

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

COMBINED CODE AND DATA MINIMIZATION FOR

SYNCHRONOUS DATAFLOW PROGRAMS

by

Praveen K. Murthy, Shuvra S. Bhattacharyya,
and Edward A. Lee

Memorandum No. UCB/ERL M94/93

29 November 1994

COMBINED CODE AND DATA MINIMIZATION FOR

SYNCHRONOUS DATAFLOW PROGRAMS

by

Praveen K. Murthy, Shuvra S. Bhattacharyya,
and Edward A. Lee

Memorandum No. UCB/ERL M94/93

29 November 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

COMBINED CODE AND DATA MINIMIZATION FOR

SYNCHRONOUS DATAFLOW PROGRAMS.

Praveen K. Murthy, Shuvra S. Bhattacharyya, and Edward A. Lee

ABSTRACT

In this paper, we formally develop techniques that minimize the memory requirements of
a target program when synthesizing software from dataflow descriptions of multirate signal pro
cessing algorithms. The dataflow programming model that we consider is the synchronous data
flow (SDF) model [17], which has been used heavily in DSP design environments over the past
several years. We first focus on the restricted class of well-ordered SDF graphs. We show that
while extremely efficient techniques exist for constructingminimum code size schedules for well-
orderedgraphs, the number of distinctminimum code size schedules increases combinatorially
with the number of vertices in the input SDF graph, and these different schedulescan have vastly
different data memory requirements. We develop a dynamic programming algorithm that com
putes the schedule that minimizes the data memory requirement from among the schedules that
minimize code size, and we show that the time complexity of this algorithm is cubic in the num
ber of vertices in the given well-ordered SDF graph. We present several extensions to this
dynamic programming technique to more general schedulingproblems, and we present a heuristic
that often computes near-optimal schedules with quadratic timecomplexity. We then show that
finding optimal solutions for arbitrary acyclic graphs appears to be difficult and present heuristic
techniques that jointly minimize code and data size requirements. We present a practical example
and simulation data that demonstrate the effectiveness of these techniques.

This work is pan of the Ptolemy project, which is supported by the Advanced Research Projects
Agency and the U. S. Air Force (under the RASSP program, contract F33615-93-C-1317), Semiconductor
Research Corporation (project 94-DC-008), National Science Foundation (MTP-9201605), Office of Naval
Technology (via Naval Research Laboratories), the State ofCalifornia MICRO program, and the following
companies: Bell Northern Research, Cadence, Dolby, Hitachi, Mentor Graphics, Mitsubishi, NEC, Pacific
Bell, Philips, Rockwell, Sony, and Synopsys.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 179
East Tasman Drive., San Jose, California 95134, USA.

P. K. Murthy and E. A. Lee are with the Dept. of Electrical Engineering and Computer Sciences,
University of California at Berkeley, California94720, USA.

1 Background

The synchronous dataflow (SDF) model has been used widely as a foundation for block-

diagram programming of digital signal processing (DSP) systems (see, for example, [15, 16, 18,

20, 21]). In this model, as in other forms of dataflow, a program is specified by a directed graph in

which the vertices, called actors, represent computations, and the edges represent FIFO queues

that store data values, called tokens, as they pass between computations. We refer to the FIFO

queue associated with each edge as a buffer.

SDF imposes the restriction that the number of tokens produced and consumed by each

actor is fixed and known at compile time. Figure 1 shows an example of an SDF graph. Each edge

is annotated with the number of tokens produced (consumed) by each invocation of the source

(sink) actor. Given an SDF edge a, we denote the source actor of a by source (a) and the sink

actor of a by sink (a) . We denote the number of tokens produced onto a per each invocation of

source (a) by produced (a) , and similarly, we denote the number of tokens consumed from a

per each invocation of sink (a) by consumed (a) . Each edge in a general SDF graph also has

associated with it a non-negative integer delay. A unit of delay represents an initial token on an

edge. For clarity, in this paper, we will usually assume that the edges in an SDF graph all have

zero delay; however, we will explain how to extend our main techniques to handle delays.

In this paper, we focus initially on SDF graphs that are chain-structured. An m -vertex

directed graph is chain-structured ifit has m- 1 edges, and there are orderings (Vi, v2,..., v)

and (dp cc2, ..., o.m _j) for the vertices and edges, respectively, such that each a(is directed

from Vj to vi+1. Figure 1 is an example of a chain-structured SDFgraph. The major results that

we present for chain-structured SDF graphs can be extended to the somewhat more general class

a } *\BJ vcy v0
Figure 1. A chain-structured SDF graph.

of well-ordered graphs, but for clarity, we develop our techniques in the context of chain-struc

tured graphs. A directed graph is well-ordered if it has only one ordering of the vertices such that

for each edge a, source (a) occurs earlier in the ordering than sink (a). We will discuss the

extensions of our techniques to well-ordered SDF graphs in Section 6.

A schedule is a sequence of actor firings. We compile a properly-constructed SDF graph

by first constructing a finite schedule a that fires each actor at least once, does not deadlock, and

produces no net change in the number of tokens queued on each buffer. When such a schedule a

is repeated infinitely, we call the resulting infinite sequence'of actor firings a valid periodic

schedule, or simply a "valid schedule", and we say that a is the body of this valid schedule. Cor

responding to each actor in the schedule body a, we insert a code block that is obtained from a

library of predefined actors, and the resulting sequence of code blocks is encapsulated within an

infinite loop to generate a software implementation of the valid schedule.

SDF graphs for which valid schedules exist are called consistent graphs. Systematic tech

niques exist to efficiently determine whether or not a given SDF graph is consistent [17]. Also,

given a consistent SDF graph, the minimum number of times that each actor must execute in the

body of a valid schedule can be computed efficiently [17]. We represent these minimum numbers

of firings bya vector qG, indexed bythe actors in G, and we refer to qG as the repetitions vec

tor of G (we often suppress the subscript if G is understood from context). For Figure 1,

q = q(AtBtC,D) = (9,12,12,8)T}

For example, (<*(2ABC)DABCDBC(2ABCD)A(2BC) (2ABC)A(2BCD)) repre

sents a valid schedule for Figure 1. Here, a parenthesized term (w5152...5Jt) specifies n succes

sivefirings of the "subschedule" S^...Sk$ andwetranslate sucha term into a loopin the target

code. Note that this notation naturally accommodates the representationof nested loops. Werefer

to eachparenthesized term (nS1S2...Sk) as a schedule loop having iteration count n and iter-

ands SVS2> ~.,Sk .We say that a schedule for an SDFgraphis a looped schedule if it contains

1.We adopt the convention of indexing vectors and matrices using functional notation rath
er thansubscripts or superscripts. Also, we denote the transpose of a vector x by \T.

zero or more schedule loops. Thus, the "looped" qualification indicates that the schedule in ques

tion may be expressed in terms of schedule loops. Given a valid looped schedule S, we refer to

each iterand of the outermost schedule loop (the loop that has infinite iteration count) as an iter-

and of S.

A more compact valid schedule for figure lis (°o(3(3A) (45)) (12C) (8D)) .We call

this schedule a single appearance schedule since it contains only one appearance of each actor.

To a good first approximation, any valid single appearance schedule gives the minimum code

space cost for in-line code generation. This approximation neglects loop overhead and other sec

ond-order effects, such as the efficiency of data transfers between actors [4].

Ingeneral, a schedule oftheform (°°(q (#!) Nj) (q (N2) N2)... (q (NK) NK)) iscalled

a naive single appearance schedule. For the graph in figure 1, the schedule

(«> (9A) (125) (12C) (8D)) is a naive single appearance schedule.

1.1 Buffering Costs

The amount of memory required for buffering may vary greatly between different sched

ules. Wedefine the buffer memory requirement of a schedule S, denoted bufferjnemory (S),

as V maxjokens (a, 5) , where the sum is takenover all edges a, and maxjokens (a, S)

denotes the maximum number of tokens that are simultaneously queued on a during an execution

of S. For example, the schedule («> (94) (125) (12C) (SD)) has a buffer memory require

ment of 36 + 12 + 24 = 72, and the schedule (°° (3 (3A) (45)) (4 (3C) (2D))) has a buffer

memory requirement of 12 + 12 + 6 = 30.

