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Abstract

A Comparison of Three Dimensional Photolithography Simulators

by

John Joseph Helmsen

Doctor of Philosophy in Electrical Engineering

University of California at Berkeley

Professor Andrew R. Neureuther, Chair

Methods for negative volume artifact removal and mesh regularization are introduced

and applied to triangle based surface advancement simulation in the area of

photolithography dissolution in three dimensions. These methods were then compared

against the popular cell and advection (level-set) techniques for solving the Hamilton-

Jacobi equation. The dissolution problem is modeled by an etch rate that has been defined

by the exposure and bake process. The etch rate varies according to its position in the

resist Gel-layer effects are ignored.

An order of magnitude increase in speed and a significant improvement in robustness

have been achieved simultaneously for large (> 10,000) triangle ray-based representation

of dissolution. This has been achieved by applying spatial decomposition methods and

graph theory to loop removal. An octtree has been implemented, which is locally refined

about the surface, to organize triangles by spatial coordinates. The triangles can be

organized in O(NlogN) time at about 500 triangles/second. Two methods, which employ

the octtree, are introduced to remove mesh loops. The first loop removal technique is a

general method. The second method is specially oriented at removing loops in

photolithography. Heuristic techniques are also introduced for removing thin triangles

from a triangular mesh. Heuristics for removingcrenulations from a triangular surfaceare

also described.
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A benchmark case that is representative of typical photolithography problems is

described. A comparison has been performed on this case for three first order methods of

simulating photoresist dissolution. These methods were ray-trace triangle advancement,

advection contour advancement, and a cell based volume removal method. An evaluation

was performed on the basis of speed, memory consumption, two types of accuracy and

robustness. The speed and memory comparisons were normalized for equivalent levels of

accuracy. Ray-trace was found to be 2x faster than cells and >10x faster than advection.

Ray-trace was found to have equivalent memory consumption to cells and <1/1Oth the

amount required for advection. Ray-trace and cells were found to be have greater accuracy

than advection along the coordinate axes for similar grid sizes. The cell method

demonstrated anisotropic behavior that was not exhibited by the other two methods. A

new technique for improving the accuracy of the advection method is also introduced.

Professor Andrew R. Neureuther

Committee Chairman
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Chapter 1 Introduction

1.1 Dissertation Motivation

The purpose of this work is to advance the state of the art in practical three

dimensional simulation of fabrication processes used in the construction of integrated

circuit chips. This work will focus on the dissolution step of the photolithographic

process. Photolithography is one of the most widely used and studied integrated circuit

fabrication processes. It is responsible for the generation of patterns on the surfaces of

semiconductor wafers. These patterns define the boundaries of the semiconductor

devices to be formed on the wafer. Because photolithography is fundamental to almost

all semiconductor processing steps, nearly all advancements of the state of the art in

photolithographic techniques directly influence the manufacture of smaller and more

efficient integrated circuits. A significant number of present investigations into the

dynamics of photolithography processes involve the careful consideration of three

dimensional effects. Some of these effects are line foreshortening in MOSFET

transistors and distortions of corners and contact cuts. These effects are enhanced by

the ever decreasing ability of optical wavelengths to keep up with decreasing device

sizes in modern process technology. Properly representing these structures is beyond

the scope of two dimensional simulators, which are more useful for finding the cross-

section of long lines. The need for accurate three dimensional simulation of

photoresist dissolution is clear.

Integrated circuit manufacturing is an expensive process due to the ever increasing

capital requirements of production facilities. It is far more profitable to employ

semiconductor fabrication equipment to synthesize a profitable product, rather than

delaying this activity by performing experimental tests and calibrating and measuring
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the fabrication process. While experimental work on the production process can never

be completely removed, the use of computer simulation can significantly reduce

fabrication line downtime. In addition, the ability of manufacturers to design new

fabrication processes cheaply is significantly enhanced through the use of simulation.

1.2 Evolution ofThree Dimensional Photolithography Simulation

During the 1980's many individuals in the electrical engineering community have

seen the need for accurate three dimensional photolithography dissolution simulation.

This has resulted in a proliferation of simulators with varying degrees of effectiveness.

The simulators that were developed fell into three general classes. These classes are

ray-trace, cells and level-sets. A comparison between ray-trace methods, cell methods

and techniques for segment advancement without the use of rays was performed by R.

Jewett [1], but the level-set technique was not included. The ray-trace method

simulates the advancement of the photoresist by explicitly representing the surface

with a mesh of triangles or some other geometrical object. To simulate the evolution of

the surface during dissolution, the surface is advanced by moving mesh points

according to the least time principle, which was first applied to photolithography by P.

Hagouel [2]. Implementations of this algorithm have been performed by T. Matsuzawa

[3], L. Jia. [4], K. Lee [5] and E. Barouch [6]. The most accurate first-order

advancement mechanism to date is the recursive advancement algorithm by K. Toh

[7]. This technique allows each point to subdivide its time step if it is advancing

through an area prone to numerical error. This allows for advancement that contains a

significant degree of accuracy. Ton's advancement method is the one employed in this

dissertation for the purpose of comparing ray-trace against other methods. A serious

disadvantage exists in this method, however, due to the formation of non-physical

negative volumes called 'loops'. Maintaining the integrity of the mesh is also difficult.
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E. Barouch [6] has proposed a solution employing B-splines, but this method requires

an excessive increase in CPU cycles per simulation. Therefore, accurate loop removal

(or loop prevention) and mesh maintenance remain as key problems in ray methods.

The second method of investigation is to divide the simulation region into many

small sections called cells. Cells that are in contact with the developer are removed at

a time determined by their etch rate and the status of surrounding cells. The first cell

method to be applied to photolithography was developed by F. Dill [8] in two

dimensions. Three dimensional cell methods have been employed in photolithography

by J. Bauer [9], F. Jones [10], Y. Hirai [11], W. Henke [12], J. Pelka [13], K. Toh [7]

and E. Scheckler [14]. The cell method employed in this dissertation was developed

by E. Scheckler [14]. Some cell methods, such as those implemented by Henke and

Scheckler, allow certain cells to continue etching past a zero amount of photoresist in a

cell, creating a cell with a negative amount of photoresist. The negative photoresist

amount is then set to zero and photoresist from neighboring cells is removed to keep

the total amount of resist constant. This process called 'spillover', and has been shown

to accelerate the execution time of cell methods significantly [13][14]. Cell methods

are far easier to implement than ray methods. Cell methods also have no loop or mesh

problems. They do, however, suffer from a specific lack of accuracy that cannot be

corrected by refining the grid size. In cell methods, the etch rate is enhanced along

preferred directions as a result of the algorithm used. Etching problems with spherical

analytical solutions generate results that resemble polyhedra. This effect is called

faceting. Faceting remains a key problem for all known cell methods.

In 1991, E. Barouch [15], by borrowing heavily from techniques invented by S.

Osher and J. Sethian [16], introduced a method of photolithographic simulation which

is based on existing numerical techniques in fluid mechanics. This method was also
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presented independently by M. Komatsu [18]. By representing the surface of the

photoresist as a single valued contour of a monotonic function that is defined over the

whole simulation region, photolithographic dissolution simulation can be performed

by solving the Hamilton-Jacobi equation using simple upwind differencing schemes.

This method requires no loop removal or mesh maintenance, and it has no difficulties

with facet formation. Concerns have been expressed about the use of this method [17].

Because the surface is advanced by performing a computation over the entire

simulation space at each time step, this method is not particularly fast. One

implementation of the level-setmethod required 5 minutes on a supercomputer for a

100x100x100 grid [18]. This amount of computation can be excessive for the typical

engineer who only has access to a workstation. Reasons also exist to suspect the

accuracy of the level-set method as applied to photoresist problems, since standing

waves nulls in photoresist contain highsecond derivatives in the etch rate. This type of

behavior can cause many level-set implementations to become inaccurate [19].

A summary of existing three dimensional simulation methods is given below:



3D Photolithography Simulation Programs

Program Date Models and Algorithms Availability Comments

TRIPS-I 1985/87 Ray-Trace Hitachi Internal

Jia et. al. 1987 Ray-Trace

3D-EBLS 1991 Ray-Trace Samsung Internal

Barouch et. al. 1989 Ray-Trace Princeton B-Spline

SAMPLE-3D 1990 Ray-Trace U. C. Berkeley Recursive

Euler

LITHSIM 1980/91 Cell-Method E. Germany

RD3D 1980 Cell-Method IBM Internal

PEACE 1987 Cell-Method Matsushita Internal

SOLID 1990 Cell-Method Silvaco Integer Cells

CRATER 1991 Cell Method U. C. Berkeley Spillover

Barouch et. al. 1991 Level-Set Princeton

Komatsu 1993 Level-Set Nikon Internal

1.3 Research Goals and Dissertation Outline

The purpose of this work is to investigate key issues and develop methods that

advance the state of the art in practical three-dimensional topography simulation,

specifically for photoresist dissolution processes. Effort will be focused on algorithms

and techniques that have been designed to improve the functionality of the ray-trace

and level-set methods.

The first issue that was addressed in the course of the research, was to develop a

more efficient and robust loop removal technique to improve the ray-trace method.

The first part of the loop removal method that was considered was the intersecting

triangle pair locator. Although this vital step was performed in a previous

implementation, it was expected that a better method of sorting the triangles would

yield positive results. A data structure, called an octtree, was tested to see if it might

improve efficiency. The octtree sped up the loop removal process by 10-100 times,
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depending on the number of triangles. The octtree was also seen to have useful

properties for many other applications. A decision was now made to concentrate on

the robustness of the loop remover. The second part of the delooper, the triangle

splitter, was constructed, since the loops had to be separated from the surface for

removal. Once this occurred, a simple binary labeling scheme, which gave way to the

winding number labeling scheme, was implemented that found the offending mesh

pieces and removed them.

Once the delooper was implemented andtried on photoresist surfaces, it was found

that the mesh could not be advanced further after deloop, since the new nodes that

were created could not be given interpolated rays. A previous loop removal

implementation solved this difficulty in two dimensions by splitting the surface into

two parts and advancing each independendy. To allow the surfaces to advance cleanly

in three dimensions, a new method of interpolating the rays was developed. The

triangle splitter was removed from the winding number delooper and replaced with a

new labeling method that traversed the segments instead of the triangles. To maintain

connectivity between separated parts of the mesh, for the purpose of performing

additional deloops, the integer labeling scheme was invented. This deloop method,

now called resist deloop, has run very well on ray-trace problems ever since. However,

a new phenomena was discovered that was not apparent before due to the lack of loop

removal. This problem was ray-scattering.

The resist delooper has difficulty with the type of loops that are formed by ray-

scattering. These loops are small, complex, contain many thin triangles, and tend to

only get worse as continued advancement takes place. Thin triangle removal was

considered as a strategy to prevent loop formation, since methods already existed in

two dimensions to remove thin triangles. In addition, thin triangles is another triangle
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mesh difficulty that is just as serious as deloop. Short distance point motion was

introduced to handle curved surfaces. The problem of crenulation was also examined

and its relationship to thin triangle removal was explored.

After significant effort had been put forth into developing triangle based

advancement methods, simple surface advancement techniques from fluid mechanics

began to appear in the photolithography community. It was decided to rigorously

compare the methods, so that the relevant advantages and disadvantages for each

method could be found. After the level-set algorithm had been implemented, new

techniques were being developed in the fluid mechanics community for advancement

of interfaces between materials using level-set techniques that contain iteration. A

simple iterative scheme was tried in the original level-set code and was found to be

very successful in simulating photoresist profiles with high accuracy.

The chapters are divided as follows:

Chapter 1 gives a general overview of the need for fast, accurate and robust

photolithography dissolution simulation in three dimensions.

Chapter 2 is a short overview of the photolithography process.

Chapter 3 outlines the mathematical methods necessary for the ray-trace, level-

set and cell photolithography simulators. Each of these methods is shown to be

a plausible approach to solving the Hamilton-Jacobi equation.

Chapter 4 provides the exact details of the ray-trace, level-set and cell

implementations. A description for the construction of an iterative and possibly

second order method from the original first order level-set method is also

provided.
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Chapter 5 introduces two new techniques, which were invented by the author,

for removal of negative volume areas formed during advancement of triangle

meshes. One method is general, the other is specifically designed for ray-trace

advancement. The general method is shown to also have the capacity to

implement volume set operations.

Chapter 6 introduces some approaches for better mesh maintenance for

semiconductor topographical process simulation algorithms that employ

triangles based upon the observations of the author. Specific attentionis paidto

mesh maintenance involving thin triangles and crenulated surfaces.

Chapter7 reports the results of the comparison between the ray-trace, cell and

level-set methods. An analysis of the performance of each method is given.

Specific techniques for further improvements are suggested.
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Chapter 2 Photolithography Modeling and Simulation

2.1 Introduction

This chapter is intended to introduce the standard projection printing optical pho

tolithography process to the uninformed reader, and to describe the simulators that

were employed in generating the dissolution etch rates for the surface advancement

methods. It is not intended to serve as a survey of the field. For more detailed informa

tion, please reference Introduction to Microlithography, published by the American

Chemical Society [1] and the forthcoming Simulation ofSemiconductor Lithography

and Topography by A. Neureuther [2]. Only the Berkeley lithography simulators are

mentioned in this chapter.

2.2 Processes in Photolithography Modeling

The functionality of an integrated circuit is determined by both the electrical

properties of the materials that have been placed on the wafer during manufacturing,

and the particular geometry in which the materials are arranged. The purpose of

lithographic processes is to provide a low cost method forming patterns on the surface

of a wafer. This is done via a chemical that is sensitive to light bombardment. The

chemical is called 'photoresist'. Exposure to light changes the properties of the resist,

so that part of it can be conveniently removed from the surface of the chip. The part

that remains on the chip forms a resistive layer that allows other manufacturing

processes to affect only specific sections of the surface of the integrated circuit. Two

classes of photoresist exist. Positive resists, are resists that operate by becoming easy

to remove when exposed to light, and negative resists, which are initially easy to

remove unless exposed to light. The word light, in this case, is not restricted to only
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visible light. Photoresists exist for a varietyof exposure systems, including ultraviolet

light, electron beams and ion beams.

The three most important steps in photolithography are the exposure, post

exposure baking, and removal of the photoresist. These steps are shown in Figure

1.along with the corresponding Berkeley simulators that model each step. The first

step, exposure, is shown as two separate steps, since many simulators that model

exposure often concentrate on computing, either the properties of incoming beam, or

the effects the beam, on the chemistry of the resist. SPLAT [3] and BLEACH [5] are

examples of this division of labor. The second step is an optional step in

photolithography development. Post-exposure bake smooths out large variations in

active compounds via diffusion. This technique is useful for suppressing standing

waves and other effects of interference. The third step in photolithography simulation

is dissolution simulation. In dissolution, an etchant is applied to the photoresist that

causes the exposed parts (or in the case of negative photoresist, the unexposed parts) to

be removed. This removal step has been simulated very successfully in two

dimensions in SAMPLE. A listing of the most popular three dimensional methods of

simulating photolithography dissolution is given in Chapter 3. The three Berkeley

methods that have been implemented in three dimensions to solve the dissolution

problem are DEVELOP (the ray-trace method), ADVECT (the level-set method) and

CRATER (the cell method). These methods have been incorporated into SAMPLE-

3D.

2.2.1 Aerial Imaging

The most popular method of exposing the photoresist in modern photolithography

is the projection printing method shown in Figure 2. Projection printing is the

preferred illumination process for high volume production, and is the illumination
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modelused for all examples generated for this dissertation. In projection printing, light

arrives from a mercury arc lamp, laser or other source at the top of the picture, and

illuminates the mask. The wavelength of light in this system is signified by the symbol

X. The light is focused through thecondenser lensand strikes the mask as plane waves

from various angles. The angles of the incoming plane waves are limited by the size of

the condenser lens. Once the waves pass through the condenser lens and strike the

mask, they scatter in all directions. The angles 9 and 9 define two other important

attributes of the illumination. The 'numerical apertures' of the lenses NAc and NAQ

are given as:

NAr = sin9, [EQ: 1]

NA0 = sin9o [EQ: 2]

Numerical aperture is important, since the minimum feature size or 'linewidth'

(LW) that can be generated by a projection illumination system is

k«XLW-^ [EQ:3]
where kjis a value between 0.6 and 0.8 that depends upon theresist technology.

Another way that numerical aperture affects the imaging process is via partial

coherence. Partial coherence models the amount of spreading in each mask pixel as it

is transmitted to the wafer. The shape of the spreadout pixel is similar to a gaussian at

low partial coherence and to the equation sinx/x for large values of partial coherence.

It is desirable to reduce the width of the gaussian function be decreased as much as

possible so that the contrast of the projected image can be improved. The spread can

be decreased by increasing the partial coherence. This cannot be done indefinitely,

however, since 'ringing' may occur. The gaussian like spread of the pixel becomes so
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sharp that sidelobes form and affect the clarity of the image. The partial coherence is

given by

NA.

° =na; [EQ:4]
where a is the partialcoherence. Desirable values for the partial coherence range

from 0.5 to 0.7. Finally, the numerical aperture affects the focus range of the

illumination system. If the wafer is aligned slightly above or below the possible focus

range, image degradation will occur. The amount that the wafer can deviate from the

focal plane in either vertical direction without significant degradation is

X
DoF = ± 5 [EQ: 5]

2(NAr

where DoF represents the depth of focus. This is equivalent to a defocus allowance

of one Rayleigh unit in either direction. This lack of focus is of concern, since this

represents a trade off between smaller feature sizes, as shown by [EQ: 3], and the

effort required to maintain focus. For present day illuminators, whose numerical

apertures are approaching 0.7, this defocusing effect becomes even more severe, since

the thickness of the resist approaches the depth of focus range.

Other methods, such as proximity printing, filter the incoming light through a

mask that rests very near the surface of the resist. The image on the surface of the

wafer is generated by the shadow that the mask casts. Proximity printing is not used

significantly in modern production, because of the difficulties involved in positioning

the mask above the photoresist.

The simulator that is employed in the Berkeley Topography Utilities for modeling

these effects is SPLAT, which was developed by K. Toh [3], and most recently
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improved upon by D. Lee and M. Yeung [4] to handle numerical apertures of 0.7.

SPLAT uses the parameters of the illumination system to generate an intensity plot of

the projected mask image at the surface of the resist. Of course, merely computing the

image at the surface of the resist is not entirely accurate, as the resist has a finite

thickness, and effects related to the focal length may occur. This motivated the

creation of High-NA SPLAT [4].Someeffects thatoccurin High-NAsystems, such as

changing resist refractive indices during exposure, or effects due to polarization, are

not implemented in High-NA SPLAT, butcomparisons between High-NA SPLAT and

other simulators that solve the electric and magnetic fields in the resist more directly,

have shown a great degree of similarity.

2.2.2 Photoactive Compound Creadon and Diffusion

Most photoresists thatareemployed in integrated circuit manufacturing today are

polymer resists. These photoresists are made oflong chains of polymer material, that

contain chemical side groups that are photochemically sensitive. In positive

photoresist, the impact of a photon onthe appropriate branch of the molecule causes a

reaction that releases a molecule of acid. This acid then serves as a catalyst that breaks

down the surrounding polymer chains and allows them to be removed in the

dissolution step. In negative photoresist, the photons release materials that promote

cross-linking between the resist chains. These cross-linking events enhance the ability

of the photoresist to resist being dissolved during dissolution. In most resists, the

amount of compound created at each location is related to theintensity of exposure at

each point. Both of these reaction substances that are created during exposure are

called 'photoactive compound' or 'PAC.

The exposure dependent optical properties of positive resists are generally

described by the Dill [5] ABC parameters. A is the bleachable absorption, B is the
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nonbleachable absorption and C is the bleach rate at the exposure rate being used.

These parameters allow the fraction of unexposed photoactive compound *M'

(0<M<1) is the resist to be calculated. The local absorption constant a at position r

and time t is given by

cc(r,t) = AM(r,t)+B [EQ: 6]

where M(r,t) is the value of M at a specific location and time. The destruction of

the remaining compound is governed by the equation:

^M(r,t) =-I(r,t)M(r,t)C [EQ:7]

BLEACH computes the PAC values from the image provided by SPLAT through

the use of a series of one dimensional simulations that are oriented vertically in the

resist. The image file is employed as the upper boundary condition on these

simulations. High-NA SPLAT has to perform these calculations on its own, since the

vertical approximation is no longer valid.

One important behavior of the PAC in the photoresist has occurred that must be

mentioned. Because the typical refractive index of photoresist is about 1.68, and the

refractiveindex of silicon is about4.71, significant reflection of deposited energy may

occur. This reflective energy produces interference with incoming energy. Therefore,

an interference pattern or 'standing wave' may occur in the resist. The difference in

exposure between the standing wave peaks and nulls is often about 8:1. Because of the

non-linear relationship between exposure dose and etch rate in many resists, the ratio

between the etch rates in the standing waves can be as much as 50:1. These standing

wave etch rate variations significantly affects the performance of various dissolution

simulation algorithms.
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Once photoactive compound is created, it may tend to diffuse through the

photoresist on its own or through the application of a post-exposure bake process step.

