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Abstract

This paper addresses state minimization problems of different classes of non-deterministic finite state
machines (NDFSM’s). We present a theoretical solution to the problem of exact state minimization of general
NDFSM'’s, based on the proposal of a notion of generalized compatibles. This gives an algorithmic frame
to explore behaviors contained in a general NDFSM. Then we describe a fully implicit algorithm for state
minimization of pseudo non-deterministic FSM’s (PNDFSM’s). The results of our implementation are reported
and shown to be superior to a previous explicit formulation. We could solve exactly all but one problem of a
published benchmark, while an explicit program could complete approximately one half of the examples, and
in those cases with longer running times.

1 Introduction

Implicit techniques are based on the idea of operating on discrete sets by their characteristic functions represented
by Binary Decision Diagrams (BDD’s) [2]. In many cases of practical interest these sets have a regular structure
that translates into small-sized BDD'’s. BDD’s can be manipulated efficiently with the usual Boolean operators.
Implicit techniques increase the size of problems that can be solved exactly in logic synthesis and verification.

In [10] an implicit algorithm for exact state minimization of incompletely specified finite state machines
(ISFSM’s) has been described. It was based on new implicit techniques to generate prime compatibles and to
build and solve a binate table. ISFSM’s are a subclass of non-deterministic finite state machines (NDFSM’s)
and recently more classes of NDFSM’s have been introduced in sequential logic synthesis as a way to capture
flexibility in networks of finite state machines (FSM’s). Especially important are pseudo non-deterministic FSM’s
(PNDFSM’s), introduced in [17), that are sufficient to express the flexibility in an arbitrary interconnection of
two FSM’s. A family of extensions of PNDFSM’s called k&-PNDFSM’s, for k any natural number, has also been
proposed in [6, 7]. Extracting out of a NDFSM a behavior corresponding to a DFSM with a minimum number
of states is an important synthesis objective, that generalizes the problem of state minimization of ISFSM’s. We
call it in the sequel simply state minimization problem, and it must not be confused with behavior-preserving state
minimization, of more interest in theoretical computer science community.

In [19, 4] the problem of extracting a minimum state behavior out of a PNDFSM has been attacked and it
has been shown that an exact solution can be obtained by extending the notion of compatibles and formulating a
binate table problem. In [19] a contribution has also been made to the problem of selecting a DFSM that can be
implemented in an interconnection of two FSM's. Here we present a two-fold contribution:

1. Atheoretical solution to the problem of exact state minimization of general NDFSM s, based on the proposal

of a notion of generalized compatibles. This gives an algorithmic frame to explore behaviors contained in a
general NDFSM.
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2. Animplicit algorithm for state minimization of PNDFSM’s. The results of our implementation are reported
and shown to be superior to the explicit formulation described in [19]. We could solve exactly all the
problems of the benchmark used in [17] (except two cases, where minimal solutions not guaranteed to be
minimum were found). The explicit program could complete approximately one half of the examples, and
in those cases with longer running times.

We are currently working also on the problem of selecting out of an NDFSM a minimum DFSM that can be
implemented in an interconnection of two FSM’s and we will soon present our results.

It is worth to underline that the first step of exact state minimization is the exploration of all possible behaviors
contained in a NDFSM. For some classes of NDFSM s this can achieved by computing compatibles (as classically
defined and then extended in [19, 4]). Each closed collection of compatibles is a contained DFSM and viceversa.
In the case of state minimization, one wants a minimum cardinality closed collection of compatibles. But one
can replace the requirement of minimum cardinality with any other desired cost function or property (such as an
implementable behavior) and obtain a new behavior selection problem. Therefore the exploration of all contained
behaviors is a key technology for future applications in the synthesis of sequential networks and the capability of
doing it efficiently as when using the implicit techniques that we are investigating is a winning tool to support
synthesis algorithms.

The remainder of the paper is organized as follows. Our taxonomy of different classes of finite state machines
and their state minimization problems is proposed in Section 2. Section 3 reports the current status of these state
minimization problems. A new algorithm for state minimization of NDFSM’s is proposed in Section 4. Section 5
introduces implicit representations and manipulations. Then a fully implicit algorithm for state minimization of
PNDFSM’s is presented in Section 6. Considerations on an implicit algorithm for general NDFSM's are discussed
in Section 7. Results on minimization of PNDFSM’s are reported in Section 8. Conclusions and future work are
summarized in Section 9.

2 Definitions

In this section, we shall first define different classes of finite state machines (FSM’s) used in this paper, and their
state minimization problems. Then we shall introduce the two common steps of a state minimization algorithm:
compatible generation and selection.

2.1 Taxonomy of Finite State Machines

Definition 2.1 A deterministic FSM (DFSM) or completely specified FSM (CSFSM) can be defined as a 6-tuple
M = (S,1,0,86,,r). S represents the finite state space, I represents the finite input space and O represents the
finite output space. & is the next state function defined as § : I x S — § where n € § is the next state of present
statep € S oninputi € I if and only if n = §(i,p). A is the output function defined as X : I x § — O where

o € O is the output of present state p € S on input i € I if and only if o = A(i,p). v € S represents the unique
reset state.

A behavior between the input variables I and the output variables O is the set of pairs of input and output
sequences realized by a completely specified deterministic finite state machine with the input I and the output O.
A formal definition follows.

Definition 2.2 Given a finite set of input variables I and a finite set of output variables O, a behavior between I
and O is a set of pairs of input and output sequences, B = {(0i,0,) | |0i| = |0,|}, which satisfies the following
conditions:

1. Completeness:
For an arbitrary sequence o; on I, there exists a unique pair in B whose input sequence is equal to o;.



2. Regularity:
There exists a DFSM M = (S,1,0,6, ), so) such that, for each (0;,0,) = ((i0,..-,%;),(01,...,05)),
there is a sequence of states sy, s, . . ., 3; with the property that sy = 8(ik, sx) and ox = A(ik, si) for
0<k<j.

For a non-deterministic finite state machine, there might exist more than one valid transition for some state
and an input. Therefore, while a DFSM represents a single behavior, a non-deterministic FSM (NDFSM) can be
viewed as representing a set of behaviors. Each such behavior is called a contained behavior. Then an NDFSM
expresses handily flexibilities in sequential synthesis.

Definition 2.3 A non-deterministic FSM (NDFSM) is defined as a 5-tuple M = (S,I1,0,T, R) where S repre-
sents the finite state space, I represents the finite input space and O represents the finite output space. T is the
transition relation defined as a characteristic functionT : I X S x S x O — B. On an input i, the NDFSM
at present state p can transit to a next state n and output o if and only if T(i,p,n,0) = 1 (i.e., (i,p,n,0)isa
transition). There exists one or more transitions for each combination of present state p and input i. R C S
represents the set of reset states.

The above is the most general definition of an FSM and it contains, as special cases, different well-known
classes of FSM’s. An FSM defines a transition structure that can be described by means of edges. By an edge
(¢, p, n, 0), the FSM transits from state p on input : to state » with output o.

To capture flexibility/choice/don’t care/non-determinism in the next state n and/or the output o from a state
p at an input ¢, one can specify one or more transitions (%, p, n,0) € T. As said above, we assume that the state
transition relations T is complete with respect to  and p, i.e., there is always at least one transition from each state
on each input. This differs from the situation in formal verification where incomplete automata are considered.