In the model of buffering implied by our "buffer memory requirement" measure, each

buffer is mapped to a contiguous and independent block of memory.This model is convenient and

natural for code generation, and it is the model used, for example, in the SDF-based code genera

tion environments described in [12,19,20]. However, perfectly valid target programs can be gen

erated without these restrictions. For example, another model of buffering is to use a shared buffer

of size maxi {q(A^) xproduced (JV.) 11 £i<K] Jwhich gives the maximum amount of data

©50 1/^"*\100 50^~-\1 25^^N

Ki) Rz) <z)
q=(l,50,100,4)r

Rgure 2. Example to illustrate the inefficiency of using shared buffers.

transferred on any edge in one period (one iteration of the outermost loop) of the naive single

appearance schedule, (°°(q (NJ NJ (q (N2) N2)... (q (A^) NK)), where K is thenumber of

nodes in the graph. Assuming that there are no delays on the graph edges, it can be shown that via

proper management of pointers, such a buffer suffices. For the example graph above, this would

imply a buffering requirement of 36 since on edge AB, 36 samples are exchanged in the schedule

(°° (9A) (125) (12C) (SD)), and this is the maximum over all arcs. Moreover, the implemen

tation of this schedule using a shared buffer would be much simpler than the implementation of a

more complicated nested schedule. But there aretwo problems with buffer-sharing that prevent its

use as the model for evaluating the buffering cost of single appearance schedules. Consider the

graph in Figure 2. The shared-buffer cost for the naive schedule for this graph is given by

max ({1 X 50,50 x 100,100 x 50,4 x 25 }) = 5000. However, with a buffering model where

we have a buffer on each edge, the schedule (°M (505 (2C)) (4D)) requires total buffering of

only 250 units. Of-course, we could attempt sharingbuffers in this nested looped schedule as

well, but the implementation of such sharingcould be awkward.

Consider also the effect ofhaving delays on the arcs. In the model where we have a buffer

on every edge, having delays does not affect the ease of implementation. Forexample, if we intro

duce d delays on edge 5 C in the graph in Figure2, then we merely augment the amount of buff

ering required on that edge by d. This is fairly straightforward to implement. On the other hand,

havingdelays in the shared buffer model causes complications because thereis often no logical

place in the buffer to place the delays since theentire buffer might be written overby the time we

reach the actor that consumes the delays. For instance, consider the graph in figure 3. The repeti

tions vector for this graph is given by (147,49,28,32,160) . Supposethatwe were to use the

shared-buffer implementation for the naive schedule. We find that we need a buffer of size 224.

5

After all of the invocations of A have been fired, the first 147 locations of the buffer are filled.

Since 5 writes more samples than it reads, it startswriting at location 148 and writes 196 sam

ples. When C begins execution, it starts reading from location 148 and starts writing from loca

tion 120 (120 = (148+196) mod 224). Actor C then writes 224 samples into the buffer. When D

is invoked, it starts reading from location 120. Hence, if there were a delay on edge CD for

instance, the logical thing to do would be to have a buffer of size 225 (meaning that D would start

reading from location 119) and place the delay in location 119. However, location 119 would have

been written over by A; hence, it is not a safe location. This shows that handling delays in the

shared buffer model can be quite awkward, and would probably involve copying over data from a

"delay" buffer of some sort. Therefore, in this paper we focus mainly on the buffering model asso

ciated with the "buffer memory requirement" measure, although, in Section 6, we present an

extension of our techniques to combine the above simple model of buffer sharing with the non

shared model. The buffer sharing model will only be used whenever it is feasible to do so (when

ever there are no delays, and the size of the sharedbuffer is lower). There are also other ways in

which sharing can be done; thoroughly combining the advantages of nested loops and these other

ways of sharing buffers is a topic for further study.

We note briefly that nested-schedules have a lower latency than naive single appearance

schedules. The latency is defined to be the time at which the sink node fires for the first time in the

schedule. In anaive schedule (°° (q (Nj) Nx) (q (N2) N2)... (q (A^) NK)), thelatency is given

by (q (A^) -1)T + E1+ Vq (N() Ei,where T is the sample period of the source actor, and E{
i = 2

is the execution time of actor N-. All these times are assumed to be in number of instruction

cycles of the processor. A nested-schedule will usually have a latency less than this because if the

&—•2©^—*K°}—1&—KD
Figure 3. Example to illustrate the difficultyof using shared buffers with delays.

sink actor is part of a nested loop body, then all of the invocations of actors upstream do not have

to occur before the sink actor fires for the first time. In section 4, we illustrate this by an example.

In this paper, we discuss the problem of computing a single appearance schedule that min

imizes the buffer memory requirement over all valid single appearance schedules. Thus, given our

model of buffer implementation, we wish to construct a software implementation that minimizes

the data memory requirement over all minimum code-size implementations. As we will show in

Section 2, for chain-structured SDF graphs, the number of distinct valid single appearance sched

ules increases combinatorially with the number of actors, and thus exhaustive evaluation is not, in

a general, a feasible means to find the single appearance schedule that minimizes the buffer mem

ory requirement. In Section 3, we show that the problem of finding a valid single appearance

schedule that minimizes the buffer memory requirement for a chain-structured SDF graph is sim

ilar to the problem of most-efficiently multiplying a chain of matrices, for which a cubic-time

dynamic programming algorithm exists [10]. We show that this dynamic programming technique

can be adapted to our problem to give an algorithm with time complexity 0\ mJ,where mis the
number of actors in the input chain-structured SDF graph.

In Section 4, we illustratethe relevance of ourdynamic programming solution through a

practical example — a sample-rate conversion system to convertbetween the output of a compact

disk player and the input of a digital audio tape player. In Section 5, we discuss an alternative

solution to the problem of minimizing the buffer memory requirement over all single appearance

schedules for a chain-structured SDF graph. This is a heuristic approachwhose worst-case time

complexity is o\ mJ;our experimental data suggests that this heuristic often performs quite
well. In Section 6, we discuss how the dynamic programming technique of Section 4 can be

appliedto other problems in the construction of efficient looped schedules.Through Section 6 we

are concerned primarily with chain-structured SDF graphs. In Section 7, we discuss solutions that

we have developed for general acyclic SDF graphs, andpresentsimulation data that demonstrates

the efficacy of these methods. Finally, in Section 8, we discuss closely related work of other

researchers.

We will use the following definitions in this paper

• Given an SDF graph G, we denote the set of actors in G by actors (G), and the set of

edges in G by edges (G) .

• By a subgraph of an SDF graph, we mean the SDF graph formed by any

V£ actors (G) togetherwith the set of edges {a G edges (G) \ (source (a), sink (a) € V)} .

We denote the subgraph associated with the set of actors V by subgraph (V, G).

• Given a finite set P of positive integers, we denote by gcd (P) the greatest common

divisor of P — the largest positive integer that divides all members of P.

• Given a finite set Z, we denote the number of elements in Z by |Z|.

• Given a connected, consistent SDF graph G, and a subset V £ actors (G), we define

qG (V) agcd({qG (A) \(A£ V) }J. In [4], we discuss that qG (V) can be viewed as the num

ber of times that a periodic schedule for G invokes the subgraph associated with V.

When discussing the complexity of algorithms, we will use the standard O, CI and 0

notation. A function f(x) is O (g (x)) if for sufficiently large x, f(x) is bounded above by a

positive real multiple of g (x). Similarly, f(x) is Q. (g (x)) iff(x) is bounded below by a pos

itive real multiple of g (x) for sufficiently large x, and f(x) is 0 (g (x)) if it is both O (g (x))

and Q. (g (x)).

Also, we will use a number of facts that are proved in [4]. The first fact relates the repeti

tions vector of a connected SDF subgraph to that of an enclosing SDF graph.

Fact 1: If G is a connected, consistent SDF graph and R is a connected subgraph of G, then

for each A€ actors (R), qG (A) = qG (actors (R)) qR (A) .

The next fact is related to the factoring transformation for looped schedules that was

introduced in [5]. As an example of the factoring transformation, consider the valid schedule

Sx s (oo (3 (3A) (45)) (2 (6C) (4D))), andobserve that the iteration counts of the two loops

8

that are nested in the loop (2(6C) (4£>)) have a common divisor of 2. Fact 2 guarantees that if

we "factor" this common divisor from the iterationcounts of these two inner loops into the itera

tion count of the enclosing loop, then the resulting schedule,

S2 a (oo (3 (3A) (45)) (4 (3C) (2D))) is valid and that its buffer memory requirement does

not exceed the buffer memory requirement of the original schedule. It is easy (although a bit

tedious) to verify that S2 is indeed avalid schedule, and we see that

bufferjnemory (S2) = 12+ 12+6 = 30, while bufferjnemory (Sx) = 12+ 12+ 12 = 36,

and thus for this example, the factoring transformation has reduced the buffer memory require

ment by 17%.

Fact 2: Suppose that S is a valid schedule for an SDF graph G, and suppose that

L = (m (rtjSj) (n2S2)... (fl^p) is a schedule loop in S of anynesting depth suchthat

(1 £ / <j'<> k) =^ actors (S() n actors (S' •) = 0. Suppose also that y isany positive integer

that divides nvn2, ...,nk; let L' denote the schedule loop

IymI y~ nlSx11 y" n2S2J... Iy n^kJ J;and let S' denote the schedule that results from replac

ing L with V in 5. Then

(a). 5' is a valid schedule for G; and

(b). bufferjnemory (S') <> bufferjnemory (S) .