Post exposure bake was invented for the purpose of removing standing waves by E.

Walker [6]. Unfortunately, using post exposure bake also decreases the resolution of

the photolithography process. It is a standard process in modern integrated circuit

manufacturing. BLEACH simulates this effect by performing a convolution of the

PAC function with a gaussian function whose width is defined by the user.

2.2.3 Dissolution

After illumination and post-exposure bake, the photoresist is now ready for

development. This step will complete the photolithography process by removing the

unwanted photoresist and leave the appropriate resist pattern on the wafer. A solution

called a developer is applied to the surface of the resist. The penetration of the

developer into the resist, and the ability of the resist to dissolve into the developer, is a

function of the active compound concentration created during the previous two steps.

The final distribution of the active compound allows an etch rate to be computed at

each point in the photoresist. This etch rate is an isotropic etch rate, since the polymer

chains are randomly oriented and have no crystalline structure. Along most of the

surface, the region of interaction between the developer and the photoresist can be

approximated as a infinitely thin plane, thus giving no influence of the shape of the

surface on the etch rate. There are many models for deriving etch rates from PAC

concentrations. One such model is the Kim three parameter model [7]. Given three

constants Rj, which represents the fully exposed dissolution rate, R2, which

represents the fully unexposed dissolution rate and R3, which represents thevariation

of the etch rate to changes in the PAC concentration M, the isotropic etch rate at every

point is given by the equation
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1 _ l-lfe*."-* M,-*^-")
wm ^ r^ [ Q-8]

This equationis used by all of the simulations, other than the analytical examples,

that are employed in this thesis.
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Chapter 3 Mathematical Basis for Dissolution Simulation

3.1 Introduction

The main aim of this chapter is to introduce the foundations of the common

mathematical model of photoresist dissolution, and the basic mathematical approaches

that have been developed to solve it. The mathematical model that will be employed is

the least time path formulation from geometrical optics [1][2][3][4][5]. This method is

identical to the Hamilton-Jacobi equation. A particular and important method of

solving the Hamilton-Jacobi equation, which is the Level-Set technique that was

invented by Prof. James Sethian [6][7], is also presented. From these two theoretical

approaches, three classes of numerical techniques for the simulation of photoresist

development have been generated with this model. The first of the three numerical

techniques, called ray-trace, is based on computing the shortest time path between the

surface and a point to be etched in the photoresist. This technique will be the most

rigorously defined, and will be described in detail. This derivation will yield

significant insight into the geometry and evolution of the photoresist surface as

dissolution simulation proceeds.

A second method describes the surface as the 0.0 contour (the set of values in the

field equivalent to 0.0) of a scalar field defined over the entire simulation region. This

second method is known as the level-set or advection method. The motion of the

surface over time is formulated in terms of the evolution of a partial differential

equation (PDE) applied to this field. The time advancement of the scalar field will

cause the contour associated with the surface to distort in a manner that simulates the

motion of the resist-developer interface. The third approach to simulate
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photolithography dissolution that will be described is a popular simplification of the

level-set method. This third method is known as the cell method.

Examining how these methods are derived from the basic equations of surface

advancement can yield significant insight into the assumptions and trade-offs in

photoresist simulators in general use. This knowledge can also provide insight into

techniques that can improve the state of the art in photoresistdevelopment simulation.

3.2 Existing Photoresist Models and the Common Mathematical Form

Most existing photoresist dissolutionmodels describe the dissolution process with

an isotropic etch rate that varies as a function of position. The most often used model

of photoresist dissolution is Dill's model [8], but others, such as Ferguson's [9], Tarn's

[10], C. Mack's [11], Kim's [12] and Hirai's [13] have the same properties. Many

other resist models, including ones from electron beam, ion beam, and x-ray

lithography are also described by isotropic etch rates that are defined as a function of

position, such as Charlesby's models [14] and the contributions of Greeneich [15].

Further discussion on models can be found in the PARMEX User's Guide [16]. As

discussed in the previous chapter, a concentration of active compound in the resist can

be generated by other simulators, which perform the aerial imaging, exposure, and

post-exposure bake steps. The photoresist model then uses an empirically constructed

equation to relate the active compound concentration to the etch rate. This empirically

constructed equation is, in the case of Dill's model, a direct mapping from the active

compound concentration to an etch rate at each point in the resist, or as in the case of

Ferguson's model, the number of cross-linking events at each location. The general

mathematical form is an isotropic etch rate as a function of position. Exceptions to this

rule do exist, especially when gel-layer effects are taken into account, and simulators

have been created that represent the gel-layer more accurately. One such simulator was
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developed by Y. Karafyllidis and P. Hagouel [17]. These simulators, however, build

upon the rate as a function of position method by adding extra functionality to existing

simulation techniques. The Karafyllidis method performs multiple surface

advancement simulations simultaneously to represent the gel-layer. Therefore,

techniques that are developed for solving the basic photolithography problem can also

contribute to algorithms that consider additional physics during dissolution.

3.3 Derivation of Ray-Trace from Basic Etch Rate Functions

The ray-trace method was originally adapted from geometrical optics and applied

to photolithographic development simulation in two dimensions by P. Hagouel [4]. P.

Hagouel also developed the mathematics for three dimensional ray-trace, although it

was not implemented at the time. P. Hagouel first recognized the relevance of the

Hamilton-Jacobi equation to photolithography [18], and used a ray following and

branching approach to approximate the solution. The least time path method was also

developed independently by E. Barouch [5] and A. Moniwa [19]. Ray-trace was

implemented in three dimensions by A. Moniwa [19], E. Barouch [5] and K. Toh [1].

The technique described from [EQ: 3] through [EQ: 14] is the derivation given by K.

Toh in Appendix A of his thesis [1]. This is in turn derived from the analysis of Carll

[2]. This method determines the advancement of the interface between the developer

and the photoresist by transforming it into an analogous problem. This analogous

problem is determining the volume swept out by a set of light rays that travel through

a medium with an inhomogeneous refractive index. Once the transformation is made,

the principles of geometrical optics can be employed to form algorithms for the

simulation of the development process. Additional concepts from geometrical optics

[3] that were not expressed in P. Hagouel's or K. Toh's work are included here, so that
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a more complete description of surface advancement using this analogy can be

presented.

Before etching can take place, it is necessary to define the initial conditions. It is

assumed that there exists a region of space, hereafter referred to as the simulation

space, where each point has the binary characteristic of being in either the etchant or

the photoresist. The collections of points that represent the etchant and the bulk may

be distinct and disconnected, but satisfy all the normal topological properties of

collections of points that are intended to represent a physical system for simulation

purposes. The collections of points satisfy natural conceptions about regions of

materials. The boundary between the etchant and the resist is the surface of the resist

The surface, it will also be assumed, is differentiable in a piecewise continuous

manner (i.e. It may have non-differentiable corners, but these corners are not so

common as to cause parts of the surface to be fractal-like). All points that are

contained in the resist region of the simulation space also have a scalar quantity

associated with them. This quantity is called the 'etch rate'. This quantity is the rate of

photoresist dissolution at each point. The etch rate is typically expressed as R(x, y, z),

but will be more commonly expressed, in this discussion, as its inverse n(x, y, z) for

notational convenience. This form for the etch rate was first used by F. Dill in [20].

n(w) =R(^j IBQ:11
The etch rate varies in a continuous and piecewise differentiable manner

throughout the volume of the resist. The etch rate is either positive or equal to 0. The

inverse of the etch rate is either a finite or infinite value, but always strictly positive.
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3.3.1 Derivation ofthe Differential Ray Function

The etching problem, for etch rates that are isotropic and time-invariant, can be

defined in a least time form. The path integral of the form in [EQ: 2] is defined as the

etch time of a particle that follows the path from some initial point Pj to some end

point Pf.

Pf

T= Jn(x,y,z)ds [EQ: 2]
Pi

n(x, y, z) is the inverse of the etch rate as a function of position. This integral can

be used to define an 'etch-time' for every point in the resist. The physical analogue of

the etch-time is the amount of time, after the initialization of etching, when the

interface between the developer and the resist will pass through that point. The etch-

time fora specific point in the resist Pj, is defined theabsolute minimum value of [EQ:

2] forallpaths from any initial point Pj on the initial surface. Examples of this concept

are shown in Figure 1.

Given an initial surface that satisfiesthe above conditions, and a function n(x, y, z)

that is strictly greater than 0 and differentiable, a scalar function £(x, y, z) can be

defined as the minimum value ofT (as given by [EQ: 2]) for any path for any Pj that

represents a point on the surface. This function is defined only in the region occupied

by resist. By inspection, it is clear that for any point on the initial surface

£(x, y, z) = 0 . In orderto determine the result of applying the etching process to the

photoresist for some time t, it is necessary to determine all points where

£(x, y, z) = t. The function £(x, y, z) may not be differentiable everywhere, but it

will be assumed that all points in the non-differentiable region are boundary points of

the non-differentiable region, (i.e. The non-differentiable region is one dimension

lower than the photoresist region.)
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More properties of the function £(x, y, z) must be determined to allow a

simulation method to beconstructed. Because few paths between Pj and Pf are locally

minimal, and all minimum paths of [EQ: 2] are locally minimal, determining

properties of locally minimal paths will significantly reduce the total number of paths

that mustbe considered. If the path between some point Pj and some other point Pf is

locally minimal in T, then the variation about T must be 0 to the first order for any

infinitesimal change in the path.

Pf

5T =5Jn(x, y, z)ds =0 [EQ: 3]
Pi

The differential is now brought inside the integral yielding:

5T=P/S5x+^+l5z]ds=o [EQ:4]
Pi

Now, it is well known that path integrals where ds is unitary have the form:

xV+yy+z'z" = 0 [EQ:5]

where x, y, and z are differentiated with respect to s. This can be rewritten in

variational form as:

x'8x' + y'8y' + z'8z' = 0 [EQ: 6]

where 6x' is defined as the change in x' as the variable x is changed to x + 8x.

Using this relationship, [EQ: 6] can be rewritten as:

x'A(5x) +y,£(5y) +z'̂ (oz) =0 [EQ:7]

Since [EQ: 7] is true for all curves, if it is multiplied by n(x, y, z) and integrated

along the path, the result is still zero.

Pf

Jn(x,y,z)[x'A(8x) +y'£(oy) +z'A(8z)]ds =0 [EQ: 8]
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Now, since there is no variationin the endpoints, then integration by parts, with the

non-integral term evaluating to 0, yields:

Pf

J [(nx') '8x +(ny') '8y +(nzf) '8z] ds =0 [EQ: 9]
Pi

This zero evaluating integral is then subtracted from [EQ: 4], yielding:

Pf

8T= J{^-(nx,)'}8x+{^-(ny,)/}8y+{~-(nz'),}8zds [EQ: 10]
Pi y

Since 8T can only be 0 if each of the integration terms is also 0, the following

three equations are derived:

l-a-a [eq:i2]
i=a-a [eq: i3]

Or if written in vector notation:

4t-a-v» [eq:i4]
Where r is the position vector. This function is known as the differential ray

equation, and also describes the motion of light rays in inhomogeneous refractive

media. Forclarity it can also be rewrittenin terms of the etch rate R(x, y, z).

AS—J——1 = v—i— reo 151dsLR(x,y,z)dsJ R(x,y,z) L v*

This equation provides the necessary condition for the evolution of the surfaceto

be computed via a point particle method. A group of nodes canbe used to representthe

initial surface and can be advanced in various random directions, according to the ray

equation, to represent the etching process. If each node is halted after a time t, the

volume that is swept out by these nodes will representthe section of photoresist that
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was etched during time t. Unfortunately, most of these nodes become superfluous

almost immediately, since other nodes may travel into the resist more directly.

Therefore, it is desirable to look for restricting conditions about the initial and final

points in [EQ: 2], so that point advancement can be performed in a more efficient

manner.

3.3.2 Derivation ofthe Eikonal

The function £(x, y, z), as defined previously, represents the value of the minimum

path from the surface. Because £(x, y, z) is continuously differentiable in most parts

of the simulation region, important statements about the behavior of the minimum

paths in these regions can be made. For instance, minimum paths from the surface to

locations in the resist always travel perpendicularly to the contours of the Eikonal

function.This is a well known result in geometrical optics [3]. To prove this statement,

assume that the endpoint of a minimum path, not located on the initial surface, is

chosen. A sphere of a sufficiently small radius r is constructed that is centered at the
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endpoint (Figure 1). Given any vector r, which is rooted at chosen endpoint and

terminates on the surface of the sphere, the value of the least time path, i.e. the time

required to traverse the path, along the vector r is equal to

n|| *|| +1| r||2|| Vn|| cosO +0(|| r||3) [EQ: 16]

where 9 is the angle between r and V n. It can be shown from the differential ray

equation that the deflection of the ray tends to zero as the radius of the sphere shrinks.

Therefore, the minimum path, within an infinitesimal sphere, is straight. This

information is now used to locate the point of entry into the sphere of the minimum

path relative to the gradient of the eikonal function. The value of [EQ: 2] along a line

segment from the center of the sphere to some point r on the surface is:

Cf+(r-V£)+0(||r||2) [EQ:17]

where C is the value of the eikonal at the center of the sphere. Therefore, given

some point r on the surface of the sphere, the total time needed to traverse a path that

intersects the sphere at r and continues to the center along a radial line segment is:

Cf+(i-VC) +(n||r||)+0(||r||2) [EQ: 18]

In the limit as || r|| tends towards 0, thehigh order terms drop out.The minimumof

the function, i.e. the relation of the minimum path to the eikonal, occurs when:

rV£ [EQ:19]

is minimized. This only occurs when the two vectors r and V £ point in opposing

directions. The minimum path, therefore, approaches the center of the sphere in the

direction of the gradient of the eikonal. Furthermore, the equation is satisfied only

when
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Cf+ (*• VC) +(nil Ml) +0(||r||2) =Cf [EQ:20]

or when, if r and V £ are 180 degrees apart, constant terms are subtracted, and the

limit when || r|| tends towards0:

II VC|| =n [EQ:21]

This is the familiar eikonal equation from geometrical optics [3]. A similar

argument can also be constructed for the initial points of least time paths. This

argument shows that least time paths leave initial points in the direction of the gradient

of the eikonal.

From the above derivation, some conclusions can be drawn. First, since each

contour of the eikonal represents the position of the surface at any particular etch time,

and since the gradient of a contour is the surface normal of that contour, the rays

always point into the resist in the direction of the inwardly oriented surface normal.

Therefore, a suitable method for initializing rays for the ray-trace method exists if the

surface normal is well-defined. The inward surface normal of the surface of the resist

can also be found, at each etch time, by examining the direction of the ray after

advancement. Finally, since there is a unique path for each ray on the surface, it is only

necessary to sweep out a single ray from each point on the surface with a well defined

surface normal. These statements are not, however, the only statements that can be

made about the problem, since it is quite possible that the eikonal function, and

therefore the surface, may not be differentiable at all points in the simulation region.
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Initial Surface

Figure 3) Evolution of an Initially Non-Differentiable Eikonal

3.3.3 The Non-Differentiable Eikonal

It was previously assumed that the eikonal can only be non-differentiable in a

specific way. Every point in the non-differentiable region of the eikonal is a boundary

point. Therefore, there is no sphere of finite radius that only contains points where the

eikonal is non-differentiable. It is also clear, since the etchrate is non-infinite at every

point in the simulation region, that the eikonal is continuous, although the derivatives

of the eikonal may not be. The formulations that were previously developed are

inapplicable under these conditions, since the surface normal is undefined. Therefore,

certain assumptions that had been made about least time paths that validate the

previous formulation, suchas unique paths to final points andunique paths from initial

points, are no longer appropriate.

To resolve these difficulties, methods for the initial generation of rays from a

surface with a discontinuous surface normal must be determined. Two cases exist that

must be considered. The first case is the solution if the internal angle of the surface is
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greater than 180 degrees. Assume there exists an infinitesimal circle about the

discontinuity, so that the etch rate is constant. For all points on the arc of the circle that

have an angle of less than 90 degrees in relation to the surface, it is clear that there

exist paths to the resist-etchant interface with a length less than the radius of the circle.

However, if the internal angle of the surface is greater than 180 degrees, there are still

points on the arc that must be considered. The shortest line segments from the

uncovered sections of the arc terminate on the surface discontinuity. Therefore, instead

of having just one minimum path proceeding from the discontinuity, as in the

continuous eikonal case, the point of discontinuity generates rays in all directions

between the two limiting cases. This group of rays is called a rarefaction fan. This

term was first applied to the study of surface advancement by J. Sethian [29]. The new

eikonal contour that is described by this infinitesimal advancement is differentiable, so

this type of discontinuity in the eikonal function does not propagate.

The second type of discontinuity that may occur is when the internal angle is less

than 180 degrees. As shown in Figure 4, none of the points on the arc of the circle have



36

the initial point of the discontinuity as their initial path point. This means that all of the

points on the arc have eikonal values that are less than the radius of the circle

multiplied by the etch rate. The maximal value of the eikonal on the circle occurs at

the point where the circle and the line that bisects the internal angle of the surface

intersect. The value of the eikonal at this point is:

nrsinG [EQ: 22]

where n is the inverse of the etch rate, r is the radius of the circle, and 6 is the

angle between the line of bisection and the surface. This condition of a propagating

non-differentiable region is called the shock case, and the line of non-differentiability

is called the shock line. This term was also first used in the surface advancement

context by J. Sethian. Along the shock line there are two least time paths to the initial

surface with identical time values, thus providing a inverse case to the rarefaction fan.

It is clear that a ray can be considered to terminate on the shock, since the gradient of

the eikonal becomes undefined at this point.

Shocks can form even if they are not present in the initial conditions. In the case of

a completely homogeneous etch rate and an initial surface consisting of two

disconnected circles, the line of equal distance from the centers of both circles clearly

has two least time paths for every point. (Figure 5) The shock first forms at the point of

initial contact and spreads out radially along the equidistant plane. For this reason,

methods that track least time paths clearly need an algorithm to detect these cases

when they occur. It is also possible for shocks to form in a manner that resembles a

reverse rarefaction fan. This may occur at locations where the surface curvature of the

contours of the eikonal tend towards infinity. (Figure 6) Therefore, a method of

detecting and properly dealing with this condition is also necessary for implementing a

method based on a least time path formulation.



37
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Figure 5) Formation of a Non-Differentiable Eikonal From Two Surfaces

A treatment of the full behavior of the properties of the eikonal in the non-

differentiable case in three-dimensions has been given in [30]. This derivation will not

be treated in extreme detail here, due to the complexity of describing behavior around

saddle points. There are two obvious extensions, however, of the two dimensional case

for points on nondifferentiable surfaces. First, infinitesimal spheres around non-

differentiable regions in three-dimensions generally have cross sections that are

directly related to the two-dimensional cases. This tends to occur when the local non-

differentiable region can be approximated by a line or a plane. Second, in the case of a

single point on the contour where the surface normal is undefined, rarefaction cones,

shock lines, and combination shock-rarefaction fans occur. These occur, respectively,

when the approximate curvature about the point is outward in relation to the resist,

inward, or a saddle-point. Combinations of these cases also occur. An exact uniform
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solution for purely anisotropic etching has been formulated by B. Foote [21]. It is

expected that the solution for the isotropic case will contain many similarities.

3.3.4 Boundary Conditions

A boundary exists for any simulation region exists if the simulation region is non-

infinite, however, the boundary need not be a simple enclosing surface of genus zero.

In photoresist simulation, the boundary may represent topography created by materials

that are not affected by the etching process, such as silicon or oxide. In the case of the

standard simulation boundary, it is desirable to have the least time path terminate at the

boundary. If the results of the simulation are dependent on the continuation of the least

time path past the defined boundary, it is recommended that the simulation boundary

be extended further to encompass the region of interest. Least time paths should not be

created at the boundary, unless they are part of the initial conditions, since this
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formation of paths represents activity outside of the simulation region. It is also clear

that the surface will not preserve intersections of the surface into the boundary with

acute angles from the side of the etchant, since intersection of the surface with the

boundary will become perpendicular for infinitesimal time steps.(Figure 7)

For the purposes of this discussion, it will be assumed that the surface normal of

the resist near the boundary is continuously defined. The limiting case of an

infinitesimal sphere on the boundary is considered. The material on the opposite side

of the boundary is considered to have an etch rate of 0. This etch rate value effectively
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terminates the least time path. It is also the case that a reflection of the eikonal across

the tangent plane of the boundary produces a shock condition. This boundary

condition also terminates the least time path. The effect of both of these boundary

conditions is identical and indistinguishable (Figure 8). The rate of the advancement of

the boundary point is the inverse of [EQ: 22].

