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Abstract

This paper addresses state minimization problems of different classes of non-deterministic finite state
machines (NDFSM's). We present a theoretical solution to the problem of exactstate minimization of general
NDFSM's, based on the proposal of a notionof generalized compatibles. This gives an algorithmic frame
to explorebehaviors contained in a general NDFSM. Then we describe a fully implicit algorithm for state
minimization of pseudo non-deterministicFSM's (PNDFSM's). Theresults of ourimplementation are reported
and shownto be superior to a previous explicit formulation. We could solve exactlyall but one problem of a
published benchmark, whileanexplicit program could complete approximately one halfof the examples, and
in those cases with longerrunningtimes.

1 Introduction

Implicit techniques are based on theidea of operating ondiscrete setsby their characteristic functions represented
by Binary Decision Diagrams (BDD's) [2]. In manycases of practical interest these setshavea regular structure
that translates into small-sized BDD's. BDD'scan be manipulated efficiently with the usual Boolean operators.
Implicit techniques increase the size of problems thatcanbe solvedexactly in logic synthesis and verification.

In [10] an implicit algorithm for exact state minimization of incompletely specified finite state machines
(ISFSM's) has been described. It was based on new implicit techniques to generate prime compatibles and to
build and solve a binate table. ISFSM's are a subclass of non-deterministic finite state machines (NDFSM's)
and recently more classes of NDFSM's have been introduced in sequential logic synthesis as a way to capture
flexibility in networks of finite state machines (FSM's). Especially important are pseudo non-deterministic FSM's
(PNDFSM's), introduced in [17], that are sufficient to express the flexibility in an arbitrary interconnection of
two FSM's. A family of extensions of PNDFSM's called &-PNDFSM's, for k anynatural number, has also been
proposed in [6,7]. Extracting out of a NDFSM a behavior corresponding to a DFSM with a minimum number
of states is an important synthesis objective, that generalizes the problem of stateminimizationof ISFSM's. We
call it in the sequel simplystate minimization problem, and it mustnotbeconfused withbehavior-preserving state
minimization, of moreinterest in theoretical computer science community.

In [19, 4] the problem of extracting a minimum state behavior out of a PNDFSM has been attacked and it
has been shown that an exact solution can be obtained by extending the notion of compatibles and formulating a
binate table problem. In [19] a contribution has also been made to the problem of selecting a DFSM that can be
implemented in aninterconnection of two FSM's. Here we present a two-foldcontribution:

1. A theoretical solution to theproblem of exact state minimizationofgeneral NDFSM's, based ontheproposal
of anotionof generalized compatibles. This gives analgorithmic frame to explore behaviors contained in a
general NDFSM.
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2. Animplicit algorithm for state minimizationofPNDFSM's. The results ofourimplementation are reported
and shown to be superior to the explicit formulation described in [19]. We could solve exactly all the
problems of the benchmark used in [17] (except two cases, where minimal solutions not guaranteed to be
minimum were found). Theexplicit program could complete approximately one halfof theexamples, and
in those cases with longer running times.

We are currently working also on the problem of selecting out of an NDFSM a minimum DFSM that can be
implemented in an interconnection of twoFSM's and wewill soonpresent our results.

It is worth tounderline thatthefirst step ofexact state minimization is theexploration ofallpossible behaviors
contained in a NDFSM. Forsome classes of NDFSM's thiscanachieved bycomputing compatibles (asclassically
defined and thenextended in [19,4]). Each closed collection ofcompatibles is a contained DFSM and viceversa.
In the case of state minimization, one wants a minimum cardinality closed collection of compatibles. But one
canreplace the requirement of minimum cardinality with any otherdesired costfunction or property (such as an
implementable behavior) and obtain anew behavior selection problem. Therefore the exploration ofallcontained
behaviors is a key technology forfuture applications inthe synthesis ofsequential networks and the capability of
doing it efficiently as when using the implicit techniques that we are investigating is a winning tool to support
synthesis algorithms.

Theremainder of thepaper is organized asfollows. Ourtaxonomy ofdifferent classes of finite state machines
and theirstate minimization problems is proposed in Section 2. Section 3 reports thecurrent status of these state
minimization problems. Anew algorithm forstate minimization ofNDFSM's is proposed in Section 4. Section 5
introduces implicit representations and manipulations. Then a fully implicit algorithm for state minimization of
PNDFSM's ispresented inSection 6. Considerations onanimplicit algorithm forgeneral NDFSM's are discussed
in Section 7. Results on minimization of PNDFSM's are reported in Section 8. Conclusions and future work are
summarized in Section 9.

2 Definitions

In thissection, weshall first define different classes of finite state machines (FSM's) used in this paper, and their
state minimization problems. Then weshall introduce the two common steps of a state minimization algorithm:
compatible generation and selection.

2.1 Taxonomy of Finite State Machines

Definition 2.1 Adeterministic FSM (DFSM) orcompletely specified FSM (CSFSM) can be defined asa6-tuple
M = {S,I,0,6, A, r). S represents thefinite state space, I represents thefinite input space and 0 represents the
finite output space. 6 is the next statefunction defined as6 :1 x S -+ S where n e S is the next state ofpresent
state p e S on input i € / if and only ifn = 6(i,p). Ais the outputfunction defined as A: J x S -• 0 where
oeO is the output ofpresent state p e S on input i € / ifand only ifo = A(i,p). r e S represents the unique
reset state.

A behavior between the input variables / and the output variables 0 is the set of pairs of input and output
sequences realized bya completely specified deterministic finite state machine with theinput / and theoutput 0.
A formal definition follows.

Definition 22 Given afinite setof input variables I and afinite setofoutput variables O,a behavior between I
and O is a setofpairs of input and output sequences, B = {(<rt-, a0) | |a,| = |ct0|}, which satisfies thefollowing
conditions:

1. Completeness:
For anarbitrary sequence or, onI, there exists a uniquepairinBwhose input sequence is equal to<rt.



2. Regularity:
There exists a DFSM M = (5, J,0,6, A,so) such that, for each (a^a0) = ((z'o,...,ij), (oi,...,oj)),
there is a sequence of states s\, 52? •••»&j with the property that sk+\ = 6(ik,sk) andOk = A(ijt, sk)for
0<k<j.

For a non-deterministic finite state machine, there might exist more than one valid transition for some state
and an input. Therefore, while a DFSM represents a single behavior, a non-deterministic FSM (NDFSM) can be
viewed as representing a set of behaviors. Each such behavior is called a contained behavior. Then an NDFSM
expresses handily flexibilities in sequential synthesis.

Definition 23 A non-deterministic FSM (NDFSM) is defined as a 5-tuple M = (5, J, 0, T, R)where S repre
sents thefinite state space, I represents thefinite inputspace and 0 represents thefinite outputspace. T is the
transition relation definedas a characteristic function T:IxSxSxO-*B. On an input i, the NDFSM
atpresent statep can transit to a next state n andoutput o if andonly ifT{i,p^ n,o) = 1 (i.e., (i,p, n, o) is a
transition). There exists one or more transitions for each combination ofpresent state p and input i. R C S
representsthe set ofreset states.

The above is the most general definition of an FSM and it contains, as special cases, different well-known
classes of FSM's. An FSM defines a transition structure that can be described by means of edges. By an edge
(i, p, n, o), the FSM transits from state p on input i to state n withoutput o.

lb capture flexibility/choice/don't care/non-determinism in the next state n and/or the output o from a state
p at an input i, one can specify one or more transitions (i,p, n, 6) G T. As said above, we assume that the state
transition relations T is complete with respect to i and p, i.e., there is always at least one transition from each state
on each input. This differs from the situation in formal verification where incomplete automata are considered.

