Copyright © 1994, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMBINED CODE AND DATA MINIMIZATION FOR
SYNCHRONOUS DATAFLOW PROGRAMS

by

Praveen K. Murthy, Shuvra S. Bhattacharyya,
and Edward A. Lee

Memorandum No. UCB/ERL M94/93

29 November 1994

COMBINED CODE AND DATA MINIMIZATION FOR
SYNCHRONOUS DATAFLOW PROGRAMS

by

Praveen K. Murthy, Shuvra S. Bhattacharyya,
and Edward A. Lee

Memorandum No. UCB/ERL M94/93

29 November 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

COMBINED CODE AND DATA MINIMIZATION FOR
SYNCHRONOUS DATAFLOW PROGRAMS.

Praveen K. Murthy, Shuvra S. Bhattacharyya, and Edward A. Lee

ABSTRACT

In this paper, we formally develop techniques that minimize the memory requirements of
a target program when synthesizing software from dataflow descriptions of multirate signal pro-
cessing algorithms. The dataflow programming model that we consider is the synchronous data-
flow (SDF) model [17], which has been used heavily in DSP design environments over the past
several years. We first focus on the restricted class of well-ordered SDF graphs. We show that
while extremely efficient techniques exist for constructing minimum code size schedules for well-
ordered graphs, the number of distinct minimum code size schedules increases combinatorially
with the number of vertices in the input SDF graph, and these different schedules can have vastly
different data memory requirements. We develop a dynamic programming algorithm that com-
putes the schedule that minimizes the data memory requirement from among the schedules that
minimize code size, and we show that the time complexity of this algorithm is cubic in the num-
ber of vertices in the given well-ordered SDF graph. We present several extensions to this
dynamic programming technique to more general scheduling problems, and we present a heuristic
that often computes near-optimal schedules with quadratic time complexity. We then show that
finding optimal solutions for arbitrary acyclic graphs appears to be difficult and present heuristic
techniques that jointly minimize code and data size requirements. We present a practical example
and simulation data that demonstrate the effectiveness of these techniques.

This work is part of the Ptolemy project, which is supported by the Advanced Research Projects
Agency and the U. S. Air Force (under the RASSP program, contract F33615-93-C-1317), Semiconductor
Research Corporation (project 94-DC-008), National Science Foundation (MIP-9201605), Office of Naval
Technology (via Naval Research Laboratories), the State of California MICRO program, and the following
companies: Bell Northern Research, Cadence, Dolby, Hitachi, Mentor Graphics, Mitsubishi, NEC, Pacific
Bell, Philips, Rockwell, Sony, and Synopsys.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 179
East Tasman Drive., San Jose, California 95134, USA.

P. K. Murthy and E. A. Lee are with the Dept. of Electrical Engineering and Computer Sciences,
University of California at Berkeley, California 94720, USA.

1 Background

The synchronous dataflow (SDF) model has been used widely as a foundation for block-
diagram programming of digital signal processing (DSP) systems (see, for example, [15, 16, 18,
20, 21]). In this model, as in other forms of dataflow, a program is specified by a directed graph in
which the vertices, called actors, represent computations, and the edges represent FIFO queues
that store data values, called tokens, as they pass between computations. We refer to the FIFO
queue associated with each edge as a buffer.

SDF imposes the restriction that the number of tokens produced and consumed by each
actor is fixed and known at compile time. Figure 1 shows an example of an SDF graph. Each edge

is annotated with the number of tokens produced (consumed) by each invocation of the source

(sink) actor. Given an SDF edge o, we denote the source actor of o by source () and the sink
actor of a by sink (o) . We denote the number of tokens produced onto o per each invocation of
source (o) by produced () , and similarly, we denote the number of tokens consumed from o

per each invocation of sink (a) by consumed (o) . Each edge in a general SDF graph also has
associated with it a non-negative integer delay. A unit of delay represents an initial token on an
edge. For clarity, in this paper, we will usually assume that the edges in an SDF graph all have

zero delay; however, we will explain how to extend our main techniques to handle delays.
In this paper, we focus initially on SDF graphs that are chain-structured. An m -vertex

directed graph is chain-structured if it has m - 1 edges, and there are orderings (Vi ¥V
and (o, ay, ..., o, ;) for the vertices and edges, respectively, such that each o, is directed

from v; to v, _ . Figure 1 is an example of a chain-structured SDF graph. The major results that

we present for chain-structured SDF graphs can be extended to the somewhat more general class

Figure 1. A chain-structured SDF graph.

of well-ordered graphs, but for clarity, we develop our techniques in the context of chain-struc-
tured graphs. A directed graph is well-ordered if it has only one ordering of the vertices such that
for each edge a, source (a) occurs earlier in the ordering than sink (o) . We will discuss the
extensions of our techniques to well-ordered SDF graphs in Section 6.

A schedule is a sequence of actor firings. We compile a properly-constructed SDF graph
by first constructing a finite schedule o that fires each actor at least once, does not deadlock, and
produces no net change in the number of tokens queued on each buffer. When such a schedule o
is repeated infinitely, we call the resulting infinite sequence of actor firings a valid periodic
schedule, or simply a “valid schedule”, and we say that ¢ is the body of this valid schedule. Cor-
responding to each actor in the schedule body o, we insert a code block that is obtained from a
library of predefined actors, and the resulting sequence of code blocks is encapsulated within an
infinite loop to generate a software implementation of the valid schedule.

SDF graphs for which valid schedules exist are called consistent graphs. Systematic tech-
niques exist to efficiently determine whether or not a given SDF graph is consistent [17]. Also,
given a consistent SDF graph, the minimum number of times that each actor must execute in the

body of a valid schedule can be computed efficiently [17]. We represent these minimum numbers

of firings by a vector q;, indexed by the actors in G, and we refer to q; as the repetitions vec-
tor of G (we often suppress the subscript if G is understood from context). For Figure 1,
q=q(4,B,C,D) = (9,12,12,8) !

For example, (% (2ABC) DABCDBC (2ABCD) A (2BC) (2ABC)A(2BCD)) repre-

sents a valid schedule for Figure 1. Here, a parenthesized term (nS,S,...S;) specifies n succes-

sive firings of the “subschedule” §,S,...S;, and we translate such a term into a loop in the target

code. Note that this notation naturally accommodates the representation of nested loops. We refer

to each parenthesized term (nS,S,...5;) as a schedule loop having iteration count n and iter-

ands S,, S,, ..., S, .We say that a schedule for an SDF graph is a looped schedule if it contains

1. We adopt the convention of indexing vectors and matrices using functional notation rath-
er than subscripts or superscripts. Also, we denote the transpose of a vector x by x7.

3

zero or more schedule loops. Thus, the “looped” qualification indicates that the schedule in ques-
tion may be expressed in terms of schedule loops. Given a valid looped schedule S, we refer to
each iterand of the outermost schedule loop (the loop that has infinite iteration count) as an iter-
andof S.

A more compact valid schedule for figure 1is (= (3 (34) (4B)) (12C) (8D)) . We call
this schedule a single appearance schedule since it contains only one appearance of each actor.
To a good first approximation, any valid single appearance schedule gives the minimum code
space cost for in-line code generation. This approximation neglects loop overhead and other sec-

ond-order effects, such as the efficiency of data transfers between actors [4].
In general, a schedule of the form (% (q (N,)N,) (q(N,)N,) ...(q(Ng) Ny)) iscalled

a naive single appearance schedule. For the graph in figure 1, the schedule
(0 (94) (12B) (12C) (8D)) is a naive single appearance schedule.

1.1 Buffering Costs

The amount of memory required for buffering may vary greatly between different sched-
ules. We define the buffer memory requirement of a schedule S, denoted buffer_memory (S) ,
as Z max_tokens (o, S) , where the sum is taken over all edges o, and max_tokens (a., S)

denotes the maximum number of tokens that are simultaneously queued on a during an execution
of S. For example, the schedule (% (94) (12B) (12C) (8D)) has a buffer memory require-
ment of 36 + 12 +24 = 72, and the schedule (% (3 (34) (4B)) (4(3C) (2D))) has a buffer
inemory requirement of 12+ 12+ 6 = 30.

