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Abstract

A formalism for coding fuzzy models of dynamical systems is presented. It is shown
that the set of models consistent with this formalism contains models that are capable of
duplicating the trajectories of an arbitrary conventional discrete time dynamical system,
whose single step maps are polynomials with rational coefficients. The proof of this claim
is constructive. The formalism also illustrates the similarities that exist between fuzzy
systems and hybrid control systems. We hope to be able to exploit this similarity by
extending results from the area of hybrid systems to the fuzzy domain and vice versa.

1 Introduction

During the early seventies fuzzy logic was introduced as a way of formally describing and
manipulating linguistic information ([1, 2, 3]) Soon, however, it became apparent that it could
also be used for control, given a plant and a task which are both simple enough to describe
linguistically (see for example [4, 5]). Moreover, the control design process does not have to
make use of an explicit model of the plant; all that is needed is an idea of how the system
behaves and some common sense, which gets coded in terms of fuzzy rules. The absence of a
model made the designer task a lot simpler and allowed engineers to come up with satisfactory
controllers with minimum effort. As a result, the field became very popular and controllers
were developed for many systems, with considerable success.

Despite numerous success stories many people in the control community are still
skeptical when it comes to fuzzy control. Most of the criticism probably originates from the
fact that fuzzy controllers do not make use of an explicit model. One consequence of this fact
is that the dynamics of the plant and the task in question have to be describable linguistically.
This in turn implies that they either have to be really simple or that the fuzzy control has to
be at a high level and rely on conventional controllers to do most of the job. Moreover the
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absence of a model makes it very difficult to formulate proofs which is a major drawback in
systems where precise performance is needed (for example for safety).

In response to the criticism many researchers in the field of fuzzy logic decided
to rethink their approach and tried to introduce mathematical modeling to it. The work
presented in this paper moves roughly along these lines. Our approach is based on the belief
that in order to formulate proofs for fuzzy controllers one needs to express both the plant
and the controller in the fuzzy domain. This line naturally leads to the concept of fuzzy
modeling. Progress in this direction has already been made, it seems, however, that most
researchers are concerned with facilitating the encoding of linguistic information about the
plant. Even though this fits in well with the conventional fuzzy logic methodology, we believe
that, if the objective is to construct fuzzy proofs, the modeling formalism should be chosen to
facilitate mathematical analysis, sacrificing some of the elegance of the linguistic description
if necessary. Therefore our approach will move along the lines of general dynamical system
modeling (see [6] for a quick outline). In addition the modeling formalism willbe such that the
closed loop system fits in the framework of hybrid systems, a field that is currently receiving a
lot of attention. The idea behind this is to facilitate the extension of any results from hybrid
to fuzzy systems and vice versa.

The rest of this paper is arranged in three sections. In Section 2 the modeling
formalism we propose is presented. Definitions consistent with the general dynamical sys
tems description are postulated, desirable properties that we would like the fuzzy system to
satisfy are specified and the conditions under which they are satisfied are investigated. In
Section 3 the descriptive power of these models is investigated. It is shown that they are
almost as descriptive as a general, nonlinear, discrete time, finite state conventional model.
More specifically an algorithm for obtaining a fuzzy model that approximates an arbitrary
nonlinear map on a compact set arbitrarily closely is presented. In the concluding section
a brief outline of the way such models can fit in the general framework of fuzzy control is
discussed and directions of further research are outlined.

2 Model Formalism

As already discussed in the introduction we will try to establish a framework for carrying
out modeling in terms of fuzzy sets. Our basic framework (described in Section 2.1) falls in
the general framework for modeling dynamical systems described in [6]. Even though the
immediate goal is to be able to use fuzzy logic to model systems in discrete time we believe
that the framework can also be applied to continuous time systems with minor modifications.
Some more work will be needed to carry the proofs of Section 3 over to the continuous domain,
but the rest of the analysis should go through almost identically.

As with almost all modeling problems the first step is to identify all the relevant
quantities whose interactionthe model will specify. These relevant quantities can be classified
into input, output and state variables. Let £/, Y and E denote the input, output and state
spaces respectively; in conventional models all these spaces willbe subsets of 3ftn for (possibly)
different values of n. Because we are interested in dynamical systems, i.e. systems that evolve
with time, we also need to specify a set T C 9ft of times of interest; typically T = 9ft or 9ft+ for
continuous time systems and T = {nr/n € Z or Af) for discrete time systems. Given these



sets a general dynamical system is defined in [6] as a quintuple D = (U, E,3>, s, r) where:

• U is a set of input functions:
«():T —tf

• E is the state space

• y is a set of output functions:
»():r—»K

• 3 is the 5la£e transition function:

s:TxTxExU —• E

(*i,*o, £o,t*Q) •—• xi = s(<i, <o, zo,w())

It produces the value of the state x\ at time t\ given the value xo of the state at time to
and the input for all times. The map is only defined for t\ > to.