Definition 2.4 Astatetransition relation T is complete iffVi,p 3n, o [T(i, p, n, o)] = 1.

We introduce now two useful classes of FSM's: pseudo non-deterministic FSM's and incompletely specified
FSM's. An NDFSM is a pseudonon-deterministic FSM(PNDFSM) iff for each triple (t, p,o)eIxSxO, there
is a unique state n such that T(i,p, n, 6) = 1. It is non-deterministic because for a given input and present state
there may be more than one output; it is called pseudo non-deterministic because edges carrying different outputs
must goto different nextstates l.

Definition 2.5 A pseudo non-deterministic FSM (PNDFSM) is a 6-tuple M = (5, /, 0,6,A, R). 6 is thenext
statefunctiondefined as 6 :1 x S xO -> S where eachcombination ofinput, presentstateandoutputis mapped
to a uniquenextstate. A is the outputrelationdefined by its characteristicfunction AiIxSxO^B where
each combination of input andpresent state is related to one or more outputs. R C 5 represents theset ofreset
states.

Since the next state n is unique for a given output, present state and input, it can be given by a next state function
n = 6(i, p, o). Since the output is non-deterministic in general, it is represented by the relation A.

One can extend the previous definition to get a numerable family of machines as follows. An NDFSM is a
fc-step pseudo non-deterministic FSM (fc-PNDFSM), where k € u>, iff for any present state the choice of the next
state can be uniquely identified by observing input-output sequences of length up to k. An NDFSM is a fc-step
pseudo non-deterministic FSM (fc-PNDFSM), where k e w, iff for each tuple (i, n,..., ik,p, o, 02,..., ok) €
IxIx-'XlxSxOxOx-'XO there is a unique next state n and there are states $2> •• •»$k such that
T(i,p,n,o)= 1 andr(i2,n,32,02) = T(i3,s2,53,03) = ••• = T(ik,sk-i,sk,ok) = 1.

Definition 2.6 A fc-step pseudo non-deterministic FSM (k-PNDFSM) is a 6-tuple M = (S,I,0,6,A,R). 6 is
thenextstatefunction definedas6:Ix---xIxSxOx---xO -* 5 whereeach combination ofinput, present

'The underlying finite automaton of aPNDFSM is deterministic.



state, kinputs and outputs gives a unique next state. Aisthe output relation defined by its characteristicfunction
A:IxSxO-+B where each combination ofinput andpresent state is related to one ormore outputs. RC S
represents the set ofreset states.

By definition, a PNDFSM is an 1-PNDFSM. Cemy [7] has given a polynomial algorithm to convert a k-
PNDFSM toaPNDFSM. Afc-PNDFSM has a representation smallerorequal tothat ofan equivalent PNDFSM 2.

An NDFSM isan incompletely specified FSM (ISFSM) iffforeach pair (i,p) 6 IxSsuchlhatT(i,p,n,o) = 1,
(1) the machine can transit to a unique next state nortoany next state, and (2) the machine can produce a unique
output o or produce any output.

Definition 2.7 An incompletely specified FSM (ISFSM) can be defined as a 6-tuple M = (5,7,0, A, A, R). S
represents thefinite state space, I represents thefinite input space and Orepresents thefinite output space. Ais
the next state relation defined asa characteristicfunction A:IxSxS-*B where each combination ofinput
andpresentstate isrelated toasingle next state orto allstates. Aisthe output relation defined asa characteristic
function A:IxSxO-+B where each combination ofinput andpresent state isrelated to asingle output or to
all outputs. RC S represents theset ofreset states.

Incomplete specification is used here to express some types ofdon'tcares in the next states and/or outputs.
We warn thateven though "incompletely specified" is established terminology in thelogic synthesis literature, it
conflicts with the fact that ISFSM's have a transition relation T that is actually completely specified with respect
to present state p and input i, because there is at least one transition foreach (t, p)pairin T.

We can restate the definition of a CSFSM in terms of the relation T.

Definition 2.8 A deterministic FSM (DFSM) orcompletely specified FSM (CSFSM) is an NDFSM wherefor
each pair (i,p)elx S, there isaunique next state nanda unique output osuch that T(i,p,n,o) = 1, i.e., there
is a unique transitionfrom (i, p). Inaddition, R contains a unique reset state.

Note that an ISFSM and a DFSM are both next-state output uncorrelated because we can represent the next
state and output information separately. Buta PNDFSM (and *-PNDFSM) is notnext-state output uncorrelated
as thenext state is correlated with theoutput by n = 6(i,p,o).

2.2 Taxonomy of State Minimization Problems

Definition 2.9 Given an NDFSM M = (5,1,0, T,R), a state so € S, and an input sequence {i0, »i,..., ij},
an output sequence {on, o\ ,..., oj) ispossible/rom s0 in Miff 3a state sequence {s\, s2,..., sj+\ }such that
Vk:0<k<j, T(ikiski sk+l,ok) = 1.

Foreach state inadeterministic FSM, exactly one possible output sequence corresponds toeach input sequence.
Given aninitial state, a deterministic FSM represents a unique input-output behavior. Any other kinds ofFSM's,
ontheother hand, canrepresent a setof behaviors because bydifferent choices ofnext states and/or outputs, more
than oneoutput sequence can beassociated with aninput sequence. This leads naturally tothenotion ofbehavioral
containment between specifications.

Definition2.10 Given NDFSM's M = (SJ,0,T,R) and M' = (S',I,0,T',R'), M' C M iff
Vr GR 3r' e R' Vinput sequences Voutput sequences possiblefrom r' in M', the same output sequence is
possiblefrom rinM.

Definition 2.11 Given anNDFSM M, the stateminimization problem is tofind another NDFSM M'such that

1. M' CM, and

For every STG containing unspecified next-states one can construct an STG where all unspecified next states are replaced byatrap
state A as in[13]. Thetransitions from Dunder any input go to D itself and their outputs are unspecified. The new STG describes exactly
thesame state mmimizauon problem astheoldone,butthe latter STG represents more behaviors than the former one.



2. VM" s.t. M" C M, number ofstates in M' < number ofstates in M".

Note that M' is not required to be deterministic. Onthecontrary, to preserve flexibility for other sequential
synthesis tools, one may wantchoose the M' with maximal non-determinism in specification, out of all state
minimal machines.

Definition 2.10of machine containment andDefinition 2.11 of the stateminimization problem apply also to
other kinds of FSM's.

The state minimization problem defined above is very different from the NDFA minimization problem de
scribed in classical automata textbooks. Here we want a minimal state implementation which is contained in the
specification,while the classical problem is defined as:

Definition 2.12 Given an NDFSM M, the behavioral-preserving state minimization problem is tofind an
NDFSM M'which represents the same setofbehavior as M but has thefewest number ofstates.

2.3 Exact State Minimization

Exact algorithms for thestateminimization problems (ISFSM's andPNDFSM's) arebasedon the generation of a
collection of state sets called the compatibles.

Definition 2.13 A set of states is a compatible ifffor each input sequence, there is a corresponding output
sequence which canbeproduced byeach statein the compatible.

Thisdefinition saysthatstates within a compatible canpotentially be merged together to form a single state in
theminimized machine. After theset of compatibles is generated, the second stepof an exaa stateminimization
algorithm is to select a subset that corresponds to a minimized machine, lb satisfybehavioral containment, the
selection of compatibles should be suchthatappropriate covering andclosure conditions are met. The covering
conditions guarantee that some selected compatible (i.e., some state in the minimized machine) corresponds
to a reset state of the original machine. The closure conditions require that for each selected compatible, the
compatibles implied by state transitions should alsobe selected. The stateminimization problem reduces to one
thatselects a minimum closed coverofcompatibles. Theselection is usually solved asa binate covering problem.

