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Abstract

In this paper, we present a new time domain model of interconnects modeled as

transmission line networks. Each element of the characteristics of a transmission

line is modeled by a principal part and a remainder. The principal part consists

of an impulse and an exponential function, whose Laplace transform matches the

original function at infinity frequency with order 1 and at zero frequency with order

0. The remainder in the time domain consists of a cubic polynomial for a single line

and a piecewise cubic polynomial for coupled lines. The model is stable, accurate,

simple and efficient to use.

1 Introduction

With the rapid increase of the signal frequency and decrease of the feature sizes in

high speed electronic circuits, interconnects play increasingly important roles. On the

MCM and PCB level, interconnects are modeled as transmission line networks.

Many papers have been published in the analysis of transmission line networks. As

transmission lines are characterized in frequency domain and are generally terminated

in nonlinear loads, a time domain model of transmission lines is needed so that con

volution can be used to find the transient response. When inverse Fourier transform

'On leave from Nanjing University of Science and Technology



is directly used to find the model [2], the computation complexity will be proportional

to the square of the simulation time, which is not efficient. Padi approximation [7]

and moment matching method [8] have been used to approximate the characteristics

of the line in frequency domain and then the time domain model is formed by inverse

Laplace transform. While efficient recursive convolution can be accomplished by using

such a model, there is no guarantee of the stability of the model, and it is difficult

to predict the order of matching so that the model is accurate enough. Optimization

techniques are suggested to find a good approximation in frequency domain and then

transfer it into time domain [9,4], but optimization has its known limits and it is diffi

cult to guarantee a global rather than a local optimum unless the expensive simulated

annealing is used.

In this paper, we suggest a new approach to form a simple and accurate time domain

model for transmission lines. The approach consists of two steps. The first step is an

approximation in the frequency domain. This is done by matching the characteristics

at frequency zero with order zero (matching the value only) and at frequency oo with

order one (matching both the value and the derivative w.r.t. 1/s at 5 = oo). This

approximation is designated as the principal part of the model as it approximates the

original characteristic well in a wide range of high frequencies. This principal part is a

first order rational function with its inverse Laplace transform consisting of an impulse

and an exponential function. The main discrepancy of the approximation occurs at low

frequencies, except frequency zero. The difference between the original characteristics

and its principal part is called the remainder. The second step is finding the values

of the remainder at sampling frequencies of interest, using the inverse FFT to find

the time domain function, and fitting it with a cubic polynomial or a piecewise cubic

polynomial. Thus, the time domain model of each characteristic of a line consists of

an impulse, an exponential function and a number of cubic polynomials. The model is

stable, simple and accurate. As recursive convolution can be easily implemented with

such a model, this model is efficient to use.

This paper is organized as follows. The model of a single transmission line is pre

sented in Sec.2. The model of coupled transmission line is presented in Sec.3. The

technique of piecewise cubic fitting and the formulas of recursive convolution with cu-



bic polynomial are presented in Sec.4 and 5, respectively. Examples and conclusions

are given in Sec.6.

2 Model of single uniform line

Let r, /, c, g and d be the resistance, inductance, capacitance and conductance per

unit length, and the length of a line, respectively. The telegrapher's equations of the

line is as follows:

^-wv) (i)
^fl =-Y{s)V(x,s) (2)

where Z(s) = r + si. Y{s) = g + sc, and x = 0 and x = d correspond to the near end

and far end of the line, respectively.

A transmission line can be modeled by its characteristic 2 port [15] as shown in

Fig.l. where \\(s) = V(0,*), /,(*) = 7(0,*), V2(s) = V(d,s) and 72(«) = 7(<f,s). The

2-port elements are the following:

is the characteristic impedance, and

H',(«) = r(«)(2V,(«)-H'2(*)) (4)

H»(«) = r(«)(21',(«)-H'i(«)) (5)

where T{$) is the propagation function, which is equal to exp(—B(s)d) with

6(s) = >/(*/ +r)(«c +$) (6)

The characteristic 2-port can then be described by the following equations in frequency

domain:

V,(*)-&(«)/, (j) + W,(j) (7)

and

V,(«) = H',(«) - £(*)/,(«) (8)



Let t?*(f), ik(i)i(k = 1*2), zc(t) and f(t) be the inverseLaplace transform of Vk(s),

7*(s), Zc(s) and T(s), respectivelj*. Then, the time domain characteristic 2-port model

is described bj* the following equations:

v1(t) = zc(t)*i1(t) + wl(t) (9)

V2(t) = W2(t)-2e(t)*t2(t) (10)

with

tt>i(<) = 7(*)*(2t*(t)-w2(t)) (11)

u;2(t) = 7W*(2vi(r)-^(t)) (12)

where * is the symbol for convolution.

