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Introduction
l

Spread spectrum techniques have received much recent attention for use in

commercial code-division multiple access (CDMA) communication systems. Of

particular note is the present QUALCOMM proposal to implement a direct sequence

spread-spectrum (DS-SS) digital cellular telephony system with substantial capacity

increases over existing analog systems [Gil91, Qual92]. Another obvious extension of

the spread-spectrum approach is application to an indoor wireless channel. In ongoing

research at UC Berkeley, students involved in the InfoPad project are investigating the

feasibility of such a system [Sheng91]. The project's goal is to design and construct a

prototype system capable of delivering up to 2 Megabits per second of data per user

from ceiling-mounted base stations to as many as fifty simultaneous users per

basestation. Each user employs a low-power portable terminal equipped with an RF

transceiver; system design assumes an office space environment. The base stations are

assumed to be interconnected by a high speed fiber-optic backbone network. While

traditional spread-spectrum communication system design is well-understood, several

feasibility issues must be reexamined at these bit rates in light of present technological,

power, and cost constraints.

This research uses system level software simulation to model the InfoPad

downlink in order to address three basic issues: mobile receiver synchronization,

multipath equalization, and bit error rate performance on the link. Relevant background



material and references for this research are provided along with a detailed description

of the author's contributions. This paper will not review the basic theory of spread

spectrum communications, but excellent tutorials may be found in [Harris73, Pick82].

A brief overview of the InfoPad system proposal is provided in the second chapter.

Chapter 3 examines chip-level synchronization issues, while chapter 4 is devoted to

interference and diversity combining. Simulation model development and results are

presented in the fifth chapter. Lastly, conclusions are drawn and future work is

proposed in chapter 6.

This paper will show that simple hardware implementations should be

sufficient to enable mobile receiver synchronization and tracking for the InfoPad. In

addition, the analysis demonstrates that the traditional RAKE receiver structure must be

modified in an interference-limited environment, such as that used in InfoPad; maximal

ratio combining under these circumstances yields minimal bit error rate (BER) gains.

Finally, this research provides a simulation infrastructure permitting investigation of

other system design issues.



System Overview
2

The InfoPad system design employs an asymmetrical radio link between

mobile users and the wired network. In the present conception, the mobile user accesses

high-bandwidth information services via the wireless link between ceiling-mounted

base stations and his own untethered, battery operated terminal. Implicit is the

assumption that the information flowing to. the mobile user is of significantly higher

bandwidth than the information flowing from the user. On the downlink (from base-

station to mobile) the InfoPad project aims to support a data rate of up to 2 Megabits

per second per user, enabling the transmission of compressed full-motion color video,

graphics, audio, text, and data. The uplink (mobile to base station) is assumed to carry

much lower bandwidth information, consisting primarily of terminal inputs such as pen

strokes and voice commands. This relaxes the bit rate requirements on the uplink,

requiring less than sixty-four kilobits per second per user.

With the current availability of inexpensive, integrated commercial radios

which satisfy the uplink bit rate requirements, this problem has largely been solved.

The more challenging design concerns the downlink implementation where bit rate

requirements are significantly more demanding. Results presented in this paper focus

exclusively on the downlink and is limited in scope to the investigation of a single cell.

Although the complete system proposal calls for a picocellular approach with multiple

base stations, most issues relating to multiple base station interaction are beyond the



scope of this paper. Discussions or derivations in which base station multiplicity is

relevant will be noted. However, the primary focus of the ensuing discussion will be a

single, isolated downlink cell. Following is a brief description of the overall link

design.

2.1 System Description

2.1.1 Multiplexing Users via Walsh Functions

The proposed system design for the InfoPad project is a scaled version of the

U.S. IS-95 digital cellular CDMA standard. Simplified transmitter and receiver block

diagrams are shown below in Figure 2.1 and Figure 2.2. The InfoPad configuration

differs from traditional direct-sequence spread spectrum schemes in several respects.

As usual, each user data bit is mapped into N chips where N is the spreading factor. In

the past, pseudonoise (PN) sequences or Gold codes - two types of nearly orthogonal

codes —have been used to spread as well as multiplex the users. These codes have been
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studied extensively in the literature and an excellent treatment of their properties can be

found in [Holmes82]. In the InfoPad system however, users are assigned codes from the

set of Walsh sequences, a class of perfectly orthogonal codes that are easy to generate.

Although these sequences have very poor autocorrelation properties and spectral

characteristics, they permit up to N users to be multiplexed with a spreading factor of

only N, a significant advantage over the more popular codebooks. Three examples of

Walsh code spreading sequences are shown in Figure 2.3 for a spreading factor of 64. A

treatment of Walsh sequences, both from a theoretical and practical viewpoint can be

found in [Beau75]. It should be noted that the zero Walsh function, a DC signal, is used

as a pilot channel for timing recovery in the InfoPad. This permits a receiver, once

synchronized to the base station, to easily demodulate any of the user data channels

without additional synchronization.

Userl User 11 User 37

FIGURE 2.3 : Walsh Functions



FIG1LIRE 2.4: PN Code Segment

2.1.2 Signal Autocorrelation Properties

To preserve the desirable autocorrelation properties normally associated with a

direct sequence spread spectrum (DS-SS) system, the InfoPad system maps a long PN

sequence one-to-one with chips in the multiplexed stream before filtering, modulation,

and transmission. This mapping effectively "scrambles" the data stream, causing it to

have the noise-like properties for which PN codes have been employed traditionally in

DS-SS implementations. A segment of one such long PN scrambling code is shown in

Figure 2.4. Figure 2.5 illustrates two autocorrelation functions for PN sequences. The

first is a traditional PN code of length 127; the second has an additional bit added to aid

in the InfoPad system implementation. These autocorrelation functions are, of course,

periodic with the code length, although the periodicity is not shown explicitly here. At

the receiver, a timing recovery circuit synchronizes the local PN sequence generator to

the incoming signal and "unscrambles" it, restoring the original multiplexed data.

Individual user bits may then be recovered by correlating the multiplexed stream with

1.0

•1/N

StandardPN Sequence (N=127)

FIGURE 2.5 : PN Autocorrelation Functions
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Modified PN Sequence (N=128)



the Walsh code sequence assigned to the desired user. Since the Walsh codes are

perfectly orthogonal, this operation selects exactly one user stream (in the absence of

channel effects). Note that this correlation is performed only over N chips where N is

the spreading factor. The length of the PN code has no influence on this correlation

length.

Preliminary research has selected a spreading factor of 64 for the InfoPad

project, with a proposed data rate of 2Mbps for each individual user. Using DQPSK at a

symbol rate of 1 Mbaud implies a chip rate of sixty four million chips per second, or a

chip period of approximately 16 ns. A PN code length of 32,768 has been chosen.

Carrier frequencies will be centered around 1.5 GHz. For a more detailed description of

factors influencing these decisions, see [Sheng91].

Also referenced and explained in [Sheng91] are the statistical channel models

used in this work (see also [Saleh87]). The models are semi-empirical, based both on

measurements of the indoor channel and theoretical models. A Rician distribution for

delayed path arrivals is assumed. The absolute magnitude impulse response of one

statistical channel profile is illustrated below in Figure 2.6. Multipath arrivals of non-

negligible amplitude arrive up to 90 ns after the original line-of-sight arrival. On

average, for these channels delay spreads range from 20 to 50 ns, corresponding to two
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or three chip times. Also shown is the magnitude frequency response of this particular

channel, with the notch near 1.5 GHz denoting frequencies in a deep fade.

To combat such fades, the spread signal is designed to have a bandwidth much

larger than the coherence bandwidth of the channel. Spreading the information content

over a bandwidth wider than the coherence bandwidth provides several independent

fading paths for the receiver. The probability that frequencies separated by more than

the coherence bandwidth are both in a fade is small. In this sense, spread spectrum is

simply a form of frequency diversity [Proak89]. For these channels, the coherence

bandwidth is between 20 and 50 MHz and the InfoPad spread bandwidth is 64 MHz. If

the channel models accurately represent the indoor environment, the proposed

spreading factor should be sufficient. As with most of the quantitative results in this

paper, however, this conclusion depends substantially on the accuracy of the models.



CDMA

Synchronization

3

Timing recovery in a direct-sequence spread spectrum system comprises one of

the most critical and difficult aspects of receiver design. Because of the sharply peaked

autocorrelation properties of the PN sequences used as scrambling codes, the local

clock at the receiver must remain synchronized to within a phase error of less than one

half chip time for effective extraction of information from the incoming signal. With

InfoPad chip times on the order of 16 ns, the task is non-trivial. The problem is made

more daunting by the presence of carrier modulation. The difficulty of realizing

coherent demodulation at these frequencies and chip rates necessitates the use of

differential quadrature phase shift keying (DQPSK) which permits incoherent

detection. No attempt is made to phase lock the incoming signal, and the conversion to

baseband is performed by a sampling demodulator. Details may be found in [Sheng91].

Incoherent detection makes the system robust against small frequency offsets between

carrier and receiver. Consequently, for this report, carrier recovery issues are neglected

and it is assumed that perfect mixing down to baseband is provided. Hereafter, focus

will be directed toward timing recovery techniques which may be implemented digitally

at baseband. This chapter discusses the issues of timing recovery studied in simulation.

11
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3.1 Timing Recovery: Two Major Tasks

Spread spectrum timing recovery has typically been divided into two tasks:

acquisition and tracking. Acquisition involves coarse alignment of signal and local PN

sequences to within one half a chip time. Once acquisition is achieved, control passes to

the tracking circuity where still finer timing alignment is attained and maintained in the

presence of jitter, noise, fading, multipath signal degradation, and other deleterious

channel effects. If synchronization is lost at any time, the tracking system must

recognize this condition and transfer control back to the acquisition portion of the

circuit. Because acquisition in a DS-SS system is typically slow and computationally

intensive, it is desirable to perform acquisition as infrequently as possible. In addition,

acquisition search time results in lost data unless the transmitter has knowledge of the

situation and substitutes a training sequence for data. In contrast, a tracking error

degrades receiver SNR but still may permit data recovery. Hence tracking circuitry with

a wide "pull-in" range is desired, even at the expense of slower responsivity.

3.1.1 Acquisition

In an effort to solve the acquisition problem, numerous approaches have been

investigated, ranging from simple exhaustive serial searches, to parallel searches,

partial and pattern searches, and even complicated sequential estimation algorithms. A

simple calculation underscores the computational intensiveness and latency impact the

acquisition algorithm has the potential to create:

For the InfoPad project, aPN code oflength 2I5=32768 has been proposed. The chip rate for aspread
ing factor of sixty-fouris 64 Mchips/sec. Suppose the incoming signal is sampled at twice thechiprate
(in order to provide alignment to within one halfachiptime),andanexhaustive serial search is per
formed. Let thesamples be labeled x^d) where xnm(t)=x(nTc+ mTJ2), me {0,1},and letPNk repre
sent the periodic PN code (PNke {-1,+1}). Foreach phase offset, a digital correlation is performed:

N

m ** nm n + k
noO
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and the maximum cm(k) is selectedas the proper alignment phase. Assume the correlation is imple
mentedby meansof a digital filter sampled at t=NTc, andthatthe receiver employs a singlecorrelator,
correlating over the entiresequence length. Each correlation will require NT<j= (32768 chips)(15 nsec/
chip)= 512 us. There are(32768 *2 =65536) suchcorrelations to perform since we desireaccuracy to
within Tc/2, so the entireserial search will require 33.55seconds forcorrelation alone,neglectingpro
cessing! If synchronization is ever lost during transmission, a similarwaiting period would be required
before reliable transmission could resume.

