
 

 

 

 

 

 

 

 

 

Copyright © 1995, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



INFERENCE OF STATE MACHINES FROM

EXAMPLES OF BEHAVIOR

by

Arlindo Oliveira and Stephen Edwards

Memorandum No. UCB/ERL M95/12

18 February 1995



INFERENCE OF STATE MACHINES FROM

EXAMPLES OF BEHAVIOR

by

Arlindo Oliveira and Stephen Edwards

Memorandum No. UCB/ERL M95/12

18 February 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



INFERENCE OF STATE MACHINES FROM

EXAMPLES OF BEHAVIOR

by

Arlindo Oliveira and Stephen Edwards

Memorandum No. UCB/ERL M95/12

18 February 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Inference of State Machines from Examples of Behavior

Arlindo Oliveira1 Stephen Edwards2

February 18, 1995

1amlOeecs.berkeley.edu This work was developed while this author was supported by the Joint Services
Electronics Program under contract number F49620-94-C-0038.

2sedvard8Qeecs.berkeley.edu This work was developed while the author was supported, in part, by a
National Science Foundation Graduate Research Fellowship. Additional support was provided by the Semiconductor
Research Corporation under grant number 94-DC-008.



Abstract

Often, the desired behavior of a system is known before a design of the system is known. It usually falls to
the designer to correctly translate this behavior into a system that exhibits it.

Thisreport describes two algorithms that design systems guaranteed to exhibit specified behavior. Specif
ically, our algorithms identify a state machine with the fewest states exhibiting behavior specified by a set
of input/output strings. One algorithm builds the machine explicitly by fitting together transitions that
correspond to input/output pairs. The other implicitly considers all machines of a given size and discards
those not exhibiting the desired behavior.

Although the problem is NP-complete, ouralgorithms behave exponentially only inthe number ofstates in
the minimummachine; other state-minimizationalgorithms behave exponentially in the size of the behavior
specification. This advantage has allowed machines of up to fourteen states to be identified exactly within
an hour.



Contents

1 Introduction and Related Work 2

2 Problem Description 4
2.1 Behavior Specification 4
2.2 State Machines 6

2.3 The Satisfying Criteria 7

3 Solution Techniques 10
3.1 The Incompatibility Graph . 10

3.1.1 A Clique in the Incompatibility Graph 11
3.1.2 Using a Clique to Search for the Minimum Machine 11

3.2 The Explicit Algorithm 12
3.3 The Implicit Algorithm 14

3.3.1 Multi-valued Decision Diagrams 16
3.3.2 The Implicit Enumeration Algorithm 17
3.3.3 Performance Improvement Techniques 17

4 Experimental Results 21
4.1 Comparison with Existing Approaches 21
4.2 Inferring Randomly-Generated Machines 23

4.2.1 Searching Time Versus Number of States 23
4.2.2 Searching Time Versus String Length 23
4.2.3 Searching Time Versus Number of Strings 25

4.3 Inferring Machines from Structured Domains 26

5 Conclusions and Future Work 28

A Generation of Example Specifications 29
A.l Generating Random Machines 29
A.2 Generating Specifications 29

Bibliography 31



Chapter 1

Introduction and Related Work

This report addresses the problem of selecting a deterministic finite state machine (FSM) with a minimum
number of states consistent with a given sample of input/output behavior. This sample can consist of one
or more input sequences or strings. Each input sequence is associated with an output sequence obtained by
simulating an unknown (but fixed) FSM on that input sequence. We call a set of input/output sequences a
specification.

To make the problem more general, we assume that some of the outputs produced by the FSM in response
to the input string may be unavailable. In particular, if the machine has a Boolean-valued output and that,
for each string, only the final output is known, then the algorithm will find the deterministic finite automaton
(DFA) with minimum number of states that accepts the strings whoseoutput was one and rejects those whose
output was zero.

The reverse also works. Given an algorithm that computes the minimum DFA accepting a set of strings
and rejecting another, it is easy to select the minimum Moore machine consistent with the observed data.

The problem of selecting the minimum DFA consistent with a set of labeled strings is NP-complete.
Gold [Gol78] proved that given a finite alphabet E, two finite subsets S, T C E* and an integer ktdetermining
if there is a Ar-state DFA that recognizes L such that S C L and T C E* —L is NP-complete.

If all strings of length n or less are given (a uniform-complete sample), the problem can be solved in
polynomial time [GH66, TB73, PF88]. However, Angluin has shown [Ang78] that even if an arbitrarily small
fixed fraction (|E(n)|)e, c > 0 is missing, the problem remains NP-complete.

The problem becomes easier if the algorithm is allowed to make queries or experiment with the unknown
machine. Angluin [Ang87] proposes an algorithm based on the approach described by Gold [Gol72] that
solves the problem in polynomial time by allowingthe algorithm to ask membership queries. Schapire [Sch92]
proposes an interesting approach that does not require the availability of a reset signal to take the machine
to a known state.

All these algorithms, however, solve easier versions of the problem addressed here. Our algorithms take
a set of labeled strings and do not make queries or experiment with the machine. The best algorithms
known for the problem addressed here, where the learner has no control over the training set, remain those
proposed by Bierman et al. [BK76, BP75]. Based on an explicit search algorithm guaranteed to obtain the
exact solution, they require, in general, exponential time. Section 3.2 details an explicit enumeration method
similar to Bierman's, and uses a data structure that makes the implementation very efficient.

Recently, connectionist approaches to learning from a given set of strings have been proposed. These have
had limited success. Polack [Pol91], Giles et al. [GMC+92] and Das and Mozer [DM93] propose different
approaches based on gradient descent algorithms for neural network training, but their results show this
strategy does not have any important advantages over search-based methods (e.g., those described in this
report). Being heuristic algorithms, they are not guaranteed to find the exact solution. Moreover, the size
of problems they can handle is very limited. For example, they are not able to solve some of the Tomita
grammars [Tom82], none of which require larger than five-state DFAs. The main purpose of the connectionist
work, however, was not to beat discrete search algorithms, but to evaluate the feasibility of such an approach
to problems of this kind.

Lang [Lan92] describes a much more promising heuristic approach. Although it fails to find the smallest



DFA in many cases, it is a very efficient algorithm and and can find approximate solutions for machines with
several hundred states.

The problem of selecting the minimum automaton consistent with a set of strings can be transformed
into the problem of minimizing an incompletely-specified finite state machine1. Pfleeger [Pfl73] showed
minimizing these is NP-complete. However, since this problems is of great practical importance, many
different algorithms have been developed for its solution. Paull and Unger [PU59] were the first to propose
a method based on the selection of compatibility classes, or compatibles. A compatible is a set of states
equivalent in the sense that they can be merged without affecting the behavior of the machine. The minimum
machine can be found by selecting a minimum set of compatibles that satisfies two simple requirements. This
method was improved by Grasselli and Luccio [GL65], who showed that only a subset of the compatibles,
the prime compatibles, need be considered. Hachtel et al.'s [HRSJ91] stamina program provides an efficient
implementation of this algorithm.