When discontinuites of the surface normal of the boundary are taken into account,

it is clear that curvature of the boundary away from the simulation region may cause

difficulties for simulators that explicitly trace out the least time path, since a path may

'split' into multiple paths (Figure 9). Ray generation may occur if the surface curves

continuously as well. These effects are not of concern, in general, for most situations

in photolithography simulation. In the case of reflective notching, however, this effect

may be of significant concern. Explicit tracking of points on the boundary surface is a

possible method of simulating this effect accurately.
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3.4 The Level-Set Method

Instead of sweeping out the advancing resist-etchant interface via point

advancement, it is possible to solve for the eikonal directly in the form of a partial

differential equation. This is the level-set formulation invented by Prof. Sethian [6][7].

Advancement of the level-set is performed using advection techniques from fluid

mechanics. The partial differential equation is solved over the entire simulation space

as a real valued field, with the surface represented as a contour of that field. In this

manner, the need for explicit surface representation during simulation, as in the

previous least path formulation, is removed.

3.4.1 How the Level-Set Method Works

Consider a monotonically increasing function u(x) that passes through 0 at the

origin, (Figure 10) (Figure 11) and consider the partial differential equation:

du du
* +**>£ = 0 [EQ:23]

where F(x) is the 'etch rate'. It is clear that for any linear u(x), the rate of motion

of the u(x)=0 point is to the right at the rate F(x). For:

u(x) = ax + b [EQ:24]

The intercept of the x-axis is at

x = — [EQ: 25]
a

Given F(x) = r where r is a constant, [EQ: 23] evaluates to:

3T=-rik tEQ:26]
or:
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Figure 11) Advancement Via at °x for One Time Unit

uu '
[EQ: 27]

at
= -ra

giving:

u(x, t) = a(x-rt) +b [EQ: 28]

This equation demonstrates that the 0 point advances at a speed r for any choice of
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In two and three dimensions, the advancement occurs in the direction of the

surface normal at the local etch rate. Therefore, in any small region about the surface,

the advancement can be defined as:

du _, vDu^+F(x,y,z)— =0 [EQ:29]

where n is the surface normal, but since the surface normal is the gradient of the

equation, the equation can be rewritten as:

du-^ +F(x, y, z) || Vu|| =0 [EQ: 30]

3.4.2 Initialization ofThe Level-Set Technique

In order perform photolithographic simulation with the level-set model in two and

three dimensions, it is necessary to not only define the initial surface, but to initialize

the function u(x,y,z) over the entire simulation region. The two conditions on u are 1)

That u(x,y,z) = 0 at the location of the surface, and that 2) The gradient of the function

u(x,y,z) be in the direction of the inward surface normal of the photoresist Fortunately

a simple method of initialization satisfies both criteria:

u(x, y, z) = ±distance [EQ:31]

where distance is the Euclidean distance from the surface. The function is positive

in the direction of desired etching, and negative in the region of the etchant.

3.4.3 Boundary Conditions

The boundary conditions for level-set solvers are, in general, similar to the

conditions defined for ray-trace approaches. The boundary condition across a planar

boundary is reflective both in terms of the etch rate and the function u(x,y,z). For some

applications of level-set solvers, other boundary conditions are necessary. These

conditions are normally representative of large etched regions that are not explicitly
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Figure 12) A Typical Surface Represented bv Cells

represented in the simulation region. These boundary conditions are application

specific and ought to be considered in light of the specific implementation under

consideration. The specific boundary conditions employed for the photoresist problem

are described in Chapter 4.

3.5 The Cell Method

Cell methods, in general, are methods that represent the material to be etched as a

collection of 'material amounts' on a Euclidean grid [22][23][24][25][26][27] [28].

Cells that are completely filled with photoresist are given a value of 1.0, and cells that

are completely empty receive a value of 0.0. In some cell methods, the cells with inter

mediate states receive time stamps for the expected time when the 0.0 will be reached.

In other methods, a standard time stepping approach is used. Values between 0.0 and

1.0 are used in each cell to represent the amount of material left at the end of each time

step (Figure 12). Advancement methods for cells are generally ad-hoc, but the best

ones act similarly to numerical techniques commonly used for level-sets. They are not

exactly equivalent to the level-set method though, since the solution of the system only

takes place in a tight band near the surface.
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3.5.1 Advancement with Cells

All cell methods perform advancementcomputations with two required steps, and

often employ a third correcting step. The first step for cell advancement is the analysis

of the status of each cell before advancement. This step is related to the computation of

the surface normal in the level-set method. Each particular cell, based on the amount

of etching inside the cell, and the amount of etching that has been undergone in the

cells nearby, has an interpolated surface shape generated inside. This shape is then

used in the second step, also known as the removal step, to compute the amount of

material removed from the cell during that time step. A significant number of cell-

based etching schemes have improved their performance through the use of

'overetching' (Figure 13). The overetching technique allows simulation method to not

consider each cell individually when it reaches its 0.0 value. In the removal step, some

methods continue etching past the value of 0.0, so that a negative value for the amount

of material in the cell is generated. In this case, the cell is renormalized to 0.0 by

removing material from neighboring cells to make up the difference. Originally

designed to allow cell methods to take larger time steps, overetching done properly

also tends to maintain a better approximation of the surface normal between time

steps. With the inclusion of overetching, cell methods can perform a better job of

approximating a banded level-set method.

The major drawback to the cell methods that have been implemented to perform

photolithography, is that although they can be made to run quickly, the accuracy of the

method is suspect. Cell methods tend to be highly accurate when applied to etching

problems that extend in 1 dimension in the direction of the basis vectors of the grid

coordinates. Accuracy of this type is generally the main criterion in the original design

of these methods. Because these methods do not perform careful approximations of

the surface normals, however, they tend to introduce etching errors that have a
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significantdegreeof griddependence. These griddependenterrors arecontained in the

design of the advancement method, so these effects do not decrease with increased

grid resolution. Overetching tends to reduce these effects, but they are extremely

difficult to remove completely without a fully developed theory of surface

advancement.

One technique that has been employed to reduce anisotropy is cell removal that is

Huygen sphere based cell removal [3] [31]. Spheres are extruded from the center of

each etched cell that borders the surface. This method has been implemented in the

SOLID simulator by J. Pelka [25] and K. Toh [1]. The size of the extruded sphere is

equivalent to the etch rate multiplied by the time step. Each cell whose center lies

inside an extruded sphere is removed. The implementation performed by K. Toh

consumed a significant amount of memory. SOLID avoids this by using an adaptive

grid. To reduce anisotropic effects significantly, however, the dimensions of the cells

must be small in relation to the size of the spheres. This greatly increases the

computation time. SOLID has been reported to require 2 to 20 minutes on a VAX

station 3540, which is a parallel multiprocessor machine [26]. The amount of time
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required for a single processor workstation is far in excess of this. Better methods of

computing the surface normal from cells havebeen implementedby E. Puckett [28],

but were not available at the time of this research.

3.5.2 Cell Boundary Conditions

The boundary conditions that cells use are, in general, simple. For purposes of

initialization, the initial surface is considered to be faces of the cells that are exposed

to the etchant, or a layer of cells with the value 0.0 that cover the initial surface. The

initial surface, in the non-planar case, may initialize the cells by computing the

fraction of the volume of the cell that is in the unetched region defined by the surface.

The simulation of boundary conditions is generally performed by giving certain cells

an etch rate value of 0. Non-planar boundary conditions can be performed by

approximating the boundary with unetchable cells, or cells that may be etched to only

a certain value.
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Chapter 4 Implementation of Methods

4.1 Introduction

Three methods exist in SAMPLE-3D that simulate the resist dissolution process.

These methods are ray-trace, level-set and the cell method. Each of these methods

solves the same mathematical equation in a different manner, as discussed in Chapter

3. This chapter will discuss the specifics of the implementation of each method in

SAMPLE-3D. This chapter will also give the details of the rate function input file that

was used for each method.

4.2 The Rate Function

In SAMPLE-3D the etch rate that is required by the dissolution simulators is

computed in a separate program. This program is BLEACH. BLEACH takes aerial

image input from SPLAT and computes the resulting chemical densities in the resist.

BLEACH may also perform an optional post-exposure bake step, and evaluate the

diffusion, creation and consumption of active compounds in the resist. The etch rate is

derived from the concentrations of active compounds at the end of the post-exposure

bake step.

The rate function that is computed by bleach is given to the dissolution simulators

in the form of a binary format file. Because BLEACH uses a three dimensional

Euclidean grid to compute active compound concentration, the data is written as an

array. A small section of header information is written at the beginning of the file, so

that the size and dimensions of the array are also included. Ray-trace (DEVELOP),

level-set (ADVECT) and the cell-method (CRATER) all use the same code to read the

rate information from the file. The etch rate at a point in the dissolution simulation
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region that is correspondent with an input file grid point receives the etch rate value

expressed in the file. If the point is not coincident with a grid point, the rate at that

location is interpolated from the surrounding grid points. The method of etch rate

interpolation is shown in Figure 1. A two dimensional representation of the

interpolation method is shown in the top half of Figure 1. The equation that describes

how the etch rate is interpolated from Figure 1 is [EQ: 1]. The etch rate at the large

point is:

Ai,jPi,j +Ai+l,jPi+l,j +Ai,j +lPi,j +l +Ai+l,j +lPi+l,j+l [EQ:1]

where:

Ai,j+Ai+i,j+Ai,j+i+Ai+ij+i = 1 • [EQ:2]

The values A. ., A, , <, ,, A. -t , t and A= , * s , t are the areas of the rectangles
i, j' i +1, j' i, j +1 1+1, j +1 °

formed by the boundaries of the particular cell where the interpolation is being

performed, and the coordinate lines that pass through the interpolation point. These

areas are normalized to form the basis for a weighted average so that the etch rate can

be computed with input from each of the four grid points [EQ: 2]. Each grid point etch

rate value P; ;, P; . i ;, P; ; . i and P, , , -.. , is multiplied by the normalized area
1, J lTljJ 1, J T 1 1 T 1, J T i

of its corresponding rectangle and summed to determine the interpolated etch rate, as

shown in [EQ: 1]. The quadrant associated with each grid point is always diagonally

opposite from that point. On each edge of the grid, the interpolation is equivalent to a

simple linear interpolation. In the bottom part of Figure 1 is a subdivision of a three

dimensional cell that represents the three dimensional linear interpolation that is used

in SAMPLE-3D for the etch rate. This interpolation is similar to the two dimensional

case, except that eight terms are used and the multiplicative factors for the etch rates at

the grid points are the normalized volumes that are fully opposite from each grid point.

This interpolation method is identical to the two dimesnial interpolation method for
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the faces of the cube. This method also generates a linear interpolation of the etch rate

on each of the 12 edges.

The ray-trace method requires the gradient of the etch rate to be derived from the

etch rate data. This is performed by computing the gradient from the etch rate of the

neighboring points using the analytical derivative of the three dimensional version of

[EQ: 1]. While the computed gradient is the exact gradient of the etch rate function as

interpolated, the gradient is not necessarily continuous across the boundary of a

particular grid cell. This is a possible source of error in the present ray-trace method.

However, it is not clear that other interpolation methods, while they may generate a

continuous gradient, are preferable, since they may be computationally expensive or

may yield a set of gradients that do not conform to the derivative of the interpolated

etch rates.

4.3 Implementation of the Ray-Trace Method

4.3.1 Triangles, Segments and Nodes

The SAMPLE-3D ray-trace advancement method employs a triangular mesh with

a winged edge data structure. The typical configuration of the initial surface is shown

in Figure 2. In photolithography simulation, it is assumed that the initial surface of the

resist is a plane at a height specified by the process. The basic components of the mesh

are the triangles, segments and nodes. There is an additional mesh object that does not

appear as a visible object in the mesh. This object is called a node-segment object.

Each of the four objects has a unique data structure, although there are some simi

larities. Each object contains an object ID, which is an integer that identifies the object

as unique among other objects of its type. (Objects may have the same ID identifier if

they are of different types, for instance triangle 1074 and segment 1074, but no two
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Fieure 2} Initial Mesh Configuration (Tod View1)

objects of the same type can have the same ID.) Each object type contains two pointers

that are used to form doubly linked lists. Each object type has its own doubly linked

list that contains all objects of that type in the mesh. There are 8 global variables asso

ciated with the lists, which are the 4 pointers to the heads of the lists and the 4 pointers

to the tails of the lists. Finally, each mesh object also contains connectivity pointers

that describe the topology of the mesh. An example that illustrates how these pointers

express the mesh connectivity is shown in Figure 3 and in Figure 4.

Each triangle in SAMPLE-3D contains pointers to its neighboring segments. The

triangle Tl in Figure 3 contains three pointers. These point to the segments SI, S2 and

S3. Each segment contains pointers to both the two neighboring triangles and the two

nodes that form the endpoints of the segment. If the segment is a boundary segment, as

in Figure 4, then the second triangle pointer of the segment is set to NULL to signify
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Region Boundary

A Typical Piece of The Mesh With Labeled Objects

Triangle Pointers Segment Pointers

Figure 3) SAMPLE-3D Mesh Objects
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that no triangle exists across the boundary. Nodes, because an arbitrary number of seg

ments may be connected to them, need an additional object, called a node-segment

object, to assist in storing connectivity information. Each node contains two fields that

point to the head and tail of a doubly linked list. The list is formed of node-segment

objects. Other than the four pointers that form the node specific list and the list of

node-segement objects, only one pointer is contained in this object. This pointer points

to one of the segments that is attached to the node as seen in Figure 4. The entire list of

node-segment objects associated with a specific node has exactly one node-segment

object for each segment that is attached to the node. The list of segments is unordered.

Specific routines are employed to determine which nodes are attached to a specific tri

angle. It is generally not necessary to determine which triangles are attached to a spe

cific node for performing ray-trace functions.

In addition to connectivity pointers, each node contains two other important fields.

The first is the coordinate information that represents the location of the node in the

simulation region. This information is a standard coordinate representation that con

tains three floating point numbers that representthe x, y and z coordinates. The coordi

nates of the triangles and segments are determined by referring to the coordinates on

each node. This makes the mesh simple to advance, since only the coordinates on the

nodes must change to advance the mesh to its new position. Each node also contains a

unit vector that represents the inverse surface normal at that position. This vector rep

resents the direction of advancement during the next time step, and is called the 'direc

tion vector'. The direction vectors are initialized as x = 0.0, y = 0.0 and z = -1.0 to

correspond with the initial surface shown in Figure 2. The mesh is advanced by updat

ing the coordinate and direction vector for each node for each time step.
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4.3.2 Basic Mesh Maintenance

K. Toh implemented two basic mesh maintenance operations in SAMPLE-3D [1].

These methods were segment merging and segment division. These operations were

performed for the purpose of removing small segments and subdividing long seg

ments. The operations were performed to regularize the mesh, so that rays did not

become too close or too distant. To remove small segments, one node on the segment

is removed. This is performed by removing the node and reconnecting the segments

that were attached to the node that is being removed to the node of the segment that

remains. The two triangles that were on either side of the segment are removed. The

two segments of the removed triangles that were not the small segment that is being

removed, are combined into one segment. A more complete discussion of the process,

which includes three-dimensional effects, is given in Chapter 6.

To subdivide large segments, a new node is placed at the midpoint of the large seg

ment, thereby forming two smaller segments. Each of the triangles on either side of the

segment were also subdivided into two smaller triangles, as seen in Figure 4. Because

a new node is formed during subdivision, a ray vector must be given to it. This is per

formed by ray interpolation. In the original version of SAMPLE-3D, the ray vectors

were set by linearly averaging the vectors of the nodes at opposite ends of the original

large segment. This method was found to be inappropriate for resist deloop, since

interpolating points from large segments that are attached to banana nodes generates

meaningless results. This difficulty was overcome by using the local geometry instead

of the neighboring rays for interpolation. The unit surface normals of the two origonal

neighboring triangles are averaged and normalized to form the ray. If the long segment

is on the boundary, only one original neighboring triangle to the long segment exists.

In this case, the ray is placed in the direction of the surface normal of the triangle. This

method of generating rays is based on the rarefaction fan discussion in Chapter 3.
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Figure 5) Segment Subdivision
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4.3.3 Ray Trace AdvancementEquations

The ray-trace method as applied to photolithography in three dimensions was

originally developed by Kenny Toh [1]. The mathematics that describe the

advancement of the surface are shown in Chapter 3. The ray advancement equation

that was developed in Chapter 3 was:

diLR(x,y,z)diJ =VR(x,y,z) [EQ: 3]
where R (x, y, z) is the etch rate, s is the arc length and r is the position vector.

drThe notation s will be used in place of -p for the purpose ofclarity, s is the unit tan

gentvector for the path of theray and is called the 'direction' vector. [EQ: 3] is simpli

fied by applying the chain rule to the right side:

This equation is now rewritten in its discretized form. If As is the distance etched

in some time step AT in an average etch rate RavA, i.e. As = R0„0AT, then
3VC aVc

iA[H =-^V(R)- [E(*5]
ave

By rearranging the terms, the equationmay be simplified.

A[SS1 =~"I~V (R)RaveAT ="r~V (R)AT [£Q: «
Rave ave

If the equation [EQ: 6] is applied between to two points Pj and P2, then it

becomes,

f--^=-p^-V(R)AT, [EQ:7]
K2 Rl Rave



s2 1 sl

R2 Rave Rl

R Rs2 =- 2-V(R)AT+s * ,
Rave Rl

R,
s2-Sl =-g—V(R)AT+Sl

ave

R2

The average etch rate R may be written as
ave

a ave LR1 R2.

Therefore, the discrete etch rateequation becomes

S2-SJ = -0.5
(R1+R2)

^—^V(R)AT+Sl
R2
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[EQ: 8]

[EQ:9]

[EQ: 10]

[EQ: 11]

[EQ: 12]

The vector s2 is then renormalized to a unit vector after the application of this

equation. This equation relates the difference between the unit vectors Sj and s2 tothe

gradient of the etch rate. The advancement method can now be summarized. First, the

point is advanced from location r^ in the direction of its direction vector:

r2 = rj +s^AT [EQ: 13]
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After advancement, the deviation of the direction vector is calculated according to

[EQ: 12]. If the length of the deviation, i.e. ||s2-s1||, is less than 0.1, then r2

becomes the coordinate of the point after advancement. If, however, ||s2-sJ| is

greater than 0.1, then the advancement is recomputed. The time step is halved and two

successive advancement steps are employed to advance the point. This halving of the

time step is performed recursively until all advancement steps have direction vector

deviations of less than 0.1. This recursive time step capability allows the rays to

advance accurately through regions of rapidly changing etch rate. This recursive time

step ability is not equivalent to a second ordermethod. Since an approximation of the

subdivision of the time step as suggested by [EQ: 12] can be precomputed before any

surface advancement, this implementation of ray advancement is a first order method

that employs an adaptive gridding scheme.

The whole surface is advanced by applying the above procedure to every node in

the mesh simultaneously. Propermesh maintenance, a topic that will be elaborated

upon in Chapter 6, requires that no point move more than a certain specified distance.

In this case,the specified distance is 15% of the ideal segment length. This is enforced

by first finding the etch rate at every node in the mesh, and then computing the time

step for advancement by dividing the specified distance by the maximum rate. Each

point will, therefore, move a distance equal to or less than the specified distance.

Besides allowing proper mesh maintenance, adaptive time steps are also useful in

photolithography simulation, since the maximum etch rate at the surface can vary

widely during simulation. Therefore, an adaptive time step can allow simulation to

proceed much more quickly than advancement that is limited by the fastest etch rate

ever encountered during simulation.
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4.4 Level-Sets

4.4.1 Computing the Evolution ofthe Values on the Grid

This entire method, except for the section on iteration, is taken from the work of J.

Sethian and J. Strain in [2] where it was employed for simulating crystal growth. The

level-set method simulates the advancement of the surface through the use of a

function that represents the surfaceas the 0-contour of the function, i.e. the surface is

located wherever the function takes on the value of 0. This simulation takes place on a

regular Euclidean grid. As previously noted in Chapter 3, this function must be

initialized to values proportional to the distance from the surface. Because the initial

surface is a flat plane at the top of the simulation region, the cells are assigned values

equivalent to the distance of the center of each cell from the top of the simulation

region. The etch rates are assigned for each Euclidean cell by computing the value of

the etch rate at the center of the each cell.

Once the function and the etch rates are defined, advancement can begin. At each

time step, a basic operation is performed on each cell. This operation first computes

the Euclidean norm of the gradient of the function at that point. The Euclidean norm of

the gradient is employed in conjunction with the etch rate to update the value of the

cell for the next time step. The method for computing the gradient is shown in Figure 6

in two-dimensional form [2]. Figure 6 represents a linearly increasing function whose

gradient points to the upper right. To compute the gradient, it is necessary to employ

the values of the neighboring cells in the computation. Because the monotonicity of

the level-set function must be preserved, only neighboring cell values are considered

in computing the gradient that are smaller than the value in the cell whose gradient is

being calculated. Four difference operators are employed. The operators are employed

across each cell edge to measure the partial derivative in that direction. These

difference operators are marked as Dminusx,Dplusx, Dminusy and Dplusy in Figure 6
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and stand consecutively for the relations D"11111^. ., Dllu\ . , D™inus(|>. ., and

Dj (>. . . The operators are defined bythe equations:
y *> j

Z1 -*n
.minus.D""uus<t>. . = 1>J A'"1>J [EQ: 14]
x Yi»J Ax L ^

DpluS(t) =*n-l,j ^>J rjBQ: 15]
x Ti»J Ax

<b? . - d>?. ,DminuS(|) = yi,J nj-1 [EQ. 16]
y ifj Ay

A?. ,-<!>?.

