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Compile-Time Scheduling of Dynamic Constructs
in Dataflow Program Graphs

Soonhoi Ha * Edward A. Lee*

Abstract

Scheduling dataflow graphs onto processors consists of assigning actors to processors, order
ing their execution within the processors, and specifying their firing time. While all scheduling
decisions can be made at runtime, the overhead is excessive for most real systems. To reduce
this overhead, compile-time decisions can be made for assigning and/or ordering actors on pro
cessors. Compile-time decisions are based on known profiles available for each actor at compile
time. The profile of an actor, is the information necessary for scheduling, which depending on
the scheduling technique, consists of execution time, communication patterns, and so on. How
ever, a dynamic construct within a macro actor, such as a conditional and a data-dependent
iteration, makes the profile of the actor unpredictable at compile time. For those constructs, we
propose to assume some profile at compile-time and define a cost to be minimized when deciding
on the profile. We illustrate how to determine the profiles of conditionals and data-dependent
iteration under the assumption that the runtime statistics are available at compile-time. Our
decisions on the profiles of dynamic constructs are shown to be optimal under some bold as
sumptions, and expected to be near-optimal in most cases. The proposed scheduling technique
has been implemented as one of the rapid prototyping facilities in Ptolemy. This paper presents

the preliminary results on the performance with synthetic examples.
keywords: Multiprocessor scheduling, dataflow programs graphs, dynamic constructs, profile,
macro actor

1 Introduction

A dataflow graph representation, either as a programming language or as an intermediate represen
tation during compilation, is suitable for programming multiprocessors because parallelism can be
extracted automatically from the representation [1, 2]. Each node, or actor, in a dataflow graph
represents either an individual program instruction or a group thereof to be executed according to
the precedence constraints represented by arcs, which also represent the flow of data. A dataflow
graph is usually made hierarchical. In a hierarchical graph, an actor itself may represent another
dataflow graph: it is called a macro actor.
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Particularly, we define a data-dependent macro actor, or data-dependent actor, as a macro actor
of which the execution sequence of the internal dataflow graph is data dependent (cannot be pre
dicted at compile time). Some examples are macro actors that contain dynamic constructs such as
conditional, data-dependent iteration, and recursion. Actors are said to be data-independent if not
data-dependent.

The processor scheduling problem is to map a set of precedence-constrained actors {T*}, i = l...n,
onto a set of processors {Pk},k = l...p. A program graph may be executed only once, or repeated
at irregular intervals. The scheduling objective, in this case, is to minimize the finishing time, also
called makespan, of the program with a given number of processors. In most DSP applications, on
the other hand, a program is executed once for every sample of an input stream. For such iterative
executions, the objective is to maximize the throughput or to minimize the iteration period. A
schedule with the minimum makespan does not always achieve the maximum throughput because
there exist artificial boundaries between iterations of the program. It may be possible, however,
to expose the hidden parallelism between iterations by transforming the program graph by using
some advanced techniques such as retiming or hop winding [3, 4]or by increasing the blocking factor
(scheduling several iterationsat once). The blocking factor corresponds to how many iterations are
expressed in a program graph. Hence, we aim to minimize the makespan as the scheduling objective
in this paper.

The scheduling task consists of assigning actors to processors, specifying the order in which
actors are executed on each processor, and specifying the time at which they are executed. These
tasks can be performed either at compile time or at run time [5]. In the fully-dynamic scheduling,
all scheduling decisions are made at run time. It has the flexibility to balance the computational
load of processors in response to changing conditions in the program. In case a program has a large
amount of non-deterministic behavior, any static assignment of actors may result in very poor load
balancing or poor scheduling performance. Then, the fully dynamicscheduling would be desirable.
However, the run-time overhead may be excessive; for example it may be necessary to monitor the
computational loads of processors and ship the program code between processors via networks at
run time. Furthermore, it is not usually practical to make globally optimal scheduling decision at
run time. Therefore, in applicationswith a moderate amount of non-deterministic behaviorsuch as
DSP applications, the more scheduling decisions are made at compile time the better in order to
reduce the implementation costs and to make it possible to reliably meet any timing constraints.

While compile-time processor scheduling has a very rich and distinguished history [6, 7], most
efforts have been focused on deterministic models: the execution time of each actor 7} on a processor
Pk is fixed and there are no data-dependent actors in the program graph. Even in this restricted
domainof applications, algorithms that accomplish an optimal scheduling have combinatorialcom
plexity, except in certain trivial cases. Therefore, good heuristic methods have been developed over
the years. The typical approach is based on list scheduling, in which actors are assigned priorities
and placed in a list and executed in the sorted order of decreasing priority [6, 8]. Other approaches
such as clustering [9, 10] and integer programming [11] also have been proposed. The scheduler
determines assignment and/or execution order of actors on the processors at compile-time.