The modeling of a single line consists of the modeling of its characteristic impedance

zc{t) and its propagation function y{t).

2.1 Model of characteristic impedance

Let Zc{s) be first approximated by Zcp($), such that Zcp(0) = Zc(0), Zcp(oc) = Zc(oo)

and Zj;1' =Zj"1*. where F^ =dF(s)/d(l/s) U«, >Zc(0) =^/F, Zc(oo) =^//c"
and Zi"]) =1^1(1-?). Let

Then. Oj = Zc(:x).

W = —7- (13)
5 + O0

z<->>

60 =Zc(0)lzc(oc) (H)
and a0 = Zc(0)60- Let rcp(i) = L-'Z^fs), then

Zcp(t) = Zc(oo)o~(t) + kxexp{-bot) (15)

where A-, = Z[~l). zcp(t) is the principal part of zc(t).

Let Zcr(s) = Zc(s) —Zcp(s) be the remainder of Zc{s). Suppose that /o is the

basic frequency, and /mox is the highest frequency of interest. When the source signal

is a pulse with a rising and a falling time ir and </, respectively and assuming that

'We use the superscript (-1) to denote the residue of a function and the superscript -1 without

paratheses to denote an inverse.



t5 is the simulation time, then we choose f0 = l/ts and /mGX = 2/min(tr,tf). Let

AT = min„{2n/0 > fmax}> Compute Zcr(s) at sampling frequencies s* =s 2irkf0j for

k from 0 to Ar - 1, and find z^t) = L^Z^s) by inverse FFT. *„.(<) looks like a

parabolic, and we use a cubic polynomial z'^t) = a3t3 + a2t2 H- axt + a0 to do least

square fitting for zr(t). Then, ze(t) is approximated by

2c(0 = Zc(oo)6(t) +*,exp(-M) + c3t3 -f c2<2 + <*< + cq (16)

2.2 Model of propagation function

When s —> oo, 0($)rf —» ts where r = y/lcd is the propagation delay of the line.

In modeling the propagation function, we first extract ts from 6(s)d and let <f>(s) =

6{s)d - ts. Then T(s) = A(s)e:rp(-Ts) with A(s) = exp(-#(s)). In so doing, for

any function x{s), T(s)x(s) = A(s)exp(—Ts)x(s)i and correspondingly, the convolution

7(0 * x{t) = X(1) * x(t - t). Now we are going to approximate \(t).

AsinthecaseofSec.2.1,wefirst compute A(0) = exp{-y/rgd), A(oo) = exp(-ir(J+

£)) and A*"1) = jA(oc)T(f - {)2. Let the principal part of A{s) be Ap(«) = (dis +

d0)/{s + e0). then 4, = A(oc), e0 = A^J)/(A(0) - A(oo)) and d0 = A(0)eo. In the time

domain. Ap(f) = d}S(t) -f /rAejp(-e00 = A(oc)<5(<) + A^expf-eof) The remainder

Ar(f) = A(f) - Ap(f) is approximatedby /3*3 + /2f* + fit + /0 in the same way as in the

approximation of the remainder of the characteristic impedance. Then, X(t) as A'(t)

where

\'(t) = </,*(<) + *Aexp(-e00 + /3<3 + /2t2 + /,* + /o (17)

Example 1.

Let the frequency 5 be scaled by a factor u>o such that s' = s/u>0, and let a = r/u>ol,

b=s/^o and r' =ru>0, then Zc =Zc(oo)yf{s' +a)/(s' +b) and A=exp(-T'y/(s' +a)(s' +6)+
rV). The accuracy of the approximation of Zc and A by their principal parts depends

on the ratio a/6. The near the ratio to 1, the better the approximation. We show the

remainders zcr(t) and Ar(r) in Fig.2a and Fig.2b with the ratio a/b = 104. The solid

lines and dashed lines correspond to the original function and their cubic polynomial

fitting, respectively. It can be seen that the fitting is indeed very good.

Remarks.