Dy \j = Ay J [EQ: 171
where Ax and Ay are the dimensions of the cells in thex and y directions and <|>? .

is the value of the cell in the column i in row j at time step n. In the three-dimensional

case, six operators exist, one for each face of the three-dimensional cell. These

operators are D™"*. j,*' D?"\j,.c • "^^k- Df\i,.c •
Dminus(|). . , and D£ usc|). . . .The norm ofthe gradient can now be computed:

xdir =((max (Dminus([>..,0)) +(min(DPlus<t>y,0))Z) [EQ: 18]

ydir =((max(Dminus(t)u,0))2+ (min (Dfu\ ., 0))2) [EQ: 19]
IVfc I = V(xdir + ydir) [EQ: 20]
i i» ji

An additional zdir term, which is created in the same manner as [EQ: 18] and [EQ:

19], is required for three-dimensions. In three dimensions, xdir, ydir and zdir are all

gathered under the square root sign in [EQ: 20]. Now that the gradient has been

computed for each point, advancement can take place. It is necessary that the time step
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satisfy the relations in [EQ: 21], [EQ: 22] and [EQ: 23], where maxrate is the fastest

etch rate in the resist. It has been suggested that a value for At that half of the one

suggested by the relations is desirable [3]. The value used in the examples in Chapter 7

is 0.5*Az/maxrate.

Ax
At< [EQ:21]

maxrate

Ay
At< '—- [EQ:22]

maxrate

Az
At< [EQ:23]

maxrate

The Hamilton-Jacobi equation can now be solved over the mesh. At each time

step, for all i, j and k, all the cells are updated according to the following formula:

*Uk =♦u.k-RUkAtlV*uJ ^24]
where n is the time step and Rj . k is theetch rate atcubei, j, k. This equation is

repeated until the desired simulation time is reached.

4.4.2 Boundary Conditions

The simulation region contains 6 boundaries, one for each side of the simulation

region. The boundaries that are perpendicular to the initial surface are reflective

boundaries, since the rate function that is generated by SPLAT and BLEACH is reflec

tive. As per the discussion in Chapter 3, the zero etch rate region at the bottom of the

simulation region that represents the silicon substrate is also an reflective boundary

condition. If the side of a cell is part of the boundary, then the side of that cell is

assumed to have a cell with the same value as the original on the other side of the

boundary.
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The boundary condition that represents the original location of the initial surface

(i.e. the top of the simulation region) is required to introduce new contours into the

system, so that the 0 contour can easily evolveinto the rest of the resist. This is per

formed as illustrated in Figure 7. This figure is analogous to a 1x1x8 section of cells

that extends from the surface to 8 cells deep into the resist. This particular example

assumes an etch rate of 2 cells/sec exists and a time step 0.25 sec. The cell markers

represent the centers of the cells. The surface is initially set so that the 0 contour is at

the left hand side of cell 0. This requires cell -1, the boundary cell to be set to -0.25.

For each time step, the boundary cell is decreased in value by the value of the time

step. The bottom half of Figure 7.shows the advancedsurface with a properly formed

contour. In ADVECT, the border cells have the values of -t-0.5*Az. This ensures that

the border cells always have values that are less than the values in the resist. A physi

cal analogy can be made by assuming that the new contours represent a the continuing

penetration of more etchant into the resist.

4.4.3 Iterative Approach

A new iterative approach to the level-set technique has been implemented. This

method is based on concepts from J. Sethian in [4] that were applied to grid genera

tion. This is the first time that this concept has been applied to photolithography simu

lation.While it appearsvery promising, the results are tentative. This methodoperates

in the same manner as the original level-set scheme with a single difference. In the

original method, the contour that was evolved was the 0 contour and the method termi

nated at time t, where t is the simulation time. In this method, evolution continues in

the same manner as the original method until time t + n. The -n contour is returned as

the result. This method, therefore, uses the first n time units of the simulation to set the

initial conditions. It is assumed that the accuracy improvement occurs, because the
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best initial condition for evolving the surface contour probably is the eikonal function.

The first n time steps are used, therefore, to generate an approximation of the eikonal.

4.5 Cell Method

Finally, the cell method that was developed by Ed Scheckler [5] was employed.

This method divides the region, like the level-set method, into a Euclidean grid. In this

case, however, instead of evolving a scalar function across the grid, the grid represents

the photoresist volume directly. Each cell represents a small piece of volume in the

simulation region. Each cell contains a number between 0.0 and 1.0 called the 'volume

fraction' that represents the fractional volume of the photoresist contained in the cell.

A value of 0.0 represents no photoresist, and a value of 1.0 represents a cell

completely filled with photoresist. The cell method advances the surface by lowering

the volume fraction in cells that are in contact with the surface. The technique for

lowering the volume fraction varies from method to method. In this particular method,

a rate of volume removal will be computed by examining the number of exposed faces

of a cell and its etch rate.

The method for approximating the volume removal rate is shown in Figure 8. If a

neighboring cell is devoid of material, the cell face shared with that neighbor is

exposed. All exposed faces are moved into the cell, with a distance given by the

product of the etch rate at the cell and the time step. If only one face is exposed, then

the amount of volume removed is the product of the face area and the distance

traveled. If two edge-sharing faces are exposed, acorrection factor of1/^2 for cubic

cells is included in the rate to slow the advance of the planes. If three vertex-sharing

planes are exposed, the correction factor is 1/^3 for cubic cells. The volume removed

is estimated as the amount swept out by all of the moving planes:
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Distance Traveled =

Rate x At x Correction

Figure 8) Cell Advancement Algorithm

Volume = dxldyldzI + dxIdyldzh +dx,dylldzl + dxldyhdzh + dxhdyldzl [EQ: 25]

+ dxhdyldzh +dxhdyhdzl +dxhdyhdzh

+ (Ax-dxh-dxl) (dyldzl +dyldzh +dyhdzl +dyhdzh)

+ (Ay-dyh-dyl) (dxldzl +dxldzh +dxhdzl +dxhdzh)

+ (Az-dzh-dzl) (dxldyl +dxldyh +dxhdyl +dxhV

+ (Ax-dxh-dxl)(Az-dzh-dzl)(dyl + dyh)

+ (Ay - dyh - dyl) (Az - dzh - dzl) (dxl + dxh)

+ (Ax-dxh-dxl)(Ay-dyh-V(dzl + dxh)

where d-p dih are the etch distances (rate x At) of the two planes perpendicular to

the i-axis, and Ax, Ay and Az are the cell dimensions. The correction factors for one,
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two or three adjacent faces are derived as if the etch front were advancing along an

inclined plane placed on top of the cells, and are given as follows, where each of i, j

and k represent different coordinate axes:

facei: correction = 1.0

faces i and j: c4 = sin (arctan (Ai/Aj))

c, = sin (arctan (Ai/Aj))

faces i, j and k:
c, = sin (arctan (Ak//Ai2 +Aj2/AiAj)) cos (arctan (Ai/Aj))

c= = sin (arctan (AkvAi2 +Aj2/AiAj)) sin (arctan (Ai/Aj))

ck = cos (arctan (Ak^Ai +Aj2/AiAj))

The volume removal calculation is always performed as if the cell were

completely full until it is removed entirely.

The overetch technique, that was discussed in Chapter 3, is illustrated in Figure 9.

Because the cell method can operatemore quickly if the time step is not limited by the

first cell that reaches a value of 0.0 during etching, some values are allowed to

decrease beyond 0.0 and become negative. To reset this volume fraction to 0.0, the

extra necessary photoresist is equitably removed from all the cells that share a face

with the originalcell. For typical time steps, this excess volume is typically only a few

percent of the total cell volume.
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Chapter 5 Deloop

5.1 Need for Deloop in Surface Advancement Algorithms

While level-set and cell techniques handle topological changes automatically,

surface advancement techniques have different requirements. The surface

advancement method causes perturbational changes in the surface representation at

each time step, while preserving local connectivity. Although these changes preserve

connectivity, they do not necessarily represent a valid surface. During the perturbation,

the surface may form self-intersecting regions. Two types of regions may be formed.

(Figure 1) The first type occurs when the region intersects itself locally. The surface,

Before Advancement After Advancement

Local Loop Formation

Topological Loop Formation

Figure 1) Loop Formation During Etching
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under certain perturbation conditions, may pass through itself during an advancement

step. This is called 'local loop formation' due to the loop-like cross section that is

observed after this advancement. Certain advancement methods prevent local loop

formation, so this type of loop does not occur in all methods. Topological alterations,

which can occur with any advancement method, such as hole formation and material

detachment, cannot be described as local loops, but are similar to them in two

important ways. First, topological alterations are similar to loops, because the mesh

intersects itself after advancement. Second, to get a self-consistent non-intersecting

surface after advancement that represents the actual material removed, pieces of the

surface mesh must be removed. A method is given in this chapter that corrects both of

these advancement difficulties. Because the method was originally invented to remove

local loops, it is called 'Deloop' [15].

Some surface advancement algorithms require loop removal as an integral part of

the advancement method. These methods generate trailing pieces of mesh at shock

conditions, so that the shock condition can be simulated without employing a special

advancement method. Therefore, the deloop method for these advancement algorithms

not only require local and topological loop removal, they also demand that the loop

remover can remove the trailing pieces of mesh that occur at shock conditions. As seen

in [1][2] [3] [4] [5] [6] [7]. the behavior of shocks during surface advancement for

photolithography problems can be approximated by removingthe trailing pieces of the

surface after advancement. An example of this phenomena is shown in Figure 2,

where the advancement mechanism Ray-Trace advancement is a method that employs

this approach. In fact, Ray-Trace advancementis unusually amicable to this treatment,

since the rays do not have any interaction over successive time steps, other than at

shocks. Therefore, loop removal can track shock conditions even when it is performed

only at every 10th or 20th time step.
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Because a deloop algorithm is an essential part of any surface advancement

method,[l][3] the loop removal method must satisfy three criteriathat are desirable in

any program. The method must be fast, since it will be performed often during

advancement, possibly atevery time step. The method must be robust algorithmically

in order to handle complicated structures, since few assumptions can be made about

the shapes of surfaces that will be formed in general field applications. Third, it must

be numerically robust, so that vertex coincidences or zero area facets will not cause the

program to malfunction. The methods presented will satisfy theserequirements.

In thischapter, two versions of deloop willbe presented. The first will be a generic

version that is oriented towards loop removal and topological changes in surface

advancement in general. The second is a specialized version thatis specifically made

for advancement in photoresist. This chapter will also discuss extensions of loop

removal to a full set operation implementation that resembles a solid modeler.
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Intersection Line Tracking Handles most cases, except 3-plane intersections

Triangle Subdivision Handles most cases, except 3-plane intersections

Removal Basic binary loop removal implemented

Other functions like detached surface

detection are implemented

Figure 3) Deloop Routines That Have Been Implemented

5.2 General Characteristics of any Deloop Method

In any loop removal method, there exist three separate steps that must be

performed. The first step is to determinewhetherany loops exist, and if loops do exist,

where they are located. This function can be performedby determining if there are any

facets that intersect with other facets (Figure 4). This test is nearly identical to the test

for loops. (A finding of no intersectionmay occasionally mean that the entire mesh is a

loop.) To determine the locations of the loops, all pairs of intersecting facets must be

determined. It is extremely important that this intersectionsearch be performed as fast

and as efficiently as possible. It is theoretically possible to do this in O (NlogN) time,

where N is the number of triangles in the mesh.
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Intersection Line Segment

Figure 5) The Line Segment of Two Intersecting Triangles

Figure 6) Two Intersecting Sections of a Triangular Mesh

Each intersecting triangle pair, barring degeneracies, has associated with it a well-

defined intersection line segment. (Figure 5) Taken together, these segments form a set

of piecewise linear curves in the domain space of the mesh (Figure 6). These lines,

called intersection lines, define boundaries between mesh sections. All points in any

particular section have the same topological identity, i.e. all the triangles in a particular

section will be either loop or surface. These sections must be explicitly or implicitly

represented in the mesh, before identification of loops and surface can take place.
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Because of this requirement, the second part of any deloop algorithm is the

partitioning of the mesh along the intersection lines into separate parts.

Third, the loop and surface pieces must be correctly identified, and the loop

sections removed. It is important, that the sections of the mesh be labeled correctly,

even in extremely degenerate cases. It is also desirable that pieces of the material

being etched that have detached themselves from the bulk be properly identified.

5.3 The Triangle Intersection Test and the Octtree

N2A naive facet intersection algorithm would test all pairs and thus take -y

operations, where N is the number of facets that the algorithm takes as input, i.e. the

number of triangles in the mesh. The previous implementation of triangle intersection

in SAMPLE-3D employed this method. This approach is clearly inefficient, since most

pairs of triangles in a 'typical' mesh involve triangles that are widely separated in

space relative to the dimensions of the triangles. Typical meshes are considered to be

the type normally encountered in photolithography and topography simulation. The

number of intersecting facet pairs in these meshes is considerably smaller than the

number of facets. If the algorithm is modified so that the intersection test for each

triangle is performed only against spatially nearby facets, then far fewer operations are

required to find all intersecting pairs of facets. With proper ordering of the facets and

clever exploitation of spatial coherence, the number of operations required can be

reduced to O (NlogN). This O (NlogN) limit is expected to be the theoretical lower

limit on the number of operations, because there is a necessary O(N) step of reading

the input, and because an intermediate data structure requiring O(logN) time for

insertion and deletion of a single object is mandatory. The data structure that has been

chosen to represent spatial coherence is the octtree.
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5.3.1 What is an Octtree?

To perform a spatial sort on the triangles, an octtree is employed [9]. The octtree

may be considered as a three-dimensional equivalent of a binary tree (Figure 7). The

root node of the octtree represents the entire simulation space. This node has eight

children, or subnodes. The subnodes of the root node represent subspaces, also called

octants. Typically the octants are formed by slicing the complete domain by three

mutually intersecting perpendicular planes. Although their dimensions are halved,

these subspaces are otherwise geometrically similar to the full simulation space. The

subspaces are arranged in a 2x2x2 formation. Each subnode in turn has 8 octants that

represent further divisions of the simulation region. This division continues

recursively to a preset depth, or until further subdivision is deemed unnecessary.

Subnodes that have no children are called leaves.
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Figure 8) Storage of Trian i the Octtree Data Structure

5.33 Sorting Triangles with an Octtree

Determination of pairs of intersecting triangles is made efficient by having all

triangles located in this octtree.(Figure 8) Starting with an initially empty octtree, each

triangle is inserted into it in turn. Before the triangle is inserted, it is converted to a

polygonal representation. This representation is an ordered list of points that define a

polygon on a plane in three-dimensional space. The plane is the plane of the triangle.

The polygon represents the intersection of the set of points contained in the triangle

with the region of space associated with the node of the octtree. The triangle is first

inserted into the root node, and, using the polygon, the subnodes that the triangle

intersects with are found. Subnode intersection is performed by dividing the polygon

into smaller polygons through plane divisions (Figure 9). This generates residue

polygons that represent the intersection of the triangle with the regions of space

associated with the subnodes. The division into eight polygons is performed in three

steps. The original polygon is divided into two parts by one of the three bisecting
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OriginalTriangle and its Planar Intersections Polygons Formed After Z-Plane

PolygonsFormed After Y-Plane Polygons Formed After X-Plane

Figure 9) Subdivision of Triangle into Polygons During Triangle Insertion

coordinate planes. These two polygons are divided by the second plane so that four

polygons are formed, and finally the third plane is employed to form eight polygons. If

a polygon formed for a subnode is non-existent, then the triangle does not intersect it.

If a subnode has a defined residue polygon, the intersection test can be applied

recursively using the new polygon associated with the subnode as the input to

recursion. Recursion halts at a predefined depth.

Although the insertiontest for a triangle canbe applied recursively at any subnode,

it is not always desirable to do so. Often, to save memory, recursion down to the pre

set maximum depth is not performed. In the octtree, if a subnode contains only one

triangle, recursive subdivision is not performed. If another triangle is found to

intersect the subnode, then recursive division of the subnode is performed, unless the



86

subnode is at a specified maximum depth in the octtree. By employing selectively

recursive subdivision, the space that would be consumed if the triangle was inserted

into all of the possible subnodes is saved. Experimental tests have demonstrated that

the best size for a subnode is about 3 times the average segment length of a triangle. It

is recommended that there be 10-20 triangles in the subnode before recursion on the

subnode is performed. This is not currently implemented, since the maximum depth

criterion is sufficient to optimize CPU time and memory consumption for non-

adaptive surface advancement meshes. Should adaptive meshes with widely varying

triangle sizes be implemented, then recursion based on a specific number of triangles

in each subnode would be practical.

When the limit of recursion is reached, a linked list is formed. This list is the union

of all the lists of triangles that intersect that leaf. A new list of triangles is formed,

which is the union of all the lists of triangles in the leaves that contain the inserted

triangle. An explicit intersection test is performed between the inserted triangle and

the candidates to find the actual intersections.

The time that each triangle requires to be inserted into the octtree is a function of

the number of intersection tests thatmust be performed with subnodes of the octtree,

and the number of triangle-triangle intersection tests that must be performed. The

numberof triangle-triangle intersection tests is the number of leaves that the triangle

intersects times the average occupancy of the leaves. As the height of the tree

increases, the number of leaves of the octtree that the triangle may intersect also

increases, since each leaf represents a smaller amount of the simulation region. If the

height is increased too far, then the triangle will occupy very many leaves. This is

undesirable, since increased accuracy in localizing the triangle, which may ruling out

comparison candidates, doesnot make up for the extratime andmemory consumedin
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forming such a small subdivision. If the tree is too shallow, then the larger leaves may

contain too many comparison candidates. The extreme case, where the height of the

tree is one, is equivalent to the old method. Therefore, to utilize the octtree to its fullest

potential, a method of determining the optimal level of recursion must be found. A

sensible trade-off is to force the octtree to stop performing recursion when the leaves

of the octtree are similar in size to the triangles. Because the triangles are constrained

in their dimension by the ideal segment length, this size is easy to determine. Under

this condition, the number of leaves that a triangle may intersect has an average

constant value, and the number of leaves in the tree in total is O(N) where N is the

number of triangles. The maximal height of this octtreeis, therefore, O(logN). The

total time for triangle insertion is O(NlogN). Since the time of an algorithm is also

related to the size of its output, the number of triangle intersection pairs is also a

contributing factor, so the real time required is O(NlogN4-Nj) where N{ is the

number of intersection pairs, although the latter is never expected to dominate, since

most triangles do not take part in any intersection. Likewise, since the number of

leaves in the tree is O(N), the memory that must be consumed to form the octtree is

expected to be O(N).

Experimental results from an implementation of an octtree confirm the stated

expectations (Figure 10). These results were obtained on a DECstation 3000 and are

taken from previous work in [15]. The shape of the test meshes that these results were

derived from is shown in Figure 11. The three gridsizes employed were 11x11, 21x21

and 31x31. Each yielded triangulations containing 680, 3201 and 7421 triangles

respectively. The top chart in Figure 10 shows the memory consumed as the octtree

was set at differing levels of recursion. The bottom chart shows the time necessary for

each run. The level of recursion was varied,andis expressed as the ratiobetween ideal

segment length and the length of the side of the smallest leaf in the octtree. The good
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Figure 11) Deloop Timing Test Figure

regions were defined by examining the chart for ratios of feature size to subcell size

that yield both small memory consumption and fast execution. It is the authors opinion

that a smallest leaf to feature size ratio of 3 is the best ratio.

5.3.3 Application of Spatial Subdivision toother Surface Advancement Issues

Algorithms necessary for modeling other processes may also require spatial

subdivision. Processes such as plasma etching and ion-milling often are described by

etch models that incorporate visibility and reflection terms. The etch rate depends on

parameters like the visible region of a source from each pointon the surface, or the

amount of flux incident on the surface, both from the source and reflected from other

surface locations [3][8]. These terms are globally dependent. Pieces of thesurface can

influence far removed locations. Because the spatial location of a piece of surface

relative to another piece is important, mere understanding ofconnectivity ofthe mesh

89
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and of local properties at the advancing surface are insufficient. A data structure that

allows the surface tobeorganized based on its spatial relationships is necessary.