Most of the scheduling techniques are applied to a completely expanded dataflow graph and
assume that an actor is assigned to a processor as an indivisible unit. It is simpler, however, to treat
a data-dependent actor as a schedulable indivisible unit. Regarding a macro actor as a schedulable
unit greatly simplifies the scheduling task. Prasanna et al [12] schedule the macro dataflow graphs
hierarchically to treat macro actors of matrix operations as schedulable units. Then, a macro actor
may be assigned to more than one processor. Therefore, new scheduling techniques to treat a macro
actor as a schedulable unit was devised.
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Figure 1: (a) A dataflow graph consists of five actors among which actor A is a data-dependent
actor, (b) Gantt chart for compile-time scheduling assuming a certain execution time for actor A.
(c) At run time, if actor A takes longer, the second processor is padded with no-ops and (d) if actor
A takes less, the first processor is idled to make the pattern of processor availability same as the
scheduled one (dark line).

Compile-time scheduling assumes that static information about each actor is known. We define
the profile of an actor as the static information about the actor necessary for a given scheduling
technique. For example, if we use a list scheduling technique, the profile of an actor is simply the
computation time of the actor on a processor. The communication requirements of an actor with
other actors are included in the profile if the scheduling technique requires that information. The
profile of a macro actor would be the number of the assigned processors and the local schedule of the
actor on the assigned processors. For a data-independent macro actor such as a matrix operation,
the profile is deterministic. However, the profile of a data-dependent actor of dynamic construct can
not be determined at compile time since the execution sequence of the internal dataflow subgraph is
varying at run time. For those constructs, we have to assume the profiles somehow at compile-time.

It is the main purpose of this paper to show how we can define the profiles of dynamic constructs
at compile-time. A crucial assumption we rely on is that we can approximate the runtime statistics of
the dynamic behavior at compile-time. Simulation may be a proper method to gather these statistics.
By optimally choosing the profile of the dynamic constructs, we will minimize the expected makespan
of a program. In figure 1, actor A is a data-dependent actor. At compile time, the profile of actor
A is assumed. At run time, the makespan of the program varies depending on the actual behavior
of actor A.

Note that the pattern of processor availability before actor B starts execution is preserved at
run time by inserting idle time. Then, after actor A is executed, the remaining static schedule can
be followed. This scheduling strategy is called quasi-static scheduling that was first proposed by
Lee [13] for DSP applications. The strict application of the quasi-static scheduling requires that the
synchronization between actors is guaranteed at compile time so that no run-time synchronization
is necessary as long as the pattern of processor availability is consistent with the scheduled one. It
is generally impractical to assume that the exact run-time behaviors of actors are known at compile
time. Therefore, synchronization between actors is usually performed at run time. In this case,



it is not necessary to enforce the pattern of processor availability by inserting idle time. Instead,
idle time will be inserted when synchronization is required to execute actors. When the execution
order of the actors is not changed from the scheduled order, the actual makespan obtained from
run-time synchronization is proven to be not much different from what the quasi-static scheduling
would produce [5]. Hence, our optimality criterion for the profile of dynamic constructs is based on
the quasi-static scheduling strategy, which makes analysis simpler.

1.1 Previous Work

All of the deterministic scheduling heuristics assume that static information about the actors is
known. But almost none have addressed how to define the static information of data-dependent
actors. The pioneering work on this issue was done by Martin and Estrin [14]. They calculated
the mean path length from each actor to a dummy terminal actor as the level of the actor for list
scheduling. For example, if there are two possible paths divided by a conditional construct from
an actor to the dummy terminal actor, the level of the actor is a sum of the path lengths weighted
by the probability with which the path is taken. Thus, the levels of actors are based on statistical
distribution of dynamic behavior of data-dependent actors. Since this is expensive to compute, the
mean execution times instead are usually used as the static information of data-dependent actors
[15]. Even though the mean execution time seems a reasonable choice, it is by no means optimal.
In addition, both approaches have the common drawback that a data-dependent actor is assigned
to a single processor, which is a severe limitation for a multiprocessor system.

Two groups of researchers have proposed quasi-static scheduling techniques independently: Lee
[13] and Loeffler et al [16]. They developed methods to schedule conditional and data-dependent
iteration constructs respectively. Both approaches allow more than one processor to be assigned
to dynamic constructs. Figure 2 shows a conditional and compares three scheduling methods. In
figure 2 (b), the local schedules of both branches are shown with three processors in this example.

In Lee's method, we overlap the local schedules of both branches and choose the maximum
termination for each processor. For hard real-time systems, it is the proper choice. Otherwise, it
may be inefficient if either one branch is more likely to be taken and the size of the likely branch
is much smaller. On the other hand, Loeffler takes the local schedule of more likely branch as the
profileof the conditional. This strategy is inefficient if both branches are equally likely to be taken
and the size of the assumed branch is much larger. Finally, a conditional evaluation can be replaced
with a conditional assignment to make the construct static; the graph is modified as illustrated
in figure (c). In this scheme, both true and false branches are scheduled and the result from one
branch is selected depending on the control boolean. An immediate drawback is inefficiency which
becomes severe when one of the two branches is not a small actor. Another problem occurs when the
unselected branch generates an exception condition such as divide-by-zero error. All these methods
on conditionals are ad-hoc and not appropriate as a general solution.