Definition 2.4 A state transition relation T is complete iff Vi, p 3n, 0 [T (¢, p, n,0)] = 1.

We introduce now two useful classes of FSM’s: pseudo non-deterministic FSM’s and incompletely specified
FSM’s. An NDFSM is a pseudo non-deterministic FSM (PNDFSM) iff for each triple (¢, p,0) € I x § x O, there
is a unique state » such that T'(i, p, n, 0) = 1. It is non-deterministic because for a given input and present state

there may be more than one output; it is called pseudo non-deterministic because edges carrying different outputs
must go to different next states 1.

Definition 2.5 A pseudo non-deterministic FSM (PNDFSM) is a 6-tuple M = (S,1,0,6,A, R). § is the next
state function defined as 6 : I X S x O — S where each combination of input, present state and output is mapped
to a unique next state. A is the output relation defined by its characteristic function A : I x S x O — B where

each combination of input and present state is related to one or more outputs. R C S represents the set of reset
states.

Since the next state n is unique for a given output, present state and input, it can be given by a next state function
n = é(¢, p, 0). Since the output is non-deterministic in general, it is represented by the relation A.

One can extend the previous definition to get a numerable family of machines as follows. An NDFSM is a
k-step pseudo non-deterministic FSM (k-PNDFSM), where k € w, iff for any present state the choice of the next
state can be uniquely identified by observing input-output sequences of length up to k. An NDFSM is a k-step
pseudo non-deterministic FSM (k-PNDFSM), where k € w, iff for each tuple (i, 12,...,%,p,0,02,...,0%) €
IxIx--+xIx8x0 xO0O x---x 0O there is a unique next state n and there are states s, - - -, s; such that
T("'a o, 0) = 1and T(iZ, n, 82, 02) = T(i3a 82, 83, 03) == T(ik’ Sk—1, Sk, Ok) =1L

Definition 2.6 A k-step pseudo non-deterministic FSM (k-PNDFSM) is a 6-tuple M = (S,1,0,6,A,R). é is
the next state function definedas § : I x ---x I X S x O X ---x O — S where each combination of input, present

"The underlying finite automaton of a PNDFSM is deterministic.



state, k inputs and outputs gives a unique next state. A is the output relation defined by its characteristic function
A:1 xS x O — Bwhere each combination of input and present state is related to one or more outputs. R C §
represents the set of reset states.

By definition, a PNDFSM is an 1-PNDFSM. Cemy [7] has given a polynomial algorithm to convert a k-
PNDFSM to a PNDFSM. A k-PNDFSM has a representation smaller or equal to that of an equivalent PNDESM 2.

AnNDFSM s anincompletely specified FSM (ISFSM) iff foreach pair (¢, p) € I'x S suchthat T'(z, p, =, 0) = 1,
(1) the machine can transit to a unique next state » or to any next state, and (2) the machine can produce a unique
output o or produce any output.

Definition 2.7 An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M = (S,1,0,A,A, R). §
represents the finite state space, I represents the finite input space and O represents the finite output space. A is
the next state relation defined as a characteristic function A : I x § x S — B where each combination of input
and present state is related to a single next state or 1o all states. A is the output relation defined as a characteristic
Junction A : I x § x O — B where each combination of input and present state is related to a single output or to
all outputs. R C S represents the set of reset states.

Incomplete specification is used here to express some types of don’t cares in the next states and/or outputs.
We wam that even though "incompletely specified” is established terminology in the logic synthesis literature, it
conflicts with the fact that ISFSM'’s have a transition relation T that is actually completely specified with respect
to present state p and input :, because there is at least one transition for each (¢, p) pair in T..

We can restate the definition of a CSFSM in terms of the relation 7.

Definition 2.8 A deterministic FSM (DFSM) or completely specified FSM (CSFSM) is an NDFSM where for
each pair (i,p) € I X S, there is a unique next state n and a unique output o such that T(i,p, n,0) = 1, i.e., there
is a unique transition from (i, p). In addition, R contains a unique reset state.

Note that an ISFSM and a DFSM are both next-state output uncorrelated because we can represent the next
state and output information separately. But a PNDFSM (and k-PNDFSM) is not next-state output uncorrelated
as the next state is correlated with the output by » = é(3, p, 0).

2.2 Taxonomy of State Minimization Problems

Definition 2.9 Given an NDFSM M = (S,1,0,T,R), a state sy € S, and an input sequence {ig,i1,...,%;},

an output sequence {0p,01,...,0;} is possible from so in M iff 3 a state sequence {s1,52,...,8j41} Such that
Vk:0 <k< j: T(ikasksski-hok) =1

Foreach state in a deterministic FSM, exactly one possible output sequence corresponds to each input sequence.
Given an initial state, a deterministic FSM represents a unique input-output behavior. Any other kinds of FSM’s,
on the other hand, can represent a set of behaviors because by different choices of next states and/or outputs, more
than one output sequence can be associated with an input sequence. This leads naturally to the notion of behavioral
containment between specifications.

Definition 2.10 Given NDFSM’'s M = (S,1,0,T,R) and M' = (§',I1,0,T",R'), M' C M iff
Vr € R 3r' € R' V input sequences V output sequences possible from r' in M', the same output sequence is
possible from r in M.

Definition 2.11 Given an NDFSM M, the state minimization problem is o find another NDFSM M’ such that
1. M'C M, and

2For every STG containing unspecified next-states one can construct an STG where all unspecified next states are replaced by a trap
state D, asin [13]. The transitions from D under any input go to D itself and their outputs are unspecified. The new STG describes exactly
the same state minimization problem as the old one, but the latter STG represents more behaviors than the former one .
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2. YM" s.t. M" C M, number of states in M' < number of states in M".

Note that M’ is not required to be deterministic. On the contrary, to preserve flexibility for other sequential
synthesis tools, one may want choose the M’ with maximal non-determinism in specification, out of all state
minimal machines.

Definition 2.10 of machine containment and Definition 2.11 of the state minimization problem apply also to
other kinds of FSM’s.

The state minimization problem defined above is very different from the NDFA minimization problem de-
scribed in classical automata textbooks. Here we want a minimal state implementation which is contained in the
specification, while the classical problem is defined as:

Definition 2.12 Given an NDFSM M, the behavioral-preserving state minimization problem is to find an
NDFSM M’ which represents the same set of behavior as M but has the fewest number of states.

2.3 Exact State Minimization

Exact algorithms for the state minimization problems (ISFSM’s and PNDFSM s) are based on the generation of a
collection of state sets called the compatibles.

Definition 2.13 A set of states is a compatible iff for each input sequence, there is a corresponding output
sequence which can be produced by each state in the compatible.

This definition says that states within a compatible can potentially be merged together to form a single state in
the minimized machine. After the set of compatibles is generated, the second step of an exact state minimization
algorithm is to select a subset that corresponds to a minimized machine. To satisfy behavioral containment, the
selection of compatibles should be such that appropriate covering and closure conditions are met. The covering
conditions guarantee that some selected compatible (i.e., some state in the minimized machine) corresponds
to a reset state of the original machine. The closure conditions require that for each selected compatible, the
compatibles implied by state transitions should also be selected. The state minimization problem reduces to one
that selects a minimum closed cover of compatibles. The selection is usually solved as a binate covering problem.