The set of compatibles is usually verylarge. For the purpose of stateminimization, it is useful to identify a
minimum subset called theprime compatibles such thata minimum closed cover of prime compatibles stillyields
a minimum contained machine. According to the following definitions, compatibles that are not dominated by
other compatibles are called prime compatibles:

Definition 2.14 A compatible c' prime dominates a compatible c ifffor each compatible selection containing
c which corresponds toa minimum machine, the selection with c replaced byc'also corresponds toa minimum
machine.

Definition 2.15 Acompatible is a primecompatible iffitis notprime dominated by another compatible.

The actual computations of compatibles and primeness differ for different typesof FSM's. Also the related
covering problems vary slightly.

Note thatin theprevious definitions thestate space 5, theinput space / and theoutput space O canbe generic
discrete spaces and so S, I and 0 can assume symbolic values [5,16]. A special caseis when 5, J and 0 are
the cartesian product of copies of the space B = {0,1}, i.e., they are binaryvariables. The fact that the FSM's
have symbolic vs. binary encoded inputand output variables does notchange the formulation of problem, northe
solution based on the computation of compatibles. The theory extends in a straightforward manner to encoded
state spaces.



3 Status of State Minimization Problems

Theproblemof state minimization has already beensolved for someclassesof FSM's:

• In the caseof CSFSM's, it coincides with the problem of behavioral-preserving state minimization. The
most efficient algorithm is in [9]. An implicitalgorithm is in [12].

• Exact algorithms for the problem of state minimization of ISFSM's have been presented in classical pa
pers [14, 8]. Thebestcomputer implementation is in [15]. Animplicit formulation of theexact algorithm
has been presented in [10].

• Explicit algorithms forexact state minimization of PNDFSM's have been described in [19,4] 3.

The gistof thecontributions of [19,4] has been toshow that "an incremental update" oftheclassical definition of
compatibles as introduced by [14, 8] is sufficient to explore all possible behaviors contained in PNDFSM's and
so to extractthe minimumone. It is an openproblem to characterize the maximal classesof NDFSM's for which
analogous notions of compatibles aresufficient to solve exactly state minimization. We will seethatin themore
general case of NDFSM's we need a definition of generalized compatibles that is a more drastic departure from
the previous ones.

Here wepropose explicit and implicit algorithms to fill the existing gaps in theliterature. Inparticular we are
going to investigate:

• Fully implicit algorithm for exaa state minimization ofPNDFSM's. Exact algorithms have been proposed
by [19, 4]. The algorithms in [19] use some implicit techniques of [10], and handle the more complex
problem of stateminimization withimplementability.

• Explicit and implicit algorithms for exact state minimization ofNDFSM's. Currently nosuch algorithm is
known. The only known method tohandle NDFSM's istogenerate anequivalent PNDFSM bydeterminiza-
tionofthe underlying automaton. The shortcoming ofthat approach isthat, inthe worst case, the state space
becomesexponentiallylarger.

4 State Minimization of NDFSM's

Isitpossible toapply the classical procedure based oncomputing compatibles toNDFSM's ? The answer is: yes,
the notions ofcompatibles and selection ofaminimum subset carry through toNDFSM's; but, no, that procedure
isnot guaranteed toproduce a behavior with a minimum number ofstates, as shown by the counter example in
Figure 1.

Given the NDFSM M asshown inFigure 1a,the minimum state DFSM M\,asshown inFigure lb, contained
inM,cannot befound using compatibles alone. By Definition 2.13, states Band Care not compatible. As aresult,
anyminimized machine M2 obtained by compatible-based algorithms will have at least4 states, one of the two
suchminimized machines beingshown in lc. However withthenon-deterministic transitions intostatesB andC,
we canchoose their outgoing transitions ina way asshown inFigure lb such that Band C are merged together as
one state. This merged state is compatible tostate D. This merging possibility is notexplored bycompatibility.
The minimum state DFSM, whose behavior iscontained inthe original NDFSM, has only two states.

4.1 Generalized Compatibles

By the following definition, we generalize the notion of a compatible to one that consists of a set of state sets.
Each individual state set contains states that can be merged because they can be non-deterministically reached
from an initial state. If theoriginal FSM doesn't have any non-deterministic transition, each such state set will be

Since a fc-PNDFSM canbe reduced polynomially toa PNDFSM, also the former onescanbetreated in this framework.
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Figure 1: A counter example, a) the NDFSM M, b) the minimum state DFSM contained in M, c) one DFSM
contained in M found using compatibles.

a singleton. In such a case, each generalized compatible is a set of singleton-states, corresponding to a classical
compatible.

Definition 4.1 Asetofstatesets is a generalized compatible ifffor eachinput sequence, there is a corresponding
outputsequence which can be producedby at least one statefrom each state set in thegeneralizedcompatible.

Example: {A}, {B}, {C}, {D}, {E}, {F}, {BC}, {BC,D} are generalized compatibles. The enumeration of

input sequences for {BC.D} are as follows: {B,D}-^{D,D}; {C,D}-^i{D,D}; {B,D}-^{D,D}-^l{D,D};
{B,D}^{D,D}-!4{D,D}; {C,D}-^{D,D}^{D,D}; {C,D}-^{D,D}-^{D,D};...

Given a NDFSM F with n states, the definition ofgeneralizedcompatible requires that for all input sequences,
there is a common output sequence agreed by at least one stateof each state set in the generalized compatible.

Forthe definition to be constructive, we need a bound on the length ofinput sequences that must be considered
in order to decide compatibility.

Lemma 4.1 One can decide whether the initialstates of two NDFSM's are compatible by examining all input
sequences oflength atmost0(n.m), ifn andm arethe number of states of the twomachines.

Proof: Given a pairof statesand an input sequence,we say that the input sequence runs successfully if a common
output sequence can be produced from the two states. A runofaninput sequence is the pairsof states that it visits.
Suppose that, when starting in both FSM's from their respective resetstates,all input sequencesof length < n.m
run successfully. Each such input sequence must come back to pairs of states already visited, because there are
only n.m different pairs of states; in the worst-case an input sequencewill visit all of them and when readingthe
n.m-th inputsymbolwill return to pairs already seen. Saythat oneof these of pairs of states is (sk, s^), reached
under input sequence t. The pair (sk,s'k) can also be reached from theinitial states by an input sequence that is a
prefix of i, say tk, of length lk < n.m. By hypothesis we can run successfully any input sequence tit thatis the
concatenation of ti and one more input symbol t (because lk + 1 < n.m). Moreover, the input sequence tit will
reach other pairs of states already visited. An inductive argument shows that any extension (of arbitrary length)
of t can be run successfully. Therefore by inspectingall input sequences of length < n.m one can decide if the
two reset states arecompatibles. If the cardinalityof the set of inputs is k, then there are knm input sequences of
length < n.m. Since the two machinesare non-deterministic, forevery input sequenceof length n.m theremight
exist (n.m)nm distinct output sequences. •

Theorem 4.1 To decide whether a setof setstates ofa NDFSM F with n states is a generalized compatible, it is
sufficient to verify thedefinitionfor all input sequences of length bounded byO(nn).