Quasi-static scheduling is very effective for a data-dependent iteration construct if the construct
can make effective use of all processors in each cycle of the iteration. It schedules one iteration
and pads with no-ops to make the pattern of processor availability at the termination the same as
the pattern of the start (figure 3) (Equivalently, all processors are occupied for the same amount
of time in each iteration). Then, the pattern of processor availability after the iteration construct
is independent of the number of iteration cycles. This scheme breaks down if the construct cannot
utilize all processors effectively.

The recursion construct has not yet been treated successfully in any statically scheduled data
flow paradigm. Recently, a proper representation of the recursion construct has been proposed [17].
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Figure 2: Three different schedules of a conditional construct, (a) An example of a conditional
construct that forms a data-dependent actor as a whole, (b) Local deterministic schedules of the
two branches, (c) A static schedule by modifying the graph to use conditional assignment, (d)
Lee's method to overlap the local schedules of both branches and to choose the maximum for each
processor, (e) Loeffler's method to take the local schedule of the branch which is more likely to be
executed.

But, it is not explained how to schedule the recursion construct onto multiprocessors. With finite
resources, careless exploitation of the parallelism of the recursion construct may cause the system
to deadlock. Resource management in this case has been an open problem in the area of data flow
computation.

In summary, dynamic constructs such as conditionals, data-dependent iterations, and recursions,
have not been treated properly in past scheduling efforts, either for static scheduling or dynamic
scheduling. Some ad-hoc methods have been introduced but proven unsuitable as general solutions.
Our earlier result with data-dependent iteration [5] demonstrated that a systematic approach to
determine the profile of data-dependent iteration actor could minimize the expected makespan. In
this paper, we extend our analysis to general dynamic constructs.

In the next section, we will show how dynamic constructs are assigned their proflles at compile-
time. We also prove the given proflles are optimal under some unrealistic assumptions. Our ex
periments enable us to expect that our decisions are near-optimal in most cases. Section 3,4 and
5 contains an example with data-dependent iteration, recursion, and conditionals respectively to
show how the profiles of dynamic constructs can be determined with known runtime statistics. We
implement our technique in the Ptolemy framework [18]. The preliminary simulation results will be
discussed in section 6. Finally, we discuss the limits of our method and mention the future work.



one iteration cycle

Figure 3: A quasi-static scheduling ofa data-dependent iteration construct. The pattern of processor
availability is independent of the number of iteration cycles.

2 Compile-Time Profile of Dynamic Constructs

Each actor should be assigned its compile-time profile for static scheduling. Assuming a quasi-static
scheduling strategy, the proposed scheme is to decide the profile of a construct so that the average
makespan is minimized assuming that all actors except the dynamic construct are data-independent.
This objective is not suitable for a hard real-time system as it does not bound the worst case behavior.
We also assume that all dynamic constructs are uncorrelated. With this assumption, we may isolate
the effect of each dynamic construct on the makespan separately. In case there are inter-dependent
actors, we may group those actors as another macro actor, and decide the optimal profile of the
large actor. Even though the decision of the profile of the new macro actor would be complicated in
this case, the approach is still valid. For nested dynamic constructs, we apply the proposed scheme
from the inner dynamic construct first. For simplicity, all examples in this paper will have only one
dynamic construct in the dataflow graph.

The run-time cost of an actor t, C,-, is the sum of the total computation time devoted to the actor
and the idle time due to the quasi-static scheduling strategy over all processors. In figure 1, the
run-time cost of a data-dependent actor A is the sum of the lightly (computation time) and darkly
shaded areas after actor A or C (immediate idle time after the dynamic construct). The makespan
of a certain iteration can be written as

makespan = -=(Ci + R), (1)

where T is the total number of processors in the system, and R is the rest of the computation
including all idle time that may result both within the schedule and at the end. R is determined
at compile-time and fixed at run-time. Therefore, we can minimize the expected makespan by
minimizing the expected cost of the data-dependent actor or dynamic construct if we assume that
R is independent of our decisions for the profile of actor i. This assumption is unreasonable when
precedence constraints make R dependent on our choice of profile. Consider, for example, a situation
where the dynamic construct is always on the critical path and there are more processors than we
can effectively use. Then, our decision on the profile of the construct will directly affect the idle time
at the end of the schedule, which is included in R. On the other hand, if there is enough parallelism
to make effective use of the unassigned processors and the execution times of all actors are small
relative to the makespan, the assumption is valid. Realistic situations are likely to fall between these
two extremes.

To select the optimal compile-time profile of actor t, we assume that the statistics of the runtime
behavior is known at compile-time. The validity of this assumption varies to large extent depending
on the application. In digital signal processing applications where a given program is repeatedly
executed with data stream, simulation can be useful to obtain the necessary information. In general,
however, we may use a well-known distribution, for example uniform or geometric distribution, which
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Figure 4: Data-dependent iteration can be represented using the either of the dataflow graphs shown.
The graph in (a) is used when the number of iterations is known prior to the commencement of the
iteration, and (b) is used otherwise.

makes the analysis simple. Using the statistical information, we choose the profile to give the least
expected cost at runtime as the compile-time profile.