This algorithm is still the state-of-the-art in finitestate machinereduction for the majority of cases. Some
problems, however, exhibit exponentially large numbers of compatibles, rendering an explicit enumeration
approach such as stamina's ineffective. In particular, incompletely-specified finite state machines generated
from a behavior specification as described in the next chapter tend to have an extremely large number of
compatibles. In this case, a version of the Grasseli and Luccio algorithm based on the implicit enumeration
of the compatibles is more efficient. Kam et al. describe such a scheme [KVBSV94]. Comparisons between
techniques presented in this report and these two algorithms are presented in Section 4.1.

1The exact way in which this reduction is performed is described in the next chapter.



Chapter 2

Problem Description

This chapter describes the form of inputs and outputs to our algorithms and defines their relationships.
Section 2.1 defines the format we use to specify behavior, and Section 2.2 defines the type of systems our
algorithms produce. Section 2.3 defines the two requirements we satisfy to ensure that a system behaves as
specified, and shows they are sufficient. The section concludes with a theorem showing there is a trivially-
constructed machine for each behavior specification.

2.1 Behavior Specification

Figure 2.1 shows the input/output behavior of a deterministic finite-state machine. From the reset state, it
produces a 0 after being given an A. Then, it produces a 1 after being given another A.1 Then, it produces
a 0 after a B, and so forth.

Input: AABBABABBBBABAAABABB
Output: 01000101111101010010

—• time

Figure 2.1: A simple specification of input/output behavior: each input produces the output beneath it.
The machine starts in the reset state before the leftmost input and proceeds through other states.

Figure 2.2 shows a more elaborate specification of input/output behavior. Here, the machine should
produce a 1 after the the input strings in the "accept" column, and a 0 after the input strings in the "reject"
column, but the machine is allowed to produce anything between the beginning and end of each string.

Our algorithms accomodate both of these specifications through a labeled tree. Figures 2.3 and 2.4 show
how the two example behaviors are translated into our format, described below.

Definition 1 (Behavior Specification) A specification is a 5-tuple:

5=(E,A,iV,no,T)

where

E ^ 0 is a finite set of input symbols (we will use a to denote a particular input symbol)

A ^ 0 is a finite set of output symbols (we will use b to denote a particular output symbol)

N ^ 0 is a finite set of nodes (we will use n to denote a particular node)

1Here, the machine cannot be in the reset state, since in the reset state, an A produces a 0. Considerations like this lead us
to a lower bound on the number of states in the minimum machine.



1 0

11 10

111 01

mi 00

11111 on

nun no

mini 11111110

liiiiin 10111111

Figure 2.2: A specification of input/output behavior: strings in the "accept" column produce a 1 at the end,
those in the "reject" column produce a 0. From Tomita [Tom82].

Figure 2.3: A specification for the behavior in Figure 2.1: each node will be part of some state in the minimal
machine. Each transition is labeled with its input/output.

Figure 2.4: A specification for the behavior of Figure 2.2: each string is a path in the graph, and strings
with identical prefixes have been merged. An output of e indicates it is unspecified.



no G N is the initial node

T is a set of transitions of the form {a}n3, nd,b) where

a G E is the input

n3 £ N is the source node

rid € N is the destination node

6 6 A U {c} is the output (e denotes unspecified)

that satisfies

For all a G E, n3 G N, there is at most one t = (a, n,, n«j,&) G T. (T is deterministic^

For all a € E, rid € N ^ "o there is exactly one t = (a, n,, n<j, 6) G T;

there is no t = (a, ns, no,b) £T. (T is tree-structuredj

The transitions and nodes in a behavior specification form a tree, with the reset state on the left, and
using the following notation

n,)—'—mfrid) represents t —(a, ns, n<j, 6)©

Definition 2 (Behavior Containment) An input sequence (a3l,a33,... , a,fc), a9i G E is part of a speci
fication S if there exists a sequence of nodes (nro, nr,,..., nrit), nr. G N, nr„ = no, such that for i = 1,..., k
there is at G T such that

t = (a,i,nr,_1,nri,6t,)

The output of this sequence is (btl, &t2,..., btk).

Definition 2 tells us that paths in Figure 2.4 correspond to strings in Figure 2.2. For example, the rejected
string 110 corresponds to the path connecting nodes no, ni, n2, and nio- The transition (0,n2,nio,0) with
output 0 indicates that this string was not accepted. Also, since the set of strings in Figure 2.2 is not prefix-
closed (e.g., we know nothing of the string 101), not every output is specified. For example, the transition
(l,nn,ni2,c) has an unspecified output.

Our specifications can be interpreted as incompletely-specified finite state machines. Theorem 2 on Page 9
shows that a specification is equivalent to a machine whose behavior is contained in the specification, but
this rarely has the minimum number of states.

The minimum machine can, in theory, be obtained by sending the specification directly to a traditional
state-minimizer, but this is infeasible for all but the smallest behavior specifications: see our experimental
results in Section 4.1.

2.2 State Machines

We consider two types of state machines, Moore and Mealy. A Moore machine is a Mealy machine whose
output does not directly depend on its input.

Definition 3 (Mealy Machines) A Mealy Machine is a 6-tuple M = (E,A,Q, qo,S(a,q),X(a,q)) where

E ^ 0 is a finite set of input symbols (we will use a to denote a particular input symbol)

A ^ 0 is a finite set of output symbols (we will use b to denote a particular output symbol)

Q j: 0 is a finite set of states (will use q to denote a particular state)

qo G Q is the initial "reset" state

6(a, q) : E x Q —• Q U {<f>} is the transition function



X(a, q) : E x Q —* A U {e} is the output function

<j> denotes an unspecified transition, e denotes an unspecified output.

Definition 4 (Moore Machines) A Moore Machine is a Mealy Machine where X(ai,q) = X(a2,q) for all
01,(12 G E, i.e., the output of a Moore Machine does not depend on the input, only the state.

Definition 5 (Output of a Sequence) The notation A(ajt, <zjfc_i, •. •, ai) denotes the output of a Moore or
Mealy machine after a sequence of inputs (ai,.. .,ak), a,- G E, when all transitions are specified, i.e.,

%i,tfo) # <f>
6(a2,6(auq0)) ^ <f>

6(ak,6(ak-U6(--,6(auqQ)--))) ^ <f>

The output is defined to be

A(ajb,at_i,...,ai) = X(akJ(ak-u$(- • ^(ai»9o) •• ))) (2.1)

By definition, if M is a Moore Machine, then X(ak,.. .,ai) is independent ofak.

2.3 The Satisfying Criteria

Our aim is to construct a machine M which exhibits behavior consistent with the specification S. We define
"consistent" in terms of a satisfying machine:

Definition 6 (Satisfying Machine) A machine M is said to satisfy a behavior specification S if, for any
input sequence (a5l,a33,.. . ,aSfc) which is part of the specification S,

btk £ e implies X(aSk,..., a, J = btk (2.2)

where btk is the output of the last transition in the sequence according to Definition 2.