Good general discussions of the acquisition problem may be found in

[Davies73, Pick82]. Recent work to reduce acquisition time is contained in [Subr91],

while a new and novel approach is suggested in [Bree91]. Neither approach was

employed in the Infopad system. The first was dismissed for complexity reasons; the

second, because the frequency fading channel characteristics may render the technique

ineffective. Instead, the InfoPad proposal utilizes the simplest technique (from the

standpoint of complexity) employing four parallel correlators to conduct an exhaustive

search on all code phase offsets. During acquisition mode operation, all four correlators

work in unison to find the strongest signal, thereby reducing the search time

approximately fourfold. A partial correlation of only 1024 chips is performed in

acquisition mode to reduce the integration interval. Because the base station boosts the

relative power in the pilot signal compared to other users, correlation against the pilot

signal results in large energy detection once the local sequence is properly aligned.

Unfortunately, in simulation the acquisition operation can introduce exorbitant

delays since parallelism cannot be easily exploited. In fact, as the PN scrambling

sequence length grows much longer than 1024 chips, acquisition search time in

simulation becomes unreasonably lengthy. For this reason, PN codes of length 256 were

typically used to expedite simulations. Short PN sequences should not have a noticeable

impact on the system's simulated performance, since received data bits are not

correlated over the entire length of the scrambling code in the InfoPad approach.

Orthogonality is preserved by the Walsh functions, and bit correlation is performed

only over the number of chips equal to the spreading factor. As long as the PN

scrambling code is longer than the spreading factor, there is no further immunity to
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multipath effects with a longer code. Only one motivation warrants the use of long

codes at all: the original IS-95 standard uses a long code to differentiate base stations

by their code phase offsets, allowing a synchronized user to identify separate base

station signals and multipath reflections, and helping simplify the handoff mechanism.

Since the present simulation work examines only transmission from a single base

station to multiple users, the use of shorter PN codes to speed simulations should not

impact results in any significant way.

3.1.2 Tracking

Once coarse acquisition is achieved, still finer synchronization is achieved by

the tracking circuitry. Tracking methods in a DS-SS system have been widely studied,

and the literature is easily accessible [HoImes82, Davies73, Proak89]. By far the most

popular technique is the delay-locked loop (DLL), or minor variants of it [Yost82].

Conceptually, the technique is quite simple and intuitive. Two correlators, termed

"early" and "late" for reasons that will become obvious, are employed in tracking while

Clock

[Early]

| 1pn (t+Te/2)!

J-
/TV ^1 Loop

, . S3Sr^ Fiiter|» [Late] ^T I 1
1*

PN (t-X/2) h Clock

VCO

Demodulated
Signal

| PN(t)

•®
Multiplexed Data Signal

FIGURE 3.1: Delay Locked Loop Block Diagram
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a third is used for the extraction of data. The early correlator correlates with a PN

sequence that is advanced by some fraction of a chip period (typically one half chip

time), while the late correlator utilizes a sequence delayed by the same fraction. A

block diagram of the DLL is shown in Figure 3.1.

A difference signal is formed by subtracting the late correlation output from

the early. This difference signal, filtered and multiplied by an appropriate gain value is

used in a feedback loop to drive the local clock. It can be verified by inspection that

when the late correlation output value exceeds the early one, a signal is generated to

advance the clock since the receiver is sampling too late. Similarly, when early exceeds

late, the clock is delayed. When the early and late correlations are equal (assuming the

correlation curve to be symmetric) the difference signal is zero, and the clock phase

remains fixed since the ontime correlator is now sampling the signal at the correlation

peak. A single correlator output as a function of code phase for values near alignment is

shown in Figure 3.2. This figure also shows the difference signal as a function of code

phase offset. It should be noted that these correlation curves were generated by the

system illustrated in Figure 3.3 where a pilot channel only is encoded, the transmit

filter is a raised cosine with 50% excess bandwidth, and an impulsive channel is

inserted.

Correlation Curve (no Multipath) DLL Difference Signal
1.00
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N Output

Proper operation of the DLL depends, to some extent, on the symmetry of the

correlation curve. Introduction of a multipath channel distorts this curve. Figure 3.4

illustrates a real-valued correlation curve in the presence of multipath interference for

comparison. The presence of delayed, superposed echoes on the pilot channel is

apparent. As mentioned above, typical channel delay spreads are 20-50 ns with a chip

rate of approximately 15 ns, explaining the absence of distinct peaks. This "blurring"

makes independent tracking of echoed paths infeasible, as will be discussed later.

Fortunately, one of the important conclusions of this work is to establish acceptable

DLL performance despite the presence of asymmetrical correlation curves. A simple

DLL tracking technique should provide adequate performance for the InfoPad receiver.

3.1.3 Loss of Lock Detection

Because both the early and late correlators are spaced only one half chip time

away from the peak of the correlation curve, both receive significant signal energy

•^.•^.•-N -^ „;

2T„T,0 Time Offset

FIGURE 3.4 : Correlation curve with multipath
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when the local PN sequence generator is operating in lock with the incoming signal.

Hence, while the difference in the two values is used to drive the sampling phase loop,

the sum can be applied to a threshold device to ascertain that the receiver lock is

maintained. If the test fails, control is returned to the acquisition portion of the timing

recovery system.

3.1.4 Feedback Filter Considerations

One final consideration that has not been discussed here is the use of a filter in

the feedback path of the sampling phase adjust. A simple gain element functioned

adequately for purposes of this work. A more detailed analysis of the loop filter should

be included in future work when frequency offset effects are considered.



Interference and

Diversity

4

The InfoPad downlink is designed to function as an interference-limited

communication system. This means that interference, both self-induced and from other

users, is the primary factor influencing signal degradation at the receiver through the

introduction of noise. Thermal effects are sufficiently small relative to the interference

noise that they can be normally neglected in the analysis. Since InfoPad uses Walsh

functions to multiplex users in an orthogonal fashion, the sources of interference may

not be clear, particularly when transmission from a single base station alone is being

considered. It is the multipath characteristic of the link which introduces the

interference effects. Because of reflections from ceilings, walls, floors, people, and

other objects in a room, there is attenuation and multiple path delay in the arriving

signal. As a result, the receiver at any given instant sees not only the desired signal but

a number of echoes from previous signals from reflected paths. Path delays larger than

the symbol rate give rise to intersymbol interference (ISI); more closely spaced arrivals

are termed intrasymbol or interchip interference. As noted previously, in an indoor

environment at these bit rates, the latter effect is dominant and can be quite severe.

Unfortunately, in interference-limited situations, if the receiver signal to noise

ratio (SNR) is not large enough to insure reliable communication, the transmitter cannot

rectify the problem by simply increasing transmit signal power. Any increase in signal

power results in a proportional increase in noise power, since interference scales

18
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proportionally to signal. For the same reason, additional users in a multipath

environment, even if they are perfectly orthogonally multiplexed, can contribute to

system interference. The system designer must either mitigate the impact of multipath

arrivals, increase the spreading factor, or reduce the number of users. The following

analysis attempts to quantify the effects of user interference in the InfoPad system

configuration. The analysis follows closely work done in [Cout94].

4.1 Multipath and Interference

The system under consideration employs direct-sequence spread spectrum for transmis
sion. Since the fading channel can be resolved only at multiples of the chip time Tc/ a
discrete time impulse response model for the channel is used

L-\ .Q
hit) = XPz5(f-/7c)*' (EQ4.1)

/ = 0

where L is the number of resolvable multipaths, {Pj| are random amplitudes, and {0j} are
random phases. Consider a base station transmitting a direct sequence (DS) spread spec
trum DQPSK signal to K mobile units in parallel. The passband signal a(t) transmitted
by the base station is the superposition of K signals intended for the different users

K

a(t) = Yddk{t-%k)pk(t-%k)e{'2ltf***k) (EQ4.2)
k= 1

where dk(t) is the kth user's data signal, pk(t) is the spreading sequence for the kth user,
<t>k is the random phase of the kth carrier, and xk is the random time delay. Assume the
base station transmits all signals bit and carrier synchronously so that the delay xk and
the phase <J>k are identically zero for each of the K signals. Each data signal is modeled as

oo

dk{t) = £ bkm-PT{t-mT) (EQ4.3)
m = -oo

where bmk represents the kth user's differentially encoded QPSK symbol, chosen from
the set {e'e: 9e rc/4, 3tc/4, 5tt/4, InIA], T is the bit period and PT(0 represents arectangular
pulse with amplitude 1 and width T. The spreading code consists of a sequence of rect
angular chips of duration Tc takingon values xmk from the set {±1}:

PkW = X ^mpTSt-mTc) (EQ4.4)
m = —oo

where Pjc(*) represents a unit amplitude pulse with width Tc.
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The superimposed signals all fade in unison over the same channel, so the signal
received at the terminal is

r(r) -«W*AW =lipA(r-/rc)Mr-/rc)/(2n/9(M^e')

This signal may be decomposed into a superposition of signals: one representing the ref
erence user's signal and self-interference, and a second representing the combined inter
ference of the signals transmitted to other mobile users. With the reference user
arbitrarily assigned to user 1, this decomposition is

,(0 =lP^1a-/rc)p1U-/rc)/2n/«('-'r')+9')
/ = 0

K L-\ (EQ4.6)

+ L L?idkU-lTc)pk(t-lTc)e
* = 2/=0

For simplicity of notation, define two partial correlation functions

' TY (EQ4.7)

RjkiO =k\Pj(t-x)pk(t)dtT\ J (EQ4.8)

Consider an integrate-and-dump receiver employing DQPSK to recover the desired bit.
The decision variable is formed by multiplying the output of the correlator at time t by
the conjugate of the output at time (t-T). The result is applied to a QPSK slicer to deter
mine the data bit. The output of the correlator at the first bit time is

g(T) =f'fQr (t)Pl (t) e~j2nfo'dt (EQ 4.9)
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, ^ a J(-2nf0lTe +e,) J- (EQ4.10)+ X ft* ] dx{t-lTc)Pl{t)dt
/=i

+1 IP/ 7^(r-/rc)Pl(0tf
/ = 0A = 2

where we use the fact that

2 r7^ , , x 2 , , A , ftil A
7'J0Mi WPi (0* °<& =PoV (EQ4.11)

In Equation 10 above the first term represents the signal component, while the second
and third terms represent self- and other-user interference, respectively. Note that d(t)
changes value from b_ik to bok at t=0. Consequently, we can rewrite the integral expres
sions in terms of the partial correlation functions previously defined. Namely

g(T) = px*

+I I P/-2*^ tfAl UTC) +bkQRkl UTC)] vQ4A2)
/= i*= 1

K

k = 2

Terms are regrouped here for simplicity. In the second term, note the presence of both
the "present" symbol b0k as well as the "previous" symbol b.^. This simply represents
the fact that for delayed paths, a portion of the previous symbol will arrive in the corre
lator during the present correlation period. Since it is fairly easy to select orthogonal or
nearly orthogonal codes which have small partial correlations at zero offset, the last
term in this expression can be approximated as zero.

