

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

THEORY OF HYBRID SYSTEMS AND

DISCRETE EVENT SYSTEMS

by

Anuj Puri

Memorandum No. UCB/ERL M95/113

19 December 1995

THEORY OF HYBRID SYSTEMS AND

DISCRETE EVENT SYSTEMS

Copyright © 1995

by

Anuj Puri

Memorandum No. UCB/ERL M95/113

19 December 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Theory of Hybrid Systems and Discrete Event Systems

by

Anuj Puri

Doctor of Philosophy in Engineering-Electrical Engineering and

Computer Sciences

University of California at Berkeley

Professor Pravin Varaiya, Chair

A continuous system has a continuous state space and an evolution law given by

a differential or a difference equation. A discrete event system is modeled by an

automaton which changes state in response to events. A hybrid system contains both

continuous and discrete event sub-systems. In this thesis we study some theoretical

problems in the design and analysis of hybrid systems and discrete event systems.

We first consider the reachability question for a hybrid system — is a target state

reachable from an initial state? We show that for hybrid automata with rectangular

inclusions, the reachability question can be answered in a finite number of steps.

Hybrid systems with more general dynamics can be reduced to hybrid systems with

rectangular inclusions using abstractions.

We next consider an Automated Vehicle Highway System (AVHS) design. We

consider the safety question: can there be a collision between two vehicles on the

AVHS ? We show that the AVHS is safe provided the controllers in the vehicles

satisfy a set of constraints. The constraints require the reach set Reach/(Xo^t) —

the set of states reached after time t starting from an initial set Xo for a differential

inclusion x € f(x) — to satisfy a simple criterion. We show that this problem is

equivalent to solving an optimal control problem.

We then consider some computational questions for differential inclusions. For a

Lipschitz differential inclusion x G /(a;), we give a method to compute an arbitrary

close approximation of Reachf(X0,t). For a differential inclusion x G/(a), and any

c > 0, we define a finite sample graph Ac. Using graph Ae, we can compute the

e-invariant sets of the differential inclusion — the sets that remain invariant under

e-perturbations in /.

We also consider some dynamical games played on graphs. The synthesis and the

control problem for w-automata can be formulated as agame between two players. We

discuss games oncj-automata and the payoff games. We show that ^-automata games

do not necessarily have a value when restricted to positional strategies. We exhibit

a bound on the amount of memory required to play these games. We then consider

the discounted and mean payoff games. We present the successive approximation

and the policy iteration algorithm for solving payoff games. We then show that an

u;-automata game with thechain acceptance condition can besolved as amean payoff
game. Solving a chain game is equivalent to solving the model checking problem for
propositional /x-calculus. Hence, the policy iteration method can be used to model
check //-calculus formulae. This is at present the most efficient algorithm for model

checking propositional /x-calculus.

Professor Pravin Varaiya
Dissertation Committee Chair

Ill

ill'."" •'"•••,;

To my parents

IV

Acknowledgements

I would like to thank Prof. Pravin Varaiya for his guidance and support, and for

allowing me to pursue my ideas. I thank Sriram Krishnan for many interesting dis

cussions on w-automata and games. I thank Tom Henzinger for an opportunity to

collaborate with him. I also thank Prof. Brayton and Prof. Oren for serving on my

thesis committee, and Prof. Sastry for serving on my qualifying exam committee.

I thank Sonia Sachs, Jennifer McManis, Akash Deshpande and other colleagues for

fruitful discussions on hybrid systems and o;-automata, and Wen Hsu, Kumud San-

wal, Karim Toussi, James Yee and Zoran Cvetkovic for discussions on things other

than hybrid systems.

Finally, I am most grateful to my parents, Anil and Chi for their love and support

during the time I have been at Berkeley.

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Decidable Hybrid Systems 4
2.1 Introduction 4

2.2 State Transition Systems 5
2.2.1 Transition Systems 5
2.2.2 Relationship Between Transition Systems 6
2.2.3 Equivalence Relations 8
2.2.4 Reach Set of Transition Systems 9

2.3 Hybrid Automata 10
2.3.1 Syntax 10
2.3.2 Transition System of Hybrid Automata 11
2.3.3 Classes of Hybrid Automata 12
2.3.4 Additional Notation 13

2.4 Timed Automata and Initialized Multirate Automata 14

2.4.1 Timed Automata 14

2.4.2 Initialized Multirate Automata 16

2.5 Initialized Rectangular Automata 17
2.6 Conclusion 22

3 Driving Safely in Smart Cars 23
3.1 Introduction 23

3.2 Single Lane AVHS 24
3.2.1 Maneuvers and Architecture 24

3.2.2 Safety Criterion and Control Table 26
3.3 Safe Driving, Abstractions and Optimal Control 27

3.3.1 Optimal Control Problem 28
3.3.2 A Leader Control Example 29

VI

3.4 Changing Lane with Abstract Vehicles 31
3.4.1 Longitudinal Control for an Abstract Vehicle 33
3.4.2 Change Lane Manuever 33

3.5 Conclusion 35

4 €-Approximation of Differential Inclusions 36
4.1 Introduction 36
4.2 Preliminaries 37
4.3 Computing the Reach Set of Differential Inclusions 41
4.4 Sample Graph Approximation 47
4.5 Invariant Sets and Other Applications 52

4.5.1 Invariant Sets 52
4.5.2 Other Dynamical Properties 53

4.6 Computational Aspects and Examples 55
4.6.1 Pendulum Example 55
4.6.2 The Lorenz Equations 56
4.6.3 Efficient Storage Methods 58

4.7 Conclucion 58

5 Shapley's Game and Church's Problem 59
5.1 Introduction 59
5.2 Games on Graphs 61

5.2.1 Strategies for Playing 62
5.2.2 Value of the Game 63
5.2.3 Complete Strategy Spaces and 1-Player Games 63

5.3 Games on a;-Automata, Church's Problem and /j-Calcuius 64
5.3.1 a;-Automata 65
5.3.2 Games on w-Automata 67
5.3.3 Propositional /x-Calculus 72

5.4 Shapley's Game 74
5.4.1 Notation 76
5.4.2 1-Player Payoff Games 76
5.4.3 A Finite N-Step Game 78
5.4.4 Discounted Payoff Game 79
5.4.5 Mean Payoff Games 84
5.4.6 Complexity 86

5.5 Chain Games and Mean Payoff Games 87
5.5.1 Reducing a Chain Game to a Mean Payoff Game 87
5.5.2 Some Consequences 89

Bibliography 90

Vll

List of Figures

2.1 An Example Transition System 5
2.2 Quotient Transition System 9
2.3 Hybrid Automata 11
2.4 Timed Automaton 14
2.5 Congruence Classes of the Bisimulation for Timed System 16
2.6 Multirate Automaton 18
2.7 Translation of Multirate Automaton to Timed Automaton 18

2.8 Initialized Rectangular Automaton 19
2.9 Envelope of differential inclusion x € [/, it] 20
2.10 Translation of Rectangular Automaton to Multirate Automaton ... 21

3.1 A Lane of the Highway 25
3.2 Solution of the Optimal Control Problem 30
3.3 Change Lane Manuever 31
3.4 Changing Lane with Abstract Vehicles 32
3.5 Change Lane Manuever 34

4.1 A /?-grid and a sample trajectory 40
4.2 A Directed Graph 41
4.3 A ^-grid 43
4.4 The Sample Graph of x = -2x 48
4.5 Trajectories of x G f(x) and x € /c(x) 49
4.6 An e-invariant set 52

4.7 A Pendulum 55

4.8 Invariant Set for the Pendulum 55
4.9 Computed Invariant Set for the Lorenz Equations 57

5.1 An Example Game 62
5.2 An Game on Buchi Automaton 67

5.3 The value in (MD,MD) and (HD,HD) are not the same 69
5.4 The game does not have a value for (MD,MD) 70
5.5 A Payoff Game 75

Vlll

List of Tables

3.1 Control Table to Check Safety 27

Chapter 1

Introduction

Continuous systems have been the focus of system theory. But today, due to ad

vances in communications and computer technology, systems are increasingly event-

driven. Discrete event systems consist of entities or processes which exchange mes

sages and coordinate to perform a task. Examples include computer protocols, and

digital controllers in computer systems. When a system includes both discrete event

features and continuous activities, we call it a hybrid system. An example is the

Automated Vehicle Highway System (AVHS) discussed in Chapter 3. In an AVHS,

vehicles coordinate by exchanging messages; but a vehicle also controls continuous

parameters such as its speed and acceleration.

Continuous, discrete event, and hybrid systems have different modeling paradigms.

A continuous system has a continuous state space and an evolution law given by

a differential or a difference equation. A discrete event system is modeled by an

automaton. An automaton is a graph whose vertices are the states of the system.

The edges in the graph are labeled by events. The system jumps from one state to

another in response to events or by generating events. A hybrid system combines

the two models. The state of the system is the pair (/,x) where / is the vertex in a

graph, and x is the continuous state. There is a differential equation at each vertex

in the graph. The continuous state x follows the differential equation at the vertex.

The system jumps from one vertex to another in response to events or by generating

events. The events that get generated may depend on the continuous state.

Systematic methods are needed for design and analysis of hybrid and discrete

event systems. Because systems being designed are complex, computer algorithms

and computer tools must play a key rolein the design process. A theory must address

the fundamental questions faced in the design of hybrid and discrete event systems.

What are these fundamental questions ?

The verification question — is the designed system correct — is a fundamental

problem. The simplest verification problem is a reachability question — are some

"bad" states reachable from the initial state of the system ?

The synthesis problem — synthesize a system to meet a given specification — is

another fundamental problem. It is most elegantly formulated as a game between the

"controller" who is trying to satisfy the specification, and "disturbance" which wants

to violate it.

In this thesis, we address the verification question for hybrid and continuous sys

tems, and the synthesis question for discrete event systems.

In Chapter 2, we study the reachability problem for hybrid systems. The reach

ability problem asks: is there a trajectory of the hybrid system from an initial state

so to a target state? The reachability problem is conceptually straightforward for

finite state systems. This is not the case for hybrid systems since the state space is

infinite. We show that for initialized hybrid automata with rectangular inclusions,

the reachability problem can be solved in a finite number of steps.

In Chapter 3, westudy the Automated Vehicle Highway System (AVHS) architec

ture ofVaraiya [41]. We are interested in the safety question: can there be a collision

between two vehicles on the AVHS? Using the abstraction methodology in [31], we

show that the AVHS is safe provided the controllers in the vehicles satisfy a set of

constraints. The problem of checking whether the controllers satisfy the constraints

is equivalent to solving an optimal control problem.

In Chapter 4, we consider computational questions about differential inclusions.

For a Lipschitz differential inclusion x € /(a;), we give a method to compute an

arbitrarily close approximation of Reachj(X0,t) — the set of states reached after

time t starting from an initial set X0. For a differential inclusion x € f{x), and any

c > 0, we define a finite sample graph Ac. Using graph Ae, we can compute the

e-invariant sets of the differential inclusion — the sets that remain invariant under

e-perturbations in /.

In Chapter 5, we study two classes of games played on graphs: games on u-
automata and the payoff games. We show that games on o^automtata do not neces

sarily have avalue when restricted to positional strategies. We exhibit abound on the
amount of memory required to play such games. We then study the discounted and
mean payoff games. We provide a new proof that mean payoff games have optimal
positional strategies. We present the successive approximation and the policy itera

tion algorithm for solving these games. We then show that an ^-automata game with

the chain acceptance condition can be solved as a mean payoff game. Solving a chain

game isequivalent to solving the model checking problem for propositional ^-calculus.
Hence, the policy iteration algorithm can be used to model check ^-calculus formu

lae. This is at present the most efficient algorithm for model checking propositional

^-calculus.

Some of the work we present in this thesis has also been published in [17, 34, 33,

32].

Chapter 2

Decidable Hybrid Systems

2.1 Introduction

Complex systemsthat are being designed today incorporate both differential equa

tions to model the continuous behavior and discrete event systems to model instanta

neous state changes in response to events. System that incorporate both dynamical

and discrete event models are called hybrid systems.

In this chapter we study properties of hybrid automata — a formalism for spec

ifying hybrid systems. In particular, we are interested in algorithmic methods for

solving problems relating to hybrid systems. Hybrid systems in which a problem

can be solved algorithmically in a finite number of steps are called decidable hybrid

systems. We consider the reachability problem: is there a trajectory from an initial

state so to a target state. We show that for initialized hybrid automatawith constant

decoupled differential inclusions, the reachability problem can be solved in a finite

number of steps.

In Section 2.2, we discuss transition systems, and the relationships between them.

A transition system specifies the states of the system, a set of generators, and the

behavior of the system under the generators. In Section 2.3, we introduce hybrid

automata and their transition systems. In Section 2.4, we discuss timed automata,

a decidable class of hybrid automata. We show that initialized multirate automata

are isomorphic to timed automata and are therefore decidable. In Section 2.5, we

Figure 2.1: An Example Transition System

extend the decidability results to rectangular automata with rectangular differential

inclusions.

2.2 State Transition Systems

2.2.1 Transition Systems

Given a system with states S and a set of generators E, a transition system

describes how the generators cause the state to evolve.

Example 2.2.1 The example offigure 2.1 is a state machine with states S = {A, B, C},

and generators E = {a, 6}. Generator a causes a move from state A to A or B, and

a movefrom state C to C or B. Generator b causes a move from state B to A or C.

Definition 2.2.1 A transition system is A= (5,—»-,E) where

• S is a set of states.

• E is a set of generators.

• —>C S x E x S is the transition relation.

We will write (5,cr, s') €—> as s -Z+ s'. The transition relation for the system in

Example 2.2.1 is —•= {(A, a, A), (A, a, £), (£, 6, A), (£, 6,C), (C, a, C),(C, a, B)}.

Example 2.2.2 The definition ofa transition system is quite general. A differential
equation x = f(x) with solution <l>(t) defines the transition system

A = (11",—>,Time) where Time = {t\t G H+], and the transition relation is

x —> y provided y = <j>(t) and </>(()) = x.

Definition 2.2.2 If A = (5,—>,E) is a transition system, then the reversed system

is A'1 = (5,—>r, E) where s' -^r s iffs -^ s'.

Thereversed system moves backwards. For theexampleof Figure 2.1, thereversed

system is the same state machine with edges reversed. In Example 2.2.2, thereversed
system A'1 = (7£n, —>r, Time) is the transition system for the differential equation
x - -f(x). The reversed system corresponds to the system obtained by reversing

the time flow.

2.2.2 Relationship Between Transition Systems

We study relationships between transition systems. For example, two transition

systems may be isomorphic. This is a very strong relationship. Weaker relationships
are obtained by using the idea of simulation. A transition system simulates another
when it can perform the same sequence of actions as the other transition system.

Using the idea ofsimulation, one can define bisimulation between two systems, where
each system simulates the other. In our discussion of transition systems A = (X, —>
,£.*•) and B = (F,—»,Ey), we will assume there is a one-to-one correspondence
between the generators £* and Ey. For generator ax € Ex, we write ay for the

corresponding generator in Ey.

Definition 2.2.3 Transition systems A = {X,—>,Ex) and B = (V,—>,Ey) are
isomorphic provided there is a bijection h : X —• Y such that x —^ z iff h(x) —>

h(z).

The transition system of the state machine of Figure 2.1 is isomorphic to the

transition system of a state machine obtained from Figure 2.1 by relabeling of the
states. A more interesting example isobtained by achange ofvariables inadifferential

equation.

Example 2.2.3 For x,y e H2 and differential equation x = {xu-x2), consider
the change of variables y = (2/1,^2) = Kx) = (*i ~ x2^2)- Then y = g(y) =
(yi + 2y2,-2/2). The transition system X = (R?,—>,Time) ofdifferential equation
x = f(x) and y = (ft2, —>, Time) ofdifferential equation y = g(y) are isomorphic.

Definition 2.2.4 Given transition systems A = (X, —>, £*) and B = (Y, —•, Ey),

we say B simulates A with relation R C X x Y if (x,y) € R and x -^» x' implies
that there is y' €Y such that y —^ y' and (s', y') € R.

The relation R in Definition 2.2.4 is called a simulation relation for the following

reason. Whenever (a?, y) € #, for any sequence generated by A starting from state z,

the corresponding sequence can be generated by B starting from state y. That is, B

from state y can simulate A from state x when (a;, y) £ R.

The following lemma states that the simulation property is transitive.

Lemma 2.2.1 If A simulates B and B simulates C, then A simulates C.

When A simulates B with relation R and B simulates A with R'1, we say A and

B are bisimilar.

Definition 2.2.5 If A —(X,—•,£*) and B = (V,—^Ey) are transition systems,

we say Re X xY is a bisimulation provided B simulates A with R and A simulates

B with R-1 C Y x X where R'1 = {(y,x)\(x,y) € R).

A bisimulation between two transition systems indicates that the transition sys

tems are equivalent in some sense. The relation that makes the transition systems

bisimilar also indicates the states in the two systems that are equivalent. A stronger

equivalence between two transition systems is obtained by requiring that A and B

are bisimilar, and A-1 and B~x are bisimilar. That is, the transition systems are

bisimilar in reversed time as well.

Definition 2.2.6 If A = (X,—•,£#) and B = (V,—^,Ey) are transition systems,

we say R C X xY is a time-symmetric bisimulation provided A and B are bisimilar

and A~l and B~l are bisimilar.

8

Transition systems that are isomorphic are time-symmetric bisimilar. The next

lemma states that the union of bisimulations is itself a bisimulation. This guarantees

the existence of a largest bisimulation for two transition systems which are bisimilar.

Lemma 2.2.2 If A = (X,—•,£*) and B = (K,—»,Ey) are transition systems

with bisimulation Ri C X xY,ieJ, then R = U«6J ft is als0 a bisimulation.

2.2.3 Equivalence Relations

Given a transition system A = (X, —•, E), we are interested in identifying states
of A that are "equivalent". We do this by considering the bisimulation of A with
itself. The following lemma shows that a bisimulation on A leads to an equivalence

relation.

Lemma 2.2.3 If A = (X, —•, £) is a transition system and R C X x X is a
bisimulation on A then the reflexive, symmetric and transitive closure of R is also a

bisimulation.

A bisimulation on A creates an equivalence relation ~ on the states X of A,
where all the states in the congruence class [x] are bisimilar to each other. Since
the identity relation {{x,x)\x € X} is a bisimulation, by Lemma 2.2.2 there is a
largest bisimulation from A to itself. From Lemma 2.2.3, the largest bisimulation is
an equivalence relation.

Definition 2.2.7 For a transition system A = (X,—•,£), and a bisimulation
~C X x X which is an equivalence relation, define the quotient transition system

Aj ~= (X/ ~,—>,E) where Xj ~ is the set of congruence classes, and [x] —> [y]
provided x —> y.