In the model of buffering implied by our “buffer memory requirement” measure, each
buffer is mapped to a contiguous and independent block of memory. This model is convenient and
natural for code generation, and it is the model used, for example, in the SDF-based code genera-
tion environments described in [12, 19, 20]. However, perfectly valid target programs can be gen-

erated without these restrictions. For example, another model of buffering is to use a shared buffer

of size ma.x({q (N)) x produced (N,) | 1<i<K }) which gives the maximum amount of data

4

q=(1,50,100,4)7
Figure 2. Example to illustrate the inefficiency of using shared buffers.
transferred on any edge in one period (one iteration of the outermost loop) of the naive single
appearance schedule, (% (q(N;)N,) (qQ(Ny)N,)...(q(Ng) Ng)) , where K is the number of

nodes in the graph. Assuming that there are no delays on the graph edges, it can be shown that via

proper management of pointers, such a buffer suffices. For the example graph above, this would
imply a buffering requirement of 36 since on edge AB, 36 samples are exchanged in the schedule

(o0 (94) (12B) (12C) (8D)) , and this is the maximum over all arcs. Moreover, the implemen-
tation of this schedule using a shared buffer would be much simpler than the implementation of a
more complicated nested schedule. But there are two problems with buffer-sharing that prevent its
use as the model for evaluating the buffering cost of single appearance schedules. Consider the
graph in Figure 2. The shared-buffer cost for the naive schedule for this graph is given by
max ({1x50,50x 100, 100 x 50,4 x25}) = 5000. However, with a buffering model where

we have a buffer on each edge, the schedule (®A (50B (2C)) (4D)) requires total buffering of

only 250 units. Of-course, we could attempt sharing buffers in this nested looped schedule as
well, but the implementation of such sharing could be awkward.

Consider also the effect of having delays on the arcs. In the model where we have a buffer
on every edge, having delays does not affect the ease of implementation. For example, if we intro-
duce d delays on edge BC in the graph in Figure 2, then we merely augment the amount of buff-
ering required on that edge by d. This is fairly straightforward to implement. On the other hand,
having delays in the shared buffer model causes complications because there is often no logical
place in the buffer to place the delays since the entire buffer might be written over by the time we

reach the actor that consumes the delays. For instance, consider the graph in figure 3. The repeti-

tions vector for this graph is given by (147, 49, 28, 32, 160) T Suppose that we were to use the
shared-buffer implementation for the naive schedule. We find that we need a buffer of size 224.

5

- After all of the invocations of A have been fired, the first 147 locations of the buffer are filled.
Since B writes more samples than it reads, it starts writing at location 148 and writes 196 sam-
ples. When C begins execution, it starts reading from location 148 and starts writing from loca-
tion 120 (120 = (148+196) mod 224). Actor C then writes 224 samples into the buffer. When D
is invoked, it starts reading from location 120. Hence, if there were a delay on edge CD for
instance, the logical thing to do would be to have a buffer of size 225 (meaning that D would start
reading from location 119) and place the delay in location 119. However, location 119 would have
been written over by A ; hence, it is not a safe location. This shows that handling delays in the
shared buffer model can be quite awkward, and would probably involve copying over data from a
“delay” buffer of some sort. Therefore, in this paper we focus mainly on the buffering model asso-
ciated with the “buffer memory requirement” measure, although, in Section 6, we present an
extension of our techniques to combine the above simple model of buffer sharing with the non-
shared model. The buffer sharing model will only be used whenever it is feasible to do so (when-
ever there are no delays, and the size of the shared buffer is lower). There are also other ways in
which sharing can be done; thoroughly combining the advantages of nested loops and these other
ways of sharing buffers is a topic for further study.

We note briefly that nested-schedules have a lower latency than naive single appearance
,schedules. The latency is defined to be the time at which the sink node fires for the first time in the

schedule. In a naive schedule (% (q (N;)N;) (qQ(Ny)N,) ... (q (Ng)Ng)) , thelatency is given

) K-1
By (q(N) -1)T+E; + Z q (N)) E;, where T is the sample period of the source actor, and E;
i=2

is the execution time of actor N;. All these times are assumed to be in number of instruction

cycles of the processor. A nested-schedule will usually have a latency less than this because if the

Figure 3. Example to illustrate the difficulty of using shared buffers with delays.

sink actor is part of a nested loop body, then all of the invocations of actors upstream do not have
to occur before the sink actor fires for the first time. In section 4, we illustrate this by an example.
In this paper, we discuss the problem of computing a single appearance schedule that min-
imizes the buffer memory requirement over all valid single appearance schedules. Thus, given our
model of buffer implementation, we wish to construct a software implementation that minimizes
the data memory requirement over all minimum code-size implementations. As we will show in
Section 2, for chain-structured SDF graphs, the number of distinct valid single appearance sched-
ules increases combinatorially with the number of actors, and thus exhaustive evaluation is not, in
a general, a feasible means to find the single appearance schedule that minimizes the buffer mem-
ory requirement. In Section 3, we show that the problem of finding a valid single appearance
schedule that minimizes the buffer memory requirement for a chain-structured SDF graph is sim-
ilar to the problem of most-efficiently multiplying a chain of matrices, for which a cubic-time

dynamic programming algorithm exists [10]. We show that this dynamic programming technique

can be adapted to our problem to give an algorithm with time complexity 0(m3) , where m is the

number of actors in the input chain-structured SDF graph.

In Section 4, we illustrate the relevance of our dynamic programming solution through a
practical example — a sample-rate conversion system to convert between the output of a compact
disk player and the input of a digital audio tape player. In Section 5, we discuss an alternative
solution to the problem of minimizing the buffer memory requirement over all single appearance

schedules for a chain-structured SDF graph. This is a heuristic approach whose worst-case time

complexity is OLmZJ ; our experimental data suggests that this heuristic often performs quite
well. In Section 6, we discuss how the dynamic programming technique of Section 4 can be
applied to other problems in the construction of efficient looped schedules. Through Section 6 we
are concerned primarily with chain-structured SDF graphs. In Section 7, we discuss solutions that
we have developed for general acyclic SDF graphs, and present simulation data that demonstrates
the efficacy of these methods. Finally, in Section 8, we discuss closely related work of other
researchers.

We will use the following definitions in this paper

« Given an SDF graph G, we denote the set of actors in G by actors (G) , and the set of
edges in G by edges (G) .

* By a subgraph of an SDF graph, we mean the SDF graph formed by any
V € actors (G) together with the set of edges {a € edges (G) | (source (o), sink (o) € V) } .
We denote the subgraph associated with the set of actors V by subgraph (V, G) .

* Given a finite set P of positive integers, we denote by gcd (P) the greatest common
divisor of P — the largest positive integer that divides all members of P.

* Given a finite set Z, we denote the number of elements in Z by |Z] .

* Given a connected, consistent SDF graph G, and a subset V < actors (G) , we define

q(V) = gcd({a;(4) | (A€V) }) . In [4], we discuss that g; (V) can be viewed as the num-

ber of times that a periodic schedule for G invokes the subgraph associated with V.

When discussing the complexity of algorithms, we will use the standard O, Q and ®
notation. A function f(x) is O (g (x)) if for sufficiently large x, f(x) is bounded above by a
positive real multiple of g (x) . Similarly, f(x) is Q (g (x)) if f(x) is bounded below by a pos-
itive real multiple of g (x) for sufficiently large x, and f(x) is ® (g (x)) ifitis both O (g (x))
and Q(g(x)) .

Also, we will use a number of facts that are proved in [4]. The first fact relates the repeti-
tions vector of a connected SDF subgraph to that of an enclosing SDF graph.

Fact1: If G is a connected, consistent SDF graph and R is a connected subgraph of G, then
for each A € actors (R) , q5(A) = qg(actors (R)) q(A) .

The next fact is related to the factoring transformation for looped schedules that was

introduced in [5]. As an example of the factoring transformation, consider the valid schedule
S, = ((3(34) (4B)) (2(6C) (4D))) , and observe that the iteration counts of the two loops

that are nested in the loop (2 (6C) (4D)) have a common divisor of 2. Fact 2 guarantees that if
we “factor” this common divisor from the iteration counts of these two inner loops into the itera-

tion count of the enclosing loop, then the resulting schedule,

S,= (2 (3(34) (4B)) (4(3C) (2D))) is valid and that its buffer memory requirement does
not exceed the buffer memory requirement of the original schedule. It is easy (although a bit
tedious) to verify that S, is indeed a valid schedule, and we see that

buffer_memory (S,) = 12+ 12+ 6 = 30, while buﬁer_qzemory (§) =12+12+12 = 36,
and thus for this example, the factoring transformation has reduced the buffer memory require-

ment by 17%.

Fact 2: Suppose that S is a valid schedule for an SDF graph G, and suppose that
L = (m(n;8;) (ny,8,)...(n,S;)) isaschedule loopin S of any nesting depth such that
(1<i<j<k) = actors (S;)) N actors (S j) = @ . Suppose also that y is any positive integer

that divides n,, n,, ..., n;; let L’ denote the schedule loop

(1m(vy,)(¥'1yS,) ..(¥7,S,)) s andlet 57 denote the schedule that results from replac-
ing L with L’ in S . Then

(a). S’ is a valid schedule for G ; and

(b). buffer_memory (S’) < buffer_memory (S) .