The profile of a data-dependent actor is a local schedule which determines the number of assigned
processors and computation times taken on the assigned processors. The overall algorithm of profile
decision is as follows.

min = LARGE;

// T is the total number of processors.
// N is the number of processors assigned to the actor.
for N = 1 to T {

// A(N,i) is the cost of the actor with parameter N, i
// p(i) is the probability of parameter i

temp = J3iP(0^WO:
if (temp < min) min = temp;

}

In the next section, we will illustrate the proposed scheme with data-dependent iteration, recur
sion, and conditionals respectively to show how profiles are decided with runtime statistics.

3 Data Dependent Iteration

In a data-dependent iteration, the number of iteration cycles is determined at runtime and cannot be
known at compile-time, which makes it a dynamic construct. Two possible dataflow representations
for data-dependent iteration are shown in figure 4 [13].

The numbers adjacent to the arcs indicate the number of tokens produced or consumed when
an actor fires [19]. In figure 4 (a), since the upsample actor produces M tokens each time it fires,
and the iteration body consumes only one token when it fires, the iteration body must fire M times
for each firing of the upsample actor. In figure 4 (b), the number of iterations need not be known
prior to the commencement of the iteration. Here, a token coming in from above is routed through
a "select" actor into the iteration body. The "D" on the arc connected to the control input of
the "select" actor indicates an initial token on that arc with value "false". This ensures that the



data coming into the "F" input will be consumed the first time the "select" actor fires. After this
first input token is consumed, the control input to the "select" actor will have value "true" until
function t() indicates that the iteration is finished by producing a token with value "false". During
the iteration, the output of the iteration function /() will be routed around by the "switch" actor,
againuntil the test function t() produces a token with value "false". There are many variations on
these two basic models for data-dependent iteration.

The previous work [5] considered a subset of data-dependent iterations, in which simultaneous
execution of successive cycles is prohibited as in figure 4 (b). In figure 4 (a), there is no such
restriction, unless the iteration body itself contains a recurrence. Therefore, we generalize the
previous method to permit overlapped cycles when successive iteration cycles are invokable before the
completion of an iteration cycle. Detection of the intercycle dependency from a sequential language
is the main task of the parallel compiler to maximize the parallelism. A dataflow representation,
however, reveals the dependency rather easily with the presence of delay on a feedback arc.

We assume that the probability distribution of the number of iteration cycles is known or can be
approximated at compile time. Letthe number ofiteration cycles be a random variable / with known
probability mass function p(t). Forsimplicity, we set the minimum possible value of J to be 0. We
let the number of assigned processors be N and the total number of processors be T. We assume a
blocked schedule as the local scheduleof the iteration body to remove the unnecessary complexityin
all illustrations, although the proposed technique canbeapplicable to the overlap execution schedule
[20]. In a blocked schedule, all assigned processors are assumed to be available, or synchronized at
the beginning. Thus, the execution time of one iteration cycle with N assigned processors is tjv as
displayed in figure 5 (a). We denote by Sfj the time that must elapse in one iteration before the
next iteration is enabled. This time could be zero, if there is no data dependency between iterations.
Given the local schedule of one iteration cycle, wedecide on the assumed number of iteration cycles,
xpt, and the number ofoverlapped cycles kff. Once the two parameters, xn and fcjv, are chosen, the
profile of the data-dependent iteration actor is determined as shown in figure 5 (b). The subscript N
oftft, Sft, xn and kjsr represents that they are functionsof TV, the number of the assignedprocessors.
For brevity, we will omit the subscript N for the variables without confusion. Using this profile of
the data-dependent macro actor, global scheduling is performed to makea hierarchical compilation.
Note that the pattern of processor availability after execution of the construct is different from that
before execution. We do not address how to schedule the iteration body in this paper since it is the
standard problem of static scheduling.

According to the quasi-static scheduling policy, three cases can happen at runtime. If the actual
number of cycles coincides with the assumed number of iteration cycles, the iteration actor causes
no idle time and the cost of the actor consists only of the execution time of the actor. Otherwise,
some of the assigned processors will be idled if the iteration takes fewer than x cycles (figure 5 (c)),
or else the other processors as well will be idled (figure 5 (d)). The expected cost of the iteration
actor, C(N,k,x), is a sumof the individual costs weighted by the probability mass function of the
number of iteration cycles. The expected cost becomes

C(N,k,x) =J2p(i)M* + £ p{i)(Ntx +Tt\1-^]). (2)
1=0 i=*+l

By combiningthe first term with the first elementof the second term, this reduces to

CO

c(N,k,x)=mx + Tt^r, pwr^pi. (3)
»=r+l
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iteration). There displays 3 possible cases depending on the actual number of cycles i in (b) for
i = x, (c) for i < x, and (d) for i > x.

Our method is to choose three parameters (N, k, and x) in order to minimize the expected cost
in equation (3). First, we assume that N is fixed. Since C(N, k, x) is a decreasing function of k with
fixed Ar, we select the maximum possible number for k. The number k is bounded by two ratios:
jj and |. The latter constraint is necessary to avoid any idle time between iteration cycles on a
processor. As a result, k is set to be

k=min{\^\,[-s\). (4)

The next step is to determine the optimal x. If a value x is optimal, the expected cost is not
decreased if we vary x by +1 or —1. Therefore, we obtain the following inequalities,

C{N,k,x)-C(N,k,x+l) = -Nt+Tt^Tp{x +l-rik) <0
i=0

CO

C(N,k,x)-C(N,k,x-l) = Nt-TtJ2p(x+ ik)<°-
«=o

Since t is positive, from inequality (5),

Y/p(x+l + ik) < - < £p(x + *'*)•
t'=0 i=0

If k is equal to 1, the above inequality becomes same as inequality (5) in [5], which shows that the
previous work is a special case of this more general method.