Although we have stated lemma 2.2.2, lemma 2.2.3 and definition 2.2.7 for bisim
ulations, they hold for time-symmetric bisimulations as well. For the example in
figure 2.1, R = {(A, A),(£,£),(C,C),(A,C),(C, A)} is a time-symmetric bisimu
lation which is an equivalence relation. The quotient transition system is shown in

figure 2.2.

Figure 2.2: Quotient Transition System

2.2.4 Reach Set of Transition Systems

For the transition system A= (S, —»,£), wedefine the relation =^C SxS, where

=>= {-^ W€ E}*. That is, =>• is the transitive closure of the set {-^ \cr € E}.
Essentially s =^ w provided w can be reached from 5 by an application of a sequence

of generators from E.

Definition 2.2.8 For a transition system A= (£,—»-,E); define Reach^(So) =

{w\s =*• w,s e Sq}.

The reach set Reachji(So) is the set of states that can be reached from So by a

sequence of transitions. For a map h :X —> Y and S C X, define h(S) = {/i(s)|$ €

5}, and for a relation Rc X xY and S C X, define R(S) = {y\(s,y) GR for some

seS}.

We next note that when two transition systems are equivalent, the reach set of

one can be computed in terms of another.

Lemma 2.2.4 If A = (X, —>>, E^) and B = (Y, —•, Ey) are isomorphic with bisec

tion h : X —> Y and So C X, then ReachQ(h(So)) = h(Reach^(So)).

Lemma 2.2.5 If B —(Y,—^,Ey) simulates A = (X,—>,%x) with relation R C

X x Y and Y0 C Y, then ReachA(R~l (Y0)) C RT1 (ReachB(Y0)).

Lemma 2.2.6 If A'1 = (X,—>r, E^> simulates B~l = {Y,—•/*, Ey) u/itfi relation

R-1 C y x X anrf y0 C y, tfien /^(/teacM^)) C fleacM^Q'o))

10

As a consequence of lemma 2.2.5 and lemma 2.2.6, we get the following theorem.

Theorem 2.2.1 If B simulates A with R C X x Y, A'1 simulates B~l with R~l,

and y0 C y, then ReachA(R~l (YQ)) = R'1 (ReachB(Y0)).

For more details on transition systems and their relationships, see [27].

2.3 Hybrid Automata

A hybrid automaton [3,29] models ahybrid system. It consists ofcontrol locations

with edges between the control locations. The control locations are the vertices in a

graph. Each location is labeled with adifferential inclusion, and every edge is labeled
with a guard, and a jump or reset relation. The state ofthe hybrid automaton is the
pair (/, a;) where / is the control location, and x £ Hn is the continuous state. The
hybrid automaton starts from some initial state (/0, x0). The trajectory evolves with
the control location remaining constant and the continuous state x evolving with the

differential inclusion at that location. When the continuous state satisfies the guard

of an edge from location / to control location m, a jump can be made to location m.

During the jump, the continuous state may get initialized to anew value y. The new
state is the pair (m, y). The continuous state y now moves with the new differential

inclusion, followed some time later by another jump, and so on.

2.3.1 Syntax

A guard isg C 7£n. An edge labelled with guard g isenabled when the statex e g.

A jump relation is j cHn xW1. During the jump, x is set to y provided (z, y) € j.
When j is the identity relation, the continuous state does not change. A differential

inclusion is x G f(x) where / is a set-valued map (i.e, f(x) C ftn); in case f(x) is
a singleton, it is a differential equation. A solution to the differential inclusion with
initial condition x0 € Tln is any differentiable function <£(*), where <j>: H+ -¥ 1ln such

that (j>(0) = x0 and j>(t) € f(<l>(t)). Associated with a differential inclusion x G f(x)
is the transition system (7£n,—>f,Time) where x —>/ y provided for a solution <j>

dx =_!_x
dt

x £ 0

•£*.=3-x
dt

11

x=0

Figure 2.3: Hybrid Automata

of the differential inclusion, <£(0) = x and <f>(t) = y. The set of guards, jump relations

and differential inclusions of interest are Guard, Jump, and Inclusions respectively.

A hybrid automaton is H = (L, D, E) where

• L is a set of control locations.

• D : L —Y Inclusions where £>(/) (also written Di) is the differential inclusion

at location /.

• E C L x Guard x Jump x L are the edges — an edge e = (l,g, j, m) € £ is an

edge from location / to m with guard g and jump relation j.

Figure 2.3 is an exampleof a hybrid automaton with control locations A and B, and

continuous state x. On the edge from B to A, the guard is g —{x\x > 2}, and x is

nondeterministically assigned a value in the interval [2,4].

2.3.2 Transition System of Hybrid Automata

The state space of the hybrid automaton is Qh C L x Hn. We define the semantics

of the hybrid automaton by defining its transition system. The state (/, x) € Qh of

the hybrid automaton evolves with either the control location remaining fixed and

x evolving according to the inclusion at location /; or with a jump from one control

location to another. The generators for the hybrid automaton H = (L,D,E) are

E = Time U {d}. The generator t € Time causes state (/, rc) to evolve to state (/, y)

12

in time t without a change in location. The generator d causes a jump in the control

location.

Definition 2.3.1 For the hybrid automaton H = (L,D,E), with state space Qh C

L x IV1, we define the transition system H = (Qh,—hTimeU {d}) where

(l,x) —• (/,y) provided x —»d, y.

•
d(l,x) —> (m,y) provided (l,g,j,m) eE,xeg and (x,y) € j.

We next define a r-transition system for the hybrid automaton in which "time"

does not play any role.

Definition 2.3.2 Corresponding to the transition system H = (Qh, —>, Timel){d})
ofthe hybrid automaton H, define the T-transition system HT = (Qh-,—>AT}V{d})
where

• (l,x) -^ (l,y) in HT provided (l,x) -A (l,y) for some t in H.

• (/,x) -^ (m,y) in HT provided (l,x) —> (m,y) in H.

Reachn(So) axe all the states that can be reached in the hybrid automaton H
starting from So C Qh- The next lemma states that the reach set of the transition

systems H and HT are the same.

Lemma 2.3.1 Reachn(So) = ReachnT(So)-

2.3.3 Classes of Hybrid Automata

We define some special classes of hybrid automata of interest.

Definition 2.3.3 A n-dimensional rectangle is a set of the form r = [/i,ui]x ... x

[Zn, un] with li,Ui G Z. The ith component of r is rt- = [/«««]• The set of all n-

dimensional rectangles is Rectn.

13

Definition 2.3.4 A n-dimensional rectangular automaton R = (L, £>, E) is a hybrid

automaton with Inclusions = Rectn, Guard = Rectn and Jump = {j\j = j\ x... x jn

where ji = [U,ui\ or ji = id}, where relation [h,Ui] = {(x,y)\y G[/««*]} and zrf is the
identity relation.

Definition 2.3.5 A n-dimensional multirate automaton is a n-dimensional rectan

gular automaton in which the inclusions consist of single points, i.e., Inclusions

= {r:reZn}.

Figure 2.8 is an example of a rectangular automaton, and figure 2.6 shows a

multirate automaton.

Definition 2.3.6 A n-dimensional timed automaton is a n-dimensional multirate

automaton in which the set Inclusions contains the single element {l}n, i.e., i» = 1

for each i at every control location.

Since the differential equation is fixed at each location in the timed automaton,

we denote the timed automaton by T = (L, E).

In an initialized rectangular (multirate) automaton, the differential inclusion for

the ith component changes only when it is initialized. That is, for locations / and m

and edge (/,<?, j,m) G E, the inclusion for Xi can be different at / and m provided

Xi is initialized during the jump, i.e., ji is not the identity relation. The multirate

automaton in figure 2.6 is an initialized multirate automaton. For example, x = 2 in

location A and x = —3 in location B, but x is initialized on the jump from A to B.

The ith component of guard g is # = [/«,n»]. For k > 0, define ^ = [^,^], and

for k < 0, define ^ = [^, £]. Similarly, the ith component of relation j is j,-. For
relation ji = [/;,«;], ^ is similarly defined, and for ji = id, ^ = id.

2.3.4 Additional Notation

For an edge e = (l,j,g,m) of a n-dimensional rectangular automaton with ji =

[r,-,St] and gi —[at-, 6t], we say the edge is labeled with the initialization (xi := ji —

[rt-,st]) and the guard (ax < Xi < 6»). This information is summarized by writing a

x-0
y-0

dx

dt

dy
dt

[x < 3]

ty < i]

dx

dt

<jy _
dt

B

= 1

= 1

[x > 0] [y < 1]

tx > 4]

ty :- [-2,-2]]

dt

dy „.j
dt

—r

[y < -i]

[x 2 1]

[x :- [1,2]]

dt

dy

dt
= 1

14

Figure 2.4: Timed Automaton

conjunctive expression A?=i(oi < Xi < bi)(xi := ji). We also permit a disjunction

of conjunctive expressions of the form VT=i A?=i(a;fc < z; < &tfc)(»t := jik)- Such
an expression would be represented by m edges in our definition of a rectangular

automaton.

We also permitexpressions of the form ((xi < 5) —> (xi := 5)), which translates

to (xi > 5) V ((xi < 5) A (xi := 5)), and would be represented with two edges.

In general, any boolean expression can be translated into disjunction of conjunctive

expressions, and represented with multiple edges.

2.4 Timed Automata and Initialized Multirate

Automata

2.4.1 Timed Automata

A n-dimensional timed automaton has n clocks, x,-,i = 1,. ..,n, with i; = 1 at

every control location. The guards on the edges are rectangles. The jump relation

either leaves the value of the clock unchanged, or sets the clock nondeterministically

to a value in an interval. Figure 2.4 is an example of a timed automaton.

15

We review the work in [4] in which it was shown that timed automata have a

time-symmetric bisimulation with a finite numberof congruence classes.

Consider a timed automaton T = (L, E) with state space Qt- Suppose M« is the

largest integer with which xt- is compared in a guard, or assigned in a jump relation.

We will define an equivalence relation ~ on TV, where two states will be related

provided the ordering of the fractional parts of the components of the two states is

the same; and the integer partsof the components of two states match, or are greater

than the largest integer with which they are compared. For z GTl, we write [z\ for

its integer part, and (z) for its fractional part.

Definition 2.4.1 We define a relation ~C TV x TV, where x~y provided for every

i and j

• <*«•>< (*j> iff(Vi)<(yj)

• M = (*i> iff (Vi) = (Vj)

• (l*.-J = M < M)or ((!*•• J > M<)and (LwJ > Mi))

It can be checked that ~ is an equivalence relation.

We next describe the congruence classes of the equivalencerelation ~. For a vector

x GTV, we define (x) to be the ordering of the fractional parts of its components. For

example, for x = [0.3 4.7 3.2 8.3], (x) = (0 < (a*) < (*i) = (x4) < (x2))- Similarly,

[x\ is a vector of integer parts of the components, or an indication that the integer

part is greater than Mi. For x = [0.3 4.7 3.2 8.3], and Mi = M2 = M3 = MA = 5,

[x\ = [043 >].

Lemma 2.4.1 For the equivalence relation ~, the congruence class [x] = {y\(x) =

(y) and [x\ = [y\].

Since the integers Mt- are bounded a priori, the equivalence relation ~ has only

a finite number of congruence classes. Figure 2.5 shows the congruence classes for

Tl2. We extend the relation ~ to Qt C L x TV by defining (l,x) ~ (l,y) provided

x ~ y. The relation ~ is an equivalence relation on Qt and the congruence class

[(/, a:)] = {/} x [x]. Since L is finite, Qt has a finite number of congruence classes.

16

ii
Figure 2.5: Congruence Classes of the Bisimulation for Timed System

Theorem 2.4.1 The equivalence relation ~ is a time-symmetric bisimulation for the

r-transition system Tr = (Qt,—>AT) U{d}).

Therefore the quotient transition system TV/ ~= (Qt/ ~, —>, {r}U{d}) has only

a finite number of states. As a consequence, we get the following result.

Lemma 2.4.2 For a timed automaton T = (L,E), ReachT([So]) = ReachTri~([So])

can be computed in a finite number of steps.

Although, we have only considered timed automata in which the coefficients in

the guards and jump relation are integers, similar results hold for timed automata

with rational coefficients.

2.4.2 Initialized Multirate Automata

In a multirate automaton, different components of state x move at different rates.

In an initialized multirate automaton, the rate at which x« moves can change when

a jump is made into another control location and a;,- is initialized during the jump.

We show how to construct a timed automaton such that the transition systems of the

timed automaton and the initialized multirate automaton are isomorphic.

Corresponding to the initialized n-dimensional multirate automaton M = (L,D, E),

define the corresponding n-dimensional timed automaton T = (L,Et)- The edge

(l,g, j,m) GEis replaced with the edge (l,gT,jT, m) GET with gf =* and jj =^
where D\ — v and Dm = w.

17

Figure 2.6 shows an initialized multirate automaton, and Figure 2.7 shows the

corresponding timed automaton. Consider the edge from location A to location B.

The guard (x < 5) on the edge in the multirate automaton is replaced with the guard

(x < §) in thetimed automaton since x= 2in location Aofthemultirate automaton.
Similarly the initialization x := [4,4] in the multirate automaton is replaced with the

initialization x := [4j, ^] in the timed automaton since x = —3in location B of the
multirate automaton.

Define the map h : L x TV —> L x TV by h(l,y) = (l,x) where * = (£,...,£)
and Di = v. The state space of the timed automaton T is Qt = h(Qiu)• The next

theorem states that the transition systems of the multirate automaton and the timed

automaton are isomorphic.

Theorem 2.4.2 The transition system M = (Qm, —>,TimeU{d}) of the initialized

multirate automaton, and T = (Qt,—>,TimeU {d}) of the timed automaton are

isomorphic with bijection h : Qm —> Qt-

Lemma 2.4.3 h(ReachM(X0)) = ReachT(h(X0)).

Since the reach set of a timed automaton can be computed in a finite number of

steps, the reach set of an initialized multirate automaton can also be computed in a

finite number of steps.

2.5 Initialized Rectangular Automata

In this section, we discuss initialized rectangular automata. Decidability of ini

tialized rectangular automata was shown in [30]. We follow the proof given in [17].

In a rectangular automaton, the inclusion for the ith component xt- is ii G [/t,^,].

Figure 2.8 shows an initialized rectangular automaton. In this section we present a

method to translate an initialized rectangular automaton into an initialized multirate

automaton. Given an n-dimensional rectangular automaton R, we define a simulation

relation S and a 2n-dimensional multirate automaton M such that M simulates R,

and R~l simulates M-1.

[x > 0] [id]

ty £ 2][y:-[l,l]]

[x < 5][x:-[4,4]]

ty < -3) tid]
ty S -2]tid]

lx > -3][x:-t-l,-2]]

ty < -5)ty:-t-4,-4]]

Figure 2.6: Multirate Automaton

[x > 0] ty < l] _dx
6 Z Z

[y:-[-l/3,-l/3]]

(x < 5/2][x:-[-4/3,-4/3)]

ty > 1]

ty>5/3]ty:-t-2,-2]]
X

ty < -i]

tx < 1]

[x:-[-l/2,-l]]

Figure 2.7: Translation of Multirate Automaton to Timed Automaton

18

x-0
y-0

dx

dt
E [1,3]

-2y_e [-3,-2]
dt

tx > 0] [id]

ty i 2][y:-[l,l]]

[x < 5](x:-[4,4]]

ty < -3] lid]

dx

dt

dy
dt

B

e t-4,-2]

£t-3,-2]
ty < -5][y:-t-4,-4]]

dx

dt

dt

dx

dt

dy

dt

e[i,3]

E [1,2]

[y £ -2)tid]

tx > -3]tx:-t-l,-2]]

e [-4,-2]

E [1,2]

Figure 2.8: Initialized Rectangular Automaton

19

We do this by replacing a variable x G [l,u] in the rectangular automaton with

two variables x\ = I and xu = u in the multirate automaton. The variable x defines an

envelope in the rectangular automaton whose lower and upper boundaries are tracked

by xi and xu in the multirateautomaton (figure 2.9). When the test (x > a) is made

in the rectangular automaton, we make the test (xu > a) in the multirate automaton.

After the test, the boundary of the envelope gets redefined (figure 2.9). This is done

by checking whether (xj < a), and initializing xj to a when this is the case. Hence,

the lower and the upper boundary of the envelope are tracked again by x/ and xu

after the test. Similarly, when the test (x < a) is made in the rectangular automaton,

we test whether (x/ < a) in the multirate automaton. To update the boundary, we

initialize xu to a when (xu > a).

More formally, corresponding to an n-dimensional rectangular automaton R =

(L, Dr, Er), we define the 2n-dimensional multirate automaton M = (L, Dm,Em)-

The variable j/2t-i in the multirate automaton tracks the lower boundary of the en

velope created by xt- in rectangular automaton, and the variable t/2t* tracks the upper

boundary of the envelope. At location /, x» G [h, ui\ in the rectangular automaton is

replaced with foi-i = Uand V2i = v>i in the multirate automaton. A guard (x» > a) in

the rectangular automaton is replaced with (y2i > a) A ((y2i-i < a) —> (y2i-i := a))

on the corresponding edge in the multirate automaton. Similarly the guard (xt- < a)

20

a xi

time

Figure 2.9: Envelope of differential inclusion x G[/, u]

in the rectangular automaton is replaced with (jftt-i < a) A((y2i > a) —> (y2i := a))
in the multirate automaton. The initialization (xt- := [r,s]) in the rectangular au

tomaton is replaced with (y2t-i := r) A (y2i := s) on the corresponding edge in the

multirateautomaton. Figure 2.10 is the initialized multirate automaton obtained by

translating the initializedrectangular automaton of figure 2.8.

Definition 2.5.1 For a rectangular automaton R with state space Qr, and the cor

responding multirate automaton M with state space Qm, define the relation S C

Qm x Qr where S = {((l,y),(l,x))\y2i-i < xt- < y2i}.

The relationship between the states of the initialized rectangular automaton, and

the initialized multirate automaton obtained by translation from it, is made with the

relation S. The multirate automaton tracks the rectangular automaton. When the

multirate automaton reaches state (l,y), the rectangular automaton can reach any

state in the set S({(l,y)}) = {1} x [yi,y2] x ••• x [y2n-i,y2n]-

Theorem 2.5.1 IfR=(Q, —>,TimeU{d}) is the transition system ofan initialized

rectangular automaton, and M = (Qm, —>, Time U{d}) is the transition system of

the corresponding multirate automaton, then

• M simulates R with relation S 1, and

[x"> 0] [y»:- 1]
[y1^ 2] [y1:- 1] _d£ ! j£ ,

([xi< 0] -> [x1:- 0]] dt ~ dt s

[x1* 5] tx1:-4] [xM-4]
[y>< -3]

y (tyu> -3) -> tyu:- -3])

B

_dx>__4 dx^ _2
dt ~ dt =~

T°"3 dt ="2

[y*< -5]
[y1:- -4] [y":- -4]

D
dx1 dxu

dT =1 dTe3

lf< -2]
[x"> -3]
xi:"—2]
(ty^ -2] -> [^ :

tx"> -3]
[xi:—2][xu:—1]

»t dt dt

iL i -S£-
dt "* dt ~

21

- -2])

Figure 2.10: Translation of Rectangular Automaton to Multirate Automaton

• R~l simulates M~l with relation S.