The factoring transformation is closely related to the loop fusion transformation, which
has been used for decades in compilers for procedural languages to reduce memory requirements
and increase data locality [1, 22]. In compilers for procedural languages, tests for the validity of

loop fusion include analysis of array subscripts to determine whether or not for each iteration n of
the (lexically) second loop, this iteration depends only on iterations 1, 2, ..., n of the first loop
[23]. These tests are difficult to perform comprehensively due to the complexity of exact subscript

analysis [3], and due to complications such as data-dependent subscript values, conditional

branches, and input/output statements. In contrast, Fact 2 gives a simple test for the validity of the

9

factoring transformation that is applicable to a broad class of looped schedules, including all sin-
gle appearance schedules.

Before we state Fact 3, we need to introduce a few more definitions.

» If A is either a schedule loop or a looped schedule, we say that A is coprime if not all
iterands of A are schedule loops, or if all iterands of A are schedule loops, and there does not
exist an integer j > 1 that divides all of the iteration counts of the iterands of A .

= We say that a single appearance schedule S is fully reduced if S is coprime and every
schedule loop contained in S is coprime.

For example, the schedule loops (5 (34) (7B)) and (70C) are coprime, while
(3(4A) (2B)) and (10(7C)) are not coprime; similarly, the looped schedules
(A (7B) (7C)) and (e (2A4) (3B)) are coprime, while the looped schedules (% (4AB))

and (% (6AB) (3C)) are not. From our discussion of Fact 2, we know that non-coprime sched-
ules or loops may result in significantly higher buffer memory requirements than their factored
counterparts. It is shown in [5] that given a valid single appearance schedule, we can repeatedly

apply the factoring transformation to derive from it a valid fully reduced schedule. As a conse-

quence, we have the following fact.

Fact 3: Suppose that G is a consistent SDF graph and S is a valid single appearance schedule
for G . Then there exists a valid single appearance schedule S’ for G such that S* is fully reduced

and buffer_memory (S’) < buffer_memory (S) .

2 R-schedules

Let G be a chain-structured SDF graph with actors A, Ay ..., A, and edges

Olys Oloy wees O _ 1 such that each oy is directed from A oA, 1'% In the trivial case, m = 1, we
immediately obtain (*A,) as a valid single appearance schedule for G . Otherwise, given any

i€ {1,2,...,m-1},define

10

left (i) = subgraph({A, Ay ...,Ai},G) , and

right (i) = subgraph({Ai A1 At G) .
From Fact 1, if (2S;) and (®Sy) are valid single appearance schedules for left (i) and

right (i) , respectively, then (% (q,S;) (¢5Sg)) is a valid single appearance schedule for G,
where g, = gcd({a5(4)|1<)< i}) and g = gcd({ag(4)|i<ijs m}) .

For example, suppose that G is the SDF graph in Figure 1 and suppose i = 2. Itis easily
verified that q .5 ;) (4, B) = (3,4)” and Q4 (C,D) = (3,2)” . Thus,
(0S5;) = ((34) (4B)) and (=Sp) = (*(3C) (2D)) are valid single appearance sched-

ules for left (i) and right (i) ,and (> (3 (34) (4B)) (4(3C) (2D))) is a valid single appear-
ance schedule for Figure 1.
We can recursively apply this procedure of decomposing a chain-structured SDF graph

into left and right subgraphs to construct a schedule. However, different sequences of choices for
i will in general lead to different schedules. For a given chain-structured SDF graph, we refer to

the set of valid single appearance schedules obtainable from this recursive scheduling process as
the set of R-schedules.

We will use the following fact, which is easily verified from the definition of an R-sched-
ule.

Fact 4: Suppose that G is a chain-structured SDF graph, |actors (G)|> 1, and
(delay (o) =0), V(a € edges (G)) . Then a valid single appearance schedule S for G is an
R-schedule if and only if every schedule loop L contained in S satisfies the following property:
(a). L has a single iterand, and this single iterand is an actor; thatis, L = (nA) for some
ne€ {1,2,...,} and some A € actors(G) ; or
(b). L has exactly two iterands, and these two iterands are schedule loops having coprime

iteration counts; thatis, L = (m(n,S,) (n,5,)),where m€ {1,2,...,,%}; n; and n, are

11

‘positive integers; ged (n;, n,) = 1;and S, and S, are looped schedules.

Note that if § is an R-schedule, and L = (m(n,S,) (n,S,)) is a two-iterand loopin §,
then (a). or (b). must also be satisfied for every schedule loop contained in (7,S,) and for every

schedule loop contained in (n,S,) ; thus, it follows that (%S;) and (*S,) are also R-sched-
ules.

If a schedule loop L satisfies condition (a) or condition (b) of Fact 4, we say that L is an
R-loop; otherwise, we call L a non-R-loop. Thus, a valid single appearance schedule S is an R-
schedule if and only if every schedule loop contained in § is an R-loop.

Now let €, denote the number of R-schedules for an n-actor chain-structured SDF graph.

Trivially, for a 1-actor graph there is only one schedule obtainable by the recursive scheduling

prbcess, so g, = 1.Fora 2 -actor graph, there is only one edge, and thus only one choice for i,

i = 1. Since for a 2 -actor graph, left (1) and right (1) both contain only one actor, we have
&, = € Xg, = 1.Fora 3-actor graph, left (1) contains 1 actor and right (1) contains 2
actors, while left (2) contains 2 actors and right (2) contains a single actor. Thus,

g5 = (the number of R-schedules when (i = 1))
+ (the number of R-schedules when (i = 2))

= (the number of R-schedules for left (1))
X (the number of R-schedules for right (2))

+ (the number of R-schedules for left (2))
X (the number of R-schedules for right (1))

= (g, X&) + (g, Xg;) = 2¢;8,.
Continuing in this manner, we see that for each positive integer n> 1,
n-1

n-1
€, = Z (the number of R-schedules when (i =k)) = Y (g;Xe,_,) .)
k=1 k=1

12

The sequence of positive integers generated by (1) with €, = 1 is known as the set of
Catalan numbers, and each &; is known as the (i - 1) th Catalan number. Catalan numbers arise
in many problems in combinatorics; for example, the number of different binary trees with n ver-
tices is given by the nth Catalan number, €, . It can be shown that the sequence generated by (1)

is given by

1{2n-2

8"=Z(n—l)’f°rn=1’2’3""’ 2)

where (a) =2 (@a-1)...(a-b+1) , and it can be shown that the expression on the right hand

b a!

side of (2)is { 4"/n) 8].

For example, the chain-structured SDF graph in Figure 1 consists of four actors, so (2)

indicates that this graph has i(g) = 5 R-schedules. The R-schedules for Figure 1 are

(% (3(34) (4B)) (4(3C) (2D))) , (=(3(34) (4(1B) (10))) (8D)),
(2 (3(1(34) (4B)) (4C)) (8D)), («(94) (4(3(1B) (1C)) (2D))) , and
(2 (94) (4(3B) (1(3C) (2D)))) ; and the corresponding buffer memory requirements are,
respectively, 30, 37, 40, 43,and 45.
The following theorem establishes that the set of R-schedules always contains a schedule

that achieves the minimum buffer memory requirement over all valid single appearance sched-

ules.

Theorem 1: Suppose that G is a chain-structured SDF graph;
(delay (o) =0),V(a € edges (G)) ;and S is a valid single appearance schedule for G . Then
there exists an R-schedule S’ for G such that buffer_memory (S’) < buffer_memory (S) .

Proof: We prove this theorem by construction. We use the following notation here: given a sched-

ule loop L and a looped schedule S, we define nonR (S) to be the set of non-R-loops in S; we

13

define 7 (L) to be the number of iterands of L ; we define C (L) to be the iteration count of L ;

and we define 1 (S) = Z I(L).
L’ € nonR (S)

First observe that all chain-structured SDF graphs are consistent so no further assumptions
are required to assure that valid schedules exist for G, and observe that from Fact 3, there exists a

valid fully reduced schedule S, for G such that buffer_memory (S)) < buffer_memory (S) .
Now let L, = (nT,T,...T,) be an innermost non-R-loop in S,; that is, L, is not an R-
loop, but every loop nested in L, is an R-loop. if m = 1 then since §, is fully reduced,
L, = (n(1T)) , for some iterand T”, where (17) is an R-loop. Let §; be the schedule that
results from replacing L, with (n7”’) in S . Then clearly, S, is also valid and fully reduced, and
S, generates the same invocation sequence as S, s0
buffer_memory (S|) = buffer_memory (S,) . Also, replacing L, with (nT”) reduces the num-
ber of non-R-loops by one, and does not increase the number of iterands of any loop, and thus,
1(8)) <1(Sy)
If on the other hand m 2 2, we define S, = (1T,) if T, is an actor and S, =T, otherwise

(if T, is a schedule loop). Also, if T, T, ..., T, are all schedule loops, we define

(y(c(rz))(C(T3))---(C(:’R)Bm))’

where y = gcd({C(T) I (2<ism) }) , and B,, B,, ..., B, are the bodies of the loops

T,,Ts, ..., T,,, respectively; if T,, T, ..., T,, are not all schedule loops, we define
S,= (17,...T,) . Let S, be the schedule that results from replacing Ly with Ly’ = (nS,S,) in
So- Now, because L, is fully reduced, the iteration counts of S, and S, must be coprime. Thus, it

is easily verified that S is a valid, fully reduced schedule and that L, is an R-loop, and with the

14

aid of Fact 2, it is also easily verified that buffer_memory (S,) < buffer_memory (S,) .
Finally, observe that S, and L, are R-loops, but S, may or may not be an R-loop

(depending on L). Thus, replacing L, with L,” either reduces the number of non-R-loops by
one, or it leaves the number of non-R-loops unchanged, and we see that either

1(8)) =1(Sg) =1(Lg) ,or 1(Sy) =1(Sg) -1(Lg) +1(S,) . Since

I(Sy) = I(Ly) - 1<I(Lg) , we again conclude that 7 (S;) <7(S,) .

