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Abstract

Empirical recurrent relations, governing the structure of the devil's staircase in

the driven Chua's circuit are given, which reflect the self-similar structure in an

algebraic form. In particular, it turns out that the same formulas hold for both

winding and period numbers, but with different 'initial conditions'.

Some of the finer details such as period-doubling along with numerous coex

istence phenomena within staircases of mode-locked states have been revealed by

computing high-resolution bifurcation diagrams.

1. Introduction

One of the remarkable properties of nonlinear oscillators is their ability to lock onto
certain subharmonic frequency when driven by an external source of energy. Associated
with the phase-locking property is usually the appearance of staircases of phase-locked
states when the parameters are varied over certain range. The picturesque name devil's
staircase was coined by Mandelbrot [1977] to capture the intricate, often fractal, structure
of such staircases. The devil's staircase was observed earlier [Harmon, 1961] in models
of artificial neurons, although no laws describing its structure were formulated at that

time. Since then the phenomenon has been reported from a large number of discrete or
time-continuous, mostly one- or two-dimensional, forced dynamical systems. Attempts
to describe the staircase structure of phase-locked states in an algebraic form led to the



formulation of the period-adding law [Kaneko, 1983], and applications of Farey trees
[Cvitanovic, 1985].

The theory of mode-locked behavior is most developed for discrete 1-D mapssince they
are easier to investigate. Perhaps the most well-known example is the circle map [Jensen
ei a/., 1983, 1984; Ding k Hemmer, 1988]. Van der Pol's and the Duffing oscillators
are classic examples of two-dimensional, continuous-time dynamical systems exhibiting
a rich variety of dynamical behavior. The structure of bifurcations, frequency-lockings,
and devil's staircases in these systems is still an active research area [Parlitz & Lauter-

born, 1987; Rajasekar h Lakshmanan, 1988, 1992; Kaiser & Eichwald, 1991; Englisch k
Lauterborn, 1991; Mettin ei a/., 1993].

In circuit theory, the period-adding law and the devil's staircase have been observed in

several second-order driven circuits [Chua ei a/., 1986; Kennedy k Chua, 1986; Pei ei a/.,

1986; Luprano k Hasler, 1989; Kennedy ei a/., 1989]. Among higher-dimensional systems,
Chua's circuit has emerged as a paradigm for the generation of a multitude of dynamical

behaviors [Chua ei a/., 1993, Madan, 1993]. Its nonautouomous four-dimensional ver
sion has also been investigated [Murali k Lakshmanan, 1991, 1992, 1993a, 1993b]. The
appearance of the devil's staircase is reported in Murali k Lakshmanan [1992] but its
structure is not described in detail. Different mechanisms of transition to chaos, intermit-

tency, forced synchronization, and other phenomena in the nonautouomous Chua's circuit

are studied via two-parameter bifurcation diagrams in [Anishchenko ei a/.,1995].
Since Chua's circuit can be used to model the behavior of many other dynamical

systems, the phenomena occuring in the nonautouomous circuit can be expected to be

universal for a large class of dynamical systems. Therefore this contribution is devoted

to the investigation of the driven Chua's circuit with a three-dimensional state space of

variables.

2. Chua's Circuit as Excitable Dynamical System

Consider the circuit shown in Fig.la, driven by an external current source 7(2). We

will use a sinusoidal input of the form I(t) = A co$(wt) with amplitude A and angular
frequency w.

The state equations for Chua's circuit can be written in the dimensionless form as

follows [Madan, 1993]:



x = a(y -x- f(x)) + I(t)
y = x-y + z ) (1)
z = -fiy

where

f(x) = (1/2) [(s2 + s,)x + (..o - *,)(|* - B,\ - IB,!) + (s2 - s0){\x - B2\ - \B2\)\

is a three-segment piecewise-linear function obtained from that of Fig.lb through scaling,
where the slopes ?n0, m,, m2 are transformed into .s0, s,, s2, and 7(r) = A cos(wt).
The breakpoints B\ = —1 and 7?2 = 0.0234168 as well as the paramater values a = 10,
0 = 0.3014987, a, = 0.078573, .s0 = -1.25719, .s2 = 55.78573 will be fixed throughout the
paper.