• r is the read-out function:

r:ZxUxT —> y

(xt, u(t), t) i—• y(t) = r{xu u(t), t)

It produces the output function at time t given the value of the state and input at time
t

In order to keep the definition consistent two axioms are imposed on the state transition
function:

1. Causality: for all *0 < t\ in T, for all xq G E and all tii,ti2 £ U such that ui(t) = u2(t)
for all* € [to,ti]f)T

s(*l,*0>£0>Ul) = s(tlito,X0,U2)

2. Semigroup: for all t0<ti< t2 in T, for all zo € E and all u € W

s(<2, *o, £o,«) = s(*2, *i,s(<i, <o, ^o, w), u)

2.1 Model Components

We now restrict our attention to discrete time models and in particular models whose time
stamps take values in the set T = {nr/n € A/"} for some r > 0. Without loss of generality we
will assume r = 1. Let also / = [0,1] denote the unit interval in 9ft. In accordance with the
above we give the following definition:

Definition 1 : A fuzzy dynamical system is a quintuple D = (UF,HF,yFiFR1RO)
where:



• EF is the fuzzy state space:

that is every xF € EF:

anEF C Iai x ... x I

r -F

XF =

. « .

P\
xf = er

L Pa. J

where 0 < pj < 1 i € 1,..., n j € 1,..., «i

• UF is a set of fuzzy input functions:

uF() .T —>UF Clh x...xlhm

• yF is a set of fuzzy output functions:

^0. t —• yF C IC1 x ... x ICl

• Fi? = {Fi?i,..., Fi?n} w a set of firing rules:

Fil,: EF x UF x T
FR:Y,FxUF xT

jai

EF

The firing rules produce the value of the state at the next time instant given the value of
the state and the input at the current time instant.

• RO = {RO\i.. .,RO{) is a set of read-out maps:

ROi : EF x UF x T
RO:Y,F xUF xT

ICi
yf

It produces the value of the output function at the current time given the value of the
state and input.

Note that the firing rules are one step transition functions. We can extend them to general
transition functions by repeatedly applying them. The resulting state transition function will
clearly satisfy the causality and semigroup axioms.

Given the above model we can also infer extended firing rules to describe the input
output behavior:

FRO : EF x UF x T
(xF(t),uF(t),t) yF(t+ 1) = RO(FR(xF(t),uF(t),t),uF(t),t)



Rules like this may be useful when doing input/output plant inversion or output feedback for
the purpose of control.

For every Iai each of the a,- entries represents a fuzzy set. It is customary to assign
linguistic labels to these fuzzy set that convey some characteristic of the set in question (e.g.
negative, small, hot etc.). The value of the corresponding pj determines to what extend the
label associated with the fuzzy set j characterizes the current value of the fuzzy state. Small
values ofpj indicates that the state component xf has little to do with set j while large values
indicate that the label of j is a good description of xf. The same also holds for fuzzy inputs
and outputs. Only a finite number of fuzzy sets are allowed for each quantity.

It should be noted that, unlike probability distributions, the fuzzy state, input and
output spaces are not required to satisfy T,jLi Pj = 1 (or similar relations for UF and YF).
However fuzzy variables that satisfythis property willbe particularly usefulin the next section
so we will give them a special name.

Definition 2 : A fuzzy quantity is called normalized if every fuzzy vector [pi... pa]T related
to this quantity satisfies J3J=1 Pj = 1.

2.2 Interface with the "Real" World

The model described above evolves exclusively in the fuzzy domain. Describing the model in
this form may be sufficient for designing fuzzy controllers for it, observing the system perfor
mance and even doing proofs. It is however desirable to be able to describe the interaction of
the fuzzy model with the real world. For example external signals (e.g. reference signals that
need to be tracked or disturbances that need to be rejected) as well as initial conditions for
the system are usually described in terms of real numbers rather than fuzzy sets. Moreover it
may be desirable to be able to connect a fuzzy system with conventional controllers and vice
versa. Finally it may be desirable to be able to observe the behavior of the fuzzy system in
terms of real numbers so that it is easier to quantify its performance and compare it with the
performance of similar conventional systems.