The factoring transformation is closely related to the loop fusion transformation, which

has been used for decades in compilers for procedural languages to reduce memory requirements

and increase data locality [1,22]. In compilers for procedural languages, tests for the validity of

loop fusion include analysis of arraysubscripts to determine whether or not for each iteration n of

the (lexically) second loop, this iteration depends only on iterations 1,2,..., n of the first loop

[23]. These tests aredifficult to perform comprehensively due to the complexity ofexact subscript

analysis [3], and due to complications such as data-dependent subscript values, conditional

branches, and input/output statements. In contrast, Fact 2 gives a simple test for the validity of the

factoring transformation that is applicable to a broad class of looped schedules, including all sin

gle appearance schedules.

Before we state Fact 3, we need to introduce a few more definitions.

• If A is either a schedule loop or a looped schedule, we say that A is coprime if not all

iterands of A are schedule loops, or if all iterands of A are schedule loops, and there does not

exist an integer j > 1 that divides all of the iteration counts of the iterands of A .

• We say that a single appearance schedule S is fully reduced if S is coprime and every

schedule loop contained in S is coprime.

For example, the schedule loops (5 (3A) {IB)) and (IOC) are coprime, while

(3 (4A) (25)) and (10 (7C)) are not coprime; similarly, the looped schedules

(<*>A(7B) (1C)) and (°°(2i4) (35)) are coprime, while the looped schedules (oo(4A5))

and (°°(6/15) (3C)) are not. From our discussionof Fact 2, we know that non-coprime sched

ules or loops may result in significantly higher buffer memory requirements than their factored

counterparts. It is shown in [5] that given a valid single appearance schedule, we can repeatedly

apply the factoring transformation to derive from it a valid fully reduced schedule. As a conse

quence, we have the following fact.

Fact 3: Suppose that G is a consistent SDF graph and S is a valid single appearance schedule

for G. Then thereexists a valid singleappearance schedule S' for G such that 5/ is fully reduced

and bufferjnemory (S') <, bufferjnemory (S) .

2 R-schedules

Let G bea chain-structured SDF graph with actors AVA2, »'»Am and edges

av a2, ..., am _ j such thateach ak is directed from Ak to Ak+ ,. In the trivial case, m - 1, we

immediately obtain (^A^) as a valid single appearance schedule for G. Otherwise, givenany

/€ { 1, 2, ..., m- 1} , define

10

left(i) ssubgraph! {AVA2, ...,4.},G) ,and

right(i) msubgraph! {Ai+VAU2» -»^m}.Oj •
From Fact 1, if (°°iSL) and (°°SR) are valid single appearance schedules for left (i) and

right (i) , respectively, then (oo (qLSL) (qRSR)) is a valid single appearance schedule for G,

where <?L =gcd({qG(Aj) |1 £j£i] Jand qR =gcd({qG(Aj)\i<j£m}Y
For example, suppose that G is the SDF graph in Figure 1 and suppose / = 2. It is easily

verifiedmatqtey?(004,5) = (3,4)r and qrightii) (CtD) = O^/.Thus.
(°°SL) = (oo (3A) (45)) and (°°SR) = («> (3C) (2D)) arevalid single appearance sched

ules for left (i) and right(i) , and (°° (3 (3A) (45)) (4 (3C) (2D))) is a valid single appear

ance schedule for Figure 1.

We can recursively apply this procedure of decomposing a chain-structured SDF graph

into left and right subgraphs to construct a schedule. However, different sequences of choices for

i will in general lead to different schedules. For a given chain-structured SDF graph, we refer to

the set of valid single appearance schedules obtainable from this recursive scheduling process as

the set of R-schedules.

We will use the following fact, which is easily verified from the definition of an R-sched-

ule.

Fact 4: Suppose that G is a chain-structured SDFgraph, |actors (G) \ > 1, and

(delay (a) = 0), V (a € edges (G)). Then a valid single appearance schedule S for G is an

R-schedule if and only if every schedule loop L containedin 5 satisfies the following property:

(a). L has a single iterand, and this single iterand is an actor; that is, L = (nA) for some

n € {1,2 oo} and some A € actors (G); or

(b). L has exactly two iterands, and these two iterands are schedule loops having coprime

iteration counts; that is, L = (m (n^S^) (n2S2)), where mG {1,2, ...,«>}; /ij and n2 are

11

positive integers; gcd(nlt n2) = 1; and 5X andS2 arelooped schedules.

Note that if S is anR-schedule, and L = (m (/ijSj) (^2)) ^s a two-iterand loop in S,

then (a), or (b). must also besatisfied for every schedule loop contained in (fljiSj) and forevery

schedule loop contained in (n2S2); thus, it follows that (^S^ and (°°52) arealso R-sched-

ules.

If a schedule loop L satisfies condition (a) or condition (b) of Fact 4, we say that L is an

R-loop; otherwise, we call L a non-R-loop. Thus, a valid single appearance schedule S is an R-

schedule if and only if every schedule loop contained in 5 is an R-loop.

Nowlet e,, denotethe number of R-schedules for an n-actorchain-structured SDFgraph.

Trivially, for a 1 -actor graph there is only one schedule obtainable by the recursive scheduling

process, so ex = 1. For a 2 -actorgraph, there is only oneedge, and thusonlyone choicefor i,

i = l. Since for a 2 -actor graph, left (1) and right(1) both contain only one actor, we have

e2 = 8ix ei = *•^or a 3-actor graph, left (1) contains 1 actor and right (1) contains 2

actors, while left (2) contains 2 actors and right (2) contains a single actor. Thus,

e3 = (the number of R-schedules when (i - 1))
+ (the number of R-schedules when (i = 2))

= (the number of R-schedules for left(l))
x (the number of R-schedules for right (2))

+ (the number of R-schedules for left (2))
x (the number of R-schedules for right (1))

= (ex x e2) + (ej x ex) = 28^.

Continuing in this manner, we see that for each positive integer n > 1,

n-l n-\

en = V (thenumber ofR-schedules when (i = k)) = V (ekxenk) . (1)
*=l *=l

12

The sequence ofpositive integers generated by (1) with 8j = 1 is known as the setof

Catalan numbers, and each e. is known as the (/ - 1) th Catalan number. Catalan numbers arise

in many problems in combinatorics; forexample, thenumber of different binary trees with n ver

tices isgiven bythe nth Catalan number, en.It can beshown that the sequence generated by (1)

is given by

e«=«(2/r-"i2)-for',=i'2'3"- (2>

where IA s "*t ,and it can be shown that the expression on the right hand

sideof(2)isQ[4n/«J [8].
For example, the chain-structured SDF graph in Figure 1 consists of four actors, so (2)

indicates that this graph has t(J =5 R-schedules. The R-schedules for Figure 1are

(oo(3(3/l) (45)) (4(3C) (2D))) , (<»(3(3A) (4(15) (1C))) (SD)) ,

(oo(3(l(3>l) (45)) (4C)) (SD)), (oo(9A) (4(3(15) (1C)) (2D))) ,and

(oo (9A) (4 (35) (1 (3C) (2D)))) ; and thecorresponding buffermemory requirements are,

respectively, 30, 37, 40, 43, and 45.

The following theorem establishes that the set of R-schedules alwayscontains a schedule

that achieves the minimumbuffermemoryrequirement over all valid single appearancesched

ules.

Theorem 1: Suppose that G is a chain-structured SDF graph;

(delay (a) = 0), V(a € edges (G)); and S is a validsingleappearance schedulefor G. Then

there exists an R-schedule S' for G such that bufferjnemory (S') <> buffer memory (S) .

Proof: Weprove this theorem by construction. Weuse thefollowing notation here: givena sched

ule loop L and a loopedschedule S, we define nonR (S) to be the set of non-R-loops in S; we

13

define / (L) to be the number of iterands of L; we define C (L) to be the iteration count of L;

and we define / (S) a V / (L').
L'€ nonR(S)

First observe that all chain-structured SDF graphs areconsistent so no further assumptions

arerequired to assure that valid schedules exist for G, and observe that from Fact 3, there exists a

valid fully reduced schedule SQ for G such that bufferjnemory (50) £ bufferjnemory (S) .

Now let Lq = (nT^T^.S^ bean innermost non-R-loop in SQ; that is, LQ is notan R-

loop, butevery loop nested in LQ is an R-loop. If m = 1 then since SQ is fully reduced,

Lq = (n (1V)), for some iterand V, where (1T) is an R-loop. Let S1 be the schedule that

results from replacing LQ with (nTf) in 50.Then clearly, Sl is also valid and fully reduced, and

S1 generates the same invocation sequence as S0, so

bufferjnemory (Sj) = bufferjnemory (SQ). Also, replacing LQ with (nT') reduces the num

ber of non-R-loops by one, and does not increasethe number of iterands of any loop, and thus,

J^XJtfo).