With zero excitation force 7 = 0, the system is bistable with two stable equilibria
P+, P~, while the origin is a saddle equilibrium point. The above parameter values are
chosen so that a small external force 7 (e.g., for A = —0.06 and w = 0) can trigger the
circuit into a stable oscillatory regime. It is apparent from Fig.2 that the cyclical regime
is a highly relaxational one.1 Also due to such character of oscillations, it was possible
to write a simple computer routine to count and evaluate patterns in the local minima of
the waveforms.

The relaxational property is a consequence of the strong asymmetry of the piecewise-
linear function /, and has been successfully employed for the generation of triggered waves
and spiral waves [Perez-Munuzuri ei a/., 1993] in arrays of Chua's circuits. Many other
interesting dynamical behaviors can be expected to occur in such arrays . However, as

mentioned elsewhere [Anishchenko ei a/.], before embarking on a detailed study of arrays,
it is highly desirable to perform a thorough analysis of the single component cell under
the influence of an external excitation.

3. Description of the Staircase Tree

As early as in 1927, the phenomenon of frequency entrainment was observed by van der
Pol and van der Mark [1927] in experiments with a neon bulb RC relaxation oscillator.

When such a phenomenon occurs, steps of mode-locked states appear, which often form

'There is also a small stable limit cycle encircling the point, P~ = (-1.238 ,0 ,1.238). However, we
will be concerned with the large stable limit cycle only.



sequences, or staircases, over certain parameter ranges. Let us recall some of the relevant
definitions before describing such structures.

Given a frequency fs of forcing, and the system's response frequency ft, the corre
sponding winding number will be W = /s//rf. Restated in terms of periods, W = Td/Ts
whereT5, 7^ are the periods associated with /s, fd respectively.2 Note that W is in general
a fraction. However, for subharmonic responses whose period Td is an integer multiple of
the input signal period Ts, the winding number will be an integer. For the period number

we will take the number of local minima, per least period, in the waveform of one of the

state variables (x or y) chosen for this study. In general, another state variable may give

a different period number. Note that the period number is always an integer. For the

parameter values from Section 2, the system (1) can exhibit a variety of subharmonics as

the amplitude and frequency are varied. The winding and period numbers corresponding

to the chosen parameter values are therefore integers, and points in the A —w parameter

plane having the same winding and period numbers form connected regions, called AmoVd

tongues, which in turn group together to form a hierarchy of staircase levels, or staircase

tree, which we describe as follows (Fig.3). Let the amplitude A > 0.07 be constant. Then

there is a sequence of intervals (or steps) of frequencies w in which the winding and period
numbers take on constant values. We first consider only winding numbers for simplicity,

the description for period numbers being similar. The sequence of steps with winding

numbers (To,^,^, •••) = (1,2,3,...) will be called a level-I staircase. Shown in Fig.3
are two steps from level-I staircase, namely those labeled jj^ and tttj. Between any two
successive level-I steps p < q there are two staircases of steps whose winding numbers are

governed by the laws

q —> q + p —> q + 2p —> ... g + up -> ... oo ... —> p (2)

and

P—*P + </—>p + 2<7—> ...p + nq—*...oo...—*q (3)

2This is how winding numbersare defined, e.g., in Rajasekar & Lakshmanan [1988]. Different authors
use different names for this quantity. The above frequency ratio is sometimes called normalized period
[Chua ei ai, 1986; Luprano & Hasler, 1989]. At other times, rotation number is taken to be the ratio
of the number of periods of the driving signal and the number of output signal pulses, per system cycle
[Kennedy ei ai, 1989], while the winding number in Murali & Lakshmanan [1992] is the inverse of the
rotation number. The iorsion number [Uezu & Aizawa, 1982; Parlitz & Lauterborn, 1985] is another
quantity, sometimes also called (generalized) winding number.



It is a matter of convention which of the two staircases will be called a next-level

staircase between p and q. For a level-II staircase we will choose the one described by (2),

whereas (3) will be chosen for level-Ill stairs. In our particular situation (Fig.3) p = 1,
q= 2, and ^4, ^, jjrv ... is the level-II staircase, whereas ^, |4|, |4^, ... is the level-Ill
staircase between p and q.