Summarizing, we may write

° ° (EQ4.13)

where the signal and interference are given by
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d 1 A
50 " PoV

L-\ K (EQ4.14)

/=!* = 1

In a similar fashion, the demodulator output at the second bit time will then be

g{2T) =$!+/,

with

(EQ4.15)

1 J%
Sl - $<fi\e (EQ4.16)

/= 1* = 1

The DQPSK decision variable is

Y=8(2T)8*(T) =(v'i)(v+/o*) =V0* +#iV +Vo*+/iV
~JQc\ fin2 11* i*0 1 J 0

- PqVo +Po6o ' 'i +PoV V+'iV

The first term is obviously the desired signal

c n2!.1!.1* a2 l
6 = Po^i^o = IV1 (EQ4.19)

where Sj1 represents the first user's first data symbol (DQPSK encoding removed). The
other three terms in the expression for Y constitute interference

/=pX****/,+Po*!«Av+/iV (EQ420)

(EQ4.17)

(EQ4.18)

We will neglect the last term as small relative to other terms in the expansion, and
approximate the remaining terms as a zero-mean complex Gaussian random variable. A
simple computation shows that the real and imaginary parts of this random variable are
uncorrected and thus independent. Here we will compute the variance of the real por
tion
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(EQ4.21)

where the last step follows from the fact that 6q is independent of Iq, Ii/ and the data
sequence. Furthermore, it is uniformly distributed on [0,27tl causing the expectation of
terms containing 9q to go to zero. The independence of all user bit streams and all phase
angles {Gj} allows us to write

EWo**\w] =*I>J*!V'J =°

implying

VAR[Re(I)] =Po£[|/l|2 +|/o|2]
We may also observe that

L-\ K

(EQ4.22)

(EQ4.23)

S[|70| ] =EihU = I I E[fi]E[Rkl\lTe) +A„2(/TC)] (EQ4 24)

/= 1* = 1

To compute this last expectation requires knowledge of the user codes. Although in
practice these codes are deterministic, a reasonable approximation for DS-SS systems is
to assume a random code where all code elements x;k are independent, identically dis
tributed Bernoulli random variables having equal probability of being positive or nega
tive one. Using this approximation, we can compute

£[*'.(/rc)] =4HrV'-'rc>iH(Hl\(T-<h(x)4

-*•
rfi-i y/-i >*
XT n v i k

Tx.x. , > T x.x. ,
C I l-l £j C J J-l

LV/ =o Ay =o

(EQ4.25)
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A similar computation shows

£[^l(/rc)] =Hii)
N

This yields a final result for the interference term given by

L-\ K

VAR

/=u = i v^ N y

=2PoIlW]
/=1

In the same manner, it is easily shown that

VARUm(I)] =Var[Re(I)} =2^-jj- £ E[tf\2 K ^'„r„2-

/=1
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(EQ4.26)

(EQ4.27)

(EQ4.28)

(EQ4.29)

If we divide both signal and interference powers by Pq2 t0 normalize, we arrive at the
result

K
L-\

VAR[Im(I)] =Var[Re(I)] =2•£• XE[P/] (EQ4.30)

/=!

In summary, the interference term can be approximated as a zero mean complex Gauss
ian random variable with independent real and imaginary components, each having
variance equal to that given by Equation 4.30. An examination of this variance result
confirms our original intuition. Interference in the system is proportional to the number
of users K and inversely proportional to the spreading factor N. Moreover, the sum of
the magnitude squared of all path delay (0<1<L) coefficients is proportional to the total
interference in the system. This last term may be viewed as the magnitude of the channel
dependent interference for a simple multipath rejection receiver which attempts no
interference cancellation or ratio combining.

Under these conditions, the in-phase and quadrature channels function independently
and each has a signal to noise ratio y given by
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L^ r 1-i (EQ4.31)

/=1

The approximate bit error rate of the link is given in [Proak891 as:

Pe =erfc(Jf) •[l -\erfc(Jf)] ^4^

4.2 Diversity Combining

It is clear that as the number of users in a single cell area increases to the

maximum allowed (the spreading factor), interference may swamp the signal,

particularly if there are significant amplitude reflections. Diversity combining is often

proposed as a method to combat this problem. Diversity can be exploited in numerous

ways: time diversity can be achieved by interleaving and forward error correction

(FEC) at the base station transmit end; antenna diversity in the indoor environment has

already been proposed [Camag93], and frequency diversity is inherent in the spread-

spectrum approach, as previously discussed.

4.2.1 RAKE Receiver

Another potentially useful form of diversity is the multipath nature of the

signal itself. Signals transmitted from the base station arrive at the receiver with

various delays. The presence of a pilot tone at the receiver provides a reasonable

estimate of the channel delay profile. Conceptually, delayed copies of the signal

arriving at the receiver might be combined in some optimal fashion to increase the SNR

at the decision threshold. In essence, the idea is to gather signal energy over several

fading paths and recombine the multiple receptions coherently. A detailed discussion of

multipath diversity combining possibilities is discussed in [Holmes73, Proak89]. The

most popular proposal for diversity combining is the well-known RAKE receiver
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structure. The optimal RAKE receiver employs independent receivers (often termed

"fingers") to track and demodulate independent delay paths. For the InfoPad system,

this approach is not feasible since low-pass filtering at the channel bandwidth blurs

multipath arrivals together, as illustrated by the multipath correlation curve shown in

chapter three. One obvious compromise is to construct a modified RAKE receiver

whose fingers are arbitrarily spaced one chip time apart. The resulting structure is

shown in Figure 4.1.

It is well known that in the presence of fixed-level Gaussian white noise, the

RAKE receiver provides the optimal solution to the diversity combining problem.

Simply put, under these conditions signals are combined with a weight proportional to

the amplitude of their signal component. The resultant decision variable has a signal-to-

noise ratio equal to the sum of the individual SNR's of the separate path receivers.

Received
Signal

Walsh-PN
Code Sequence

Demodulator
RAKE Finger 0

I

co -MT

•e
Demodulator >- Z-(M+1)T

RAKE Finger 1

L. -Tz ' -

Demodulator
RAKE Finger M i>

To Decision
Device

,-MT {ck} are complex
gain coefficients

FIGURE 4.1 : Modified RAKE receiver structure
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Several recent proposals have investigated extension of the RAKE receiver to an

interference-limited scenario [Grob90, Nore94].

4.2.2 Impact of Interference-Limited Scenario

Unfortunately, the critical assumption employed in traditional derivations of

the RAKE receiver — fixed level background noise - is not satisfied in an interference-

limited environment, such as that envisioned for InfoPad. In this context, the preceding

analysis discovered that the interference power at the receiver is a strong function of

delayed path amplitudes. Indeed, for an arbitrary finger of the RAKE receiver, the

interference variance term is proportional to the magnitude squared of all other

resolvable path delays. In other words, if Im is the zero-mean complex interference term

for a receiver code-synchronized to the nth resolvable path, it is easily shown that

VAR[Re(IJ] =VAR[ImUm)) =2 ± £ E[fi] (EQ4.33)
l = 0,l*m

This suggests that the variance of interference terms is not fixed for all path

delay receivers. A simple example may clarify this crucial point. Suppose there are only

two resolvable paths from transmitter to receiver, and the amplitude of the line-of-sight

component is larger than the second resolvable path (i.e. Po>Pi)- In tne presence of

fixed-level background noise (interference effects assumed negligible relative to

thermal and other noises), a traditional RAKE receiver will combine signals from the

first and second resolvable paths in the ratio p0/Pl - When interference effects are not

negligible, but dominate (as in InfoPad), this combining ratio must change. Intuitively,

the receiver synchronized to the first resolvable path sees a signal proportional to p0

and a noise proportional to pj2. Conversely, the second resolvable path receiver sees a

signal proportional to fii and a noise term proportional to p02. Clearly, the second

receiver provides a much poorer estimate of the transmitted data in this case since it

suffers from both a smaller signal component aM a larger noise term. If noise terms at

the two receivers are assumed independent (a somewhat pessimistic assumption since
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multiplication by the PN sequences shifted in time does not entirely uncorrelate the

interferences) the new optimal combining ratio is easily computed.

4.2.3 Derivation of Optimal Ratio

Assume we have two received signals Xj and X2 related in the following fashion:

Xl = Sl+N1 (EQ4.34)
X2 = cJ*Sx+N2

where Sj is the transmitted symbol. Nj and N2 are complex-valued Gaussian random
variables with independent in-phase and quadrature components each having variance
Oj and G22, respectively. The complex coefficient ce'e represents achannel perturbation
of the second received signal relative to the first, and is assumed to be known.

The signaling method is assumed to be DQPSK and we wish to construct a linear com
bining strategy to minimize the BER at the receiver. We wish to construct a signal:

X3 =X1 +aj% =S,(l +acJie+n)+N3 G^4-35'
where BER is minimized by choice of ae^. Note that the composite noise term No will be
zero-mean, complex Gaussian with each component having variance (G]2+ a2G2 ).
Assuming independent, equally likely transmission of symbols it is easy to show that
maximizing the bit error rate is equivalent to maximizing (Eb/N0) where N0 represents
the noise variance on each quadrature channel:

K =F\a* ) " ( 2 2 2\ (EQ4.36)

J ji\ |S,|2-(l+o2c2+2cos(9 +(|>)ac)
F\°' ) =*-*—*—n—rt] ro4-37)

(°l+a°2j
From inspection, it is clear that maximizing this function over all choices of <J> is accom
plished by choosing <|>=-9. Additionally, the magnitude of the transmitted symbol does
not affect the maximization and may be omitted. Hence we must maximize the following
expression

=(l+2ac +fl c J (ac+1)
f 2 , 2 2) p2 2~TlF(°) r—5 T-n 7—^ z—r\ (EQ4.38)

Taking the derivative of this function with respect to a, setting it equal to zero and solv
ing yields the value of a which maximizes this ratio
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The optimal combining scheme in this case is then:

A3 = Xl + ce-jQ
f2\

\<52J
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(EQ4.39)

(EQ4.40)

(EQ4.41)

(EQ4.42)

(EQ4.43)

(EQ4.44)

4.2.4 Interpretation of Analysis

There are several interesting issues which this analysis raises. First, it is

instructive to examine some specific cases. Revert to the scenario where there are two

resolvable paths having amplitudes p0 and plt and phase delays 9q and 0j respectively,

and assume background noise is dominant so that the noise power at both receivers is

assumed constant and uncorrelated. Consider a pre-detection RAKE combiner which

attempts to linearly combine received signals from separate fingers tracking the zeroth

and first path delay signals. The optimal solution can be written (incorporating a

normalizing gain factor) as:

X3 =$0eJ%Xi +$lejQ}X2
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which is simply the matched filter solution. The matched filter is a term often given to

the optimal receiver for a signal that has passed through a linear time-invariant (LTI)

system in the presence of additive white Gaussian noise. If the impulse response of the

channel is represented by *[h0, hj, h2, .., hn], the matched filter is the time-reversed

conjugate of this impulse response. Intuitively, delayed versions of the desired signal

weighted by delay-dependent amplitude coefficients appear at the receiver. It is a

simple exercise to show that the total signal power in this composite signal is the sum

of the squares of the tap coefficients. It is clear from above that the total signal energy

in X3 is simply p02+Pi2, as the matched filter solution predicts.

In the InfoPad system, interference - nol additive white noise — is the

dominant noise source. Noise powers for different RAKE fingers may not be equal

because the noise arises from a signal-dependent interference term. Under these

conditions it is clear that the more general expression for the combining ratio is

required since G2 may not be equal to G22, in general. In particular, if the signal

amplitudes on the line-of-sight and one-chip-delaved path are unequal, the noise (or

interference") powers at the outputs of the two correlators will also be unequal.