2.2.1 Real to Fuzzy

The transition from the real domain to the the fuzzy domain is done via the process of
fuzzification. This process consists of associating to each fuzzy set a membership function.
These functions can be though of as maps from the real numbers to the interval / = [0,1]. If
there are n fuzzy sets associated with a given quantity x € 9ft, n such maps are defined:

#:9ft—• / t = l,...,n (1)

They determine to what extend the label associated with fuzzy set i characterizes the current
value of of a;. As before, small valuesof F,(x) indicate that the value of x has little to do with
set t while large values indicate that the label of i is a good description of x.

Fuzzification consists of associating a fuzzy vector with quantity x. The fuzzy vector
is obtained by passing x through all the membership functions.

F:9ft —• In



Figure 1: Triangular membership functions

Pi

Pn

Fi(x)

LF.(*)
(2)

Many different kinds of membership functions have been used in the literature. The most
common choices are functions whose graphs are triangles (Figure 1), trapezoids or Gaussian
functions. It should be noted that usually the fuzzification map F is not surjective, even
though the individual membership functions are. There are many fuzzy vectors in Jn that
are not the image of a real number under F. For example the range of the fuzzification
process shown in Figure 1 does not contain any fuzzy vectors for which both p\ and p$ are non
zero. Note also that typically the membership functions are not injective. For example, each
triangular membership function shown in Figure 1 is two-to-one as it maps pairs of points
symmetric about the center to the same value. Moreover the typical fuzzification map F will
not be injective either, hence F will not be invertible even when restricted to fuzzy vectors in
its range. This observation will be investigated further in Section 2.2.3.

2.2.2 Fuzzy to Real

The transition from the fuzzy domain to the real domain is done by the process of defuzzifi-
cation. In a sense this is the inverse of the fuzzification even though mathematically speaking
the maps need not be inverses of one-another (in light of the last commentof Section 2.2.1).
In general defuzzification can be viewed as a map DF, mapping a fuzzy vector xF with n
fuzzy sets to a real number.

£F : Jn —• 9ft (3)

Usually in the literature the defuzzification process makes explicit use of the mem
bership functions Fi or at least their graphs and therefore is directly related to the fuzzification
process. A popular choice for defuzzification is the center of mass technique, where the graph
of the ith membership function if clipped at the value of the ith entry of the fuzzy vector and
the center of mass of the resulting two dimensional figure is used as the real value correspond
ing to the fuzzy vector (Figure 2). A different defuzzification technique that does not make
explicit use of the membership functions will be presented in the next section.



Figure 2: Center of mass defuzzification

Similarly to the fuzzification process, the map DF will typically not be surjective.
Moreover, DF is usually not injective either. For example both the fuzzy vectors shown in
Figure 2 will defuzzify to the same value under the center of mass defuzzification method.
This observation leads us to the following definition:

Definition 3 ; Two fuzzy vectors are DF-equivalent if their images under the defuzzifica
tion map DF are equal.

It is easy to show that DF-equivalence is indeed an equivalence relation on fuzzy
vectors of a given dimension n. If the domain of the defuzzification map is the entire In we
can say that DF partitions In to a disjoint union of equivalence classes. As usual we will
denote the equivalence class of a fuzzy vector xF under DF-equivalence by [xF], For example
consider the defuzzification map on I3 defined by:

DF(xF) = -lPl+0P2-rlp3 (4)

where xF = \p\ p2 pzY- Then the equivalence class corresponding to xF = [pj p°2 pl\T will be:

[*oF] = {*Fe/3/P3-pi=pS-tf}

This defines a family of planes, parallel to the p2 axis whose intersection with the (pi,ps)
plane is a line of slope 45 degrees. The equivalence class corresponding to p° = p§ is shown in
Figure 3.

Note that the defuzzification map can now be viewed as a map from the quotient
space to the real numbers, by defining:

DF([xF}) = DF{xF) (5)

In fact the map DF is injective as a map from the quotient space, therefore it is invertible on
its range, that is for every x £ & in the range of DF there exists a unique equivalence class



Pi

Figure 3: DF-equivalence class

[xF] whose elements are all mapped to x by DF. It would be nice to be able to associate
this inversion with some form of fuzzification process. This question is addressed in the next
section.