If ontheother hand m^ 2, wedefine Sa s (1Tj) if 7X is an actor and Sa s T± otherwise

(if Tl is a schedule loop). Also, if T2, T^ ...,Tm are all schedule loops, wedefine

where y=gcdi {C(T.) I(2 £ii £m)} J, and 52,53,..., Bm are the bodies of the loops

T2, T3 Tm, respectively; if 7^, r3,..., rm are notall schedule loops, we define

Sj, s (1T2... rm) .Let iSx bethe schedule that results from replacing LQ with L07 = (nSaSb) in

S0. Now, because LQ is fully reduced, the iteration counts of Sa and 5^, must becoprime. Thus, it

is easily verified that Sx is avalid, fully reduced schedule and that L0' is an R-loop, and with the

14

aid ofFact 2, it is also easily verified that bufferjnemory (S^) £ bufferjnemory (SQ) .

Finally, observe that Sa and LQ' are R-loops, but Sb may or may not beanR-loop

(depending on LQ). Thus, replacing LQ with LQ' either reduces the number ofnon-R-loops by

one, or it leaves the number of non-R-loops unchanged, and we see that either

J(SX) =7(50)-/(L0),or?(51) = 1(S0)-I(L0)+I(Sb). Since

/ (Sb) = I (LQ) - 1</ (L0) , we again conclude that / (SJ <1(SQ) .

Thus, from SQ, we have constructed a valid, fully reduced schedule S^ such that

bufferjnemory (SJ <, bufferjnemory (Sq) <, bufferjnemory (S) and / (Sj) <I (Sq) .

Clearly, if/(,S1) * 0, we can repeat the above process to obtain a valid, fully reduced sin

gle appearance schedule S2 such that bufferjnemory (S2) <, bufferjnemory (SJ and

/ (iS2) < I (Sj) . Continuing in this manner, we obtain a sequence of valid single appearance

schedules .Sq, Sv S2> 53, ... such that for each S, in the sequence with i > 0,

bufferjnemory (S() <• bufferjnemory (S) , and I (S{) <7(5^ i) . Since / (5Q) is finite, we can

not go on generating S^ 's indefinitely —eventually, we will arrive atan Sn, n^ 0, such that

/ (5,,) = 0. From Fact4, Sn is an R-schedule. QED.

Theorem 1 guarantees that from within the set of R-schedules for a given chain-structured

SDF graph, we can always find a single appearance schedule that minimizes the buffer memory

requirement over all single appearance schedules; however, from (2), we know that in general, the

R-schedules are too numerous for exhaustive evaluation to be feasible. The following section pre

sents a dynamic programming algorithm that obtains an optimal R-schedule in cubic time.

3 Dynamic Programming Algorithm

The problem of determining the R-schedule that minimizes the buffermemory require

ment for a chain-structured SDF graph can be formulated as an optimal parenthesization problem.

15

A familiar example of anoptimalparenthesization problem is matrixchain multiplication [8,10].

In matrix chain multiplication, we mustcompute thematrix product MlM2...Mn, assuming that

the dimensions of the matrices arecompatible with one another for the specified multiplication.

There are several ways in which the product can be computed. For example, with n = 4, one

way of computing the product is (Mx (Af2M3)) M4, where theparenthesizations indicate the

order in which themultiplies occur. Suppose that Mp Af2, M3, A/4 have dimensions

10 x 1,1 x 10,10 x 3,3 x 2, respectively. It is easily verified that computing the matrix chain

product as ((Af jAf2) M3) M4 requires 460 scalar multiplications, whereas computing it as

(Ml (M2M3)) M4 requires only 120 multiplications (assuming that we use the standard algo

rithm for multiplying two matrices).

Thus, we would like to determine an optimal way of placing the parentheses so that the

total number of scalar multiplications is minimized. This can be achieved using a dynamic pro

gramming approach. The key observation is that any optimal parenthesization splits the product

M1M2...Mfl between Mk and Mk+l for some k in therange 1£ k£ (n - 1), and thus thecost

of this optimal parenthesization is thecost of computing theproduct MXM2.. Mk, plus thecost of

computing Mk+ iMk+2...Mn,plus thecostof multiplying these two products together. Li an

optimal parenthesization, the sub-chains M1M2„.Mk and Mk+ iMk+2...Mn mustthemselves be

parenthesizedoptimally. Hence this problemhas the optimal substructure propertyand is thus

amenable to a dynamic programming solution.

Determining the optimal R-schedule for a chain-structured SDF graph is similar to the

matrix chain multiplication problem. Recall the example of Figure 1. Here

q(A,B, C,D) = (9,12,12,8)r; an optimal R-schedule is

(oo (3 (34) (45)) (4 (3C) (2D))); andthe associated buffermemory requirement is 30.

Therefore, as in the matrix chain multiplication case, the optimal parenthesization (of the sched

ule body) contains a break in the chain at some k€ {1,2,..., (n-l)} . Because the parenthe

sization is optimal, the chains to the left of k and to the right of k must both be parenthesized

16

optimally. Thus, we have the optimal substructure property.

Now given achain-structured SDFgraph G consisting of actors Av A2,..., An andedges

av a2,..., an_j, such that each ak is directed from Ak to Ak+ x, given integers ij in therange

l£i£j£n, denote by b [/, j] the minimum buffer memory requirement over all R-schedules

for subgraph^ {Ait Ai+v ..., Aj] ,G]. Then, the minimum buffer memory requirement over all

R-schedules for G is b [1, n] . If 1 £ i <j £ n, then,

b[ij] =^{(ftli.fl+fc^+l^+c^^DIO^A:^-)}^ (3)

where b [i, 11 = 0 for all i ,and c, . [k] is the memory cost at the split ifwe split the chain at At.
I, J K

It is given by

_ qG(Ak) produced (ak)
citjW , v. W

gc^{qG(i4m)|(i^in^j)}J

The gcd term in the denominator arisesbecause from Fact 1, the repetitions vector q' of

(\ QgW»)subgraphl {Ai,Auv...9Aj}tG\ satisfies q' (Ap) = ^ -, for all
V } gcd[{qG(Am)\(i£m<Lj)})

p£ {i,i+l,7} .

A dynamic programming algorithm derived from the above formulation is specified in

Figure 4. In this algorithm, first the quantity gcd({qG (Am) I(ii £m£j) }Jis computed for

each subchain Ap Ai+ j,..., Aj. Then the two-actor subchains are examined, and the buffer mem

ory requirements for these subchains are recorded. This information is then used to determine the

minimum buffer memory requirement and the location of the split that achieves this minimum for

each three-actor subchain. The minimum buffer memory requirement for each three-actor sub-

17

procedure ScheduleChainGraph
Input: a chain-structured SDFgraph G consisting ofactors AvA2,...,An

and edges av a2, •,an_1 suchthateach af isdirected from A. to A.+ 1.

output: an R-schedule body for G that minimizesthe buffermemory requirement.

for i = 1,2, ...,n r Compute the god's of all subchains 7

GCD[iJ] = qgiAj)

fory = (i+1), (i + 2),...,n

GCD [/J] =^{GCD[/,y-l],qG(^)})

for i = 1,2,.... n Subcosts [i, i] = 0;

for chain_size = 2,3,....n

for right = chain_size, chain.size +1,..., n
left = right - chain_size + 1;

min_cost = »;

for i = 0,1,..., chaiQ_size - 2

split.cost = (qG(Aleft+J)/GCD[left,right]) xproduced(a]eft +1) ;

total_cost = splitjcost + Subcosts [left, left + i] + Subcosts [left + / +1, right] ;

if (total_cost<min_cost)

split = /; minjcost = total.cost

Subcosts [left, right] = min.cost; SplitPositions[left, right] = split;

output ConvertSplits(1, n); /* Convert the SplitPositions array into an R-schedule V

procedure ConvertSplits(L, R)
implicit inputs: the SDF graph G and the GCD and SplitPositions arrays
of procedure ScheduleChainGraph.
explicit inputs: positive integers L and R such that \<,L<>R<.n = \actors (G) |.

output: An R-schedule body for subgraphf {AL, AL+V..., AR], Gj that minimizes
the buffer memory requirement.

if (L = R) output AL
else

s = SplitPositions [L, R] ; iL = GCD [L, L+s] /GCD[L, R] ;

iR = GCD[L+ s + l,i?]/GCD[L,/?] ;

output (iLConvertSplits(L,L +s)) (/^ConvertSplits(L +s+l,R))',

Figure 4.

18

chain AitAi+1,Ai +2 is storedin entry [/, i + 2] of thearray Subcosts, and the index of the edge

corresponding to the split is stored in entry [i, i + 2] of the SplitPositions array.This data is then

examined to determine the minimum buffer memory requirement for each four-actor subchain,

and so on, until the minimum buffer memory requirement for the n -actor subchain, which is the

original graph G, is determined. At this point, procedure ConvertSplits is called to recursively

construct an optimal R-schedule from a top-down traversal of the optimal split positions stored in

the SplitPositions array.

Assuming that the components of qG are bounded, which makes the gcd computations

elementary operations, it is easily verified that the time complexity of ScheduleChainGraph is

dominated by the time required for the innermost for loop — the (for

i = 0, 1, ..., chain_size - 2) loop — and the running time of one iteration of this loop is bounded

by a constant that is independent of n . Thus, the following theorem guarantees that under our

assumptions, the running time of ScheduleChainGraph is 0[n J and Q.\ n I.