In the specific case of plasmaetching, it is generally assumed that the mean-free

path ofa particle is long in comparison to the dimensions of thelocal topography. This

means thattheflux of particles during simulation canbeapproximated as straight lines

that travel uninterrupted through non-bulk regions. Therefore, an important part of

plasma etching computations is the test to see if a given line segment intersects the

surface at any point along the segment.This test is made significantlyeasier and faster

through the use of an octtree, or other method of spatial organization, and may easily

be implemented in the same manner as the triangle intersection test.[10] Because the

only preprocessing that is required for the line intersection is the insertion of the

surface into the octtree, the same information generated during the triangle-triangle

intersection tests for loop removal may also be employed in plasma etching

computation. Therefore, the octtree is not only a important tool for loop removal, but

also a valuable auxiliary data structure that can be usefully employed in all methods of

surface based simulation. (Figure 12)

5.3.4 Application of the Octtree to Cell Algorithms

The octtree can also be used for the representation of cells in a cell etching

program, although this has not been implemented. Each level of the octtree may

contain a binary flag or other information, such as a time stamp. If this flag is used to

mark the type of information that cell algorithms employ, then the cell algorithm can

be implemented using an octtree. While there is slightly more computational overhead

in an octtree implementation than in a grid implementation, this is more than offset by

the ability to group large numbers of cells into one octtree node. One undivided octtree

node can represent a large volume of cells which all may represent either air or resist.
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Figure 12) Octtree Subdivision Near a Surface

This allows many cells to be represented by much less memory. The memory

consumption without the use of an octtree is O (N ) where N is the inverse of the size

of the cells. With an octtree, the memory consumption becomes O (N logN) for N as

defined above. The memory consumption of the octtree is also proportional to the

surface areaof the photoresist. Forsurfaces in general, thememory consumption using

an octtree is O (r^rlogN) where d is the fractal dimension of the surface. For most

simulated surfaces, however, d is equal to 2.

5.4 Determining the Intersection Lines and Surface Subdivision

5.4.1 Properties of the Triangle Domain Space

The domain space of a mesh is a connected topological space whose connectivity

is determined by the connectivity of thepoints on the triangles, and the connectivity of

the triangles with respect to each other. During simulation, the advancement of the



Rarefaction Condition Shock Condition

Figure 13) Rarefaction and Shock Point Mappings

Points on Center Triangle are
Mapped onto the Line Segment

Figure 14^ Triangle Undergoing Shock Style Mapping During Removal
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surface, and all basic mesh refinement and coarsening operations, this connectivity of

the surface is preserved. It has been demonstrated previously that in the rarefaction

case, a single point maps to a simply connected set of points, while in the shock

condition, asimply connected set ofpoints maps to asingle point(Figure 13). In mesh

maintenance operations, triangles are deformed in asimilar manner (Figure 14).

Created triangles are formed so that the points in the original triangle being divided are

mapped to the newly formed triangles. Triangles that are removed also have their

points mapped to the mesh in acontinuous manner. This mapping is typically from a

triangle to aline or aspecific point. All ofthese point to point mappings are considered
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topologically invariant. These mappings preserve the connectivity of the surface. The

triangular domain space can be understood, therefore, as atopological space [11] that

is described in terms of its connectivity, this connectivity is preserved in all surface

advancement and mesh maintenance operations, except for deloop.

5.4.2 Getting Good Intersections

To compute the intersection line, the individual line segments that arise from each

pairof intersecting triangles must first be identified. The intersectionline segment is

the region that is in common between two intersecting triangles. Other than the

endpoints, the points on the line defined by each pair are unique. To compute the

intersection lines easily, however, the fact that the mesh points are a little 'fuzzy' is

employed. (One approach to defensive andefficient programming is to make good use

of fuzziness in the application, but the programmermust be very careful.)

Sometimes a triangle-triangle pair will have a coincidence between the vertex of

one triangle and the plane of another triangle. A coincidence is assumed when the

—8vertex is within a distance of 10 times the size of a triangle. Since a triangle in a pair

may have a node that is coincident with the plane of another triangle, seven new

intersection types arise that are distinct from the basic Face & Face = Line Segment

type, as shown in example 1) of Figure 15. To simplify the code and to reduce the

number of cases that must be analyzed and handled, undesirable coincidences are

removed by small randomized movements of the offending vertices. The undesirable

and desirable cases are shown in Figure 15. These desirable cases are 1), 6) and 8)

when the two nodes are the same. 6) must be allowed, since this case represents the

intersection of the surfaces at the border of the simulation region, and 8) represents the

end point of a banana node, which arises from structures similar to Figure 17. Node

movement causes the undesirable intersections to be transformed into the desired
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1) Face & Face = Line: Non-Degenerate 2) Face & Face = Polvgon: Degenerate

3) Line & Face = Line: Degenerate 4) Point & Face = Point: Degenerate

5) Line & Line = Line: Degenerate 6) Line & Line = Point: Non-Degenerate

7) Line & Point = Point: Degenerate 8) Point & Point = Point: Degenerate
(Only if not same point)

Figure 15)Types of Pairs of Intersecting Triangles with Degenerate/ Non-

Degenerate Status Marked.
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.•5***-.

Banana Loop Endpoints

Figure 16) The Banana Loop

cases. The only type of node-plane coincidencethat is maintained is the allowablecase

in 8). To move the nodes, an iterative procedure is employed, where each vertex is

moved normal to the plane of the intersecting triangle. The motion is a random
__o _n

distance that ranges between 10 or 10 of the size of a triangle. The direction of

motion is also random. The additional time that is required by this preprocessing step

is O(NnlogN), where Nn is the number of triangles that contain nodes to be moved.

The operation may be performed at this rate by moving the node, removing all

triangles that neighbor the node from the octtree, replacing the triangles in their new

positions, and recomputing theintersections. Presently whenanynodes are moved,the

entire set of intersections is recomputed. Althoughit is only necessary to remove and

replace the triangles adjacent to a pushed node, a complete recomputation is

performed to simplify programming complexity. Since coincidences are expected to

occur infrequently once the symmetry in the initial conditions is broken, this term is

omitted from the complexity analysis. Experiment has confirmed this assumption.
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Figure 17) Determining the Next Intersection Pair on an Intersection Line
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After the first time step, on examples that represent real structures, the octtree needs to

be recomputed at most twice.

5.43 Tracking the Intersection line

Because the intersection lines form the boundaries between partsof the mesh that

are actual surface and theparts of the mesh thatare loops, it is necessary to subdivide

the intersecting triangles along the intersection line. This subdivision will allow an

explicit representation of the separate mesh regions, thereby allowing delooping to

occur. Since the triangle intersection pairs are generated in an arbitrary order, there is

no inherent connectivity of intersection pairs implicit in the order. To properly handle

coincidences of the endpoints ofintersection line segments and maintain connectivity

in the delooped surface, the endpoints of the intersection line segments must be

properly matched. Figure 17 shows two intersection line segments thathave the same

endpoint This point must be identified as a single point and both intersection line
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Figure 18) Termination Conditions for Intersection Lines
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segments must explicitly refer to it when the mesh is reconnected after deloop. To

perform this operation the connectivity of the mesh is employed. Given the

intersection line segment of pair AC, the rightmost endpoints examined. This endpoint

is caused by an edge of triangle A intersecting triangle C. To continue the intersection

line, the edge of triangle A is examined to determine the other triangle connected to it.

This triangle is triangle B. Because triangle C did not terminate on that segment, the

next intersection line segment on the intersection line must be the one associated with

the pair BC. The endpoint that was determined for AC is now fixed as the starting

point of the segment for BC, and connectivity is established. At the end of each

intersection line segment, this operation is performed unless one of the three tracking

termination conditions is found.

The three termination conditions of the intersection line tracking method are

shown in Figure 18. The places where the intersection line terminates in normal space

are at the node of a banana loop, the intersection of the line with the simulation

boundary and the closed curve where the termination condition is the same point as the



98

starting condition. These three conditions are also the starting conditions for

intersection line tracking. To perform intersection line tracking, a pair of intersecting

triangles that represent one of the first two termination conditions is found. The line is

tracked in the direction opposite of the banana node or boundary intersection via the

method shown in Figure 17, until another termination condition is reached. All lines

that start with a banana node= or on a boundary will end with one of these two types.

Once all intersection lines of this type are tracked, there may still be some untracked

intersection line segments of the closed type. An arbitrary triangle pair is chosen and

tracked until the same pair is reached again. This establishes connectivity on one

closed intersection curve. If there are any other pairs left unconsidered, the process

repeats until all closed intersection curves are tracked. The time required for

establishing this connectivity on the mesh is OtNjlogN.) time where N. is the

numberof pairs. Tracking the intersection linesreduces code complexity and enhances

robustness, by matching endpoint coordinates for each intersection line segment and

by providing a minimum of special cases to be considered. It insures that if some

triangles are intersected more than once, either by the same or different intersection

lines, thealgorithm need only concern itselfwith asingle intersection line atany time

5.4.4 Triangle Subdivision

Once the intersection line has been tracked and the connectivity established, new

mesh nodes and edges are created explicitly in the SAMPLE-3D data structure using

the coordinates established by the previous step. A new mesh edge is formed for each

intersection line segment, and anew node is created at the end of each segment. Each

new node that is created represents the intersection of the face of a triangle with a

segment that borders two other triangles. Therefore, two new edges are created,

between the new node and the nodes of the old edge. In this manner, a framework of

edges and nodes is created that represents the intersection line. Once this has been



Polygonal Subdivision
After Intersection Line
Determination

Figure 19) Polygonal Subdivision of Triangles

Each Polygon is
Triangulated

Figure 20) Triangular Division of Triangles
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pertormed, each triangle has associated with it a sequence of intersection lines that

traverse it. If the original border of the triangle is traversed in an ordered, non

repeating manner, which can be done in O(N) time, a set of polygons is derived that

partition the surface of the triangle (Figure 19). Each of these polygons is then

triangulated ((Figure 20) local & (Figure 21) global). This, theoretically, takes

O(NjlogNj) time [9][12], where Nj is the number of intersection line segments that

were contained in that triangle. The old triangle is then removed from the mesh, and

the new triangles are inserted.



100

Since each intersection pair contributes one line segment to each triangle, the total

time for this algorithm is 0(NilogNi). Three, four or n-way mutual triangle

intersections may be handled by checking for intersections of intersection line

segments. New nodes would be formed at the points where the segments cross, and the

segments would be divided into smaller segments with the new nodes as endpoints. In

some cases, such as when the N triangles in the mesh are mutually intersecting, the

time complexity would be 0(N ). For most geometries encountered in practical

lithography tasks, these higher order intersections are so rare that they can be

neglected in the complexity analysis.

Once all of the polygons that were formed by the intersection line have been

triangulated, the intersection line now lies along the edges of the new triangles (Figure

20) & (Figure 21). Each intersection line segment now has four triangles connected to

it, two triangles in each of two planes.

Another method was previously tried for triangle subdivision. This method

subdivided each triangle into smaller triangles simultaneously with intersection line
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traversal. As the intersection linewas observed to leave a triangle, the triangle would

be divided into smaller triangles that had the intersection line along their edges. The

triangles were reinserted into the octtree and rechecked for intersections with other

triangles. The motivation for this method was that divisions of triangles could be

simplified to a single line crossing from one side of a triangle to another. This would

remove the difficulties that are inherent when many intersection lines cross a single

triangle. Although this approach was implemented on some simple examples of

triangle subdivision, it was found to be extremely ungainly when applied more

complex examples, such as intersection lines that enter and leave the same side of a

triangle. The code required was excessive in length and hard to maintain. In many

cases, the need of this method to recompute intersections with extremely small

triangles also led to significant numerical inaccuracy. The approach in the above

paragraphs did away with many of these complications.

5.5 Loop Identification and Removal

5.5.1 Basic Loop Removal

Now that the mesh has been tessellated so that the intersection line only appears on

mesh segments, it is still necessary to determine what parts of the mesh are surface and

what are loops. Considering the four triangles meeting at each intersection line

segment, it is clear that no two surface triangles or two loop triangles can both exist in

the same local plane on opposite sides of the intersection line. Also, each of the

intersection lines forms a closed loop in the domain space (the closure may occur

outside the simulation boundary). Therefore the mesh is divided into two distinct

groups of triangles by the intersection lines. The Jordan Curve Theorem [11][12] can

be used to identify the triangles forming the loops. This theorem states that, given a

closed curve in Euclidean space, an escape ray from a point in the region bounded by
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the curve will cross the curve an odd number of times. An escape ray from a point

external to the curve will cross it an even number of times. The same situation holds

one dimension higher, where the role of the curve is assumed by the surface mesh, and

the Euclidean space is the simulation space, then any path on the surface can be

considered to be part of an escape ray. A path along the mesh that connects any two

triangles that crosses the intersection line an even number of times is therefore

equivalent to saying that the two triangles are of the same type. A connecting path

between two triangles thatcrosses an odd numberof times means that the triangles are

of a different type. Any path between two triangles will give the same results since the

intersection curves are closed. Different paths will have the same parity of their

number of crossings, although theymay have adifferent number of absolute crossings.

The mesh triangles can therefore be labeled in O(N) time. Each triangle is selected

and labeled either "surface" or "loop". It is then put into alistof triangles that possibly

have adjacent triangles thatare not yet labeled. This triangle is then removed from the

list, its adjacent triangles are labeled and these are placed into thelistif theyare notyet

labeled. This process repeats itself until all triangles are labeled. The parts that are

labeled as loop triangles are then removed from the mesh. Afterall triangles of type

"loop" have been removed from the mesh, the data structure needs to be restored to its

canonical form. Since at each intersection line segment, there are two "loop" triangles

and two "surface" triangles that contain it as an edge, mesh integrity is restored by

replacing the intersection line segment with a normal edge that connects the two

"surface" triangles. A cross sectional view of this example on the two basic types of

loops is shown (Figure 22).

In the preceding paragraph, the algorithm assumed that there exists reliable

knowledge of the surface or loop condition for a single triangle. For topography

modeling tasks that are primarily two-dimensional in nature, such as IC wafer



\

Simple Loop Bridge/Pinchoff Loop

Figure22) Cross SectionalView of Loop Removal
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processing, it is appropriate to assume thatcorners of the simulation area, sufficiently

far away from areas where loops might be generated, represent the actual surface. For

more complicated three-dimensional tasks, such as pieces of silicon that are floating

free in a wet etch process, the type of a starting triangle canbe determined by counting

the number of surface intersections on an escape ray leaving the triangle in the

direction of its outward surface normal (Figure 23) If the escape ray crosses an equal

number of surface pieces in the direction of their outward surface normals as in the

direction of their inward surface normals, then the ray has emanated from a valid
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Escape Ray Crosses Surface Once In Each Direction Giving Initial Condition of 0.

j Outward Surface Normal

0

Figure 23) Escape Rav Surface Determination with Winding Numbers Marked

surface triangle. This triangle may now be used in the loop labeling algorithm as a

valid starting point.

5.5.2 Identification ofDetached Parts

Parts of the surface may become separated during the loop removal; they represent

pieces of the bulk that have become detached during processing. These pieces can be

detected with the same marking algorithm that marks triangles as "loop" or as

"surface". If the labeling is initiated at a triangle thatclearlybelongs to the bulk of the

device, all other "bulk" triangles will be connected to it through a path along other

"surface" triangles. "Surface" triangles that cannot be reached in this manner are on

pieces that have become detached from the surface. To identify the discrete pieces that

have become detached, a list of all the "non-bulk surface" triangles is made. One of

the triangles in the list is chosen, and all triangles that can be connected to it along
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"surface" triangles are located. These triangles represent one piece. If the "non-bulk

surface" triangle list is non-empty, repeat the process to locate other discrete pieces

until the list is empty.

Nested loops, i.e. areas where two loops intersect, have the ability to create a

'false' surface (Figure 23). These structures can be detected by a variant of the loop

marking scheme that is dependent on orientation. This method is a three-dimensional

variant on the two dimensional winding number. Instead of using a two-state value to

distinguish between "loop" and "surface" regions, an integer is used. At the true

surface, the integer flag is set to 0. The mesh is marked in the same manner as the

original scheme with one exception. As the intersection segments are crossed, the

plane thatis being passed through is examined. If the marking path is proceeding in a

direction opposite to that of the outward surface normal, then the counter is

decremented by 1. If the marking path is proceeding in the direction of the surface

normal, then the counter is incremented by 1. If no intersection line was crossed, no

change is made to the counter. After labeling, all 0's are actual surface. Both the

"bulk" and detached pieces that represent actual objects that have become removed

from the bulk during processing will be labeledwith Vs. Pieces that have been labeled

with other numbers are"non-surface". This detection method is notnecessary formost

applications thatSAMPLE-3D performs, however. Only the binary loop removal has

been implemented in order to keep thecodesimple.

5.6 Resist Deloop

5.6.1 Why Another Deloop Algorithm?

As discussed before in the introduction to this chapter, ray advancement can be

used to track the shock condition in photoresist dissolution simulation. It is desirable

for a simulator to exploit this property to simplify the advancement of the mesh. Ray-
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Figure 24) Need for Resist Deloop
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trace advancementemploys the fact that the surfaceof the resist can, at each time step,

be defined as the outer envelope of all rays extended from the initial surface. The outer

envelope of the rays arethe rays that are on the borderof the volume made of the rays

and all points that have been traversed by them. During advancement some rays lose

their outerenvelope status by forming loops, as seen in Figure 24. These rays must be

removed so that CPU resources are not consumed by advancing them. This operation

is valid, since the rays that have become invalid do not affect the results of the

simulation. The drawback of removing these rays is that the mesh will become

disconnected and/or bounded at other places than the simulation boundary. Since the

original need for deloop hasnot disappeared, andthe extrarequirement now exists for

removing the trailing ends of the mesh around the shock conditions, a clear need exists

for a new mesh operation related to deloop.

The first deloop method was implementedwith the intention of removing the loops

from the photoresist problem, but after it was implemented, it was not clear how to

advancethe surfaceaftera deloop operation. The points of the mesh that represent the

shock had been generated by the triangle splitting method at the intersection line.



107

Because the first deloop method results in the formation of a continuous surface, it is

not clear how to interpolate new rays for the shock conditions. The previous

implementation of photoresist dissolution in SAMPLE in two dimensions addressed

this difficulty by breaking the surface into two distinct sections, as seen in Figure 24,

and advancing each independently. The first deloop method, though it could easily be

modified to not stitch the shock line together, could not remove loops from non-

continuous surfaces. Therefore, although the first method could handle the initial

deloop in photoresist dissolution with minor modifications, it could not handle the

second. Other methods were considered to avoid the difficulty of a new deloop

implementation, such as explicit tracking of the shock, but such methods are difficult

to implement, since many shocks in photoresist developmentare saddle points. As

evidenced by [13],explicit shock tracking is significantly more difficult to implement

in 3-dimensions than the new loop removal method described below. It was also

recognized that a method of explicit shock tracking wouldrequire a full treatment of

the mesh maintenancemethodsin Chapter6 to operateeffectively.

5.6.2 Theoretical Basisfor ResistDeloop

Surface advancement is considered to be a mapping of an initial surface in 3-D

space to another surface in 3-D space. This mapping is dependent on time (i.e. for

different simulation times, different mappings occur) When these mappings are

performed successively for small timeintervals, this represents the advancement of the

surface over successive time steps. For photolithography simulation, only mappings

that preserve the connectivity of the rays topologically are valid mappings. Of the set

of all mapped rays, the outer envelopeof rays, which represent the surface, exists as a

set of connected subsets in the ray domain space. Theouterenvelope of rays is defined

as the set of rays whoseadvanced endpoints have coordinates in space that no other
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Outer Envelope Ray Invalid Ray Outer Envelope Ray

Figure 25) Outer Envelope and Occluded Ravs

ray has passed through at any previous time (Figure 26). Invalid rays are those that

have been overlapped by outer envelope rays and have formed loops. The subsets of

rays that represent the outer envelope may be distinct subsets after sufficient

advancement. For this reasonit will be important that the subsets maintain some sense

of connectivity throughthe domain space, although the explicit triangle-segment-node

connectivity of the mesh maintained in the data structure could be split into two or

more disconnected sets. An example of how this disconnection may occur is given in

Figure 26, Figure 26 andFigure 27. Figure 26 is a delooped contactcut that is radially

symmetric. It is shown with the looped surface included in Figure 26. The loop that

has formed is alsoradially symmetric, therefore the removal of the loopedmesh by the

method shown in Figure 23 will result in two detached mesh parts. The domain space

representation of the rays is shown in Figure 27. This figure is a representation of the

connectivity of the rays. It can also be considered to represent the initial planarsurface

that the rays have propagated from, since the set of the endpoints of all rays form a

topological space with the same connectivity as the initial condition no matter how
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Figure 26) Outer Envelope of Ravs for an Analytic Etch Function

;^i><7_V^Hg%»fl£g^

Figure 26) Full Set of Ravs for an Analytic Etch Function
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Figure 27) Representation of Rav Domain Space for Above Example
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many advancements have occurred. The rays that are still valid after advancement are

shown in gray and those that have become invalid are shown in black. The grey parts

have become disconnected into two separate regions, representing the two separate

pieces of mesh that now describe the outer envelope. Because the invalid rays are

removed, a winding number method of finding the real surface over successive

deloops becomes impractical. It is more appropriate to employ the connectivity

properties of the domain space in identifying the proper resist surface. Methods for

doing so are described below.
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5.6.3 Properties ofthe Domain Space

The most important property of the domain space that is employed in ray-trace

loop removal is that rays that are not on the outer envelope do not affect the

advancement of the rays that are on the outer envelope. This property follows from the

least time path argument in Chapter 3. Some of the nodes that represent invalid rays

may have to be left in the mesh due to trianglesand segments that are partially invalid

and partially valid (i.e. the intersection line crosses them) so that the shock conditions

may be tracked properly. Because there are few of these rays compared to the number

on the outer envelope, however, they do not significantly affect the amount of CPU

resources consumed. Therefore the advancement of invalid rays is fundamentally

irrelevant to the accuracy of advancement, or to the amount of time or resources

consumed, as long as the rays are removed oftenenough. The connectivitythrough the

domain space mustbe maintained, however, even though raysare removed. This may

be performed by placing the connectivity of the invalid domainspace on the leftover

invalid nodes in some manner, since some will exist for every intersection line after

every deloop operation, due to the removal of node-triangle coincidences during the

triangle intersection tests.