Now consider the interference-limited scenario with path delay amplitudes of

Po and pj and phase delays 90 and 8lf as before. It is easy to show that the optimal

linearly combined decision variable is:

r$\ /~r.2
r = y,+

Pi1-J (e, -e0) {E[/0] )v _v (pj )3e-j(e, -eo) y m445)
e r2 = y1 +

2
J*K1 yroj

where the expressions for E[I02] and E{12] are given in Equations 4.24 and 4.28.

Note that the weighting coefficient for the second observable path receiver Y2

increases as the cube of the amplitude ratio of the delay path amplitudes, rather than

linearly. This has important ramifications for the combining operation. First, it is clear

that if the amplitude of the direct path is even a factor of two larger than the delayed



31

path, combining will yield little gain since the weighting coefficient will be 1/8. Since

the indoor channels are characterized by a Rician distribution (implying a dominant line

of sight component) addition of a RAKE receiver should provide little performance

advantage. This conclusion'is investigated in the following chapter.



Software

Simulation of the

InfoPad Downlink

5

With a basic understanding of the InfoPad system in place, the simulation work

for this project may be readily understood. The Ptolemy platform, developed by

students at UC Berkeley, was used as the primary software simulation tool. Early

development was in Ptolemy's synchronous data flow (SDF) domain; for speed

considerations many of the custom stars were ultimately migrated to the C code

generation (CGC) domain. Eventually custom stars were written to model most of the

elements in the downlink system described previously. Code for these stars is included

(with comments) in Appendix A of this report. This chapter reviews code development

briefly, presents simulation results, and attempts to establish links between theory

presented previously and these simulations.

5.1 Ptolemy Simulation Development

5.1.1 Early Simulation Model

This research began as an extension of Paul Hurst's work on a delay-locked

loop simulator [Hurst92]. Hurst developed a primitive Ptolemy model of the DLL in an

effort to study the feasibility of simple timing recovery techniques at these chip rates.

Hurst's model implemented a real-valued channel, and performed no coarse acquisition.

32
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Proper operation required the user to manually calculate the delay through a fixed

channel and explicitly set the appropriate PN code phase at the receiver. A new channel

mandated a new code phase computation. PN sequences were used to multiplex users,

and no effort was made to recover data bits at the receiver for BER simulation. Proper

system operation was established by examining the sampler model output for settling to

a fixed sampling phase; a crude power measurement at the output of the pilot channel

correlator indicated receiver "lock". To investigate DLL tracking performance, Hurst

used a chip rate channel model oversampled by a factor of ten. Linear interpolation

provided a continuous sampling resolution adjustment for the DLL feedback signal.

5.1.2 Simulation Model Enhancements

Several improvements to this model were made. An acquisition star was

written to automate system response to arbitrary filter delays, transient effects, and loss

of lock scenarios. Provisions were made to allow dynamic switching between

acquisition and tracking modes. Pilot channel power measurements automatically

sensed loss of receiver lock and initiated acquisition operation. Since the indoor

propagation model was implemented as a complex-valued baseband channel, it was also

necessary to generate complex-valued equivalents for Hurst's primitive synchronization

system. When the original QUALCOMM CDMA proposal became available in early

1993, a decision was made to study the performance of this modified system. A

programmable, phase-variable Walsh sequence generator star was written, and the PN

generator star was retained for use as a scrambler in the new implementation.

In the modified configuration, memory requirements for the original sampling

star caused exorbitant delays and created deadlock conditions in Ptolemy*s SDF

domain. A more realistic sampling phase star was written that sampled at one half the

chip period on each firing (instead of sampling an entire PN sequence length of chips in

one firing). To speed simulation performance, acquisition and tracking blocks were
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combined into a single code block. Features were added to permit user selection of

parameters such as search resolution, lock threshold, feedback gain, and acquisition

integration length. In order to study the impact of various parameters on the bit error

rate, adaptable AGC and A/D converter models were developed, as well as a bit error

rate tester. The upgraded system was not only more versatile, but also executed five to

eight times more quickly

This model functioned adequately for the investigation of synchronization and

timing recovery issues. Results are presented in the following section. These indicate

that a simple serial search acquisition and delay locked loop tracking should function

adequately for the InfoPad system. With the primary goal of this research

accomplished, it was decided to expand the investigation by considering bit error rates

on the link and the parameters which affect its performance. Unfortunately, bit error

rate measurements with this model required excessive computational time. A ten

thousand bit simulation typically required fourteen hours to run! Two primary factors

were believed to account for simulation length: excessive computation resulting from

the oversampled channel and the overhead of working in Ptolemy's SDF domain.

Because the delay locked loop functioned so well, the sampling phase for a

fixed channel settled after approximately 100 bits and remained constant throughout the

rest of the simulation run. Except for the short transient period during which acquisition

was performed and the DLL was settling, oversampling the channel was simply

increasing the computational burden without providing much additional information. To

rectify this problem, the settled phase value was recorded and a downsampled channel

model was generated. Oversampled versions of the transmit filter, channel and receive

filter were chained together and the composite impulse response was sampled at the

chip rate with the appropriate sampling phase. Three oversampled filter blocks,

acquisition and tracking models, and the front-end sampler were thus replaced by a

single chip-rate filter. To further enhance performance, nearly all of the SDF stars were
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moved to Ptolemy's CGC domain. This domain generates a stand-alone C code

simulator that can be separately compiled. The combination of these two changes now

permits million bit simulations to run in less than an hour.

5.1.3 Simulation Model Applications

Presently these simulation models are being adapted by other UC Berkeley

researchers to study issues including protocol development and forward error correction

for a wireless link, power control trade-offs on the downlink, and frequency-hopped

spread spectrum performance for the PATH project - a low bit rate mobile vehicle

communication system. Following is a summary of the simulation results for the issues

considered in this project.

5.2 Simulation Results

5.2.1 Acquisition and Tracking

Acquisition and tracking performance of the DLL was evaluated by

substituting several channels and executing the simulation to see whether the receiver
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sampling phase settled to a (nearly) constant value. Output for a typical simulation is

shown in Figure 5.2. Data output on the in-phase channel is plotted as a function of

time. Bits are lost during acquisition mode operation since the proper code phase is

unknown. Once control passes to the tracking loop, output quickly moves to the

expected antipodal values. The sampling phase (relative to one chip time) is also

illustrated in this figure. Acquisition mode places the phase within one half chip time of

the optimal value. The DLL then quickly settles to a phase value near 0.35. Another

simulation execution with multiple users and a multipath channel is shown in Figure

5.3. Here the effects of interference on the received signal are evident. The receiver

sampling phase wanders more, yet still remains relatively stable. This is largely due to

the fact that the power in the pilot signal is held fixed at 20% of the total transmit

power in the system. Further simulation showed that the DLL functioned effectively

even without a continuously variable sampling phase adjust. Monte Carlo simulation

detected minimal performance degradation when the sampling phase was quantized to

the nearest value in the set {0, 0.25, 0.5, 0.75}. The InfoPad custom chip is designed to

allow this quarter phase adjust.
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5.2.2 Effectiveness of Spreading

The choice of a spreading factor of 64 was verified by measuring the total

normalized integrated receive power in the band of interest at the front end of the

receiver for a number of random channel realizations. For these channel models the

mean normalized integrated receive power is a function of link distance only and falls

off at a rate of (distance)"2-6. Spreading the signal helps average out deep fades and

reduce the variation of integrated receive power about the mean for different channels.

This averaging helps relax the AGC requirements, making it very unlikely that the

signal is in a deep fade across the entire bandwidth of interest. A plot is shown in

Figure 5.4 where the dashed line represents the d"2,6 expected mean, and the standard

deviation of received power for a given link distance is approximately 3 dB.
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60.0

5.2.3 Quantization Effects

Another hardware issue examined through simulation was the impact of

quantizer resolution on bit error rate performance. The results for a typical channel are

shown above in Figure 5.5 where the bit error rate as a function of the number of cell

users is shown for different quantizer resolutions.

From the plot, it is apparent that there is little improvement in BER as the

number of bits increases above four. This is intuitive. This signal arriving at the

receiver consists of the desired user's signal, interference, and other system noise.

Quantization contributes an additional noise term. A quantization noise magnitude

substantially below interference and other noises has a negligible performance impact.
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However, if the quantizer order is reduced sufficiently (below 3 bits), the quantization

noise term will dominate/The attached plot illustrates that using fewer than three bits

results in a significant BER penalty, while increasing the number of bits above four

does little to improve performance. It should be noted that this plot implicitly assumes

perfect AGC performance, allowing the quantizer to take full advantage of its dynamic

range. Imperfect AGC operation generally results in a loss of dynamic range

approximately equivalent to one-half bit reduction in quantizer performance. For this

reason, the custom chip set relies on a four bit quantizer to ensure performance above

the threshold.

5.2.4 BER Performance

5.2.4.1 Simplifications

In discussing the bit error rate performance on the link, several qualifiers must

be included. This simulation work does not attempt to provide average bit error rates

over the link. Each simulation execution generates a fixed, statistical channel and uses

the same channel throughout the length of the simulation run. As such, there is no

provision for non-stationary effects, mobile terminal movement, etc. A more accurate

estimate for the average BER would require inclusion of such factors. The most obvious

extension would be to consider the "fixed" channel to be one time-varying state in a

Markov process. Estimates of the transition probabilities from state to state would

provide a means to compute an "average" bit error rate.

Another important simplification is the consideration of single base station

transmission only; no provision is made for additional cells. Typically, base station

multiplicity is modeled as additive white Gaussian noise at the receiver front end.

Consequently, these results are easily extensible to multiple cell scenarios. For reasons

explained previously, background and thermal noises are neglected as small by the

interference-limited assumption. The following BER curves serve primarily to quantify
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and compare the impact of signal interference arising from multipath arrivals with

theoretical values.

5.2.4.2 Predicted BER Curves

In chapter four, a Gaussian approximation for the channel-dependent multipath

interference was proposed, and an expression for the probability of error was derived in

Equation 4.30. The validity of this expression is to be examined here. For comparison

purposes, predicted BER curves are shown below in Figure 5.6 for various values of the

channel parameter a where

L-ira2\p; CEQ5.1)«-z/=Aiy

and represents the ratio of total power in all interfering channel delay paths to power in

the dominant (signal) path. It should be noted that the BER is a strong function of this
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FIGURE 5.6 : Predicted BER curves illustrating channel-dependent interference
as function of a.
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parameter. As expected, larger values of a correspond to increased interference levels

and error rates.

5.2.4.3 Simulated BER Curves

In Figure 5.8 three representative bit error rate curves are displayed. The same

basic trend is observed for these channels as for the predicted BER curves. Once again,

the bit error rate is observed to be a strong function of the cumulative energy in delayed

paths.
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5.2.4.4 Comparison of Simulated and Predicted Curves

Figure 5.8 shows the simulated curves overlaid on the predicted BER curves

for comparison. Two observations should be noted. First and foremost, the general

shape and form of the curves confirm the analysis performed previously. Secondly,

simulated performance as a function of a appears to be slightly worse than predicted.