Definition 7 (Output Requirement) A machine M satisfies the output requirement of a specification S
if there exists a function F : N —• Q such that

A(a,F(n,)) =6 V* = (a,n„nd,6) GT s.t. b±e (2.3)

Definition 8 (Transition Requirement) A machine M satisfies the transition requirement of a specifi
cation S if there exists a function F : N —• Q with F(no) = qo such that

6(a, F{n.)) = F(nd) V< = (a,n,, nd, b) GT (2.4)

The following theorem shows the utility of the output and transition requirements. Informally, the
transition requirement ensures that the sequences contained in the behavior go to the "right" state in the
machine, and the output requirement ensures that the output of that state is correct.

Theorem 1 (Output and Transition Requirements are Sufficient) If a machine M satisfies both the
output requirement (2.3) andthe transition requirement (2.4) of a specification S (with thesame node-to-state
mapping function F), then M satisfies the behavior specification S.

Proof. We need to show that if there is a function F that satisfies.(2.3) and (2.4), then any input sequence
(a4l, a,a,..., aSk) present in the behavior has the output of (2.2).

Assume (aSl, a,2,..., aSk) is present in the behavior, i.e., there is a sequence of nodes (nao,..., n3k) such
that for a = 1,..., k there exists a t G T such that

t =(aai,nai_l,n3i,b3t)



specification: [ n a/b

FM = q\ F{)

machine: ( a ) a-BsA .
output must match

X(q,a) = b
(output requirement)

Figure 2.5: Output and transition requirements depicted graphically

state must match: 6(q,a) = F(nd)
(transition requirement)

From (2.1), the output of the machine M after the input sequence is

Ak.*(«j*.i^(-.«K,.?o) •••)))
The transition requirement, (2.4), implies

*(«.i.^(n.o)) = **(»».,)
6(<>*x,qo) = F{n3l) (2.5)

Similarly, if

*K-1,%Jl.3l...)^1)?o))) = i;,(n,l.1)
then

*(«.«.*(«*-!,•••,*(afl,ffo))) = *(a,j,F(nli.J)
= F(n9i) (2.6)

Finally, (2.5) and (2.6) tell us that (2.6) holds for all sequences, so

A(a.fc. a**-i..-.,a*i) = A(a5fc,5(a3fc_l,<5(--,^(a,1,g0)-)))
= A(a5k,F(nak_i))

This shows that the machine satisfies the behavior for any sequence present in the behavior, completing
the proof. D

Consider the machine

M= (E, A, Q, F(n0), 8(a, q), A(a,,)) (2.7)
constructed by mappingeach node in the specification

5 = (E,A,iV,no,T) (2.8)

to a unique state, i.e.,

F(n{) = qi Vi ' (2.9)
and converting each transition in the specification to a transition in the machine

S(a,F(n3)) = fF(n*) when there exists at =(a,n3,nd,6) GT ( .
\ <f> otherwise t/.-iu;

A(a,F(n,)) = [h when there exists a t = (a, n,,^,6) GT ,„ ...
!> e otherwise \ • L)



Theorem 2 The machine (2.7) created from the specification (2.8) using (2.9), (2.10), and (2.11) satisfies
the specification.

Proof.

The transition requirement (2.4) is satisfied,

6(a,F{n3)) = 6{a,n3)
= rid

= F(nd)

and the output requirement (2.3) is satisfied,

X(a,F{n3)) = X{a,na)
= 6

so by Theorem 1, M satisfies the specification S. •



Chapter 3

Solution Techniques

In this chapter, we present two algorithms for finding machines that satisfy the output and transition
requirements. Theorem 1 showed satisfying these is sufficient for a machine to satisfy the specification.

Presented first is an explicit algorithm that builds a machine by traversing the transitions in the specifi
cation, fitting them into the machine so the output and transitions requirements are satisfied. This is very
similar to Bierman et al.'s work [BK76, BP75].

Presented second is an implicit algorithm that simultaneously considers all possible mapping functions
F, and eliminates those not satisfying the output and transition requirements.

Both algorithms look for a minimum machine in stages. They start with a lower bound on the number of
states in the minimum machine and look for a machine with that many states. If no machine is found, they
allow an additional state and continue searching until a satisfying machine is found. This always terminates
since there is at least one machine satisfying any specification (Theorem 2).

The lower bound on the number of states in the minimal machine is computed using the incompatibility
graph, which has an arc between pairs of nodes in the specification that cannot be mapped to the same state
in a satisfying machine. Nodes in a clique in this graph must all be mapped to different states, so the size of
any clique is a lower bound on the size of the minimum machine. We find a large clique in the graph with a
fast heuristic and use its size as a lower bound.

3.1 The Incompatibility Graph

The incompatibility graph represents information about which nodes in the behavior specification can be
merged, i.e., can be mapped to the same state in a satisfying machine. It is an undirected graph with one
node per node in the behavior specification and edges between pairs of incompatible (unmergeable) nodes.

The incompatibility graph is represented by a function I : N x N —*-{l,0}. I(rii,nj) is 1 if and only
if nodes nt- and tij are incompatible. As mentioned above, this is an undirected graph, so that 7(n,-,n;) =
I(nj,n{) for all rii,rij GN. A node is never incompatible with itself, i.e., /(n,-,n,) = 0.

We define two types of incompatibility, (see Figure 3.1)

• Output Incompatibility

Two nodes are output incompatible if merging them would immediately violate the output requirement.
For a Mealy machine, this happens when, for some particular input, the two nodes would produce a
different output. For a Moore machine, this happens when* the two nodes produce different outputs
for any input.

• Transitive Incompatibility

Two nodes are transitively incompatible if, on the same input, they lead to incompatible nodes. If
the transition requirement (2.4) holds, merging the two nodes would lead to a violation of the output
requirement.

We need a notion of inequality for outputs that takes into account unspecified outputs.

10



Mealy Output ,
Incompatible "^

rc\ «i/6®^v@
a\ = a2 Moore Output
61 ^ 62 Incompatible

rc\ ai/6'©^Mg)
*!?*,

[£^IXQ a2/t-W

; ; a! = a2

., J^ /(n^n,^) = 1 (incompatible)
Transitive

Incompatible

Figure 3.1: A graphical depiction of output and transitive incompatibility

Definition 9 (Output Inequality) The relation 9? for 61, b2 GAU{e} is

61 £ 62 =\fa
/a/se

Use

true

ifbi = b2^e
ifb\=e or b2 = € or both
otherwise

Definition 10 (Incompatibility Graph) The incompatibility graph is

1

An*i»n»a) = <

i/3*i = (ai,n3,,ndl,6i) G T,
i2 = (02,1*3,^3,62) €T 5./.
ai = aj and b\ ^ 62 (output)

1 t/3ti = (01,11^,714,61) €?,
<2 = (a2,n,3,nd3,62) €T s.t.
ai = a2 anrf I(rid1,nd7) = 1 (transitive)

0 otherwise

(3.1)

For Moore machines, the condition marked with a dagger fi) is omitted, that is, ai and a2 may differ.

3.1.1 A Clique in the Incompatibility Graph

A clique in the incompatibility graph gives a lower boundon the size of the minimummachine. By definition,
pairs of incompatible nodes cannot be merged, so a clique corresponds to a group of nodes that must be
assigned to different states in the machine.