The set of compatibles is usually very large. For the purpose of state minimization, it is useful to identify a
minimum subset called the prime compatibles such that a minimum closed cover of prime compatibles still yields
a minimum contained machine. According to the following definitions, compatibles that are not dominated by
other compatibles are called prime compatibles:

Definition 2.14 A compatible ¢’ prime dominates a compatible c iff for each compatible selection containing
¢ which corresponds to a minimum machine, the selection with c replaced by ¢’ also corresponds to a minimum
machine.

Definition 2.15 A compatible is a prime compatible iff it is not prime dominated by an other compatible.

The actual computations of compatibles and primeness differ for different types of FSM’s. Also the related
covering problems vary slightly.

Note that in the previous definitions the state space S, the input space I and the output space O can be generic
discrete spaces and so S, I and O can assume symbolic values [5, 16]. A special case is when S, T and O are
the cartesian product of copies of the space B = {0, 1}, i.e., they are binary variables. The fact that the FSM’s
have symbolic vs. binary encoded input and output variables does not change the formulation of problem, nor the

solution based on the computation of compatibles. The theory extends in a straightforward manner to encoded
state spaces.



3 Status of State Minimization Problems

The problem of state minimization has already been solved for some classes of FSM's:

¢ In the case of CSFSM’s, it coincides with the problem of behavioral-preserving state minimization. The
most efficient algorithm is in [9] . An implicit algorithm is in [12].

e Exact algorithms for the problem of state minimization of ISFSM’s have been presented in classical pa-
pers [14, 8]. The best computer implementation is in [15]. An implicit formulation of the exact algorithm
has been presented in [10].

¢ Explicit algorithms for exact state minimization of PNDFSM's have been described in [19, 4] 3.

The gist of the contributions of [19, 4] has been to show that "an incremental update” of the classical definition of
compatibles as introduced by [14, 8] is sufficient to explore all possible behaviors contained in PNDFSM's and
sO to extract the minimum one. It is an open problem to characterize the maximal classes of NDFSM’s for which
analogous notions of compatibles are sufficient to solve exactly state minimization. We will see that in the more
general case of NDFSM’s we need a definition of generalized compatibles that is a more drastic departure from
the previous ones.

Here we propose explicit and implicit algorithms to fill the existing gaps in the literature. In particular we are
going to investigate:

o Fully implicit algorithm for exact state minimization of PNDFSM’s. Exact algorithms have been proposed
by [19, 4]. The algorithms in [19] use some implicit techniques of [10}, and handle the more complex
problem of state minimization with implementability.

¢ Explicit and implicit algorithms for exact state minimization of NDFSM’s. Currently no such algorithm is
known. The only known method to handle NDFSM’s is to generate an equivalent PNDFSM by determiniza-
tion of the underlying automaton. The shortcoming of that approach is that, in the worst case, the state space
becomes exponentially larger.

4 State Minimization of NDFSM’s

Is it possible to apply the classical procedure based on computing compatibles to NDFSM'’s ? The answer is: yes,
the notions of compatibles and selection of a minimum subset carry through to NDFSM’s; but, no, that procedure
is not guaranteed to produce a behavior with a minimum number of states, as shown by the counter example in
Figure 1.

Given the NDFSM M as shown in Figure 1a, the minimum state DFSM M, as shown in Figure 1b, contained
in M, cannot be found using compatibles alone. By Definition 2.13, states B and C are not compatible. As a result,
any minimized machine M; obtained by compatible-based algorithms will have at least 4 states, one of the two
such minimized machines being shown in 1c. However with the non-deterministic transitions into states B and C,
we can choose their outgoing transitions in a way as shown in Figure 1b such that B and C are merged together as
one state. This merged state is compatible to state D. This merging possibility is not explored by compatibility.
The minimum state DFSM, whose behavior is contained in the original NDFSM, has only two states.

4.1 Generalized Compatibles

By the following definition, we generalize the notion of a compatible to one that consists of a set of state sets.
Each individual state set contains states that can be merged because they can be non-deterministically reached
from an initial state. If the original FSM doesn’t have any non-deterministic transition, each such state set will be

3Since a k-PNDFSM can be reduced polynomially to a PNDFSM, also the former ones can be treated in this framework.
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Figure 1: A counter example, a) the NDFSM M, b) the minimum state DFSM contained in M, c) one DFSM
contained in M found using compatibles.

a singleton. In such a case, each generalized compatible is a set of singleton-states, corresponding to a classical
compatible.

Definition 4.1 A set of state sets is a generalized compatible iff for each input sequence, there is a corresponding
output sequence which can be produced by at least one state from each state set in the generalized compatible.

Example: {A}, {B}, {C}, {D}, {E}, {F}, {BC}, {BC,D} are generalized compatibles. The enumeration of
input sequences for {BC,D} are as follows: {B,D}— 2 {D,D}; {C D}— 1, {D D}; {B,D}— o/ {DD}— o/ {D,D};
80}22 0,0} 2 {pb}; {0} 2 (DD} 22 {DD}); {0} (DD} L (DD}, .

Given a NDFSM F with = states, the definition of generalized compatible requires that for all input sequences,

there is a common output sequence agreed by at least one state of each state set in the generalized compatible.

For the definition to be constructive, we need a bound on the length of input sequences that must be considered
in order to decide compatibility.

Lemma 4.1 One can decide whether the initial states of two NDFSM's are compatible by examining all input
sequences of length at most O(n.m), if n and m are the number of states of the two machines.

Proof: Given a pair of states and an input sequence, we say that the input sequence runs successfully if a common
output sequence can be produced from the two states. A run of an input sequence is the pairs of states that it visits.
Suppose that, when starting in both FSM'’s from their respective reset states, all input sequences of length < n.m
run successfully. Each such input sequence must come back to pairs of states already visited, because there are
only n.m different pairs of states; in the worst-case an input sequence will visit all of them and when reading the
n.m-th input symbol w:ll return to pairs already seen. Say that one of these of pairs of states is (sx, s}, ), reached
under i mput sequence 1. The pair (s, s}) can also be reached from the initial states by an input sequence thatis a
prefix of 2, say %, of length I, < n.m. By hypothesis we can run successfully any input sequence 73 that is the
concatenation of 7, and one more input symbol i (because I + 1 < n.m). Moreover, the input sequence 7 will
reach other pairs of states already visited. An inductive argument shows that any extension (of arbitrary length)
of 7 can be run successfully. Therefore by inspecting all input sequences of length < n.m one can decide if the
two reset states are compatibles. If the cardinality of the set of inputs is k, then there are £™™ input sequences of
length < n.m. Since the two machines are non-deterministic, for every input sequence of length n.m there might
exist (n.m)™™ distinct output sequences. o

Theorem 4.1 To decide whether a set of set states of a NDFSM F with n states is a generalized compatible, it is
sufficient to verify the definition for all input sequences of length bounded by O(n™).