This could be explained by the fact that the codes do, in fact, exhibit some correlations,

so that additional noise may be added into the system. A more accurate estimate of the

partial code correlations may yield a slightly larger value of a for these channels. In

any case, the critical insight here is that a simple Gaussian interference approximation

appears to provide a reasonable model for these channels.
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5.2.5 RAKE Combining Results

The final issue examined in this research is the gains provided with the RAKE

receiver. The theory developed earlier in this report indicated that the presence of

signal-dependent interference required a rescaling of the optimal combining

coefficients. In particular, it was shown that for a two tap channel with chip-spaced

impulse response given by

h[k) = [l,a/U...]
the optimal combining coefficients are unity for the on-time finger and

3 -ye

(EQ5.2)

c1 = a e (EQ5.3)

for the one chip delayed finger. The implication of the analysis was that RAKE

combining for the expected channel conditions will yield insignificant gains. An effort
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was made to test this hypothesis, and the results are shown in Figure 5.9. An artificial

multipath channel whose impulse response is [1, 0.5e~J304, 0, ...] was used in

conjunction with a two-finger modified RAKE receiver. Three different combining

ratios were used, and the optimal (as expected) performance occurred when a cubic

magnitude ratio for the second finger was used. Even then, the optimal ratio provides

little improvement over a single finger. The obvious implication is that a RAKE

combining receiver should not be employed in the InfoPad system. These results are

similar, though slightly different from those reported in [Nore94]. There, equal gain

combining on the RAKE fingers was employed, and the author notes that signal energy

subsequently increases as anticipated. However, under certain scenarios the amount of

additional noise added by this configuration can more than offset the signal increase,

resulting in performance degradation as additional fingers are added. The results of this

study confirm that author's observations.



Conclusion
6

This report documents research into three areas of the InfoPad project: mobile

receiver synchronization, multipath equalization and bit error rate performance on the

link. Analysis, combined with a sophisticated system-level simulation were employed

to assist in making certain hardware design choices related to the downlink radio

system design.

Simulation verified that an exhaustive search algorithm and a simple delay

locked loop would provide adequate timing recovery fot the mobile receiver.

Additionally, simulation suggested that a four bit A/D converter and a quarter chip

sampling phase resolution would provide acceptable performance, thus simplifying the

hardware design.

The use of a RAKE receiver to combat multipath signal degradation was

investigated, and shown (through analysis and simulation) to exhibit negligible

performance gains. The RAKE receiver structure was originally developed for

reception of a single data signal in the presence of multipath reflections. Efforts to

employ the technique in a multi-user scenario with multipath reflections appear to be

ineffective at best.

Simulated performance for the InfoPad system also indicates that bit error

rates on the link are highly dependent on the amplitude of the reflection coefficients.
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Analytic expressions for this dependence were derived and compared to simulated

performance. Results indicate that with a spreading factor of 64, it may be difficult to

achieve adequate bit error rate performance on the link for 50 users operating at

masimum bit rates with the existing channel models.

Future work will focus on techniques to reduce this multiple access

interference resulting from multipath arrivals. In particular, equalization and

interference cancellation techniques will be investigated in an effort to determine

whether they can provide adequate performance gains. Preliminary results indicate that

pilot channel estimation techniques previously employed in the RAKE structure,

combined with simple equalization approximations, may yield dramatic performance

improvements. In some sense, the RAKE receiver does not exploit the fact that the

correlation structure of the interference is known. As long as a reasonable estimate of

the channel is provided, interference at the receiver is no longer a random variable, but

a known quantity. It is hoped that this knowledge may provide significant performance

improvements.
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Appendix I

This project neglects most multiple base station issues. Extending the results

of this paper, however, an estimate of the bit error rate on the link when multiple base

stations are operating may be derived. A simple approximation for the bit error rate on

the downlink is given by

where

Pe =erfc{Jr)[\-l-erfc(Jf)]

•v» b

M

z**[pL]

Zk*"+ 2 zn
n=\,n±k

-X.
Z = P d

n n n
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«= I *D£]
/ = 0,/*/

max

and the following definititions are used:

The mobile is assumed to be in cell k

Eb is the received signal energy per bit
Nt is the number of base station transmitters
Pn is the total transmit power of base station n
Zn is the (scaled) interference power at the mobile unit due to transmission from base
station n

dn is the distance from the mobile to base station transmitter n
Xn is the roll-off factor for a signal traveling from base station n to the mobile
M is the spreading factor in the system
K is the number of users active in the mobile unit's cell

Pi is the magnitude of the 1th tap in a chip-spaced channel impulse response for the
mobile unit's cell

Pmax ls tne magnitude of the largest component in the chip-time spaced impulse
response for the mobile unit's cell



Appendix II

Ptolemy Code
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defstar {

name { AcqTrack9 )
domain { SDF )
author { Craig Teuscher (4/93)}
version { @(#)AcqTrack9.pi 1.6 1/30/93 }
copyright {

Copyright (c) 1990, 1991, 1992 The Regents of the University of California.
All rights reserved.

See the file -ptolemy/copyright for copyright notice,
limitation of liability, and disclaimer of warranty provisions.

}
location { user pallette }
desc {

This star performs acquisition and tracking of a complex valued spread
spectrum signal. Data is assumed to arrive with two samples per chip
period, the on-time and the late. From the previous chip's late sample,
the next chip's early sample can be determined. PN sequences on
the real and imaginary channels are generated, and correlation
with the incoming data is performed. If correlation falls below
the user-specified threshold, an acquisition search is initiated which
performs a serial search on the incoming data stream to determine the PN
code phase offset which maximizes the correlator. Once this maximum is
found, the code phase is adjusted appropriately, and the star resumes tracking
mode operation using a DLL.

Outputs include the PN phase (for the Walsh correlators to use), the values
output which shows the threshold value of the correlator, a VCO sampling
phase signal that is fed back to the sampler, and a coeffs output which
provides the on-time, one and two chip late correlator outputs of the pilot signa
This channel estimate information is used to construct the equalizer filter.
Several user specified parameters are allowed. These should be self-explanatory.

)

input { name { data } type { complex ) )
input { name { data_late ) type { complex ) }

output { name { PNphase ) type { int ) )
output { name { values } type (float) )
output { name { phase ) type { float ) )
output { name { coeffs } type { complex } )

defstate {

name ( sequence_length_in_chips }
type { int )
default { sequence_length_in_chips )
desc { PN sequence length in chips }

)

defstate {

name { chips_to_integrate )
type { int }

default { chips_to_integrate }
desc { number of chips to integrate over in correlation )

}
defstate (

name { mlsrLength )
type { int }
default { mlsrLength }
desc { Length of PN scrambling sequence }

)

defstate (

name { spreadCode )
type { int }
default { spreadCode }
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desc { Spreading code )

)
defstate {

name { gain }
type { float }
default { gain )
desc { Gain on DLL )

)
defstate {

name { threshhold )

type ( float }
default { threshhold }

desc ( Threshhold to determine lock )

}

ccinclude { <math.h> )

protected {

start {

go {

int acqcounter,PNcounter,Corrcounter,full_corr_counter,acquire,N;
int spread[5000];
float samplephase;
Complex earlysum, latesum, onechiplatesum, twochiplatesum, ontimesum;
Complex ontimecoeff,onechiplatecoeff,twochiplatecoeff;
Complex dataarrl[5000],dataarr2[5000];

N=int(sequence_length_in_chips);
acqcounter=N*2;

PNcounter=Corrcounter=full_corr_counter=acquire=0;
samplephase=0;

earlysum=latesum=onechiplatesum=twochiplatesum=ontimesum=Complex (0.0)
ontimecoeff=onechiplatecoeff=twochiplatecoeff=Complex(0.0);
loadPNseq(spread);
data_late.setSDFParams(1,1);

coeffs.setSDFParams(3,2);

#define FULL_CORRELATIONS 1
float early,late,normalize_factor;

// Output the PN phase

PNphase%0 « PNcounter;

// If in acquisition mode, decrement the counter
// and store the two incoming samples if they will
//be used in the correlation (depends on the number
//of chips that will be integrated over).

if (acquire) {
acqcounter--;

if (acqcounter>=(N-int(chips_to_integrate))) {
dataarrl[acqcounter]=Complex(data%0);

' dataarr2[acqcounter]=Complex(data_late%0);
}

// If the acquisition counter has reached zero, correlate with the
// two arrays to find the optimal PN code phase offset, and adjust
// the samplephase so that the ontime or early stream is used as the
// data stream, depending on which array gives the larger correlation
// peak. Resets all of the counters and correlator outputs.

if (acqcounter==0) (
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correlate(dataarrl,dataarr2,&samplephase,&PNcounter);
acqcounter=2*N;

acquire=Corrcounter=full_corr_counter=0;
earlysum=latesum=onechiplatesum=twochiplatesum=ontimesum=Complex(0

)

}

// If not in acquisition mode, accumulate in the early, late,
// ontime, onechiplate and twochiplate correlators, and increment
// the counters.

else {

earlysum+=Complex(data_late%l)*float(spread[PNcounter]);
latesum+=Complex(data_late%0)*float(spread[PNcounter]);

// Make sure that the PN code array wraps around properly at the end.

if ((PNcounter==0) II (PNcounter==l)) {
if (PNcounter==0) {

onechiplatesum+=Coraplex(data%0)*float(spread[N-l]);
twochiplatesum+=Complex(data%0)*float(spread[N-2]);

)
if (PNcounter==l) {

onechiplatesum+=Complex(data%0)*float(spread[0]);
twochiplatesum+=Complex(data%0)*float(spread[N-l]);

)

)
else {

onechiplatesum+=Complex(data%0)*float(spread[PNcounter-1]);
twochiplatesum+=Complex(data%0)*float(spread[PNcounter-2]);

)

ontimesum+=Complex(data%0)*float(spread[PNcounter]);
Corrcounter++;

PNcounter++;

}

//If the PN phase counter is at its maximum value, check to see if a full
// correlation has been performed (removes transient effects which result
// when an acquisition is performed and correlation occurs only over a few
// samples). The early and late correlation values are then normalized for
// convenience.

if (PNcounter==N) (
if (Corrcounter==N) {

normalize_factor=float(N)*1.414;
early=abs(earlysum)/normalize_factor;
late=abs(latesum)/normalize_factor;
full_corr_counter++;

//If energy in the early and late falls below threshold, set flag
//to reacquire; otherwise, DLL adjusts the sampling phase. Store the
// ontime, onechiplate, and twochiplate correlator coefficients.

if ((early+late) < float(threshhold)) acquire=l;
else samplephase += (early-late)*float(gain);
if (full_corr_counter==FULL_CORRELATIONS) {

ontimecoeff=ontimesum/(FULL_CORRELATIONS*normalize_factor);
onechiplatecoeff=onechiplatesum/(FULL_CORRELATIONS*normalize_fact
twochiplatecoeff=twochiplatesum/(FULL_CORRELATIONS*normalize_fact

);

full_corr_counter=0;

)
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// Output the threshold value on the values stream, then reset variables.

values%0 « (early+late);
PNcounter=Corrcounter=0;

early=late=0;
earlysum=latesum=onechiplatesum=twochiplatesum=ontimesum=Complex(0. 0);

)

// Otherwise output a zero on the values stream.

else values%0 « 0;

// Keep the samplephase bounded between -0.5 and 1.1, and output the
// correlator, coefficients

if (samplephase>l.1) samplephase=l.1;
if (samplephase<-0.5) samplephase=-0.5;

phase%0 « samplephase;

// Forget about the twochiplate correlator output. The energy is low enough th
// it becomes insignificant in most cases.