2.2.3 Properties of the Interface

The definitions given above are very general and should, in principle, encompass all the ex
amples of fuzzy systems found in the literature (for an overview see [7] and [8]). We would,
however, like to be able to say something more about fuzzy systems than we can just from the
general definitions. In this section we will define a particularly interesting class of interfaces.

Definition 4 ; An interface (F, DF) is called consistent over a set U C 9ft if the map
DF o F restricted to U is the identity, i.e.:

DF o F(x) = x VxeU

Using this definition it is easy to show the following:

Lemma 1 ; Given a fuzzification map F : 9ft —• In and a set U C 9ft there exists a defuzzifi
cation map DF : In —• 9ft such that the pair (F, DF) is consistent over U if and only if F is
injective over U.

Proof: Assume (F,DF) is consistent and F is not injective over U. Then there exists
Xi,X2 € U with x\ ^ X2 such that F(x\) = F(i2). Applying the defuzzification map we
obtain DF(F(xi)) = DF(F(x2)) which contradicts our original assumption of consistency,
as xi / X2. For the converse assume F is injective over U. Then, F : U —• F{U) C In is
bijective. Therefore there exists an inverse map:

F-1 : F(U) —> U

Choose any DF : In —*• 9ft whose restriction to F(U) is the same as F-1.

DF(xF) = F-\xF) for all xF GF(U)
=» DF o F{x) = F_1 oF(x) = x for all x € U

Then:

8



This lemma shows that consistency of the interface (F, DF) implies that the fuzzi
fication map F is invertible over a certain subset of 9ft, hence given the fuzzy vector F(x) the
real number x that led to it can be unambiguously determined. In other words, the interface
is consistent if and only if the fuzzy vector F(x) contains exactly the same information as the
real number x € U. The fact that no information is lost during fuzzification is in a sense un
desirable as it defeats one of the main reasons behind all linguistic and abstract descriptions
(like fuzzy logic) namely that information is condensed by the abstraction. Note however
that a higher level of abstraction is still obtained by fuzzification, even if information is not
condensed, as, after fuzzification, the emphasis is placed on the linguistic labels of the fuzzy
sets rather than the real values of the membership functions. For example if a standard fuzzy
controller is to be designed for such a systemonly the labels of the controller input fuzzy sets
will be used by the firing rule base that codes the controller dynamics and determines the
controller output fuzzy sets. The actual values of the membership functions will just be along
for the ride.

Definition 4 also implies another nice property.

Lemma 2 : // the interface (F, DF) is consistent over a set U then

FoDF([xF])e[xF]

for all xF such that DF([xF]) belongs to U.

Proof: Assume that (F, DF) is consistent. Let:

DF(xF) = xeU
=>FoDF(xF) = F(x)

=> DF oF oDF(xF) = DFoF(x)
=>• DF oF oDF(xF) = x by consistency

^Fo DF(xF) € [xF] by definition of DF-equivalence
D

This property givesus a wayof consistentlyassigning a representative element to the
equivalence class [xF], namely FoDF([xF]). All theelements of[xF] areindistinguishable from
this representative from the real output point of view. Note that the converseis not necessarily
true, i.e. F o DF([xF]) € [xF] does not imply that the interface (F,DF) is consistent. For
example consider the trivial defuzzification map DF : xF *-* 0 for all xF € In. For this map
[xF] = In and therefore F oDF(xF) € [xF] but DF oF(x) = 0 ^ x in general.

By lookingupon fuzzification and defuzzification as an interface between the real and
fuzzy domains we are reducing the fuzzycontrol problem to a special case of the general hybrid
or intelligent controlproblem. For example, coupling a dynamic (discrete time) fuzzy controller
of the form described in Section 2.1 with a real plant through an interface (F, DF) like the one
described above leads to the system shown in Figure 4. The block diagram indicates that the
resulting closed loop system has the same structure as the systems considered in the hybrid
control literature (see for example [9, 10, 11, 12]). This similarity can hopefully be exploited
by extending results obtained for hybrid systems so that they can be applied to fuzzy systems
and vice versa.
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Figure 4: Fuzzy control system viewed as hybrid system

3 Descriptive Power of the Fuzzy Models

In the previous section a formalism for modeling dynamical systems in the fuzzy domain
was introduced. In this section we will address the question what classes of systems can be
accurately modeled using this formalism. A result in this direction can be found in [7], where
it is shown that fuzzy models of sufficient generality can be used to approximate any nonlinear
function on a compact subset of Euclidean space arbitrarily closely. In [7] only an existence
proof is given; we will show explicitly how one can obtain fuzzy functions to carry out the
approximation. Our main result can be summarized in the following theorem:

Theorem 1 : Consider a map f on a bounded set U C 9fcn:

f'U
Xi

Xo = /(£l,.--,£n)

Assume f is a polynomial of degree N in Xi,... ,xn whose coefficients are rational. Then there
exists a fuzzy model whose input-output map is identical to f.