Higher levels are defined similarly, with p, q being the successive steps from the pre

ceding level. With these conventions, every level-/ step (/ = 1,2,...) is the first step for
a level-(/ +1) staircase, and each staircase of level / + 1 ascends from a higher step of
level / toward a lower step of level /. A similar tree structure can be defined for staircases

of period numbers, starting with sequence (710,T1,T2,...) = (1,1,1,...) for the level-I
staircase; see Fig.3. By applying the above construction to different values of amplitude
we obtain an "unfolded" staircase structure for the A—w parameter space. Figs.4,5 show
the basic, macroscopic structure of Arnol'd tongues for the steps of levels I and II of the
staircase tree. In contrast to the phenomena observed in Chua et al. [1986], we have
not observed chaotic behavior. Note that the separations of basic steps of level I are
approximately integer multiples of the basic angular frequency 3 w0 « 0.37 which is the
frequency of the response obtained by driving the circuit with a constant signal when the
parameter A & —1.

4. The Period-adding Law

Staircase trees similar to that described in the preceding section have been observed
in many physical systems. The order of steps and their size is usually subject to a
definite law. Kaneko [1983] formulated a period-adding law in his work on one-dimensional
maps. Experimental observations in a second-order circuit [Chua ei a/.,1986] revealed the
following period-adding law for winding numbers:

<7 —> <7 + p —• <7 -f 2p —>...</ -f rip —>... chaos... —> p (4)

The interpretation is that by changing the forcing frequency monotonically over a
certain range, between any two successive phase-locked states with winding numbers p, q
at the same staircase level 4, one can find an infinity of phase-locked states of ascending
order, starting from qand leading to a short interval ofchaos, before eventually dropping

3This general property was observed in many other driven oscillators.
4For a more detailed description oflevels, refer to the preceding section.



to phase-locked state p. By using numerical simulations on the same circuit, the above

law was later confirmed and extended [Luprano k Hasler, 1989] to include also period
numbers, and formulated in terms of Farey sums in the following way: Let a subharmonic
response be characterized by its winding (w) and period (p) numbers. Suppose w/p <
W/P are two successive subharmonics at level k. Then the double staircase of (k 4- l)-st
level subharmonics is

w w + W

p p-rP

w + 2W

P+ 2P ""
w -f nW , W

. > ... chaos —» —
p 4- nP P

— <— chaos «— ..
P

nw + W

np+ P
2u> 4- W w + W W

" 2p4-P p4-P *~ P

(5)

(6)

We have numerically confirmed the validity of this law (except for the transition to

chaos) also in Chua's circuit and will provide a more detailed description of the corre

sponding subharmonic sequences, based on two-parameter bifurcation diagrams.

Let W(S\,..., Si) denote the winding number of the step which is accessed by succes
sively taking 5« steps at level i of the tree (i = 1,2,..., /). Since (Si,..., 5/, 1) corresponds

to the same location in the tree as (5i,..., 5j), each step at level / is associated with a
unique sequence (£'i,..., Si) where 5, > 1 (i = 2,3,...). For example, the encircled step

in Fig.3 corresponds to step sequence (Si, S2,•%, 64, .9s, Se) = (2,2,4,3,4,5).
It follows that the global hierarchy of winding numbers can be described by the fol

lowing recurrent relation:

W(S1) = Si V5i > 1

W(Su...,Si) = W(.9„...,5,_,) + (5/- l)W(Su...,S,-,-l) V/>2

For example, the step sequence (51,62, .S3, £4,55) = (2,4,3,4,3) yields the relation

M/(2,4,3,4,3) = 1^(2,4,3,4) 4- 2W(2,4,3,3) which corresponds to the step j^ being
generated from ^^ an<^ 3i%4> wnere ^ne winding number 102 = 40 4- 2 x 31; see Fig.3.