Proof: We will only show that M simulates R with relation S"1. The proof for

showing R~l simulates M~l is similar. Suppose ((l,x),(l,y)) GS~l, (l,x) —> (l,x')

and xt- G [/t,u,]. Since y2t_i < Xi < y2i, we get

V2i-i = 2/2i-i + lit < Xi + lit < x'i < Xi + u(t < y2i -r u(t = y'2i.

Therefore (l,y) -^ (l,y') and ((l,x'),(l,y')) GS~l.
Next suppose ((/,x),(/,i/)) G S~l, (l,x)

consider the case when the zth component of the jump relation is ji = [rt-, st]. Then

-i // „\ _A+ (/^/) and (/,y) ^ (/,y/). First

2/2»_i = n < x'i <si = 2/2t«

Next suppose ji = id, and the ith component of the guard is gi = [a», &,]. Then

y2i-i = max(a,-, y2t-i) < zj = xt < min(bi,y2i) = j/2t-.

Thus ((/, x'), (/, y')) GS-1.

From Theorem 2.5.1 and Theorem 2.2.1, we get the following result.

Theorem 2.5.2 ReachR(S(Y0)) = S(ReachM(Y0)).

22

Since the reach set of an initialized multirate automaton can be computed in a

finite number of steps, we can compute the reach set of an initialized rectangular

automaton in a finite number of steps.

2.6 Conclusion

In this chapter we have presented a decidable class of hybrid systems which can

be analyzed algorithmically. To analyze systems with more complicated dynamics,
we use abstractions [31]. A system which has complicated continuous dynamics is

abstracted with one which has simpler dynamics, such as rectangular inclusions. The

abstractions are conservative approximations. Hence, any property we prove for the

abstraction always holds for the original system.

Chapter 3

Driving Safely in Smart Cars

23

3.1 Introduction

Automation of driving functions is central to proposals for the design of an Au

tomated Vehicle/Highway System (AVHS). In the control architecture in [41], it is

proposed that vehicles travel in platoons. Three maneuvers areneeded: in merge, two

platoons join together; in split, one platoon separates into two; and in change lane,

a single vehicle changes lane. Using these maneuvers, a vehicle enters the system,

becomes part of a platoon, travels to its destination, detaches itself from the rest of

the platoon, and exits out of the system.

The overall architecture is divided into five layers: network layer, link layer, coor

dination layer, regulation layer and physical layer. The physical layer describes the

vehicle dynamics. The regulation layer comprises the set of control laws for acceler

ation, braking and steering. The control law that is applied depends upon whether

the vehicle is a leader or a follower, and upon the commands from the coordination

layer (Leader is the lead vehicle of the platoon; other vehicles are called followers).

The coordination layer contains protocols. These protocols exchange coordination

messages with the other vehicles in order to determine which of three maneuvers to

execute and when to do so. The link layer manages a section of the highway, setting

the recommended velocity and platoon size for vehicles in that section of the highway.

The network layer determines the route for the vehicles.

24

Designs for the various layers of AVHS have been proposed. A design for the

control laws in the regulation layer is proposed in [15] and [14]. In [15], control laws

are proposed for the leader modein which a platoon tracks the recommended velocity,

or if there is a platoon in front, then it remains a safe distance behind that platoon.

Control laws for the merge and split maneuver are proposed in [14]. A design for the

coordination layer is proposed in [21]. This consists of protocols modeled with finite

state machines.

In this chapter weconsider the following problem. Consider an AVHS, for example

the system proposed in [41, 15, 14, 21]. How do weknow that such a system is safe?

Of course we have to define what safety means. We say a system is unsafe if there

is a possibility of a high relative velocity collision on the AVHS. We want to prove

for a proposed design of an AVHS, that there is no such possibility. We can simulate

the system. But that only checks safety for a finite number of simulation paths or

trajectories of the system. We want to prove safety for every trajectoryof the system.

In this chapter we develop an approach for proving that a system is safe. We consider

a proposed design for an AVHS and show that if the physical controllers in the vehicles

satisfy a set of constraints then the AVHS is safe.

In Section 3.2, we describe relevant parts of the AVHS design proposed by [41,15,

14, 21]. In Section 3.3, we show that a single lane AVHS is safe when the controllers

satisfy a set of constraints. In Section 3.4, weextend the design to include the change

lanemaneuver, and prove that the new design is also safe. In Section 3.5, we conclude

with some open problems.

3.2 Single Lane AVHS

In this section we describe the merge and split maneuvers, and the relevant as

pects of the coordination and the regulation layer that are important from a safety

viewpoint.

3.2.1 Maneuvers and Architecture

25

i+1 j-1

'i+i d<_i-l

Figure 3.1: A Lane of the Highway

Figure 3.1 shows a lane of the highway with different platoons. The vehicle at the

head of the platoon is called the leader, and it is normally under the leader control

law. Under the leader control law, it follows the platoon in front at a safe distance

and speed. The other vehicles in the platoon are underthe follow control which tracks

the leader of the platoon. At certain times, the leader of the platoon may decide to

merge with the platoon in front of it. To do this, it communicates with the platoon

in front, and if permitted, it orders the regulation layer to follow the merge control.

This causes it to mergewith the platoon in front. On the other hand, if during the

mergemaneuver, the platoon in front suddenly decelerates or behaves erratically, the

merge maneuver is aborted and a switch is made to the abort control. The abort

control law steers the leader to a state from which it is safe to switch back to leader

control. When the merge is successful, the platoon which was merging becomes part

of the platoon in front, and the leader switches to the follow control. Similarly, a

vehicle in a platoon may decide that it wants to split from the platoon. In this case,

it communicates with the leader of the platoon, and if the leader permits, the vehicle

orders its regulation layer to follow the split control law, which causes the vehicle and

all vehicles behind it to split and become a separate platoon.

As shown in figure 3.1, the distance of platoon i from the origin is dt-. The

continuous state of the leader of platoon i is art-. In [15], it is assumed x» = (di,di,di).

The Regulation Layer has five control laws: leader (£» = L(xt-,x;_i)), merge

(xi —M(xi,Xi„i)), follow, split (ii = S(xi,Xi-i)), and abort (£; = A(x;,xt_i)). The

regulation layer of a vehicle is in the follow mode when the vehicle is not the leader

26

of the platoon. We assume that avehicle in the follow modeexactly tracks the leader

of the platoon. Hence, the continuous stateof platoon i is a;,-, the same as its leader's

state. The continuous state of the AVHS is x = (x0, xu x2,...). Notice that the

control for a platoon depends on its own state and the state of the platoon in front.

3.2.2 Safety Criterion and Control Table

In a lane of the highway, the vehicles will be going through a sequence of modes

such as merge, split, follow, abort, or leader. We want to prove that at no point

in time is there a high relative velocity collision between any two vehicles. A high

relative velocity collision is defined as a collision in which di —d»-i > c m/s, where c

is a design parameter.

Associated with each control law / (where / could be the leader, merge or the split

control) are two sets: an initial setSj and an unsafe set Uj. The control / starts from

an initial condition (xi(0),Xi-i(0)) € Sj. The unsafe set Uj is the set of undesirable

states which should be unreachable; for example, Uf is the set of states representing

collision between vehicles. The initial set 5/ is chosen so that starting from an initial

condition (zt(0),Et-_i(0)) GSj, the unsafe set Uj is unreachable. Before the control

Xi = /(xj,xt_i) is applied, it is checked that the initial state (a;t-,a:;_i) € Sj.

The set Uj can depend on control /. For the merge control, we require that there

be no high relative velocity collision; for the leader control, we impose the stronger

condition that there be no collision. We summarize this information in the Control

Table (table 3.1). The control table shows when a particular control is permissible.

The control law Xi = f(xi,Xi-i) can be applied provided (x,-,£t_i) € Sj. Before a

control is applied, a check is made in the Control Table to see whether the initial

state (xi,Xi-\) € Sj.

In the abort control law, a vehicle applies full brakes. Therefore, it is safe to

switch to the abort control law at any time from any of the other controls.

Control Table

Control Initial Set Unsafe Set

Leader Xi = L(Xi,Xi-\) Sl UL = {x\di = dt-_i}
Merge: ii = M(xi,Xi-i) Sm Um = {*|<t = <fc-i

and d» —di-i > c}
Split: Xi = D\Xi,Xi—i) Ss Us
Abort: Xi = A\Xi, Xi_ij

27

Table 3.1: Control Table to Check Safety

3.3 Safe Driving, Abstractions and Optimal Con

trol

Consider the single lane system of figure 3.1. Each vehicle follows the control

Xi = f(xi,Xi-i), (3.1)

where (xt(0),z;_i(0)) € <S/. The control / could be the leader, merge, split, or the
abort control law. We must show that the unsafe set U/ is unreachable in each case.

We face the problem that the control for vehicle i-\ depends onvehicle i-2, which

depends on vehicle i —3, and so on. To avoid working with an infinite dimensional

system, we use a conservative abstraction. We look at the dynamics between two

vehicles, vehicle i and vehicle i —l, and abstract the differential equation for vehicle

*-l,

Xi-i = f(xi-UXi-2), (3.2)

with the differential inclusion

"t—1 € l<Amtni A-max\- (3.3)

We choose Amin to be the maximum deceleration (full brakes), and Amax to be the

maximum acceleration (full throttle). This implies that for any law / in equation 3.2,

the solution for equation 3.2 is contained in the set of solutions for equation 3.3. In

this sense, equation 3.3 is a (conservative) abstraction of equation 3.2.

We now prove safety for the abstracted system

Xi — J{Xi,Xi—i), (3.4)

28

di—1 € |yMntn» Amax\,

(«,-(0),ajt--i(0))€5/,

by showing that Uj is unreachable. This will imply that the system of equation 3.1

is safe, since the reachable set of equation 3.4 is larger than the reachable set of

equation 3.1. Notice that proving safety for equation 3.4is equivalent to proving that

no matter what is the behavior on part of vehicle i —1, the control law for vehicle

i prevents it from having a high speed collision with vehicle i —1. Furthermore,

equation 3.4 is independent of vehicles i —2 and beyond.

We show that the system defined by equation 3.4 is safe for each control / and

initial set Sj. From this it follows that there can be no high relative velocity collision

involving vehicle * and vehicle i —1. Since i is arbitrary, it follows that for every i,

there isnohigh relative velocity collision involving vehicle i and vehicle i—l.1 That is,

the system of figure 3.1 is safe when the initial state is such that (x,_i(0), £t-(0)) G5/

for each i.

To show that U/ is unreachable in equation 3.4, we need to compute the reach set

Reach/(Sj) (i.e., all states reachable from Sj under the law /), and check whether
Reach/(Sj) p| t// = 0. For a control /, there is also a largest set of safe initial states

S] = (Reach..f(Uf))c (i.e., complement of all states which can reach £//). It is clear
that for a set Sf, Reach/(S/) and S] are invariant sets, and Sj C Reach(Sf) C Sj.
Instead of explicitly computing the Reach set, weturn our problem into an equivalent

optimal control problem.

3.3.1 Optimal Control Problem

To determine whether Uf = {z|<7(z) < 0} is unreachable from 5/ in equation 3.4,

we solve the following optimal control problem, with control u = rf,_i:

Cost: J = min g(x(t)), (3.5)

Differential equation : Xi = f(xi,Xi-i),

Initial condition constraint : (zt(0),:rt_i(0)) € S/,

!A vehicle that is not engaged in the merge maneuver should have no collision.

29

State constraint: di > 0, di-\ > 0,

Control constraint: it = oft—i £ [<<4mtn> Amoar].

The optimal control finds the choice of the initial condition

(xi(0),Xi-i(0)) £ Sj and control which minimize the cost while remaining within

the constraints. Notice that the state constraints require the velocities of both ve

hicles to be positive. If the optimal cost J > 0, then we know that for every initial

condition (xi,Xi-i) € Sj, the set Uf is unreachable in equation 3.4. On the other

hand, if J < 0, then the trajectory which minimizes J also takes equation 3.4 into

Uf. Therefore the system of equation 3.4 is safe if and only if the optimal cost J > 0

in equation 3.5.

3.3.2 A Leader Control Example

Equation 3.6 shows part of the leader control developed in [15]. The control is

applied during safety-critical situations when the inter-vehicle distance is small, or

the relative velocity between vehicles is large.

&= -34 - 3(A - i_0 +((4-i - di) - (di + 10)) (3.6)

The state of the system is x = ((t/t-i - di),di,di-i,di). The maximum braking

capacity of a vehicle is Amtn = —51?, and the maximum acceleration is Amax = 2^.

We choose the initial set Sl where

SL ={(di-i - di) +{^~^-l) - 10 - (di - di-,) >0,

di-i —di > 5, —5 < di < 2,

0< di < 30, 0<i_i < 30}.

We want to determine if a collision between vehicle i and vehicle i — 1 is possible

when vehicle i starts from an initial condition x(0) € Sl and follows the control in

equation 3.6. To determine this, we solve the following equivalent optimal control

30

Figure 3.2: Solution of the Optimal Control Problem

problem:

Cost:

Differential Eqn :

J = min (di-i —di), (3.7)

di= -3d,- - 3(4 - di^) + (W-i - di) - (di + 10)),

di-i = u,

Initial Condition : x(0) € Sl,

State Constraint: di > 0, d,_i > 0,

Control Constraint : u € [^Afm, AMax]

The optimal control problem is a free end time problem. The solution is obtained

using mathematical programming techniques with the optimal cost J = 1.4, and

E

LO

ra k+1

A

m k

31

Figure 3.3: Change Lane Manuever

x"(0) = (5.0,14.6,15.8,2.0).2 Figure 3.2 shows the optimal control (acceleration of

vehicle i —1), the distance between vehicle i and vehicle i —1, and the speed of

vehicle i —1 and vehicle i respectively. The optimal control corresponds to vehicle

i —1 applying full brakes for the first 3 seconds. Since the optimal cost J = 4_i —4

is slightly above 1 meter, we conclude that starting from any initial condition in Sl,

despite any behaviour of vehicle 2—1, the distance between the vehicles never falls

below 1 metre. Therefore, vehicle i can safely switch to the control of equation 3.6

when x(0) € Sl-

Although in this examplevehicle i —1 applies full brakes, in general, the trajectory

which vehicle i—1 executes to minimize the separation between the two vehicles can be

much more complicated. For example, vehicle i —1 can accelerate, causingvehicle i to

accelerate, and then vehicle 2—1 applies full brakes. The form of the optimal solution

(the trajectory which vehicle 2—1 executes to minimize the separation between the

two vehicles) will depend on the control used by vehicle i.

To solve our problem we require a global optimum. This is in general difficult

using mathematical programming techniques unless the problem is convex.

3.4 Changing Lane with Abstract Vehicles

In section 3.2, we described the design for a single lane. The basic maneuvers

were the merge and the split maneuvers. In this section, we extend the design with

the change lane maneuver that single vehicles execute to move from one lane to the

next.

2The solution is due to Adam Schwartz.

32

n~i m cd k+1

m i i rju

Figure 3.4: Changing Lane with Abstract Vehicles

The basic idea we use to show that the change lanemaneuver is safeis the same as

in section 3.3: a vehicle follows the vehicles in front at a safe distance and speed. Its

control law prevents a high-speed collision with the vehicles in front, no matter what

their behavior is. In the case of a single lane, the meaning of "front" is well-defined.

In the case of a multilanehighway, this is not so clear. Consider vehicle A changing

from lane k to lane k + 1 in figure 3.3. The process of changing lane takes a certain

amount of time, and is a continuous phenomenon. It is not clear in figure 3.3, which

vehicle is in front of vehicle A, and what should be the longitudinal control for vehicle

A. Or when should the longitudinal control for D take B into account, rather than

A.

Since keeping safely behind the vehicle in front was the key to proving safety in a

single lane system, we extend this idea to multilane system byusing the concept of an

abstract vehicle. Abstract vehicles will be conceptual devices used to represent real

vehicles. For example, a vehicle changing from lane k to lane fc+1 will be represented

by an abstract vehicle occupying both lane k and lane k + 1 for some time. We will

design the control system so that the abstract vehicles remain safe. Since a real

vehicle is within the space occupied by the abstract vehicle, this will also guarantee

the safety of real vehicles.

Consider figure 3.4. Vehicle A is changing from lane k to lane k + 1, but it is

represented by an abstract vehicle. The meaning of "front" is clear in this figure.

Vehicles B and C both are in front of vehicle A, and vehicle A is in front of vehicles

D and E. Vehicle A must remain a safe distance and at a safe speed behind vehicles

B and C. Despite any erratic behavior on the part of vehicles B and C, the control

law for vehicle A should prevent a collision with B or C. Of course if the abstract

33

vehicle is safe, then so is the real vehicle. The controls for vehicles D and E axe

identical to those in section 3.2, with vehicle A in front.

When a vehicle is ready to change lane, it turns on its change lane signal. At

this time, it also becomes an abstract vehicle occupying two lanes. It switches to

a longitudinal control which keeps the abstract vehicle safe from the vehicles in the

front, and a lateral control which causes the vehicle to move from one lane to the

next. The change lane signal also indicates to the other vehicles that this vehicle is

an abstract vehicleoccupying two lanes. The vehicles in the neighborhood take this

into account when they figure out which vehicle is in front of them.

3.4.1 Longitudinal Control for an Abstract Vehicle

An abstract vehicle can have two vehicles in front of it—one in each lane— the

objective of the longitudinal control should be to prevent a collision with either vehi

cle. Consider vehicles A,B and C in figure 3.4. The states of vehicles A,B and C are

xa = (dA, dA, dA), xB = (dB,dB,dB) and xc = (dc, dc,dc) respectively, where dA, 4b

and dc are the distances of the vehicles from the origin. The longitudinal control for

vehicle A is

xA = C(xA,xB,xc) (3.8)

The unsafe set is Uc = {(xA, xb, xc)\dA = dB or dA = dc} (i.e., A has a collision with

B or C). An initial set Sc is specified such that Uc is unreachable when equation 3.8

starts from an initial state (xa,xb,xc) € Sc- To check that the control C satisfies

this safety criterion, an optimal control problem can be solved as in section 3.3.

3.4.2 Change Lane Manuever

Suppose vehicle A wants to change from lane k to lane k + 1. Let [A] be the

abstract vehicle which occupies both lane k and lane k + 1. Since [A] occupies two

lanes, there may be a new vehicle in front of it in lane k + 1. Furthermore, [A]

itself may be in front of another vehicle in lane k + 1. Before A becomes an abstract

vehicle, it must check that [A] starts from a safe initial condition. And if [A] is in

I F 1E k+2

r : ra k+1

1 D | •UUi 1 b | k

Figure 3.5: Change Lane Manuever

34

front of a new vehicle in lane k+1, then that vehiclemust also start from a safeinitial

condition. Consider figure 3.5. Before A becomes an abstract vehicle, it must check

that (xa,xb,xc) € Sc- And since [A] will be in front of E, it must also check that

(xe,xa,xf) € Sc- When these two conditions are true, A turns on its change lane

signal, becomes an abstract vehicle, and begins to change lane. After A has finished

changing lane, it turns off the change lane signal and resumes leader control.