(5)

(6)



Up to now,wedecided the optimal valuefor x and k for a givennumber N. How to chooseoptimal
N is the next question we have to answer. Since t is not a simple function of TV, no closed form
for N minimizingC(N, kt x) exists, unfortunately. However, we may use exhaustive search through
all possible values N and select the value minimizing the cost in polynomial time. Moreover, our
experiments show that the search space for N is often reduced significantly using some criteria.

Our experiments show that the method is relatively insensitive to the approximated probability
massfunction for i [5]. Using somewell-known distributions which havenicemathematical properties
for the approximation, we can reduce the summation terms in (3) and (6) to closed forms. Let us
consider a geometric probability mass function with parameter q as the approximated distribution
of the number of iteration cycles. This models a class of asymmetric bell-shaped distributions. The
geometric probability mass function means that for any non-negative integer r,

P\J > r] = q\ P\j = r] = p(r) = qr(l - q). (7)

To use inequality (6), we find

'£p(x +ik) =(l-q)T^. (8)
Therefore, from the inequality (6), the optimal value of x satisfies

Using floor notation, we can obtain the closed form for the optimal value as follows:

Furthermore, equation (3) is simplified by using the fact

CO . X+ l

•=r+l *

getting
ax+l

C{N,k,x) = Ntx + Tt-±—r. (12)
1 — q

Now, we have all simplified formulas for the optimal profile of the iteration actor. Similar
simplification is possible also with uniform distributions [21]. If k equals to 1, our results coincide
with the previous result reported in [5].

4 Recursion

Recursion is a construct which instantiates itself as a part of the computation if some termination
condition is not satisfied. Most high level programming languages support this construct since it
makes a program compact and easy to understand. However, the number of self-instantiations,
called the depth of recursion, is usually not known at compile-time since the termination condition
is calculated at run-time. In the dataflow paradigm, recursion can be represented as a macro actor
that contains a SELF actor (figure 6). A SELF actor simply represents an instance of a subgraph
within which it sits.

10
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function f(x)

a(x);

if test(x)isTRUE

return b(x);
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return h(f(cl(x)),f(c2(x)));
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Figure 6: (a) An example of a recursion construct and (b) its dataflow representation. The SELF
actor represents the recursive call, (c) The computation tree of a recursion construct with two SELF
actors when the depth of the recursion is two.

If the recursion actor has only one SELF actor, the function of the actor can be identically
represented by a data-dependent iteration actor as shown in figure 4 (b) in the previous section.
This includes as a special case all tail recursive constructs. Accordingly, the scheduling decision
for the recursion actor will be same as that of the translated data-dependent iteration actor. In a
generalized recursion construct, we may have more than one SELF actor. The number of SELF
actors in a recursion construct is called the width of the recursion. In most real applications, the
width of the recursion is no more than two. A recursion construct with width 2 and depth 2 is
illustrated in figure 6 (b) and (c). We assume that all nodes of the same depth in the computation
tree have the same termination condition. We will discuss the limitation of this assumption later.
We also assume that the run-time probability mass function of the depth of the recursion is known
or can be approximated at compile-time.

The potential parallelism of the computation tree of a generalized recursion construct may be
huge, since all nodes at the same depth can be executed concurrently. The maximum degree of
parallelism, however, is usually not known at compile-time. When we exploit the parallelism of
the construct, we should consider the resource limitations. We may have to restrict the parallelism
in order not to deadlock the system. Restricting the parallelism in case the maximum degree of
parallelism is too large has been recognized as a difficult problem to be solved in a dynamic dataflow
system. Our approach proposes an efficient solution by taking the degree of parallelism as an
additional component of the profile of the recursion construct.

Suppose that the width of the recursion construct is k. Let the depth of the recursion be a
random variable I with known probability mass function p(i). We denote the degree of parallelism
by d, which means that the descendents at depth d in the computation graph are assigned to different
processor groups. A descendent recursion construct at depth d is called a groundconstruct (figure 7
(a)). If we denote the size of each processor group by N, the total number of processors devoted to
the recursion becomes Nkd. Then, the profile of a recursion construct is defined by three parameters:
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Figure 7: (a) The reduced computation graph of a recursion construct of width 2 when the degree
of parallelism is 2. (b) The profile of the recursion construct. The schedule length of the ground
construct is a function of the assumed depth of recursion x and the degree of parallelism d. A
quasi-static schedule is constructed depending on the actual depth i of the recursion in (c) for i < x
and in (d) for i > x.

the assumed depth of recursion x, the degree of parallelism d, and the size of a processor group N.
Our approach optimizes the parameters to minimize the expected cost of the recursion construct.
An example of the profile of a recursion construct is displayed in figure 7 (b).