Proof: The core operation to decide generalized compatibility is to find out whether two given states s; and 8]
are compatible, i.e., whether for every input sequence started at them there is an output sequence on which the
two states agree Consider two versions F;, and F, : of the NDFSM F, one with initial state s, and the other with
initial state s]. We want to find whether from the reset states for every input sequence there is a common output
behavior. By the previous lemma one can decide whether the initial states of two NDFSM’s are compatible by
examining all input sequences of length at most O(n.n). If the cardinality of the set of inputs is &, then there are
k™™ input sequences of length < n.n. Since the two machines are non-deterministic, for every input sequence
of length n.n there might exist (n.n)™" distinct output sequences. To decide 'compatibility of more than 2 states,
one can make more copies of the NDFSM and apply the same reasoning. Each new copy brings a factor = in the
algorithm. At most one might need to check the compatibility of n states. The point of the exercise is to show that
a finite length suffices, even though this naive bound is outrageous in practice. O

It would be hardly practical to compute the generalized compatibles directly from the definition. The following
theorem shows a recursive characterization of generalized compatibles that expresses the compatibility of a set of
state sets in terms of the compatibilities of its sets of next state sets.

Theorem 4.2 A set K of state sets is a generalized compatible iff for each input i, there exists an output o such
that

1. for each state set in K, its set of transitions under input i and output o is non-empty, and

2. from the set K of state sets, the set K' of sets of next states under i and o is also a generalized compatible.

Note the similarity with the generation of classical compatibles, where we require a set of states to be (1) output
compatible, and (2) its next state set to be compatible.

Now, the problem of state minimization of NDFSM'’s can be reduced to one of selecting a minimum subset of
generalized compatibles. The selection must satisfy the following covering and closure conditions:

4.2 Generalized Covering Conditions

Definition 4.2 A set of generalized compatibles covers the reset state(s) iff it contains at least one generalized
compatible c such that the set of reset states contains at least one state set in c (i.e., at least one of its state sets is
made up entirely of reset states).

Example: Only generalized compatible {A} covers the reset state.

4.3 Generalized Closure Conditions

Definition 4.3 A set K of state sets contains another set K’ of state sets iff for each state set S' in K', there is
state set S in K such that S’ contains S.

Definition 4.4 A set of generalized compatibles G is closed iff for each generalized compatible K € G, for each
input i, there exists an output o such that

1. for each state set in K, its set of transitions under input i and output o is non-empty, and

2. from the set K of state sets, the set K' of sets of next states under i and o is contained in a generalized
compatible of G.

Example: The set of generalized compatible G = {{A}, {BC, D}} is closed. Closure condition for {A} can be
represented by the clauses: ({A} = {A})-({A} = {B} + {C} + {BC} + {BC, D}). Closure for { BC, D}
requires that { BC, D} = ({D} + {F})-{D} and {BC,D} = ({E} + {D})- {D}.



4.4 Relationship to Determinization and PNDFSM Minimization

Definition 4.5 A set of states is a mergeable iff it corresponds to a state label on the determinized state transition
graph.

Figure 2: Determinized State Transition Graph of M in Figure 1a

Example: The mergeables of NDFSM M in Figure 1a are A, BC, D, E, F, which are state labels on the determinized
state graph shown in Figure 2.

Theorem 4.3 At least one minimum closed cover consists entirely of generalized compatibles whose state sets are
mergeables.

Example: The minimum closed cover {{A},{BC,D}} is made up of mergeables only.

Therefore to form the covering table and solve the covering problem exactly, it is sufficient to generate only the
generalized compatibles made up of mergeables. Therefore if one replaces the words "state sets” with "mergeables”
in the previous definitions one obtains a more compact representation of the set of generalized compatibles.

5 Implicit Representations and Manipulations

Algorithms for sequential synthesis have been developed primarily for State Transition Graphs (STG’s). STG’s have
been usually represented in two-level form where state transitions are stored explicitly, one by one. Altematively,
STG’s can be represented implicitly with Binary Decision Diagrams (BDD’s) [2, 1]. BDD'’s represent Boolean
functions (e.g. characteristic functions of sets and relations) and have been amply reported in the literature (2, 1],
to which we refer.?

5.1 Positional-set Representation

To perform state minimization, one needs to represent and manipulate efficiently sets of states, or state sets, (such
as compatibles) and sets of sets of states (such as sets of compatibles). Qur goal is to represent any set of sets of
states implicitly as a single BDD, and manipulate such state sets symbolically all at once. Different sets of sets of
states can be stored as multiple roots with a single shared BDD.

Suppose a FSM has n states, there are 2™ possible distinct subsets of states. In order to represent collections of
them, each subset of states is represented in positional-set form, using aset of n Boolean variables, z = z1z3...z,.
The presence of a state s in the set is denoted by the fact that variable z takes the value 1 in the positional-set,
whereas z;, takes the value 0 if state s, is not a member of the set. One Boolean variable is needed for each state
because the state can either be present or absent in the set.> For example, if n = 6, the set with a single state s4 is
represented by 000100 while the set of states s;s3s is represented by 011010.

43z(F) (Vz(F)) denotes the existential (universal) quantification of function F over variables z; = denotes Boolean implication; <
denotes XNOR; — denotes NOT.

The representation of primes proposed by Coudert et al. [3] needs 3 values per variable to distinguish if the present literal is in positive
or negative phase or in both.



A set of sets of states is represented as a set S of positional-sets by a characteristic function xs : B* — B as:
xs(z) = 1iff the set of states represented by the positional-set z is in the set $. A BDD representing xs(z) will
contain minterms, each corresponding to a state set in S.

5.2 Operations on Positional-sets

With our definitions of relations and positional-set notation for representing set of states, useful operators on sets
and sets of sets can be derived. We have proposed in [10] a unified notational framework for set manipulation,

extending the work by Lin et al. in [11]. Here we define some relationships between two sets, between two sets
of sets, between a set and a set of sets, etc.

Lemma 5.1 Serequality, containment and strict-containment between two positional-sets z and y are expressed
by: (z =y) = [li=1(zx & k) (z 2 9) = [Tie1 (e = zi);and (2 D y) = (2 2 y) - (2 £ y).

Lemma 5.2 Given two sets of positional-sets, complementation, union, intersection, and sharp can be per-
Jformed on them as logical operations (-, +, -, -) on their characteristic functions.

Lemma 5.3 Given a characteristic function x s(z) representing a set A of positional-sets, set union defines a
positional-set y which represents the union of all state sets in A, and can be computed by:

n
Set-Unionz(x4,9) = [ (vx & 3z [xa() - z4])
k=1
For each bit position , the right-hand expression sets y; to 1 iff there exists an z € x4 such that its kth bitis a 1.

This implies that the positional-set y will contain the k-th element iff there exists a positional-set z in A such that
k is a member of z.

Lemma 5.4 The minimal of a set F of sets is the set containing sets in F not strictly containing any other set in
F, and is given by:

Minimalz(xr) = xr(z) By [xr(y)- (¥ C z))

The term 3y [xr(y) - (y C )] is true iff there is a positional-set y in x# such that y C z. In such a case, = cannot
be in the minimal set by definition, and is taken away from xr(z).