Notice a subtle point in the design. Before A resumes leader control, it needs to

check that the new initial condition is safe. Also, in figure 3.5, [A] is safe from B, and

D is safe from [A]. But when A finishes changing into lane k + 1, D finds B in front

of it, and may not be safe from it. We assume the controls satisfy the transitivity

property (i.e., if A is safe from B, and D is safe from A, then D is safe from B) which

rules out this possibility.

The possibility of two vehicles simultaneously turning on their change lane signals

has to be avoided or resolved by using some coordination or contention resolution

mechanism.

There is no high-speed collision involving a vehicle and the vehicle in front. This

is also true for the abstract vehicles. Therefore, vehicles that are changing lane are

also safe. Furthermore, a change in the highway configuration due to the beginning

or ending of the change lane maneuver also keeps the systemsafe. Since every vehicle

on the multilane AVHS is safe at all times, we conclude that the multilane AVHS is

safe. It is interesting that the proof of safety in a multilane AVHS is independent of

the lateral control law for the change lane maneuver.

35

3.5 Conclusion

We considered the problem of safety on an AVHS. We presented two main tech

niques: conservatively abstracting the dynamics of a vehicle by a simple differential

inclusion; and representing a vehicle changing lane by an abstract vehicleoccupying

two lanes. Using these methods, it becomes possible to determine the safety of a

vehicle by considering only its own controllers. When the controllers satisfy a set of

constraints, the vehicle is safe. We showed that checking whether the controllers sat

isfy the set of constraints is equivalent to solving an optimal control problem. Since

we prove that each vehicle is safe, we conclude the multilaneAVHS operates safely.

Several problems need to be studied in more detail. Computing the initial set

Sf, and determining whether the unsafe set Uf is reachable from an initial condition

in Sf is a key problem. Although the problem is equivalent to an optimal control

problem, solving for the global optimal is difficult.

In the next chapter, we propose another solution to this problem. We provide

computational methods to compute arbitrary close approximation of reach sets and

invariant sets of differential equations and differential inclusions.

Chapter 4

e-Approximation of Differential

Inclusions

36

4.1 Introduction

A dynamical system x € f(x) describes the flow of points in the space. Associated

with a dynamical system are several interesting concepts: from an invariant set, points

cannot escape; and a recurrent set is visited infinitely often. For the controlled system

x = f(x, u), the question of whether there is a control u € U to steer the system from

an initial state xo to a final state Xf is fundamental.

We approach the subject from the viewpoint of applications and an interest in

computational methods. For the differential inclusion x € f(x), we want to compute

the invariant sets and the recurrent sets. For the controlled differential equation

x = f(x, u), we want to determine the control u € U which steers the system from

an initial state xo to a final state Xf. And we want to determine the reach set

Reachf(X0, [0, i\) — the set of states that can be reached from the initial set of states

Xo within time t.

In this chapter, we propose a computational approach to solvesomeof these prob

lems. For a Lipschitz differential inclusion x € f(x) with initial set Xo, we propose a

polyhedral method to obtain an arbitrary close approximation of Reachf(Xo,[0,t]).

For a differential inclusion x G f(x), and any e > 0, we construct a, finite sample graph

37

A1 which has the property that every trajectory <j> of x G f(x) is also a "trajectory"

in the graph Ac. And every "trajectory" n of the finite graph A1 has the property

that dist(r)(t), f(rj(t))) < e. Since A1 is a finite graph, it can be analyzed using graph

theoretic techniques. Using the finite graph Ac, we can compute the c-invariant sets

of x G f(x) — the sets which remain invariant under small perturbations in /.

In Section 4.2, we introduce our notation, and define the basic terms. In Sec

tion 4.3, we conservatively approximate the differential inclusion by a piecewise con

stant inclusion, and obtain an approximation of Reachf(X0, [0,t]). In Section 4.4,

we obtain a finite graph Ac from the differential inclusion x G f(x), and use it to

determine the properties of the differential inclusion. In Section 4.5, we discuss the

application of techniques from Sections 4.3 and 4.4 to computing the e-invariant sets

and other properties of differential inclusions. In Section 4.6, we apply these methods

to compute the invariant sets for two examples: a pendulum moving in the vertical

plane, and the Lorenz equation. We also discuss procedures to improve the efficiency

of our methods. In Section 4.7, we discuss possible directions for future work.

4.2 Preliminaries

Notation

Tl is the set of reals and Z is the set of integers. B = {x : \x\ < 1} is the unit ball.

For sets U,V C TV, U+ V = {u + v\u GU and v GV} and for a GTl, aU = {au\u G

U}. For S > 0, Bs(x) is the o"-ball centered at x, i.e., Bs(x) = {y : \y —x\ < 6}. For

XdTV, Xc = X + eB.

For x G TV, and Y C TV, the distance dist(x, Y) = inf{\x - y\ : y G Y}. For

two sets X, Y C TV, the Hausdorff distance is dist(X, Y) = inf{r : X C Y + rB and

Y C X + rB}. Notice, that if dist(X,Y) < e, then for any x G X, dist(x,Y) < e.

For X C TV, cl(X) is the closure of X, and co(X) is the smallest closed convex set

containing X. For X, Z C TV, the restriction of X to Z is X\z = X f[Z. For a set

J, the complement of J is Jc. For sets X and Y, the difference X\Y = {z\z G X and

38

A set-valued (multi-valued) function is./ : TV —> TV where f(x) C TV. For

a set-valued f : TV -¥ TV, the set-valued function ft : TV -» TV is given by

fc(x) = f(x) + eB. For Z C TV, f(Z) = \JxeZ f(x). We assume the infinity norm on

TV (i.e., \x\ = max{|x1|,..., |zn|}).

Differential Inclusions

A differential inclusion is written as x G f(x) where / : TV —> TV is a set-

valued function. Differential inclusions can be used to model disturbances and un

certainties in the system. A differential equation x = f(x,u), where u G U is

control or disturbance can be studied as the differential inclusion x G g(x) where

g(x) = {f(x,u)\u G U}. The differential inclusion x G g(x) captures every possible

behaviour of /.

We say a differential inclusion x G f(x) is Lipschitz with Lipschitz constant k

provided dist(f(xi),f(x2)) < k\x2 - xx\. A trajectory <f>: Tl —> TV is a solution of

x Gf(x) provided j>(t) Gf(<t>(t)) a.e. We say / is convex-valued when f(x) is convex
for every x.

Definition 4.2.1 For a differential inclusion x G f(x) with initial set X0, the set

of states reached at time t is Reachf(Xo,t) = {<l>(t)\<l>(0) G Xo and <f> is a so

lution of x G f(x)}; the set of states reached upto time t is Reachf(Xo,[0,t]) =

UT6[o,t] Reachf(X, t), and the set of all states reached is
Reachf(X, [0, oo)) = \Jt Reachf(X,t).

Example 4.2.1 Consider the differential equation x = f(x) = —2x, and Xo = [1,2].

Then Reachf(X0,t) = [e-2t,2e-2f], Reachf(Xo,[0,t]) = [e"2',2] and
Reachf(X0, [0, oo)] = (0,2].

There is a close relationship between the Lipschitz differential inclusion x G f(x)

and the convex-valued differential inclusion x G co(f(x)). This is made by the fol

lowing relaxation theorem [5, 42].

Theorem 4.2.1 For a Lipschitz differential inclusion x G f(x), cl(Reachf(Xo,t)) =

Reachco(f)(Xo,t).

39

Lemma 4.2.1 If x G f(x) is Lipschitz with constant k, then x G ft(x) is also Lips

chitz with constant k.

A solution n of the differential inclusion x G fc(x) has the property that

dist(ri(t)J{ri(t)))<e.

Example 4.2.2 For the differential equation x = f(x) = -2x, the differential inclu

sion x Gf€(x) = [-2x-e,-2x + e]. For Xo = [1,2], the reach set Reachfe(X0,t) =
[e"2t + e(e-2t - l),2e-2t + e(l - e"2')] and for e < 2, Reachft(X0, [0,oo)] = (-e,2].

For further details on differential inclusions, see [6, 5, 42]. The following two

results are obtained by using the Bellman-Gronwall inequality [18].

Lemma 4.2.2 If x = f(x) is Lipschitz with constant k, and y(t) and z(t) are solu

tions of the differential equation, then

\y(t) - *(0I < |y(0) - *(0)|e*.

Lemma 4.2.3 Let f,g be continuous functions such that \f(x) —g(x)\ < e. If x =

f(x) is Lipschitz with constant k, and y(t) and z(t) are solutions with y(t) = f(y(t))
and z(t) = g(z(t)), and y(0) = z(0), then

lv(t)-*(*)l<J(«*-l).

Grids and Graphs

For fi > 0, define the 0-grid in TV tobe the set G= ((Z+\)0)n where ((Z+\)f3) =
{'•',-fA -£/?,i&f&* **}• For x GTV, define the quantization of x as [x] = g
where g is the nearest grid point (i.e., g GG and \x —g\ < |). For g GG, define
(g) = {x : [x] = g}. For the grid in figure 4.1, (£/?,§/?) G G, and ((\P,\P)) =
[0,/3] x [0,0]. Notice, some points maybe equi-distant from two grid points. For

example, [(0, \fi] = (§/?, |j8) and [(0, &)]= (-§/?, |j8).

Definition 4.2.2 Given a (3-grid, a differential inclusion x G f(x), a sampling time

A, and an initial set X0 C TV, define the sampled trajectories

Trajf(Xo) = {([<£(mA)])me2+ : *(0) GX0, and j>(t) G/(*(<)) }•

p 2p 3P 4p 5p

Figure 4.1: A /?-grid and a sample trajectory

The trajectories of rc G f(x) are sampled every A time units and then quantized

to obtain the sampled trajectories Trajf(Xo).

Example 4.2.3 For the differential equation x = —2x and X0 = [1,2], Trajf(Xo) =

{([x(0)e-^])ro62+:x(0)e[l,2]>.

Figure 4.1 shows a /3-grid and a trajectory. The "crosses" on the trajectory mark

the points that are sampled every A time units. The sequence of grids in which the

"crosses'' appear is recorded, and forms the sampled trajectory. Notice, it is not the

sampled value that is recorded, but the grid in which the sample point appears that

is recorded.

Definition 4.2.3 A directed graph is A = (V, E) where V is the set of vertices and

E C V XV is the set of edges. A path n = v0Vi... vn where (vi,Vi+i) G E. For a set

W C V, ReachA(W) = {vn\ir = v0 ... vn is a path and v0 G W}.

The set Reach(W) is the set ofvertices of the graph that can be reached from the

vertices in W. Figure 4.2 is a directed graph with vertices V = {A,B,C,D,E,F}.

The set Reach({C}) = {A, B, C, D). A set S C V is a strongly connected set provided

for any vertices v,w G 5, there is a path in S from v to w. In the graph of Figure 4.2,

{B,C, D} is a strongly connected set. For a graph A = (V,E) and M C V, the

40

41

Figure 4.2: A Directed Graph

subgraph (A)m is obtained by deleting all vertices not in M and all edges whose

endpoints are not in M. For a graph A = (V, E), Reach(W) and the strongly

connected sets of the graph can be computed using graph search algorithms such

as depth-first search or breadth-first search.

Definition 4.2.4 For a graph A = (V,E) and a set X0 C V, define TrajA(X0) =

{(9t)i€2+ : qo € Xo and (qi,qi+i) G E}.

A possible trajectory in the graph of figure 4.2 starting from vertex A is (ABDC)W.

The notation a" = acr... means the string a is repeated forever.

4.3 Computing the Reach Set of Differential In

clusions

In this section, we give a method to compute the reach set of a convex-valued

Lipschitz differential inclusion x G f(x). We conservatively abstract the differential

inclusion by a piecewise constant inclusion, and then compute the reach set of the

piecewise constant inclusion. As a result, we overestimate the reach set of the original

differential inclusion. We show the error in the estimate can be made arbitrarily small

by abstracting the differential inclusion arbitrarily closely.

42

Approximating by Piecewise Constant Differential Inclusions

A convex polyhedron is a bounded set defined by a set of linear inequalities.

Define V to be the set of all convex polyhedra. We will approximate a convexvalued

differential inclusion x G f(x) on a region R where ReV. Let C = {ci,..., Cfc} be
a cover of R where each Cj G V. We say C is a 6-cover provided for every x G R,

Bs(x)\r C Ci for some i. The 6-cover property states that the <J-ball around each

point x, when restricted to R, is completely contained within some c,-.

Let C be a <5-cover of R. Associatewith C a collection D = {di,..., dk} such that

for each a GC, d{ GV, f(ci) C 4 and dist(f(x),d{) < e for all x Gc,. We say (C, D)
is an e-approximation of the differential inclusion x G f(x).

Construction to form the cover:

To obtain an t-approximation of the convex-valued Lipschitz differential inclusion

x G f(x) with Lipschitz constant k, define a ^-grid G. The cover is C = {cg\g GG
where {cg : \x - g\ < ^}}. First, notice the cover satisfies the S-cover property for
S= ^ (since for any x, B$(x) C cg where g = [x]). With cg, we associate the con
stant inclusion f(g) + \B. First note that for xGcg, f(x) C f(g) +k\x - g\B. Thus
f(x) C f(g) -r \B. Similarly f(g) C f(x) +\B. Therefore dist(f(x), f(g) +\B) < f.
Since f(g) + \B is convex, it can be approximated by a polyhedron dg such that
f(x) C dg and dist(f(x),dg) < e for all x G cg. We get a finite cover for R by
restricting C to R. Using the above construction, we can approximate any convex

valued lipschitz differential inclusion x G f(x) by an e-approximation (C, D).

Figure 4.3 shows a ^ grid. One of the grid point is indicated by the letter "g".
The cover cg is indicated by the bold square. Note, for x G(g), B$(x) C cg for 8 < ^.

Example 4.3.1 Consider the following differential inclusion:

X\ = 2x\ —x2

x2 G ziz2 + [-1,4-1].

We are interested in the region R = [-2,+2] x [-2,+2]. We first determine the

Lipschitz constant for the differential inclusion. For x,y G R, suppose y G f(y)-

78
2

le
"g

^8 2B 38
6 6 7

Figure 4.3: A sju-grid

Then for some x G f(x),

\yi - xi\ < |2(yi - xi) - (y2 - x2)\ < 3|y - x\

and

\y2 - x2\ < \yxy2 - xix2\ < \x2(yi - xi) + yi(y2 - x2)\ < 4\y - x\.

Thus

43

\y - x\ < max{|yi - ii|, \y2 - x2\} < 4\y - x\.

Therefore the Lipschitz constant k = 4 and

f(y)cf(x)-r4B\y-x\.

To obtain an e-approximation, we define a grid G of size m, and for g G G, we

define cg = {x : \x —g\ < ^h\}- The constant inclusion for cg is

4 Vs^ + l-i-f.+i + f]

Since f(g) + ^B is a polyhedron, we define dg = f(g) -r \B.

44

Reach Set Computation

Suppose C is a (J-cover of R and (C, D) is an c-approximation of the differential

inclusion x G f(x). In this section we obtain an approximation of Reach/(Xo,t) using

the e-approximation (C,D).

Definition 4.3.1 For W C R, define Next(W) = \Jk{y G ck\y = x + ta for x G

CfcH^aG 4, and t > 0 }.

For a set of states W, Next(W) is the set of states that is reached after some

time. For each c* G C, Next(W) comprises states that are reached from CkCiW by

following a direction in </* and remaining inside c*.

Construction for Next(W):

For a polyhedron w, and a direction polyhedron d, define ext(w,d) = {w + ta : a Gd

and t > 0 } (i.e., all the states reached from w by moving in a direction in d). Notice

that ext(w,d) is a polytope (i.e, defined by a set of linear inequalities). Next suppose

W = Ut'i^t where each Wi is a polyhedron. Then W = \Ji\Jj(u)iC\Cj) since C is a

cover of P. We get Next(W) = \Ji\Jj(^xt(wif]cj,dj)C\Cj). The construction implies
that when W is a union of polyhedra, Next(W) is also a union of polyhedra.

Lemma 4.3.1 // V is a closed convex set and f : [0, T] —> V, then

$fff(t)dtev.

Let M be the maximum value of |/| on R. Using Lemma 4.3.1 and the 8-cover

MMi
property, we show that Reachj(W, [0,4]) C Next(W).

Theorem 4.3.1 If x G f(x) is a differential inclusion, M is the maximum value of

|/| on R, and C is a S-cover ofR then ReachS(W, [0, ^]) C Next(W).

Proof: Suppose y G Reachj(W, [0, ^]). Then y = <j>(X), where <j> is a trajectory of
the differential inclusion x G f(x) over interval [0, A], A< jfe, starting at <£(0) GW.
For t G [0,A], \cf>(t) - <?K0)| < tM < XM < jjM = 5. From the 5-cover prop
erty, there is a j such that <£(*) G Cj and <j>(t) G dj a.e for t G [0,A]. Thus

45

<f>(X) - </>(0) = f0X<j>(t)dt = Xctj where ctj G dj (from Lemma 4.3.1). Therefore
y = 4>(X) G Next(W). •

Notice, we require C to be a 8-covei to obtain the "time advancing" property in

Theorem 4.3.1, i.e., the trajectory stays in Cj for time at least jfc. The reach set can

be computed using the following iteration.

Reach Set Computation:

Ro = Xo

Ri+1 = Next(Ri)\JRi

Assume Xo is a union of polyhedra. From the previous discussion each Ri is a

union of polyhedra. When Ri is a union of polyhedra, we can compute Next(Ri),

and hence Ri+\. From Theorem 4.3.1, each iteration of the algorithm advances the

time by at least jj units. To compute Reachf(W, [0,t]) requires at most / = [^]
iterations (i.e., Reach/(W, [0,t]) C Ri).

In general, Ri will be a proper subset of Ri+\. But if Ri = Ri+i, then the Reach

Set Computation terminates. In this case, as the following theorem shows, we get an

approximation of the infinite time reachable set Reach/(Xo, [0, oo)) in a finite number

of steps.

Theorem 4.3.2 // (C,D) is an e-approximation of the differential inclusion x G

f(x), and Ri = Ri+i in the Reach Set Computation, then Reach/(Xo, [0, oo)) C Ri C

Reach/t(Xo, [0, oo)). Furthermore Ri is invariant under x G f(x).