Let r be the sum of the execution times of actors a,c, and h in figure 6. And, let t0 be the
sum of the execution times of actors a and b. Then, the schedule length /r of a ground construct
becomes

lx = r(k° +** + ...+ fe*~d-l) + Tokx-d = t k'-d - 1

k-l
+ T0k :-d (13)

when x > d. At run time, some processors will be idled if the actual depth of recursion is different
from the assumed depth of recursion, which is illustrated in figure 7 (c) and (d). When the actual
depth of recursion : is smaller than the assumed depth x, the assigned processors are idled. Other
wise, the other processors as well are idled. Let R be the sum of the execution times of the recursion

besides the ground constructs. This basic cost R is equal to t_i •
For i < x, the runtime cost, C\, becomes

k-l +Tok hCi = R+Nka{r (14)
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assuming that x is not less than d. For t > x, the cost C2 becomes

C2 =R+JVfc"(r^~ +r0Jk''-d) +(T-W)(yrj +*)(*'-* - k'~d). (15)
Therefore, the expected cost of the recursion construct, C(N, x, d) is the sum of the run-time cost
weighted by the probability mass function.

X 00

C(N,d,x) =R+J>(t)Ci + 2 p(t)C2. (16)
»=0 i-x+1

After a few manipulations,

kx-l
+ r0k") +

t=r+l

C(AT, d, x) =*(r^-i +t9V) +f) K'W^ +ro)(^-d - **"d). (17)
First, we assume that N is fixed. Since the expected cost is a decreasing function of d, we

select the maximum possible number for d. The number d is bounded by the processor constraint:
Nkd < T. Since we assume that the assumed depth of recursion x is greater than the degree of
parallelism d, the optimal value for d is

d=min(llogk^\,x). (18)
Next, we decide the optimal value for x from the observation that if x is optimal, the expected cost
is not decreased when x is varied by +1 and —1. Therefore, we get

C(N,d,x)-C(N,d,x+l) = (T+T0(k-l)){-Nkx+Tkx-d 53 p(*))<0
$=x+l

00

C(N,d,x)-C(N,d,x-l) = (r+ ro(Jb-l))(7VJba;-1-rJka?-d-153p(0)<0. (19)

Rearranging the inequalities, we get the following,

E "W *it - 5>(0- (20)
i—x+l i—x

Note the similarity of inequality (20) with that for data-dependent iterations (6). In particular, if k
is 1, the two formulas are equivalent as expected. The optimal values d and x depend on each other
as shown in (18) and (20). We may need to use iterative computations to obtain the optimal values
of d and x starting from d = [logk jf\.

Let us consider an example in which the probability mass function for the depth of the recursion
is geometric with parameter q. At each execution of depth » of the recursion, we proceed to depth
»* + 1 with probability q and return to depth t —1 with probability I —q. From the inequality (20),
the optimal x satisfies

qx+1 <^r<qx- (21)
As a result, x becomes

Nkd*=Llog,^-J. (22)
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Up to now,we assume that N is fixed. Since r is a transcendental function of N, the dependency
of the expected cost upon the size of a processor group N is not clear. Instead, we examine the
all possible values for N, calculate the expected cost from equation (3) and choose the optimal N
giving the minimum cost. The complexity of this procedure is still polynomial and usually reduced
significantly since the search space of N can be reduced by some criteria. In case of geometric
distribution for the depth of the recursion, the expected cost is simplified to

C(N, d, x) =W(ry£y +r0k*) +T(t+r0(k - 1))**-*J^. (23)
In case the number of child functions is one (k = 1), our simplified formulas with a geometric
distribution coincidewith those for data-dependent iterations, except for an overhead term to detect
the loop termination.

Recall that our analysis is based on the assumption that all nodes of the same depth in the
computation tree have the same termination condition. This assumption roughly approximates a
more realistic assumption, which we call the independence assumption, that all nodes of the same
depth have equal probability of terminating the recursion, and that they are independent each
other. This equal probability is considered as the probability that all nodes of the same depth
terminate the recursion in our assumption. The expected number of nodes at a certain depth is the
same in both assumptions even though they describe different behaviors. Under the independence
assumption, the shape of the profile would be the sameas shown in figure 7: the degree of parallelism
d is maximized. Moreover, all recursion processors have the same schedule length for the ground
constructs. However, the optimal schedule length lx of the ground construct wouldbe different. The
length lx is proportional to the number of executions of the recursion constructs inside a ground
construct. This number can be any integer under the independence assumptions, while it belongs to
a subset {0,kx,k2,...} under our assumption. Since the probabilitymass function for this number
is likely to be too complicated under the independence assumption, we sacrifice performance by
choosing a sub-optimal schedule length under a simpler assumption.

5 Conditionals

Decision makingcapability is an indispensable requirement of a programming language for general
applications, and even for signal processing applications. A dataflow representation for an if-then-
else and the local schedules of both branches are shown in figure 2 (a) and (b).