1. In the case that g = 0, we can model yc(t) = z^(t) instead of modeling zc(t).

2. It can be seen from Fig.2 that the curve of the remainder is dissymmetric w.r.t.

the mid point. A quadratic polynomial can not fit such a curve well, so that we

choose a cubic polynomial.

3. The first step of the modeling process to extract a principal part is veryessential

to the second step. If zc(t) or A(f) is obtained by directly taking the inverse FFT

from Zc(s) or A(s), its curve will have severe ripples. No simple polynomial or

piecewise polynomial fitting can be done to approximate such a function well.

Also, the numerical computation of a convolution with such a function will be

very time consuming and special care must be taken to avoid excessive errors.

2.3 Time domain model of the characteristic 2-port

Now we consider the time domain model of the characteristic 2-port. Assuming that

the prior simulation time is tn and the current one is in+i with a step size h = tn+i-tn.

We consider the the convolution rc(*n+1) * ?i(<„+i), which is approximated by

-c(?n+l) * ?i(fn+1) = / *c(<n+l - X)ij(x)dx =
JO

/ "^(fn+1 - x)?1(x)<fx -f /'n+J ^(tn+, - x)?,(x)dx (18)
JQ Jtn

The first term of the above expression can be computed recursively as will be described

in Sec.4. Let it be expressed as 7]a(tfn+1). When h is small enough, the second term

can be approximated by using a trapezoidal formula

/'n+1 ^(*n+1 - x)i1(x)dx %7l6(*n+1) +̂ (/t)i,(tn+1) (19)
Jtn

where R(h) = oj + 0.5h{k. + Co) and 7i6(<n+1) = O.bh(kxexp(b0h) + c3h3 + c2h2 + ah +

co)?i(*n)? which can also be computed. Thus, the convolution 2c(*n+i) **i(*n+i) can be

expressed as z(ft)h(<n+i) + e*i(<„+i), where e*i(*„+1) = 7ia(<n+i) + 7l6(*„+i), and can

be modeled by a resistance R(h) and a voltage source e*i(*n+i) connected in series.

Let yi(f)be2ri(f)-tri(f). The convolution 7(tn+i)*yi(tn+i) = Wn+i)*yi(tn+i-r)-

For in+i < r. it is zero. In the general case, it is easily computed and can be regarded



as a known value. Thus, this convolution can be modeled by an independent voltage
source ett<i.

Therefore, the time domain model of the characteristic 2-port at time <n+1 is a

resistive two port shown in Fig.3a, where £1|fl+1 = exl + ewl and £i>n+i = e,2 -I- ew2.

This modeled is equivalent to the model shown in Fig.3b, where Ji,n+i = Ei,n+i/R(h)
and J2,n+1 = E2,n+1/R(h).

3 Model of coupled lines

In the case of a transmission line system with n coupled lines, let r, /, c and g be

the resistance, inductance, capacitance and conductance matrix, respectively, and let

l"(x..s) and 7(x, s) be the voltage and current vector, respectively, then the telegra

pher's equations have the same forms as those of Eqs.(l) and (2). Now we consider

tow kinds of its model.

3.1 Characteristic 2n-port model

Based on the above, the characteristic 2n-port of n coupled lines can also be described

by Eqs.(7) and (8). and Eqs.(4) and (5) are also vahd. In this case, the characteristic

impedance matrix is

Zc{s) =Y-\s)jY(s)Z(s) (20)

and the propagation function matrix is

T(s) =exp(-y/Y(s)Z(s)d) (21)

Let Y{s)Z{s) = Q(s)Q2{s)Q-\s), where Q7(s) is the diagonal eigen value matrix of

Y{s)Z(s) and T(s) its corresponding eigenvector matrix. Then,

r(«) = Q(s)exp(-Q(s)d)Q-1(s) (22)

and

Zc(s) = Y-\s)Q(s)e(s)Q->(s) (23)

Zc(0) can be computed by using Eq.(23). Let

. cl= Q(oo)T2Q-\oo) (24)



where T2 and Q(oc) are the eigenvalue and eigenvector matrix of the matrix c/, re
spectively. Then, from the above equations, we have

Zc(oo) =g-lQ{oo)TQ-\oo) (25)

The residue matrix Zc<-J) cannot be computed analytically in the general case. To
compute an element z£l) of Z<-*\ we select two high frequencies w, and u*, and find
vi = Zdjfa) and v2 = Zdj(u2). Let uk = imag{vk) for k= 1,2. Then,

We can use the formulas given in Sec.(2.1) to form the principal part of each element of
the characteristic impedance matrix, and then to approximate its remainder by using
a piecewise cubic fitting as will be described in the next section.

