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Experimental Poincare Maps from the Twist-and-Flip Circuit

Guo-Qun Zhong* Leon 0. Chua, and Ray Brown

Abstract

In this paper, we present a physical implementation of the twist-and-flip circuit containing
a nonlinear gyrator. Many phase portraits and their associated Poincari maps are observed
experimentally from this circuit and presented in this paper.

1. Introduction

Fractals are one of many manifestations of complicated chaotic dynamics. The fractal phe
nomenon can occur not only in autonomous systems typical of Chua's circuit [l]-[3], but also
in nonautonomous systems driven by time-varying signals and therefore described by a nonau-
tonomous system of ordinary differential equations

x = /(x,t) (1)

where x is a vector in an n-dimensional Euclidean space Rn.
The twist-and-flip circuit offers one ofthesimplest paradigms for nonautonomous chaos. Indeed,

the state equations associated with the twist-and-flip circuit are the only known nonautonomous
system of ordinary differential equations whose Poincare map can be derived in an explicit analytic
form. Based on this property ofthe circuit an in-depth mathematical analysis ofthe twist-and-flip
map has been carried out exhaustively and rigorously [4]-[5]. The various fractals corresponding
to several classes of nonlinear gyration conductance functions g(vi,v2) from this map have been
generated numerically [6].

In this paper we describe a physical implementation of the twist-and-flip circuit with a simple
nonlinear gyration conductance function g(vu v2), driven by a square-wave voltage source. A va
riety of phase portraits and the corresponding Poincare maps observed experimentally from this
setup will be presented.

2. Physical implementation of the twist-and-flip circuit

The twist-and-flip circuit contains simply two linear capacitors C\ and C2, a voltage source s(t),
and a nonlinear gyrator, as shown in Fig. 1(a). The voltage source s(t) for driving the circuit is a
square wave of amplitude a and angular frequency w(or period P = 2e), as shown in Fig. 1(b).
The gyrator, which is the only nonlinear element in thecircuit, is described by the equations
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ii=9(vuV2)v2 1 (2)
«2 = -0to,V2)vi J

where $(vi,v2) is the associated gyration conductance [7]. In this paper we assume that

g(vuv2) > 0, for -oo < t>i,v2 < oo.

2.1 State equations of the twist-and-flip circuit

Applying KCL and KVL to the circuit shown in Fig. 1(a), we obtain

ti =-Cjf \ (3)
i2 = -C2|f/

where

v1(t) = x(t)-s(t),
v2(t) = y(t).

Introducing equations (2) into equations (3) and normalizing C\ = C2 = 1, we obtain the fol
lowing state equations governing the dynamics ofthe twist-and-flip circuit:

%= -g(x-s(t),y)y (4a)
%= g(x-s(t),y)(x-s(t)) (4b)

where

s(t) = a, t 6 (n, n + \)P (positive-half cycle)
s(t) = -a, t € (n+ |,n+ 1)P (negative-half cycle)

n = 0,l,2,---.

Dividing (4b) by (4a), we obtain

g =-<2=4 (5a)
and

ili _ _i*±«l (5m

over each positive- and negative-half cycles, respectively. Obviously, equation (5) defines a phase
portrait consisting of a family of concentric circles, centered at x =• a overeach positive-half cycle
te(nyn+ \)P, and at x= -o over each negative-half cycle t€{n+\,n+ 1)P, n= 0,1,2, -•*, as
shown in Figs. 2(a)-(b) . The phase portrait over a full period is shown in Fig. 2(c).

2.2 Implementation of the twist-and-flip circuit

To implement the twist-and-flip circuit shown in Fig. 1(a), we must specify the nonlinear gy
ration conductance function g(v\,v2) for the circuit. In this paper we choose



p(t;i,v2) = 0>i+t>2. (6)

The block diagram of the physical implementation for the twist-and-flip circuit is shown in
Fig. 3(a). It consists of two squaring functional blocks, two multipliers, two voltage-controlled
current sources, one adder, one square-root functional block, two linear capacitors C\ and C2, and
a square-wave voltage source s(t). The two squaringfunctional blocks, the adder, and the square-
root functional block together perform the task to realize the gyration conductance function (6).
The two analog multipliers and voltage-controlled current sources together realize the equation (2).
The capacitors C\ and C2 are connected across port 1 and port 2 of the gyrator, respectively. The
input signal to the twist-and-flip circuit is s(t), a square-wave voltage source with amplitude a and
angular frequency w. The analog multipliers AD633JN and AD734AN are respectively used to
implement all multiplications, squaring, and square-rooting operations in Fig. 3(a). The complete
circuit diagram of the twist-and-flip circuit is shown in Fig. 3(b).

3. Experimental observations of Poincare maps in the twist-and-flip circuit

Though the twist-and-flip circuit has an explicit mathematical solution, its asymptotic behav
ior in the x - y phase plane is nevertheless muddled by an infinite tangle of intersections of the
trajectory upon itself. The standard method to untangle such a mess ofpoints and extract some
useful asymptotic information is to analyze the dynamics of the associated Poincare map defined
as follows: Given any point (so,ifo), the Poincare map of (x0,3fo) for the circuit is a point (zi,yi)
that corresponds to the position of the trajectory (originating from (x0yyo)) at t = P= -jj [6].

Fig. 4shows the circuit setup used in our experimental observations of the Poincare map. The
sampled-and-hold output signals x and yof the circuit are connected respectively to the horizontal
and vertical channels ofan oscilloscope, operating in X-Y mode. The sample-and-hold impulse is
generated by the square-wave voltage source s(t) used for driving the twist-and-flip circuit.