// coeffs%2 « 0.0;

coeffs%2 « twochiplatecoeff;
coeffs%l « onechiplatecoeff;
coeffs%0 « ontimecoeff;

} // end go

method {

name { loadPNseq }
access { protected )

arglist ( "(int *spread)" )
type { void )

// Generates the PN sequence used for descrambling.

code {

int i,k,temp,CodeLength;
int lin[14],regstate[14];
CodeLength = 1;

for (i=0; i < int(mlsrLength); i++) {
lin[i] = (int(spreadCode)/CodeLength) % 2;
regstate[i]=0; // initialize regstate
CodeLength *= 2; // increment spreadFactor

)
regstate[int(mlsrLength)-1] = 1;

for (i=0;i<(CodeLength-l);i++) {
spread[i] = (regstate[0]==l) ? 1: -1;

temp=0;

for (k=0; k<=(int(mlsrLength)-1); k++) {
temp += lin[k]*regstate[k];

}

for (k=(int(mlsrLength)-2); k>=0; k—) {
regstate[k+l] = regstate[k]; // left shift

)
regstate[0] = temp % 2;

)

spread[CodeLength-1]=1; // extra bit added
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} // end code

} // end method

method (

name { correlate }

access { protected }
arglist { "(Complex *data, Complex *datalate,float *samplephase,

int *PNcounter)" }
type { void )

code {

float Cmax, Cofnl,Cofn2;
Complex ctopl,ctop2;
int N,n,m,nmax,maxcorr;

Cmax=0;

nmax=maxcorr=0;

N=int(sequence_length_in_chips);

//At each code phase offset, compute the correlator value by
// integrating over an interval of length chips_to_integrate
//Do this for the ontime and late streams so that this search

// is performed with a resolution of one half a chip interval.
// Take the magnitude of this complex correlator and select the
// largest.

for ( n = 0; n < N; n++ ) {

ctopl=ctop2= Complex(0.0);

for ( m = 0; m < int(chips_to_integrate); m++ ) (
ctopl += data[2*N - 1 - ( n + m )] *

float(spread[m]);
ctop2 += datalate[2*N - 1 - ( n + m )] *

float(spread[m]);
} // end for

Cofnl = abs(ctopl);
Cofn2 = abs(ctop2);

// If the ontime or late correlation yields the largest value
// encountered thus far, make it the maximum and store the index.

if ((Cofnl>Cmax) II (Cofn2>Cmax)) {

if (Cofnl > Cofn2) {
Cmax = Cofnl;

nmax = n;

maxcorr=l;

) // end if

else (

Cmax = Cofn2;

nmax = n;

maxcorr=2;

) // end if

)
} // end for

//If the late stream yields the maximum value of all possible
// offsets, then increment the phase (or decrement it) by 0.5
//so that the late stream will become the data stream. Set the PN

// counter to its proper value, given the offset which makes the
// correlator output maximum.

if (maxcorr==2) {

if (*samplephase<0.5) *samplephase += 0.5;
else *samplephase -= 0.5;
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}
*PNcounter=N-nmax;

} // end code

} // end method

} // end defstar



SDFBER2.pl Pri Jan 6 13:02:29 1995 1

defstar {

name ( BER2 )

domain { SDF }
desc (

This star functions as a simple bit error rate tester. The 'original'
input is the original data generated. The 'data' input represents the received
data signal, assumed to be hard-limited to the same levels as the original data.
A delay is specified between the original and received data streams, requiring
the user to indicate the latency associated with the received data. Also, a training
length may be specified during which no BER measurement is made. A simple
equality comparison is made between the two streams, and two outputs are
generated. The 'errors' output keeps a running total of the number of errors
which have occurred since the simulation commenced. The 'rate' output divides
this quantity by the number of bits which have been processed, thus providing
a BER for the data streams..

}

version (@(#)SDFBER2.pi 2.12 11/25/92}
author ( Craig Teuscher 2/93 )
copyright {

Copyright (c) 1990, 1991, 1992 The Regents of the University of California.
All rights reserved.

See the file -ptolemy/copyright for copyright notice,
limitation of liability, and disclaimer of warranty provisions.

)
location { user.pal ) '•
explanation {

}
input {

name { original }
type ( float }

)
input {

name { data )

type ( float )

}
output {

name { errors )

type { float )

)
output (

name { rate }

type { float )

}

defstate {

name { training_length )
type { int )

default { training_length )
desc { The number of bits lost during the training sequence.)

}

defstate (

name { delay )
type { -int )
default { delay )
desc { The number of delays between 'original' and 'data'.)

)

protected {

int numberofbits,numberoffirings;
int totalerrors;

)
start {

numberofbits=0;
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numberoffirings=0;
totalerrors=0;

)
go {

original.setSDFParamsd, int(delay) );

// Check to see if enough firings have taken place to pass the training
// sequence bits and to allow for the delay between the original stream
// and the data stream.

if (numberoffirings >= int(training_length)+int(delay)) {

// increment the bit counter and the error counter if appropriate,
numberofbits++;

if (float(original%int(delay)) != float(data%0)) totalerrors++;
errors%0 « float(totalerrors);
rate%0 « float( float(totalerrors)/float(numberofbits));

)

// If we are in the training sequence, output zeros and increment the
// counters.

else {

numberoffirings++;
errors%0 « 0.0;

rate%0 « 0.0;

}

)
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defstar {

name { CWalshCorr )
domain { SDF )
desc {

This star functions as a Walsh sequence correlator. The user parameter
determines which Walsh code will be used to correlate the incoming waveform.
The spreadfactor parameter determines the decimation rate. (Spreadfactor)
tokens are consumed and a single output is generated on each firing. The incoming
complex data stream is multiplied by the desired Walsh sequence, and the result
is integrated over the length of the Walsh sequence. When the end of the sequence
is reached, the final value is "dumped" and the correlator is reset to begin anoth
correlation. The PNphase input is a "clock" which ensures that the Walsh correlat
and the PN generator remain synchronized.
)

version {@(#)SDFWalshCorr.pl 2.12 11/25/92)
author { Craig Teuscher 2/93 }
copyright {

Copyright (c) 1990, 1991, 1992 The Regents of the University of California.
All rights reserved.

See the file -ptolemy/copyright for copyright notice,
limitation of liability, and disclaimer of warranty provisions.

)

location { user.pal }
explanation {

}

hinclude {
<math.h>

)
input {

name { data )

type { complex }

}
input {

name { PNphase )
type ( int )

}
output {

name { output }
type { complex }

)
defstate {

name { user )

type { int )
default {"0")

desc { The user number.)

)
defstate {

name ( spreadfactor)
type ( int )
default {"64")

desc ( The spreading factor. )
)
protected {

int walsh[128];
Complex correlation;

)
start {

int i,r,bits,exponent;
int userbits[8], timebits[8];

correlation=Complex(0.0,0.0);
bits = (int) (loglO(double(spreadfactor))/loglO(2.0));

// Generate the Walsh codes through the following procedure:
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// Convert user to binary representation stored in userbits
converttobits(user,bits,userbits) ;
userbits[bits]=0;

// For each chip interval convert the time index i to a binary
// represenation stored in timebits.

for (i=0;i< int(spreadfactor);i++) {
exponent=0;

converttobits(i,bits,timebits) ;

timebits[bits]=0;

// Given the userbits and timebits, apply the formula for the Walsh
// sequence value. Make the output binary antipodal.

for (r=0;r<bits;r++) {

exponent += userbits[bits-l-r] * (timebits[r] + timebits[r+1]);

)
walsh[i] = (exponent%2==0) ? 1: -1;

}

PNphase.setSDFParams(int(spreadfactor) ,int(spreadfactor)-1);
data.setSDFParams(int(spreadfactor),int(spreadfactor)-1);

}
go {

int i,phase,index;

// Determine phase of the Walsh clock related to the phase of the PN clock

phase = int(PNphase%(int(spreadfactor)-1)) % int(spreadfactor);

// Compute the running correlation sum
for (i=0;i<int(spreadfactor);i++) {

index = (i+phase) % int(spreadfactor);
correlation += walsh[index]* Complex(data%(int(spreadfactor)-1-i));

// When the end is reached, dump output and reset correlator to
// begin a new correlation.

if (index==(int(spreadfactor)-1)) {
output%0 « Complex(correlation * float(1/float(spreadfactor)) );
correlations Complex(0,0);

)

)

}
method {

name { converttobits }

access { protected )

arglist {"(int number, int numberofbits, int *bits)" )
type { void )

code {

int i,divisor;

// Converts a decimal number into its binary representation

divisor=l;

for (i=0;i<numberofbits;i++) {
bits[i]= (number/divisor) %2;
divisor*=2;

)
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) '.••...'.:
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defstar {

name { CompSamp5 )
domain { SDF )

author { Craig Teuscher )

location { User Pallette )

desc (

This star acts as a sampler/decimator to provide the desired samples
requested by the sample_phase variable. The sample_phase input variable,
between 0 and 1, requests that the output sample be taken at the time
T_chip*sample_phase. Two samples are generated, the on-time and the late

)

input {
name { in )

type { complex )

)

input {

name { sample_phase )
type { float }

// 0 <= sample_phase <= 1 -> gives sample position in the chip
// interval

}

output {

name { output )

type { complex )

// sample value at ideal chip sampling time
}

output {

name { out_late )

type { complex }
// sample value 1/2 chip period after ideal chip sampling time

)

defstate (

name ( samples_per_chip )
type ( int }

default { "samples_per_chip" }
desc { Number of input samples per chip period. )

}

hinclude {

<iostream.h>

)

start {

in.setSDFParams(int(samples_per_chip),3*int(samples_per_chip));
)
go {

// WARNING - DANGER -- Assumes 0 freq offset!!
// Sample values are being computed with
// one clock cycle delay, which allows us to handle
// sample_phase = 1 and sample_phase = 0.

float interp_factor;
float exact_interp_time;
int left_sample_time;
Complex ontime,late;
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if(float(sample_phase%0) < -0.5 II float(sample_phase%0) > 1.5) (
Error::abortRun(*this, "Smpl_ph_det:: ERROR: need sample_phase abetween -0
exit(l);

)

// should check for bad sample_phase (not between 0 and 1?)

// compute ideal sample value

exact_interp_time = 2.0 * float (samples_per_chip) -
(float(samples_per_chip) * float(sample_phase%0)) -1;

left_sample_time = (int) exact_interp_time +1;
interp_factor = left_sample_time - exact_interp_time ;

// interp_factor is used for a linear interpolation

ontime = ( Complex(in%(left_sample_time)) * (l-interp_factor) +
Complex(in%(left_sample_time-l)) * interp_factor );

ontime=Complex(ontime.real(),ontime.imag());

// compute "late" sample
exact_interp_time = 2.0 * float(samples_per_chip) - float(samples_per_chip)/2.0 -

(float(samples_per_chip) * float(sample_phase%0)) -1;
left_sample_time = (int) exact_interp_time +1;
interp_factor = left_sample_time - exact_interp_time ;

late = ( Complex(in%(left_sample_time)) * (l-interp_factor) +
Complex(in%(left_sample_time-l)) * interp_factor );

late=Complex(late.real(),late.imag());

output%0 « ontime;

out_late%0 « late;
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defstar {

name { PN2 )

domain { SDF )

author { Culprit: Sam modified by Craig Teuscher}

location ( RF Simulation library )

desc (

Takes an input sequence and multiplies by an MLSR descrambling sequence.
MLSR sequences are (2"length - 1) long. An extra 1 is added on
to the end of the sequence to make the sequence (2Alength) long. The
multiply consists of a scalar multiply of the complex data by the PN
descrambling sequence, and data is output at the same rate as it arrives.