The Reach Set Computation procedure can also be used to compute the reach

set at a specific time t. This is done by augmenting the state space to y = (x,r)

where y G h(y) = (f(x),{l}) (i.e., x G f(x) and f = 1). The variable r keeps

track of the time. The e-approximation (Ch,Dh) of y G h(y) is obtained from the

e-approximation (C, D) of x G f(x) by defining Ch = {cg x [0, Max] : cg G C}

where Max is the largest time for which we want to compute the reach set, and

Dh = {dg x {l}|d5 G D}. Using the Reach Set Computation on the augmented

system, we can compute Ri where / = [^], and Reachh(W x{0}, [0,t]) C Ri. Define

46

ify(r = t) to be the intersection of R\ with the hyperplane r = t, and Ri(t < t) to be

the intersection of R\ with the half-space r < t. Clearly Reach/(W,t) C Ri(r = t),

and Reach/(W, [0,t]) C ^K7" < *)•

Example 4.3.2 Consider the differential equation x = f(x) = —2x with initial con

dition x(0) = xo. The augmented system is y = (x,t) with y = h(y) = (—2a;, 1) with

initial condition y(0) = (xo,0). The reach set of inclusion y G h(y) is

Reachh({(x0,t)},[0,oo)) = {(x0e'2t,t)\t > 0}. Intersecting with the hyperplane

(t = t), we get (x0e~2t,t) — the reach set of differential equation f at time t.

Lemma 4.3.2 If (C,D) is an e-approximation of the differential inclusion x Gf(x),

then for I= \^], Reach/(X0,t) C Ri(t = t) C Reach/e(X0,t).

We also want to get a bound on the error in the approximation

dist(Reach/(X0,t),Ri(t = t)). The following theorem shows that the error can be

made arbitrarily small.

Theorem 4.3.3 Suppose x G f(x) is a Lipschitz differential equation with Lipschitz

constant k. Then for any 7 > 0, and any t > 0, using the Reach Set Computation

procedure, we can compute R\ as a union of polyhedra such that Reach/(Xo,t) C

Ri(t = t) and dist(Reach/(Xo,t),Ri(t = t)) < 7.

Proof: Given t > 0 and 7 > 0, choose e = uktLu where k is the lipschitz con

stant. In the augmented system, for / > f^T^l, Reach/(X0,t) C R\(t = t). For
y G R\(r = t), there is a trajectory <j> with <£(0) G Xo and <j>(t) = y such that

j>(a) G fc(</>(a)) a.e (from construction of Ri(t = t)). Using Lemma 4.2.3, we get

dist(Reachf(X0, t), Ri(t =i))< &^ =7. •

We can compute Reach/(Xo, [0,t]) with the same error using R\(t < t).

In this section we discussed only convex-valued Lipschitz differential inclusions.

But from the relaxation theorem (theorem 4.2.1), for a Lipschitz differential inclusion

x G f(x), it suffices to study the convex-valued differential inclusion x Gco(f(x)).

47

The Reach Set Computation procedure we described can be automated using com

puter tools available for analysis of hybrid systems [2, 3, 17, 31, 29]. An equivalent

hybrid automaton can be constructed by associating location lg with cg, differential

inclusion dg with location lg, and guard cg[)ch with the edge from location lg to lh-

See [2, 3, 17, 31, 30, 29] for more details on hybrid systems and their analysis.

We used polyhedral inclusions to approximate the differential inclusion x G f(x).

Instead, a decidable class of hybrid systems such as [30, 17], can be used to approx

imate a differential inclusion and prove the same result as Theorem 4.3.3 [7]. The

decidable hybrid systems have the intersting property that the infinite time reachable

set for them can be computed in a finite number of steps. In the next section, we

provide another method which can be used to compute the infinite time reachable set

in a finite number of steps.

4.4 Sample Graph Approximation

In this section, we prove the following result: given a Lipschitz differential in

clusion x G f(x), for any e we can find a finite graph Ac such that Traj/(Xo) C

TrajAe([X0]) C Traj/e(X0). That is, Ac contains the trajectories of x G f(x), and
the trajectories of Ae are contained within the trajectories of x G fc(x). As a con

sequence, we get that for every e > 0, there is a finite graph Ac such that for every

"trajectory" n of Ae, dist(r)(t),f(n(t))) < t. Using this, we can compute the e-

invariant sets of the inclusion x G f(x). These are sets which remain invariant under

e-perturbations of /. We also use the sample graph Ae to find other properties of the

differential inclusion x G f(x).

Definition 4.4.1 Given a differential inclusion x G f(x), and a sampling time A,

define the map S/ :Kn -> Kn with S/(y) = Reach/({y}, A).

Note that when / is a differential inclusion, S/ is a set-valued map. The map S/

samples the trajectory every A time units. Instead of working with the differential

inclusion x G f(x), we will work with the discrete dynamical system x*+i GS/(xk).

48

[1.0,1.25] [1.25,1.5] [1.5,1.75] [1.75,2.0]

[0.75,1.0] [0.25,0.5] [0.5,0.75]

[0,0.25]

O
Figure 4.4: The Sample Graph of x = —2x

— „o-2AExample 4.4.1 For the differential equation x = f(x) = —2x, S/(y) = ye

Sample Graph Construction:

For a differential inclusion x G f(x) and the p-grid, we construct the sample graph.

The vertices ofthe sample graph are the grid points ((Z+ \)P)n, and there is an edge
from [x] to [y] provided y G S/(x). That is, there is an edge from vertex g to vertex

h provided there is a trajectory which takes some x G (<7) to some y G (h). More

formally, the sample graph is A = (V,E) where V = ((Z -f \)P)n are the vertices,
and E CV xV are the edges with (g, h) G E for g,h G V provided S/((g)) C\(h) ^ 0

(i.e, y G Reach/((g), A) for some y G (h)). When we are interested in studying

the differential inclusion on a bounded region, we restrict the graph A to the bounded

region and get a finite graph.

Example 4.4.2 For the differential equation x = —2x, figure 4-4 shows the sample

graph for interval [0,2] where the sample time A = 0.5 and grid separation isj3 = 0.25.

To get an e-approximation of the differential equation x G f(x), we need to con

struct the sample graph from a sufficiently small grid. The following theorem will

enable us to choose an appropriate grid for a given e.

49

P

Figure 4.5: Trajectories of x G f(x) and x G fc(x)

Theorem 4.4.1 If f is a Lipschitz differential inclusion with Lipschitz constant k,

\x—x'\ < 0, \y—y'\ < S, andy GS/(x) with sample time A, then fore > (k-r-g)(S-rp),

y' G S/C(x') (figure 4.5).

Proof: Suppose a : [0, A] —> Tln is a trajectory for which a(0) = x, a(A) = y, and

a(t) Gf(a(t))- We define the trajectory rj: [0, A] —-* Tln by

n(t) =a(t) +itf - y) +̂ V - x).
Note that ij(0) = x\ r/(A) = y', and

l>»(0 - <*WI <
(* + /3)

|n(()-a(i)| <(* + /?)

We will show fj(t) G fe(n(t)). From equation 4.1, it follows that

me/(<*(<)) +̂ J^B
Since / is Lipschitz, from equation 4.2 we get

/(<*(<)) C f(v(t)) + k(S + 0)B

Therefore

mznm+(k+-K)(s+p)

(4.1)

(4.2)

50

Thus 17(0 G fc(r}(t)) when e> (k + ±)(8+ P). •

We can show, using the above theorem, that for any e > 0, we can find a /?-grid
such that Traj/(X0) C TrajAc([X0]) C Traj/e(X0) where Ac is the finite graph
obtained from the sample graph construction.

Theorem 4.4.2 If x Gf(x) is a Lipschitz differential inclusion with Lipschitz con

stant k, and e> 0, then for 0 < jj£q, Traj/(X0) CTrajAc([X0]) C Traj/t(X0)
where Ac is the sample graph on the /3-grid.

Proof: By construction of graph Ae on the /?-grid, Traj/(X0) C TrajAc([X0]). Next

suppose q = (qo,qu...) G TrajAt([X0])- Then for each i, there are zt- G (<?,)

and yt G (g») such that for t > 1, j/t- G S/(x,_i) (define ?/o = so)- From theo

rem 4.4.1 yi G S/c(yi-i) (by choosing £ = 0) for a grid with /3 < rp-. We can
'A

construct a trajectory y with y(t) G ft(y(t)) and y(jA) = t/j G (ty). Therefore

Tra^dXo]) C Traj/t(X0). •

Modification of Sample Graph Construction: The construction of the graph Ae re

quired us to compute S/((g)). This is not necessary to prove the approximation result

of Theorem 4-4-%- Instead, a conservative approximation of S/((g)) can be made.

We do this either with the methods of Section 4-3 using Theorem 4-3.3 or by using

Lemma 4-2.2. A conservative approximation ofS/((g)) is made by computing W((g))

where S/((g)) C W((g)), and the error dist(S/((g)),W((g))) < (. We use W((g))

instead of S/((g)) to form the graph Ac. That is, the sample graph is Ac = (V,E)

where V = ((Z + £)/?)n) are the vertices, and (g,h) G E for g,h G V provided
W/((g))f)(h) ^ 0. Using Theorem 4-4-U we obtain the same result as Theorem 4-4-2

when the /3-grid is chosen so that e> (k -f j[)(P + C)«

Example 4.4.3 For a differential equation x = f(x) with Lipschitz constant k, we

construct a sample graph on a j3-grid using the modified Sample Construction method.

We note that S/((g)) C £/({#})+ f ekAB from Lemma 4.2.2. For A = l-f, S/((g)) C
Sf({g}) -r pB. Hence, for e > 2(k + £)/?, Traj/(X0) C TrajA<([X0]) C Trajh(X0).

51

The trajectories of finite graph Ac contain information about the trajectories of

the differential inclusion x G f(x). From any trajectory (qk) of Ac, we can obtain

a continuous trajectory <t>q such that [<£g(A;A)] = qk and dist(<f>q(t), f(<t>q(t))) < e.

Because we can "sandwich" the trajectories of Ac between the trajectories of the

differential inclusion x G f(x) and x G fc(x), we can obtain useful results about the

invariant sets and the recurrent sets of x G f(x) from the graph At.

Using the finite sample graph Ac, we can get an approximationof the infinite time

reachable set Reach/(X0, [0, oo)).

Theorem 4.4.3 For a Lipschitz differential equation, and any e > 0,

Reach/(X0, [0, oo))C^C Reach/€(X0, [0, oo)) where W= Reach/ ((ReachAc([X0])), [0, A])

is an invariant set of x G f(x).

Notice the similarity between Theorem 4.3.2 and Theorem 4.4.3. The difference

is that ReachAt([Xo]) in Theorem 4.4.3 is computed in a finite number of steps. We

will discuss other advantages and disadvantages of the polyhedral approach vs. the

graph approach in Section 4.6. We discuss a small technicality: the set W satisfying

Reach/(XQ, [0,oo)) Cl^C Reach/c(XQ,[0,oo)) in Theorem 4.4.3 can be computed

in a finite number of steps by using the sample graph A* for inclusion x G f%(x),
and then using an ^-approximation of x G f(x) to compute W using the method of

Section 4.3.

The sample graph for the continuous systemwas created by looking at the discrete

system xm+i G S/(xm). We next state our theorem directly for discrete systems.

For the discrete system xm+i G g(xm) where g is lipschitz with constant k, define

Trajg(Xo) = {([a(m)])m€2+|a(m) Gg(a(m-l)) and a(0) GX0}. The sample graph

Ac is created on the /?-grid by putting an edge from vertex j to vertex h provided

Theorem 4.4.4 If xm+i G g(xm) is a discrete system where g is lipschitz with con

stant k, then for (3 < f, Trajg(X0) C TrajAc([X0]) C Trajgc(XQ).

52

Figure 4.6: An e-invariant set

4.5 Invariant Sets and Other Applications

In this section, we will use the results from Section 4.3 and 4.4 to compute the

e-invariant sets of differential inclusions. These are sets which remain invariant under

the inclusion x G fc(x). We also show how to use the sample graph Ac to decide

various other properties of the differential inclusion x G f(x).

4.5.1 Invariant Sets

Intuitively / is an invariant set provided / points "inwards" at the boundary. The

idea is formalized using contingent cones.

Definition 4.5.1 Let I be a closed set. The contingent cone to I at x is the set

TI(x) ={v\hmdist{{xthv)J)=0}
v ' L '/i-*o h

The result characterizing invariant sets under x G f(x) is that / is invariant under

/ iff for x G /, f(x) C Tr(x) [6, 1].

Definition 4.5.2 A set I is e-invariant provided for all x £ I, fc(x) C Tj(x).

53

Definition 4.5.2 states that the set / is e-invariant provided it is invariant under

e-perturbations of /. Figure 4.6 shows an example of a e-invariant set for some e > 0.

Since / is not "tangential" to the boundary, the set remains invariant under small

perturbations in /. Notice, we only need to check the condition of Definition 4.5.2

at the boundary of /, since Ti(x) = Tln in the interior of /. Any trajectory starting

from an initial condition inside the invariant set remains inside the invariant set.

We next make a relationship between the invariant sets of differential inclusions

and the infinite time reachability problem. To compute invariant set of x G f(x) in

R, we can compute J = Reach-/(RC, [0,oo)) for x G -f(x). Then Jc is the largest

invariant set of x G f(x) in R.

Lemma 4.5.1 For a region R, the largest invariant set of x G f(x) in R is Io =

(Reach-/(RC,[0,oc)))c.

Proof: (Reach-/(RC, [0,oo)))c is the set of states in R which cannot reach Rc by

following the inclusion x G f(x). Hence, it is the largest invariant set in R. m

Similarly It = (Reach-/€(RC, [0, oo)))c is the largest e-invariant set in R.

Theorem 4.5.1 For a Lipschitz differential inclusion x G f(x) on a region R, and

e > 0, we can compute an invariant set I such that Ic C I C Io-

Proof: Consider the differential inclusion x G -f(x). From Theorem 4.3.2 and

Theorem 4.4.3, we can compute a set J such that Reach-/(Xo, [0, oo)) C J C

Reach-fc(X0, [0,oo)) and J is invariant for x G-f(x). Therefore / = Jc is invariant

for x G f(x) and Ic C I C Io- •

As a consequence of Theorem 4.4.3, the invariant set / in Theorem 4.5.1 can be

computed in a finite number of steps.

4.5.2 Other Dynamical Properties

We consider various computational questions about limit cycles, attracting sets

and stability for the differential inclusion x G f(x) in a bounded region R. In each

case, we ask whether the inclusion x G f(x) has a certain property. To answer the

54

question, we work with the sample graph Ac. In all cases, we obtain either a positive
answer for the differential inclusion x Gf(x), or a negative answer for the inclusion
x G fc(x). That is, the algorithm returns with one of the following answers: 1)
Differential inclusion x Gf(x) has the desired property; or 2) Differential inclusion
x Gfc(x) does not have theproperty. The time complexity ofthealgorithm is same as
thesize ofthegraph Ac —0((*)n), where kis thelipschitz constant ofthedifferential
inclusion x G f(x) and n is the dimension of the state space.

Limit Cycles

Consider the following problem: Is it the case that the differential inclusion x G

f(x) does not have a limit cycle in region 5ci2? To answer the question, restrict

the graph Ac to S, obtaining subgraph (Ac)s- We look for the strongly connected sets

in the subgraph. If there are no strongly connected sets in (Ac)s, then Theorem 4.4.2

implies that x Gf(x) has no limit cycles in 5. Alternatively if subgraph (Ac)s has a

strongly connected set, then it follows that x Gfc(x) has a limit cycle in 5.

Attracting Sets

A set B C R is an attracting set provided every trajectory starting from any

initial condition in R enters B. Consider the problem: Is B an attracting set for

differential inclusion x G f(x)7 To answer the question, we look at the subgraph

obtained from Ac by deleting vertices in set B. If the subgraph does not contain a

strongly connected set, then Theorem 4.4.2 implies that B is an attracting set for

x G f(x). On the other hand, if the subgraph contains a strongly connected set, then

B is not attracting set for the inclusion x G fc(x).

Other Properties

Various other dynamical properties for differential inclusions can also be checked

using the graph Ac in a similar manner. For example, to determine whether an

equilibrium point x is globally stable, we can ask whether B$(x) — the <S-ball centered

at a; — is an attracting set for some S > 0.

+12

Figure 4.7: A Pendulum

Actual Invariant Set

Computed Invariant Set

55

Figure 4.8: Invariant Set for the Pendulum

4.6 Computational Aspects and Examples

In this section we compute the invariant sets of some differential equations using

the methods discussed in the previous sections. We also describe some techniques

which can be used to increase the efficiency of these methods.

4.6.1 Pendulum Example

Figure 4.7 shows a pendulum movingin a vertical plane. The differential equation

describing the pendulum is

x\ = x2 (4.3)

56

x2 = —gs\n(xi) —cx2

where xx = 0, x2 = 6, g = 9.8 is the acceleration of gravity and c = 1 is the

frictional coefficient. We want to compute the largest invariant set contained in

region R = [-7r,7r] x [-12,12]. The invariant set can be calculated exactly. It's
boundary is given by xi = -n, xi = ir, U= {x\x GR and limt_K» <t>(x,t) = (tt,0)},
and L = {x\x G R and hmt^oo<i>(x,t) = (—7r,0)} where <t>(x,t) is the solution of
Equation 4.3 with initial condition x. The actual invariant set is shown in Figure 4.8.

The invariant set is an attracting set of the equilibrium point (0,0) (see [16]).

We next use the graph method of Theorem 4.5.1 and Theorem 4.4.3 to compute

the invariant set for Equation 4.3. A straightforward computation shows that k = 11

is a Lipschitz constant. We choose A = ^ tobe the sample time (see Example 4.4.3).
The graph is constructed on a grid of size 300 x 300 on R (ft = ^5 = 0.021) using

the Modified Sample Graph Construction. We use Lemma 4.2.2 to obtain an approx

imation of S/((g)) where g is a grid point. The algorithm of Section 4.2 is then

used to compute the reach set of the graph. The computed invariant set is shown in

Figure 4.8. We note that the computed set is an invariant set, and it contains any

e-invariant set for e > 2fi(k + •%) (i.e., e> 1.12).

As is to be expected, finer grids (smaller values of ft) givebetter approximation of

the actual invariant set, and coarse grids give a worse approximation. In particular,

for grids with /3 > 0.045 we get no invariant set. From discussion in Example 4.4.3,

it follows that there is no e-invariant set in R for e > 2.41.

The size of the grid required to compute the invariant sets is also a function of

the parameters c and g in Equation 4.3. For a lightly damped system (smaller c), we

expect a larger grid size to be required. This is also observed in our computational

experiments.

4.6.2 The Lorenz Equations

In this section, we study the Lorenz equations [16, 39]. The equations are

x = a(y —x) (4.4)

57

Figure 4.9: Computed Invariant Set for the Lorenz Equations

y — px — y — xz

z ——pz -r xy

We study the system for a = 1, p = 2 and p = 1. The system has three fixed points

(see [16, 39] for a detailed description of the dynamics of the system). The fixed point

at the origin is a saddle point with one dimensional unstable manifold. The other

two fixed points at (1,1,1) and (-1,-1,1) are stable. We compute the largest invariant

set contained in the region R = [—3,3] x [—3,3] x [—3,3].