Proof: The core operation to decide generalized compatibility is to find out whether two given states s\ and s\
are compatible, i.e., whether for every input sequence started at them there is an output sequence onwhich the
two states agree. Consider two versions Fai and F^ ofthe NDFSM F, one with initial state si and the other with
initial state s\. We want to find whether from the reset states for every input sequence there isa common output
behavior. By the previous lemma one can decide whether the initial states of two NDFSM's are compatible by
examining all input sequences of length atmost 0(n.n). If the cardinality of thesetof inputs is k, then there are
kn-n input sequences oflength < n.n. Since the two machines are non-deterministic, for every input sequence
oflength n.nthere might exist (n.n)n-n distinct output sequences, lb decide'compatibility ofmore than 2 states,
onecanmake more copies of theNDFSM and apply thesame reasoning. Each new copy brings a factor n in the
algorithm. Atmost onemight need tocheck thecompatibility of nstates. The point oftheexercise is to show that
a finite length suffices, even though thisnaive bound is outrageous inpractice. D

Itwould behardly practical tocompute thegeneralized compatibles directly from thedefinition. The following
theorem shows a recursive characterization ofgeneralized compatibles that expresses the compatibility ofa setof
state sets in terms of the compatibilitiesof its sets of next state sets.

Theorem 4.2 Aset K ofstate sets isa generalized compatible iffforeach input i, there exists an output osuch
that

1. foreach state setin K, its setoftransitions under input i and output o is non-empty, and

2. from the set K ofstate sets, the set K'ofsets ofnext states under i and oisalso a generalized compatible.

Note the similarity with the generation ofclassical compatibles, where we require a setofstates tobe(1) output
compatible, and(2) itsnextstateset to becompatible.

Now, theproblem ofstate minimization of NDFSM's can bereduced tooneof selecting a minimum subset of
generalized compatibles. Theselection must satisfy thefollowing covering and closure conditions:

4.2 Generalized Covering Conditions

Definition 42 Aset ofgeneralized compatibles covers the reset statefs) iffitcontains atleast one generalized
compatible c such that the setofreset states contains atleast one state setin c (i.e., atleast one ofits state sets is
made up entirely ofresetstates).

Example: Onlygeneralized compatible {A} covers the reset state.

43 Generalized Closure Conditions

Definition 43 AsetK ofstate sets contains another set K' ofstate sets ifffor each state set Sf in K', there is
state set S in K such that S' contains S.

Definition 4.4 Aset ofgeneralized compatibles Qisclosed iffforeach generalized compatible K e Q,for each
input i, there existsan output o such that

1. foreach state setinK, its setoftransitions under input i and output o is non-empty, and

2. from the set K ofstate sets, the set K' ofsets ofnext states under i and o is contained in a generalized
compatible of Q.

Example: The set ofgeneralized compatible Q= {{A}, {BC, D}} isclosed. Closure condition for {A} can be
represented by the clauses: ({A} =• {A}) •({A} =• {B} + {C} + {BC} + {BC,D}). Closure for {BC,D)
requires that {BC, D] =j> ({D} + {F})- {D} and {BC, D} =• {{E} + {D})•{D}.



4.4 Relationship to Determinization and PNDFSM Minimization

Definition4.5 Asetofstatesis a mergeable iffit corresponds toa state labelon thedeterminizedstatetransition
graph.

Figure 2: DeterminizedState TransitionGraph of M in Figure la

Example: The mergeablesof NDFSM M in Figure la are A, BC, D,E, F,whichare state labels on the determinized
state graph shown in Figure 2.

Theorem 43 Atleastoneminimum closedcover consists entirely ofgeneralized compatibles whosestatesetsare
mergeables.

Example: The minimumclosedcover{{A},{BC,D}} is madeup of mergeables only.
Therefore to formthe covering tableandsolvethecovering problem exactly, it is sufficient to generateonlythe

generalized compatibles madeup ofmergeables. Therefore if onereplaces thewords"statesets"with"mergeables"
in the previous definitions one obtainsa more compact representation of the set of generalized compatibles.

5 Implicit Representations and Manipulations

Algorithmsforsequentialsynthesishavebeendeveloped primarilyforStateTransitionGraphs(STG's). STG's have
been usually represented in two-levelform where state transitionsare stored explicitly,one by one. Alternatively,
STG's can be represented implicitlywith Binary Decision Diagrams (BDD's) [2,1]. BDD's represent Boolean
functions (e.g. characteristicfunctionsof sets and relations) and havebeen amply reported in the literature [2,1],
to which we refer.4

5.1 Positional-set Representation

lb perform stateminimization, one needs to represent and manipulate efficiently sets of states,or state sets, (such
as compatibles) and sets of sets of states (such as sets of compatibles). Our goal is to represent any set of sets of
states implicitlyas a single BDD, and manipulatesuchstate sets symboUcally all at once. Differentsets of sets of
states can be stored as multiple roots with a single shared BDD.

Suppose a FSMhas n states, thereare2n possible distinct subsets of states. In orderto represent collections of
them,eachsubsetof statesis represented in positional-set form,usinga setof n Booleanvariables,x = x\X2. ..xn.
The presence of a state sk in the set is denoted by the fact that variable xk takes the value 1 in the positional-set,
whereas xk takes the value 0 if state sk is not a member of the set. One Boolean variable is needed for each state
because the state can either bepresent orabsent inthe set.5 For example, if n = 6,the setwith a single state 54 is
representedby 000100 while the set of states 52*335 is represented by 011010.

43z(.F) (Vi(J7)) denotes the existential (universal) quantification of function T over variables z; => denotes Boolean implication; &
denotes XNOR; -> denotes NOT.

5The representation ofprimes proposedbyCoudert etal. [3] needs 3values pervariable to distinguish if the present literal isin positive
or negative phase or in both.



Aset ofsets ofstates isrepresented as a set S ofpositional-sets by acharacteristic function xs '• Bn -* B as:
Xs(x) = 1iff the set ofstates represented by the positional-set x isin the set 5. ABDD representing xs(x) will
contain minterms,each correspondingto a state set in 5.

5.2 Operations on Positional-sets

With our definitions ofrelations and positional-set notation for representing set ofstates, useful operators on sets
and sets ofsets can be derived. We have proposed in [10] a unified notational framework for set manipulation,
extending the work by Lin etal. in [11]. Here we define some relationships between two sets, between two sets
of sets, between a set and a set of sets, etc.

Lemma 5.1 Setequality, containment andstrict-containment between twopositional-sets xand yare expressed
by: (x = y) = IILiC** & Vk); (x 2 y) = tlLife =* xk);and(x Dy) = (x Dy) •(x ± y).

Lemma 5.2 Given two sets ofpositional-sets, complementation, union, intersection, and sharp can be per
formed on them aslogical operations (-», +, -, •-.) on their characteristicfunctions.

Lemma 53 Given a characteristic function xa(x) representing a setA ofpositional-sets, set union defines a
positional-set ywhich represents the union ofallstate sets in A,and can becomputed by:

n

SeUJnionx(xA,y) = \[(yk & 3* [xa(x) •**])
k=i

Foreach bitposition k, theright-hand expression sets yk to 1iffthere exists anx e xa such that its fan bitis a 1.
This implies that the positional-set y will contain the fc-th element iffthere exists a positional-set x in Asuch that
k is a member of x.

Lemma 5.4 The minimal ofaset Fofsets is the set containing sets in Fnot strictly containing any other set in
F, and is given by:

Minimalx(xF) = Xf(x)' fiy [XF(y) •(y C x)]

The term 3y[xf(j/) •{y C x)] is true iffthere isapositional-set yinxf such that y c x. Insuch acase, xcannot
beinthe minimal setby definition, and is taken away from xf(x).