We locatea largeclique in the incompatibility graphusing a slightly modified version ofan exact algorithm
by Carraghan and Pardalos [CP90], shown in Figure 3.2. The algorithm takes a set of nodes, forms subsets
incompatible with another node from the set, and calls itselfon these subsets. Each node fromeach subset
is considered in turn, although only nodes which are "later" in the set (according an ordering imposed at
the beginning) are considered to be part of the new subset.

Our heurstic modification to this algorithmplaces a limiton the amount of time the algorithm mayspend
looking for a clique. When a clique is located, the algorithm is given twice as much time as it took to find
that clique. The time for finding the initial clique is set arbitrarily to twoseconds, although we observe that
the first clique is always found long before this timeout.

Our timeout scheme arose from observing that in most cases, a clique of maximumcardinalitywas found
quickly, but the algorithm would spend a long time after this convincing itself there was none larger.

3.1.2 Using a Clique to Search for the Minimum Machine

Sinceweexpect the minimum machine to havefar fewer states than the number of nodes in the specification,
our algorithms look first for small machines, starting at the lower bound on the number of states given by

11



MaxClique(C = {ci, . ..,cn} C N, depth)
for i := 1,..., n —depth nodes being examined

0 := {c :cG {ci+li •• ,cn},I(ci,c) = 1} node to consider next

if 0^0
MaxClique(0, depth + 1)

else if depth > maxclique
maxclique :== depth + 1 found ii clique larger than any known

Figure 3.2: Exact clique-finding algorithm [CP90], called with MaxClique(AT,0). Result is maxclique.

FindSmallestMachine(S)
Sort the transitions in 5 in a breadth-first order

Form the incompatibility graph / from the specification S
C := large clique in /
for n:=|C|,|C|+l,...

if FlNDMACHINE(S, /, n) finds a machine
return that smallest machine

Figure 3.3: The general algorithm

the size a the large clique in the incompatibility graph. If a machine with this many states cannot be found,
an additional state is allowed and the search is continued.

This scheme has proven effective. An early attempt of ours used a branch-and-bound technique that
looked for machines no larger than the smallest-known satisfying machine. Usually, a large satisfying machine
(roughly twice the size of the minimum) was found quickly, and the algorithm spent a long time looking
for machines much larger than the minimum. Even starting the existing algorithm with a lower bound
of one state was faster than the branch-and-bound algorithm. Finally, looking for machines with a fixed
number of states leads to faster data structures, another reason to prefer the presented algorithms to the
branch-and-bound approach.

3.2 The Explicit Algorithm

The explicit algorithm attempts to build a satisfying machine with no more than m states by traversing the
specification and fitting its transitions into the machine. If the algorithm traverses the entire specification,
the constructed machine satisfies the specification, otherwise there is no satisfying machine with m states.

The explicit algorithm fits transitions in the specification in a breadth-first order (sorted by the algorithm
of Figure 3.5). The reasons for this are twofold. First, it ensures that each transition's source node is mapped
to a state when the transition is considered. Second, it forces the algorithm to use important information as
soon as possible, which is important for a backtracking algorithm.

There are two possibilities when fitting a transition:

1. There is no corresponding transition in the machine:

In Figure 3.4a, node n3 is mapped to state q3, but there is no transition from q3 with input a\. The
algorithm must create a new transition with input ai and output 6i, but there are many possibilities
for the destination state.

The incompatibility graph reduces the number of destination states to consider. If a node incompatible
with rid has been mapped to a state, choosing that state would lead to an inconsistent machine, so
none of these states are considered.

12



transition f~\ai/bif~\
in specification \jj \Jy. F()

machine under

construction

could be q3, q2) q3, g4l or qn

fqn\ new state

©f^e
F(rid) must be gi

Figure 3.4: The two main cases in the explicit algorithm: (a) there is no corresponding transition, so there
is a choice of destination state (b) there is a corresponding transition, so 61 must equal 62 for the transition
to fit.

In addition to existing states, if there are fewer than m states in the machine, the correct destination
state could be a new state. The algorithm also considers this.

The algorithm tries all possible choices of destination state. It chooses one and tries to satisfy the
remainder of the specification. If this works, the choice was correct and the algorithm terminates
successfully. Otherwise, the next untried destination state is considered. If none of the possible
destination states leads to a satisfying machine, then some earlier choice was incorrect or there are
no satisfying machines of size m. In either case, the algorithm indicates it was unable to satisfy the
remainder of the specification.

In choosing a destination state, the most-recently added states are considered first, followed by a new
state, if allowed. This order was chosen to keep the number of possible destination states low. However,
this order does not affect the runtime when there is no satisfying machine with m states. Since all
possibilities must be considered before the algorithm can conclude there is no machine, the order in
which they are considered is irrelevant.

2. There is already a corresponding transition in the machine:

In Figure 3.4b, node n3 is mapped to state q3, which has a transition with the input a\. There are two
cases, depending on whether the outputs differ:

(a) If the outputs match (61 = 62), then node n«j is mapped to state qi and the next transition can
be fitted.

Because this step is simple, any transitions considered after the machine satisfies the entire spec
ification are fitted very rapidly. This gives the algorithm a linear time-dependence on the size of
the specification.

(b) If the outputs differ (61 ^62), then a previous decision was incorrect and the algorithm indicates
it was unable to satisfy the specification. It will backtrack to its last choice of destination state
and consider another.

The explicit algorithm uses a single recursive routine (Figure, 3.6) for backtracking. At each recursive
step, the routine is given

• a partially-constructed machine M

• a partially-constructed mapping function F

• the breadth-first sorted specification S

• a depth d: an index into the breadth-first sorted list of transitions in S

13



BreadthFirstOrdering(S)
i:=0 have not ordered any transitions
C[ni.. .nm] := unconsidered have not considered all nodes

h:=l set head of queue to one past the beginning
t:=0 set tail of queue to be beginning
Q[0] := n0 put the initial node at the beginning of the queue
C[no] := considered mark the initial node as considered

while h > t head beyond tail
foreach t = (a, Q[t],nd, 6) G T transition from the node at the tail

T[i\:=t add the transition

i := t + 1

if C[rid] = unconsidered
Q[h] := rid
h:=h+l add the unconsidered node to the queue
C[rid] := considered

t:=t + l look at the next node in the queue

Figure 3.5: The breadth-first transition ordering algorithm

• the maximum number of allowed states m

By construction, on entry, M satisfies the output and transition requirements for transitions 1,2, ..., d— 1,
and the source node of transition d has been mapped to some state in M.

The routine is first called with the node-to-state mappingfunction F : N —• QU {<f>} only defined for the
mapping between the initial node and the reset state, i.e., F(no) = go, and F(n ^ no) = <f>.

The explicit algorithm was implemented in C++ using classes for variable-sized behavior specifications,
fixed-sized incompatibility graphs, and fixed-sized machines under construction. A stack representation was
used for both the mapping function F and the machine M, removing the need for a separate copy of these
for each recursive invocation of the routine. This is a significant memorysaving because finding the minimal
machine requires as many invocations as transitions in the specification. At most, one machine, one mapping
function, the behavior specification, the incompatibility graph, and as many stack frames as transitions in
the behavior specification are present in memory.