It can be shown that k = 9 is a Lipschitz constant. The sample time is A = -p

58

(see discussion in Example 4.4.3). A graph is constructed on agrid ofsize 90 x90 x90.
The algorithm of Section 4.2 is then used to compute the invariant set. In Figure 4.9,
we show the cross sections of the invariant set for z = k, k G{—3, —2,..., 2,3}.

4.6.3 Efficient Storage Methods

The mainlimitation of the grid method is the amount of memory required to store

the grid points. The mainlimitation of the polyhedral method is that the iteration in

the Reach Set Computation may never terminate. It may be possible to combine the

desirable features of the two methods to obtain better efficiency. Rather than storing

the grid points explicitly,a set of grid points can be stored asa polyhedron usinglinear

inequalities. Similarly the termination problem in the Reach Set Computation for the

polyhedral method may be addressed by using some features of the grid method.

4.7 Conclucion

We presented a method to compute Reach/(Xo,t) — the reach set of the differ

ential inclusion x G f(x) at time t. We also presented a method to compute the

e-invariant sets of the inclusion x G f(x). We do this by relating the differential

inclusion x G f(x) to an e-perturbation x G fc(x). This closely resembles concepts

from perturbation theory, and structural stability in dynamical systems. In our fu

ture work, we will look into this relationship further. In particular, we would like to

show that for sufficiently small e, the presence of a property in x G ft(x) also implies

the presence of that property for x G }(x) for some class of properties.

Computing the invariant sets and reach sets is an important problem. It is finding

increasing use in the study of hybrid systems (see [31, 33]). An important problem

is to find techniques to make the algorithms and methods presented in this chapter

more efficient in terms of space and time usage.

Chapter 5

Shapley's Game and Church's

Problem

59

5.1 Introduction

In this chapter, we study graph games played by two players. The games starts

from start position p0 with Player 1 moving to position p\ along an edge. Then Player

2 moves to position p2, followed by Player 1 making a move, and so on. In this way,

an infinite play p = P0P1P2 ••• is constructed. At the "end," Player 2 pays to Player

1 the amount P(p) where P is a payoff function. The games are perfect information

zero-sum games. So Player 2 tries to minimize the payoff to Player 1, and Player 1

tries to maximize it.

A strategy for a player is a rule whichtells him how to play. A game has a value v

when Player1 has a strategy which assures him a payoffof at least v and Player2 has

a strategy which guarantees her a loss no greater than v. The strategy which assures

a payoff of v for Player 1 is his optimal strategy, and the strategy which guarantees

for Player 2 a loss no greater than v is her optimal strategy. By "solving a game," we

mean determining the value of the game, and the optimal strategies for the players.

We study two classes of games: the payoff games and games on w-automata.

Payoff games are a special case of stochastic games introduced by Shapley [38]

and extensively studied in the operations research community since then [36]. In the

60

payoff game, each position w has some reward r(w). The players move from position

to position, creating the play p= poPiPi --- The payoff is P(p) = £fc r(pk). Player 1
chooses his moves to maximize the payoff; Player 2 chooses hers to minimize it.

An u-automaton is a finite state automaton which accepts infinite sequences [40,

23]. In a game on w-automaton, theobjective ofPlayer 1is to create a play pwhich is

accepted by the automaton; Player 2 tries to create a play which is rejected. Solving a

game on an u;-automaton is sometimes referred to as Church's problem who posed the

question as a synthesis problem for digital circuits [8]. Games on w-automata have

been extensively studied in the logic and computer science communities [35, 40, 23].

In this chapter, we relate games on w-automata with the payoffgames. We show

that a gameon an o;-automaton with the chain acceptance condition can be solved as

a payoff game. The chain acceptance condition can express any w-regular language.

As a result, any gameon an w-automaton can be solved as a payoff game. It is known

that solving the model checking problem for propositional //-calculus is polynomially

equivalent to solving the chain game [13]. Hence, we get a new method for model

checking ^-calculus using algorithms for solving payoff games.

In Section 5.2, we introduce games played on graphs. In Section 5.3, we discuss

games on u;-automata. We review results on u;-automata games and show that such

games do not have a value when restricted to positional strategies. In Section 5.4,

we begin discussing payoff games. We study both finite and infinite games. For

the infinite game, we study the discounted payoff game and the mean payoff game.

We prove that both games have a value and optimal positional strategies. We then

introduce the successive approximation and the policy iteration algorithms for solving

payoff games. In Section 5.5, we relate the chain games with the payoff games. We

show that the results for payoff games also provide answers to classical problems such

as Church's solvability and synthesis problem. As a result of the relationship between

chain games and payoff games, we can use the policy iteration algorithm to model

check //-calculus formulae.

61

5.2 Games on Graphs

A game graph is a directed bipartite graph G = (V, E). The positions in the game

are the vertices V = V\ UV2 where Vi and V2 are disjoint. The edges are E = EiUE2

where E\ C 14 x V2 and £2 C V2 x V\. Without loss of generality, we assume

V = {1,..., 2n}. The index set / = {1,..., n}, and the position set Vi = {2i\i G /}

and V2 = {2i —l|t G /}. Furthermore, there are exactly two outgoing edges from

each vertex. Hence, we may interpret the set of edges as functions eo : V —t V

and ei : V —> V where the edges out of vertex v are (v,eo(v)) and (v,ei(v)). The

neighbors of a vertex v are N(v) = {eo(v),ei(v)}.

The game is played between two players: Player 1 and Player 2. From a position

v G Vi, Player 1 can make a move to eo(v) or e\(v). Similarly, Player 2 moves from

w G V2 to eo(w) or ei(w). For convenience, we will refer to Player 1 as "him", and

Player 2 as "her".

The game begins from the start position p0 G Vi with Player 1 making a move.

Then it is Player 2's turn to move, and so on. The resulting play of the game is

p = popip2 ... where Player 1 moved from position p2t to P2t+i, and Player 2 moved

from position p2t+i to p2i+2- The payoff is a function P : Vw —> TZ. The games we

are interested in are perfect information zero-sum games. When the play is p, Player

2 pays to Player 1 the amount P(p) (when P(p) is negative, Player 1 pays to Player

2). Player 1 tries to maximize the payoff, and Player 2 tries to minimize it.

A game is a triple (G,po,P) where G = (V,E) is a game graph, p0 G V is the

position from which the game starts, and P is the payoff function.

Example 5.2.1 Consider the game graph shown in Figure 5.1. The positions repre

sented with circles are V\. Those represented with squares are V2. There is an arrow

pointing to the start position. When the game position is a circle, Player 1 moves;

when the game is at a square, Player 2 moves. The edges out of each position repre

sent the moves the players can make. So from position D, Player 2 can make a move

to either position C, or to position B. For a play p, let us define the payofffunction

to be P(p) = —1 when pi = Eorpi = F for some i. Otherwise P(p) = 1. So, Player

62

Figure 5.1: An Example Game

2 gets paid 1 dollar provided the playp "hits" the vertices E or F. On the other hand,

if those vertices are not hit, Player 2 has to pay 1 dollar to Player 1.

We will say Player 1 wins in the play p provided P(p) > 0; otherwise Player 2

wins. We leave it to the reader to find the winner in the game of Figure 5.1.

5.2.1 Strategies for Playing

A strategy for a player is a rule or a set of rules which tells the player how to

play. We first discuss history based strategies. The history of the play p at step j is

hj = popi ...pj. A history based strategy for Player 1 is the set of functions r = {r2t}

from the histories of the play to its next move. At step 2i when h2i is the history at

step 2i, Player 1 makes a move to position r2i(h2i). Similarly, a history based strategy

for Player 2 is the set of functions a = {<r2t+i}. Let us denote by HD the set of all

history based strategies.

In many games, it is possible to play with a simpler class of strategies: the posi

tional strategies. A positional strategy for Player 1 is a function r : Vi —> V2 where

(v,t(v)) G Ei. When in position v, Player 1 always moves to t(v), independent of

the history of the play. A positional strategy for Player 2 is a function a : V2 —• Vi.

Positional strategies are also called deterministic Markov strategies. Let us denote by

63

MD the set of positional strategies. Corresponding to a positional strategy r is the

history based strategy {r2J where T2i(h2i) = r(p2t)- When convenient, we will also

think of positional strategy r as the set of edges {(v,t(v))}.

5.2.2 Value of the Game

Denote by A the strategy space for Player 1 and by B the strategy space for Player

2. Fixing a strategy r G A for Player 1 and a G B for Player 2 leads to the play

V= PoPi --• where p2t+i = r2t(p2t) and p2i+2 = 02i+i(p2i+i)-

Definition 5.2.1 The strategy payofffunction is ifr : A x B —• TZ where il>(r,a) =

P(p). The play p is obtained by fixing the strategy of Player 1 to r and the strategy

of Player 2 to a.

Definition 5.2.2 A game is said to have a value in strategy space (A, B) provided

supinf il>(r, a) = inf supV^T,a), (5.1)
T ° ° T

where the strategies for Player 1 are selected from A, and the strategies for Player 2

are selected from B. The value of Equation 5.1 is the value for the game in strategy

space (A, B).

The value for the game in strategy space (HD,HD) is the value of the game. When

the value of the game is v, and v > 0, we say Player 1 wins the game. Otherwise,

Player 2 wins.

It will also be useful to study the class of games Q — {Qj} = (G, P) where

Qj = (G,j, P) is the game played on graph G starting from position j. The value of

Q is a vector u where u(j) is the value of game Qj.

5.2.3 Complete Strategy Spaces and 1-Player Games

Definition 5.2.3 For Player 1, the strategy space MD is complete for Player 1 pro

vided the value for the game in (MD,HD) is the value of the game. Completeness for

Player 2 is defined similarly.

64

A player needs to search only among positional strategies when the strategy space

MD is complete.

Definition 5.2.4 The response function for Player 2 is r2 : A —> B where

r2(r) = axgmin^(r, a).

We note that r2(r) is a set of strategies — each strategy in r2(r) is the optimal

strategy for Player 2 in response to Player 1 playing with strategy r. The response

function for Player 1, ru is defined similarly. Strategy t G A and a G B are said to

be optimal in (A, B) provided r Gri(v) and a G r2(r).

A 1-Player game is obtained from game Q by fixing the strategy of one of the

players to a positional strategy.

Definition 5.2.5 Fixing positional strategy t for Player 1, define the 1-Player game

Qr = (Gr, P) where GT = (V, E2Ut).

In game QT, Player 2's objective is to minimize the payoff when Player 1has fixed

his strategy to r. The optimal strategy for Player 2 in game QT is cr Gr2(r).

Definition 5.2.6 We say MD is complete for Player 2 in QT provided r2(r) contains

a positional strategy.

We can similarly define 1-Player games and completeness for Player 1.

Lemma 5.2.1 Suppose t and a are optimal in (MD, MD) for game Q, and MD

is complete for both players in 1-Player games. Then r and cr are also optimal in

(HD,HD).

5.3 Games on a;-Automata, Church's Problem and

/i-Calculus

w-automata are finite automata which accept infinite sequences. The sequences

which are accepted form the language of the w-automaton [40, 23]. A game on an u>-

automaton is played between Player 1 and Player 2. The two players together create

65

a sequence p = poPip2 Player 1 wins provided the sequence is in the language of

the u;-automaton; otherwise, Player 2 wins. In Section 5.3.1, we discuss ^automata.

In Section 5.3.2, we discuss games on o;-automata. In Section 5.3.3, we discuss the

logic propositional /u-calculus.

5.3.1 ^-Automata

A deterministic w-automaton over alphabet £ is A = (T,</>), where T is the

transition structure, and <j> is the acceptance condition. The transition structure is

T = (Q,qo, S, $) where Q is a finite set of states, qo G Q is the initial state, and

6 : Q xY, —> Q is the transition function.

Definition 5.3.1 A word cr G E" has the run ra G Qw where ra(0) = q0 and

8(rc(i),*(i)) = r<T(i + l).

The infinity set of the run ra, denoted inf(r>), is the set of states that are visited

infinitely often in ra. The acceptance condition <j> is a boolean formula, where the

boolean variables are the states Q = {q\,..., qm}.

Definition 5.3.2 A boolean formula is generated by the following rules

1) qi G Q is a boolean formula.

2) If<j>\, <j>2 are boolean formulae, then -*<j>i, <j>\ V<^2, and<j>iA<f>2 are boolean formulae.

The truth of the boolean variable qi G Q is determined by the run ra- For C C Q,

define the boolean assignment qi = 1 provided $ G C, otherwise qi = 0. Let <f>[C]

denote the truth value of <j> under this assignment.

Definition 5.3.3 The language generated by the u-automaton A = (T, <j>) is C(A) =

{o-|o- G £" and flinffr,)] = 1 }.

Definition 5.3.4 We define various types of boolean formulae which are used for

acceptance criterion:

1) A disjunctive formula (DF) (Buchi formula) is a disjunction of boolean variables,

i.e.,forF = {fl,...,fk}cQ,4> = hV...Vfk-

66

2) A Rabin formula is <j> = V?=i(^i A->(£?,)) where Li, Ui,l<i<n are DF.
3) A Streett formula is<t> = A?=1(£t V-i(ft)) where Li, Ui,l<i<n are DF.
4) Given DF E{,Fi,i = l,...,n where En C F„ C £„-i C Fn_i C ---El C Fl}

the chain formula is <j> = V?=i(^t A-^i) = A?Ji1(_,^-i v *S) ^ere ^o = <ruc and
Fn+i = /a/se.

The complement of a Rabin formula is a Streett formula, and vice versa. The

chain formula can be expressed either as a Rabin formula, or as a Streett formula.

The chain acceptancecondition is also sometimes written as the parity acceptance

condition (B{, Gi) where B{ = E{\ Fi+1 and Gi = Ft\ Ek (see [23, 13]). The sets B{
and Gi are disjoint. A run ra is accepting provided for some i, inf(ra) "touches" G,-

but not Bj for j > i.

The Rabin and Streett acceptance conditions are also referred to as a set of pairs

(Li, Ui) ofsubsets of states. Arun ra in a DRA is accepting if for some pair, inf(rv)

"touches" Li and is contained in Ui.

Remark: Our syntax for the Rabin and Streett condition differs from the standard

definition in the literature, where a Rabin formulais V?=i(£t A-»£/,); a run is accepting

(for Rabin acceptance), if for some i, it visits Lt- (the GREEN states) infinitely often,

but Ui (the RED states) only finitely often. Complementing Ux translates between

the standard syntax and ours.

Thew-automaton A —(T, <f>), where <j> isa Buchi, Rabin, Streett, or Chain formula

is called a Buchi, Rabin, Streett, and Chain Automaton respectively. We will need

the following two results from the theory of u-automata.

Theorem 5.3.1 Determining whether the language ofA= (T,<j>) is emptyfor Buchi,

Rabin, Streett, and Chain Automata is in polynomial time.

Theorem 5.3.2 Given a Rabin Automaton A = (T,</>) with n states and h pairs,

there is a Chain Automata B with nhk states and k pairs such that C(A) = C(B).

The index k is the Rabin Index of the language — the minimum number of pairs in

a Rabin automaton required to realize the language.

67

Figure 5.2: An Game on Buchi Automaton

For a more complete discussion of w-automata and a proof of Theorem 5.3.1, see

[40]. Theorem 5.3.2 is the main result of [23].

5.3.2 Games on a;-Automata

A game on an w-automaton is Q = (G, P<f>) where G = (V, E) is a game graph and

<j> is an acceptance condition. The acceptance condition <j> is a boolean formula with

boolean variables V = {vi,... ,v2n}. For a Buchi, Rabin, Streett, or Chain formula

<f>, we say the game is a Buchi, Rabin, Streett, and Chain game respectively.

Definition 5.3.5 The payofffunction for the game is P^ : VL

a playp, P^(p) = <£[inf(p)].

{0,1}, where for

For a play p, Player 1 is the the winner provided (£[inf(p)] = 1, and Player 2 is

the winner when <j>[mi(p)] = 0. Player 1 tries to maximize the payoff, and Player 2

tries to minimize it.

Example 5.3.1 Consider the formula <f> = v\ V... V Vk where F = {vi,..., Vk} are

called the final states. For Player 1 to win, the play must visit some state in F

infinitely often. On the other hand, Player 2 tries to limit the number of times a

state in F is visited. For the game graph in Figure 5.2, F = {6,e} and the boolean

68

formula <j> = 6 V e. To win, Player 1 must use a strategy, such that any resulting

play visits position b or position e infinitely often. Consider the positional strategy

t for Player 1 where r(a) = b, r(c) = b and r(e) = /. The reader can check that

starting from any position, this is a winning strategy for Player 1 since any resulting

play visits a state in F infinitely often.

Games on w-automata are closely related to synthesis problems. Church in [8]

poses two problems about digital circuits and logic: the decision problem and the

synthesis problem. The decision problem is the verification question: does the de

signed circuit meet its specification? The synthesis problem is to automatically syn

thesize a circuit to meet a specification. He gives various cases of the synthesis and

decision problem which had been solved, but points out that the synthesis question

for w-automata was unresolved.

In the synthesis problem, the specification is a game which is played by two

players: the "input" (also sometimes called the "disturbance") and the "controller".

The idea is that for every input to the circuit, the controller must respond so that

the specification is never violated. When the controller can win this game, we say the

specification is synthesizable. The winning strategy for the controller is implemented

as the circuit. This circuit then meets its specification.

Solving a game on u;-automaton is sometimes called Church's problem. In [40],

Church's problem is presented as the following two questions about games on uj-

automata:

1. Solvability Problem — Is there an algorithm to determine the winner?

2. Synthesis Problem — Is there a finite-state strategy for the winner?

The problem was resolved by Buchi, Landweber and Rabin (see [35]).

Theorem 5.3.3 Consider the game Q= (G,P+) where <j> is a boolean formula. Then

1. the game Q has a value (i.e., the game has a winner),

2. there is an algorithm to determine the winner,

69

Figure 5.3: The value in (MD,MD) and (HD,HD) are not the same

3. the winner can implement its strategy with a finite amount of memory.

The following is the result of [11].

Theorem 5.3.4 Strategy space MD is complete for Player 1 in Rabin Games.

Hence, Player 1 can restrict himself to playing with positional strategies in Rabin

Games. Since a Chain formula is a special case of a Rabin formula and a Streett

formula, and the complement of a Streett formula is a Rabin formula, we get the

following result.

Lemma 5.3.1 The strategy space MD is complete for both players in Chain Games.

At this time, one may ask the following questions: Are there games in which a

player needs to remember the history? Do games on w-automata have a value in the

strategy space (MD,MD)1 Does the value in (MD,MD) coincide with the value in

(HD,HD) ?

We first show with an example that history based strategies are required, and that

the value in (MD,MD) need not coincide with the value in (HD,HD).