S3 k-out-of-n Positional-sets

We define afamily ofsets ofstate sets, Tuplentk(x), which contain all positional-sets xC S with exactly kstates
inthem. Their BDD's can constructed by the following algorithm, by calling Tuple(n, k):

Tuple(i,j){
if (j < 0) or (i < j) return 0
if (i = 0) and (t = j) return 1
return ITE(a;t,Tuple(i-l,j-l),Tuple(i-l,j))

}

Tuple(i, j)containspositional-setsofcardinality j with ivariables, xi,x2,..., xit which can be grouped into those
that include state iand those thatdo not. The lattergroup simply corresponds toTuple(i-1,j ),the set ofpositional-
sets ofcardinality j with only x\, x2,..., zt--i (using one less variable). The former group can be obtained by
adding state i toeach positional-set inTuple(i - 1,j - 1), the set ofpositional-sets ofcardinality j - 1with i - 1
variables. Therefore Tuple(i, j)can be computed recursively by ITE(xi, Tuple(i -\,j-l),Tuple(i - 1, j)).
Recursion can stop when a termination condition as shown is met. The BDD size and time complexity of
Tuple(n, k) are both O(nk), provided its intermediate results are memoized ina computed table ([1]).
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5.4 cproject BDD Operator

Definition 5.1 [12] Given an equivalence relation E(x, y),the cproject operator selects a single element from
each equivalent class to represent the class. ±(x) isafunction that maps every element x ofanequivalence class
to the representative ofthe equivalence class.

cprojecty(E(x,y)) = {(x,y)\(x,y) eE,y= ±(x)}

5.5 Transition Relation of Determinized PNDFSM and Implicit Subset Construction

Given the transition relation T(i, s, sf, o)of an NDFSM (S,I,0,T, R), first we compute the transition relation
of the determinized PNDFSM, r'(i, c,c', o). A4-tuple (i, c,c', o) is in relation r' if and only if thesetof states c
oninput i cantransit to another setof states c', and simultaneously produce output o. Theadvantage of using a
1-hot encoding (i.e., positional setnotation) to represent states in theoriginal NDFSM, e.g. s, is thata statein the
determinized PNDFSM, e.g. c,(corresponding to a setofstates intheNDFSM) can berepresented bya minterm
in theencoded space, r' canbecomputed bythefollowing formula:

r'(i,c, c', 6) = Vs {[Tuplei(s) •(s C c)] =* 3s' [T{i, s,s',o) •(sf C <:')]}
•Vs' {[Tupleiis') •(s' C c')] => 3s [T(i,s,s',o) •(s C c)]}
>^Tuple0(c) •-.Tup/eo(c')

= Set.Unions,^c.{3s [(c Ds) •T(i,s,s', o)]} •-^Tuple0(c) •^Tuple0(c')

Given a 4-tuple (i, c, c', o),the first clause ontheright requires thatforeach singleton state s contained in c, there
is a next state sf accordingto T which is containedin c'. As a result, the next state set of c is a subset of c'. With
also thesecond clause, the4-tuples in the relation will besuch that c' is exactly thenext state setof c on input i
and output o. Finally, weeliminate all4-tuples expressing thefact that the empty state setcantransit to theempty
set under any input/output combination.

The power of the above computation is that we effectively determinized the NDFSM into the PNDFSM
(2s, J,0, t', r') where the new reset state is the union ofreset states in the NDFSM, r'(c) = Set.Unions^cR{s).
Compared with explicit subset construction, no iteration norstate graph traversal is needed.

The above relation T'(i,c,c',o), derived from the transition relation T, is useful in the computation of
compatibles and closure conditions inSection 6. r' contains many 4-tuples, asccan beany output compatible set
ofstates. During compatible generation, r' will be restricted to r byforcing cand c' tobecompatibles:

r(i, c,c', o) = r\i, c,c', o) •C(c). C(c')

If some applications other than state minimization need to know the reachable state space S" C 2s of the
determinized PNDFSM, it canbecomputed bythefollowing fixed point computation:

• S^(c) = r'(c)

• S'k(c) = S'k(c) + [cf -> c]3c, i, o{S'k(c) •r'(i, c,c', o)}

The above iteration can be terminated when for some j, 5j+1 = 5j and the least fixed point isreached. The set of
reachable states of thedeterminized PNDFSM is S'(c) = 5<(c).

6 State Minimization of PNDFSM's

The algorithm for state minimization of PNDFSM's consists of two steps: compatible generation and binate
covering. It is more complicated than the one for ISFSM minimization [10] because the definition of compatibles
andthe conditions for a closedcoverare more complex.

ThePNDFSM Mp shown in Figure 3 will beused in this section to illustrate various concepts.
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Figure 3: A PNDFSM, Mv

6.1 Compatibles

Thefollowing theorem serves as anequivalent, constructive definition of compatibles (c.f. Definition 2.13). The
theorem yields an implicitcompatible generation procedure.

Theorem 6.1 Asetcofstates isa compatible iffforeach input i, there exists an output osuch that

1. each state in c hasa transition under input i and output o,and

2. from the set cofstates, the setc'ofnext states under i and o isalso a compatible.

Example: A,B, C,D, ABare compatibles of Mp ofFigure 3. AB is a compatible because oninput 0, it loops
back to itself, andon input 1, it goes to C which is also a compatible.

6.2 Covering and Closure Conditions for CompatiblesSelection

Definition 6.1 Aset ofcompatibles covers the reset state(s) iffatleast one selected compatible contains a reset
state.

Example: Thecovering condition for Mp is thesimple clause (4) which requires compatible Abeselected.
If no reset state is given, it canbe assumed that each state in S has tobecovered bysome compatible (as it is

common in classical papers on the minimizationof ISFSM's).

Definition 62 Asetof compatibles C is closed ifffor each compatible c € C,for each input i, there exists an
output o such that

1. each state in c hasa transition under input i and output o,and

2. from the setcofstates, the setdofnext states under i and oiscontained ina selected compatible.

Example: Consider the closure condition forcompatible D. Oninput 0, D transits to B, and on input 1, it can
transit to A (and output 1) or transit to B (and output 0). The closure condition for D is the conjunction of
disjunctions (B + AB) .(A + B + AB). Similarly, the closure condition for A is {B + AB) •(C), for B is
(A+ AB) •(C), forC is (D) •(B + AB)and for compatible AB is (C).

Theorem 6.2 The state minimizationproblem ofa PNDFSM reduces to the problem offinding a minimum setof
compatibles that covers the reset state(s) and is closed.
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6.3 Prime Compatibles

For runtime efficiency, we compute the set of prime compatibles which is a subset of the compatibles. Prime
dominance has been introduced by Definition 2.14. A sufficient condition for prime dominance is given by the
following theorem:

Theorem 63 Acompatible c'prime dominatesa compatible c if

1. if(c n R) ^ 0 then (c'n R) £ 0,and

2. the closure condition ofc implies 6the closure condition ofc', and

3. c' D c.

Proof: Assume bycontradiction thatc'does notprime dominate c,i.e., there isa minimum closed cover containing
c whichis not anymorea closedcoverwhenc is replaced by c' (Definition 2.14). Weshowthat at least one of the
above three conditions is false.