5.3 k-out-of-n Positional-sets

We define a family of sets of state sets, T'uple, x(z), which contain all positional-sets z C § with exactly  states
in them. Their BDD’s can constructed by the following algorithm, by calling Tuple(n, k):

Tuple(i, 5) {
if(j<0)or(i<j) retum0
if(i=0)and (i = j) return1
return ITE(z;, Tuple(: — 1,5 — 1), Tuple(i — 1, j))

}

T'uple(i, j) contains positional-sets of cardinality j with ¢ variables, z;, 23, . . ., 2;, which can be grouped into those
thatinclude state ¢ and those that do not. The latter group simply corresponds to Tuple(i—1, 5), the set of positional-
sets of cardinality j with only z, 23, ...,z;_; (using one less variable). The former group can be obtained by
adding state i to each positional-set in T'uple(i — 1, j — 1), the set of positional-sets of cardinality j — 1 with¢ — 1
variables. Therefore T'uple(3, j) can be computed recursively by IT E(z;, Tuple(i — 1,7 — 1), Tuple(i — 1, 7)).
Recursion can stop when a termination condition as shown is met. The BDD size and time complexity of
Tuple(n, k) are both O(nk), provided its intermediate results are memoized in a computed table ([1]).
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5.4 cproject BDD Operator

Definition 5.1 [12] Given an equivalence relation E(z,y), the cproject operator selects a single element from
each equivalent class to represent the class. L(z) is a function that maps every element z of an equivalence class
to the representative of the equivalence class.

cProjCCty(E(ma y)) = {(3:, y)I(z,y) € E,y= 1(z)}

5.5 Transition Relation of Determinized PNDFSM and Implicit Subset Construction

Given the transition relation T'(%, s, ', 0) of an NDFSM (S, I, 0, T, R), first we compute the transition relation
of the determinized PNDFSM, 7/(i, ¢, ¢’, 0). A 4-tuple (i, ¢c, ¢/, 0) is in relation 7 if and only if the set of states ¢
on input 7 can transit to another set of states ¢, and simultaneously produce output o. The advantage of using a
1-hot encoding (i.e., positional set notation) to represent states in the original NDFSM, e.g. s, is that a state in the
determinized PNDFSM, e.g. ¢, (corresponding to a set of states in the NDFSM) can be represented by a minterm
in the encoded space. 7' can be computed by the following formula:

T'(i,e,c,0) = Vs {[Tupley(s)- (s C )] = 3s' [T(4,s,5,0)-(s' C )]}
Vs' {[Tupley(s') - (s' C )] = 35 [T'(4,8,4,0) - (s C ¢)]}
~=Tupleg(c) - ~Tupleg(c')
= Set.Uniong_o{3s((c 2 s)-T(i,s,5,0)]} - ~Tupleo(c) - ~Tupleo(c')

Given a 4-tuple (4, ¢, ¢/, 0), the first clause on the right requires that for each singleton state s contained in ¢, there
is a next state s’ according to T which is contained in ¢/. As a result, the next state set of ¢ is a subset of ¢/. With
also the second clause, the 4-tuples in the relation will be such that ¢’ is exactly the next state set of ¢ on input
and output o. Finally, we eliminate all 4-tuples expressing the fact that the empty state set can transit to the empty
set under any input/output combination.

The power of the above computation is that we effectively determinized the NDFSM into the PNDFSM
(25,1,0,7',") where the new reset state is the union of reset states in the NDFSM, (¢) = Set_.Unions_..R(s).
Compared with explicit subset construction, no iteration nor state graph traversal is needed.

The above relation 7/(i,c,c’,0), derived from the transition relation 7', is useful in the computation of
compatibles and closure conditions in Section 6. 7/ contains many 4-tuples, as ¢ can be any output compatible set
of states. During compatible generation, ' will be restricted to 7 by forcing c and ¢’ to be compatibles:

7(i,¢,¢,0) = 7'(i,¢,c',0) - C(c) - C(c")

If some applications other than state minimization need to know the reachable state space S’ C 25 of the
determinized PNDFSM, it can be computed by the following fixed point computation:

o Sie) = 1'(c)
o Si(c) = Si(c)+[¢ = c]3c,i,0{SL(c) - T'(4,¢, ¢, 0)}

The above iteration can be terminated when for some j, S, = S} and the least fixed point is reached. The set of
reachable states of the determinized PNDFSM is §(c) = §%(c).

6 State Minimization of PNDFSM’s

The algorithm for state minimization of PNDFSM’s consists of two steps: compatible generation and binate
covering. It is more complicated than the one for ISFSM minimization [10] because the definition of compatibles
and the conditions for a closed cover are more complex.

The PNDFSM M,, shown in Figure 3 will be used in this section to illustrate various concepts.
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Figure 3: APNDFSM, M,

6.1 Compatibles

The following theorem serves as an equivalent, constructive definition of compatibles (c.f. Definition 2.13). The
theorem yields an implicit compatible generation procedure.

Theorem 6.1 A set c of states is a compatible iff for each input i, there exists an output o such that
1. each state in c has a transition under input i and output o, and

2. from the set c of states, the set ¢’ of next states under i and o is also a compatible.

Example: A, B,C, D, AB are compatibles of M, of Figure 3. AB is a compatible because on input 0, it loops
back to itself, and on input 1, it goes to C which is also a compatible.
6.2 Covering and Closure Conditions for Compatibles Selection

Definition 6.1 A set of compatibles covers the reset state(s) iff at least one selected compatible contains a reset
state.

Example: The covering condition for M, is the simple clause (A) which requires compatible A be selected.
If no reset state is given, it can be assumed that each state in S has to be covered by some compatible (as it is
common in classical papers on the minimization of ISFSM’s).

Definition 6.2 A set of compatibles C is closed iff for each compatible c € C, for each input i, there exists an
output o such that

1. each state in c has a transition under input i and output o, and

2. from the set c of states, the set d of next states under i and o is contained in a selected compatible.

Example: Consider the closure condition for compatible D. On input 0, D transits to B, and on input 1, it can
transit to A (and output 1) or transit to B (and output 0). The closure condition for D is the conjunction of
disjunctions (B + AB) - (A 4+ B + AB). Similarly, the closure condition for A is (B + AB) - (C), for B is
(A+ AB)-(C),for Cis (D) - (B + AB) and for compatible AB is (C).

Theorem 6.2 The state minimization problem of a PNDFSM reduces to the problem of finding a minimum set of
compatibles that covers the reset state(s) and is closed.

12



6.3 Prime Compatibles

For runtime efficiency, we compute the set of prime compatibles which is a subset of the compatibles. Prime
dominance has been introduced by Definition 2.14. A sufficient condition for prime dominance is given by the
following theorem:

Theorem 6.3 A compatible ' prime dominates a compatible c if
1. if(cNR)# Qthen(c'NR) # 0, and
2. the closure condition of c implies © the closure condition of ¢', and

3.¢De

Proof: Assume by contradiction that ¢’ does not prime dominate ¢, i.e., there is a minimum closed cover containing
¢ which is not any more a closed cover when c is replaced by ¢’ (Definition 2.14). We show that at least one of the
above three conditions is false.

Consider any set of compatibles C such that C' U {c} is a minimum closed cover ’. As C U {c} and C U {c}
have the same cardinality, in order that C U {¢} is not a minimum closed cover, either (1) C U {¢’} does not
cover the reset state(s) or (2) C U {c'} is not not closed. In case (1), C U {¢'} is not a cover iff (c N R) # 0 and
(¢'N R) = 0,i.e., condition 1 of the above theorem is false. In case (2) C U {c'} is not closed, if one of the two
is true: (2a) C satisfies the closure condition of ¢ but not the closure condition of ¢’. This happens iff condition 2
is false. (2b) c is needed to satisfy the closure condition of some compatible in C, but ¢’ does not satisfy such a
condition. This is the case only if ¢’ 5 ¢, i.e., condition 3 is false.

