240 to "con

nect" to RS/1. (Connectingto RS/1 through the lat port logs the user onto CEDAR.) From

UNIX, you can rlogin to CEDAR. Enter your user name and password at the CEDAR

LOGIN prompt, and you'll enter alist of menu choices to access the utilities on CEDAR.

1. The group homeis a collection of RS/1 procedures and tables thatcan be accessed by members of thegroup.
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Type VMS at the list of commands to get to VMS, where you can run all the necessary

software.

B.3 Conventions Used in this Manual

In the command summaries given in this Appendix, commands following a "$" are

entered at the VMS prompt, while commands beginning with "#" are entered in RS/1.

Within RS/1, group home procedures begin with the *#' character. Commands beginning

with ">" are entered in KDE or EDE. Capital letterswill be used to denote computer pro

grams, files and keywords.

B.4 Collecting In-Line Data

In-line data is collected periodically from Workstream and entered into RS/1 tables.

To access this data and supporting software, you need the VMS privileges to access the

EDC grouphome. The in-line datais accessed throughan RS/1 procedurecalled autopilot.

Autopilot uses a template to pull the in-line data from the engineering database, by calling

EDE. Finally, you will use the RS/1 procedure AP2TABLE, which will convert the output

of autopilot to the form needed for building the prediction model. You will collect 5 key

in-line parameters: the two polysilicon CDs, the active CD and two gate oxide thick

nesses.

The step by step instructions are given below.

1. Select the EDE group home and enter RS/1.

Command Summary: $ setrs edc
$rsl

2. In order to collect in-line data, you must create an autopilot template. This template

must be created only once, and then can be copied or modified for all subsequent use.

Given an autopilot template, the autopilot procedure can be run. First, the lot numbers

must be specified, and then autopilot will be started to collect the in-line measurements for

\
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those lots. Within autopilot, use "Modify Entry" (command 3) to specify the desired lots.

Select the row of the autopilot template file (if there is only 1 template, it will be row 1)

and then modify the lot number (line 7), specifying the desired lots separatedby commas.

Finally, EXIT back to the autopilot main menu, and Start the Autochart (command 6).

Command Summary: # call #autopilot
Follow the menu within autopilot.

3. Autopilot produces a file with the averages of the in-line data for the specified lots.

Next, the averages must be pulled from the autopilot output, and converted to a table

whichcanbe easily combined with electrical and performance data. The procedure to gen

erate the table is called AP2TABLE, and it resides in the SJ_ENG group home. To access

the procedure, use the following commands within RS/1:

Command Summary: # call $setrs("SJ_ENG")
# call #ap2table

This procedure is hard-wired to produce a file called "inline_avg". This file must be

renamed or deleted to run AP2TABLE - AP2TABLE will refuse to overwrite this file.

B.5 Collecting Electrical Test Data

Electrical test data, collected at the end of wafer processing, is contained in the Kei

thly Electrical Test Database. Similar to EDE, the program KDB extracts specific electri

cal test results for the desired lots from the database. The step by step instructions are

listed below.

1. Electrical test data isavailable inthe Keithly Database using KDE. First, obtain the

file FOURMEG.KDB. This file will beused to set up KDE with most of the correct

defaults. To obtain the file, copy it from Eric Boskin's home directory.

Command Summary: $ copy [eboskin]fourmeg.kdb fourmeg.kdb

2. KDE is run to extract the data. Within KDE the user must read in the defaults from the

file FOURMEG.KDB using the "@fourmeg" command. You will need tochange the dates
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to include the time when your lots were processed. Although this may be done by editing

the file FOURMEG.KDB, it is simpler to use the BEFORE command once in KDE. Also,

the required lots tobe extracted must be selected using the LOT command and the date

set. Alternatively, use COUNT DAYS n, to look back n days from today. Use the LIST

command to make sure all data is entered correctly. LIST should print out the lots you

entered, with the dates of the lots. Finally, extract thedata using theEXTR command. This

produces a file names KDBEXTRACT.TMP as a default.

Command summary: $ kde
> @fourmeg
> before 1/20/95

> lot 233012,233056,...
> list

>extr

>exit

3. Set the RS/1 group home to KDB, and startup RS/1.

Command Summary: $ setrs kdb
$rsl

4. Next, read the data into RS/1. The program KDBREAD defaults to a VMS input file

called KDBEXTRACT.TMP, and produces an output table (within RS/1) called

KDBTABLE. Use the default answers to the questions by hitting return after the question.

Command Summary: # call #kdbread

Note: you may get a warning that your table contains EMPTY values. This usually means

that not all electrical test values were taken at all sites on all wafers and can be ignored.

5. Change to the SJ_ENG RS/1 group home, which will allow you to access a program to

average the electrical test data. The program #kdb2rsl is hard-wired to read an input table

called KDBTABLE (the output of KDBREAD) and output a file called AVERAGES.

Command Summary: # call $setrs("sj_eng")
#call#kdb2rsl
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At this point, you have created a file called AVERAGES, which is the average of each

electrical test parameter for each lot.