An similar theorem for conventional linear dynamical systems can be found in [13].
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Note: In certain cases the above claim becomes trivial. For example consider an
arbitrary continuous map / : U —> 3ft where U C 3ft is compact. It is trivial to derive a fuzzy
model that duplicates /. Indeed, let:

M = maxf(x) m = mmf(x)

Then, assuming m ^ M, we can define a fuzzy set Trivial with membership function:

r : x \ > 2 = *~~""~~~—~~

M-m

a firing rule:
FR:xF e Trivial i—nF€ Trivial

and a defuzzification map:
DF :xF' i—>m + (Jlf- m)a;F

Clearly this fuzzy system belongs to the class described in Section 2 and matches / on the
compact set U. Unfortunately this construction does not apply to functions of more than one
variable.

The proof of the theorem will be constructive. We will proceed by specifying an
interface (F, DF) and a set of firing rules FR:

F : 8» —» Ia* x ... x Ian

FR:Iai x...xlan —> Iao

DF:Ia° —• 3ft

We will then show that the input-output map of the resulting fuzzy system:

DFoFRoF.W1 —• 9ft

is identical to / when restricted to U.

3.1 Fuzzification

By assumption the set U C 3ftn is bounded, so we can find integers atmin and atmax for i =
l,...,n such that:

V C [aimin, aw] x ... x [a„mtn, a„meJ (6)

Let a,* = a;ma, —alfn.n + 1. Then for each X{ consider a fuzzification map:

F':3ft —» 7°'

°«mmV '
I,* i • .

Let oti be the integer for which x,- € [of,-,at- + 1). Then define F/ by:

11
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Figure 5: Membership functions

If [ort-,Qt- + 1) C [aimin1aimax]

• If ar; < a:

If a, + 1 > ait

ai-rl —Xi if / = oti
X{ —a,- if / = a,-f 1
0 else

F!(x) = I

F!(x) -{{
if / = air
else

if / = a (max*(*>={;0 else

The graphs of the resulting membership functions for a variable xt- are given in Figure 5. To
each of the fuzzy sets defined in this way we assign a label from the set of integers Z in the
natural way, i.e. the label a € Z is assigned to the fuzzy set whose membership function
peaks at a. Note that the choice of fuzzy sets is such that we can carry out some algebraic
calculations using their labels. This property will be crucial for the design of consistent firing
rules. Note also that the fuzzy vectors produced in this way are normalized, that is the sum
of all their entries is equal to 1.

To simplify the calculations we will assume that the indices of the fuzzy sets are
symmetric about the origin for all the quantities considered. This can be done without loss
of generality by defining n,- = max{||atni,J|, ||atmo,||} and extending the fuzzification map to:

F* :3ft

FLJx)
Xi

by adding zeros in the extra entries. This is a rather wasteful way of storing information as
many of the entries of the vector will never be used, but it will hopefully simplify the notation
somewhat.

12



A similar fuzzy set structure can be assumed for the output xq of the map /. Let
xF € /2no+1. The problem in this case is that we can not a-priori determine the the value of
n0. We will assume for the moment that it is chosen "large enough" and we will specify how
"large" this is after defining the firing rules.

3.2 Firing Rules

Let J be the set of normalized fuzzy vectors of arbitrary, odd dimension and let xF and yF
be two elements of X of dimension 2n -f 1 and 2m + 1 respectively:

F
x =

P-n

Pn .

?-»
F _

U

Define three operations on J, denoted <g>, © and 0, according to the following relations:

where:

where:

0:1x1
j2n+l x j2m+l

(*F,yF)

I
j2mn+l

f—nm

n = £ P#k

©: Jx J
j2n+l x j2m+l

(*F,yF)

l
j2(n+m)+l

r-(n+m)

. r(n+m) .

ji=n,fc=m

n = 2 PW

0:2x1

a x J2n+1

(a,zF)

13
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where:
if t = aj
else-{?