The current implementation of the explicit algorithm uses a simple-minded 0(n3) scheme for forming
the incompatibility graph. Surprisingly, for some examples this turned out to be the slowest part of the
program. A production version of the algorithm would use a more efficient scheme.

3.3 The Implicit Algorithm

The implicit approach described in this section avoids the need to explicitly search for a satisfying mapping
function. It does so by keeping an implicit description of all the mapping functions that satisfy the output
and transition requirements. r

The discrete function manipulation needed to keep this implicit list of possible mappings is performed
by a multi-valued decision diagram (MDD) package. Discrete function manipulation using MDDs is briefly
described in Section 3.3.1.

This approach makes the implicit algorithm considerably simpler to describe, but incurs the overhead
imposed by the use of discrete function manipulation routines. This overhead can be recovered if the
regularities of the problem make the use of an implicit enumeration technique more efficient than an explicit
one.

14



FitTransition(M, F, S, d, m)
if d = \T\ fitted all transitions

minimal machine := M

return success machine satisfies the specification

(a, n3,rid, bs) := T[d\ get the transition from the specification
(a,?5,9d,6M) •= (a,F(n,),5(a, F(n3)), X(a,F(n3))) get the corresponding transition from the machine

if 6S P bM
return failure output requirement violated

if F(nd) £ <f> and qd^ <j> and F(n<j) ^ qd
return failure transition requirement violated

M' = M machine to be modified
F' = F mappingfunction to be modified

if qd = <f> machine's destination state undefined
if bs •£ € and 6m = £ specification's output defined, machine's not

X'(a,q3) := 6s set machine's output to specification's
foreach q GQ s.t. fin s.t. F(n) = q, I(n,rid) = 1 for all states in the machine which have not been

assigned nodes that are incompatible with the destination of the transition
S'{a, q3) := q set the destination state to that compatible state
F'(nd) := q
if FitTransition(M', F', 5, d + 1, m) ^ failure

return success

if \Q\ < m
Q' :=QUq <*dd a new s^aie 9
6'(a,qs) -=q
F'(nd) := q try q as the destination state
if FitTransition(M/, F', S, d + 1,m) ^ failure

return success

return failure
else machine's destination state defined

F'(rid) := qd assign the destination node
if b\{ = e and 6s ^ c

V(a,gs) := 6s set the machine's output
return FitTransition(M/, F', 5, d + 1, m)

Figure 3.6: The explicit algorithm's recursive routine. The notation T[t\ - (a,-,n5i,ndj,6t) represents the
tth transition in the breadth-first ordering of the transitions in the behavior specification.

15



X

Figure 3.7: Graphic representation of the MDDs for function X ^ 3, X = Y and X ^ 3 A X = Y.

3.3.1 Multi-valued Decision Diagrams

Any Boolean function of k discrete variables, xi, x2,..., xk:

F:PlxP2x-xPk->{Q,l} (3.2)

can be represented by a Multi-valued Decision Diagram [KB90] (MDD). An MDD is a rooted, directed,
acyclic graph where each non-terminal node is labeled with the name of one variable. An MDD for F has
two terminal nodes fz and f0 that correspond to the leaves of the graph. Every non-terminal node /,-, labeled
with variable Xj, has \Pj\ outgoing edges labeled with the possible values of Xj. Each of these edges points
to one child node. The value of T for any point in the input space can be computed by starting at the root
and following, at each node, the edge labeled with the value assigned to the variable tested at that node.
The value of the function is 0 if this path ends in node f2 and 1 if it ends in node f0.

An MDD is reduced if no two nodes that branch exactly in the same way exist and no node exists that
has all the edges pointing to the same node. An MDD is ordered if there is an ordering of the variables such
that, for all paths in the MDD, the variablesare always tested in that order, possibly skippingsomeof them.

For a given variable ordering, reduced, ordered MDDs are canonical representations for functions defined
over that domain, thus implying that two functions can easily be checked for equivalence.

Our implicit algorithm uses the MDD package described by Kam and Brayton [KB90]. This MDD
package provides an array of primitives for function manipulation. The reader is referred to that reference
for a more detailed description of these primitives.

We use the following MDD package primitives:

1. Booleanoperations (and, or, not) between two functions: E.g., / := g Ah returns the and of g and h,
a function that is 1 only if both g and h are 1.

2. Primitivefunctions that express relations between variables: E.g., / := (x,- = Xj) returns the function
that is 1 for all pointsof the input space where x,- = Xj.

3. Existential quantification: E.g., / := 3xtg returns a function' /(xi...Xj_i,Xj+i...xn) that is 1 iffunction
flf(xi...Xi_i,Xi,Xj+i...xn) is 1 for some value of x,-.

4. Variable substitution: E.g., / := [x,- —* Xj]g returns a function / that is obtained from g by replacing
the occurrences of variable X* by variable Xj.

Figure 3.7 depicts the MDDs for the function / := (x ^ 3), g := (x = y) and h := / Ag, all defined over
PxP,P={l,2,3}.

16



MainLoop()
T:- I

fl:=0
foreach U := (a,-, nSt,rid,, 6,) G T

R:= RUU

Stores the processed transitions

Add this transitions to the list

foreach tj := (a,-, n4>, n^, 6;-) G R
if a,- = aj A6,- ^ 6j

T:=T/\(x3x ±x3])
if a,- = a,-

Output determinism restriction

Next state determinism restriction

T:=Ta((x3, ^x3})V{xd,
return T

= *-,•))

Figure 3.8: The implicit algorithm basic loop

3.3.2 The Implicit Enumeration Algorithm

An implicit list ofthe valid mapping functions F : N -*• Qcan bedirectly manipulated using simple Boolean
operations. This list is kept by considering a function T : Q|iV| -• {0,1} defined as follows:
Definition 11 T(xQ, xi,..., X|jv|-i) = 1for the point v0, vlf..., V|jvj_i if the mapping function F defined
by F{n0) = v0, F(ni) = t>i,..., F(n\N\_i) = t>|jv|-i produces a machine M that satisfies the transition and
output requirements (2-4) and (2.3).

There isa one-to-one correspondence between each variable x,- in thesupport ofT and each node n,- GN.
Therefore, restrictions on valid mapping functions can be written as restrictions on the variables x<. For
instance, iftwo nodes in the specification, n,- and n,-, have tobe mapped todifferent states, this isequivalent
to the statement that T can only be true for points where x,- ^ xj .

The transition and output requirements impose restrictions on the function !F. Let U—(a<, n5j, n^,6,) G
Tand tj - (aj, n3j, ndj, 6;) GT. For any two transitions that take place on the same input and have different
outputs, output determinism requires that the source states of the transition should be assigned different
states. For Mealy machines this can stated as

(ai = aj Abit &j) => xn ± **>• (3-3)
For Moore machines, different outputs imply different states

bitbj*zti?z9r (3-4)
Next-state determinism implies that, for any two transitions in the original machine that take place on the
same input, the same assignment for the initial states implies the same assignment for the final states

(ai = aj Axa, = x3j) => (xdi = xdj). (3-5)

This can be rewritten as
(a,- = aj) =• (xa, # x9j Vxdl = xdi). (36)

For Mealy machines, (3.3) and (3.6) can be used to form T using the algorithm in Figure 3.8. For Moore
machines, the lines that impose the output determinism restriction are changed to employ (3.4) instead
of (3.3).