To understand how loop removal may be accomplished, three other self evident

properties of the domain space are given. First, if a path can be drawn between two

points which does not cross a shock condition (i.e. intersection line), and one of these

points is known to be on the outerenvelope, then it is clearthat the otherpointand all

points on the path also are on the outer envelope (Figure 28). Second, since the outer

envelope forms a continuous surface, therefore, if there exists a shock condition, then

there must be another part of the mesh that attaches at that shock condition that is also

part of the outer envelope. This part will also be connected to the same intersection

segment as the first part. Third, because a region in the domain space of rays that has
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Intersection Lines

Figure 28) Valid and Invalid Region Boundaries are

Defined By Intersection Lines
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Other Point

become invalid will not become valid again, the loop area may be understood as

'growing' outward to cover more of the domain. (Figure 29)

The intersection lines in the domain space form the following types of structures.

First, the banana loop forms a single closed path in the domain space. This path

encloses a region, the interior of that is invalid surface. A closed curve forms a ring

made of two nested curves in the domain space. The area between the curves is

invalid. Topological alterations, such as tunnels, form two separate rings. The area

enclosed by each ring is invalid. (Figure 30) All other types of self intersection consist
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Figure 29) Evolution Of Invalid Region Over Time In Domain Space
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of combinations of these three basic curves. When combinations of these curves occur,

then the full set of invalid rays is the union of the sets described by each curve

individually. As an example,considera three plane intersection (Figure 31). Each pair

of tunnel ends creates one pair of topological curves, giving 3 pairs of topological

curves in total that are organized as shown in the bottom half of Figure 31. Intersection

lines that are formed entirely in invalid regions can be ignored, since no new rays are

made invalid by them. It is now possible to determine the status of any ray given the

patterns that intersection lines form in the domain space, and a method of determining

all relevant intersection lines from the mesh exists from in the previous deloop

method. It is trivial to remove the extraneous parts of the mesh defined by banana
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Topological Change

Valid Rays Invalid Rays

Figure 30) Basic Types of Invalid Regions in Rav Domain Space

loops and topological alterations, but the removal of loops that are formed by closed

curves is not so simple. It is still necessary for the method to properly determine where

the valid region is inside a closed curve, and for the appropriate connectivity to be

maintained. Two methods are described below.

5.6.4 The Algorithm

To exploit this additional surface motion knowledge for photoresist development,

it is first assumed that there is an area in the domain space that can be assumed to be

actual surface. This is not as easy to determine explicitly as normal deloop, since the

escape ray test can't be used. It is assumed that a certain part of the mesh is always real

surface, or that there is some other property that can be exploited, such as most slowly
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Cut of three tunnels extending together

Figure 31) Domain Space Representation of a Three Tunnel Intersection
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Code Section Level of Implementation

Intersection Location Handles all cases due to node pushing

Has problem with triangles with angles <10"3
degrees

Intersection Line Tracking Handles all cases, except 3-plane intersections

actually on intersection line

Triangle Subdivision Handles all cases, except 3-plane intersections

actually on intersection line

Removal Integer Labeling initiated at corner of

Figure 32) Resist Delooj:
m simulation region

) Routines That Have Been ImDlemented

moving part or largest area. Once this particularlocation is determined, it is clear that

all points in the domain spacethat are connectedto it by a path that does not cross any

intersection lines are also on the surface. The intersection lines that can be reached

mark the boundary of a region of the mesh that is known to be part of the surface. This

marking is represented in Figure 31 as the marking of the first set of 'S' at the top of

the top picture, and in Figure 34 in the top right hand corner. These intersection lines

that bound this region of the mesh that has been marked with 'S' are marked *M\ Each

intersection line that is marked 'M' is part of a shock front that is part of the real

surface. To continue determining the outer envelope of rays, it is necessary to

determine the mesh piece that connects to the opposite side of the shock. This other

piece that connects to the shock will also be adjacent to the intersection line. Therefore



117

every portion of the surface that connects to the shock will be marked *M' even if it

wasn't originally marked 'S' in the first pass.

The loop portions of the surface may now be labeled. The marked intersection

lines now completely enclose an invalid region of the domain space, since each single

intersection line forms the boundary of an invalid region. All triangles that are

completely enclosed in these sections of the domain space must be removed.

Therefore, since the boundary of this space has been completely marked by

intersection lines labeled *M\ a labeling sweep is performed within the interior of the

region bounded by *M\ These nodes are marked with the integer T. An example of

this marking is shown in the middle left partof Figure 34.

After this marking of the loop nodes has been completed, not every node in the

mesh has necessarily been marked as a surface or loop node. An incomplete marking

will occur if one the loops is a closed curve loop. To mark these unmarked nodes, the

nodes that are adjacent to intersection lines marked *M' are marked 'S' and are used as

the initialnodes in a new 'S' marking. This is valid, sinceof the four pieces of surface

next to an intersectionline marked *M\ one was the initialpiece of surfacemarked *S'

that led to the marking of *M\ and two others were marked with an integer to

determine the attached loop. Therefore the unmarked surface is the proper

continuation of the surface from the shock front. The continued surface marking is

shown in the right middle portion of Figure 34. If intersection lines arereached by the

continued marking, these lines are marked *M' and the loop markingis initiatedagain.

This time, however, the integerthat is used to markthe loops is incrementedby 1 from

the last iteration. (Figure 31)

Once the regions of invalid mesh have been removed, it is possible that the mesh

has become explicitly disconnected as in Figure 31. The integers that were marked on
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the nodes at the previous timestep are used to maintain connectivity over further time

steps. When sweeping out the invalid region during further deloops, whenever a node

with an integer marking is located, all other integer nodes with that marking are

located and considered to be connected to that node. This allows the tracking of

invalid surface to continue across regions of the ray domain space where the invalid

rays were removed from the simulation mesh. There is no possibility of confusing

marking nodes on the outer envelope with these integers, since nodes that are marked

with integers were invalid rays in previous time steps, and invalid rays do not regain

their validity.

5.6.5 Normal Labeling /An Alternate Method

While integer marking has been found to be fast and efficient, a complete proof of

its correctness is difficult. It is particularly well suited to standard photolithography

analysis due to the nature of loop formation in these conditions, since the loops tend to

occur along standing wave nulls, which are generally coplanar. Another method of

loop identification, however, is clearly robust. This method analyzes the surface

normals at the intersection line, and is called "normal labeling'. It tracks the outer

envelope of the rays, by using the ray directions, which are equivalent to the inner

surface normals, to determine the proper pieces of the outer envelope at shock

conditions. An example is shown in Figure 35. This removal method was implemented

in a partial form in Kenny Toh's previous work on SAMPLE-3D [1].

The 'normal labeling' removal method proceeds as follows. Assuming that the

initial surface guess is correct, then all other points that can be reached without

crossing a shock are also surface. At each shock corner, the marking of the outer

envelope must continue on the intersecting piece of surface as shown in Figure 35. The

proper direction to take on the intersecting piece of surface to continue the outer
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envelope marking is in the direction of the inward surface normal of the original piece

that met the intersection line. The process of marking continues until no more pieces

of the outer envelope can be reached.

By the normal labeling method, each intersection line test chooses exactly one way

of connecting the surfaces. This allows a consistent, non-intersecting and orientable

surface to be constructed. Normal labeling has not been implemented, because integer

labeling has been found to be satisfactory and probably equivalent to normal labeling.

Normal labeling is worth mentioning because it equivalent to the concept of an 'outer

envelope' and completely proving the validity of integer labeling has been extremely

difficult. Integer labeling, however, has never been found to fail, so far, in any real or

theoretical example.
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5.6.6 Boundary Conditions

Two types of boundary conditions must be considered in the resist deloop routine.

Bothof these conditions canbeconsidered to be reflective. For resistdeloop, however,

there is a difference. The first type of boundary condition is the condition on the

sidewalls of the simulation region. The surface is considered to be symmetrically

reflected across the sidewall planes. This means that a reflection of the same structure

exists on the other side of the planes that bound the simulation region and are

perpendicular to the initial condition plane and the substrate plane. This symmetry is

shown in Figure 36 for a simple two-dimensional object that has Laplacian conditions

imposed on a square boundary. In this case surfaces that have been reflected across the

boundaries are mathematically equivalent to an infinitely repeating mesh that

embodies the symmetry. Therefore, clipping the mesh at the boundary is completely

satisfactory for loop removal purposes.

For the intersection of the surface mesh with the bottom of the simulation region,

i.e. the interface of the resist with the substrate, the conditionsfor normal deloop and

resist deloop must be handled separately. The substrate is assumed to be an infinitely

unetchablematerial. In etching,a material with 0 etch rate is equivalent to a symmetric

boundary condition as discussed before. For standard deloop, simpleclipping against

the boundarywill suffice. For resist deloop, however, a special boundarycondition is

required, since pieces of resist can become separated from one another by etching

processes that form trenches and other structures. For the mask shown in Figure 37,

loops occur on the sidewalls on either side of the small central square. These loops

occur even after significant post-exposure baking and are representative of the type of

largescale formations, otherthanstanding waves, that demand deloop. Clipping at the

substrate boundary during simulationcreates problems for deloops that occur after the

clipping operation. If clipping occurs, traversal of the mesh can not be performed
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across the gap formed by the trench. Simply considering the bottom surface as part of

the mesh to be traversed is not sufficient, since loop triangles can intersect the

boundary as noted above. SAMPLE-3D instead allows the surface to pass underneath

the simulation region into a special region where the etch rate is 100times higher than

at the bottom of the resist. This allows the normal deloop operations to be employed

on the mesh, sincethe partof the mesh needed for traversal is retained by the program,

as shown in the top half of Figure38. The existence of an extremely slow etch rate that

is proportional to the etch rate at the bottom of the standard simulation region does not

affect surface evolution above the resist-substrate interface, so this method does not

affect the simulation result. The surface is clipped for output after the surface has been

fully advanced and deloop is no longer necessary, as shown in the bottom half of

Figure 38.
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5.7 Set Operations Based on Deloop

The basic deloop engine has also been modified to allow set operations to be per

formed in SAMPLE-3D. This modification was performed by J. Seller and was par

tially based upon the ideas presented in this section. This modification was performed

to assist the operation of multi-layer plasma etching operations that were developed by

E. Scheckler [8]. E. Scheduler's facet motion algorithm is capable of advancing a sur

face that represents the interface of the air with more than one material. To perform

capacitance extraction, or other simulation techniques, on only one particular layer of

material, the entire surface of the material must be identified. To perform this opera

tion, the intersection of the volume of the original material with the air-material inter

face surface must be performed. The implementation that was performed by J. Seller

was based upon the upon the techniques in the following section and is called the

CUT-3D program. Because the author of this manuscript only contributed existing

code and advice to the CUT-3D effort, only the general theory of set operations that

was employed is presented here.

5.7.1 Theory ofDeloop Based Set Operations

The deloop operation is a unitary operation performed on a surface in order to

remove distortions created by a topological mapping. The same operation may

likewise be performed on N surfaces in such a manner as to perform set operations.

First, consider the special case of two surfaces. Surface subdivision occurs in the usual

manner, with all triangles under consideration inserted into the octtree. The surfaces

are now divided, such that the intersection line represents the common region between

the two surfaces. The subdivision of triangles proceeds normally as before. The major

difference now appears in the removal step. Both surfaces are first self-delooped. The

winding number of each surface element is then computed with respect to the other

surface. A winding number is found in the same manner as in Figure 23, except that
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the numbers are incremented and decremented if they cross the other surface. If the

surfaces actually intersect, it is not necessary to extrude an escape ray, since the

surfaces have already been self-delooped. Intersecting surfaces that have been self-

delooped, may have their proper winding numbers determined by examining the

orientation of the surfaces at the points of intersection. The escape ray may be

necessary if the surfaces do not intersect, since the containment of one surface by

another is possible.

The set operation that is performedis based on the particular set of values, for each

surface, which are maintained by the remove step. For instance, if all nodes marked 0

on surface A are maintained, and all nodes marked 0 on surface B are maintained, then

the operation is A u B. If all nodes marked 1 on surface A are maintained and all

nodes marked 1 on surface B are maintained, then the operation is A n B. There are

four possibilities for the two body situation (Figure 39).

The 2 body deloop-set operation problem can be represented by a 2x2 set of

operators D^ (w), whereD-. is winding number test of i in relation to j, and 'w'

representing the winding number that is preserved. Simple deloop on body i can then

be notated as D-. (0) and the operation that generates the basic loops of the surface is

Djj (1). For the set operation formulation, theunion of multiple deloop operations is

used. Theset operation AuB, can therefore be described as DAB (0) uDBA(0).

(Figure 39) The subscripts represent that the winding number on the surface of the first

subscript is being considered in relation to the surface of the second subscript.

Therefore the two body operations are:

Set Operations Table

D Operator Set Operation

DAB(0)uDBA(0) AuB



B-A

A = 1 B = 0

0 0 0

A-B

A = 0 B = 1

AnB

A = 1 B = 1

Figure 39) The Four Basic Set Operations Using Winding Number Labeling
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Set Operations Table

D Operator Set Operation

DAB(0)uDBA(l) A-B

DabCUuDj^O) B-A

dab(1)^dba(1) AnB

129

For the N body problem, the operationsmust be performed with a remove step for

each level in the operation. Unfortunately, the expression may have to be evaluated as

a large collection of minterms. For instance, there is no set of single integers to

describe what parts should be kept of A, B and C for the operation Au (BnC)

(Figure 40). This function evaluates to the union of the terms DABC (0,0) ,

DABC (^ °)» DABC (°» !)» DCAB (°» *) and DBAC (°» *)» wnere the first letter in

the subscript is the body containing the surface part, and the arguments are the

winding numbers according to the othersubscripted surfaces. Becausetwo-argument

set operations are easier to compute, since only one winding number is required for a

surface, it may be preferable to only perform these operations, and break down all

desired high level operations into this form. Such a breakdown can be precomputed

using logic minimization techniques such as the MIS system [14].

5.8 Comparison of Resist Deloop with Toh's Loop Removal Method

A technique with O (NlogN) time behavior for removing negative volume

regions from three dimensional meshes has been designed and implemented. This

method is significantly faster than the method designed by K. Toh [1], which has

O (N ) execution time. Thenewdeloop method, on a DECstation 5000, performed at

a loop removal step in 12 seconds for 3000 triangles. Two octtreecomputations were

performed, each requiring 5 seconds, at a rate of 600 triangles/sec. 2 seconds were

required for labeling and removal. The old deloop method required 110 seconds for
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Initial Sets with Deloop Expressions Marked

Extracted surface of Au(BnC)

Figure 40) A Three Surface Set Operation
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the same problem. The total time necessary to advance the surface to this operation

was 40 seconds. The surface is shown as a top view in Figure 41 along with its inter

section line. The result of applying old deloop to the test case is shown in Figure 42,

along with the result of applying the new deloop method. As well as being faster, the

new resist deloop technique successfully identified the actual surface and removed the

loops.

In summary, the most important loop removal technique for general application is

the basic loop removal technique that constructs a closed non-intersecting surface.

This method has wide application in entire surface advancement field. For the pur

poses of simulating photoresist development via the ray-trace method, the resist

deloop technique is preferable, although it is unknown at this time whether integer

labeling or normal labeling is the best method to be employed. Implementing resist

deloop has added significant functionality to ray-trace, but it doesn't allow ray-trace to

operate fully as a general photoresist dissolution simulator. Once resist deloop was

implemented, a new difficulty with ray-trace was discovered that could not be detected

earlier. This is the phenomena of ray scattering. It is discussed in Chapter 6.
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Figure 41) Test Surface for Deloop Comparison
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Chapter 6 Surface Mesh Maintenance

6.1 Introduction

SAMPLE-3D requires that its meshes be as regular as possible for a variety of rea

sons. As previously stated in Chapter 4, it is necessary for points to be well spaced for

a properly accurate representation of important surface properties, such as the surface

normal. In addition, the existence of a regular mesh assists in alleviating difficulties

that occur during surface advancement. The two major difficulties that are encountered

during surface advancement, other than improper segment lengths, are the existence of

thin triangles and crenulations in the surface. If these features can be removed, or

made less severe, during advancement, then advancement of the surface mesh can

become easier and more accurate. The most desirable way to remove these difficulties

is through the use of easily computed local heuristics, since the effect of these opera

tions on the accuracy of the overall topography is generally not severe, except in the

beneficial sense, and other attempts at regularizing the mesh [1], which were based on

computing global approximations, are typically found to involve significant computa

tion time.

Attempts at heuristic regularization of a triangular mesh that does not have an

associated volumetric data structure for the purpose of surface advancement have not

been found in the literature. Some methods that involve advancement by conjugate

gradient techniques have been discussed [10][11], but these are slower than would be

desired for photolithography and topography simulation purposes. Therefore, an

approach is outlined in this chapter, which is based upon two dimensional observations

and the desire to remove crenulation from a three dimensional surface. The heuristic
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techniques must, of course, be considered tentative. This approach is partially imple

mented and encouraging examples are given.

6.1.1 Grid Generation

Grid generation is animportant consideration for any method to numerically solve

partial differential equations that are embedded in a continuous spatial domain. To

represent the domain for the purpose of solving partial differential equations, it is

necessary to divide the space into a finite number of connected patches. Typical two

dimensional examples of patches are squares, rectangles and triangles. To represent

important simulation parameters, i.e. the variables and other important terms in the

differential equations, shape functions are normally employed. A shape function is a

parameter or set of parameters with an associated interpolation function that is defined

over a single spatial patch [2]. This function is used to determine the value of a

variable or other parameter at any point contained in the patch. For this reason,

numerical methods depend on shape functions to represent the parameters being

manipulated. Many types of shape functions exist, though the one that is used most

often is a single parameter value that is defined over an entire patch.

Because the shape functions are interpolation methods, they contain error terms

that are dependent on the size and shape of any particularspatial patch. Therefore, the

ability of a shape function to represent important simulation values is strongly

dependent on the size and shape of individual patches. The patches must be small

enough to allow the error that arises from the interpolation of shape functions to be

minimized. In the case of rectangular or triangular spatial patches, it may also be

necessary to enforce particular conditions upon the dimensions of these shapes, such

as keeping the length to width ratio of rectangles below a specified maximum value, or

keeping every angle in each triangle above a certain value. More complex conditions
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upon the possible range of shapes may also be enforced. In addition to constraints on

patches that arise due tosimulation error, other limitations may berequired in order to

minimize the amount of memory and CPU.time that is consumed during simulation.

Limitations of this form are normally expressed as restrictionson the minimum size of

patches and as limits on thenumber of patches thatmaybe employed.

6.1.2 Dynamic Grids

Many methods thatemploy gridsareconcerned onlywith the initialgeneration of

the grid. Programs such asFASTCAP [3] thatdonotcontain timedependent variables

have no need to use more than one spatial subdivision. Other simulation algorithms,

such as ADVECT [4] or CRATER [5] in SAMPLE-3D (Chapter 4), that do simulate

time dependent processes, simplify both programming and algorithmic complexity by

employing only one spatial gridoverall time steps. Finally, there are methods that do

dynamically alter the grid over successive time steps. One class ofgrids thatalter over

successive time steps are 'perturbational grids'. These grids simulate physical systems

by deforming themselves toconform to the motion ofa particular physical parameter

or object. The SAMPLE-3D string algorithm and associated winged-edge data

structure is one example of this method, since the elements s of the grid distort

themselves to track the motion of the evolving surface. Examples also include the

work of H. Trease [6] with Free-Lagrangian grids and the Surface Evolver of K.

Brakke [11]. The Surface Evolver also models points with triangles in 3-dimensions,

but it focuses exclusively on minimum energy surfaces.