Consider any setofcompatibles Csuch that CU{c} isaminimum closed cover 7. As CU{c} and C U{c'}
have the same cardinality, in order that C U{c'} is not a minimum closed cover, either(1) C U {c7} does not
cover the reset state(s) or (2) C U{c'} is notnotclosed. Incase (1), C U{c'} is nota cover iff (c n R) ^ 0 and
(c' n R) = 0,i.e., condition 1of the above theorem is false. Incase (2) C U{c'} is not closed, if one of thetwo
is true: (2a) C satisfies the closure condition of c butnottheclosure condition of c'. Thishappens iff condition 2
is false. (2b) c is needed to satisfy theclosure condition of some compatible in C, butc' does not satisfy such a
condition. This is the case only if c' ~j> c, i.e., condition 3 is false.

Theconverse of the theorem is not true,because condition 3 is a sufficient, butnot a necessary condition, for
case (2b) above. D

Example: Compatible AB prime dominates compatible B because all conditions of Theorem 6.3 are true. In
particular, closure condition of B implies closure condition of AB because (A + AB) >C =» C. Similarly, AB
dominates A. As a result, the prime compatiblesare AB, C, D.

6.4 Logical Representation of Closure Conditions

We now build a set of logical clauses expressing the closure requirement that a nextstate set d is contained by
at leastone selected compatible, as stated in Definition 6.2. Since we are going to generate the set of prime
compatibles, we express alsopart 3 of Theorem 6.3 that refers to the implication between closureconditions.

The notionof next state sets d is important forexpressing closureconditions.

Definition 63 dCt,,0 is the setofnext statesfrom compatible c under input i and output o.

Given atriple (c,i, o), such asetisunique inaPNDFSM. We associate toeach dc,,,0 aclause whose literals are the
prime compatibles that contain dCii>0. For simplicity of notation we designate by rfc,,,0 both thesetof next states
and the clause associated to it. It will be clear from the context which one it is meant.

Example: dDt0,o is B and it corresponds to the clause (ps + pab)- ^d.i.i is Aand it corresponds totheclause
(Pa + Pab). dz>,i,o is B and it corresponds tothe clause {pb + Pab)-

Theorem 6.4 Clause </<./,,v =* clause dc%it0 ifthe set ofnext states dc>ti>i0> Dthe set ofnext states dCtit0.

Condition A implies condition B iff thesatisfaction of condition A automatically guarantees thesatisfaction of condition B. In other
words, A is not less restrictive than B.

7It ispossible that no such Cexists, and the theorem is trivially true.
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Proof: If the set of next states dc>ti>t0> Dthe set of next states dC)i,0, then each prime compatible that contains
dd,i\0' contains also dC|t> Since each literal inaclause d isaprime compatible that contains thenext state set d,
itmeans that the clause dCfl,0 has all the literals ofthe clause dc',»',0' and so each assignment of literals that satisfies
the clause dciti,t0, satisfies also the clause dc>it0, i.e., clause c^w =• clause dCti>0. D

The converse does not hold.

For aPNDFSM, asetof compatible states cunder an input i may go todifferent sets of nextstates depending
onthe choice of output o. For at least one choice of o, the corresponding next state set dc,t> must becontained in
some selected compatible. This is expressed by the clause (or disjunctive clause ordisjunction), disjunct(c, i),
defined as:

disjunct(c,i) = 3o6 outputs atcunder i, dc,t-,0

For aPNDFSM, the closure condition of acompatible c, denoted byclosure(c), has the form of aconjunction
ofdisjunctive clauses. According toDefinition 6.2, the conjunction isover all inputs, while the disjunction isover
specified outputs. Given acompatible c, the following product of disjunctions must besatisfied (one disjunction
per input):

closure(c) = Vi € inputs, disjunct(c, i)

In summary, the closure condition for compatible c is fulfilled iff for each input i, there is an output o such
that the next state set dCti%0 from compatible cunder input i and output ois contained inaselected compatible. In
logical terms, thisclosure condition of c is fulfilled iff the product-of-sums

Vi € inputs 3o € outputs atc under i, dc^0

is satisfied. These closure conditions are tested against acertain selection of compatibles.
We prove first two useful lemmas.

Lemma 6.1 V*' 3x [F(x) =* F'(x')] iff [Vx F(x)] =• [W F((x')].

Proof: By usingsome fundamental validities of logic:

W 3x [F(x) =* F'(x')]

iff

V*' [Vz F(x) =» F'{x')]
iff

Vz F(x) =• W F'(x').

D

Lemma62 Vx' 3x [F'(x') => F(x)] iff [3x' F'(x')} => [3x F(x)].

Proof: By usingsome fundamental validities oflogic:

Vz' 3x [F'(x') =• F(x)]

iff

V*' [F'(x() =*. 3a: F(x)]
iff

3x' F'(x') => 3x F(x).

D

We present now the prime dominance condition of part 3ofTheorem 6.3. Notice that the implication between
closure conditions mentioned inTheorem 6.3 translates exactly to logical implication (=>) between clauses, i.e.,
given compatibles c and c', the closure condition of c implies the closure condition of c' iff closure(c) =>
closure(c'). What follows gives auseful characterization ofthe formula closure(c) =» closure{c').
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Theorem 6.5 Given compatibles c and c',

Vi' 3% [disjunct(c, i) =*• disjunctive', i')]

iff
closure(c) =>• closure{c').

Proof: Substituting x = i, x' - i',F(x) = disjunct(c, i), F'(x') = disjunct(c', i') in Lemma 6.1, one gets that
W 3i [disjunct(c, i) => disjunct(c', i')] iffVi disjunct(c, i) => W disjunctive', i'). The latter is bydefinition
closure(c) ^ closure(c'). D

The following theorem gives a usefulcharacterization of the formula disjunct(c', i') =* disjunct(c, i).

Theorem 6.6 Given compatibles c', c andinputs i', i,

W 3o [dc/,t»i0/ =>• dc,t,0]

iff
disjunctive', i') =» disjunct(c, i).

Proof: Substituting x = o,x' = o', F(x) = dC)ii0, F'(x) = d^^ into Lemma 6.2, one gets W 3o [dc»,,v,0/ =>
dc,i,o] iff 3o7 rfc',t',o' => 3odCii}0. The latter isbydefinition disjunct^, i') => disjunct(c, i). •

By substitutingTheorem 6.6 intoTheorem 6.5,we haveexpressed the implication betweenclosureconditions
of two compatibles (i.e., part 3 of Theorem 6.3) in terms of a logic formula on the next state sets from the two
compatibles.

The following two theorems simplify the closure conditions. Inourimplicitalgorithm, they are applied before
the implication between the conditions is computed.

Theorem 6.7 Given a compatible c and inputs %' and i, if disjunctive, %') =*• disjunct(c,i), then disjunct(c,i)
can beomittedfrom the conjunction closure(c)because of the existence ofdisjunct(c, i').

Proof: If disjunct(c,i') => disjunct(c,i), the conjunction of disjunct(c,i/) and disjunct(c,i) is simply
disjunct(c, i'). Therefore disjunct(c, i) can beomitted from the conjunction closure(c). D

Theorem 6.8 Asetofnext states d is not needed tobepart of the clause disjunct(c, i), if

1. disa singleton reset state 8, or

2. dCc, or

3. dDd' ifd' ispart of disjunct(c, i).

Proof: (1) If d is areset state, the covering condition would imply thisclosure condition expressed by rf, and thus
the latteris not needed and, even more, the closure condition is vacuously true. (2) d expresses the condition that
if wechoose c,aselected compatible mustcontain thestate setd. If d D c, c is such acompatible, and theclosure
condition isvacuously true. (3) dDd' means d =» d'. Thedisjunction of d and d'is simplyd', so dcan be omitted
from disjunct(c, i). o

This conditionis validonly if a uniquereset stateis given.
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6.5 Implicit Generation of Compatibles

Since the definitionof compatiblesfor a PNDFSMis similar to that for an ISFSM, the compatibles C and prime
compatibles PC are generated using implicit techniques similar to the ones proposed in [10]. First we compute
the transitionrelation r' between sets of states,using the implicitprocedure in Section5.5.