6. To exit RS/1, type LOGOUT.

B.6 Collecting Performance Data

Next, the performance data from final test should be collected. Currently, the perfor

mance file must be entered manually. The file should be created in RS/1 with the MAKE

TABLE command and the editor (answer E to create the table using the editor) andmust

be called PERFORM. Simply, thearrow keys moveyou around the table, and atany table

cell just type in a value to put that value in the table. See the RS/1 manuals for details.

Save your table and exit by typing /EXIT.

Important: vou must put the lot number in column 1 (not column 0). You must not

have any emptvrows in this file. (If you do create ablank row during thecreation of the

table, perhaps the last row will beblank, delete it by positioning the cursor anywhere in

theblank row and type /DELETE, then answer ROW and confirm.)

Command Summary: # maketable perform

B.7 Combining the DataFiles for Analysis

At this point, the performance, in-line, and electrical test data for each lot must be

combined into one file. Run the procedure JOINALL in the SJ_ENG group home. This

procedure uses the fixed filenames INLINES, AVERAGES and PERFORM, and produces

a file named JOLNDATA. The tables also have specific columns for the lot number (PER

FORM in column 1, INLINES in column 0, and AVERAGES in column 1).

Command Summary: # call#joinall

B.8 RS/1 Analysis

This section will brieflydescribe five applications which are run within RS/1. See the

RS/1 user manual for more details on the use of these commands.
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1. To examine the data before regression, it is interesting to look at the correlation struc

ture of the data. RS/1 will calculate the multivariate correlation structure of the table

JOINDATA with the $mvcorr procedure.

Command Summary: # call $mvcorr

2. The in-line and electrical test data is a highly correlated data set. Therefore, the user

may desire to perform a Principal Component Transformation on the data. The user must

specify to write the transformed data into a table (the RS/1 default is to not save the trans

formed data).

Command Summary: # call $princo

To build a performance prediction model, a stepwise regression should be run. The

user will enter variables until the program suggests stopping. After a regression, examin

ing the residuals is usually quite useful.

Command Summary: # fit multiple

The "fit multiple" command will ask you for the table portions for the independent

and dependent variables. The independent variables are the electrical test and in-line

parameters, the dependent variable is the performance. A model can only be created for

one performance at a time. To select table portions, responses shouldlook something like:

independent: cols 4 to 21 of joindata
dependent: col 2 of joindata

The exact column numbers will depend on how many variables you have (that is, the num

ber of performances in the PERFORM table and the number of in-line and electrical test

parameters). If a Principal Component transformation has been done, the table with the

Principal Component scores should be used instead of JOINDATA.

3. Another useful feature is the ability to make graphs. The easiest way to make a graph

is to enter the menu mode, and follow the hierarchy of commands to make a graph. Type
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Summary: # delete tablename

7. A table can be edited with the EDIT command. This will allow the user to modify

entries in the table, or add rows or columns. In the editor use the arrow keys to move

around in the table. The command /HELP will list the other available commands, such as

deleting rows or columns and exiting the editor.

B.ll Printing Tables

To print out a table or graph from within RS/1, create a file and then transfer the file to

California using kermit or ftp. There are two ways to create a file. To create an ascii file,

use the command $ez_writefile. Answerthe questions as you see fit. The author usually

uses the defaults except:

a. Includerow 0 in the printout (column headings).
b. Write using only spaces, not tabs, spaces andcommas.

Command Summary: # call $ez_writefile

To retain the format of the table, use $printout, that is, $printout will keep the col

umns of your tables aligned.

CommandSummary: # call $printout

Good choices for printers are postscript, lpt72, lpt80 or lptl32. Postscript generates a

postscript file and thelpt printers are generic ascii files of width 72,80 or 132 (for land

scape). Do not give a system command or your file will print in Colorado. A file called

PRINT.TXT will be produced which you can send transfer to California and then print.

B.12 Transferring files to California

Files on the VAX may be transferred locally in two ways. They can be transferred to

UNIX using FTP, orthey can betransferred to the PC using KERMIT.

To use FTP, the user must PUT the file. This puts the file onto unix, where you can use

lpr to print the file.
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Command summary: $ ftp olympus (itwillask for a password)
ftp> put filename
ftp>bye

To use kermit, type kermit, then type server. After typing server, type ALT-Y, which

will bring up akermitmenu. UsetheGETcommand, then type finish followed by anALT-

Y when the transfer is compete.

B.13 Customizing for another Product Line

This software is customized for use on an EPROM in the AT18000 family. There is

no configuration file to drive the software, rather, the programs must be edited to work on

another product. In general, the specific process numbers and steps must be modified for

each product. However, these changes arerelatively minor, and all the table forming, aver

aging and joining will work on any dataset. Specifics are given below.

1. Electrical test data: The file FOURMEG.KDB contains the process type and front end.

For the EPROM, it is ATI8000. These lines must be changed for another process. Also,

the specific electrical test parameters are listed. These could be changed to be any of the

over 100 electrical test measurements.

2. In-line data: The autopilot template mustbe changed to list the proper process andpro

cess front end. If other in-line measurementsaredesired, you must find out the appropriate

step name and number.
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