Thus, from §;, we have constructed a valid, fully reduced schedule S, such that
buffer_memory (S,) < buffer_memory (S,) < buffer_memory (S) and TE D < 1 (Sp) -

Clearly, if 7 (S 1) #0, we can repeat the above process to obtain a valid, fully reduced sin-
gle appearance schedule S, such that buffer_memory (S,) < buffer_memory (S,) and
?(Sz) <I(S 1) - Continuing in this manner, we obtain a sequence of valid single appearance
schedules S, §,, §,, S5, ... such that for each S, in the sequence with i >0,
buffer_memory (S;) < buffer_memory (S) , and 1(S) < 1(S ;1) - Since 1 (Sg) is finite, we can-
not go on generating S;'s indefinitely — eventually, we will arrive atan S, , n 2 0, such that

1(S,) = 0.From Fact4, S, is an R-schedule. QED.

Theorem 1 guarantees that from within the set of R-schedules for a given chain-structured
SDF graph, we can always find a single appearance schedule that minimizes the buffer memory
requirement over all single appearance schedules; however, from (2), we know that in general, the
R-schedules are too numerous for exhaustive evaluation to be feasible. The following section pre-

sents a dynamic programming algorithm that obtains an optimal R-schedule in cubic time.

3 Dynamic Programming Algorithm

The problem of determining the R-schedule that minimizes the buffer memory require-

ment for a chain-structured SDF graph can be formulated as an optimal parenthesization problem.

15

A familiar example of an optimal parenthesization problem is matrix chain multiplication [8, 10].
In matrix chain multiplication, we must compute the matrix product M;M,...M,, assuming that
the dimensions of the matrices are compatible with one another for the specified multiplication.
There are several ways in which the product can be computed. For example, with n = 4, one

way of computing the productis (M, (M,M;)) M,, where the parenthesizations indicate the
order in which the multiplies occur. Suppose that M, M,, M4, M, have dimensions

10x 1,1 % 10, 10 x 3, 3 x 2, respectively. It is easily verified that computing the matrix chain

product as ((M;M,) M;) M, requires 460 scalar multiplications, whereas computing it as

(M, (M,M,)) M, requires only 120 multiplications (assuming that we use the standard algo-

rithm for multiplying two matrices).
Thus, we would like to determine an optimal way of placing the parentheses so that the
total number of scalar multiplications is minimized. This can be achieved using a dynamic pro-

gramming approach. The key observation is that any optimal parenthesization splits the product
MM,...M, between M, and M, , for some k in therange 1<k < (n-1), and thus the cost

of this optimal parenthesization is the cost of computing the product M, M,...M,, plus the cost of
computing M; .M, ,...M_, plus the cost of multiplying these two products together. In an

optimal parenthesization, the subchains M| M,...M; and M, | M, ,...M, must themselves be

parenthesized optimally. Hence this problem has the optimal substructure property and is thus
amenable to a dynamic programming solution.
Determining the optimal R-schedule for a chain-structured SDF graph is similar to the

matrix chain multiplication problem. Recall the example of Figure 1. Here

q(A,B,C,D) = (9,12,12,8) T; an optimal R-schedule is

(2 (3(34) (4B)) (4(3C) (2D))) ; and the associated buffer memory requirement is 30.
‘Therefore, as in the matrix chain multiplication case, the optimal parenthesization (of the sched-
ule body) contains a break in the chain at some k€ {1,2, ..., (n-1)} . Because the parenthe-

sization is optimal, the chains to the left of k and to the right of ¥ must both be parenthesized

16

optimally. Thus, we have the optimal substructure property.
Now given a chain-structured SDF graph G consisting of actors A, A,, ..., A, and edges

Olys Qyy «ves O, _ 1, SUCh that each o is directed from A, to A, , ,, given integers i, j in the range

1<i<j<n,denoteby b [i,j] the minimum buffer memory requirement over all R-schedules

for subgraph| {A,A; ., ...,A.},G]. Then, the minimum buffer memory requirement over all
P+l J

R-schedules for G is b[1,n] . If 1 <i<j<n, then,
blif) = min((LK1 +b1k+1J) +c, D | (Sk<)}), ®3)

where b [i,i] = 0 forall i ,and Cij [£] is the memory cost at the split if we split the chainat 4, .

It is given by
4 (A,) produced (o)
c; [k = —2—X . @)
ed({ag(4,) | (ism<)})
The gcd term in the denominator arises because from Fact 1, the repetitions vector q° of
(4,)
subgraph({ApA, 1 ...,Aj} , G) satisfies q’ (Ap) = 44, , for all

sed({aG(4,) | (ism<p})

peE {i,i+1,...,j}.
A dynamic programming algorithm derived from the above formulation is specified in

Figure 4. In this algorithm, first the quantity gcd({ag(4,) | (ism<j) }) is computed for

each subchain A pA WA - Then the two-actor subchains are examined, and the buffer mem-

i+l
ory requirements for these subchains are recorded. This information is then used to determine the
minimum buffer memory requirement and the location of the split that achieves this minimum for

each three-actor subchain. The minimum buffer memory requirement for each three-actor sub-

17

procedure ScheduleChainGraph
input: a chain-structured SDF graph G consisting of actors A, A,, ..., A,

and edges a,, a,, ..., a, _, such thateach a, isdirected from A; to 4, , .
output: an R-schedule body for G that minimizes the buffer memory requirement.

fori=1,2..,n I* Compute the ged's of all subchains */
GCD[i,i] = q5(4)
forj= (i+1),(i+2),..,n

GCD1ij] = ged({GCDLij-11,45(4)})

fori=1,2,...,n Subcosts[i,i] = 0;
for chain_size = 2,3,...,n
for right = chain_size, chain_size+1,...,n
left = right - chain_size + 1 ;
min_cost = ©;
fori=0,1,..,chain size -2
split_cost = (qg (Ay.q ., ;) 7/GCD [left, right]) x produced (a4 ,) &
total_cost = split_cost + Subcosts [left, left + i] + Subcosts [left +i + 1, right] ;
if (total_cost <min_cost)
split = i; min_cost = total_cost
Subcosts [left, right] = min_cost ; SplitPositions [left, right] = split;
output ConvertSplits (1, n) ; /* Convert the SplitPositions array into an R-schedule */

procedure ConvertSplits(L, R)

implicit inputs: the SDF graph G and the GCD and SplitPositions arrays

of procedure ScheduleChainGraph.

explicit Inputs: positive integers L and R suchthat 1 SLSR<n = |actors (G)].

output: An R-schedule body for subgraph({A,, A, , .. Ag}, G) that minimizes
the buffer memory requirement.
if (L=R) output 4,

else
s = SplitPositions [L, R] ; iz. = GCDI[L,L+5s]/GCDI[L,R] ;

ip=GCD[L+5+1,R]/GCD[L,R] ;
output (i; ConvertSplits (L, L +5)) (i5ConvertSplits (L +s+1,R)) ;

Figure 4.

18

chain A, A; ,A,;,, isstoredinentry [i,i+2] of the array Subcosts, and the index of the edge
corresponding to the split is stored in entry [/, i+ 2] of the SplitPositions array. This data is then
examined to determine the minimum buffer memory requirement for each four-actor subchain,
and so on, until the minimum buffer memory requirement for the 7 -actor subchain, which is the

original graph G, is determined. At this point, procedure ConvertSplits is called to recursively
construct an optimal R-schedule from a top-down traversal of the optimal split positions stored in
the SplitPositions array.

Assuming that the components of ¢, are bounded, which makes the gcd computations

elementary operations, it is easily verified that the time complexity of ScheduleChainGraph is
dominated by the time required for the innermost for loop — the (for
i = 0,1, ..., chain_size - 2) loop — and the running time of one iteration of this loop is bounded

by a constant that is independent of n. Thus, the following theorem guarantees that under our

assumptions, the running time of ScheduleChainGraph is OLn3J and QLn3J 3

Theorem 2: The total number of iterations of the (for i = 0, 1, ..., chain_size - 2) loop that

are carried out in ScheduleChainGraph is OLn3J and QLIZE’J .