Theorem 2: The total number of iterations of the (for i = 0,1,..., chain_size - 2) loop that

are carried out in ScheduleChainGraph is o\ n J and Q.\ n j .

Proof: This is straightforward; see [4] for the derivation.

4 Example: Sample Rate Conversion

Digital audio tape (DAT) technology operates at a sampling rate of 48 kHz, while com

pact disk (CD) players operate at a sampling rate of 44.1 kHz. Interfacing the two, for example,

to record a CD onto a digital tape, requires a sample rate conversion.

The naive way to do this is shown in Figure 5(a). It is more efficient to perform the rate

change in stages. Rate conversion ratios are chosen by examining the prime factors of the two

2 2 2 2 7 13
samplingrates. The prime factors of 44,100 and 48,000 are 2 3 5 7 and 2 3 5 .respectively.

19

12 5 1
Thus, the ratio 44,100 :48,000 is 3 7 : 2 5 , or 147 :160. One way to perform this conversion

in four stages is2:l,4:3,4:7, and 5:7. Figure 5(b) shows the multistageimplementation.

Explicit upsamplers and downsamplers are omitted, andit is assumedthat the FIR filters aregen

eral polyphase filters [7].

Here q (A, Bt C, Dt Et F) = (147,147,98,28,32,160) T; the optimal looped schedule

given by our dynamic programming approach is (°° (7 (7 (3AB) (2C)) (4D)) (32E (5F)));

and the associated buffer memory requirement is 264. In contrast, the alternative schedule

(~(147A) (1475) (98C) (28D) (32£) (160F)) has a buffer memory requirement of 1021 if

a separate buffer is used for each edge and a buffer-memory requirement of 294 if one shared

buffer is used. This is an important savings with regard to current technology: a buffer memory

requirement of 264 will fit in the on-chip memory of most existing programmable digital signal

processors, while a buffer memory requirement of 1021 is too high for all programmable digital

signal processors, except for a small number of the most expensive ones. The savings of 30

(10 %) over using a single shared buffer can alsobe significant on chips that only have on the

order of 1000 words of memory. It can be verified that the latency of the optimally nested sched

uleisgiven by 1467+EA +EB +2EC +4ED + EE, as opposed to

160
(a)

147

Figure 5. (a). CD to DATsample rate change system.
(b). Multi-stage implementation of a CD to DAT sample rate system.

20

146r+EA + 147EB + 9SEC +28£D +32££ for the naive schedule. If we take T = 500 (for

example, a22.05Mhz chiphas 22.05Mhz/44.1khz =500instruction cycles in onesample period

of theCD actor), and EA = 10, EB =EQ =ED =EE = 100,then the twolatencies are 73810 and

103510 instruction cycles; the nestedschedule has 29% less latency.

One more advantage that a nested schedule can have over the naive schedule with shared

buffering is in the amount of input buffering required. Some DSP chips have a feature where a

dedicated I/O manager canwriteincoming samples to abufferin on-chip memory, the size of

which can be programmed by the user. If the singleappearance schedule spans more than one

sampleperiod, then input buffering is a useful feature sinceit avoidsthe need for interrupts. Inter

rupts can be expensive; for example, on the Motorola 56000, input buffering is not available and

interrupts have to be used; eachinterrupt entails a loss of about 70 instruction cycles. Chips that

have input buffering include the Analog Devices ADSP 2100 and the Sproc processor from Star

Semiconductor. If we compute the amount of input buffering required by the naive schedule, we

find that it is ((147 + 98 + 28 + 32) 100+ 160x 10) /500 &65, whereas for the optimally

nested schedule, it is given by (100 + 200 + 400 + 3200 + 1600) /500 s 11.

5 An Efficient Heuristic

Our dynamic programming solution for chain-structured graphs runs in o\ mJ time,

where m is the number of actors. As a quicker alternative solution, we developed a more time-

efficient heuristic approach. The heuristicis simply to introducethe parenthesization on the edge

where the minimum amount of data is transferred. This is done recursively for each of the two

halves that result. The running time of the heuristic is given by the recurrence

T(n) = T(n-k)+T(k)+0(n), (5)

where £ is the actorat which the split occurs.This is becausewe must compute the gcd of the rep

etitions vector components of the k actors to the left of the split, and the gcd of the repetitions of

the n - k actors to the right. This takes O(n) time assuming that the repetitions vector compo-

21

nentsare bounded. Computing the minimum of thedata transfers takes a further O (n) timesince

there are O(n) edges to consider. The worst case solution to this recurrence is (An J ,but the

average case running time is O(n • log n) if k = Q. (n) . It can be verified that this heuristic

gives the R-schedule with the minimum buffer memoryrequirement,

(oo (3 (3A) (45)) (4 (3C) (2D))) , for Figure 1.

We have evaluated the heuristic on 10, 000 randomly generated 50-actor chain-structured

SDF graphs, and we have found that on average, it yields a buffer memory requirement that is

within 60% of the optimal cost. For each random graph, we also compared the heuristic's solu

tion to the worst-case schedule and to a randomly-generated R-schedule. On average, the worst-

case schedule had over 9000 times higher cost than the heuristic's solution, and the random

schedule had 225 times higher cost. Furthermore, the heuristic outperformed the random sched

ule on 97.8 percent of the trials. We also note that in over 99% of the randomly generated 50-

actor chain-structured SDF graphs, the shared-buffer cost for the naive single appearance sched

ule was worse than the cost of the nested schedule given by the heuristic. Unfortunately, the heu

ristic does not perform well on the example of Figure 5 — it achieves a buffer memory

requirement of 565, which is over double of what is required by an optimum R-schedule. In com

parison, the worst R-schedule for Figure 5 has a buffer memory requirement of 755 .

6 Extensions

In this section we present three useful extensions of the dynamic programming solution

developed in Section 3. First, the algorithm can easily be adapted to optimally handle chain-struc

tured graphs that have delays on one or more of the edges. This requires that we modify the com

putation of ci •[k] , the amount ofmemory required to split the subchain A.t Ai+V ...,A-

between the actors Ak and Ak+y. This cost now gets computed as

ci,j [*1 =~r^G (Af) Produced (ak) +delay (ak) ,where r=gcd({qG (Am) |(/ £m<,j)} J,

22

if delay (ak) < -qG (Ak) produced (ak); otherwise (if

delay (ak) £ -qG (Ak) produced (ak)), c. .[k] gets computed as c.;. [/:] = rfe/ay (o^) .

Accordingly, if the optimum splitextracted in a giveninvocation of ConvertSplits (Figure 4) cor

responds to asplitin which thelatter condition applied in thecomputation of c(. [k] , then Con

vertSplits returns (i^ConvertSplits (L +s+1, R)) (iLConvertSplits (L, L+s)); otherwise, ConvertSplits

returns (JLConvertSplits (L, L+s)) (^ConvertSplits (L +s+1, /?)), as inthe original version. This

requires a method for keeping track of which condition applies to eachof the optimum subchain

splits, which caneasily be incorporated, for example, by varying the sign of the associated entry

in the SplitPositions array.

Second, as mentioned in Section 1, the technique applies to the more general class ofwell-

ordered SDF graphs. A well-orderedgraph is one where the partial orderis a total order; chain-

structuredgraphs are a special case of these. Again, this requires modifying the computation of

c. :[k] . Here, this cost gets computed as

V qG (Ak) produced (ak)
cijlk] =̂ ii (6)

gcd[{qG(Am)\(i£m<>j)})

where

SU,ks iP\[source(P) €{APAUV ...,^}] ;
andf sink(P)e {Ak+vAk+2, ...,^;.}J}

that is, S; . v is the set of edges directed from one side of the split to the other side.

The dynamic programming technique of Section 3 can also be applied to reducing the

buffer memory requirement of a given single appearance schedule for an arbitrary acyclic SDF

graph (not necessarily chain-structured or well-ordered). To explain this extension, we need to

23

define the concept of a topological sort. A topological sort of a directed acyclicgraph consisting

ofthe set ofvertices Vand the set ofedges E is an ordering vlf v2,..., v^ ofthe members of V

such that for each e€ £, ((source (e) = v.) and (sink (e) = vfl) =» (i<j); that is, the

source vertex of each edge occurs earlier in the orderingthan the sink vertex.

Suppose we are givena validsingle appearance schedule S for an acyclic SDFgraph and

again for simplicity, assume thattheedges in thegraph contain nodelay. Let ¥ = BVB2, ...tBm

denote the sequenceof lexical actor appearances in S (forexample, for the schedule

(oo (44 (2FD)) C), ¥ = At FtD, C). Thus, since S is a single appearance schedule, ¥ must

be a topological sortof theassociated acyclic SDF graph. The technique of Section 3 caneasily

be modified to optimally "re-parenthesize" 5 into the optimal single appearance schedule (with

regard to buffermemory requirement) associated with the topological sort *P.The technique is

applied to the sequence ¥, with c. .[k] computed as in (6). It can be shown that the algorithm

runs in time O(|V|3), where \V\ is thenumber ofnodes in thegraph.