Let Q(s) = [Qtj(s)] , Q-*(s) = [R^s)] and 0(s) = diag^^s)}, then
n

r«-i(*) =E sHkexp(-ek{s)d) (27)

where Sijk = QikRkj. Let T = diag[Tk/d] and **(«) = 0* - sT*, then
n

rvW =£[»p(-T*s)Stfjbe:rp(-*4(*)<f)] (28)

In the general case, the ncomponents of r0-(s) have different ideal delay factor exp(-Tks)
and each of them need to be modeled individually.

From what was mentioned above, there are n2 elements in the model of zc(t) and
7?3 elements in the model of ?(/), and there are 2(n2 +n3) convolutions to take with
these two functions.

The time domain characteristic 2-port model with two coupled lines is shown in

Fig.4 for illustration. In the figure, R11{h) and the CCVS fl12712,n+1 come from the
convolution zu *iu +z12 *t12, and the independent voltage source Elhn+1 comes from
the above convolution and the convolution -yn *(2u21 - w2l) +<y12 *(2u22 - w22). Other
elements come from similar convolutions.

3.2 Model with decoupling transformation

Another way to model a system of coupled transmission lines is to use decoupling
transformations and to model each decoupled single line by its characteristic 2-port



[10]. Here we follow the same idea as in [10] with a slight variation.

Let A = ZWZ1*2 = We2W-* where 02 = diag[B2k] is the diagonal eigenvalue

matrix of A, and W is the corresponding eigenvector matrix. Let

X(s) =ZV2Wdiag[y/l/z*kek) (29)

P(s) =diag\Jllzokek)W-lZlt2 (30)

V(x,s) = X(s)E(x,s) and 7(x,s) = P(s)I(x,s). Then, wehave the decoupled system

^g^ =-Z(5)J(x>5) (31)

^^=-K(6)£(x,s) (32)
where Z(s) = diag{zokBk) and Y(s) = diag(6k/zok). The characteristic impedance and

the propagation function of the k-th decoupled lineare zok and exp(—Bkd)> respectively.

Note that zok can be arbitrarily chosen. For simplicity,we just choose zok = 1 for each

k. 2

Thus, by using the decoupling transformations, the modeling of a coupled line sys

tem can be done by modeling its decoupling transformation matrices and each of the

decoupled single lines. As the characteristic impedance of each decoupled line is a

constant, we only need to model its propagation function.

In the formation of the principal parts of the transformation matrices, Ar(0) and

P{0) can be computed by using Eqs.(29) and (30). In order to compute their values

at s = oc. let /V2c/i/2 = B = vr^mr-1. 3 Then,

A'(oo) = iWWndiaglJd/zokTk) (33)

and

P(oc) =diag{y/d/zokTk]W£l1/2 (34)

The residues A'*"1) and P(_1) can be computed numerically as described in Sec.3.1.

2At frequencies 0 and oc,our formulas are the same asgiven in [10], but at a frequency s = ju>, they

are different. The formulas given in [10] is based on the assumption that matrix A is real symmetric,

so that matrix \V is orthonormal. This is not the case when 5 = jw for finite nonzero u>.

3The matrix T here is the same as in Eq.(24)



There are two cases encountered in the formation of the principal parts of the

transformation matrices.

Case.l

In the formation of the principal part Fp = (a^s + a0)/(s+ 60), &o = F(_17(F(0) -

F(oo)). In order that the model be stable, F^-1) and F(0) - F(oo) must have the

same sign. When this condition is violated, we use a technique called shift at zero

frequency (SZF) to let the principal part be (a^ + a0)/(s + 60) - Cb/(<?iS + 1). In

the additional term, c© is so chosen that J^"1) and F(0)+ cq - Foo has the same sign

and bo = F*~2ty(F(0) + cq —F(oo)) is positive. d\ is set as large as possible so that

the second term has no real effect on the frequency response for / > /o and F*"1)

and F(cc) remain unchanged. The inverse Laplace transform of the additional term is

—eo/d\€xp(—t/di). As d\ is very large, practically speaking, it can be neglected in the

time domain model.