Beforewe go any further we need to verify is that the operations defined in this way areindeed
meaningful as maps on J. Clearly the output of every one of these operations is a fuzzy vector
of odd dimension so the only thing that needs to be shown is that they are also normalized.
Indeed if we add the entries of xF ® yF we obtain:

nm nm j=n,k=m

E r'- = E £ pm
t=—nm i=—nm i=—n,ibs=—m,jk=i

j=n,k=m

£ PM
j——ntk=—m

= 2 Pi £ ?*

= 1

as xF and yF are both normalized. The same calculation goes through for the other two
operations as well.

A simple calculation reveals that, under the three operations <8>, © and 0, the set
X becomes a Z algebra, not unlike polynomials with integer coefficients. This observation
allows us to define firing rules that imitate any polynomial map with integer coefficients in
a natural way. Let / : 3ftn —* 3ft be such a polynomial. The firing rules that would imitate
the behavior of / can be derived by substituting all variables by their fuzzy counterparts, all
multiplications by <g>, all additions by © and all scalar multiplications by 0. For example
consider:

f(x, y) = a0 + aiy + a2x2 + a3xy

where ai,... 83 are integers. Then the firing rules FR will be of the form:

FR(xF, yF) = a0 0 1F ©ai 0 yF ©a2 0 xF <g> xF ©a3 0 xF <g> yF

where 1F is a normalized fuzzy 3 vector with a 1 at the entry corresponding to 1 and zeros
everywhere else. Note that in order to code the output of / in this example we would need
2n' + 1 fuzzy sets, where, if xF is of dimension 2n + 1 and yF is of dimension 2m + 1:

n = flo ~r aim + &2n ~r a^nrn

This calculation can be carried out for a general polynomial as well. The number n' of fuzzy
sets required to code the output can always be obtained by substituting the corresponding
values of n, m, etc. in the polynomial and computing. Typically n' will be large, but it will
always be finite.

14



3.3 Defuzzification

Having specified a fuzzification map and a set of firing rules that, in a sense, duplicate a
polynomial map /, we now have to define a defuzzification map. Consider the following map
on normalized fuzzy vectors of odd dimension:

DF : I2n+1
P-n

Pn

3ft

n

J2 *w (8)

In probability terms this could be called the expectation of the fuzzy vector. Defining the
defuzzification process in this way leads to two interesting properties:

Lemma 3 : The defuzzification map DF is such that the interface (F, DF) is consistent over
the set of interest U.

Proof: for every x 6 U and x € [a,a + 1) for an integer a:

DF{F(x)) = a(a + 1 - x) + (a + l)(x - a) = x

Lemma 4 : The maps ®, ©, 0 on X are well defined on the quotient space induced by DF-
equivalence.

Proof: It is easy to see that the Lemma holds for scalar multiplication 0, so we will focus
our attention to the other two operations. Consider 4 fuzzy vectors in X:

' P-n, '
«f« •

. P»l .

'"—mi

yf= •

**ml

Assume that xF G [xf] and yF 6 [yf], i.e.:

?-n2

%2 — •

tfna .

^—mj
F

V2 =
I

"Sni2

ni n2

£ {Pi = £ ki
-ni -n3

mi

51 iri =

m2

52 isi
-mi —m2

15



We need to show that xf ® yf and xf ® yf belong to the same DF-equivalence class (and
similarly for ©).

Similarly for ©:

nimi

DF(xf®yf) = J] i{xF®yf)i
i=-niffl|

«i*»l

= 51 j X3 pjrk
**=-nimi ifejsst

nimi

= 53 53 *>;r*
i=-njmi Jfcj=t

nimi

= E EO'kK*'-*)
i=—njmi kj=i

= 530>i)(fcr*)

= E 0») E (*r*)
j=—ni A:=—mi

n2 m2

= E 0«) E (*«*)
J=—ni Jbs=—m2

= DF(xF®yf)

ni+mi

DF(xfeyf) = £ «(*f©yf)i
t'=-ni+mi

ni+mi

53 * 53 Pir*
i=-m +mi fc+j=t

= 53(i + %ir*

= 53wr* + 53*Pir*

= 53w53r* + 53*,i53*;r*
i k j k

= 53ij>i + 53*T*
3 k

= DF(xF®yf)

Note that this procedure can easily be generalized to polynomials whose coefficients
are rational rather than integer. Let / be such a polynomial and D be the least common
multiple of the denominators of all the coefficients. Then / = Df is a polynomial with integer
coefficients, for which the above construction (firing rules and defuzzification) is applicable.
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To reproduce / from this we need only alter the defuzzification map to DF = jjDF. This
augmentation leaves the dynamics (coded in the firing rules) unaffected. Moreover the equiv
alence classes of DF are the same as the ones of DF, therefore Lemma 4 still holds. However
the new interface (F, DF) is no longer consistent.