6.1.3 Triangulation ofa Moving Interface

SAMPLE-3D concerns itself specifically with a two-dimensional grid of triangles

whose motion are determined by the advancement of the points in a perturbational

manner that depends on the Lagrangian equations ofmotion (Chapter 3). The triangles
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represent the connectivity of the mesh points and are used to determine when

particular points must be removed, so that the point trajectories don't get too dense,

and when new points must be created so thatnew rays may be interpolated. For the

purposes of accuracy, it is necessary that the triangles be reasonably close to

equilateral. A uniform triangle size also allows for a reasonably large time step to be

used, which is approximately 15% of the ideal segment length divided by the

maximum movement rate in SAMPLE-3D. This uniformity of triangle sizes is

especially important for ray-trace, since the pointsdo not use information from nearby

points to determine the advancement rate and direction. It is, therefore, extremely

important thathigh frequency distortions in the mesh be damped, while low frequency

distortions that represent topography be maintained and allowed to form. If this is not

done, then extremely small loopsmay form thatare not appropriate for the delooper to

handle. Therefore,we see from experience thatthere are fourimportant conditionsthat

should be maintained in order to properly represent the topographical surface and

assist the advancement method in maintaining accuracy. 1) Small segments must be

removed, since points that are too close are redundant and can cause non-meaningful

loops to form. 2) Large segments must be broken into smaller segments new points

must be interpolated. 3) Thin triangles must be removed for three reasons. First, non-

meaningful loops may form at these locations. Second, interpolating the direction

vector when new rays are introduced is extremely inaccurate if the surrounding

surface contains a thin triangle. Third, and most important, large time steps can be

taken without turning the triangle inside out. 4) High order variations of the surface

normal must be removed. Removal of these variations by local operations that do not

move points significantly, will insure that important topographical features are not

affected adversely.
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6.2 Triangulations in Two Dimensions

Surfaces that represent topography often contain large planar areas. Therefore,

most operations that preserve a proper triangulation on topographical structures are

built from existing methods developed for triangulations in two-dimensions. An expla

nation of the most popular planar triangulation method, Delaunay Triangulation [7], is

given and its close relationship to altitude-based triangulation. A specific heuristic

method of enforcing a minimum altitude that has been developed for SAMPLE-3D is

described.

6.2.1 Delaunay Triangulations

The Vornoi diagram [7] of a set of mesh points in the plane is a collection of

regions that partition the plane. The Vornoi region of any mesh point is the set of all

pointsin the planethat arecloserto thatmesh pointthanany othermeshpoint. Exactly

one region is associated with each mesh point (Figure 1). The Delaunay method of

constructing a triangulation of some set of mesh points, is to construct the dual of the

Vornoi diagram of that set of mesh points. This procedure constructs a unique

triangulation that has several importantproperties. First, the circle of circumcisionfor

any triangle does not encloseanypoints otherthan thosein the triangle. This is known

as the 'Delaunay condition'. Also, the minimum angle of all the triangles in the mesh

is maximal forallpossible triangulations. These properties mean thatthe triangulation

contains a minimum number of 'thin' triangles. In general, the triangles in a Delaunay

triangulation will be as equilateral as possible. Since it is desirable for the triangles in

the SAMPLE-3D surface mesh to be as equilateral as possible,methods that are used

to maintain Delaunay-like conditions have direct relevance to SAMPLE-3D mesh

maintenance problems.



141

Initial Collection of Points

Vornoi Diagram of the Above Points

Delaunay Triangulation Formed from the Vornoi Diagram

Figure 1) The Delaunay Triangulation



Before Delaunay Flip After Delaunay Flip

Figure 2^The Delaunay Flip
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6.2.2 Delaunay Triangulations with MovingPoints

If a point is moved in a Delaunay type mesh without affecting the surrounding

connectivity, it is possible that some ofthe resulting triangles may nolonger satisfy the

Delaunay Condition. If this should occur, it is desirable to use the existing mesh as a

guide for a new triangulation of the points that satisfies the Delaunay condition,

instead of completely regenerating the entire triangulation by generating anewVornoi

Diagram. Fortunately, such a methodexists. An example for the three-dimensional

tetrahedral case was developed by J. Painter [12]. This method, called the 'Delaunay

Flip', allows the original triangulation to serve as an initial condition for a new

triangulation, and constructs the new triangulation through aseries of local operations.

Given two triangles that share a common edge, where the circle of circumcision

encloses all four points, the two triangles may bereplaced by twodifferent triangles by

'flipping the edge' as seen in Figure 2. The important circles of circumcision are

included in the figure. While the first triangulation does not satisfy the Delaunay
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condition, the two new triangles do satisfy it, in regard to the original four points.

Successive application of this operation, starting with the thinnest triangles, leads to a

new mesh that satisfies the Delaunay condition in a few operations. This suggests that

a proper triangulation can be maintained for a set of points in motion via local

operations, and, if the motion of the points is not extreme, the updating procedure will

be faster than a completely regenerating the planar triangulation. The existence of this

method is dependent, however, on the existence of a set of well-defined conditions,

like the Delaunay condition, that can be used to inform the design and application of

the local operations.

6.2.3 Altitude and Segment Length Condition with Moving Points

The planar part of the SAMPLE-3D mesh refinement scheme is now described. To

satisfy the first three of the four requirements for a well triangulated mesh, two

conditions are defined that must be maintained on the triangles. First, the lengths of all

the segments in the mesh must be between a lower and an upper bound. This condition

was proposed and implemented by Kenny Toh [8]. The second condition is that all the

altitudes of the triangles must be greater than a minimum length [9]. The altitude is the

distance of a vertex from the opposite triangle side. The second condition is used to

remove thin triangles from the mesh and to keep triangles from 'folding' themselves.

Folding is described as a point, moving through a segment, in-between updates in

triangulation. An example of this phenomenon is shown in Figure 3. The folding

phenomena can be prevented from occurring, as shown in the bottom of Figure 3,

because the motion of the points in SAMPLE-3D is limited by an advancement length,

as discussed in Chapter 4. If the distance that the points move between thin triangle

removal steps is less than half of the minimum altitude, it is impossible for a point to

pass through the opposite side of a triangle during advancement. By enforcing a

minimum altitude condition, as shown in Figure 4, in conjunction with a minimum
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A Thin Triangle With Advancement Vectors

The Thin Triangle After Advancement and Folding

A Triangle That Is Impossible To Fold

Figure 3) Triangle Folding



Minimum Altitude

Triangle With An Altitude That is Too Short

Triangle With Altitudes of Sufficient Length

b = Adjacent Si =Length of Altitude

a = Longest Side

Computing the Minimum Altitude

Figure 4) Minimum Altitude Condition
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segment length condition, atriangulation isgenerated that cannot contain folding after

advancement. This method has often been employed in triangular and tetrahedral free-

lagrangian grids [6][12]. The smallest altitude isassociated with the longest side of the

triangle, since the side length times the corresponding altitude equals twice the triangle

area, and can be computed by the formula:

llaxbll

TIT [EQ: 1]
where thevectors aand b are two sides of the triangle as given in Figure 4.

To maintain these triangulation requirements, local mesh modification strategies

are employed to remove thin triangles. These methods are shown in Figure 5.The first

strategy is the Delaunay Flip. It is performed if it's application will not form another

thin triangle. In SAMPLE-3D meshes, this strategy is used the most. If it is detected

that the application of a Delaunay Flip will form a single thin triangle, then the

segment in common between the original thin triangle, and the new thin triangle that

would be formed, is merged. The node that is opposite the longest side in the thin

triangle is left stationary, and the other node of the segment is moved so thatthe two

nodes occupy thesame coordinates. Theconnectivity of themeshconnected to the two

nodes is then combined to form asingle node as in anormal segment merging step. If

a Delaunay Flip would form two thin triangles, or if the diagonal segment that would

be formed is less than the minimum segment length, then the diagonal segment is

generated andthe two nodes are merged into onenode. At the border of the simulation

region, it may occur that a thin triangle has formed where the long segment is

coincident with the edge. Since flipping isimpossible inthis case, the opposite node of

the thin triangle is moved to the location where the altitude intersects the long

segment, thereby removing the thin triangle. Figure 6 shows this procedure. These

methods strongly tend towards convergence, since points and segments that are
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Segment Ripping

Segment Merge

Diagonal Segment Merge

Figure 5) Thin Triangle Removal



Mesh Connectivity to Other Points

Simulation Boundary

Moved and Reattached
Connectivity

New Point Attached to Boundary

Figure 6) Removal Of Thin Triangle At Boundarv
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problematic in forming proper triangulations are removed. The actual minimum

altitude used is half of the minimum segment length. (Although advancement of rays

is normally limited to half the segment length, and the altitude needed to prevent

folding for this advancement distance in anydirection would be the minimum segment

length, the points move mostly in the direction of the normal of the triangle during

photolithography simulation. Therefore, the altituderequirement can be less strict.)

While this altitude may seem small, it contributes significantly to the robustness of the

triangulation method, since this value is large enough to catch problematic triangles,

while being small enough that significant mesh alteration is not necessary to remove

these triangles. An example of thin triangle removal in the SAMPLE-3D mesh is

shown in close up in a somewhat planar region in Figure 7.
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Mesh Without Thin Triangles Removed

Mesh With Thin Triangles Removed

Figure 7) Thin Triangle Removal
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6.3 Surface Triangulations in Three Dimensions

In three dimensions, issues arise that did not appear in the planar triangulations.

Besides keeping the trianglesfrom folding and interpolating new points in appropriate

places, it is necessary to adjust the triangulation to reduce the overall sum of the dihe

dral angles of the segments of the mesh, and to prevent inadvertent topological

changes from occurring. Because of the ability for the mesh to be non-planar, segment

merging and thin triangle removal are affected. Crenulation, defined as unnecessary

folding that occurs during advancement, needs to be damped out as well, since thin tri

angle methods help reduce it but cannot prevent it. Reducing crenulation is also impor

tant, since it makes advancement methods that employ many triangles meeting at a

point much more stable and accurate than they otherwise would be.

6.3.1 Segment Merging and Subdivision

Basic segment merging and subdivision with ray interpolation were covered in

Chapter 4. Segment subdivision has no great significance for mesh maintenance in this

chapter, since the shape of the surface is undistorted. The tendency of segment

subdivision to form thin triangles is small. Segment merging has other properties,

however, that can cause difficulties to appear when applied in a three-dimensional

setting. If segmentmerging is considered in the domain space of triangles, as in Figure

8, it is seen that the removal of a segment 'compresses' the triangular regions next to

the segment. These regions may contain more than a single triangle and still satisfy

other mesh conditions, since the surface pieces can extend into the third dimension.

Techniques related to segment merging have also been

Two merging difficulties may occur, but they are dependent on an identical

condition occurring in the mesh. As seen in Figure 9, the existence of mesh

connectivity within the region to be merged, can lead to serious distortions in the
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Segment to be Merged Unmoved Line

Region Removed Line to be Altered

Figure 8") Segment Merging in Domain Space
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Domain Space Representation of Problematic Segment Merging

Segment Merge Operation Shown in Euclidean Space

Coplanar Triangles Formed asa Result of Segment Merging

Figure 9) Coplanar Triangles Formed bv Segment Merging



153

mesh. The particular example below, that of a pyramid collapsing to form two

collinear triangles, was originally described by Kenny Toh [8] and Ed Scheckler[5].

Each implementation tried to overcome this difficulty by performing a recursive

segment merge on one of the segments connected to the pyramid vertex. Both of these

methods, however, were not effective in all cases, since they did not specifically cause

the vertex point to be moved to the boundary of the collapse region. This method has

been improved by the author. The three triangles are removed entirely and replaced

with a single triangle before the merge operation takes place. Topological alterations,

which have been implemented by J. Sefler in CUT-3D, are also important to consider

during segment merging. They may occur if, in the last advancement step, two parts of

the surface passed through one another to form a small hole that represents a

topological alteration. They may also occur if the mesh will separate into two sections

at the next time step. Figure 10 shows a topological alteration that occurs when a

segment is merged. The grey triangle is not an actual triangle in the mesh. It represents

the planar space between the two segments that will be collapsed. This particular

merge operation causes a detached piece of mesh to form that encloses a volume.

Proper handling of this case depends on the application, so either removal or

detachment may be valid. If removal is valid, then the offending mesh is labeled and

removed. If detachment is appropriate, the connectivity of the mesh is altered before

the merge operation, so that the grey region in Figure 10 would represent two

congruent triangles, one triangle for each separate mesh. It may also be the case that

the segment should not be merged at all. If two surfaces are advancing towards one

another, and have formed a small hole after a deloop operation, the hole should be

allowed to grow, and neither detachment nor removal is valid. Either operation would

undo the topological alteration just performed by the delooper. Topological alteration
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Topological Alteration Before Merge

Topological Alteration After Merge

Figure 10) Merge Operation Creates a Topological Alteration
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consideration has not been implemented by the author, but has been implemented by

K. Brakke [11] and J. Sefler.

6.3.2 Non-Planar Thin Triangle Removal

When removing thin triangles, the angle along the long segment of the thin triangle

between the thin triangle and the neighboring triangle must be examined. The dark line

in Figure 11 shows where the non-planarity test is performed. If the dot product of the

unit surface normals on either side of the segment is less than 0.8, then the non-planar

thin triangle removal routines are employed, otherwise normal planar removal of the

thin triangle occurs using the techniques discussed before. When removing a non-

planar thin triangle, it is necessary to move one of the points. The point is moved to the

location where the altitude intersects the long side. The opposite triangle is subdivided

into two triangles as shown in Figure 12. This point motion does not affect the

accuracy significantly, since the motion of the point is always an amount less than the

minimum altitude value. It is assumed that the inaccuracy incuned by moving the

point such a small amount is less than the inaccuracy that would occur if the thin

triangle is not removed. Other non-planar thin triangle cases occur as a result of the

segment length conditions as seen in Figure 12. The first removal case shown is the

standard removal case, where the point is moved to the original diagonal. The second

case occurs if the motion of the point to the base of the altitude would leave a segment

that is too small. This is handled by moving the point directly to the node that would

form the other end of the small segment. If both nodes are candidates, then the

segment that is smallest is chosen. The third case is when the new diagonal that is

formed as a result of the flip and move operation is shorter than the minimum segment

length. In this case both points on the diagonal are moved to the base of the altitude.
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Original Configuration: Top View

A

Original Configuration Side View

Bending Angle Smaller Than 28 Degrees Bending Angle Larger Than 28 Degrees

Figure 11) Non-Planar Thin Triangle Removal



Thin Non-Planar Triangle Removed

Thin Non-Planar Triangle thatWould Form a Short Segment (S)

Two Thin Non-Planar Triangles that Do Not Form Short Segments

Figure 12) Non-PlanarThin Triangle Removal Cases
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6.4 Reducing Non-Planarity

Another important consideration in mesh maintenance is the reduction of the non-

planarity ofthe mesh. The non-planarity ofa mesh is defined asthesum ofthe bending

angles between triangle surface normals at each segment. Thisa different concept than

surface curvature minimization asexpressed by K. Brakke [11], since it is more impor

tant in etching simulation to sharpen ridges between planar regions than to smooth

them out or 'crenulate' them. It is very desirable that a mesh that represent a topogra

phy or photolithography surface has a smallnon-planarity, since this seems to improve

the accuracy of advancement and the appearance of the result. In addition, surface

advancement in regions of homogeneous etch rate tends to dampen significant varia

tions in planarityin real resists, so minimizing non-planarity is physically reasonable.

Reducing non-planarity is not the primary consideration in the construction of a good

mesh, however, since carrying the concept to its logical extreme would destroy the

topography represented by the mesh in favor of a flat plane. Therefore, it is best if any

operations to increase planarity operate in a local manner and avoid moving mesh

points by any significant distance. The otherthree desirable properties of a good mesh

(i.e. small segments, large segments, and thin triangles) must also be taken into

account, but methods designed to enforce these conditions tend to improve the planar

ity of themesh as well. Specific planarity improvement methods arenot implemented

in SAMPLE-3D at present.

Planarity improvement, in the case of smallsegment merging, can be enhanced by

properly selecting which pointof thesegment will be removed. Figure 13represents a

segment merge taking place where two generally planar regions of the mesh meet at an

angle. Two options exist for removing the small segment. Both are shown at the

bottom of Figure 13. The removal of the right hand point P, as shown in section 5,

results in a piece of mesh that is significantly non-planar, since there are large
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differences in the surface normals of the mesh triangles across five segments of the

mesh. In thecase of 2, there are only two segments that have significant changes in the

surface normal. The non-planar thin triangle removal methods, that have been

previously discussed, can also be used to flatten the mesh. Cross sections of how thin

triangle removal can achieve this goal are shown in Figure 14. The figure in 1

represents a thin triangle and surrounding mesh from the domain space perspective.

Removal of the thin triangle, assuming the triangle is non-planar, improves or

maintains the planarity of the mesh in all threecases. These cases are typical of those

encountered in SAMPLE-3D. The cross sections also demonstrate that small segment

removal may improve planarity.

Planarity may also be improved by the removal of crenulation. Crenulation is

defined as a condition where local alterations in the connectivity of triangles between

the mesh points can result in an improvement of the planarity. An example of

crenulation in an actualmesh is shown in Figure 15.The crenulationscan be observed

along the top ridges of the elbow structures and along the sides of the trenches.

Crenulation removal represents a departure from minimum curvature surface

advancement concepts. Minimum curvature surface simulation often tries to increase

crenulation [11]. The manner in which crenulation tightens ridges is shown in Figure

16. Two planar meshes, which are colored with different shades of gray, meet at a

ridge line that is represented by the solid line. The two triangles in the center of the

picture have surface normals that point towards each other, thereby forming a

'crenulation' in the ridge line. To reduce the non-planarity of the mesh, it is clearly

advantageous to perform a Delaunay like flip on the two triangles that form the

crenulation. It is recommended that after advancement, each segment be evaluated to

see if a flip of the segment will improve the planarity of the mesh over some preset

factor. If this can be performed, then the segment is flipped. There may be more than
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2) Side View

/

3) Merged Left Top 'View 4) Merged Right Top View

5) Merged Left Bottom 'View 6) Merged Right Bottom View

Figure 13) Segment Merging Cases
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Domain Space Representation

Flattening of the Mesh

Non-Distortion of the Mesh

'Toning' up of Shock Front

Figure 14) Planarity Preservation via Non-Planar Thin Triangle Removal
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Figure 15) The Crenulation Example
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Before Decrenulation

After De-Crenulation

t Surface Normal

Figure 16) The Decrenulation Operation
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one method of flipping though, since the flip operation may cause small segments,

large segments or thin triangles to form. This contingency probably can be dealt with

satisfactorily by the addition of onlya few special cases.Performing the decrelunation

operation will have two advantages. First, the accuracy of mesh advancement in

SAMPLE-3D, both for photolithography and other processes, such as plasma etching

and ion-milling, is significantly improved, since the error that arises from point

advancement routines is strongly related to the level of non-planarity in the mesh.

Second, the possibility for formation of loops is significant without decrelunation,

since increasing surface roughness allows more opportunities for points and triangles

to pass through one another without being detected by small segment and thin triangle

routines.

6.5 Ray Scattering

Ray trace advancement has been shown to accurately represent large scale shock

fronts by employing resist deloop (Chapter 5). Resist deloop works best, however, on

large shock fronts. Non-planarities in the surface can introduce loops that resist deloop

is not well adapted for, because they are too small to efficiently remove. An example

of such a loop is shown in Figure 17. This figure is a close up of the lower right hand

corner of the bottom picture in Figure 15 after advancement with thin triangle removal

turned off. This figure also represents what happens to the thin triangles in Figure 7

when advancement proceeds. Notice, also, the rays that are departing the simulation

region due to the lack of thin triangle removal at the boundaries. The loop that has

been formed in Figure 17 is rather complex and small. The resist delooper cannot

remove it, however, since a part of each triangle is valid mesh. Thin triangle removal

assists significantly, however, in keeping the loop from forming. Figure 18 shows the

same region after the same advancement time with thin triangle removal turned on.



Small Loop Formation

Intersection Line

Figure 17) Errant Ravs
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Thin Triangles Removed

Figure 18) Errant Ravs Under Control
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The loop in Figure 17 occurred because a small shock should have formed at that

point Loops of this sort may occur where no shock should form, such as in Figure 19,

which represents a circular contact cut. The small intersection lines at the top of the

intersection line figure represent the formation of small loops. Because the rays should

be traveling radially outward from the center of the contact cut, no loops ought to

form. Although further improvements in the thin triangle removal and crenulation

code should serve to dampen out these loops as well, the fact that this should not have

occurred at all is cause for concem. A contact cut that is generated by an analytically

computed etch rate and gradientdoes not exhibit any ray scattering behavior. This sug

gests that the scattering may be occurring as a result of errors in the etch rate interpola

tion function or the generation of the gradient from the etch rate data. This phenomena

demands further investigation.
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Ray Scattering Example

Intersection Line of Scattered Rays

Unscattered 10 Standing Wave Example

Figure 19) Rav Scattering
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6.6 Conclusions

Four conditions for a proper mesh in SAMPLE-3D have been described. The

importance ofmaintaining each condition has been explained. The conditions are

small segment removal, large segment subdivision, thin triangle removal, and

planarity improving operations. While the first three have been implemented in

SAMPLE-3D and havecontributed to its robustness, a full mesh maintenance method

that employs planarity methods still remains to be designed. It must alsobe notedthat

the maintenance of planarity as the surface advances is also contingent on the

advancement algorithm. In photolithography, the planarity of the surface should be

reinforced by theadvancement algorithm, since regions withhighfrequency variations

and a reasonably homogeneous etch rate tend to become flatter according to the

mathematics. An automatic dampening of the singularities ought to occur. This does

not occur in ray-trace at present due to the lack of implemented crenulation removal

techniques, and due to the phenomena of ray scattering.
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Chapter 7 Comparison of Methods

7.1 Introduction

In this chapter, the three techniques for simulating photolithography dissolution

will be directly compared. The performance improvements of ray interpolation and

loop removal have been included in the ray-trace method for the comparison. The

iterative level-set technique has also been implemented on the benchmark. The merits

of each approach will be discussed. Recommendations that are based on these

comparisons for further research into simulator development will be discussed.