As observed from numerical simulations, to every step associated with the sequence

(6'i,..., Si) in the tree, there corresponds its period number, denoted P(6'i,..., 5/), ac

cording to the same recurrent equation ( but with different 'initial condition'):

P(Si) = 1 V5, > 1



P(Su...,Si) = P(51,...,5/_1)4-(5/-l)P(51,...,5/_1-l) V/> 2

Similarly as above, the reader can check this formula with Fig.3. The condition P(6'i) =
1 means that the structure is the same for period numbers in all branches. Another

interpretation is that the staircase structure for period numbers lags behind that for
winding numbers by one level.

Some explicit formulas for low-level staircases are ( we write Wi for W(5i,.. .,5/),
similarly P/):

W2 = SiS2-S2-r\

Pi = 52

W3 = SiS2S:i-SiS-3-S2S3-Si+2S3+\

P3 = S2S3-S3-r\,

etc.

Interesting relations between period and torsion numbers [Uezu k Aizawa, 1982;
Parlitz k Lauterborn, 1985] have been found in period-doubling cascades of some two-
dimensional oscillators [Parlitz k Lauterborn, 1987; Kurz k Lauterborn, 1988]. Here we
give the relationship between winding and period numbers in the above period-adding
scenario.

Recall from Fig.4b that Arnol'd tongues, corresponding to level II, form groups with
period and winding numbers being related through the equality W = GP 4-1 where G is
the group (serial) number counted from the left. The group number G can be formally
defined through equality G = W- 1 where W is the winding number of the first step in
the level-II staircase. The period number of this step is always 1.

The general relationship between Wi and P/, at level /, is given by the equality

Wt = (Si - \)Pi + Ri

where Ri = R(Si,..., 5/) (/ = 1,2,... ) is a sequence defined by

Pi = 1, R2 = 1,

P(5i,...,5/) = P(5i,...,5/_i)4-(5i-l)P(51,...,5/_i-l) V/> 3

This is a direct consequence ofthe above recurrent relations for Wt and F\. (In particular.



tf (£/) = (2,2,2,...), we obtain Wt - P, = Fi where F{ is the /th Fibonacci number —in
this case Wt = F,+2, P, = F,+i, / = 1,2,...).
The first few formulas for the relationships between winding and period numbers are
therefore

W2 = (Si- 1)/U1

W3 = (5,-1)^3 + 53

W4 = (5i-l)P4 + 5364-64 + 1

...etc.5 We have observed and verified the validity of the above relations in the staircases

up to level VII (Figs.6,7,8).

One can see from the definitions of Wi, P/, and Ri that the three structures are all based

on the same recurrent formula and the only difference is in the initial conditions. Each of

the structures is self-similar in that after deleting a finite number of levels we are still left

with an infinite structure governed by the same recurrent relations with different initial

conditions. The self-similarity translates into the familiar devil's staircase by plotting

the ratio W/P versus w/wo where wo is the natural angular frequency of the circuit at

negative constant forcing. By looking at smaller steps in Figs.9,10 we are actually looking

at higher-level staicases of the staircase tree.

5. Coexistence of Attractors, Hysteresis, and Period-doubling
Phenomenon

It is a well-known fact that Arnol'd tongues in driven oscillators can overlap for certain

ranges of parameters, thus indicating the coexistence of attractors. The situation is no

different in our particular case, when hysteresis (jumps between coexisting attractors)

can sometimes be observed. We have seen in Section 3 (Fig.4) that Arnol'd tongues form
groups, each representing a branch in the staircase tree for period numbers. The levels

we could observe numerically in different groups can be summarized as follows:

In group 0 : levels I and II

In groups 1,2,3,4 : levels I,II, and IV

In groups 5 and 6 : levels I through VII

One can see in Fig.ll that with increasing frequency high-period solutions become

'Note that the relations do not depend on how far we go along level-II staircases.



predominant, which is why higher-level staircases are more readily observable in higher-
numbered Arnol'd tongue groups. The coexistence phenomena may be another reason

why higher-level staircases are harder to detect in low-numbered groups. Numerous co
existences have been observed, for example, in group 1 where pairs of attractors, e.g.,
period-1 and period-2, or period-2 and period-3, coexist. Similarly, in group 4, pairs like

period-2 and period-5, period-3 and period-7, etc., could be detected. Using the notation
of Fig.5, one can conjecture on the coexistences [U/(7i 4-1)/»] + (H/(w +2)/(» + 1)] in
group 1, and [IV/(4n 4- l)/n] + [IV/(4(2n 4- l))/(2» + 1)] in group 4, for all n. This
conjecture was verified for all n < 5. The corresponding initial conditions are listed in
Table 1; see also Fig. 12.