We assume that the probability pi with which the "TRUE" branch (branch 1) is selected is
known. The "FALSE" branch (branch 2) is selected with probabilityp2 = 1 -pi- Let Uj be the
finishing time ofthelocal schedule ofthet'-th branch on thej-thprocessor. And let ij bethefinishing
time on the j-th processor in the optimal profile of the conditional construct. We determine the
optimal values {ij} to minimize the expected runtime cost of the construct. When the »-th branch
is selected, the cost becomes

N

53h +TmaxlO, m« (<y - ij)). (24)

Therefore, the expected cost C(N) is

N 2

C(N) = 53<t + T53p,max[0, max fo - ij)). (25)
ft! ft? 'WW
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Figure 8: Generation ofthe optimalprofile for the conditional construct in figure 2. (a) initial profile
(b) optimal profile.

It is not feasible to obtain the closed form solutions for ij because the maxfunction is non-linear
and discontinuous. Instead, a numerical algorithm is developed.

1. Initially, take the maximum finish time of both branch schedules for each processor according
to Lee's method [13].

2. Define a,- = max[0,max,(i,j -ij),0)). Initially, all a,- = 0. The variable a,- represents the
excessive cost per processor over the expected cost when branch i is selected at run time.
We define the bottleneck processors of branch i as the processors {j} that satisfy the relation
tij —ij = a*. For all branches {»}, repeat the next step.

3. Choose the set of bottleneck processors, 0,-, of branch i only. If we decrease ij by 6 for all
j € 6,-, the variation of the expected cost becomes AC(N) = (-|6,| + Tpt)6. Increase 6 until
the set 0,- needs to be updated. Update 0* and repeat step 3.

Now, we consider the example shown in figure 2. Suppose p\ —0.3 and p2 = 0.7. The initial
profile in our algorithm is same as Lee's profile as shown in figure 8 (a), which happens to be same
as Loeffler's profile in this specific example. The optimal profile determined by our algorithm is
displayed in figure 8 (b).

We generalized the proposed algorithm to the M-way branch construct by case construct. To
realize an M-way branch, we prefer to using case construct to using a nested if-then-else constructs.
Generalization of the proposed algorithm and proof of optimality is beyond the scope of this paper.
For the detailed discussion, refer to [21]. For a given number of assigned processors, the proposed
algorithm determines the optimal profile. To obtain the optimal number of assigned processors, we
compute the total expected cost for each number and choose the minimum.

6 Preliminary Experiments

The proposed technique to schedule data-dependent actors has been implemented in Ptolemy,
which is a heterogeneous simulation and prototyping environment being developed in U.C.Berkeley,
U.S.A. [18]. One of the keyobjectivesof Ptolemyis to allow many different computational models to
coexist in the same system. A domain is a set of blocks that obey a common computational model.
An example of mixed domain system is shown in figure 9. The synchronous dataflow (SDF) domain
contains all data-independent actors and performs compile-time scheduling. Two branches of the
conditional constructs are represented as SDF subsystems, so their local schedules are generated by
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Figure 9: An exampleof mixed domain system. The topmost level of the system is a SDF domain.
A dynamic construct(if-then-else) is in the DDF domain, which in turn contains twosubsystems in
the SDF domain for its branches.

a static scheduler. Using the local schedules of both branches, the dynamic dataflow(DDF) domain
executes the proposed algorithm to obtain the optimal profile of the conditional construct. The
topmost SDF domain system regards the DDF domain as a macro actor with the assumed profile
when it performs the global static scheduling.

We apply the proposed scheduling technique to several synthetic examples as preliminary experi
ments. These experiments do not serve as a full test or proof of generality of the technique. However,
they verify that the proposed technique can make better scheduling decisions than other simple but
ad-hoc decisions on dynamic constructs in many applications. The target architecture is assumed
to be a shared bus architecture with 4 processors, in which communication can be overlapped with
computation.

To test the effectiveness of the proposed technique, we compare it with the following scheduling
alternatives for the dynamic constructs.

Method 1. Assign all processors to each dynamic construct

Method 2. Assign only one processor to each dynamic construct

Method 3. Apply a fully dynamic scheduling ignoring all overhead

Method 4. Apply a fully static scheduling

Method 1 corresponds to the previous research on quasi-static scheduling technique made by Lee
[13] and by Loeffler et. al. [16] for data dependent iterations. Method 2 approximately models the
situation when we implement each dynamic construct as a single big atomic actor. To simulate the
third model, we list all possible outcomes, each of which can be represented as a data-independent
macro actor. With each possibleoutcome, wereplacethe dynamicconstruct with a data-independent
macro actor and perform fully-static scheduling. The schedulingresult from Method 3 is non-realistic
since it ignores all the overhead of the fully dynamic scheduling strategy. Nonetheless, it will give
a yardstick to measure the relative performance of other scheduling decisions. By modifying the
dataflow graphs, we may use fully static scheduling in Method 4. For a conditional construct, we
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Figure 10: An example with a For construct at the top level. The subsystems associated with the
For construct are also displayed. The number inside an actor represents the execution length of the
actor.

may evaluate both branches and select one by a multiplexor actor. For a data-dependent iteration
construct, we always perform the worst case number of iterations. For comparison, we use the
average makespan of the program as the performance measure.