Theorem 6.9 The set C ofcompatibles ofanNDFSM canbefoundbythefollowingfixedpoint computation:

• ro(i,c, c') = 3o r'(i, c, c',6)

• Initially assume all subsets ofstates tobe compatible: Cq(c) = 1,

• By Theorem 6.1,

- Tfc+i (i, c,c') = Tk(i, c, c') •Ck(c')
- Ck+i(c) = Vi 3c' rk+i(i,c,c')

The above iteration can be terminated when, for some j, Cj+\ = Cj, and the so greatest fixed pointhas been
reached. The set of compatibles is thengiven by C(c) = Cj(c) andthe transition relation on the compatibles is
r(i,c,c') = Tj+i(i,c,c')-Cj(c).

6.6 Implicit Generation of Prime Compatibles and Closure Conditions

In our implicit framework, we represent each next state set as a positional set d. The fact that a next state set
d is partof disjunctive, i) canbe expressed by a relation, e.g. r(i, c,d). Thefollowing computation will prune
awaynext state sets that are not necessaryaccordingto Theorem 6.8, and the result is represented by the following
relation B.

Theorem 6.10 The disjunctive conditions canbecomputed bythefollowing relation B:

A(c,i, d) = ITE( 3d {r{i, c,d). [R(d) + (cD d)]}, 0(d), r(t, c,d))

B{c, i, d) = Minimald(A(c, i, d))

Proof: The first equation corresponds to condition (1)and(2)ofTheorem 6.8. Given a compatible c andan input
i, if there exists a d which is a nextstate set from c under i such that R(d) + (c D d), then the disjunct(c,i) is
set to theempty set0(d),else wekeep theoriginal d intherelation r(i, c,d). Thesecond equation tests condition
(3) and prunes all the d's that are not minimal (i.e., containing some otherd! that is partof disjunct(c,i)). In
summary r(i, c,d)represents thesetof disjunctive clauses, and B(c, i, d)represents thepruned setofdisjunctive
clauses: d is in the relationB with (c, i) iff d is part of the disjunctive clause for c under i. D

The following theorem computes the set of disjunctive clauses, that areusedto express the closure conditions.

Theorem 6.11 //
D(c',i',c, i) = Vd' {B(c',i',d') =* 3d [B(c,i, d)•(d' C d)]},

then disjunct(c', i') =*• disjunct(c,i). The setofprime compatibles can becomputed by:

PC(c) = C(c). flc'{C(c') •[35 (R(s) •(s C c)) => 3s' (R{s') •(s' C c'))] •Vi' 3i D{c, i, c', i') •(c' D c)}

Proof: lb evaluate disjunct(c', i') => disjunct(c, i), it is sufficient to check W e outputs at c'under i' 3o €
outputs at c under i [dciti>t0i D dCjt)0], byTheorem 6.6and 6.4. Quantification overoutputs opossible at cunder i
has the sameeffectas quantification of d in B(c, i, d). Similarly, Vc/ is the sameas Vd' in B(c', i', d'). Therefore
I? is a sufficient condition for disjunct(c', i') => disjunct(c, i).
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The second equation defines PC(c) as the set of non-dominated primes. The right sub-formula within {}
expresses the three conditions in Theorem 6.3. Forcondition (1), 3s (R(s) • (s C c)) =}• 3s' (R(s') •(s' C c'))
requires that (c' n R) ^ 0 if (c n R) ^ 0. By Theorem 6.5, condition (2) of Theorem 6.3 is checked by
Vi7 3i D{c',i', c, i) according to thefirst partof this theorem. Condition (3)is simply (c' D c). D

The following theoremcomputes theprunedsetofdisjunctive clauses. Theywillbe usedin thenextsubsection
to set up the binate rows of the covering table.

Theorem 6.12 Given a compatible c, the inputs i's associatedwith cwhich areinvolved innon-trivial disjunctive
clausesare expressed by thefollowing relation E:

E(c,i) = fli' [(i ^ i') •D(c,i',c, i)] + 3i'cprojecU(D(c, i',c,i) •D(c,i, c, i*))

And the correspondingpruned setof disjunctive clauses is given byrelation I:

I(c, i, d) = B(c, i, d) •PC(c) •E(c, i) • ->Tuple0(d)

Proof: By Theorem 6.11, given compatible c, disjunct(c,i') => disjunct(c,i) if D(c,i',c,i). The first term
jBi' [(i £ i') •D{c, %', c, i)] deletes all pairs (c, i)such that there is an input i',(i' ^ i)such that disjunct(c, i') =»
disjunctive, i). Butthis would eliminate twomany (c, i) pairs because it is possible that (i' ^ i), andmoreover
disjunct(c, i') =» disjunct(c, i) and disjunctive, i) =>• disjunct(c, i1) are both true. Such pairsare dennedby
D(c, i',c, i) •D(c, i, c, i'). Insuch a case, wemust choose and retain exactly oneofthetwo. Aunique (c, i) outof
each set of "co-implying" pairs is chosen as representative by the BDD cproject operator. And the representative
is added back to relation E by the last term of the firstequation.

For the second equation, theprunedset of disjunctive clauses contains theclausesin B(c, i, d),constrained to
have compatibles c that are primes in PC(c), and pairs (c, i) givenby relation E. Also, triples with empty set d
are vacuously true clauses, and thus are pruned away. a

6.7 Implicit Binate Table Covering

Selection of prime compatibles is performed by an implicitbinate covering solver presented in [10]. Tb use the
solver, one has to specify four BDD's: two characteristic functions Col and Row representing a set of column
labels and a set of row labels respectively; and two binary relations 1 and 0, one relating columns and rows that
intersect at a 1 in the table, and another relating columns and rows that intersect at a 0.

Similar to the case for ISFSM's, each prime compatible corresponds to a single column labeled p in the
covering table. So the set of column labels, Col(p)t is given by:

Col{p) = PC(p)

Each row can be labeled by a pair (c, i) because each binate clause originates from a closure condition of a
compatible c € PC under an input i. And the covering condition of a reset state is expressed by a single unate
clause, to whichwe assigna rowlabel (c, i) = (0,0). c is chosento be 0 to avoid conflicts with the labelsof the
binaterows, whilethe choiceof i = 0 is arbitrary. The set of rowlabels, Row(c, i), is givenby a binatepart and a
unate part:

Row(c,i) = 3d I(c, i, d) + 0(c) •0(i)

Each binate clause associated with a compatible c and an input i expresses the condition that for at least one
output o, the next state set must be containedin a selectedcompatible d. The corresponding next state relation is
I(c, i, d). If (c, i) labelsa binaterow, the expression 3d [(p D d) •I(c, i, d)] evaluates to true iff the tableentryat
the intersectionof the row labeled (c, i) and the column labeled p is a 1, i.e., the rowcan be satisfied if next state
set d is contained in a selected compatible p. There is an entry0 at column p if (p = c), i.e., the rowcan also be
satisfied by not selecting a column labeled c
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The row labeled by (0,0) represents the disjunction of compatibles p each of which contains at least a reset
state R(s). Onsuch a row, atable entry is a 1iff 3s [0(c) •0(i) •R(s) •(s C p)].