The converse of the theorem is not true, because condition 3 is a sufficient, but not a necessary condition, for
case (2b) above. o
Example: Compatible AB prime dominates compatible B because all conditions of Theorem 6.3 are true. In
particular, closure condition of B implies closure condition of AB because (A + AB) - C = C. Similarly, AB
dominates A. As a result, the prime compatibles are AB, C, D.

6.4 Logical Representation of Closure Conditions

We now build a set of logical clauses expressing the closure requirement that a next state set d is contained by

at least one selected compatible, as stated in Definition 6.2. Since we are going to generate the set of prime

compatibles, we express also part 3 of Theorem 6.3 that refers to the implication between closure conditions.
The notion of next state sets d is important for expressing closure conditions.

Definition 6.3 d. ; , is the set of next states from compatible c under input i and output o.

Given atriple (c, ¢, 0), such a set is unique in a PNDFSM. We associate to each d..; , a clause whose literals are the
prime compatibles that contain d..;,,. For simplicity of notation we designate by d_. ; , both the set of next states
and the clause associated to it. It will be clear from the context which one it is meant.

Example: dp,o,0is B and it corresponds to the clause (pg + pag). dp,1,1 is A and it corresponds to the clause
(pa + paB). dp,10is B and it corresponds to the clause (pg + paB).

Theorem 6.4 Clause d. ;1 ,» = clause d. ; , if the set of next states do i o 2 the set of next states d.; ,.

®Condition A implies condition B iff the satisfaction of condition A automatically guarantees the satisfaction of condition B. In other
words, A is not less restrictive than B.
"It is possible that no such C exists, and the theorem is trivially true.
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Proof: If the set of next states d. i ,+ D the set of next states d.,i 0, then each prime compatible that contains
de .o contains also d.; .. Since each literal in a clause d is a prime compatible that contains the next state set d,
it means that the clause d.; , has all the literals of the clause do i+ o and so each assignment of literals that satisfies
the clause d. ;» . satisfies also the clause d.; ,, i.e., clause de pr o => clause d ; o. o

The converse does not hold.

For a PNDFSM, a set of compatible states ¢ under an input ¢ may go to different sets of next states depending
on the choice of output o. For at least one choice of o, the corresponding next state set d. ; , must be contained in
some selected compatible. This is expressed by the clause (or disjunctive clause or disjunction), disjunct(c, ),
defined as:

disjunct(c,i) = 3o € outputsat cunderi, d;,

For a PNDFSM, the closure condition of a compatible ¢, denoted by closure(c), has the form of a conjunction
of disjunctive clauses. According to Definition 6.2, the conjunction is over all inputs, while the disjunctionis over
specified outputs. Given a compatible ¢, the following product of disjunctions must be satisfied (one disjunction
per input):

closure(c) = Vieinputs, disjunct(c,i)

In summary, the closure condition for compatible c is fulfilled iff for each input ¢, there is an output o such
that the next state set d..; , from compatible ¢ under input i and output o is contained in a selected compatible. In
logical terms, this closure condition of ¢ is fulfilled iff the product-of-sums

Vi € inputs Jo € outputs at cunder i, d.;,

is satisfied. These closure conditions are tested against a certain selection of compatibles.
We prove first two useful lemmas.

Lemma 6.1 V2' 3z [F(z) = F'(z')] iff [Vz F(z)] = [Va' F'(z")].
Proof: By using some fundamental validities of logic:
Vz' 3z [F(z) = F'(z")]

iff
Vz' [Vz F(z) = F'(z')]
iff
Yz F(z) = Vz' F'(z').
O
Lemma 6.2 Vz' 3z [F'(z') = F(z)] iff [32' F'(z')] = [3z F(z)].
Proof: By using some fundamental validities of logic:
Vz' 3z [F'(z') = F(z))
iff
V' [F'(z") = 3z F(2))
iff
3z’ F'(2") = 3z F(z).
0

We present now the prime dominance condition of part 3 of Theorem 6.3. Notice that the implication between
closure conditions mentioned in Theorem 6.3 translates exactly to logical implication (=) between clauses, i.e.,
given compatibles ¢ and ¢/, the closure condition of ¢ implies the closure condition of ¢’ iff closure(c) =
closure(c’). What follows gives a useful characterization of the formula closure( ¢) = closure(c’).
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Theorem 6.5 Given compatibles c and c',

Vi 3i [disjunct(c,i) = disjunct(c, )]
iff

closure(c) = closure(c').

Proof: Substituting z = i,2' = ', F(z) = disjunct(c,?), F/(z') = disjunct(c’,i') in Lemma 6.1, one gets that

Vi’ 3i [disjunct(c, i) = disjunci(c’, )] iff Vi disjunct(c,i) = Vi’ disjunct(c,i'). The latter is by definition

closure(c) = closure(c'). a
The following theorem gives a useful characterization of the formula disjunct(c’, ') = disjunci(c, i).

Theorem 6.6 Given compatibles c',c and inputs ¢',1,
Yo' 3o [dy o = dejio)

iff

disjunct(c’,i') = disjunct(c, i).

Proof: Substituting z = 0,2’ = o', F(z) = d¢ 0, F'(x) = dy i1 ,» into Lemma 6.2, one gets Vo' Jo [der i1 o =
dei o) iff 30’ der i1 o = Jo d i 0. The latter is by definition disjunct(c’,i') = disjunct(c, ). a
By substituting Theorem 6.6 into Theorem 6.5, we have expressed the implication between closure conditions
of two compatibles (i.e., part 3 of Theorem 6.3) in terms of a logic formula on the next state sets from the two
compatibles.
The following two theorems simplify the closure conditions. In our implicit algorithm, they are applied before
the implication between the conditions is computed.

Theorem 6.7 Given a compatible c and inputs i’ and i, if disjunct(c,i') = disjunct(c,?), then disjunct(c,?)
can be omitted from the conjunction closure(c) because of the existence of disjunct(c, ).

Proof: If disjunct(c,i’) = disjunct(c,%), the conjunction of disjunct(c,i’) and disjunct(c,) is simply
disjunct(c, i'). Therefore disjunct(c, i) can be omitted from the conjunction closure(c). o
Theorem 6.8 A set of next states d is not needed to be part of the clause disjunct(c, i), if

1. d is a singleton reset state 8, or

2.dCecor
3. d 2 d'if d is part of disjunct(c, ).

Proof: (1) If d is a reset state, the covering condition would imply this closure condition expressed by d, and thus
the latter is not needed and, even more, the closure condition is vacuously true. (2) d expresses the condition that
if we choose ¢, a selected compatible must contain the state set d. If d D ¢, cis such a compatible, and the closure
condition is vacuously true. (3) d 2 d' means d = d'. The disjunction of d and &' is simply d’, so d can be omitted
from disjunct(c, 7). m)

®This condition is valid only if a unique reset state is given.
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6.5 Implicit Generation of Compatibles

Since the definition of compatibles for a PNDFSM is similar to that for an ISFSM, the compatibles C' and prime
compatibles PC are generated using implicit techniques similar to the ones proposed in [10]. First we compute
the transition relation 7/ between sets of states, using the implicit procedure in Section 5.5.