Case 2.

This case may happen in dealing with the numerical computation of residues.

Let u,*max = 2~/maj and f(ju;maT) = u + jv where u and v are real values. Then,

F(oc) =5; v. F(_1) % —r * oJmax, and the coefficient bo & —v * u>mox/(F(0) —u). In

order that the principal part approximates F(s) well in high frequencies, | 60 I should

be much smaller than u:n,aT, i.e.,| r |<| F(0) —F(oc) | is needed. We have found that

this is not always the case. When the opposite case takes place, a technique called

shift at infinity frequency (SIF) similar to SZF can be used. In SIF, we modify Fp(s)

by subtraction of Y(s) = qis/(s + qo)> When 5 -> oc, Y(s) —* q^. q^ is so chosen

that I v |<| F(0) — F(oo) —qi | is satisfied. g0 is so chosen that | qo |<C /o and

L-lV(s) * qi6(t).

A time domain model of a two coupled line system made from the decoupling trans

formation is shown in Fig.5 for illustration. In the figure, the subscript "n + 1" used

to specify the time is omitted for brevity. The VCVS 5n and the independent voltage

source Tu come from the convolution Xn * en + xi2 * ei2. The CCCS Ju and the

independent current source U\\ come from the convolution p\\ *ju +P12 *jn- R is the

characteristic impedance of the decoupled lines, and Wn comes from the convolution

"ii * (2^21 —u*2i). Other elements are from similar convolutions.

10



Now we compare the models without and with decoupling transformations, which
are called model 1 and model 2 for brevity. In model 2, there are n elements in
the model of propagation functions, and 2n2 elements in the model of transformation
matrices. The number of convolution related to these elements are 2n +4n2. They
are about a factor of 2/n w.r.t. those of model 1. On the other hand, there are 6n
unknowns in the circuit model with model 2(4n voltages and 2n currents), compared
with 4n unknowns (2n voltages and 2n currents) in model 1. For n > 3, the model
with decoupling transformations is more efficient.

4 Piecewise cubic fitting

In the formation of the coupled line model, we use piecewise cubic fitting to approximate
a remainder.

Let f{t) be the function to be approximated, which is defined in the time interval
[0,f„lox]. Let the interval be divided into n subintervals with breaking points 0=t0 <
*i <'2, •••< in-i <t„ = tmax. In the m-th subinterval 7m = [*„,_,,<m], suppose that
f(t) is approximated by fm(1) =aZit-t^ +aW-t^y +aW-t^-ra?. For
n? > 1, we let a% = fm-i{tm-i) so that the piecewise cubic polynomials are continuous
at the breaking points. Let t? be the i-th sampling point in the m-th subinterval.

Suppose that there are sm sampling points. Then, the least square fitting of fm(t) to
/(f) in the interval Im is equivalent to finding the least square solution ofthe hnear set
of equations

HmXm = J- (35)

where A1 = [a0.al,QJ,fl']< and Xm = [a^a?,^]' for m >1. 7T1 is an Sl x4matrix
with its element J??, =(<?)>-* and J1 is an sx vector with its element J} =/(*}). For
m> 1, Hm is an sm x3matrix with its element h% = (t?)> and the i-th element of Jm
is J/" = f(t™) - a^. By using the Householder transformation to transform Eq.(35)
to the following form

Gm\ \ Bm
(36)

« i

Qtn

Am =
Bm

0 cm
- .

11



where Gm is an upper triangular matrix, then Xm can be found by solving the equations
GmXm = Bm.

The piecewise cubic fitting is done step by step from the first interval to the last
one, and the breaking points 0 = t0 < h < <2,... < t^ < tn = tmas are determined

in the process one after another. We first divide the interval [0, tmax] into pmonotonic
subintervals 7,, 72,..., 7P with Ik denned by the terminal points [dk^, dk], where d0 =t0
and dp = tmax. As a cubic polynomial may have at most two extremes, the initial
position of the first breaking point ^ is set in 72 such that <x =mm(lMx ,d2). Suppose
that the k-th breaking point tk is in 7,, then the initial position of the Jfc+1 -th breaking
point is set at r*+1 = min(tk +1.2 * (dj - <*),di+1,<max). After the initial position of
the breaking point of anew subinterval is set, a least square fitting is done, and the
root mean square of the relative error rms is computed. If rms is within certain limit

(e.g., 4% to 5.5 7c), then the new breaking point is set. A farther or nearer breaking
point is tried depending on the case whether rms is too small or too big. In either
case, the change of the length of the subinterval is limited by a factor of 2or 1/2, and
the number of iterations is limited by 4. This process continues until the boundary of
the interval is reached.