As a summary, the inference rules for table entries given arow (c, i) and acolumn p are:

l(c, i,p) ¥ 3d [(p Dd) •I(c, i, d)] +3s [0(c) •0(i) •R(s) •(5 Cp)]

0(c,i,p)=f(p =c)

7 Implicit State Minimization of NDFSM's

7.1 Exact Algorithms

We have not thought yet of an implicitization of the algorithm shown in Section 4. It does not follow as a
straightforward extension of the implicitalgorithm for PNDFSM's presented in Section 6, since there is onemore
levelofof setconstruction complexity, given that generalized compatibles are already setsof setsof states.

As analternative, suggested in [17], onecan convert any NDFSM to aPNDFSM by animplicit determinization
(via subset construction) step as described in Section 5.5 and then apply to the latter ourimplicit (or any) state
minimization algorithm. It goes without saying that subset construction mayintroduce ablow-up in thenumber
of original states; this can hurt the efficiency of the implicit PNDFSM state minimizer whose computations are
on a support whose cardinality is linearly proportional to the number of states of the PNDFSM. It is an open
problem whether abetter procedure can bedevised orinstead thisexponential blow-up is intrinsic to the problem
of minimizing NDFSM's. It mustbe also stressed that we do nothave yet good sources of general NDFSM's in
sequential synthesis, whilethe workin [17] has shown the pivotal importance of PNDFSM's in the synthesis of
interconnected FSM's.

7.2 Heuristic Algorithms

It has been shown that exact minimization of NDFSM's requires computation of the generalized compatibles,
instead of theusual compatibles. If we restrict our attention onlyto the setof compatibles (against generalized
compatibles), the algorithm given in Section 6 for exact state mmimization of PNDFSM's will still serve as a
heuristic algorithm for NDFSM minimization.

8 Experimental Results

We have implemented animplicit algorithm for exact state minimization of PNDFSM's in a program called
ism2. Prime compatibles and the binate table are generated according to the algorithm described above; then
a minimum cover of the table is found by our implicit binate covering solver presented in [10]. We perform
and report experiments on the complete set of examples obtained by Watanabe in [17]. Each PNDFSM is an
E-machine derived from an arbitrary connection of two completely specified deterministic FSM's, Mi and M2,
from the MCNC benchmark. The product machine M = Mi x Mi is used as the specification. The E-machine
which contains all permissible behaviors at M\ is derived using the procedure in [18]. Our problem is to find a
minimum state machine contained in the E-machine.

Watanabe's minimer, pnd_reduce, does notcompute prime compatibles but finds all compatibles instead. It
thensolves thebinate table using an explicit binate solver available in thelogic synthesis package sis.

Table 1summarizes theresults of PNDFSM state minimization. For each PNDFSM, we report thenumber of
states in the original PNDFSM, the number of states of the solution, the size of the binate table for pndjreduce
and for ism2, and theoverall run time for state minimization for pnd_reduceand ISM2. All run timesare reported
in CPU seconds on a DECstation 5000/260 with440 Mb of memory. For both programs, timeout is set at 10000
seconds of CPU time, and spaceout at440Mbofmemory.
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Out of the 30 examples, pnd_reduce failed to complete on 8 examplesbecause of timeouts, and failed on 4
examplesbecause of spaceout. It canhandle allPNDFSM's withless than 16states. Ourprogram canhandlemore
examples and only failed to find an exact solution on 2 examples because of timeouts. In those two cases, ism2
did succeed in computingthe primecompatibles as well as building the binatecovering table. Furthermore, for
the example pm41, it found a solution with 9 states after4844.7 seconds. For pm50, it found a first solution with
4 states in 150.7 seconds, andthe minimum one with 3 states in 7309.5 seconds, while optimality was concluded
in 49181 seconds after the complete branch-and-bound tree was searched.

Note thateachcompatibleresultsin acolumn ofthe binatetableby pnd_reduce whereasism2 has one column
foreachprimecompatible. The fact thatmost examples havevery few primecompatible showsthe effectiveness
of our primecompatibles computation forPNDFSM minimization. Even in these cases, stateminimizationmay
not be trivial because compatible generation andprimedominance may take a long time, e.g. pm04 and s3pl.

9 Conclusions

In this paper we have presented both theoretical and practical contributions to the problem ofexploring contained
behaviors and selecting one with minimum number of states for classes of NDFSM's. In particular we have
contributed:

1. A theoretical solutionto the problem ofexactstate minimizationofgeneral NDFSM's, basedon the proposal
of a notion of generalized compatibles. This gives analgorithmic frame to explorebehaviorscontainedin a
general NDFSM.

2. An implicitalgorithm forstateminimizationof PNDFSM's. The results ofourimplementation are reported
and shown to be superior to the explicit formulation described in [19]. We could solve exactly all the
problemsof the benchmarkused in [17] (except two cases, where minimal solutionsnot guaranteed to be
minimum were found). The explicit program could complete approximatelyone half of the examples, and
in those cases with longer running times.

We are currently working also on the problem of selecting out of an NDFSM a minimum DFSM that can be
implemented in an interconnection of two FSM's andwe will presentsoon our results.

It is worthto underline thatthe first stepofexactstate minimizationis the exploration ofallpossiblebehaviors
contained in a NDFSM. Forsome classesofNDFSM's this canachieved by computingcompatibles(asclassically
denned and then extended in [19,4]). Each closed collectionof compatibles is a contained DFSM and viceversa.
In the case of state minimization one wants a minimum cardinality closed collection of compatibles. But one
can replace the requirement of minimum cardinality with any otherdesired cost function or property (such as an
implementable behavior) andobtainanew behavior selection problem. Therefore the exploration of all contained
behaviors is a key technology for future applications in the synthesisof sequential networks. Implicit techniques
as those that we have presentedarea winning tool to supportsynthesis algorithms.
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# states in # states table size (row x col) CPU time (seconds)
PNDFSM PNDFSM in sol. PND.REDUCE ISM2 PND.REDUCE | ISM2

L3 17 2 10x4 timeout 17.4

am9 13 1 lxl timeout 2.3

ax4 11 1 26x28 lxl 0.7 0.7

ax7 20 2 334 x 308 20x6 15.6 7.6

bx7 23 2 254x216 20x6 9.9 9.0

damiani 5 3 21x24 17x10 0.1 1.3

e4at2 14 lxl timeout 1.1

e4bpl 11 1064x995 lxl 308.1 0.8

e4tl 6 103 x120 lxl 0.7 0.3

e69 8 551x501 lxl 10.5 0.3

e6tm 21 lxl timeout 3.1

ex10 13 23x28 lxl 0.5 0.6

exl2 13 1451x1019 lxl 16149.1 0.8

mc9 4 7x11 lxl 0.1 0.1

mt51 16 lxl timeout 3.8

mt52 9 256 x 639 lxl 39.4 0.8

pm03 15 1203 x1019 lxl 1751.1 0.8

pm04 79 lxl spaceout 120.6

pmll 9 331x395 lxl 29.7 1.3

pml2 7 8x19 lxl 0.4 0.4

pm31 22 lxl spaceout 3.6

pm33 21 lxl timeout 6.6

pm41 33 <9 12050x4774 spaceout 4844.7*

pm50 22 3 1249x515 timeout 49181

s3pl 38 1x2 spaceout 915.8

s3t2 36 389x18 timeout 39.9

tmOl 10 476x767 lxl 40.9 0.8

tm02 7 155x211 lxl 3.1 0.4

tm31 9 125x113 lxl 1.1 0.3

tm32 9 2 106 x143 37x9 1.2 2.9

* best solution before timeout

Table 1: State Minimization ofPNDFSM's
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