Proof: This is straightforward; see [4] for the derivation.

4 Example: Sample Rate Conversion

Digital audio tape (DAT) technology operates at a sampling rate of 48 kHz, while com-

pact disk (CD) players operate at a sampling rate of 44.1 kHz. Interfacing the two, for example,
torecord a CD onto a digital tape, requires a sample rate conversion.

The naive way to do this is shown in Figure 5(a). It is more efficient to perform the rate
change in stages. Rate conversion ratios are chosen by examining the prime factors of the two

2.2.2..2

sampling rates. The prime factors of 44,100 and 48,000 are 23577 and 2'3's? , respectively.

19

Thus, the ratio 44,100 : 48,000 is 3172 : 2551 ,or 147 : 160. One way to perform this conversion
in four stages is 2:1,4:3, 4: 7, and 5 : 7. Figure 5(b) shows the multistage implementation.
Explicit upsamplers and downsamplers are omitted, and it is assumed that the FIR filters are gen-

eral polyphase filters [7].

Here q (A,B,C,D,E,F) = (147, 147,98, 28, 32, 160) T; the optimal looped schedule
given by our dynamic programming approach is (% (7 (7 (34AB) (2C)) (4D)) (32E(5F))) ;
and the associated buffer memory requirement is 264 . In contrast, the alternative schedule

(0 (147A) (147B) (98C) (28D) (32F) (160F)) has a buffer memory requirement of 1021 if
a separate buffer is used for each edge and a buffer-memory requirement of 294 if one shared
buffer is used. This is an important savings with regard to current technology: a buffer memory
requirement of 264 will fit in the on-chip memory of most existing programmable digital signal
processors, while a buffer memory requirement of 1021 is too high for all programmable digital
signal processors, except for a small number of the most expensive ones. The savings of 30
(10 %) over using a single shared buffer can also be significant on chips that only have on the
order of 1000 words of memory. It can be verified that the latency of the optimally nested sched-
ule is given by 1467+ E, + Eg + 2E+4E, + E;, as opposed to

cD FIR DAT
: 160 147
(@)

1 1 2 38,2 78 75 1
e OansOnOnOn I
CD :

(b) DAT

Figure 5. (a). CD to DAT sample rate change system.
(b). Multi-stage implementation of a CD to DAT sample rate system.

20

146T+E, + 147Ep + 98E -~ + 28E, + 32E ¢ for the naive schedule. If we take T = 500 (for

example, a 22.05Mhz chip has 22.05Mhz/44.1khz = 500 instruction cycles in one sample period
of the CD actor),and E, = 10,E, = E.=Ep = Eg =100, then the two latencies are 73810 and

103510 instruction cycles; the nested schedule has 29% less latency.

One more advantage that a nested schedule can have over the naive schedule with shared
buffering is in the amount of input buffering required. Some DSP chips have a feature where a
dedicated I/O manager can write incoming samples to a buffer in on-chip memory, the size of
which can be programmed by the user. If the single appearance schedule spans more than one
sample period, then input buffering is a useful feature since it avoids the need for interrupts. Inter-
rupts can be expensive; for example, on the Motorola 56000, input buffering is not available and
interrupts have to be used; each interrupt entails a loss of about 70 instruction cycles. Chips that
have input buffering include the Analog Devices ADSP 2100 and the Sproc processor from Star

Semiconductor. If we compute the amount of input buffering required by the naive schedule, we

find that itis ((147 + 98 + 28 +32) 100 + 160 x 10) /500 = 65, whereas for the optimally
nested schedule, it is given by (100 + 200 + 400 + 3200 + 1600) /500=11.

5 An Efficient Heuristic

Our dynamic programming solution for chain-structured graphs runs in O(ms) time,
where m is the number of actors. As a quicker alternative solution, we developed a more time-
efficient heuristic approach. The heuristic is simply to introduce the parenthesization on the edge

where the minimum amount of data is transferred. This is done recursively for each of the two

halves that result. The running time of the heuristic is given by the recurrence
T(n) =T(n-k)+T(k)+0(n),)

where £ is the actor at which the split occurs. This is because we must compute the gcd of the rep-
etitions vector components of the k actors to the left of the split, and the gcd of the repetitions of

the n - k actors to the right. This takes O (n) time assuming that the repetitions vector compo-

21

nents are bounded. Computing the minimum of the data transfers takes a further O (n) time since

there are O (n) edges to consider. The worst case solution to this recurrence is OLnZJ , but the
average case running time is O (n ® log n) if k = Q (n) . It can be verified that this heuristic
gives the R-schedule with the minimum buffer memory requirement,
(2 (3(3A) (4B)) (4(3C) (2D))) , for Figure 1.

We have evaluated the heuristic on 10, 000 randomly generated 50 -actor chain-structured
SDF graphs, and we have found that on average, it yields a buffer memory requirement that is
within 60% of the optimal cost. For each random graph, we also compared the heuristic’s solu-
tion to the worst-case schedule and to a randomly-generated R-schedule. On average, the worst-
case schedule had over 9000 times higher cost than the heuristic’s solution, and the random
schedule had 225 times higher cost. Furthermore, the heuristic outperformed the random sched-
ule on 97.8 percent of the trials. We also note that in over 99% of the randomly generated 50-
actor chain-structured SDF graphs, the shared-buffer cost for the naive single appearance sched-
ule was worse than the cost of the nested schedule given by the heuristic. Unfortunately, the heu-

ristic does not perform well on the example of Figure 5 — it achieves a buffer memory

requirement of 565, which is over double of what is required by an optimum R-schedule. In com-

parison, the worst R-schedule for Figure 5 has a buffer memory requirement of 755 .

6 Extensions

In this section we present three useful extensions of the dynamic programming solution

developed in Section 3. First, the algorithm can easily be adapted to optimally handle chain-struc-
tured graphs that have delays on one or more of the edges. This requires that we modify the com-

putation of ¢; i [k] , the amount of memory required to split the subchain 4, 4, |, ..., A 4

between the actors A, and A , ;. This cost now gets computed as

;i [k] = %qc (Ap) produced (o) + delay (o) , where r = gca‘({a5(4,) I (ism<j)}) :

22

if delay (a;) < %qG (A,) produced (o) ; otherwise (if

delay (o) 2 %qG (Ap) produced (o)), ¢; j [£] gets computed as ¢; j [k] = delay (a}) .

Accordingly, if the optimum split extracted in a given invocation of ConvertSplits (Figure 4) cor-

responds to a split in which the latter condition applied in the computation of ¢; i [k] , then Con-
vertSplits returns (ipConvertSplits (L + s+ 1, R)) (i, ConvertSplits (L, L + s)) ; otherwise, ConvertSplits
returns (i, ConvertSplits (L, L +5)) (ipConvertSplits (L +s+1,R)) , as in the original version. This

requires a method for keeping track of which condition applies to each of the optimum subchain
splits, which can easily be incorporated, for example, by varying the sign of the associated entry
in the SplitPositions array.

Second, as mentioned in Section 1, the technique applies to the more general class of well-
ordered SDF graphs. A well-ordered graph is one where the partial order is a total order; chain-
structured graphs are a special case of these. Again, this requires modifying the computation of

Ci.j [£] . Here, this cost gets computed as

g q; (A,) produced (o)
¢, [k] = A€ , 6)
ged({5 (4,) | (iSmS]})

where
Si k= {ﬁl(source (B) € {4,4,,, ...,Ak}) ;
and(sink(ﬁ) € {Ay, Ay, ...,Aj})}

thatis, §; ik is the set of edges directed from one side of the split to the other side.

The dynamic programming technique of Section 3 can also be applied to reducing the
buffer memory requirement of a given single appearance schedule for an arbitrary acyclic SDF

graph (not necessarily chain-structured or well-ordered). To explain this extension, we need to

23

define the concept of a topological sort. A topological sort of a directed acyclic graph consisting

of the set of vertices V and the set of edges E is an ordering v,, vy, ..., Vy of the members of V
such that for each e € E, ((source (e) =v,) and (sink (e) = vj)) = (i<j) ; thatis, the
source vertex of each edge occurs earlier in the ordering than the sink vertex.

Suppose we are given a valid single appearance schedule S for an acyclic SDF graph and
again for simplicity, assume that the edges in the graph contain no delay. Let ¥ = B,, B,, ..., B,

denote the sequence of lexical actor appearances in S (for example, for the schedule

(= (4A(2FD))C) ,¥ = A,F,D,C). Thus, since S is a single appearance schedule, ¥ must
be a topological sort of the associated acyclic SDF graph. The technique of Section 3 can easily
be modified to optimally “re-parenthesize” S into the optimal single appearance schedule (with
;égard to buffer memory requirement) associated with the topological sort ¥’ . The technique is

applied to the sequence ¥, with c; j [k] computed as in (6). It can be shown that the algorithm

runs in time O (|V]3) , where |V] is the number of nodes in the graph.