After the piecewise cubic fitting is done, the piecewise cubic polynomial is trans

formed into the form of Ek=09k(t - tk)l{t - tk) where gk(t - tk) =ak3{t - tk)* -f a\(t -
t )2 +a\{t -tk)-r Oq. 1(* - ^k) is aunit step function starting at tk and aj = 0 for
k > 0.

Example 2.

In Fig.6-8, we show an example of the remainders ofthe propagation functions and

the elements of the decoupling matrices P and X of a two coupled line system. The

solid and dashed lines correspond to the original functions and their piecewise cubic

approximations. It can be seen that the approximations are quite good.

5 Recursive convolution

Each element of our model consists of an impulse, an exponential function, and a

number of cubic polynomials starting at different time points. When such a function

12



is convolved with another function x(<), the convolution can be done recursively from

time to time. The recursive convolution formula with an exponential function has been

given in [7], and the recursive formulas with polynomials up to the order of 2 havebeen

given in [13]. We now give the recursive formulas with a cubic polynomial for reference.

Let fk{t,T) = (t - T)kl(t - T) and Ik(t,x) = fk(t,T) * x(t) = J0f(t - T - r)kl(t -

T —T)x(r)dT. Then, for the time t + h > T, when trapezoidal formula is used to

do integration, we have the recursive formulas for the convolution from k=0 to 3 as

follows:

70(r + h,x) = 70(t,x) + 0.5h(x{t - T) + x(t + h - J1),),

h(t + /i,x) = 7i(z\x) + hl0{t,x) + 0.5h2x(t - T),

72(< + h,x) = 72(t,x) + 2/i7!(<,x) + h2I0{t%x) + 0.5ft3x(< - T),

73(f + /?,x) = 73(r,x) + 3/j72(t,x) + 3^7!^,x) + h3I0{t,x) + 0.bh4x(t - T).

Note that when T > 0, these convolutions have no relation with the current value

of x. i.e.. x(t+h): and when T = 0, only 7o(< + h,x) has a term related to x(t + /i).

6 Examples and conclusion

We present two examples to show the simulation results with our model. The first

example is a single line circuit shown in Fig.9, with the line voltages shown in Fig.10.

The second example is a two-coupled line circuit shown in Fig.l 1, with the line volt

ages shown in Fig.12. The solid hnes correspond to the simulation results by using

our model and the recursive convolution, while the dashed hnes (with an extension

*'.fft") correspond to those obtained by directly using FFT and exact expressions of

the characteristics of the hnes. It can be seen that these two results match very well,

which shows the accuracy of our model.

We also test the case when the remainders of the characteristics are not approxi

mated by piecewise cubic polynomial so that no recursive convolution can be used. The

CPU time is almost 100 times more than using our model with recursive convolution,

which shows the efficiency of our model.

We have presented a new time domain model for single and coupled transmission

lines. The model of each element consists of an impulse function, an exponential func-

13



tion, and a piecewise cubic polynomial. The model is stable. As very good approxi
mation can be obtained in the piecewise cubic polynomial fitting for the remainders,
the model can be very accurate. In fact, as the principal part approximates the char
acteristic well in a wide frequency region, the remainder is relatively small and only a
few pieces of piecewise cubic polynomials can lead to very good accuracy. Therefore,
the model is both simple and accurate. As the model is compatible with recursive
convolution, it is efficient in the use of time domain simulation. Compared with the

model formed byusing least square fitting in frequency domain only, our model is easier

to form and computationally inexpensive. Our future Work is to extend our model to

nonuniform and frequency-dependent Hnes.
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Captions of Figures 2, 6,7,8, 10 and 12

Fig.2 Remainders of characteristic impedance and
propagation function of a single line

Fig.6 Remainders of propagation function of two
coupled lines

Fig.7 Remainders of decoupling transformation
matrix X of two coupled lines

Fig.8 Remainders of decoupling transformation
matrix P of two coupled lines

Fig.10 Simulation result of a single line circuit

Fig.12 Simulation result of two coupled line circuit
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