A phase input is also provided for synchronization purposes at the receiver
The phase input indicates the phase of the PN sequence.

)

explanation {

)

input {
name { data }

type { complex }

}

input {
name { phase )
type { int )

)

output {

name { signalOut )
type ( complex }

)

defstate {

name { spreadCode )
type { int }
default ( "spreadCode" }
desc { Spreading code (MLSR polynomial coefficients); specified as an

equivalent integer)

}

defstate {

name { mlsrLength }
type { int )
default { "mlsrLength" )
desc { Length of the MLSR.

}

protected {

int spread[2048];
)

The spreading factor is 2*mlsrLength - 1. }

start {

int i,k,temp,CodeLength;
int lin[14],regstate[14];

// This code generates the PN sequence and stores it in the spread array.
//A single bit is appended to the code to make the length 2AN instead of
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// the traditional (2AN - 1).

CodeLength = 1;

for (i=0; i < int(mlsrLength); i++) {
lin[i] = (int(spreadCode)/CodeLength) % 2;
regstate[i]=0; // initialize regstate
CodeLength *= 2; // increment CodeLength

)

regstate[int(mlsrLength)-1] = 1;

for (i=0;i<(CodeLength-l);i++) {
spread[i] = (regstate[0]==l) ? 1: -1;
temp=0;

for (k=0; k<=(int(mlsrLength)-1); k++) {
temp += lin[k]*regstate[k];

}
for (k=(int(mlsrLength)-2); k>=0; k—) {

regstate[k+l] = regstate[k]; // left shift

}
regstate[0] = temp % 2;

)

spread[CodeLength-1]=1; // extra bit added

)

go {

signalOut%0 « Complex( (float) spread[int(phase%0)] * Complex(data%0));
}
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defstar {

name { PowerAGC }

domain { SDF )

desc { This star models an AGC. The signal arrives as a complex valued data
stream. The norm of the signal is averaged over the number of data points
specified by the updategain parameter. The gain is then updated (adjusted) so
that the "power" of the signal has an average value equal to the specified
powerlevel parameter. The accumulator is reset and the process repeats.
The output signal -- dataout — consists of the input signal multiplied by the
gain element.

)
version {@(#)SDFPowerAGC.pl 2.12 11/25/92}
author { Craig Teuscher 2/93 }
copyright (

Copyright (c) 1990, 1991, 1992 The Regents of the University of California.
All rights reserved.

See the file -ptolemy/copyright for copyright notice,
limitation of liability, and disclaimer of warranty provisions.

}
location { user.pal }
explanation {

}

hinclude {

<math.h>

}
input {

name { data )

type { complex }

}
output (

name { dataout }

type { complex }

}
output {

name { gainout }
type ( float }

}
defstate {

name { powerlevel }

type { float }

default { powerlevel }
desc { The normalized powerlevel desired.}

}
defstate {

name { updategain }
type { int }
default { updategain }
desc { The number of samples to average before updating gain.}

}
protected {

int counter;

float runningsum,gain;
}
start {

runningsum=0;
counter=0;

gain=l.0;

}
go {

// Accumulate the norm of the signal (after it is multiplied by the present
// gain value). Increment the counter to keep track of the data points that
// have been processed.
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runningsum += norm(gain*Complex(data%0)) ;
counter++;

// The gain value is output for convenience, while the dataout stream consists
//of the input stream multiplied by the gain value.

gainout%0 « gain;
dataout%0 « Complex(gain*Complex(data%0));

// If enough data points have been processed, update the gain so that the average
// powerlevel corresponds to the desired value. Then reset the counter and accumula

if (counter==updategain) {
gain *= sqrt((float(powerlevel)*counter)/runningsum);
counter=0;

runningsum=0;

}

}

}// end defstar
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defstar {

name { Walshlnt2 }
domain ( SDF }
desc {

This star functions as a Walsh interference generator and/or data
spreader. The spreadfactor determines the length of the Walsh sequence and should
be of length (2An) where n is an integer. Each user is assigned a unique
Walsh sequence, and data bits are. mapped into the appropriate Walsh sequence
by multiplying the sequence by +/- 1 depending on whether the information bit
is +/- 1. The 'users' parameter allows one to specify all of the users in
the system in one star. Simply list the user numbers (ranging from 0 to (spreadfactor-1))
where 0 represents the pilot tone (DC) channel. For a single user, the incoming data stre
is mapped one input data bit to one output sequence of length (spreadfactor). If there is
than one user specified, the next data bit is spread by the Walsh sequence corresponding
to the second user listed in the 'users' parameter, and so on until one data bit for
each user listed has been spread by the proper sequence. These individual spread signals
then linearly summed and the composite signal is output.

Note that since the incoming data stream is complex, the same
spreading sequence is applied to both the in-phase and quadrature channels. This spreadin
consists of a real-valued scalar multiply of the complex data stream by the spreading
sequence.

}

version {©(#)SDFWalshInt2.pi 2.12 11/25/92}
author { Craig Teuscher 5/93 }
copyright {

Copyright (c) 1990, 1991, 1992 The Regents of the University of California.
All rights reserved.

See the file -ptolemy/copyright for copyright notice,
limitation of liability, and disclaimer of warranty provisions.

}
location ( user.pal }
explanation {

}

hinclude {

<math.h>

}
input {

name { data }

type { complex }

}
output {

name { spreadout }
type { complex }

}
defstate {

name { users }

type { IntArray }
default {"0"}

desc { The user numbers}

}
defstate {

name { spreadfactor}
type { int }
default {"64"}

desc { The spreading factor. }
}
protected {

int walsh[128][128];
}
start {

int i,j,r,bits,exponent;
int userbits[8], timebits[8];
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bits = (int) (loglO(double(spreadfactor))/loglO(2.0));

for (i=0;i<users.size();i++) {
converttobits(users[i],bits,userbits);
userbits[bits]=0;
for (j=0;j< int(spreadfactor);j++) (

exponent=0;

converttobits(j,bits,timebits);
timebits[bits]=0;
for (r=0;r<bits;r++) {

exponent += userbits[bits-l-r] * (timebits[r] + timebits[r+1]);
)
walsh[i][j] = (exponent%2==0) ? 1: -1;

}

}

data.setSDFParams(users.size(),users.size()-1);
spreadout.setSDFParams(int(spreadfactor),int(spreadfactor)-1);

}
go {

int i,j;
Complex sum;

for (j=0;j<int(spreadfactor);j++) {
sum=Complex(0,0);

for (i=0;i<users.size();i++) {
sum += Complex(Complex(data%(users.size()-1-i)) * (float) walsh[i][j])

}

spreadout%(int(spreadfactor)-1-j) « sum;
}

}
method {

name { converttobits }
access { protected }

arglist {"(int number, int numberofbits, int *bits)" }
type { void }

code {

int i,divisor;

divisor=l;

for (i=0;i<numberofbits;i++) {
bits[i]= (number/divisor) %2;
divisor*=2;

}
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defstar (

name { PowerAGC }

domain ( CGC }

desc { This star models an AGC. The signal arrives as a complex valued data
stream. The norm of the signal is averaged over the number of data points
specified by the updategain parameter. The gain is then updated (adjusted) so
that the "power" of the signal has an average value equal to the specified
powerlevel parameter. The accumulator is reset and the process repeats.
The output signal — dataout — consists of the input signal multiplied by the
gain element.

}
version {@(#)CGCPowerAGC.pl 2.12 11/25/92}
author { Craig Teuscher 2/93 }
copyright {

Copyright (c) 1990, 1991, 1992 The Regents of the University of California.
All rights reserved.

See the file -ptolemy/copyright for copyright notice,
limitation of liability, and disclaimer of warranty provisions.

}
location { user.pal }
explanation (

}
input {

name { data }

type { complex }

}
output {

name { dataout }

type { complex }

}
output {

name { gainout }
type { float }

}
defstate {

name { powerlevel }
type { float }

default { powerlevel }
desc { The normalized powerlevel desired.}

}
defstate {

name { updategain }
type { int }
default { updategain }
desc { The number of samples to average before updating gain.}

}

codeblock (decls) (

double $starSymbol(runningsum) = 0;
int $starSymbol(counter) = 0;
double $starSymbol(gain) = 1.0;

}

codeblock (mainblock) {
complex temp;'
double tempi;

/* Accumulate the norm of the signal (after it is multiplied by the present
gain value). Increment the counter to keep track of the data points that
have been processed. */

temp.real=$starSymbol(gain)*$ref(data).real;
temp.imag=$starSymbol(gain)*$ref(data).imag;
$starSymbol(runningsum) += sqrt(temp.real*temp.real+temp.imag*temp.imag) /* no
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$starSymbol(counter)++;

/* The gain value is output for convenience, while the dataout stream consists
of the input stream multiplied by the gain value. */

$ref(gainout)= $starSymbol(gain);
$ref(dataout).real=temp.real;
$ref(dataout).imag=temp.imag;

/* If enough data points have been processed, update the gain so that the average
powerlevel corresponds to the desired value. Then reset the counter and accumu

if ($starSymbol(counter)==$val(updategain)) {
templ=($val(powerlevel)*$starSymbol(counter))/$starSymbol(runningsum);
$starSymbol(gain) *= sqrt(tempi);
$starSymbol(counter)=0;
$starSymbol(runningsum)=0;

}

}

go {

addlnclude("<math.h>");

addDeclaration(decls);

addCode(mainblock);
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defstar (
name { Walsh3 }

domain { CGC }
desc {

This star functions as a Walsh interference generator and data
spreader. The spreadfactor determines the length of the Walsh sequence
and should be of length (2^n) where n is an integer. Each user is assigned
a unique Walsh sequence, and data bits are mapped into the appropriate
Walsh sequence by multiplying the sequence by +/- 1 depending on whether
the information bit is +/- 1. The 'users' parameter allows one to specify
all of the users in the system in one star. Simply list the user numbers
(ranging from 0 to (spreadfactor-1)) where 0 represents the pilot tone (DC)
channel. For a single user, the incoming data stream is mapped one input data
bit to one output sequence of length (spreadfactor). If there is more
than one user specified, the next data bit is spread by the Walsh sequence
corresponding to the second user listed in the 'users' parameter, and so
on until one data bit for each user listed has been spread by the proper
sequence. These individual spread signals are then linearly summed and the
composite signal is output.

Note that since the incoming data stream is complex, the same spreading
sequence is applied to both the in-phase and quadrature channels.
This spreading consists of a real-valued scalar multiply of the complex
data stream by the spreading sequence.

Beware: when using Complex-valued entities in CGC, you must explicitly
use conversion stars on either side of this block if you want only a real-
valued modulator.

The modonly state says that NO spreading should be done; spreadfactor in
this case is just the length of the Walsh sequence. The output is simply
input*walsh value, one-to-one modulated.

In the case that modonly is one, then the stall input becomes active,
and allows clock synchronization between the PN sequence and the
Walsh mod sequence.