Thus, given any topological sort W* for a consistent acyclic SDF graph, we can effi-
ciently determine the single appearance schedule that minimizes the buffer memory requirement
over all valid single appearance schedules for which the sequence of lexical actor appearances is
Sl

Another extension applies when we relax the assumption that each edge is mapped to a
separate block of memory, and allow buffers to be overlaid in the same block of memory. There

are several ways in which buffers can be overlaid; the simplest is to have one memory segment of

size

max({produced (o) X q (4p)| (isk<j)})
cs, ;

LJ

™
god({a(4), a4, 1). 0 (4)})

for the subchain A, A4, , |, ..., A; (as explained in Section 1.1). We follow this computation with

24

b'[i,j] = min({b [t',j],CSl-,j}). (8)

to determine amount of memory to use for buffering in the subchain A, 4, |, ..., A je In general,

this gives us a combination of overlaid and non-overlaid buffers for different sub-chains. Incorpo-
rating the techniques of this section with more general overlaying schemes is a topic for future

work.

7 Acyclic SDF Graphs

Consistent acyclic SDF graphs are guaranteed to have single appearance schedules since a
naive schedule corresponding to any topological sort is a valid single appearance schedule. For
arbitrary graphs (not necessarily acyclic), necessary and sufficient conditions are given in [4] for
single appearance schedules to exist, and efficient algorithms are given to find such schedules
whenever they exist. These techniques require decomposing each strongly connected component
into an acyclic graph that consists of clusters, or supernodes, of smaller strongly connected com-
ponents, constructing a single appearance schedule for this acyclic graph, and then recursively
applying this procedure to each of the clustered strongly connected components to obtain the sub-
schedule for the corresponding supernode. For each decomposed strongly connected component,
there is a “top-level” cost associated with the edges that are not contained in any of the associated
clusters, and thus the total buffering cost of a general SDF graph involves the top-level cost for
each strongly connected component in the cluster hierarchy, in addition to the buffering cost for
each acyclic graph that occurs in the hierarchy. Furthermore, to attain the lowest buffering cost, it
may be necessary to increase the extent of some strongly connected components by clustering
neighboring actors together with actors in the strongly connected components before decompos-
ing the components [4]. Hence, graphs with cycles are significantly more difficult to construct
buffer-optimal single appearance schedules for than acyclic graphs.

The number of topological sorts in an acyclic graph can be exponential in the size of the

graph; for example, a complete bipartite graph with 2n nodes has (n!)2 possible topological

sorts. Each topological sort gives a valid naive single appearance schedule. An optimal reparen-

25

thesization of this schedule is then computed by applying the dynamic programming algorithm.
The problem is therefore to determine the topological sort that will give the lowest buffer memory
requirement when nested optimally. For example, the graph in Figure 6 shows a bipartite graph

with 4 nodes. The repetitions vector for the graph is given by (12, 36, 9, 16) T, and there are 4
possible topological sorts for the graph. The naive schedule corresponding to the topological sort
ABCD is given by (o0 (12A4) (36B) (9C) (16D)) . This can be parenthesized as

(2 (3 (4A) (3(4B)C)) (16D)) , and this schedule has a buffer memory requirement of 208.
The naive schedule corresponding to the topological sort ABDC, when parenthesized optimally,
gives the schedule (0 (4 (34) (9B) (4D)) (9C)) , with a buffer memory requirement of 120.

A heuristic solution for this problem can be based on extending the main idea that was
used in the heuristic for the chain-structured graph case: find the cut (a partition of the set of
actors) of the graph across which the minimum amount of data is transferred and schedule the

ﬁresulting halves recursively. The cut that is produced must have the property that all edges that
‘cross the cut have the same direction. This is to ensure that we can schedule all nodes on the left
side of the partition before scheduling any on the right side. In addition, we would also like to
impose the constraint that the partition that results be fairly evenly sized. This is to increase the
possibility of having gcd’s that are greater than unity for the repetitions of the nodes in the subsets
produced by the partition, thus reducing the buffer memory requirement. To see that having gcd’s
greater than one for the subsets produced is beneficial to memory reduction, consider figure 6. If

we formed the partition that had actor B on one side of the cut and actors A, C, D on the other

Figure 6. A bipartite SDF graph to illustrate the different buffer
memory requirements possible with different topological sorts.

26

side of the cut, we get the loop bodies (36B) and ((124) (9C) (16D)) and do not immedi-
ately see a reduction in buffering requirements since the repetitions of A, C, D are co-prime.
However, a partition with A, B, C on the same side of the cut immediately gives us a reduction
since the schedule body ((124) (36B) (9C)) can be factored as (3 (44) (12B) (3C)) , and
this reduces the memory for the subgraph consisting of actors A, B, C . In general, by constraining
the sizes of the partition, we increase the probability of being able to factor schedule bodies so
that a reduction in memory is obtained in each stage of the recursion. Needless to say, this is a
greedy approach which is likely to fail sometimes but has p;roved to be a good rule of thumb for
most instances.

7.1 A Heuristic to find Minimum Legal Cuts into Bounded Sets

Suppose that G is an SDF graph, and let V = actors (G) and E = edges (G) .Acut G

is a partition of the vertex set V into two disjoint sets V, and V. Define G, = subgraph (V)
and G, = subgraph (V) to be the subgraphs produced by the cut. The cut is legal if for all
edges e crossing the cut (that is all edges that are not contained in subgraph (V,;) nor
subgraph (V)), we have source (e) € V, and sink (e) € V. Given a bounding constant

K <|V], the cut results in bounded sets if it satisfies
Vil <K . V<K . ©)

The weight of an edge e is defined as
w(e) = qg(source(e)) X produced (e) . (10)

The weight of the cut is the total weight of all the edges crossing the cut. The problem then is to

find the minimum weight legal cut into bounded sets for the graph with the weights defined as in
(10). Since the related problem of finding a minimum cut (not necessarily legal) into bounded sets
is NP-complete [9], and the problem of finding an acyclic partition of a graph is NP-complete [9],

27

Figure 7. The min-cut given by the max-flow-min-cut
theorem is not equal to the min-legal cut for this graph.

we believe this problem to be NP-complete as well even though we have not discovered a proof.
Kernighan and Lin [13] devised a heuristic procedure for computing cuts into bounded sets but
they considered only undirected graphs. Methods based on network flows [8] do not work
because the minimum cut given by the max-flow-min-cut theorem may not be legal and may not

be bounded. The graph in Figure 7, where the weight on the edge denotes the capacity of that
edge, illustrates this. The maximum flow into vertex ¢ is seen to be 3 (1 unit of flow along the
path sBCt, 1 unit along sADt and 1 unit along sBDt) and this corresponds to the cut where

V, = {s,B,C} and V, = {A,D, 1} .Thevalueof thecutis givenby 1+ 1+ 1 = 3 (note that
the definition of the value of a cut in network flow theory is defined as sum of the capacities of the
edges crossing the cut in the s to 7 direction only) but the cut is not legal because of the reverse
edge from A to C. Indeed, the minimum weight legal cut for this graph has a value of 11, corre-
sponding td the cut where V, = {s}.

Therefore, we give a heuristic solution for finding legal minimum cuts into bounded sets.