Theorem 6.9 The set C of compatibles of an NDFSM can be found by the following fixed point computation:
e 1o(i,¢,¢) = 3o 7'(3,¢,¢,0)
o Initially assume all subsets of states to be compatible: Co(c) =1,

o By Theorem 6.1,

- k413, ¢,¢) = (i, ¢, ¢') - Ci(c)
= Ci41(c) = Vi 3¢ mr41(iy ¢, ¢)

The above iteration can be terminated when, for some j, C;j11 = Cj, and the so greatest fixed point has been
reached. The set of compatibles is then given by C(c) = Cj(¢) and the transition relation on the compatibles is
7(3,¢,¢) = T511(8, ¢, ) - Cj(e).

6.6 Implicit Generation of Prime Compatibles and Closure Conditions

In our implicit framework, we represent each next state set as a positional set d. The fact that a next state set
d is part of disjunct(c,) can be expressed by a relation, e.g. 7(3,c,d). The following computation will prune
away next state sets that are not necessary according to Theorem 6.8, and the result is represented by the following
relation B.

Theorem 6.10 The disjunctive conditions can be computed by the following relation B:
A(c,t,d)= ITE(3d {r(i,c,d)- [R(d) + (c 2 d)]}, B(d), 7(¢,c,d))
B(e,i,d) = Minimaly(A(c, i, d))

Proof: The first equation corresponds to condition (1) and (2) of Theorem 6.8. Given a compatible ¢ and an input
i, if there exists a d which is a next state set from ¢ under ¢ such that R(d) + (¢ 2 d), then the disjunct(c, ) is
set to the empty set §(d), else we keep the original d in the relation 7(3, ¢, d). The second equation tests condition
(3) and prunes all the d’s that are not minimal (i.e., containing some other d’ that is part of disjunct(c,1)). In
summary 7(%, ¢, d) represents the set of disjunctive clauses, and B(c, ¢, d) represents the pruned set of disjunctive
clauses: d is in the relation B with (¢, 7) iff d is part of the disjunctive clause for ¢ under :. o

The following theorem computes the set of disjunctive clauses, that are used to express the closure conditions.

Theorem 6.11 If
D(d,#,¢,i)=Vd {B(c,#,d") = 3d [B(c,i,d)- (d' C d)]},

then disjunct(c’,i') = disjunct(c, ). The set of prime compatibles can be computed by:
PC(c) = C(c)- A{C(c") - [Is (R(s)- (s C ¢)) = ' (R(s") - (s' C ¢'))}- Vi’ 3i D(e,4,¢,#') - (¢’ D ¢)}

Proof: To evaluate disjunct(c’,i') = disjunct(c,?), it is sufficient to check Vo' € outputs at ¢’ under ¢’ 3o €
outputs at cunder ¢ [do 7 2 dc 0], by Theorem 6.6 and 6.4. Quantification over outputs o possible at ¢ under
has the same effect as quantification of d in B(c, ¢, d). Similarly, Vo' is the same as Vd' in B(¢/, ¢, d’). Therefore
D is a sufficient condition for disjunct(c’, ') = disjunct(c, i).

16



The second equation defines PC(c) as the set of non-dominated primes. The right sub-formula within {}
expresses the three conditions in Theorem 6.3. For condition (1), 3s (R(s)- (s C ¢)) = 3¢’ (R(s') - (s' C ¢'))
requires that (¢’ N R) # 0 if (c N R) # 0. By Theorem 6.5, condition (2) of Theorem 6.3 is checked by
Vi’ 3¢ D(c', ¢, ¢, ) according to the first part of this theorem. Condition (3) is simply (¢’ D ¢). o

The following theorem computes the pruned set of disjunctive clauses. They will be used in the next subsection
to set up the binate rows of the covering table.

Theorem 6.12 Given a compatible c, the inputs i's associated with ¢ which are involved in non-trivial disjunctive
clauses are expressed by the following relation E:

E(c,i) = [(i #4') - D(c,?,¢,i))+ Fi'cproject;(D(c, 7, ¢,4) - D(¢,i,¢,i’)
And the corresponding pruned set of disjunctive clauses is given by relation 1:
I(c,i,d) = B(c,%,d)- PC(c) + E(c,1)- ~Tupley(d)

Proof: By Theorem 6.11, given compatible ¢, disjunct(c,i’) = disjunct(c, 1) if D(c,#,¢c,i). The first term
Bi' [(i # i') - D(e, ', ¢, )] deletes all pairs (c, i) such that there is an input #/,(i’ # ) such that disjunct(c,i') =
disjunct(c,?). But this would eliminate two many (c, ¢) pairs because it is possible that (i’ # i), and moreover
disjunct(c,i’) = disjunct(c,1) and disjunct(c,i) = disjunct(c,:’) are both true. Such pairs are defined by
D(c,?,¢,1)- D(c,1,c,i’). Insuch a case, we must choose and retain exactly one of the two. A unique (c, i) out of
each set of "co-implying" pairs is chosen as representative by the BDD cproject operator. And the representative
is added back to relation E by the last term of the first equation.,

For the second equation, the pruned set of disjunctive clauses contains the clauses in B(¢, i, d), constrained to
have compatibles ¢ that are primes in PC/(c), and pairs (¢, i) given by relation E. Also, triples with empty set d
are vacuously true clauses, and thus are pruned away. o

6.7 Implicit Binate Table Covering

Selection of prime compatibles is performed by an implicit binate covering solver presented in {10]. To use the
solver, one has to specify four BDD’s: two characteristic functions Col and Row representing a set of column
labels and a set of row labels respectively; and two binary relations 1 and 0, one relating columns and rows that
intersect at a 1 in the table, and another relating columns and rows that intersect at a 0.

Similar to the case for ISFSM’s, each prime compatible corresponds to a single column labeled p in the
covering table. So the set of column labels, Col(p), is given by:

Col(p) = PC(p)

Each row can be labeled by a pair (¢, ¢) because each binate clause originates from a closure condition of a
compatible ¢ € PC under an input i. And the covering condition of a reset state is expressed by a single unate
clause, to which we assign a row label (¢, %) = (,0). c is chosen to be { to avoid conflicts with the labels of the
binate rows, while the choice of i = { is arbitrary. The set of row labels, Row(e, 1), is given by a binate part and a
unate part:

Row(c, i) = 3d I(c,,d) + 0(c) - 0(3)

Each binate clause associated with a compatible ¢ and an input : expresses the condition that for at least one
output o, the next state set must be contained in a selected compatible d. The corresponding next state relation is
I(c,t,d). If (c, i) labels a binate row, the expression 3d [(p 2 d) - I(c, ¢, d)] evaluates to true iff the table entry at
the intersection of the row labeled (¢, ¢) and the column labeled pis a 1, i.e., the row can be satisfied if next state
set d is contained in a selected compatible p. There is an entry 0 at column p if (p = ¢), i.e., the row can also be
satisfied by not selecting a column labeled c.
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The row labeled by (@, 0) represents the disjunction of compatibles p each of which contains at least a reset
state R(s). On such a row, a table entry is a 1 iff 3s [B(c) - (i) - R(s) - (s C p)].
As a summary, the inference rules for table entries given a row (c, i) and a column p are:

1eyiyp) & 3d[(p 2 d) - I(c, 4, d)) + 35 [B(c) - 0(3) - R(s) - (5 € p)]

0(c,i,p) & (p = ¢)

7 Implicit State Minimization of NDFSM’s
7.1 Exact Algorithms

We have not thought yet of an implicitization of the algorithm shown in Section 4. It does not follow as a
straightforward extension of the implicit algorithm for PNDFSM'’s presented in Section 6, since there is one more
level of of set construction complexity, given that generalized compatibles are already sets of sets of states.