Thus, given any topological sort ¥* for a consistent acyclic SDF graph, wecan effi

cientlydetermine the single appearance schedule that minimizes the buffermemory requirement

over all valid single appearance schedules for which the sequenceof lexical actor appearances is

Another extension applies when we relax the assumption that each edge is mapped to a

separate block of memory, and allow buffers to be overlaid in the same block of memory. There

are several ways in which buffers can be overlaid; the simplestis to have one memorysegment of

size

max({produced (ak) xq(Ak) I(i £k<j)} j

gcd({q(Al)tq(Ai+1)t...,q(Aj)}^
CSUim ; — (7)

for thesubchain Ait Ai+V ..., A* (asexplained in Section 1.1). We follow this computation with

24

b'[UJ\ =ndn({bli$JltCSu}\ (8)

todetermine amount ofmemory touse for buffering in the subchain ApA,.,, ..., A•. In general,

thisgives us a combination of overlaid and non-overlaid buffers for differentsub-chains. Incorpo

rating the techniques of this section with more general overlaying schemes is a topic for future

work.

7 Acyclic SDF Graphs

Consistent acyclic SDF graphs are guaranteed to have single appearance schedules since a

naive schedule corresponding to any topological sort is a valid single appearance schedule. For

arbitrary graphs (not necessarilyacyclic), necessary and sufficient conditions aregiven in [4] for

single appearance schedules to exist, and efficientalgorithms are given to find such schedules

whenever they exist. These techniques requiredecomposing each strongly connected component

into an acyclicgraph that consists of clusters, or supernodes, of smaller strongly connectedcom

ponents, constructing a single appearance schedule for this acyclic graph, and then recursively

applying this procedure to each of the clustered strongly connected components to obtain the sub-

schedule for the corresponding supernode. For each decomposed strongly connected component,

there is a "top-level" costassociated with the edges that are notcontained in any of the associated

clusters, and thus the total buffering cost ofa general SDF graph involves the top-level costfor

each strongly connected component in the cluster hierarchy, in addition to the buffering costfor

each acyclic graph thatoccurs in the hierarchy. Furthermore, to attain thelowest buffering cost, it

may be necessary to increase theextent of some strongly connected components by clustering

neighboring actors together with actors in the strongly connected components before decompos

ing the components [4]. Hence, graphs with cycles aresignificantly moredifficult to construct

buffer-optimal single appearance schedules for than acyclic graphs.

Thenumber of topological sorts in an acyclic graph can beexponential in the sizeof the

graph; for example, a complete bipartite graph with In nodes has (n\)2 possible topological

sorts. Each topological sort gives a valid naive single appearance schedule. An optimal reparen-

25

thesization of this schedule is then computed by applying the dynamic programming algorithm.

The problem is therefore to determine the topological sort that will give the lowest buffer memory

requirement when nested optimally. For example, the graph in Figure 6 shows a bipartite graph

T
with 4 nodes. The repetitions vector for the graph is given by (12,36,9,16) , and there are 4

possible topological sorts for the graph. The naive schedule corresponding to the topological sort

ABCD is given by (oo(l24) (365) (9C) (16D)) . This can be parenthesized as

(oo(3 (4i4) (3 (45) C)) (16Z>)), and this schedule has a buffer memory requirement of 208.

The naive schedule corresponding to the topological sort ABDC, when parenthesized optimally,

gives the schedule («> (4 (3A) (9B) (AD)) (9C)), with a buffer memory requirement of 120.

A heuristic solution for this problem can be based on extending the main idea that was

used in the heuristic for the chain-structured graph case: find the cut (a partition of the set of

actors) of the graph across which the minimum amount of data is transferred and schedule the

resulting halves recursively. The cut that is produced must have the property that all edges that

cross the cut have the same direction. This is to ensure that we can schedule all nodes on the left

side of the partition before scheduling any on the right side. In addition, we would also like to

impose the constraint that the partition that results be fairly evenly sized. This is to increase the

possibility of having gcd's that are greater than unity for the repetitions of the nodes in the subsets

produced by the partition, thus reducing the buffer memory requirement. To see that having gcd's

greater than one for the subsets produced is beneficial to memory reduction, consider figure 6. If

we formed the partition that had actor B on one side of the cut and actors A, C, D on the other

Figure 6. A bipartite SDF graph to illustrate the different buffer
memory requirements possible with different topological sorts.

26

side of the cut, we get the loop bodies (365) and ((12A) (9C) (16£>)) and do not immedi

ately see a reduction in buffering requirements since the repetitions of A, C, D are co-prime.

However, a partition with A, 5, C on the same side of the cut immediately gives us a reduction

since the schedule body ((12A) (365) (9C)) can be factored as (3(4A) (125) (3C)), and

this reduces the memory for the subgraph consisting of actors A, 5, C. In general, by constraining

the sizes of the partition, we increase the probability of being able to factor schedule bodies so

that a reduction in memory is obtained in each stage of the recursion. Needless to say, this is a

greedy approach which is likely to fail sometimes but has proved to be a good rule of thumb for

most instances.

7.1 A Heuristic to find Minimum Legal Cuts into Bounded Sets

Suppose that G is an SDF graph, and let V = actors (G) and E = edges (G) . A cut G

is apartition ofthe vertex set V into two disjoint sets VL and VR. Define GL = subgraph (VL)

and GR = subgraph (VR) to be the subgraphs produced bythe cut. The cut is legal if forall

edges e crossing the cut(that is alledges that are not contained in subgraph (VL) nor

subgraph (VR)), wehave source (e) € VL and sink (e) € VR. Given a bounding constant

K £ |V\, the cut results in bounded sets if it satisfies

\VR\ZK,\VL\<LK. (9)

The weight of an edge e is defined as

w(e) = Qg (source (e)) x produced (e). (10)

The weight of the cut is the total weightof all the edges crossing the cut. The problem then is to

find the minimum weight legalcut into bounded sets for thegraph withtheweights defined as in

(10). Sincetherelated problem of finding a minimum cut (notnecessarily legal) intobounded sets

is NP-complete [9], andtheproblem of finding anacyclic partition of agraph is NP-complete [9],

27

Figure 7. The min-cut given by the max-flow-min-cut
theorem is not equal to the min-legal cut for this graph.

we believe this problem to be NP-complete as well even though we have not discovered a proof.

Kernighan and Lin [13] devised a heuristic procedure for computing cuts into bounded sets but

they considered only undirected graphs. Methods based on network flows [8] do not work

because the minimum cut given by the max-flow-min-cut theorem may not be legal and may not

be bounded. The graph in Figure 7, where the weight on the edge denotes the capacity of that

edge, illustrates this. The maximum flow into vertex t is seen to be 3 (1 unit of flow along the

path sBCt,l unit along sADt and 1 unit along sBDt) and this corresponds to the cut where

VL = {s,B,C} andV^ = {A,D,t} . Thevalue of thecutisgiven by 1+ 1+1 = 3 (note that

the definition of the value of a cut in network flow theory is defined as sum of the capacities of the

edges crossing the cut in the s to t direction only) but the cut is not legal because of the reverse

edge from A to C. Indeed, the minimum weight legal cut for this graph has a value of 11, corre

sponding to thecutwhere VL = {s} .

Therefore, we give a heuristic solution for finding legal minimum cuts into bounded sets.

The heuristic is to examine the set of cuts produced by taking a vertex and all of its descendants as

the vertexset V^ and the set of cutsproduced by taking a vertex andall of its ancestors as the set

VL. Foreachsuchcut, an optimization stepis applied thatattempts to improve thecostof thecut.

A vertex v is defined to be a descendant of a vertex u if there is a directed path from u to v and

a vertex v is a ancestor of vertex u if there is a directed path from v to u. A vertex u is inde-

28

procedure MinimumLegalCutlrrtoBoundedSets

Input: weighted digraph G = (V, A), and a bound 6. output: VRi VL.

for each u € V

S = desc(u) ,S = V\S

cKfVfl/ = cut(SyS)

TL (u) <r- independent (u) (^boundary (S)

for each a£ TL(u)

E(a) = V n>(a,*)

/(a) = £w(*,a)

D(a) = 1(a) -E(a) /* Cost difference ifthis vertex is moved over 7
end for

[DJdx] *-sort(D)

k<-l

whlle(|5|<^ &D(k) <0 &k<\TL(u)\)
S<-S\UUdx(k)}

S<^S\{ldx(k)}
cutVal <- cutVal + D(k)

k<-k+l

end while

minCutVal <— min (minCutVal, cutVal)

If (mincutVal s cutVal), VL<^StVR<-S, end If

P = ancs(u) ,P = V\P

7^ (u) <- independent(u) (^boundary (P)

for each a€ ^(w)

£(a) = V w(jc, a)

1(a) = £w(a,x)

D(a) =I(a)-E(a)
end for

/*Carry out the same type of steps as above to determine the partition 7
end for

T minCutVal, Vv VR correspond tothe minimum legal cut. 7

29

pendent of v if u is neither a descendant nor an ancestor of v. Define the set of ancestors as

ancs (v) = { v} ^ancestors (v), and descendants as desc (v) = {v} ^descendants (v),

and consider a cutproduced by setting VL = ancs(v), VR = V\VL for some vertex v. Con

sider theset 7^ (v) of independent, boundary nodes of v in VR. A boundary node in VR is a

nodethat is not the predecessor of anyother node in VR. Following Kernighan andLin [13], for

eachof thesenodes, we can compute thecostdifference thatresults if the nodeis moved into VL.