3.3.3 Performance Improvement Techniques

The above description of the implicit algorithm is deceptively simple, since all the complex manipulation
of Boolean functions is performed by the MDD package. However, for complex problems, the storage
requirements of the MDD package limit the usability ofthe algorithm.

The techniques described in the following sections can be used to reduce the storage and time requirements
of the algorithm, extending its applicability to larger problems.

17



ComputeAllowed(C)
foreach n,- G N

Ai := 1
foreach nCl G C

Ac, := (*c. = qt) Nodes in the clique are assigned a unique state
foreach rij G N, rij G* C

foreach nc, G C
if /(nc.,nj) = 1 If a node is incompatible with a node in the clique

Aj := Aj A (xj #«<) it should be assigned a different value

Figure 3.9: Computation of the allowed mappings functions

Using the Incompatibility Graph

Although (3.3) and (3.5) contain enough to fully specify T, the algorithm can be made more efficient by
making use of the information contained in the incompatibility graph.

In particular, if I(m,rij) = 1, then F(n,) ^ F(nj). This implies that (3.3) and (3.4) can be replaced by:

(I(m,rij) = l)=>Xi £xj. (3.7)

As described in Section 3.3.2, the resulting function T is 1 for all points in Q^ that represent a valid
mapping. In general, many mappings exist that satisfy the output and transition requirements. In particular,
ifa mapping F : N —• Q exists, at least |Q|!mappings exist (simply renumber the states in the final machine).

Since T implicitly keeps track of all these redundant mappings, it makes sense to preassign the mapping
of some of the nodes. This can be done by observing that the nodes in a large clique in the incompatibility
graph have to be assigned to different states, so assigning these to arbitrary (but different) states does not
discard any simpler solution and makes T much simpler.

Once the mapping of these nodes has been performed, some mappingsfor other nodes can be removed
from consideration. In particular, let C = {nCo, nCl,..., nc,} be a clique in the incompatibility graph. Then
we can force F(nCo) = q0, F(nCl) = qu..., F(nCl) = qt. Furthermore, if n* is a node such that 7(n,-, nCo) = 1,
then we know that F(nt) ^ qCo.

This information can be incorporated into the algorithm by defining a family of functions Ai : Q^ —•
{0,1} that describe the values allowed for each ofthe variables x,. These functions can be computed by the
procedure shown in Figure 3.9.

Selection of Variable Ordering

Two ordering problems need to be addressed in the algorithm. One is the order in which the nodes are
processed. Experimentsshowed none was a significant improvement overthe breadth-first ordering described
in Section 3.2, so that is currently the default.

The ordering in which variables are stored internally in the MDD package is also important. The best
results were obtained by sorting the nodes in the specification according to the degree of their nodes in the
incompatibility graph. States that corresponded to nodes with higher degree in the incompatibility graph
are earlier in the ordering. The intuitive justification for this is that states that are incompatible with a
larger number of other states have fewer degrees of freedom and restrict the branching of the MDD used to
represent T.

Dynamic reordering algorithms were also tried. Although this technique reduced somewhat the memory
requirements of the algorithm, it also unfavorably increased the running time. It is, therefore, not used in
any of the experiments described in Chapter 4.

18



SlMULATE(n,(/, R)
foreach <t := (ai,n, rid,, 6,-) G T

foreach tj := (aj, n3}, nd>, 6j) G ft Transition already processed
if a,- = a;- Same input as a processed transition

^^A^^VuizZd,) Transition requirement must be satisfied
if I(n,nd}) Use incompatibility information

Q.= GA(w±xdj) to limit the possible next state
G:=3vg
Q := [w —• v]Q Make the new state the current state

H := SIMULATE^, ,G,R) Simulate the machine from the new destination state
g.= gAH

g-.= 3vg
return Q

Figure 3.10: Symbolic simulation of partially defined machines

Discarding Assignments Using Implicit Simulation

If the specification is sufficient to uniquely define one finite state machine of minimal size, the final size of
the MDD required to represent T will be small, since T will be one for a small number of points in the
input space. However, the storage requirements needed for intermediate steps may be high. These can be
somewhat reduced if one performs implicit simulation of the machines defined by the assignments present in
T and removes the inconsistent ones from consideration.

The implicit simulation can be performed by noting that even a partial definition of the mapping function
F defines some transitions in the resulting machine M that can be inconsistent with input-output relations
that have not been considered.

Let R C T be the set of transitions taken into consideration so far, and let T be the function that
represents all the mappings consistent with the information provided by the transitions in R.

We consider a function g :Q^+2, £(xo, .••X|jv|_i,v, w) that will be used to implicitly keep the present
and future state of all the machines contained in T. Variable v will be used to to keep the present state in
the implicit simulation, and variable w will be used to store the next state.

The code in Figure 3.10 performs the symbolic simulation and removes from consideration all machines
inconsistent with the specification. Since the implicit simulation algorithm is time-consuming, it only makes
sense to use it when memory requirements grow very large, not at every iteration of the main loop.

The Improved Algorithm

Using the techniques described in section 3.3.3, the main loop of the algorithm is shown in Figure 3.11. A
large clique of the incompatibility graph is selected and the family of functions Ai is computed. The call
to the implicit simulation algorithm only takes place if the memory requirements of the MDD package are
exceeding some prespecified limit.

The implicit algorithm is implemented in C++ and makes use of the MDD package described by
Kam and Brayton [KB90]. This package uses the CMU Boolean Decision Diagram package described by
Brace [BRB89].

19



MainLoop()
T:=l

R:=<b Stores the processed transitions
C := LargeCliqueQ
ComputeAllowed(C)
foreach U := (a,-, n3i, rid,, 6j) G T

i2 := R U <,• Add this transitions to the list

:F:= FAA3i
foreach tj := (aj,n5>,n^,6j) Gi?

if /(n5j,naj) Output determinism restriction
;F:=:FA(x,, #x3j)

if a,- = aj Next state determinism restriction

/•:=^A((x,^x,i)V(xd, ==**;))
if Memory use too large

T := T A (w = x0) Start all machines in the reset state

^ :=SlMULATE(no, ^\ /?) Remove non-conforming machines
return T

Figure 3.11: Optimized version of the implicit algorithm

20



Chapter 4

Experimental Results

4.1 Comparison with Existing Approaches

As described in Chapter 1, the problem can be viewed as the minimization of an incompletely-specified
finite state machine. Algorithms for finite state minimization have been the subject of extensive studies
in the past and several implementations of these algorithms are available. In this section, we compare
the performance of the explicit algorithm, ramm, described in Section 3.2 and the implicit version, iasmin,
described in Section 3.3 with two algorithms that solve the problem using the FSM reduction paradigm:
stamina [HRSJ91] and ism [KVBSV94].

We first selected three target machines, shown in Figure 4.1. For each generating machine, we generated
a number of specifications. Each specification consisted of one string. The specifications used had strings
with lengths between 10 and 65 input/output pairs.