As an altemnative, suggested in [17], one can convert any NDFSM to a PNDFSM by an implicit determinization
(via subset construction) step as described in Section 5.5 and then apply to the latter our implicit (or any) state
minimization algorithm. It goes without saying that subset construction may introduce a blow-up in the number
of original states; this can hurt the efficiency of the implicit PNDFSM state minimizer whose computations are
on a support whose cardinality is linearly proportional to the number of states of the PNDFSM. It is an open
problem whether a better procedure can be devised or instead this exponential blow-up is intrinsic to the problem
of minimizing NDFSM’s. It must be also stressed that we do not have yet good sources of general NDESM’s in
sequential synthesis, while the work in [17] has shown the pivotal importance of PNDFSM’s in the synthesis of
interconnected FSM’s.

7.2 Heuristic Algorithms

It has been shown that exact minimization of NDFSM’s requires computation of the generalized compatibles,
instead of the usual compatibles. If we restrict our attention only to the set of compatibles (against generalized

compatibles), the algorithm given in Section 6 for exact state minimization of PNDFSM’s will still serve as a
heuristic algorithm for NDFSM minimization.

8 Experimental Results

We have implemented an implicit algorithm for exact state minimization of PNDFSM's in a program called
IsM2. Prime compatibles and the binate table are generated according to the algorithm described above; then
a minimum cover of the table is found by our implicit binate covering solver presented in [10]. We perform
and report experiments on the complete set of examples obtained by Watanabe in [17). Each PNDFSM is an
E-machine derived from an arbitrary connection of two completely specified deterministic FSM’s, M; and M,,
from the MCNC benchmark. The product machine M = M; x M, is used as the specification. The E-machine
which contains all permissible behaviors at M), is derived using the procedure in [18]. Our problem is to find a
minimum state machine contained in the E-machine.

Watanabe’s minimer, PND_REDUCE, does not compute prime compatibles but finds all compatibles instead. It
then solves the binate table using an explicit binate solver available in the logic synthesis package SIs.

Table 1 summarizes the results of PNDFSM state minimization. For each PNDFSM, we report the number of
states in the original PNDFSM, the number of states of the solution, the size of the binate table for PND_REDUCE
and for 1SM2, and the overall run time for state minimization for PND_REDUCE and ISM2. All run times are reported
in CPU seconds on a DECstation 5000/260 with 440 Mb of memory. For both programs, timeout is set at 10000
seconds of CPU time, and spaceout at 440Mb of memory.
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Out of the 30 examples, PND_REDUCE failed to complete on 8 examples because of timeouts, and failed on 4
examples because of spaceout. It can handle all PNDFSM'’s with less than 16 states. Our program can handle more
examples and only failed to find an exact solution on 2 examples because of timeouts. In those two cases, ISM2
did succeed in computing the prime compatibles as well as building the binate covering table. Furthermore, for
the example pm41, it found a solution with 9 states after 4844.7 seconds. For pm50, it found a first solution with
4 states in 150.7 seconds, and the minimum one with 3 states in 7309.5 seconds, while optimality was concluded
in 49181 seconds after the complete branch-and-bound tree was searched.

Note that each compatible results in a column of the binate table by PND_REDUCE whereas ISM2 has one column
for each prime compatible. The fact that most examples have very few prime compatible shows the effectiveness
of our prime compatibles computation for PNDFSM minimization. Even in these cases, state minimization may
not be trivial because compatible generation and prime dominance may take a long time, e.g. pm04 and s3p1.

9 Conclusions

In this paper we have presented both theoretical and practical contributions to the problem of exploring contained
behaviors and selecting one with minimum number of states for classes of NDFSM’s. In particular we have
contributed: '

1. Atheoretical solution to the problem of exact state minimization of general NDFSM s, based on the proposal

of a notion of generalized compatibles. This gives an algorithmic frame to explore behaviors contained in a
general NDFSM.

2. Animplicit algorithm for state minimization of PNDFSM’s. The results of our implementation are reported
and shown to be superior to the explicit formulation described in [19]. We could solve exactly all the
problems of the benchmark used in [17] (except two cases, where minimal solutions not guaranteed to be
minimum were found). The explicit program could complete approximately one half of the examples, and
in those cases with longer running times.

We are currently working also on the problem of selecting out of an NDFSM a minimum DFSM that can be
implemented in an interconnection of two FSM’s and we will present soon our results.

It is worth to underline that the first step of exact state minimization is the exploration of all possible behaviors
contained in a NDFSM. For some classes of NDFSM’s this can achieved by computing compatibles (as classically
defined and then extended in [19, 4]). Each closed collection of compatibles is a contained DFSM and viceversa.
In the case of state minimization one wants a minimum cardinality closed collection of compatibles. But one
can replace the requirement of minimum cardinality with any other desired cost function or property (such as an
implementable behavior) and obtain a new behavior selection problem. Therefore the exploration of all contained
behaviors is a key technology for future applications in the synthesis of sequential networks. Implicit techniques
as those that we have presented are a winning tool to support synthesis algorithms.
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# states in | # states table size (row x col) CPU time (seconds)
PNDFSM | PNDFSM | insol. | PND.REDUCE |  IsM2 PND_REDUCE |  IsM2
L3 17 2 ‘ﬁ 10x4 timeout 174
am9 13 1 1x1 timeout 23
ax4 11 1 26 x 28 1x1 0.7 0.7
ax7 20 2| 334x308 20x6 15.6 7.6
bx7 23 2| 254x216 20x6 99 9.0
damiani 5 3 21x24 17x 10 0.1 1.3
edat2 14 1 1x1 timeout 1.1
edbpl 11 1] 1064 x995 1x1 308.1 0.8
e4tl 6 1] 103x120 1x1 0.7 0.3
e69 8 1| 551x501 1x1 10.5 0.3
e6tm 21 1 1x1 timeout 31
ex10 13 1 23x28 1x1 0.5 0.6
ex12 13 1] 1451x 1019 1x1 16149.1 0.8
mc9 4 1 7x11 1x1 0.1 0.1
mt51 16 1 1x1 timeout 3.8
mt52 9 1] 256x639 1x1 394 0.8
pmO03 15 1] 1203x 1019 1x1 1751.1 0.8
pm04 79 1 Ix1 spaceout 120.6
pmil 9 1| 331x395 1x1 29.7 1.3
pml2 7 1 8§x19 Ix1 04 04
pm31 22 1 Ix1 spaceout 3.6
pm33 21 1 1x1 timeout 6.6
pm41 33 <9 12050 x 4774 spaceout | 4844.7*
pmS50 22 3 1249 x 515 timeout | 49181
s3pl 38 1 1x2 spaceout 915.8
s3t2 36 1 389x 18 timeout 399
tmO1 10 1| 476x767 1x1 409 0.8
tm02 7 1] 155x211 1x1 3.1 04
tm31 9 1] 125x113 1x1 1.1 0.3
tm32 9 2] 106x143 37x9 1.2 29

* best solution before timeout

Table 1: State Minimization of PNDFSM’s
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