This costdifference for a node a in TR (v) is defined to bethedifference between the total

weight of all the arcs out of a and the total weight of all arcs into a. We then move those nodes

across that reduce the cost. We apply this optimization step for all cuts of the form ancs (v) and

desc (v) for each vertex v in the graph and take the best one as the minimum cut. The algorithm

is shown in Figure 8. Since a greedy strategy is being used to move nodes across, and only the

boundary nodes are considered, examples can be constructed where the heuristic will not give

optimal cuts. Since thereare \V\ nodes in thegraph, 2\V\ cuts areexamined. Moreover, thecut

produced will have bounded sets since cuts that produce unbounded sets are discarded. For exam

ple, one of the cuts examined by the heuristic for the graph in Figure 7, with bounding constant

K = |V\ - 1, is ancs (A) = {s, A} . Thiscuthasa value of 30.Theset of independent, bound

arynodes of A in VR is {5} , andthecostdifference for 5 is given by 11 - 10 = 1. Hence, 5

will not be moved over. The cut produced by considering ancs (C) = {s, A, 5, C} has a value

of 12. The cost difference for the independent vertex D is given by 10 - 11 = -1; hence, D is

moved into VL to yielda cut of value 11, andthus, in this example, the heuristic finds the mini

mum weight legal cut.

Delays on arcs are handled as follows. If the number of delays D on some arc e satisfies

D ^ qG (source (e)) x produced (e), (11)

then the size of the buffer on this arc need not be any greater than D. However, if e crosses the

30

cut, then thesize of thebuffer will become D + qG (source (e)) x produced (e). Hence, an arc

that has D delays, where D satisfies equation 11, is tagged; a tagged arc does not affect the legal

ity of the cut (in other words, the heuristic ignores tagged arcs when it constructs the legal cut) but

affects the cost of the cut: if a tagged arc crosses the cut in the reverse direction, the cost of the arc

is given by D, and if the tagged arc crosses the cut in the forward direction, the cost is given by

D + qG (source (e)) x produced (e). This will discourage the heuristic is choosing partitions

where tagged arcs cross the cut in the forward direction.

The running time of the heuristic for computing the legal minimum cut into bounded sets

can be determined as follows. Computing the descendents or ancestors of a vertex can be done by

using breadth-first-search; this takes time 0 (|V| +\E\) .Thebreadth-first-search willalso giveus

the independent nodes in the complement set. Finding and computing the cost difference for each

of the boundary nodes in the set of independent nodestakes atmost O (\E\) steps. Sortingthe

cost differences takes O (\V\ • log (\V\)) steps atmost, and moving the nodes thatreduce the

cost takes O(\V\) timeatmost. Since acutisdetermined for every vertex twice, thetotal running

timeis O (\V\\E\ + \V\2 • log (|V|)).

The heuristic for generating an schedule for the acyclic graph now proceeds by partition

ing the graphby computing the legal minimum cut and forming the schedule body

(rLSL) (rRSR) whererL =gcd[{q(v)\ve Vj),^ =gcd[{q(v)\ve VR}^j and
SL, SR are schedule bodies for GL and GR respectively. The schedule bodies 5L, SR are obtained

recursively by partitioning GL and GR. Once theentire schedule bodyhas been constructed, the

dynamic programming algorithm is runto re-parenthesize the schedule to possiblygive a better

nesting. Letting n = |V|, the running time for this heuristic can bedetermined by solving the

recurrence T(n) =T(n-k) +T(k) +0 (n\E\ +n2 • log (n)), where k = \VL\ and

n-k = |VR\. Ifwe choose the bound K in (9) to be aconstant factor ofthe graph size, for exam

ple, 3/4, thenit can be showneasily that T(n) = O (\V\\E\ + \V\2 • log (M)). If we do not

31

bound the size of the sets to be a constant factor of the graph size, then the worst case running

timeis O (|V|2|£| + M3 • log(|V|)) . Thereparenthesizing step that is run attheenduses the

dynamic programming algorithm and requires 0 (|V|3) running time. Thus the overall running

timeis given by O (|V|3).

7.2 Experimental Results

The heuristic was tested on hundreds of randomly generated 20 vertex, 30 vertex and 50

vertex SDFgraphs. The random graphs weresparse, having 2|V\ edges on average. The numbers

produced and consumed on the arcs were restricted to be less than or equal to 10 in order to pre

vent huge rate changes (and thus, repetitions vectors) from occurring. The bounding constant

K = 3(|V|/4) was used in the heuristic for generating legalminimum cuts into bounded sets;

other bounds gave inferior results. The costs given by the heuristic were compared to the best cost

determined by just constructing a number ofrandom topological sorts, and nesting each optimally

to determine the cost. Since a random topological sort can be found in linear time, the time to

determine arandom schedule that has been nested optimally is given by O (|V|3) .Ameasure

ment of the actual running time of the heuristic on a 50 node graph shows that we can construct

and examine 2 random schedules in approximately the same time that the heuristic takes to con

struct its schedule. Hence, the heuristic was tested on random graphs against the cost of the better

of two randomly constructed schedules. The heuristic gave a better schedule more than 75% of

the time. However, if the number of random schedules that are examined is increased to 10 (with

a 5-fold increase in running time), the best of the random schedules was better than that given by

the heuristic 75% of the time. Hence, by increasing the number of random schedules that are

examined, we can construct better schedules than the heuristic, although this comes at the expense

of increased running time. Moreover, even when the heuristic produces schedules worse than ran

domly constructed ones, it is still very close to the best random schedule, whereas the random

schedules can produce very bad schedules. Hence, the heuristic gives good schedules almost all

the time, even if slightly better ones could be constructed by examining a large number ofrandom

schedules. In addition, we tested this heuristic againstmany other heuristics that can be devised

for the problem, including several that arebased on the PGAN approach reported in [6], which is

32

outlined below.

One of the earliest techniques for jointly optimizing both code and data requirements for

SDF graphs was the PGAN (pairwise grouping ofadjacent nodes) approach [6\. This approach,

which was devised for general SDF graphs (not necessarily acyclic), involves constructing a clus

ter hierarchy by clustering two vertices at each clustering step. The cluster selection is based on

frequency of occurrence — the pair of adjacent actors is selected whose associated subgraph has

the highest repetition count. In [6] it is shown that the approach naturally favors nested loops over

"flat" hierarchies, and thus reduces the buffer memory requirement over naive schedules. We have

evaluated the PGAN heuristic, and several related heuristics that we derived by maintaining the

pairwise grouping property, and changing the function that is used to prioritize cluster candidates.

In each case, the dynamic programming extension of Section 6 was applied as a post-processing

step to optimally reparenthesize the PGAN schedule. We found that on 50 node random graphs

generated from the same model as the one we used to evaluate the heuristic of Section 7, the orig

inal PGAN heuristic outperformed a single random schedule 77% of the time, and the best modi

fied PGAN heuristic outperformed a single random schedule 82% percent of the time, while the

heuristic of Section 7 outperformed a single random schedule 86% of the time.

7.3 An Example for Acyclic Graphs

Figure 9 shows the implementation of a non-uniform, near-perfect reconstruction filter-

bank. The lowpass filters retain 2/3 of the spectrum while the highpass filters retain 1/3 (instead of

the customary 1/2,1/2 for the octave QMF). Rate changes in the graph are annotated wherever the

A Nonuniform filterbank.

The highpasscomponentretains 1/3of the
spectrum at each stage whilethe lowpass

retains2/3 of the spectrum

Analysissections Synthesis sections

Figure 9. Non-uniform filterbank example.

33

number produced or consumed is different from unity. The gain actors on the limbs between the

analysis and synthesis sections enable the use of the filterbank as a simple 4-channel equalizer.

The repetitions vector of this graph is given by

q = [27,27,9,9,18,6,6,9,12,6,9,4,4,6,8,4,4,4,12,6,6,9,18,9,27,27,27] . The heu

ristic, when run on this graph, obtains a schedule with a buffering cost of 100; the worst case

naive schedule (for any topological sort) would have a buffering cost of 438. The best schedule

obtained by examining 30 random topological sorts had a cost of 125 for this graph and the best

schedule obtained by examining 60 random topological sorts had a cost of 120. The best of the

various PGAN heuristics found a schedule of cost 117.This example clearly shows that, in prac

tice, the performance of the new heuristic is likely to be better than that suggested by its perfor

mance on random graphs.