The heuristic is to examine the set of cuts produced by taking a vertex and all of its descendants as
the vertex set V and the set of cuts produced by taking a vertex and all of its ancestors as the set

V. For each such cut, an optimization step is applied that attempts to improve the cost of the cut.

A vertex v is defined to be a descendant of a vertex u if there is a directed path from u to v and

a vertex v is a ancestor of vertex u if there is a directed path from v to u. A vertex u is inde-

28

procedure MinimumLegalCutintoBoundedSets
input: weighted digraph G = (V, A) , and abound b. output: V,, V, .

foreachuc V

end for

S =desc(u),S =WNWS

cutVal = cut (3, S)

T, (u) < independent (u) Mboundary (S)
foreacha€ T, (u)

E(a) = Zw(aox)
x€S

I(a) = Z w(x, a)
x€S

D(a) = 1(a) -E(a) I’ Cost difference if this vertex is moved over */
end for
[D, Idx]) « sort(D)
k1
while (|S|<b & D (k) <0 & k< ITL(u)|)

S« S\U {ldx(k)}

S« S\ {1dx(k)}
cutVal « cutVal + D (k)

ke<k+1
end while

minCutVal ¢~ min (minCutVal, cutVal)
if (mincutVal=cutVal),V; <8,V < S, endlif

P =ancs(u) ,P = V\P
Tp (u) < independent (u) (MYboundary (P)
foreacha€ Ty (u)

E(a) = w(x, a)
erP
I(a) = Z w(a,x)
XEP
D(a) = I(a) -E(a)
end for
I* Carry out the same type of steps as above to determine the partition */

I minCutVal,V,;,Vp comrespond to the minimum legal cut. */

29

pendent of v if u is neither a descendant nor an ancestor of v. Define the set of ancestors as
ancs (v) = {v}Uancestors(v) , and descendants as desc (v) = {v}\Udescendants(v),

and consider a cut produced by setting V, = ancs(v), Vg = V\V, for some vertex v. Con-
sider the set T, (v) of independent, boundary nodes of v in V. A boundary node in V, isa
node that is not the predecessor of any other node in V. Following Kernighan and Lin [13], for
each of these nodes, we can compute the cost difference that results if the node is moved into V.
This cost difference for a node a in T (v) is defined to be the difference between the total

weight of all the arcs out of a and the total weight of all arcs into a. We then move those nodes
across that reduce the cost. We apply this optimization step for all cuts of the form ancs (v) and

desc (v) for each vertex v in the graph and take the best one as the minimum cut. The algorithm
is shown in Figure 8. Since a greedy strategy is being used to move nodes across, and only the

boundary nodes are considered, examples can be constructed where the heuristic will not give
optimal cuts. Since there are |V| nodes in the graph, 2|V]| cuts are examined. Moreover, the cut

produced will have bounded sets since cuts that produce unbounded sets are discarded. For exam-
ple, one of the cuts examined by the heuristic for the graph in Figure 7, with bounding constant

K = |VI-1,is ancs(A) = {s, A} . This cut has a value of 30. The set of independent, bound-
ary nodes of A in V, is {B} , and the cost difference for B is given by 11 - 10 = 1. Hence, B
will not be moved over. The cut produced by considering ancs (C) = {s, A, B,C} has a value
c;f 12. The cost difference for the independent vertex D is given by 10- 11 = -1; hence, D is
moved into V; to yield a cut of value 11, and thus, in this example, the heuristic finds the mini-

mum weight legal cut.

Delays on arcs are handled as follows. If the number of delays D on some arc e satisfies

D 2 q; (source (e)) x produced (e) , (11)

then the size of the buffer on this arc need not be any greater than D . However, if e crosses the

30

cut, then the size of the buffer will become D + q; (source (e)) X produced (e) . Hence, an arc

that has D delays, where D satisfies equation 11, is tagged; a tagged arc does not affect the legal-
ity of the cut (in other words, the heuristic ignores tagged arcs when it constructs the legal cut) but

affects the cost of the cut: if a tagged arc crosses the cut in the reverse direction, the cost of the arc
is given by D, and if the tagged arc crosses the cut in the forward direction, the cost is given by
D + q; (source (e)) X produced (e) . This will discourage the heuristic is choosing partitions
where tagged arcs cross the cut in the forward direction.

The running time of the heuristic for computing the legal minimum cut into bounded sets

can be determined as follows. Computing the descendents or ancestors of a vertex can be done by
using breadth-first-search; this takes time © (|V] + |E|) . The breadth-first-search will also give us
the independent nodes in the complement set. Finding and computing the cost difference for each
of the boundary nodes in the set of independent nodes takes at most O (|E|) steps. Sorting the
cost differences takes O (|V] ® log (|[V])) steps at most, and moving the nodes that reduce the
cost takes O (|V]) time at most. Since a cut is determined for every vertex twice, the total running
time is O ([VI|E| +|V]? ® log (IV])) .

The heuristic for generating an schedule for the acyclic graph now proceeds by partition-
ing the graph by computing the legal minimum cut and forming the schedule body

(r,Sy) (rgSgp) wherer; = gcd({q()|ve VL}) »Tp = gcd({q(v)|ve VR}) and

Sy, Sg are schedule bodies for G; and G respectively. The schedule bodies S;, S, are obtained

recursively by partitioning G, and Gp. Once the entire schedule body has been constructed, the

dynamic programming algorithm is run to re-parenthesize the schedule to possibly give a better

nesting. Letting n = |V], the running time for this heuristic can be determined by solving the
recurrence 7(n) = T(n-k) + T (k) + O (nlE| +n2elog(n)), where k = IVLI and
n-k = |Vg|.If we choose the bound K in (9) to be a constant factor of the graph size, for exam-

ple, 3/4, then it can be shown easily that T(n) = O (JVI|E| +|V|2 ¢ log (|V])) . If we do not

31

bound the size of the sets to be a constant factor of the graph size, then the worst case running
time is O (|VI2|E| + [VI® ¢ log (]V])) . The reparenthesizing step that is run at the end uses the
dynamic programming algorithm and requires O (|V|3) running time. Thus the overall running

time is given by O (|V]3) .

7.2 Experimental Results

The heuristic was tested on hundreds of randomly generated 20 vertex, 30 vertex and 50
vertex SDF graphs. The random graphs were sparse, having 2|V| edges on average. The numbers
produced and consumed on the arcs were restricted to be less than or equal to 10 in order to pre-
vent huge rate changes (and thus, repetitions vectors) from occurring. The bounding constant
K = 3(|V]/4) was used in the heuristic for generating legal minimum cuts into bounded sets;
other bounds gave inferior results. The costs given by the heuristic were compared to the best cost
determined by just constructing a number of random topological sorts, and nesting each optimally

to determine the cost. Since a random topological sort can be found in linear time, the time to

determine a random schedule that has been nested optimally is given by O (|V]3) . A measure-
ment of the actual running time of the heuristic on a 50 node graph shows that we can construct
and examine 2 random schedules in approximately the same time that the heuristic takes to con-
struct its schedule. Hence, the heuristic was tested on random graphs against the cost of the better
of two randomly constructed schedules. The heuristic gave a better schedule more than 75% of
the time. However, if the number of random schedules that are examined is increased to 10 (with
a 5-fold increase in running time), the best of the random schedules was better than that given by
the heuristic 75% of the time. Hence, by increasing the number of random schedules that are
examined, we can construct better schedules than the heuristic, although this comes at the expense
of increased running time. Moreover, even when the heuristic produces schedules worse than ran-
domly constructed ones, it is still very close to the best random schedule, whereas the random
schedules can produce very bad schedules. Hence, the heuristic gives good schedules almost all
the time, even if slightly better ones could be constructed by examining a large number of random
schedules. In addition, we tested this heuristic against many other heuristics that can be devised
for the problem, including several that are based on the PGAN approach reported in [6], which is

32

outlined below.

One of the earliest techniques for jointly optimizing both code and data requirements for
SDF graphs was the PGAN (pairwise grouping of adjacent nodes) approach [6]. This approach,
which was devised for general SDF graphs (not necessarily acyclic), involves constructing a clus-
ter hierarchy by clustering two vertices at each clustering step. The cluster selection is based on
frequency of occurrence — the pair of adjacent actors is selected whose associated subgraph has
the highest repetition count. In [6] it is shown that the approach naturally favors nested loops over
“flat” hierarchies, and thus reduces the buffer memory requirement over naive schedules. We have
evaluated the PGAN heuristic, and several related heuristics that we derived by maintaining the
pairwise grouping property, and changing the function that is used to prioritize cluster candidates.
In each case, the dynamic programming extension of Section 6 was applied as a post-processing
step to optimally reparenthesize the PGAN schedule. We found that on 50 node random graphs
generated from the same model as the one we used to evaluate the heuristic of Section 7, the orig-
inal PGAN heuristic outperformed a single random schedule 77% of the time, and the best modi-
fied PGAN heuristic outperformed a single random schedule 82% percent of the time, while the
heuristic of Section 7 outperformed a single random schedule 86% of the time.

7.3 An Example for Acyclic Graphs

Figure 9 shows the implementation of a non-uniform, near-perfect reconstruction filter-
bank. The lowpass filters retain 2/3 of the spectrum while the highpass filters retain 1/3 (instead of
the customary 1/2,1/2 for the octave QMF). Rate changes in the graph are annotated wherever the

A Nonuniform filterbank.
The highpass component retains 1/3 of the

spectrum at each stage while the lowpass
refains 2/3 of the spectrum

32 . 23
ER—{>—1n
3 2 L |2
32 3l =3 P | - 23
m A 3 1 m_b_m 1 3 n\/ m
LagE = B m ®->-in
31E8T —> e
Analysls sections Synthesis sections

Figure 9. Non-uniform filterbank example.