7.2 General Criterion for Comparison

To create any product suited for a specific task, a basis for judgements must be set

forth so that the attributes of the final product can be appropriately selected. The

judgement system that is appropriate for designing physical products is, of course, also

suitable for designingalgorithms and programs. These criteria are the product's ability

to perform the task, efficiency of resource consumption while performing the task, and

the capital expenditure of other resources required for its creation, which includes

human labor costs. For a computer program that performs simulation of physical

systems that are represented by continuous variables, these criteria take on more

specific forms. One crucial measure of the ability of a simulators perform its task is its

accuracy. Resource consumption is measured as the memory required to execute the

program and the number of CPU cycles necessary to complete it Finally, the capital

expenditure, since no unusual hardware is necessary, is purely in terms of

programmer-hours. These programmer hours will also serve as an estimate of the

difficulty of program maintenance.
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7.3 Specific Comparison

Thethree programs that were described in Chapter 4 (ray-trace, level-sets and the

cell method) were run using a benchmark example, This example is a square contact

cut thathas standing waves. Because the size of thesquare contact is approximately

the length of the wavelength, the intensity contours of thecontact are nearly circular.

This means that the ratefunction thatwillbe generated willalsohave radial symmetry.

Therefore, the shape that is will be formed by the simulators ought to be radially

symmetric. The parameters that were employedin the construction of this example are

shown in Table 1. The rate file that served as input to each of the dissolution

Table 1: Test Case Exposure and Development Parameters

Parameter Value

Contact Edge Size 0.45 p,m

NA 0.7

Partial Coherence 0.5

Wavelength 0.365 u.m

Focal Plane 0.0 ^m

Dill Parameter A 0.74

Dill Parameter B 0.2

Dill Parameter C 0.012

Refractive Index 1.68

Thickness 0.5 |im

Dose 180mJ/cm2

Kim Parameter Rl 0.062

Kim Parameter R2 0.0001

Kim Parameter R3 8.5

Advancement Time 13 seconds
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simulators was generated by High-NA SPLAT [1]. High-NA SPLAT was developed

by M. Yeung and D. Lee.

A contour plot of a cross section that contains the central axis of the contact cut is

shown in Figure 1. The rate function, inthree dimensions, is nearly radially symmetric

about avertical line constructed in the middle of Figure 1. This example demonstrates

many of the circumstances that are encountered in real photolithography situations.

The most significant characteristics in this example are the standing waves. The ratio

between the maximum etch rate and the minimum etchrate along the vertical center

line is approximately 50:1. The initial surface is the top plane of the simulation region.

The surface was advanced for a period of 13 seconds. The ray-trace method initiated

simulation with an initial grid of points in a 41x41 face centered configuration. The

ideal segment length remained fixed during execution at one fortieth of the size of the

square that represented the initial surface. The cell method and the level-set method

employed an 80x80 grid of cells at regular intervals to represent the different
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horizontal planes. The simulation was performed with various numbers of cells in the

vertical direction so that the effect of different grid sizes on accuracy could be

measured. The levels of discretization were 50,100 and 200 cells. The results of the

simulations are summarized in Table 2. Specific details of the comparisons are given

in the rest of this section.

Table 2: Lithography Development Methods

CM RT Ad

Accuracy Anisotropic Good Low Order

Time 40 Min 20 Min >64 Hours

Memory 10 MB 10 MB >80MB

Coding Time 2 Months 2 Years 2 Months

7.3.1 Time Consumption

In order to fairly determine the amount of CPU time that each program requires, it

is necessary to demand a similar level of accuracy from each program. It is possible to

get low CPU times that do not represent the real advancement time if the required

accuracy is reduced. Accuracy is determined by the distance of the bottom of the

surface from the bottom of the simulation region. The value of 13 seconds was chosen,

since the distance of the resist surface from the bottom of the simulation region is very

close to 0 for the ray-trace advancement method at an evolution time of 13 seconds.

This near intersection allows for easier comparisons of varying development rates

between methods, since deviation from this condition is easy to test. It will be assumed

that the ray-trace advancement method, as shown in Figure 2, gives an answer that is

sufficiently accurate. This is a reasonable assessment, not only because the ray-trace

method contains adaptive methods for advancement in critical regions that were

developed by K. Toh [2], but the other methods also tend towards the ray-trace

solution as the accuracy is improved. Accuracy improves for the cell and level-set
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methods as the number of cells in the vertical direction is increased, as seen in Figure

3 and Figure 4. Therefore, a time comparison should be performed when the

discretization is sufficiently small that theprofile resembles the ray-trace method. This

occurs for the cell method, as seen in Figure 3, when the vertical discretization is on

the order of 100cells. The use of 200cells renders no significant improvement. In the

case of the level-set method, the method becomes more and more accurate with further

grid resolution as seen in Figure 4. The amount of memory required for further

improvements in the grid resolution exceeds the storage space of the computer.

Therefore, the time required, as shown in Table 2, is an estimate based on the amount

of estimated grid refinement necessary to generate a result that is similar to the ray-

trace and cell methods. The contours of the level-set function after advancement were

used to make this estimate and are shown in Figure 5.

All time comparisons were performed under identical conditions on a DECstation

5000/240. The discretization was only improved in the vertical direction, since

80x80x200 cells was the maximum amount of available memory on the machine. It

was also expected that the most error would occur in this direction as a result of the



Cell Method With A 80x80x50 Grid

Cell Method With A 80x80x100 Grid

Cell Method With A 80x80x200 Grid

Figure 3) Cell Method Results
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Level-Set Method With A 80x80x50 Grid

Level-Set Method With A 80x80x100 Grid

Level-Set Method With A 80x80x200 Grid

Figure 4) Level-Set Method Results
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high second derivative of the etch rate in the vertical direction. A high second

derivative in the advancement is already known to be a significant sourceof error in

existing fluid mechanical level-set methods [9]. The ray-trace method required an

advancement time of 20 minutes to develop the profile in Figure 2 including deloop

steps. The cell method requires 20 minutes to develop the first profile in Figure 3, but

this profile is not as accurate as the ray-trace method. The second profile in Figure 3 is

sufficiently accurate, and requires 40 minutes for advancement. The doubling of the

advancement time is directly related to the doubling of the number of cells in this

example. The third profile results in no improvement in accuracy over the second

profile and required 80 minutes for advancement. It is clear that a linear increase in

accuracy for the cell method in one direction generates a linear increase in the amount

of time consumed. This is to be expected, since the number of cells that must be

removed to compute the simulation result has increased linearly as well. The removal

of a cell is a constant time operation. Finally, the level-set scheme required 15 minutes

to generate the top figure in Figure 4, but it required 1 hour for the second result and 4

hours for the third result. This represents a quadratic increase in time as accuracy in

the vertical direction increases. The reason for this increase is twofold. First, it is

necessary to double the number of cells with each doubling of grid resolution, but it is

also necessary to double the number of time steps taken, since there is a limitation on

the size of the timestep that is related to the shortest dimension of each cell. Because

Figure 5 suggests that the level-set method requires at least another two improvements

in grid resolution before the method approaches the accuracyof ray-traceand cells, the

quadratic behavior suggests that 64 hours are required to generate the desired result.

This is the basis of the computation time estimate in Table 2 for the level-set method.
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7.3.2 Memory Consumption

Memory consumption statistics are determined in Table 2 by the same method as

the time consumption statistics. The methods are normalized for accuracy first, and

then the memory consumption is determined. The ray-trace method consumes 10 MB

for both the final mesh and the associated octtree. Approximately 25000 triangles

appear in the final figure, giving 400 bytes per triangle. This is a reasonable number,

considering that each triangle also requires segment, node and octtree information.

The cell method, for the 80x80x100 cell configuration, consumes approximately 10

MB, or about 20 bytes per cell. The level-set method, for the assumed 80x80x800

configuration, would employ about 5 million cells at a present 40 bytes per cell. 40

bytesare necessary for each location in thelevel-set scheme, sincethere are 3 floating

point numbers that are stored for the level-set method, as opposed to the cell method,

which employs 1 floating point number and an address that points to specific

information regarding surface cells.

7.3.3 Coding Difficulty

Estimates for codingtime are for programming a simplecommercial versionof the

routines by one person, provided that the methods being applied are wellknown. The

estimates are based on the assumption that the theory is well understood. Writing the

code for the cell and the level-set methods is quite simple. No delooping or mesh

maintenance routines are required for the methods. Since boundary conditions are

reflective,these are also quite simple to implement. Therefore, since these methods are

relatively straightforward, a time of 2 monthshas been assigned. Ray-trace requires

significantly more coding support to be implemented. A delooper and a mesh

maintenance method, as given in Chapters 5 and 6, must be implemented. The

advancement method is as sophisticated as the cell or level-set schemes as seen in
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Chapter 4. Finally, boundary conditions must be handled in a more detailed manner as

shown in Chapters 3 and 5. Forthese reasons, the estimate is 2 years.

7.3.4 Notes on Accuracy

The standing waves in the test case, as noted earlier, are an excellent test for

accuracy. At the null of each wave, where the etch rate is small, the etch rate decreases

rapidly as the null is approached from either the top or the bottom. The second

derivative of the etch rate in the vertical direction becomes extremely large. This

derivative is one of the two main sources of enor that may be encountered by a first

order advancement method. The ray-trace and cell methods gain their accuracy from

specific properties of their advancement methods. Both methods are known as

'Lagrangian' methods [5], as opposed to the level-set technique, which is an

'Eulerian' method [5]. Lagrangian methods are known to be more resistant to

variations in the etch rate than Eulerian methods. Therefore, standing wave nulls do

not affect the accuracy of ray-trace or cells as much as the level-set method. The ray-

trace method also has adaptive time step control, which allows it to take many small

steps through the standing wave nulls, and thereby resolve the features more

accurately. The recursive adaptive advancement scheme also assists in this function,

since it effectively forces each ray to independently take smaller time steps in areas

where significant enor may be accumulating. Therefore, these methods can traverse

strong standing wave nulls accurately. The level-set method has no such defense to

protect itself against the effects of standing wave nulls. As seen in Figure 4, the grid

must be refinedto resolve the advancement of the surface across the null accurately. If

a level-set method could be developed that only refines the grid in troublesome areas,

the enor of the method might be reduced without increasing the memory and CPU

resource consumption as much. Adaptive gridding been shown to increase the

accuracy of the cell method [11].
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The cell method has demonstrated an additional accuracy difficulty that is not

present in the other two methods. Becausethe cell method was not developed with an

accurate method of computing the surface normal at the surface, and implemented

with a method of removing cells that can make effective use of an accurate surface

normal computation, 'facets' appear. As seen in Chapter 3, faceting can be removed

through the use of integer cell labeling combined with Huygen spheres [2][11],

although employing this technique has been shown to significantly increase execution

time [2], Faceting may also be removed by using more sophisticated methods of

interpolating the surface [8]. The cell method in the comparison appears accurate in

Figure 3 because the advancement algorithm has been optimized to advance properly

in all three coordinate directions of the grid. Since the surface has been optimized to

advance properly in the direction of the z-axis, this explains the observed accuracy.

When the surface is viewed at a 45 degree angle, as in Figure 6, the grid dependence of

the cell method becomes apparent. Figure 6 shows that the bottom of the cell method

surface is not circular as in the ray-trace and level-set cases. Instead it takes the shape

of a square. The top half of Figure 7 shows the cross section of the bottom part of the

surface, and the bottom half of Figure 7 shows the contour of the rate function in the

same location. It is clear from the rate function that the cross section of the surface

ought to be circular, but instead it is not. Anisotropy is not an issue for level-sets, since

the level-set technique has a good method of computing the surface normal that does

not show grid dependence. Ray-trace contains no grid dependence, because the ray

vectors can represent any surface normal at full floating point accuracy.

Another possible source of enor may arise from the curvature of the surface. This

contribution is small in these examples, since the grid has been sufficiently discretized

to resolve the surface curvature that does arise.The ray-tracemethod has 6 grid points

per standing wave null. The cell and level-set methods contain 12, 24 and 48 grid
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points per standing wave null for the 50, 100 and 200 vertical cell discretizations. It

has been noted by K. Toh [2] that ray interpolations when large segments are

subdivide that do not take curvature into account can cause enors. The interpolation

method described in Chapter 4, and used in this version of ray-trace was of this form.

While such enor was shown in [2] to appear for curved surfaces with even finer

griddings than those employed here, this effect of large grid size does not seem to

appearin the benchmark example. A proposed solution to this difficulty was suggested

by K. Toh, but this method was found to be unworkable when integrated with resist

deloop in three dimensions, since the rays were used as the basis of the interpolation

instead of the geometry. (See Chapter 4 for further discussion.) Further investigation

of the effect of interpolation methods in real examples for ray-trace may be necessary.

Linewidth is of great concern in photoresist simulation. The width of device

features significantly affects their operation. If the distances across the profiles in

Figure 2, Figure 3 and Figure 4 are measured at the center of the standing wave

maxima, it is clear the ray-trace method and the cell method yield similar linewidths.

The linewidth generated by the level-set method is larger than that of the cell method

by two cells in either direction, however. To improve this criterion, grid refinement

must be performed in the other two grid directions as well. This is not a particularly

desirable method of solving the problem, since a halving of the grid size in the

horizontal directions (assuming that the finest refinement has occurred in the vertical

direction already) will increase the memory consumption and the execution time four

fold. This causes the already large values for the level-set technique in Table 2 to

become even worse.
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7.3.5 Summary ofComparison

In conclusion, it should be noted that each method has both advantages and

disadvantages. When the methods are normalized for vertical accuracy, the ray-trace

and cell methods require the same amount of time, while the level-set method is

significantly slower. Level-Set approaches require O (1/h ) time where h is the

average element size. Both the cell method and ray-trace were found to require

O (1/h ) time to advance, where h is the average element size. Cell methods have

significant difficulties in performing advancement in directions that are not in the

coordinate directions of the underlying, and this enor cannot be removed in this

particular implementation by improving the grid resolution. Some methods for

removing anisotropy have been implemented in photolithography simulators [2][11],

but require significant computational time. A cell method has not, however, been

implemented for photolithography problems that performs an adequate calculation of

the surface normal for each cell. It is suggested before further work on cell methods is

performed, the work of E. Puckett should be examined [7][8]. Ray-trace is both fast

and accurate, but if it is to be fully robust, more work must be performed in the area of

mesh maintenance and techniquesfor conecting scattering rays. The decrease in speed

that would result from the inclusion of these techniques would probably not be more

than a factor of two, since it would probably not be necessary to implement ray fixing

every time step, and thin triangle removal does not slow advancement significantly.

Improved implementation techniques for thin triangle removal would also increase the

speed of the ray method.

In the area of memory consumption, both the cell and level-set methods grid the

entire space, although only the part near the surface is really necessary for the

purposes of advancement. The cell and level-set methods therefore require

O (1/h ) elements to be contained in memory. The ray-trace method, since it only
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represents the surface atany time, requires q (c/u2) memory, where S is the surface

area of the resist at any point in time and h is the average segment length. Therefore,

the ray-trace method requires less memory overall for fine grid sizes. Techniques for

decreasing the memory consumption of the cell method by using the octtree should be

investigated.

In general, attempts to reduce both memory consumption and time consumption

simultaneously lead to significant increases in programming complexity. Ray-trace

tries to improve the accuracy of the method by representing the surface explicitly from

time step to time step instead of reinterpolating it as the cell method does. Ray-trace

also minimizes memory consumption by only representing the surface instead of

embedding the surface in another mathematical structure as the level-set technique

does. By doing this, the issues of delooping and mesh-maintenance are, at some level,

unavoidable. Therefore, attempts to improve the performance of either the cell-method

or the level-set method in the areas of accuracy, memory or time consumption will

lead to increases in programmingcomplexity. The trade-off between improvements in

performance at the cost of increasing code complexity is typical of algorithms from

both computational geometry and partial differential equations. It is clear that surface

advancement, which is derived from both fields, is no different. Therefore, each of the

three simulation methods presented, should be seen as a 'vanilla' method that

represents extremes of simulator behavior. These extremes also represent possible

trade-offs that can be used to design simulators with the best mix of properties for

photolithography simulation.

7.4 The Iterative Level-Set Method

A tentative new technique for improving level-set based advancement has been

developed. The details of its implementation are described in Chapter 4. This tech-
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nique is based on grid generation techniques developed by J. Sethian in [10]. By

advancing the level-set field for a period of time before actually advancing the surface

contour, good initial conditions seem to be.created. The results of the application of

this method are shown in Figure 8. Continued iterations improve results, although it is

clear that after two iterations, no significant further improvement is forthcoming. It is

not clear whetherthis methoditerates towards second order, or a very good first order

implementation. The runtimes for the three simulations shown in Figure 8 are 15min

utes, 30 minutes and 1 hour. The 30 minute example is almost as accurate as the 20

minute ray-traceexample and has no anisotropic behavior.The iterative level-set tech

nique, however, still requires O(1/h4) time to advance the surface where h is the

averagecell side length. Therefore, although a smaller grid size than the normal level-

settechnique maybeused for most problems, for problems that require very fine grids,

this method still will not be as fast as ray-trace or cells.
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Chapter 8 Survey of Contributions and Future Work

8.1 Survey of Contributions

Chapter 1 and Chapter 2 were basic introductions to the field of three dimensional

photolithography dissolution simulation.

Chapter 3 assembled into one location the mathematics of the Hamilton-Jacobi

equation and three popular methods of computing solutions to the equation in the

field of photolithography dissolution simulation. The least time path formulation

was used, based on methods of geometrical optics, to categorize the types of shock

fronts that may occur during ray advancement

Chapter 4 provided the exact details of the ray-trace, level-set and cell method

implementations. Prof. Sethian's gradient operators and level set advancement

techniques were implemented in the level-set method. A boundary condition that is

well made for photolithography was implemented. A new method of interpolating

the rays of the ray-trace method was introduced. A new iterative method of

performing level-set solutions is described and implemented.

Chapter 5 introduced two loop removal methods. Both methods were based on

octtree triangle intersection techniques. The octtree was also identified as a useful

data structure for many problems in surface advancement. A general deloop

algorithm for removing negative volume regions from a mesh was implemented.

Important parts of this deloop method were also used to perform set operation

techniques by J. Sefler. Methods for using deloop to perform set operations were

described. A loop remover that was specially modified for resist problems was
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implemented. This loop remover was shown to improve the robustness of the ray-

trace scheme significantly.

Chapter 6 demonstrated mesh maintenance techniques, both implemented and

unimplemented, to reduce the number of thin triangles in the surface and improve

the planarity of the surface. These techniques were created to reduce the level of

ray scattering in the ray-trace method. An example was shown where thin triangle

removal reduced ray scattering and prevented a loop from occurring that would

have been difficult for the resist delooper to remove.

Chapter 7 presented the results of the comparison of the three methods.

Advantages and disadvantages were found for each approach. Ray-trace requires

more mesh maintenance technique development and a fix for ray-scattering. The

cell method requires a good surface normal approximator and an advancement

method that is based on good surface normal approximations. Promising results

that require further investigation were found with the iterative level-set method.

Both level-set methods could be improved if a method can be created that only

computes the solution near the 0.0 contour. It was noted that difficulties with both

the cell and the level-set method may be solved, if a cell method is developed that

is based on level-set mathematics.

8.2 Future Implications in Other Fields

Finally, it is important to note that the advancement of triangular meshes that are

unsupported by an assisting volume mesh of simplices is a relatively uninvestigated

simulation technique, and is in a stage of infancy. The concepts of loop removal and

mesh maintenance set forth here are fundamental concepts for the application of this

technique. These methods are also important for properly advancing unstructured
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volume meshes in three dimensions with moving triangular boundaries. These arise in

many applications, such as the Free-Lagrangian method [1] for determining the

evolution of an interface between two fluids, and the oxidation process in integrated

circuit manufacturing [2]. Finally, it is reasonable to assume that the explicit mapping

of points from the surface at an earlier time step to a new surface at a later time step

allows for better enforcement of conservation laws on the surface than would be

achieved with cell or level-set methods. Some examples of fields where this may be

applied are the oxidation process, where it is important to track of the number of

reaction sites, simulating fabrics and sails by keeping track of surface area and other

properties during deformation, and conserving catalysts in chemical reactions on

surfaces. This research might also be applied to computing surface tension in fluid

mechanics and other methods involving conjugant gradients.
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