By changing the amplitude a or the period P of the square-wave voltage source «(/), a rich
variety of phase portraits, including chaotic and periodic behaviors, have been observed from the
implemented twist-and-flip circuit. The experimentally constructed phase portrait, and its cor
responding Poincare map in the x - y plane, are shown in Figs. 5(a)-(f). Note that the phase
portrait in the x- y plane is muddled by an infinite tangle of intersections of the trajectory upon
itself, whereas the corresponding Poincare map in the x- y plane is a clearly defined set of points
illustrating the chaotic attractor occurring in the twist-and-flip circuit. To compare with theoretic
results, the Poincare maps obtained by numerical simulation for the circuit operating in a chaotic
regime are shown in Figs. 6(a)-(f). The simulation is based on Eqs. (4a) and (4b), in which capac
itances Ci and C2 are normalized to 1. The twist-and-flip circuit is theoretically lossless. However,
the physical realization of this circuit must necessarily involve some losses, however small. These
losses, or damping factors are nonlinear and very diflicult tomodel exactly. Therefore, toconstruct
a reasonable simulation requires some approximations tothese losses. The way to include damping
in the twist-and-flip mapping is suggested by the dissipative example in [4], and the derivations of
dissipative Poincare maps in [5]. Using these results we include two dissipative parameters in the
simulations, a, and /?. The resulting simulations of the Poincare maps shown in Figs. 6(a)-(f) have
the same voltages and frequencies utilized in the circuit corresponding to Figs. 5(a)-(f). While
the correspondences are not exact, the differences we believe are due tothe difficulties of capturing
the exact form ofthe nonlinear dissipative terms to be included in the twist-and-flip maps used to
simulate the circuit. Given this qualification, several ofthe Poincare" maps occurring in Fig. 5 are
in excellent geometric agreement to what is seen in typical dissipative twist-and-flip maps. From



this we conclude that this circuit is a good electronic realization of the twist-and-flip paradigm of
chaos.

The trajectory is stable when the circuit operates in a periodic regime. In this case, the phase
portrait in the x - y plane is stationary, and the Poincare map is a set ofperiodic points. When a
square wave ofamplitude a = 0 over each negative-half cycle is used as the sample-and-hold voltage,
we obtain the display shown in Figs. 7(a)-(b), in which the phase portrait and its Poincare map
over each positive-half cycle of the square-wave voltage source s(t) appear simultaneously.

4. Concluding remarks

The most remarkable property of the twist-and-flip circuit is that its associated nonautonomous
state equations have an explicit and simple Poincare map, making it mathematically tractable. This
circuit is imbued with a full repertoire of complicated chaotic dynamics. In this paper , we have
implemented the twist-and-flip circuit having a nonlinear gyration conductance functiondefined by
p(t>i, v2) = Jv\ + v2, and presented simulated numerically observations utilizing the twist-and-flip
map model with losses. Due to the complex nature of the actual model for the losses and the
sensitivity of the dissipative Poincare map to the nonlinear dissipative parameters, constructing
the exact damping model is difficult and is an open question for further study. Utilizing the same
circuit synthesis technique, a rich variety of Poincare maps can be observed experimentally by
synthesizing other twist-and-flip circuits having more complicated gyration conductance functions,
such as those presented in [6].
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Figure Captions

Fig. 1 (a) Twist-and-flip circuit containing two hnear capacitors and a gyrator characterized by
a nonlinear gyration conductance function g(vi, t>2), driven by a voltage source s(t).
(b) Voltage source s(t) in (a), a square wave with amplitude a and angular frequency a>.

Fig. 2 (a) Phase portrait centered at x = a over each positive-half cycle of s(t).
(b) Phase portrait centered at x = —a over each negative-half cycle of s(t).
(c) Combined phase portrait over a full period of s(t).

Fig. 3 (a) Block diagram of physical implementation for the twist-and-flip circuit,
(b) Implemented circuit diagram of the twist-and-flip circuit.

Fig. 4 Experimental setup for observing the Poincare map.

Fig. 5 Experimentally observed phase portrait (left) and its corresponding Poincare map (right)
of the twist-and-flip circuit, driven by a square-wave voltage source s(t) with the circuit
operating in a chaotic regime. Horizontal axis is x, vertical axis is y. Parameter values: (a)
a = 1.0V, P = 1.8ms; (b) a = 1.5V, P = 2.4ms; (c) a = 2.0V, P = 1.35ms; (d) o = 2.0V, P =
1.7ms; (e) a = 2.5V, P = 1.3ms; (f) a = 3.0V, P = 0.81ms.

Fig. 6 Numerically simulated Poincare map for the circuit operating in a chaotic regime. Horizon
tal axis is 3, vertical axis is y. Parameter values: (a) a = 1.0V,P = 1.8ms,a = 0.013,0 = 3;
(b) a= 1.5V, P= 2.4ms, a = 0.026, 0= 2.3 ; (c) a= 2.0V, P= 1.35ms, a = 0.02,0 = 1.5; (d)
a = 2.0V,P = 1.7ms,a = 0.02,0 = 2.5; (e) a = 2.5V,P = 1.3ms,a = 0.020605,0 = 2.2686.
(f) a = 3.0V, P = 0.81ms, a = 0.006,0 = 5.8.

Fig. 7 Phase portrait and Poincare map experimentally observed with the circuit operating in a
chaotic regime. Horizontal axis is x, vertical axis is y. a = 3.0V, P = 2.4ms.
(a) Phase portrait in x-y plane; (b) Corresponding Poincare map superimposed on the phase
portrait over each positive-half cycle ofs(t).
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