For each length considered, five specifications were generated by simulatingrandomly generated inputs
on the generating machine. The various programs were then used to find the minimummachine consistent
with each of the specifications.

Figures 4.2,4.3, and 4.4show the times required. Each point represents the average over the five different
specifications generated for each given length. These figures show that, in all cases, the state minimization
algorithms require a time that increases exponentially in the length of the string. Our algorithms, mmm
and iasmin, show a less drastic increase; the curves for these two algorithms tend to level off for longer
strings. The different behavior observed illustrates well the distinct exponential dependences of the different
approaches: traditional state minimization algorithms require time exponential in the size of the original
specification, while the algorithms described in this report require time exponential in the size of the final
machine.

21



10000 c

1000

100

seconddO

<> 00 O O O O O O O-

0.01

10 20 30 40 50

String length

I

Mmm

Iasmin

Stamina

Ism

60 70

Figure 4.2: Run-time comparison for specifications generated with the first machine

10000 r

1000 r

100

seconddO

0.01

10 20 30 40 50

String length

1

Mmm -i

Iasmin H

Stamina -E

Ism -»

1 h

60 70

Figure 4.3: Run-time comparison for specifications generated with the second machine

22



10000

1000

secondiO

<> 00 00 0

0.01

10 20 30 40 50

String length

1

Mmm

Iasmin

Stamina

Ism

60 70

Figure 4.4: Run-time comparison for specifications generated with the third machine

4.2 Inferring Randomly-Generated Machines

4.2.1 Searching Time Versus Number of States

To examine the performance of the two algorithms on specifications with differently-sized minimum satisfying
machines, 575specifications1 were generated (see Appendix A) from 115randomly-generatedstate machines
and presented to each algorithm. Each program was given an hour and 150 MB of memory to find the
minimum satisfying machine.

Figure 4.5 shows the fraction of the specifications each algorithm was able to complete in the allotted
time/space, plotted as a function of the number ofstates in the minimum satisfying machine2. We tried at
least fifteen specifications for each number of states.

The explicit algorithm was successful more often than the implicit, although the implicit did not go from
success to failure as quickly as the explicit. The explicit algorithm succeeded on 394 of the 575 specifications,
and the implicit succeeded on 374.

Figure 4.6 shows the times taken, in seconds, for the two algorithms to find the minimum satisfying
machine. The points plotted are only for those runs which were successful. Two conclusions can be drawn
from this graph: the time appears to be growing exponentially with the number ofstates in the final machine,
and the times required are widely distributed, with roughly a normal density in log scale.

4.2.2 Searching Time Versus String Length

Figures4.7 and 4.8show the searching time required to find the minimumsatisfying machinefor specifications
with a string of varying length. Two 500-step strings were generated randomly from a 9-state generating
machine. Prefixes of these strings of varying length were given to the explicit algorithm to produce the
graphs. Although the second example requires thirty times more time than the first, the overall behaviors
are very similar.

After 50 or so steps in the first example, the minimum satisfying machine suddenly changes (the 51st
transition cannot be fitted into the machine) and causes a large increase in search time. Similar behavior

1Bach specification contained twenty strings of thirty steps each. Bach state machine had two inputs (0 and 1), and two
outputs (0 and 1).

2This number is easily obtained when one of the algorithms complete. When neither did, we used the scheme described in
Appendix A.

23



all<»-

80%

60%

40%

20%

none

1000 r

100

seconds

10

1 fc.

10

states

i 1 r

Explicit, 20 strings -0
Implicit, 20 strings -f

12 14 16

Figure 4.5: Fraction of runs completed

x

8

X

O
O

o

o
o

o

_£ £.

10

states

TT*

o

12

o
X

o
X

0
x

Explicit O
implicit x

J d

14 16

Figure 4.6: Searching times for successful runs

24



occurs in the second example, this time after about 100 steps.
Themost important thing to note about these graphs, however, is that they are linear after a point. When

the minimum satisfying machine has been found, the explicit algorithm decays into an efficient simulation.
This behavior is distinctly different from that of more traditional state-minimizers.

100

I 1 1 1

80

*f*

-

secondsSO x jmr
-

40
-

20

0

#

X

• • 1 •

200 400 600

length of string
800 1000

Figure 4.7: Searching times as a function of string length for the explicit algorithm.

£OUU
i 1 1

X

1

* .OMd*
2000 —

1500

jbowt^

-

seconds

1000 -

500

0

-

-*» L_ • 1 •

200 400 600

length of string
800 1000

Figure 4.8: Searching times as a function of string length for the explicit algorithm.

4.2.3 Searching Time Versus Number of Strings

The graph in Figure 4.9 depicts the effect the number of strings has on the total run time for the explicit
algorithm. For all data points, the product of steps and strings is constant (1000), so in some sense, the
amount of information in the specification is constant. Each line represents specifications that are subsets of

25



a single specification, a single machine. It appears that above six strings, the problem can be solved much
more rapidly.

1000

15 20 25

number of strings
35 40

Figure 4.9: Total execution time as a function of the number of strings for the explicit algorithm.

4.3 Inferring Machines from Structured Domains

Although the experiments with random machines performed in the previous section give a clear idea of the
potential and limitations of the algorithms studied, it is also interesting to evaluate their performance on
more structured problems. In fact, problems from structured domains tend to be more regular and exhibit
a higher level of symmetry, making them potentially harder to learn.

In this section, the target machines are the finite state machines that correspond to the following robot-
worlds:

1. N-Rooms: The robot is in a circular house with N rooms. At each point in time, the robot has 3
possible actions (inputs to the finite state machine): toggle the light switch, move to the room on the
right or move to the room on the left. The output is 1 if the light in the current room is on, 0 otherwise.

2. NxN Checkerboard: The robot is in an NxN checkerboard field that wraps around in a torus-like
fashion. There are 4 possible actions: move left, move right, move up or move down. The output is
related to the square the robot is on: the white squares have the same output and each black square
has a distinct output.

3. N-Counters: The robot is in a circular house with N rooms. There are two possible actions: move to
the next room on the right or stay in the current room. The output is one only in the room immediately
to the left of the starting room.

Figure 4.10 shows an example of one machine from each of the families listed above.
For each problem in these three families, we performed five experiments. Each specification consisted of

twenty strings, each of length thirty. Table 4.1 lists the number of successful runs. We used the same time
and memory limits as in the previous section. Runs that failed to complete within the allotted time and
memory requirements were considered failures.

These results seem to imply that inferring machines with a high level of symmetry may be more difficult
than inferring randomly-generated machines. The data is, however, somewhat sparse and more experiments

26



2-room 3x3 checkerboard 7-counter

Figure 4.10: Examples of the Finite State Machines used

Problem Iasmin Mmm

2-room 5 5

3-room 1 3

4-room 0 0

2x2 board 5 5

3x3 board 5 5

4x4 board 0 0

4-counter 5 5

5-counter 5 5

6-counter 5 5

7-counter 5 5

8-counter 0 0

Table 4.1: Number of successful runs.

are required to establish a firm conclusion. In fact, some of these problems have multi-valued inputs or
outputs, thereby making a direct comparison impossible.