}

explanation {

This star functions as a Walsh interference generator and data
spreader. The spreadfactor determines the length of the Walsh sequence
and should be of length (2"n) where n is an integer. Each user is assigned
a unique Walsh sequence, and data bits are mapped into the appropriate
Walsh sequence by multiplying the sequence by +/- 1 depending on whether
the information bit is +/- 1. The 'users' parameter allows one to specify
all of the users in the system in one star. Simply list the user numbers
(ranging from 0 to (spreadfactor-1)) where 0 represents the pilot tone (DC)
channel. For a single user, the incoming data stream is mapped one input data
bit to one output sequence of length (spreadfactor). If there is more
than one user specified, the next data bit is spread by the Walsh sequence
corresponding to the second user listed in the 'users' parameter, and so
on until one data bit for each user listed has been spread by the proper
sequence. These individual spread signals are then linearly summed and the
composite signal is output.

Note that since the incoming data stream is complex, the same spreading
sequence is applied to both the in-phase and quadrature channels.
This spreading consists of a real-valued scalar multiply of the complex
data stream by the spreading sequence.

Beware: when using Complex-valued entities in CGC, you must explicitly
use conversion stars on either side of this block if you want only a real-
valued modulator.
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The modonly state says that NO spreading should be done; spreadfactor in
this case is just the length of the Walsh sequence. The output is simply
input*walsh value, one-to-one modulated. If modonly==l, no spreading;
modonly==0, will perform spread.

In the case that modonly is one, then the stall input becomes active,
and allows clock synchronization between the PN sequence and the
Walsh mod sequence.

}

author { Culprits: Craig Teuscher, CGC port and major modifications by Sam }

input {
name { data }

type { complex }

}

input {
name { stall }

type { int }

)

output {

name { spreadout }
type { complex }

}

defstate {

name { users }

type { intarray }
default ("20"}

desc { The Walsh number(s) to use in the spreading. This is an array parameter.
}

defstate {

name { spreadfactor}
type { int }
default ("64")

desc { Spreading factor }

}

defstate {

name { modonly }
type ( int }
default {"0"}

desc { Modulate only? }

}

setup {
data.setSDFParams(users.size(),users.size()-1);
if (int(modonly)==0) {

spreadout.setSDFParams(int(spreadfactor),int(spreadfactor)-1);
}

}

initCode {

if (int(modonly)==1) (
addDeclaration("int $starSymbol(index) = 0;");

)
addlnclude("<math.h>");

if (addGlobal(walsharr,"$sharedSymbol(Walsh2,Walsh2)")) {
addCode(sharedinit);

}

}
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go {

if (int(modonly)==0) {
addCode(maincode);

} else if (int(modonly)==1) {
addCode(maincodeMod);

}

}

codeblock(maincode) {
int i,j;
complex sum;

for (j=0;j<$val(spreadfactor);j++) (
int outcount = $val(spreadfactor)-j-1;

sum.real = 0.0;

sum.imag = 0.0;
for (i=0;i<$size(users);i++) {

int dataoffset = $size(users) - 1 -i;
sum.real += $ref(data,dataoffset).real *

(float) $sharedSymbol(Walsh2,walsh)[j][$ref(users)[i]];
sum.imag += $ref(data,dataoffset).imag *

(float) $sharedSymbol(Walsh2,walsh)[j][$ref(users)[i]];
}

$ref(spreadout,outcount).real = sum.real;
$ref(spreadout,outcount).imag = sum.imag;

}

}

codeblock(maincodeMod) {
int i ;

complex sum;

sum.real = 0.0;

sum.imag = 0.0;
for (i=0;i<$size(users);i++) {

int dataoffset = $size(users) - 1 -i;
sum.real += $ref(data,dataoffset).real *

(float) $sharedSymbol(Walsh2,walsh)[$starSymbol(index)][$ref(users)[i]];
sum.imag += $ref(data,dataoffset).imag *

(float) $sharedSymbol(Walsh2,walsh)[$starSymbol(index)][$ref(users)[i]];
}

/* Deal with the stall case on the Walsh mod */

if ($ref(stall) != 1) {

$starSymbol(index) = (++$starSymbol(index)) % $val(spreadfactor);
}

$ref(spreadout).real = sum.real;
$ref(spreadout).imag = sum.imag;

codeblock(walsharr) {

char SsharedSymbol(Walsh2,walsh)[$val(spreadfactor)][$val(spreadfactor)];

void $sharedSymbol(Walsh2,ConBits)(int number, int numberofbits, int *bits)
{

int i;

for (i=0;i<numberofbits;i++) {
bits[i]= (number » i) & 0x01;

}
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bits[numberofbits]=0;
}

}

codeblock(sharedinit) {

{

int i,j,r,bits,exponent;
int *userbits, *timebits;

bits = (int) ceil(log2((double) $val(spreadfactor)));
userbits = (int *) calloc(bits+l, sizeof(int));
timebits = (int *) calloc(bits+1, sizeof(int));

for (i=0; i < $val(spreadfactor); i++) {
$sharedSymbol(Walsh2,ConBits)(i,bits,userbits);

for (j=0;j< $val(spreadfactor);j++) {
exponent=0;

$sharedSymbol(Walsh2,ConBits)(j,bits,timebits);

for (r=0;r<bits;r++) {
exponent += userbits[bits-l-r] *

(timebits[r] + timebits[r+1]);

)
/* For memory efficiency, we mark this as [j][i] */
$sharedSymbol(Walsh2,walsh)[j][i] = {exponent%2==0) ? 1 : -1;
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defstar (
name { WalshCorr7 }

domain { CGC }

desc {

This star functions as a Walsh interference generator and data
spreader. The spreadfactor determines the length of the Walsh sequence
and should be of length (2An) where n is an integer. Each user is assigned
a unique Walsh sequence, and data bits are mapped into the appropriate
Walsh sequence by multiplying the sequence by +/- 1 depending on whether
the information bit is +/- 1. The 'users' parameter allows one to specify
all of the users in the system in one star. Simply list the user numbers
(ranging from 0 to (spreadfactor-1)) where 0 represents the pilot tone (DC)
channel. For a single user, the incoming data stream is mapped one input data
bit to one output sequence of length (spreadfactor). If there is more
than one user specified, the next data bit is spread by the Walsh sequence
corresponding to the second user listed in the 'users' parameter, and so
on until one data bit for each user listed has been spread by the proper
sequence. These individual spread signals are then linearly summed and the
composite signal is output.

Note that since the incoming data stream is complex, the same spreading
sequence is applied to both the in-phase and quadrature channels.
This spreading consists of a real-valued scalar multiply of the complex
data stream by the spreading sequence.

Beware: when using Complex-valued entities in CGC, you must explicitly
use conversion stars on either side of this block if you want only a real-
valued modulator.

The modonly state says that NO spreading should be done; spreadfactor in
this case is just the length of the Walsh sequence. The output is simply
input*walsh value, one-to-one modulated.

In the case that modonly is one, then the stall input becomes active,
and allows clock synchronization between the PN sequence and the
Walsh mod sequence.

}

explanation {
This star functions as a Walsh interference generator and data
spreader. The spreadfactor determines the length of the Walsh sequence
and should be of length (2An) where n is an integer. Each user is assigned
a unique Walsh sequence, and data bits are mapped into the appropriate
Walsh sequence by multiplying the sequence by +/- 1 depending on whether
the information bit is +/- 1. The 'users' parameter allows one to specify
all of the users in the system in one star. Simply list the user numbers
(ranging from 0 to (spreadfactor-1)) where 0 represents the pilot tone (DC)
channel. For a single user, the incoming data stream is mapped one input data
bit to one output sequence of length (spreadfactor). If there is more
than one user specified, the next data bit is spread by the Walsh sequence
corresponding to the second user listed in the 'users' parameter, and so
on until one data bit for each user listed has been spread by the proper
sequence. These individual spread signals are then linearly summed and the
composite signal is output.

Note that since the incoming data stream is complex, the same spreading
sequence is applied to both the in-phase and quadrature channels.
This spreading consists of a real-valued scalar multiply of the complex
data stream by the spreading sequence.

Beware: when using Complex-valued entities in CGC, you must explicitly
use conversion stars on either side of this block if you want only a real-
valued modulator.
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The modonly state says that NO spreading should be done; spreadfactor in
this case is just the length of the Walsh sequence. The output is simply
input*walsh value, one-to-one modulated. If modonly==l, no spreading;
modonly==0, will perform spread.

In the case that modonly is one, then the stall input becomes active,
and allows clock synchronization between the PN sequence and the
Walsh mod sequence.

}

author { Culprits: Craig Teuscher, CGC port and major modifications by Sam }

input (
name { data }

type { complex }

}

input (
name { stall }
type { int }

}

output {

name { spreadout }

type { complex }

}

defstate {

name ( user }

type { int }
default {"20"}

desc { The Walsh number to use in decorrelating. }

}

defstate {

name { spreadfactor}
type { int }
default ("64"}

desc { Spreading factor }

}

setup {

data.setSDFParams(int(spreadfactor),int(spreadfactor)-1);
stall.setSDFParams(int(spreadfactor),int(spreadfactor)-1);

}

initCode (

addDeclaration("int $starSymbol(index) = 0;");
addInclude("<math.h>");

if (addGlobaKwalsharr, "$sharedSymbol (Walsh2,Walsh2) ") ) (
addCode(sharedinit);

}

}
go {

addCode(maincode);

}

codeblock(maincode) {

int i,j;
static complex sum;
int dataoffset=0;
int dumped=0;

for (j=0;j<$val(spreadfactor);j++) {
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dataoffset=$val(spreadfactor)-1-j;
if ($starSymbol(index)==0) { /*Reset summation to zero*/

sum.real=0;

sum.imag=0;

}

sum.real += $ref(data,dataoffset).real *
(float) $sharedSymbol(Walsh2,walsh)[$starSymbol(index)][$val (u

sum.imag += $ref(data,dataoffset).imag *
(float) $sharedSymbol(Walsh2,walsh)[$starSymbol(index)][$val (u

if ($starSymbol( index) ==$val( spreadfactor)-1") { /* dump data if end of se
$ref(spreadout).real = sum.real;
$ref(spreadout).imag = sum.imag;
dumped=l;

}

/* Handle stall case */

if ($ref(stall,dataoffset) != 1) $starSymbol(index) = ++$starSymbol(index) % $v
}

if (dumped==0) ( /* if haven't dumped, output a zero */
$ref(spreadout).real = 0.0;
$ref(spreadout).imag = 0.0;

)

}

codeblock(walsharr) (

char $sharedSymbol(Walsh2,walsh)[$val(spreadfactor)][$val(spreadfactor)];

void $sharedSymbol(Walsh2,ConBits)(int number, int numberofbits, int *bits)

{
int i ;

for (i=0;i<numberofbits;i++) {

bits[i]= (number » i) & 0x01;

}
bits[numberofbits]=0;

}

}

codeblock(sharedinit) {

{

int i,j,r,bits,exponent;
int *userbits, *timebits;

bits = (int) ceil(log2((double) $val(spreadfactor)));
userbits = (int *) calloc(bits+l, sizeof(int));
timebits = (int *) calloc(bits+l, sizeof(int));

for (i=0; i < $val(spreadfactor); i++) {
$sharedSymbol(Walsh2,ConBits)(i,bits,userbits);

for (j=0;j< $val(spreadfactor);j++) (
exponent=0;
$sharedSymbol(Walsh2,ConBits)(j,bits,timebits);

for (r=0;r<bits;r++) {

exponent += userbits[bits-l-r] *
(timebits[r] + timebits[r+1]);

}
/* For memory efficiency, we mark this as [j][i] */
$sharedSymbol(Walsh2,walsh)[j][i] = (exponent%2==0) ? 1 : -1;

}
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}
}
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