As an example, consider a For construct of data-dependent iteration as shown in figure 10.
The number inside each actor represents the execution length. To increase the parallelism, we
pipelined the graph at the beginning of the For construct. The scheduling decisions to be made
for the For construct are how many processors to be assigned to the iteration body and how many
iteration cycles to be scheduled explicitly. We assume that the number of iteration cycles is uniformly
distributed between 1 and 7. To determine the optimal number of assigned processors, we compare
the expected total cost as shown in table 1. Since the iteration body can utilize two processors
effectively, the expected total cost of the first two columns are very close. However, the schedule
determines that assigning one processor is slightly better. Rather than parallelizing the iteration
body, the scheduler automatically parallelizes the iteration cycles. If we change the parameters,
we may want to parallelize the iteration body first and the iteration cycles next. The proposed
technique considers the tradeoffs of parallelizing inner loops or parallelizing outer loops in a nested
loop construct, which has been the main problem of parallelizing compilers for sequential programs.
The resulting Gantt chart for this example is shown in figure 11.

Table 1: The expected total cost of the For construct as a function of the number of assigned
processors

Number of assigned processors 1 2 3 4

Expected total cost 129.9 135.9 177.9 N/A

If the number of iteration cycles at run time is less than or equal to 3, the makespan of the exam
ple is same as the schedule period 66. If it is greater than 3, the makespan will increase. Therefore,
the average makespan of the example becomes 79.9. The average makespan from other scheduling
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Figure 11: AGantt chart disply ofthescheduling result over 4 processors from the proposed schedul
ing technique for the example in figure 10. The profile of the For construct is identified.

decisions are compared in table 2. The proposed technique outperforms other realistic methods and
achieves 85% of the ideal makespan by Method 3. In this example, assigning 4 processors to the
iteration body (Method 1) worsens the performance since it fails to exploit the intercycle paral
lelism. Confining the dynamic construct in a single actor (Method 2) gives the worst performance
as expected since it fails to exploit both intercycle parallelism and the parallelism of the iteration
body. Since the range of the number of iteration cycles is not big, assuming the worst case iteration
(Method 4) is not bad.

Table 2: Performance comparison among several scheduling decisions

Method Proposed 1 2 3 4

Average makespan 79.7 90.9 104.3 68.1 90

% of ideal 0.85 0.75 0.65 1.0 0.76

This example, however, reveals a shortcoming of the proposed technique. If we assign 2 proces
sors to the iteration body to exploit the parallelism of the iteration body as well as the intercycle
parallelism, the average makespan becomes 77.7, which is slightly better than the scheduling result
by the proposed technique. When we calculate the expected total cost to decide the optimal number
of processors to assign to the iteration body, we do not account for the global effect of the decision.
Since the difference of the expected total costs between the proposed technique and the best schedul
ing was not significant, as shown in table 1, this non-optimality of the proposed technique could be
anticipated. To improve the performance of the proposed technique, we can add a heuristic that if
the expected total cost is not significantly greater than the optimal one, we perform scheduling with
that assigned number and compare the performance with the proposed technique to choose the best
scheduling result.

The search for the assumed number of iteration cycles for the optimal profile is not faultless
either, since the proposed technique finds a local optimum. The proposed technique selects 3 as
the assumed number of iteration cycles. It is proved, however, that the best assumed number is
2 in this example even though the performance difference is negligible. Although the proposed
technique is not always optimal, it is certainly better than any of the other scheduling methods
demonstrated in table 2. Experiments with other dynamic constructs as well as nested constructs
have been performed to show the similar results that the proposed technique outperforms other
ad-hoc decisions. Refer to [21] for detailed discussion.
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7 Conclusion

Aslongas the data-dependentbehavioris not dominating in a dataflow program,the morescheduling
decisions are made at compile time the better, since we can reduce the hardware and software
overhead for scheduling at run time. For compile-time decision of task assignment and/or ordering,
weneed the static information, called profiles,of all actors. Most heuristics for compile-time decisions
assume the static information of all tasks, or use ad-hoc approximations. In this paper, we propose
a systematic method to decide on profiles for each dynamic construct. We define the compile-time
profile of a dynamic construct as an assumed local schedule of the body of the dynamic construct.
We define the cost of a dynamic construct and choose its compile-time profile in order to minimize
the expected cost. The cost of a dynamic construct is the sum of execution length of the construct
and the idle time on all processors at run-time due to the difference between the compile-time profile
and the actual run-time profile. We discussed in detail how to compute the profile of three kinds of
common dynamic constructs: conditionals, data-dependent iterations, and recursion.

To compute the expected cost, we require that the statistical distribution of the dynamic behav
ior, for example the distribution of the number of iteration cycles for a data-dependent iteration,
must be known or approximated at compile-time. For the particular examples we used for experi
ments, the performance does not degrade rapidly as the stochastic model deviates from the actual
program behavior, suggesting that a compilercan use fairly simple techniques to estimate the model.

We implemented the technique in Ptolemy as a part of a rapid prototyping environment. We
illustrated the effectiveness of the proposed technique with a synthetic example in this paper and
with many other examples in [21]. The results are only a preliminary indication of the potential
in practical applications, but they are very promising. While the proposed technique makes locally
optimal decisions for each dynamic construct, it is shown that the proposed technique is effective
when the amount of data dependency from a dynamic construct is small. But, we admittedly cannot
quantify at what level the technique breaks down.
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