3.4 Proof of Theorem

With all the elements of the fuzzy model specified we are now ready to prove the main theorem
of this section. As above, let / : U —» 3ft be a polynomial map with rational coefficients whose
least common multiple is D. In the previous sections the procedure for defining a fuzzification
process F, a set of firing rules FR and a defuzzification process DF based on / was outlined.
In this section our objective is to show that the input- output map of the resulting fuzzy
system is the same as /.

As the only effect of the rational coefficients is during defuzzification we will first
prove the claim for a polynomial with integer coefficients / and then trivially generalize it to
the rational coefficient case. Restating the theorem we would like to prove that the following
diagram commutes:

/
U —• £

F i 1DF (9)
XN —• X

FR

We will proceed by first proving that the corresponding diagrams for the three operations
®, ©, 0 and their counterparts for integers (i.e. addition and multiplication) do commute. In
other words we would like to show that that given any pair of real numbers, x and y (in a
certain range), then:

xy = DF(F(x)®F(y)) (10)

x + y = DF(F{x)@F(y)) (11)
ax = DF(F(x) 0 F(y)) (12)

Assuming x € [a,a + 1) and y €[/?,/?+1) for a,/? integers:

' a -f 1 — x if / = a
F/(x) =< x —a if / = a + 1

0 else

(fi+l-y if/ = /3
Fi(y) ={ y-fi if/ =/? +i

[ 0 else
If the product of these two fuzzy vectors is taken using the ® operator the resulting fuzzy
vector will have zeros in all the entries except:

a/9 <n* (a+i-xX/J+l-y)

a(/? + l) -* (a + l-x)(y-/3)

(a + 1)/? -* (x-a)(0 + l-y)

(a + l)(0 + l) -» (x-a)(y-fi)
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Passing this through the defuzzification map we obtain, after some algebra:

DF(F(x)<8)F(y)) = afi{a + 1 -x)(0+ 1-y) + <*(/? + l)(a+ 1 - x){y - p)
+(a + l)£(x - a)(0 + 1 - y) + (<* + 1)(>9 + l)(x - a)(y - /?)

= xy

Similarly, the fuzzy vector obtained for F(x) © F(y) will have the following non zero entries:

a + p ^ (a+l-x)(/?+l-y)

a+(/? + l) ~> (a+l-*)(y-/?)
(a+l) + 0 ^ (* - a)(/?+ 1 - y)

(a+l) + (0+l) -> (x-a)(y-/?)

Thus the real number obtained after defuzzification will be:

DF(F(x)®F(y)) = (a + /?)(a + 1 - x)(0+ 1 -y) + (a + (fi + l))(a + 1 - *)(y - 0)
+((a + 1) + )5)(x - a)(/?+ 1 - y) + ((a + 1) + (0 + l))(x - a)(y - P)

= x + y

Finally, the fuzzy vector obtained from a 0 F(x) for any integer a will have non zero entries
at:

aa *** a + 1 — x

a(a + l) *^ x —a

After defuzzification:

DF(aQF{x)) = aa(a + 1 - x) + a(a + l)(x - a)
= ax

Overall we have shown that equations 10,11 and 12 are indeed valid. Recall however
that Lemmas 2 and 3 guarantees that every equivalence class [xF] has exactly one element
corresponding to the fuzzified value ofareal number, namely F(DF([xF])). Further, Lemma 4
guarantees that, as long as we plan to defuzzify the final result, whatever holds for this
particular element holds for the whole equivalence class. Combining these three facts concludes
the proof of the theorem for polynomials with integer coefficients. Dividing the defuzzification
map with the least common multiples of the denominators of all the coefficients (as described
in the previous section) extends this result to polynomials with rational coefficients.

A direct corollary of the above theorem is the following:

Corollary 1 : Given any continuous function f on a compact subset U C 3ftn there exists a
fuzzy model that approximates it arbitrarily closely.
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Here "arbitrarily closely" means that given any c > 0 we can find a fuzzy approxi
mation to / such that the supremum as the arguments vary over U of the absolute value of the
difference between / and its fuzzy approximation is less than c. To prove Corollary 1 we just
need to note that, as a consequence of the Stone-Weierstrass theorem, we can approximate the
map / arbitrarily closely by a polynomial with rational coefficients. Then we can duplicate
this polynomial by a fuzzy system as described by Theorem 1. This corollary is known and its
proof can also be found in [7]. The main difference between our approach and the one in [7]
is that our proof is constructive.