8 Related Work

In [2], Ade, Lauwereins, and Peperstraete develop upper bounds on the minimum buffer

memory requirement for a number of restricted classes of SDF graphs. The graphs considered

each consist of a chain-structured subgraph, together with zero or more edges directed between

distinct actors in the chain-structured subgraph. Ade et al. present an efficiently computable upper

bound on the minimum buffer memory required over all valid schedules, and they present simula

tion data that demonstrates that on average, the computed bounds are close to the corresponding

actual minima. Since the bounds of Ade et al. attempt to minimize over all valid schedules, and

since single appearance schedules generally have much largerbuffer memory requirements than

schedules that are optimized for minimum buffer memory only, these bounds cannot consistently

give close estimates of the minimum buffer memory requirement for single appearancesched

ules.

In [14], Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDF,

called cyclo-static dataflow. In cyclo-static dataflow, the number of tokens produced and con

sumed by an actor can vary between firings as long as the variations form a certain type of peri

odic pattern. For example, consider an actor that routes data received from a single input to each

of two outputs in alternation. In cyclo-static dataflow, this operation can be represented as an actor

34

that consumes one token on its input edge, and produces tokens according to the periodic pattern

1,0, 1,0, ... (one token produced on the first invocation, none on the second, one on the third,

and so on) on one output edge, and according to the complementary pattern 0, 1, 0, 1, ... on the

other output edge. A cyclo-static dataflow graph can be compiled as a cyclic pattern of pure SDF

graphs, and static periodic schedules can be constructed in this manner. A major advantage of

cyclo-static dataflow is that it can eliminate large amounts of token traffic arising from the need to

generate dummy tokens in corresponding (pure) SDF representations. This leads to lower mem

ory requirements and fewer run-time operations. Although cyclostatic dataflow can reduce the

amount of buffering for graphs having certain multirate actors like explict downsamplers, it is not

clear whether this model can in general be used to get schedules that are as compact as single

appearance schedules for pure SDF graphs but have lower buffering requirements than that aris

ing from techniques given in this paper.

A linear programming framework for minimizing the memory requirement of a synchro

nous dataflow graph in a parallel processing context is explored by Govindarajan and Gao in [11].

Here the goal is to minimize the buffer cost without sacrificing throughput —just as the goal in

this paper is to minimize buffering cost without sacrificing code compactness. Thus, the tech

niques of [11] address the problem of selecting a schedule that minimizes buffering cost from

among the set of rate-optimal schedules. This problem does not take code space constraints into

account. Instead, it focuses on another dimension of scheduling that the techniques of our paper

do not consider — parallel processing.

9 Conclusion

In this paper, we have presented algorithms for constructing schedules that minimize

buffer usagefrom among the schedules that minimize program memory usage (called buffer-opti

mal single appearance schedules) for programs expressed as SDF graphs. We defined the class of

R-schedules and showed that there is always an R-schedule that is a buffer-optimal single appear

ance schedule. It is possible to construct buffer-optimal R-schedules for the class of well-ordered

SDF graphs by using a dynamic programming algorithm. We showed the efficacy and the useful

ness of our algorithm on a practical example. Wealso showed that the problem of determining

35

buffer-optimal single appearanceschedules appears to be a much more complicated problem for

general acyclic SDF graphs. Instead, we have presentedheuristics that perform well in practice.

There are still many open problems left to be solved in this areaof compiler design for

SDF graphs. The complexity of the problem of determining buffer-optimal single appearance

schedules for acyclic graphs is unknown, even though we believe it to be NP-complete. If the

problem is NP-complete, it would be interesting to see if better heuristics can be developed. In

particular, it would be interesting to see what effect a better heuristic for finding minimum weight

legal cuts into bounded sets would have on the quality of the schedules. Recall that the very idea

of using minimum cuts is a heuristic; hence, even if we were able to determine the optimal legal

minimum cuts (which is unlikely since that problem appears to be NP-complete as well), we

wouldn't always produce buffer-optimal single appearance schedules. However, it might improve

the quality of the schedules somewhat. A reduction of this problem (determining buffer-optimal

single appearance schedules for acyclic graphs) to integer linear programming (ILP) would be

useful as it would allow evaluations of heuristics against the optimal answer. We also gave some

reasons why the problem of constructing buffer-optimal single appearance schedules becomes

even more complicated for arbitrary SDF graphs. Heuristic solutions for this problem are a topic

for further study. Finally, techniques for systematically trading program compactness for buffer

usage are also a topic for further study.

Acknowledgment

Thomas M. Parks, a graduate student at the University of California at Berkeley, con

ceived, designed, and implemented the rate-change system of Figure 5(b).

36

References

[I] W. A. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, "On the Performance Enhancement of Paging Systems Through
Program Analysis and Transformations," IEEE Transactions on Computers, vol.C-30, (no.5):341-56. May, 1981.

[2] M. Ade, R. Lauwereins, and J. A. Peperstraete, "Buffer Memory Requirements in DSP Applications," presented
at IEEE Workshop on RapidSystemPrototyping,Grenoble, June, 1994.

[3] U. Banerjee, DependenceAnalysisfor Supercomputing, Kluwer Academic Publishers, 1988.

[4] S. S. Bhattacharyya, Compiling Dataflow Programsfor Digital Signal Processing, Memorandum No. UCB/ERL
M94/52, Electronics Research Laboratory, University of California at Berkeley, July, 1994.

[5] S. S. Bhattacharyyaand E. A. Lee, "Looped Schedules for Dataflow Descriptionsof MultirateSignalProcessing
Algorithms," JournalofFormalMethods inSystem Design, to appear, 1995.

[6] S. S. Bhattacharyyaand E. A. Lee, "SchedulingSynchronous Dataflow Graphsfor EfficientLooping," Journal of
VLSI Signal Processing, vol.6, (no.3):271-88, December, 1993.

[7] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Multirate Signal Processing in Ptolemy," Proceedings of
theInternational Conference on Acoustics,Speech, andSignalProcessing,Toronto, p. 1245-8 vol.2, April, 1991.

[8] T. H. Cormen. C. E. Leiserson, and R. L. Rivest, Introduction toAlgorithms, McGraw-Hill, 1990.

[9] M. R. Garey,D. S. Johnson, Computers andIntractability-A guide to thetheory ofNP-completeness. Freeman,
1979.

[10] S. S. Godbole, "On EfficientComputation of Matrix ChainProducts,"IEEE Transactions on Computers,
vol.C22, (no.9):864-7, September, 1973.

[II] R. Govindarajan, G. R. Gao, and P.Desai, "Minimizing Memory Requirements in Rate-Optimal Schedules,"
Proceedingsof theInternational Conference on Application Specific Array Processors,p. 75-86, San Francisco,
August, 1994.

[12] W.H. Ho, E. A. Lee, and D. G. Messerschmitt, "High LevelDataflowProgrammingfor Digital Signal Process
ing," VLSI Signal ProcessingIII, IEEE Press, 1988.

[13] B. W. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning Graphs." BellSystem Technical
Journal, vol.49, (no.2):291-308, February 1970.

[14]R. Lauwereins,P.Wauters, M. Ade, andJ. A. Peperstraete, "GeometricParallelism and Cyclo-StaticDataflowin
GRAPE-II,"presented at IEEE Workshop onRapid System Prototyping, Grenoble,June, 1994.

[15] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren, "GRAPE: A CASE Tool
for Digital Signal Parallel Processing."IEEE ASSP Magazine, vol.7, (no.2):32-43, April, 1990.

[16] E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya, "Gabriel: A Design Environment for DSP," IEEE
Transactions on Acoustics,Speech, andSignal Processing, vol.37', (no.11):1751-62,November, 1989.

[17]E. A. Lee andD. G. Messerschmitt, "StaticScheduling of Synchronous Dataflow Programs for DigitalSignal
Processing," IEEETransactions on Computers, vol.C-36, (no.l):24-35, January, 1987.

[18] D. R. O'Hallaron, TheAssignParallel Program Generator, Memorandum CMU-CS-91-141, School of Com
puter Science, Carnegie Mellon University, May, 1991.

[19] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, "SoftwareSynthesis for DSP Using Ptolemy," invited paper in Journal
of VLSI Signal Processing, to appear in 1995.

[20]S. Ritz, S. Pankert, H. Meyr, "HighLevelSoftware Synthesis for Signal Processing Systems," Proceedings of
the International Conference onApplication Specific Array Processors, Berkeley, p. 679-93, August, 1992.

37

[21] M. Veiga.J. Parera, andJ. Santos."Programming DSP Systems on Multiprocessor Architectures." Proceedings
of theInternational Conference onAcoustics, Speech, andSignal Processing, Albuquerque, p. 965-8vol.2. April,
1990.

[22] M. Wolfe, Optimizing Supercompilersfor Supercomputers, MIT Press, 1989.

[23] H. Zima andB. Chapman, Supercompilersfor ParallelandVector Computers, ACM Press, 1990.

38

	Copyright notice 1994
	ERL-94-93