The results for the 8-counter problem, a finite state machine with binary valued inputs and outputs,
seem to show that these machines generate harder problems than the randomly-generated machines studied
in the previous section. However, the increased difficulty may be related with other characteristics of the
machine, such as the imbalance between the number of times the machine outputs a 1 versus the number of
times the machine outputs a 0.

27



Chapter 5

Conclusions and Future Work

The experimental results described in the previous section illustrate the potentialities and limitations of an
exact approach to the finite state machine inference problem.

On the plus side, it is true that the constructive strategy used by both the implicit and the explicit
algorithms represents a big gain over strategies based on the reduction of incompletely specified finite state
machines. In fact, while the run time for the approaches based on the reduction of FSMs has an exponential
dependence on the size of the original specification, both the implicit and explicit approaches have a very weak
(approximately linear) dependence on the size of the specification. They depend, however, exponentially on
the size of the reduced machine, and this makes them inapplicable to problems where the minimal equivalent
machine has more than about twelve states. These problems remain outside the reach of any exact algorithms
published to date, so it appears that heuristic approaches are required for problems of larger sizes.

The search for effective heuristic algorithms is, therefore, one area for future research. This is especially
true because little has been done on this to date.

The number of states in the final machine may not be an adequate objective for some problems. In
some cases, it may be more reasonable to search for a system of communicating finite state machines that
is minimal, according to some specific complexity measure. For example, a counter of a given length has a
very regular structure but may exhibit a very large number of states. As of this writing, effective algorithm
for the inference of minimal systems of communicating state machines are not known to the authors. This
appears to be a promising area for future research.

The explicit approach has the advantage that it requires a very small amount of memory and is consid
erably faster for small problems because of the overhead incurred by the implicit algorithms. On the other
hand, the CPU time used by the implicit algorithm seems to increase more gradually, which may make it
better for larger problems. The main conclusion, however, is that neither of the approaches is clearly better
than the other: their performance is comparable.

Since the implicit algorithm uses the MDD and BDD packages, its performance is strongly dependent on
the ordering selected for the variables1. Further research on the use of different variable orderings may lead
to significant savings in run-time and memory usage.

1This problem is fundamental to all BDD-based algorithms.

28



Appendix A

Generation of Example Specifications

A.l Generating Random Machines

The following algorithm was used to generate small completely-specified machines. As many states as desired
are created, one designated the reset state. Then for each state and each possible input, a random output is
chosen uniformly from all possible outputs and a random next state is chosen uniformly from all states.

This does not guarantee that all states are reachable or that the machine is irreducible. However, for
our purposes, it has proven sufficient. As discussed in the next section, the true number of states is only
bounded by the number of states chosen originally.

A.2 Generating Specifications

To test the algorithms, randomly-generated specifications were created by simulating a known, small state
machine. For each string in the specification, the machine is placed in the reset state, a randomly-chosen
input is applied, and the output recorded. Another input is applied, the output recorded, and so on.

The number of states in the minimum specification is clearly bounded above by the number of states in
the generating machine. However, the number of states in the minimum specification can be smaller when,
for example, not every state in the generating machine is visited or not every transition is taken during the
simulation. Another possibility is that the generating machine is itself non-minimal.

To obtain a tighter bound on the number of states in the minimal satisfying machine for a given spec
ification, all states and transitions not visited are discarded. The resulting machine is sent through the
traditional state minimizer stamina [HRSJ91] and the number of states in this minimized machine is used
as an estimate. In two of 394 specifications generated this way, this bound was off by one (i.e., the minimum
satisfying machine had one fewer states).

29



Bibliography

[Ang78] D. Angluin. On the complexityof minimuminference of regular sets. Inform. Control, 39(3):337-
350, 1978.

[Ang87] D. Angluin. Learning regular sets from queries and counterexamples. Inform. Comput.,
75(2):87-106, November 1987.

[BK76] A. W. Biermann and R. Krishnaswamy. Constructing programs from example computations.
IEEE Trans, on Software Engineering, SE-2:141-153, 1976.

[BP75] A. W. B. R. I. Biermann and F. E. Petry. Speeding up the synthesis of programs from traces.
IEEE Trans, on Computers, C-24:122-136, 1975.

[BRB89] K. Brace, R. Rudell, and R. Bryant. Efficient implementation ofa BDD package. In Proceedings
of the 26th Design Automation Conference, June 1989.

[CP90] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum clique problem.
Operations Research Letters, 9:375-382, November 1990.

[DM93] S. Das and M. Mozer. A unified gradient-descent/clustering algorithm architecture for finite
state machineinduction. In Advances in Neural Information Processing Systems 6, Denver, CO,
1993. Morgan Kaufmann.

[GH66] James N. Gray and Michael A. Harrison. The theory ofsequential relations. Information and
Control, 9, 1966.

[GL65] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in in
completely specified sequential networks. IRE Transactions on Electronic Computers, EC-
14(3):350-359, June 1965.

[GMC+92] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee. Learning and extracting
finitestate automata with second-order recurrent neural networks. Neural Computation, 4:393-
405, 1992.

[Gol72] E. M. Gold. System identification viastate characterization. Automatica, 8:621-636, 1972.

[Gol78] E. M. Gold. Complexity ofautomaton identification from given data. Inform. Control, 37:302-
320, 1978.

[HRSJ91] G. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby.' Exact and heuristic algorithms for the
minimization of incompletely specified state machines. In Proceedings of the European Design
Automation Conference, 1991.

[KB90] T. Kam and R.K. Brayton. Multi-valued decision diagrams. Tech. Report No. UCB/ERL
M90/125, December 1990.

[KVBSV94] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm
for exact state minimization. Proceedings of the Design Automation Conference, 1994.

30



[Lan92] K. J. Lang. Random DFA's can be approximately learned from sparse uniform examples. In
Proc. 5th Annu. Workshop on Comput. Learning Theory, pages 45-52. ACM Press, New York,
NY, 1992.

[PF88] S. Porat and J. A. Feldman. Learning automata from ordered examples. In Proc. 1st Annu.
Workshop on Comput. Learning Theory, pages 386-396, San Mateo, CA, 1988. Morgan Kauf-
mann.

[Pfl73] C. F. Pfleeger. State reduction in incompletely specified finite state machines. IEEE Trans.
Computers, C-22:1099-1102, 1973.

[Pol91] Jordan B. Pollack. The induction of dynamical recognizers. Machine Learning, 7:123-148,1991.

[PU59] M. Paull and S. Unger. Minimizing the number ofstates in incompletely specified state machines.
IRE Transactions on Electronic Computers, September 1959.

[Sch92] R. E. Schapire. The Design and Analysis of Efficient Learning Algorithms. MIT Press, Cam
bridge, MA, 1992.

[TB73] B. A. Trakhtenbrot and Y. M. Barzdin. Finite Automata. North-Holland, Amsterdam, 1973.

[Tom82] M. Tomita. Dynamic construction of finite-state automata from examples using hill-climbing.
In Proc. Fourth Annual Cognitive Science Conference, page 105, 1982.

31


	Copyright notice 1995
	ERL-95-12