Example 5.3.2 Consider the Streett game in Figure 5.3 where the acceptance con

dition is A t\C. We use the convention that when both edges out of a position are

going to the same position, we only draw one edge. To win, Player 1 has to visit A

and C infinitely often. Consider the positional strategy where Player 2 always plays

to B from A and C. There is no positional strategy for Player 1 which can beat this.

Hence the value of the game in (MD,MD) is 0. But using a history based strategy

Player 1 can win. He just alternately visits A and C. Therefore, the value of the

game in (MD,MD) and (HD,HD) need not coincide.

70

Figure 5.4: The game does not have a value for (MD,MD)

In the next example, we show that a game need not a have a value for the strategy

space (MD,MD) .

Example 5.3.3 Consider the Rabin game shown in Figure 5.4 where the acceptance

condition is <j> = C V(J A-»A) V(A A->/). Player 1 wins by visiting infinitely often

(i.o.) position C, or visiting i.o. position I but not A, or by visiting i.o. position A

but not I. We will leave it to the reader to check that any positional strategy of Player

1 can be beaten by Player 2 playing a positional strategy. And any positional strategy

of Player 2 can be beaten by a positional strategy of Player 1. Hence the game does

not have a value for the strategy space (MD,MD). But the game is won by Player 2

using the following history based strategy: Player 2 always plays to position I from

position F. At position D, she looks at what Player 1 did during his last move at E:

when Player 1 moved to position F, Player 2 moves from D to A; if Player 1 moved

to position H, then Player 2 moves from D to E. The reader can check that this is a

winning strategy. We can now see the significance of the first part of Theorem 5.3.3

which assures us that a game on an ^-automaton always has a value in strategy space

(HD,HD).

Given an u>-automaton of one type, we can convert it to another kind such that the

languages of the two are the same. The same construction can be applied to convert

71

one type of game into another type such that both games have the same winner, and

the winner can use the "same" strategy to win both games.

Let us clarify the meaning of the "same" strategy. The history upto step j is

hj = P0P1P2 ---Pj- A strategy for Player 1 is a set of functions r = {r2t} where at

step 2i, Player 1 moves to the position r2i(h2i). Corresponding to hj is the string

hj = 606i... 6j_i where 6; G£ = {0,1} and pt+i = e^(p,-). We may view a strategy
as functions f = {f2i} from strings in E* to S. That is it; = f2i(h2i) G S and at

step 2i, Player 1 moves to etl/(p2t). Given a strategy r and a game graph G, strategy

f is uniquely defined, and vice versa. Furthermore f does not depend on the graph

G. Strategies for Player 2 which are independent of the graph G could be defined

similarly. When the game is converted into another type of game, the winner can use

same strategy f to win both games.

Lemma 5.3.2 Given a Rabin Game Q= (G,P^) with n positions and h pairs, there

is a Chain Game C= (C, P^) with nhk positions and k pairs where k < h, such that

the same player wins both games, and can do so by using the same strategy. The

index k is the Rabin Index of the Game language.

Proof: Using Theorem 5.3.2. •

But a chain game can be played using positional strategies. Hence we obtain an

upper bound on the amount of memory that Player 2 (Player 1) requires to play a

Rabin Game (Streett Game).

Theorem 5.3.5 In a Rabin Game (Streett Game) with n positions and h pairs, the

amount of memory required by Player 2 (Player 1) to play is at most nhk where k is

the Rabin Index of the game language.

1-Player w-Automata Games

Definition 5.3.6 Corresponding to the 1-Player game QT = (GT, P<f>) with G =

(V,E2 U t), define the u-automaton A = (T, <j>) with alphabet E = {0,1} where

T = (V,q0,S,E) and for i G /, S(2i - 1,0) = e0(2z), S(2i - 1,1) = ei(20 and

5(2i,0) = 5(2i,l) = T(2i).

72

The u;-automaton A is obtained by labelling the edges of transition structure QT

with an alphabet. A player can win the game QT provided he produces a play which

satisfies acceptance condition </>. But this is exactly the emptiness problem for the

w-automaton A. Hence, a player wins the 1-Player game QT iff C(A) ^ 0.

Lemma 5.3.3 Determining if a player wins the 1-Player Buchi, Rabin, Streett or

Parity game is in polynomial time.

Proof: From Theorem 5.3.1, checking emptinessof the corresponding w-automaton is

in polynomial time. •

We also know that the space MD is complete for Player 1 in Rabin games, and

for both players in Chain Games. From Lemma 5.3.3, it follows that determining

whether Player 1 wins a Rabin Game is in NP, a Streett Game in Co-NP, and a

Chain Game in NP n Co-NP. In [12], it is shown that determining whether Player

1 wins a Rabin (Streett) game is NP-hard (Co-NP hard).

5.3.3 Propositional /i-Calculus

Propositional //-calculus is a propositional modal logic with a least fixed point

operator fi [22, 13].

Syntax

The logic has atomic propositions A = p,q,..., and propositional variables x, y, —

The set of formulas are defined inductively:

1. atomic propositions p,q,---,

2. propositional variables x, y,...,

3. / V g, and ->f where f,g are formulae,

4. (a)f where / is a formula,

5. jix.f where formula / is positive in variable x.

73

Scope, occurence of free and bound variables, and closed formulas are defined

similar to first-order logic.

Semantics

The model for a //-calculus formula is a Kripke structure K = (S, E, L) where S

is a set of states, E C S x S, and L : S —> 2A.

A valuation p is map which assigns sets of states to free variables. It assigns pt-

to variable xt-. We will write }K(p) to denote formula / interpreted with valuation p.

When / does not contain free variables, its interpretation does not depend on p, and

we write it as fK. We define fK(p) inductively as follows:

1. x?(p) = pi

2. q*(p) = {s\q G L(s)}

3. (fVg)K(p) = fK(p)U9K(p)

4. hf)K(p) = S\fK(p)

5. ((a)f)K(p) = {s\(s,s') G E and s' G }K(p)}

6. (pxi.f)K(p) = f){X\X = fK(p') where p\ = X and fi = Pj for j ^ i}.

We also write [a]f = -»(a)-»/. The greatest fixed point v is defined as l/x.f =

-»^x.-i/.

The least fixed point can be computed by starting from the emptyset, and iterating

until a fixed point is reached. Similarly, the greatest fixed point is computed by

starting from the set containing all states and iterating [22]. In this way, the set fh

can be computed inductively.

Given a Kripke structure K = (S, E, L), a state s G S, and a //-calculus formula

/, the model checking problem is to determine whether s £ fK.

74

Chain Games and //-Calculus

The following two theorems of [13] show that the model checking problem for

//-calculus and solving Chain games are essentially equivalent problems.

Theorem 5.3.6 Given a Kripke structure K = (S, E, L), state s0 G S, and //-

calculus formula f, there is a Chain Game Q with 0((\S\ + |£|)|/|) positions such

that Player 1 wins the chain game Q iffSo Gfh -

Theorem 5.3.7 Given a Chain Game Q - (G,p0,P<f>), where G = (V,E), there is

a Kripke structure K of size 0(|V|) and a fi-calculus formula f of size 0(\</>\) such

that po G fh iff Player 1 wins game Q.

Since we gave an inductive algorithm for model checking //-calculus, we also obtain

an algorithm for solving Chain games. The complexity ofthis algorithm is 0((|V|fc)fc)
where |V\ is the number of positions in the chain game, and k is the number of pairs.

In Section 5.5, we will compare this algorithm with a new algorithm which we present

in Section 5.4.

5.4 Shapley's Game

In this section, we discuss one of the simplest dynamical games. The game is

played on the game graph G = (V,E). There is a reward r(v) at each position v.

When the play in the game is p = p0pi ---Pn, Player 2 pays to Player 1 the amount

E£0r(pt). Player 1 tries to maximize his payoff, and Player 2 tries to minimize it.

This class of games was originally studied by Shapleyunder a more general setting.

Shapley in [38] introduced the class of stochastic games. A stochastic game is a zero-

sum game played between two players: Player 1 who is trying to maximizehis payoff,

and Player 2 who wants to minimize it. The game has a finite number of positions.

In each position, the players choose from a finite number of actions. When the game

is in positon v, both players simultaneously choose their actions (say actions a and b),

then Player 1gets a reward rjb and the game moves to the position wwithprobability

75

Figure 5.5: A Payoff Game

P^. Both players again choose actions at position w and the game moves on to a

new position, and so on.

Shapley studied stochastic games with the discounted payoff Pp(p) = ££o/^rj*6*,
where p = popi... is the play of the game and a,-, &,- are actions of the players at step

i and 0 < /? < 1. He showed that such games have a value, and both players have

optimal stationary strategies [38].

We study a subclass of stochastic games — called Payoff Games — played on

the game graph G. From positions v G Vi, Player 1 chooses an action and moves to

e0(v) or ei(v). From position w G V2, Player 2 moves to e0(w) or ei(iu). The reward

function r : V —> Z is independent of actions. At a position v, Player 1 gets the

reward r(v). We study both finite and infinite games. Figure 5.5 shows an example

of a payoff game.

In a finite N-step game the play is p = popi. .-pn- The payoff is

fl»(j»)=i;Vr(») +̂ /(pj»),
fc=0

where / is the terminal reward function, and /? is a discount factor.

For the infinite game, the play is p = popip2 Two payoff functions are usually

76

studied. For a play p = popi..., the discounted payoff is

*=0

where the discount factor j3 G (0,1). The average payoff is

1 N
P(p)= \im mi-^r(pk).

In this section, we will discuss the class of games Q = {Qj} = (G, P) where

Qj = (G, j, P) is the game with start position j. Notice, the payoff function P actually

depends on the reward function r for the game. This will be implicit throughout this

section.

5.4.1 Notation

For a vector u GTlk, wesay u < v provided u(i) < v(i) for each i, and u(j) < v(j)

for some j. The norm of u is ||u|| = maxt{|w(i)|}. Given a function r : V —> Tl,

where V is a finite set, and W C V, define \W| to be the number of elements in the

set W, r(W) =T,w£W r(w), and mean(W) =rj^.
A map T : %k —> TV1 is said to be a contraction provided there is a 0 < j3 < 1

such that ||T(o;)-r(j/)|| < /?||x-y|| for allx,y. Acontraction map has a unique fixed

point (i.e., unique x such that T(x) = a;). Furthermore, for any y lim^oo Tn(y) = x

(by T", we mean the n fold composition of T). See [24, 37] for a proofof this.

The games are played on the game graph G= (V, E) where V = {1,..., 2n}. We

remind the reader that / = {1,... ,n}, Vi = {2i\i G /}, and V2 = {2z - l|i G /}. The

edges out of position j are (j,eo(j)) and (j,ei(j)); the set N(j) = {eo(j),ei(j)}. We

will usually write r for a strategy of Player 1 and a for a strategy of Player 2.

5.4.2 1-Player Payoff Games

A 1-Player payoff game is QT = (Gr,P) where GT = (V,E2 Ur). The strategy

for Player 1 is fixed to r and the game is played by Player 2. The reward function

is r : V —> H. The 1-Player payoff games are deterministic analogues of Markov

77

decision problems [20, 24, 37]. We study the N-step game, and the infinite discounted

and mean payoff games. We show that 1-Player discounted and mean payoff games

have a value and optimal positional strategies. The value and optimal strategies in

1-Player games can be computed in polynomial time.

N-Step

The payoff is

PN(p)=E0kr(pk) + PNf(pN)
fc=o

where / : V —• H is the terminal reward function.

Definition 5.4.1 Define the map TT : 7l2n —> K2n where for i G /,

TT(ti)(2i) = r(2i) + ^W20) (5-2)

TT(ti)(2i - 1) =r(2i - 1) +P̂ mm^Ma)}.

Equation 5.2 is the optimality equation in dynamic programming.

Lemma 5.4.1 The value of the N-step 1-Player game QT is t/jv = T?(f).

Discounted Payoff

The payoff is

where /? G (0,1).

Lemma 5.4.2 The map TT : H2n —• 1l2n in Definition 5.4-1 satisfies

\\Tr(u)-Tr(v)\\<0\\u-v\\.

Therefore for (3 G (0,1), TT is a contraction and has a unique fixed point.

Lemma 5.4.3 The value of the game QT is v, where v = TT(v). Player 2 has an

optimal positional strategy a where for i G /,

(t(2z —1) = arg min {u(a)}.
V ' oeN(2t-l)1 v /J

Mean Payoff

The payoff in the mean payoff game is

N

78

P(p) =^lim^ixif £ r(pk).

It is easy to see that the value of position i in game Qr is the smallest mean value

of a cycle that is reachable from i. Furthermore, Player 2 has an optimal positional

strategy which drives the game from position i to this cycle.

5.4.3 A Finite N-Step Game

In a finite N-step Game Q= (G,Pn), the game ends after N steps. The play of

the game is p = popi ---Pn- Player 2 pays to Player 1

fiv(p) = E/?Mp*)+/?J7(pjv)

where ft is a discount factor, and / : V —• H is the terminal reward function. We

want to determine the value vn of the N-step game, and the optimal strategies of the

two players.

Definition 5.4.2 Define the map T:K2n —v Tl2n where for i G /,

T(u)(2i) = r(2i) + fi max {u(a)} (5.3)
a€iV(2t)

T(u)(2i - 1) = r(2i - 1) + (3 min {u(a)}

Equation 5.3 is the basic optimality equationfor the payoff games. Using dynamic

programming, we can determine the value of the game, and the strategies of the

players. The strategy for Player 1 is {r*} where Tk : Vi —> V2. At step k, when the

game is in position pk and it is Player l's turn to move, he moves to Tk(pk)- Strategy

for Player 2 is similarly defined.

Lemma 5.4.4 The value of the N-step game with terminal reward f is v^ = TN(f).

The optimal strategy for Player 1 is {rjt} where

rN-k(2i) = arg max {vk-i(a)}.
o€N(2t)

79

The optimal strategy for Player 2 is {&k} where

crN-k(2i'•- 1) = axg min {vk-i(a)}.
o€/v(2t—1)

Proof: By induction on N. •

Example 5.4.1 Let's consider the payoffgame in Figure 5.5 where the game stops

after N = 5 steps. The discount factor /? = 1, and the terminal reward is 0 at each

position. The strategyfor Player 1 is {rjt}, and for Player 2, {o*}, where k = 0,..., 4.

We leave it to the reader to show that for each k Tk(A) = F, Tk(C) = D, and

Tk(E) = F; and &k(B) = C, &k(D) = C, and (?k(F) = A. When the game startsfrom

position A, Player 2 wins the game.

Next consider the game for a large number of steps, say N = 1000. We leave it

to the reader to show that when the game starts from position A, Player 1 wins the

game.

5.4.4 Discounted Payoff Game

In this section, we study the discounted payoff game (DPG) V = (G, Pp), where

discount factor (3 G (0,1). The play is p = poPip2 ---, and the payoff is

^(p) = E^r(P0-
Jfc=0

We prove Shapley's result that the game has a value, and both players have optimal

positional strategies. We also discuss Howard's policyiteration algorithm [20] and its

extension to stochastic games [19].

Value of the Game and Successive Approximation

Lemma 5.4.5 and Theorem 5.4.1 are due to Shapley [38].

Lemma 5.4.5 The map T in Definition 5.4-2 satisfies

\\T(u) - T(v)\\ < /3\\u - v\\.

80

Proof: For j G Vu

\T(u)(j)-T(v)(j)\ = P\m™{u(a)}-m™{v(a)}\

< /? max \u(a)-v(a)\
aGN(j)

< P\\u-v\\

Similarly for k G V2, \T(u)(k) - T(v)(k)\ < 0\\u - v\\. Therefore

\\T(u)-T(v)\\<P\\u-v\\. •

By Lemma 5.4.5, the map T in Definition 5.4.2 is a contraction, and hence has a

unique fixed point v.

Theorem 5.4.1 The value of the game the DPG V is v where v = T(v).

Proof: Define the strategy r for Player 1 as:

r(2i) = arg max {v(a)}.
V ' o€JV(2t)

Similarly, the strategy a for Player 2 is:

a(2i —1) = arg min {v(a)}.
V ' °aeJV(2t-l)

From Lemma 5.4.3, a is the optimal response of Player 2 to r, and r is the optimal

response of Player 1 to a. Therefore, strategies r and a are optimal in (MD, MD).

From Lemma 5.2.1, they are also optimal in (HD,HD). The payoff when Player 1

plays with r, and Player 2 plays with a is v. •

How do we compute the value of the discounted payoff game? This value can be

approximated by computing the value of the N-step game for large N. This is known

as the method of successive approximation [38, 20, 37, 24].

Lemma 5.4.6 Suppose v is the value ofthe discounted payoffgame. Then lim^_+0o vn

v where vn is the value of the N-step game.

Proof: Since vn = TN(f) and lim;v-K» TN(f) = v, where v is the unique fixed point

of T. m

81

Theorem 5.4.2 Consider the discounted payoff game V = (G, Pp) with G = (V, E)

and (3 = j. Then using the successive approximation technique, the value ofthe DPG
Vcan be computed in 0(^il^£M) steps where \V\ =2n and M=max^v \r(v)\.

Proof: First we will show that the value of position i, v(i), is a rational number *j

where n and d are integers. Then we will get a bound on the size of d.

The discounted game has optimal positional strategies for the two players. When

the two players play these positional strategies, the play from position i is p =

PoPi ••-Pg(Pg+i •• -Pg+hY where g + h<2n. Therefore the value

v(%) =£ 0mr{Pm) +T^r(£/?Mps+i))-
m=0 l P j=l

The value of position i can be written as a rational number v(i) = ^7 where d' =
[9+hyh _j£hy guj. smce g gjj^ ^ dlie not known a priori, we define

In

c/ = /2"fI(F-^*).
3=1

For each i, we can write v(i) as a rational number with denominator d.

Since

l|r"(0) -r~(o)|| <̂ m,
we choose N such that

1 PN „
2d>T^M'

This gives us N is 0(^^rrfM)- The value v(i) in the DPG V is obtained by
computing ujv(i) in the N-step game and rounding it to to the nearest rational with

denominator d. •

From Theorem 5.4.2, it follows that for a fixed /?, the discounted payoff games

can be solved in polynomial time. Unfortunately, this method can be very slow in

converging when /? « 1 (see Example 5.4.1). To overcome the problem with slow

convergence, we will study the policy iteration algorithm.

82

Strategy Improvement using Policy Iteration

In this section, we will show how to use a variant of the policy iteration algorithm

[20, 37, 24] to determine the value of the discounted payoff game V = (G, Pp).

Definition 5.4.3 Let usfix positional strategy t for Player 1, and positional strategy

<r for Player 2 in the DPG V. Define the map Tro : K2n —> K2n by

TT<r(u)(2i) = r(2i) + 0u{r{2i)) (5.4)

Tro(u)(2i - 1) = r(2i - 1) + /M*(2t - 1)).