33

number produced or consumed is different from unity. The gain actors on the limbs between the
analysis and synthesis sections enable the use of the filterbank as a simple 4-channel equalizer.
The repetitions vector of this graph is given by

qg = [27,27,9,9,18,6,6,9,12,6,9,4,4,6,8,4,4,4,12,6, 6,9, 18,9, 27, 27, 27] . The heu-
ristic, when run on this graph, obtains a schedule with a buffering cost of 100; the worst case
naive schedule (for any topological sort) would have a buffering cost of 438. The best schedule
obtained by examining 30 random topological sorts had a cost of 125 for this graph and the best
schedule obtained by examining 60 random topological sorts had a cost of 120. The best of the
various PGAN heuristics found a schedule of cost 117. This example clearly shows that, in prac-
tice, the performance of the new heuristic is likely to be better than that suggested by its perfor-

mance on random graphs.

8 Relaied Work

In [2], Ade, Lauwereins, and Peperstraete develop upper bounds on the minimum buffer
memory requirement for a number of restricted classes of SDF graphs. The graphs considered
each consist of a chain-structured subgraph, together with zero or more edges directed between
distinct actors in the chain-structured subgraph. Ade et al. present an efficiently computable upper
bound on the minimum buffer memory required over all valid schedules, and they present simula-
tion data that demonstrates that on average, the computed bounds are close to the corresponding
actual minima. Since the bounds of Ade et al. attempt to minimize over all valid schedules, and
since single appearance schedules generally have much larger buffer memory requirements than
s;chedules that are optimized for minimum buffer memory only, these bounds cannot consistently
give close estimates of the minimum buffer memory requirement for single appearance sched-
ules.

In [14], Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDF,
called cyclo-static datafiow. In cyclo-static dataflow, the number of tokens produced and con-
sumed by an actor can vary between firings as long as the variations form a certain type of peri-
odic pattern. For example, consider an actor that routes data received from a single input to each

of two outputs in alternation. In cyclo-static dataflow, this operation can be represented as an actor

34

that consumes one token on its input edge, and produces tokens according to the periodic pattern
1,0,1,0, ... (one token produced on the first invocation, none on the second, one on the third,

and so on) on one output edge, and according to the complementary pattern 0, 1,0, 1, ... on the
other output edge. A cyclo-static dataflow graph can be compiled as a cyclic pattern of pure SDF
graphs, and static periodic schedules can be constructed in this manner. A major advantage of
cyclo-static dataflow is that it can eliminate large amounts of token traffic arising from the need to
generate dummy tokens in corresponding (pure) SDF representations. This leads to lower mem-
ory requirements and fewer run-time operations. Although cyclostatic dataflow can reduce the
amount of buffering for graphs having certain multirate actors like explict downsamplers, it is not
clear whether this model can in general be used to get schedules that are as compact as single
appearance schedules for pure SDF graphs but have lower buffering requirements than that aris-
ing from techniques given in this paper.

A linear programming framework for minimizing the memory requirement of a synchro-
nous dataflow graph in a parallel processing context is explored by Govindarajan and Gaoin [11].
Here the goal is to minimize the buffer cost without sacrificing throughput — just as the goal in
this paper is to minimize buffering cost without sacrificing code compactness. Thus, the tech-
niques of [11] address the problem of selecting a schedule that minimizes buffering cost from
among the set of rate-optimal schedules. This problem does not take code space constraints into
account. Instead, it focuses on another dimension of scheduling that the techniques of our paper

do not consider — parallel processing.

9 Conclusion

In this paper, we have presented algorithms for constructing schedules that minimize

buffer usage from among the schedules that minimize program memory usage (called buffer-opti-
mal single appearance schedules) for programs expressed as SDF graphs. We defined the class of
R-schedules and showed that there is always an R-schedule that is a buffer-optimal single appear-
ance schedule. It is possible to construct buffer-optimal R-schedules for the class of well-ordered
SDF graphs by using a dynamic programming algorithm. We showed the efficacy and the useful-

ness of our algorithm on a practical example. We also showed that the problem of determining

35

buffer-optimal single appearance schedules appears to be a much more complicated problem for
general acyclic SDF graphs. Instead, we have presented heuristics that perform well in practice.

There are still many open problems left to be solved in this area of compiler design for
SDF graphs. The complexity of the problem of determining buffer-optimal single appearance
schedules for acyclic graphs is unknown, even though we believe it to be NP-complete. If the
problem is NP-complete, it would be interesting to see if better heuristics can be developed. In
particular, it would be interesting to see what effect a better heuristic for finding minimum weight
legal cuts into bounded sets would have on the quality of the schedules. Recall that the very idea
of using minimum cuts is a heuristic; hence, even if we were able to determine the optimal legal
minimum cuts (which is unlikely since that problem appears to be NP-complete as well), we
wouldn’t always produce buffer-optimal single appearance schedules. However, it might improve
the quality of the schedules somewhat. A reduction of this problem (determining buffer-optimal
single appearance schedules for acyclic graphs) to integer linear programming (ILP) would be
useful as it would allow evaluations of heuristics against the optimal answer. We also gave some
reasons why the problem of constructing buffer-optimal single appearance schedules becomes
even more complicated for arbitrary SDF graphs. Heuristic solutions for this problem are a topic
for further study. Finally, techniques for systematically trading program compactness for buffer
usage are also a topic for further study.

Acknowledgment

Thomas M. Parks, a graduate student at the University of California at Berkeley, con-
ceived, designed, and implemented the rate-change system of Figure 5(b).

36

References

[1]1 W. A. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, “On the Performance Enhancement of Paging Systems Through
Program Analysis and Transformations,” /EEE Transactions on Computers, vol.C-30, (no.5):341-56, May, 1981.

[2] M. Ade, R. Lauwereins, and J. A. Peperstraete, “Buffer Memory Requirements in DSP Applications,” presented
at IEEE Workshop on Rapid System Prototyping, Grenoble, June, 1994.

[3] U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic Publishers, 1988.

[4] S. S. Bhattacharyya, Compiling Dataflow Programs for Digital Signal Processing, Memorandum No. UCB/ERL
M94/52, Electronics Research Laboratory, University of California at Berkeley, July, 1994.

[5]S. S. Bhattacharyya and E. A. Lee, “Looped Schedules for Dataflow Descriptions of Multirate Signal Processing
Algorithms,” Journal of Formal Methods in System Design, to appear, 1995.

[6] S. S. Bhattacharyya and E. A. Lee, “Scheduling Synchronous Dataflow Graphs for Efficient Looping,” Journal of
VLSI Signal Processing, vol.6, (no0.3):271-88, December, 1993.

[71]. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate Signal Processing in Ptolemy,” Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing, Toronto, p. 1245-8 vol.2, April, 1991.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill, 1990.

[9]1 M. R. Garey, D. S. Johnson, Computers and Intractability-A guide to the theory of NP-completeness, Freeman,
1979,

[10] S. S. Godbole, “On Efficient Computation of Matrix Chain Products,” /[EEE Transactions on Computers,
vol.C22, (n0.9):864-7, September, 1973.

[11]R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing Memory Requirements in Rate-Optimal Schedules,”
Proceedings of the International Conference on Application Specific Array Processors, p. 75-86, San Francisco,
August, 1994,

[12]1 W. H. Ho, E. A. Lee, and D. G. Messerschmitt, “High Level Dataflow Programming for Digital Signal Process-
ing,” VLSI Signal Processing 111, IEEE Press, 1988.

[13] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,” Bell System Technical
Journal, vol.49, (n0.2):291-308, February 1970.

[14] R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete, “‘Geometric Parallelism and Cyclo-Static Dataflow in
GRAPE-1II,” presented at [EEE Workshop on Rapid System Prototyping, Grenoble, June, 1994,

[15] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren, “GRAPE: A CASE Tool
for Digital Signal Parallel Processing,” IEEE ASSP Magazine, vol.7, (n0.2):32-43, April, 1990.

[16] E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya, “Gabriel: A Design Environment for DSP,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol.37, (no.11):1751-62, November, 1989.

[17]1E. A. Lee and D. G. Messerschmitt, ““Static Scheduling of Synchronous Dataflow Programs for Digital Signal
Processing,” IEEE Transactions on Computers, vol.C-36, (no.1):24-35, January, 1987.

[18] D. R. O'Hallaron, The Assign Parallel Program Generator, Memorandum CMU-CS-91-141, School of Com-
puter Science, Carnegie Mellon University, May, 1991.

[19]1]. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using Ptolemy,” invited paper in Journal
of VLSI Signal Processing, to appear in 1995.

[20] S. Ritz, S. Pankert, H. Meyr, “High Level Software Synthesis for Signal Processing Systems,” Proceedings of
the International Conference on Application Specific Array Processors, Berkeley, p. 679-93, August, 1992.

37

[21] M. Veiga, J. Parera, and J. Santos, “Programming DSP Systems on Multiprocessor Architectures,” Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing, Albuquerque, p. 965-8 vol.2, April,
1990.

[22] M. Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press, 1989.
[23] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers, ACM Press, 1990.

38

	Copyright notice 1994
	ERL-94-93