3.5 Dynamical Systems

Besides static maps, Theorem 1 can easily be extended to discrete time dynamical systems,
as a discrete time system can be characterized by a single step map that maps the current
state and input to the state at the next sample time.

Corollary 2 : Given any discrete time dynamical system whose single step map is a polyno
mial with rational coefficients, there exists a fuzzy model that duplicates its behavior, provided
that the state and input trajectories are guaranteed to lie in a compact set.

The last assumption is somewhat restrictive, as it forces us to exclude all unstable
plants, among other things. In certain cases however it is justified. In many systems, for
example, there are saturation bounds on the actuators and the state that enforce this as
sumption. Moreover, the purpose of control is usually to stabilize the system, in which case
the fuzzy model can adequately describe the plant once the loop is closed.

In view of Corollary 1 and 2 it seems plausible that we could hope to construct a
fuzzy model that reproduces the trajectories of an arbitrary, discrete time dynamical system
arbitrarily closely. Unfortunately this assertion is probably not true. We can only prove it for
a very restricted class of systems:

Corollary 3 ; Given an autonomous discrete time dynamical system whose one step map
is contracting there exists a fuzzy system that tracks all trajectories that lie in a compact set
arbitrarily closely.

A

Proof: Let / : 3ftn —> 3ftn be the single step map of the system in question and let / : U —> U
be a fuzzy approximation such that:

||/(x)-/(x)||<c Vx€tfC3ftn

where U is the compact set were the trajectories of / lie. ||.|| is any complete norm on 3ftn. /
is a contraction over U if there exists p < 1 such that:

ll/(*)-/(y)ll < p\\*-y\\ v*,yeu

Let {xjfc € U/k € Af} and {x* € U/k € Af] be the trajectories with initial condition x° 6 U
of the conventional dynamical system and the fuzzy approximation respectively, i.e.:

A o
Xo •^ Xq — X

Xk+1 = f(Xk)
A

2k+l = f(Xk)
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Then:

||xi-£,|| = ||/(Io)-/>o)|| = ||/(i0)-/(i°)ll<e (13)
Proceed by induction. Assume that, for some n > 1:

||*»-*»|I<*XV (")
1=0

Then:

||xn+1-xn+1|| = ||/(xn)-/(xn)||

= ll/(x„)-/(in) + /(x„)-/(x„)||
< \\f(Xn)-f{Xn)\\ + \\f(Xn)-fcn)\\
< p||xn-x„|| + e

i=0

< <xy
t=0

Combining this last statement with equations 13 and 14 we conclude, by induction, that:

||**-**|| < *X>' V*€A/*
t"=0

00

< <E/>'
i=0

e

\-P

Thus if we want to construct a fuzzy system to track the original to within 6 we have to choose
a fuzzy map / that approximates / to within c = (1 —p)6.

4 Concluding remarks

The discussion presented above can be viewed as an attempt to link fuzzy logic to the well
established field of dynamical systems and the rapidly evolving field of hybrid control. In the
process links to probability were also discovered. For example the fuzzy construction that
proved useful in formulating the theorem is very similar to a set of probability distributions.
Note that some of the results proved here are trivial when looked at from the probability point
of view; they are merely a restatement of well known facts such as that the expectation of the
product of two independent random variables is equal to the product of their expectations.

Another interesting fact about this formalism, that relates more to hybrid systems,
is that it provides a technique for coding dynamics in a semi-discrete way. Because of the
injectivity of the fuzzification maps no information is lost when moving from the "real" to
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the fuzzy domain. However, once in the fuzzy domain, attention is restricted to the fuzzy set
labels, rather than the exact values of the membership functions. So, even though the fuzzy
world is effectively discrete, the continuous information is not lost, as is the case with most
standard abstractions.

Overall the above analysis indicates that fuzzy models are probably a rich enough
set to be useful. Moreover, the introduction of a rigorous technique for obtaining firing rules
and interfacing to the real world gives us hope that proofs may be in sight for fuzzy logic
controllers designed in this framework.

Acknowledgment: The author would like to thank Charles Coleman, Datta God-
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