Lemma 5.4.7 The map Tra in Equation 5.4 has the following properties:

1. For u<v, TTa(u) < TTO(v).

2. \\Tro(u)-TT<T(v)\\<f$\\u-v\\.

Hence, v = TTa(v) is the unique fixed point. The vector v is the payoff when

Player 1 plays strategy r, and Player 2 plays strategy a in game V. The value v
can be computed in polynomial time by solving the system of linear equations in

Equation 5.4. We are now ready to describe the strategy improvement algorithm of

[19].

Strategy Improvement Algorithm:

1. i = 0; Player 1 picks an initial positional strategy tq.

2. repeat

3. Player 2 responds with positional strategy &i Gr2(ri).

4> Compute the fixed point Vi = TTi(Ti(vi).

5. For j G /, define ri+1(2j) = n(2j) when n(2j) Gargmaxa€jv(2j){vt(a)},

else define rt+1(2j) = argmaxo€iv(2j){^(a)}-

6. i := i + 1

83

7. until(ri = rt_i)

8. t* = t;_i; a* = <Jt_i.

At each step rt- and (7j are positional strategies. Each iteration of the algorithm

takes only polynomial time. We next show that the algorithm incrementally improves

the strategy for Player 1. That is, strategy rt+i is a better strategy than rt-.

Theorem 5.4.3 Suppose Vi = TV1<7|(ut) and Vi+i = TTi+iai+l(vi+i). Then Vi < i\+i.

Proof: Since

and

erA2j - 1) = arg min \vi(b)},

7-f+i(2i) = arg max {w,-(o)},
a6N(2j)

we get Vi < TTi+lCi+1(vi). From Lemma5.4.7, t;t- < TT,+1<ri+1 (i>t) < T2+l<T.+i(vi) < •• <

rr"+1a,+1(^)- But limn_,oo 7£+1„i+I(v,0 = V£+i. Hence v,- < wi+i. •
The strategy for Player 1 is improving at each step. In a game with |Vi| = n,

Player 1 has atmost 2n strategies. Therefore the algorithm terminates in at most 2n

steps with optimal strategies t* and a".

Example 5.4.2 Let us look at the payoff game in Figure 5.5 with discounted payoff

and discount factorft = 0.999. We only need to look at what Player 1 does at position

A, and what Player 2 does at position D since the moves at the other positions are

fixed. We will solve the game using the strategy improvement algorithm. The initial

strategy for Player 1 is r0 where t0(A) = F. Then a0 G r2(r0) where a0(D) = E. The

value is v0 where v0(A) = -499.25, v0(B) = -398.35, v0(C) = -298.65, v0(D) =

-300.95, v0(E) = -300.25 and v0(F) = -500.75. Since v0(B) > v0(F), n(A) = B.

Then <n(D) = C, Vl(A) = 400.85, vi(B) = 400.25, vx(C) = 500.75, vx(D) = 499.25,

v\(E) = 598.05, and vi(F) = 398.45. At the next iteration r2 = T\ and the algorithm

stops. The reader can compare this with the successive approximation algorithm from

Example 5.4-1-

84

5.4.5 Mean Payoff Games

We next study the mean payoff game (MPG) M = (G, P) in which the play is

p = P0P1P2 ... and the payoff is

P(P) =̂ iminfigr(Pt).
Ehrenfeucht and Mycielski [10] showed that mean payoff games have a value and

both players haveoptimalpositional strategies. To do this, they needed to work with

both finite and infinite games. They define a finite game in which the play stops as

soon as a cycle is formed. Player 2 then pays to Player 1 the mean valueof the cycle.

All finite games have avalue [25]. Ehrenfeucht and Mycielski show that this is also the

value of the infinite game. To show that the game has optimal positional strategies,

they neededto use the infinite game to show some results about the finite game. The

proof is somewhat involved. Mycielski [28] mentions that no direct proof is known.

In contrast, Shapley's proof for discounted payoffgames relies on a contraction map,

and is simpler. We give a new proof that mean payoff games have optimal positional

strategies. In the proof, we make precise the relationship between discounted and

mean payoff games.

Theorem 5.4.4 Consider a game graph G = (V,E) with the reward function

r : V —> Z. Suppose vp is the value of the DPGV = (G, Pp). Then

1. There is a 0 < (3' < 1 and positional strategies r* and g* such that for all f3

where /?*</?< 1, r* and a* are optimal in the DPG V = (G, Pp).

2. Strategies r* and a* are optimal for the MPG M = (G, P), and the value of

the MPG isv = lim^^l - f3)vp.

Proof: 1) Fix a start position. Let r and a be positional strategies and p = fcu =

popi.. -Pg(pg+i ---Pg+h)" the resulting play when Player 1 plays r and Player 2 plays

a. Then g < \V\ - 1, \h\ < \V\,

Pfifr) =E Pmr(Pm) +TZ^chFrfa+j)),
m=0 -1 P i=l

85

and

(1 - fiPfo) =(1 -(3) E rriPm) +JlM(E/?r(prt)).
m=0 ^W=l P j=\

Thus hmp-n(l—/3)Pp(p) = mean(c). Let r' and afbe someother positional strategies

with play p' = //(c/)a/. Consider

poly(f3) = ((1 - (3)Pp(p) ~ (1 " £W^E^KE ^"l)i
i=i r=i

where /i = \c\ and ft' = |c'|. Then poly(f3) has at most 2|V| zeroes since it is a

polynomial of degree at most 2\V\. Thus the strategy pair (r,<r) and (t',g') have

the same value at most 2\V\ times. When (r,a) is optimal at discount factor (3i, and

(t1, a') is optimal at /32, it must be the case that two strategy pairs have the same

value at some a for /?i < a < j32, but not the same value at /?i. Since there are only

2'^l different strategy pairs, this can only happen a finite numberof times. Therefore

there is a 0* where 0 < f3* < 1, and positional strategies r* and am such that for all

P, where f3* < j3 < 1, r* and a* are optimal in the DPG V = (G, Pp).

2) Let the resulting play from playing r* and cr1" be p = /c". We first show that r*

and <r* are optimal in (MD,MD) for the MPG M = (G,P). Suppose a', not (7*, is

the optimal response of Player 2 to r*. Let p' = //(c/)u; be the resulting play. Then

mean(d) < mean(c). Therefore lim/3_•1(l-/?)Pi^(p,) < lim/j^l-/?)/^). But then

for some /?"</?'< 1, Pp>(p') < Pp'(p) and a' is the optimal response for Player 2 in

the DPG V = (G, Pp>) — a contradiction. Similarly r* is the optimal response to a*.

Thus the MPG has the value

v = mean(c) = lim(l —j3)vp

in (MD,MD). From Lemma5.2.1 and since MD is complete for 1-Player mean payoff

games, v is also the value in (ED,ED). •

As our intuition would suggest, the optimal strategies in the MPG are the same

ones which would be used for the DPG for /? close to 1. In [43], it is shown how the

value of the mean payoff game can be obtained from solving the discounted payoff

game. It is also possible to extend the successive approximation and the strategy

improvement algorithms directly to mean payoff games.

86

5.4.6 Complexity

Letus consider the computational complexity of solving payoff games. For a MPG

M = (G,p0, P), consider the following question: does Player 1win M ? The problem
is in NP because the optimal strategy r for Player 1can be "guessed". Thenone finds

the value of the 1-Player game Mr — a polynomial time problem. The "complement"

of the problem — does Player 1 not win the game — is equivalent to showing that

Player 2 wins the game. The "complement" problem is also in NP since determining

if Player 2 wins is in NP. Therefore the problem is in NPC\co-NP. Notice, to show,

this, essential use is made of three facts: the game has a value, both players have

optimal positional strategies (and therefore the optimal strategies are of polynomial

size), and 1-Player games are solvable in polynomial time. By similar reasoning, it

can be shown that determiningwhether Player 1 wins a discounted payoffgame is in

NPCico- NP.

At present, no polynomial time algorithm is known for solving payoff games. Our

computational experience with the policy iteration algorithm suggests that it is an

efficient algorithm for solving mean payoff games and discounted payoff games. At

present, it is not known whether the policy iteration algorithm is a polynomial time

algorithm.

The complexity question for the problem has also attracted attention in the com

puter science community [9, 26,43]. Condon [9] studies a simplified version of stochas

tic games called simple stochastic games. She points out that this problem is in

NP C\co —NP. Zwick and Patterson [43] study mean payoff and discounted payoff

games. They provide a polynomial reduction from payoff games to simple stochastic

games, hence showing that these games are perhaps easier than payoff games. Lud-

wig [26] gives an interesting randomized algorithm ofcomplexity 0(2v lvl) for solving
simple stochastic games. The same algorithm extends to mean payoff games and

discounted payoff games.

87

5.5 Chain Games and Mean Payoff Games

A chain game has n pairs — (Bi, Gi) — where the sets Bi and Gt- are disjoint.

Player 1 wins the play p provided inf(p) "touches" G«- but not Bj for any j > i.

In this section, we show how to translate a chain game into a mean payoff game,

so that both games have the same winner. Using this reduction, it becomes possible

to use the successive approximation algorithm and the policy iteration algorithm to

solve chain games.

In Section 5.5.1, we will give the method to translate a chain game into a mean

payoff game. We will prove that the same player wins both the chain game and the

mean payoff game. We then discuss the consequences of this result.

5.5.1 Reducing a Chain Game to a Mean Payoff Game

The new mean payoff game will be played on the same game graph as the chain

game. We assign positive rewards to positions in Gi, andnegativerewards to positions

in Bi. The idea is to assign much larger positive rewards to positions in Gi, than

positions in Bj for j < i\ and much larger negative rewards to positions in Bk for

k > i. So Player 1 wins the mean payoff game iff the play visits a position in Gi, and

perhaps some positions in Bj for j < i, but no position in Bk for k > i.

Example 5.5.1 A Buchi Game has a set F C V of final states. Define the reward

function where r(f) = 1 for f £ F, and r(k) = 0 for k g F. Then Player 1 wins the

Buchi Game iff the value of the mean payoff game is v where v > 0. It is easy to see

that the positional strategy which wins one game also wins the other.

Let us now discuss the general method for translating a chain game into a mean

payoff game. The reward function is r : V —> Z where positive rewards are assigned

to position in Gk, and negative rewards are assigned to positions in Bk- For g € Gk,

the reward is

r(fl)>lX>(Bj)|.
3=0

88

For b € Bk, the reward is

r(6)<-|I>(Gi)|.
i=i

When the reward function satisfies the inequalities given above, both the chaingame

and mean payoff game have the same winner. We next define such a reward function.

Translating a chain game into a mean payoff game:

Given a chain game Q—(G,P^) with N positions and m pairs (Bi,Gi), define the
mean payoff game Mg = (G,P) where the reward function is defined as follows:

For g e Gk,

r(g) = Nk,

and for b € Bk,

r(b) = -Nk+1.

Theorem 5.5.1 The same player wins the chain game Q and the mean payoff game

Mg. Furthermore, the same positional strategy can be used to win both games.

Proof: First let us show that for a cycle C, </>[C] = 1 iffr(C) > 0. Suppose <j>[C] = 1

and the position with the largest index in C is v. Then v € Gk and when Bjf)C ^ 0,

j < k. Therefore

r(C) = £ r(c) = r(v) + £ r(w).

But

cec wec\{v}

rk-l£ r(w)>-(N-l)Nk~1>-Nk.
wec\{v}

Since r(v) = Nk, r(C) > 0. Similarly, when r(C) > 0, </>[C] = 1.

Player 1 wins the chain game Qusing positional strategy r iff for every cycle C

in GT reachable from start position p0, 4>[C] = 1. But <j>[C] = 1 iff r(C) > 0. And

r(C) > 0 for every cycle C in Gr reachable from pQ iff Player 1 wins the mean payoff

game Mg with strategy r. Therefore Player 1wins the chain game Qusing positional
strategy r iff he wins the mean payoff game Mg with the same strategy. •

89

5.5.2 Some Consequences

Theorem 5.5.1 has interesting consequences. It states that a chain game is a

special instance of the mean payoff game. But any game on an (^-automaton may be

translated to a chain game (Theorem 5.3.2). Therefore any game on an u;-automaton

can be translated to a chain game and solved as a a mean payoff game. In particular,

the policy iteration algorithm may be used to solve games on w-automata. We also
get a new algorithm for model checking the propositional ^-calculus using the policy

iteration algorithm.

Many of the results we discussed in Section 5.3 about games on w-automata be

come special cases of the results for mean payoff games. In particular Church's

questions regarding solvability and synthesis are special cases of similar questions for
mean payoff games. Also the fact that MD is complete for chain games follows from
the result that MD is complete for mean payoff games of which chain games are a

special instance.

90

Bibliography

[1] R. Abraham, J.E. Marsden, and T. Raitu, Manifolds, Tensor Analysis, and
Applications, Springer-Verlag, 1988.

[2] R. Alur et. ah, The Algorithmic Analysis ofHybrid Systems, Theoretical Com
puter Science, Feb. 1995.

[3] R.Alur, C.Courcoubetis, T.A. Henzinger and P.-H. Ho, Hybrid automata: an
algorithmic approach to the specification and analysis ofhybrid systems,Eybrid
Systems, LNCS 736, Springer-Verlag 1993.

[4] R. Alur and D. Dill, Automata for modeling real-time systems, Proc. 17th
ICALP, Lecture Notes in Computer Science 443, Springer-Verlag, 1990.

[5] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984.

[6] J.P. Aubin, Viability Theory, Birkhauser, 1991.

[7] V. Borkar and P. Varaiya, e-Approximation ofDifferential Inclusion using Rect

angular Differential Inclusion, Notes.

[8] A. Church, Logic, arithmetic and automata, Proc. International Congress of
Mathematicians, 1963.

[9] A. Condon, The complexity of stochastic games, Information and computation,

96:203-224, 1992.

[10] A. Ehrenfeucht and J. Mycielski, Positional strategies for mean payoff games,

International Journal of Game Theory, 1979.

91

[11] E. A. Emerson, Automata, tableaux, and temporal logics, Logics of Programs,

LNCS 193, Springer-Verlag, 1985.

[12] E. A. Emerson and C.S. Jutla, The complexity of tree automata and logics of
programs, Proc. of the 29th Ann. IEEE Symposium on Foundations of Computer

Science, 1988.

[13] E.A. Emerson, C.S. Jutla, and A.P. Sistla, On model-checking for fragments
of /x-calculus, Proc. ofFifth Conference on Computer Aided Verification, LNCS

697, Springer-Verlag, 1993.

[14] J.Frankel, L.Alvarez, R.Horowitz, and P.Li. "Robust Platoon Manuevers for
AVHS," UCB-PATH TECH NOTE 94-09, University of California.

[15] D.Godbole and J.Lygeros, Longitudinal Control of the Lead Car of a Platoon.
IEEE Transactions on Vehicular Technology, 43(4):1125-35, November 1994.

[16] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields, Springer-Verlag, 1983.

[17] T. Henzinger, P. Kopke, A. Puri and P. Varaiya, What's Decidable About Hybrid
Automata, Proceedings of the 27th Ann. ACM Symposium on the Theory of

Computing, 1995.

[18] M. W. Hirsh and S. Smale Differential Equations, Dynamical Systems, and Lin
ear Algebra, Academic Press, Inc., 1974.

[19] A.J. Hoffman and R.M. Karp, On Non-terminating Stochastic Games, Manage
ment Science, 12:359-370, 1966.

[20] R.A. Howard, Dynamic Programming and Markov Processes, M.I.T. Press, 1960.

[21] A.Hsu, F.Eskafi, S.Sachs, and P.Varaiya. Protocol Design for an Automated
Highway System. Discrete Event Dynamic Systems: Theory and Applications,
vol.2,(no.3-4):183-206, February 1993.

92

[22] D. Kozen, Results on propositional /^-calculus, Theoretical Computer Science,
Dec. 1983.

[23] S.C. Krishnan, A. Puri, R.K. Brayton, and P.P. Varaiya, The Rabin index and
chain automata, with applications to automata and games, Proc. of the Seventh
Conference on Computer Aided Verification, LNCS 939, Springer-Verlag, 1995.

[24] P.R. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identification and
Adaptive Control, Prentice Hall, 1986.

[25] R.D. Luce and H. Raiffa, Games and Decisions: Introduction and Critical Survey,

Dover Publications, 1957.

[26] W. Ludwig, A subexponential randomized algorithm for the simple stochastic

game problem, Information and Computation, 117:151-155, 1995.

[27] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[28] J. Mycielski, Games with Perfect Information, Eandbook of Game Theory, vol.

1, Elsevier Science, 1992.

[29] X.Nicollin, A.Olivero, J. Sifakis and S. Yovine, An Approach to the Description

and Analysis of Hybrid Systems, Eybrid Systems, LNCS 736, Springer-Verlag

1993.

[30] A. Puri and P. Varaiya, Decidability of Hybrid System with Rectangular Dif

ferential Inclusions, CAV 94- Computer-Aided Verification, Lecture Notes in

Computer Science 818, pages 95-104. Springer-Verlag, 1994.

[31] A. Puri and P. Varaiya, Verification of Hybrid Systems using Abstractions, Ey

brid Systems II, LNCS 999, Springer-Verlag, 1995.

[32] A. Puri, V. Borkar and P. Varaiya, e-Approximation of Differential Inclusions,

Proceedings of the 34th IEEE Conference on Decision and Control, 1995.

[33] A. Puri and P. Varaiya, Driving Safely in Smart Cars, California PATH Research

Report UCB-ITS-PRR-95-24, July 1995.

93

[34] A. Puri and P. Varaiya, Decidable Hybrid Systems, To appear in Computer and

Mathematical Modeling.

[35] M.O. Rabin, Automata on Infinite Objects and Church's Problem, volume 13 of

Regional Conf. Series in Mathematics, 1972.

[36] T.E.S. Raghavan and J.A. Filar, Algorithms for Stochastic Games - A Survey,

ZOR - Methods and Models of Operations Research, 35:437-472, 1991.

[37] S.M. Ross, Introduction to Stochastic Dynamic Programming, Academic Press,

1983.

[38] L.S. Shapley, Stochastic Games, Proceedings National Academy ofSciences, vol.

39, 1957.

[39] C. Sparrow, The Lorenz Equations, Springer-Verlag, 1982.

[40] W. Thomas, Automata on Infinite Objects, Formal Models and Semantics, vol
ume B of Handbook of Theoretical Computer Science, Elsevier Science, 1990.

[41] P.Varaiya. Smart Cars on Smart Roads: Problems ofControl. IEEE Transactions
on Automatic Control, 38(2):195-207, February 1993.

[42] P. P. Varaiya, On the Trajectories ofa Differential System, in A.V. Balakrishnan
and L.W. Neustadt, editor, Mathematical Theory of Control, Academic Press,

1967.

[43] U. Zwick and M. Patterson, The complexity of mean payoff games on graphs,

COCOON '95, LNCS, Springer-Verlag.

	Copyright notice 1995
	ERL-95-113