While the staircases in groups 5 and 6 seem to obey the recurrent formulas of Section
4, a different scenario occurs in groups 2 and 3 in addition to the staircase levels listed
above. For instance, the following sequences were observed in group 2:

3/1 -> 6/2 -• 14/5 -» 22/8 -» 30/11 -> ... oo -> 8/3

between steps 3/1 and 8/3 of level-II staircase, and two stairs

6/2 -> 20/7-> 34/12-> 48/17-*...oo-> 14/5,

14/5 -+ 20/7-» 26/9-> 32/11->... oo-> 6/2

between steps 14/5 and 6/2 of the preceding sequence. A traditional 1-parameter repre
sentation is shown in Fig.13. In some cases several members ofperiod-doubling sequences
can be observed, for example,

4/1 -> 8/2 -> 16/4 -> 32/8

in group 3, between steps 4/1 and 7/2. Such sequences are very short 6 and have been
observed for several steps in different groups. These results suggest that the microscopic
arrangement of Arnol'd tongues can be very complicated.

6Small step-sizes, e.g., 10 4or less, and long simulation times (> 2000 time units) were used to locate
the periodic orhits via the forward Euler integration routine.



5. Conclusions and Future Problems

The hierarchy of the staircase structure of Arnol'd tongues in sinusoidally driven Chua's
circuit has been explored numerically and described in terms of recurrent relations. For

both winding and period numbers, the staircase trees were found to grow according to
the same period-adding law, by starting from different initial conditions.

In view of the generality of vector fields generated by Chua's system, the period-adding

law and the relations found between the winding and period numbers can be expected
to be universal. In Jensen ei al. [1983] and Parlitz k Lauterborn [1987] the authors
investigate the completeness and fractal dimension of the devil's staircase in the circle

map and van der Pol's oscillator. Similar questions about the fractal dimension of the

devil's staircase in Chua's circuit should be pursued. Another direction is the exploration

of three- and more-parameter bifurcation structures, analogously to Mettin ei al. [1993].

Because of the highly relaxational character of the Chua system with the parameter

values we used, it is possible to use Chua's circuit as an elementary cell in CNN arrays of

coupled cells to generate different wave propagation phenomena. Preliminary experiments

suggest that if the coupling is strong enough, the staircase structure carries over to two-

dimensional lattices. However, if the diffusion coefficient is small, the phenomena seem to

be more complex, especially when the diffusion coefficient approaches the values at which

wave propagation failure occurs. This and other questions related to a large number of

different types of bifurcation phenomena which have not been discussed here will be the

subject of future research.
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Figure captions

Fig.l. (a) Chua's circuit driven by a sinusoidal current source I(t) = A cos(wt). (b)
Voltage-vs-current characteristic of the nonlinear resistor.

Fig.2. Typical waveform for variable x, corresponding to a period number-1 and winding
number-2 solution (green), along with the excitation signal (cyan).

Fig.3. Schematic representation of part of the staircase tree showing branches of increasing

levels denoted by Roman numbers. The two numbers (W/P) indicate the corresponding

winding and period numbers. The higher-level staircases are entirely between two succes

sive steps of lower-level staircases; the overlap is only used to avoid clutter.

Fig.4. (a) Arnol'd tongues from staircases of level I and II. The period numbers are color-
coded as follows: level I: red (period-1); level II: green (period-2), magenta (period-3),

yellow (period-4), blue (period-5), cyan (period-6); higher-period solutions are coded as
black. Arnol'd tongues between red (period-1) and green (period-2) correspond to level-

Ill, and higher, staircases, (b) Groups 0 through 5 (red through yellow) of tongues for

level-II staircases. In each group, at level II, the winding and period numbers are related

through the equality W = GP + 1, where G is the (serial) group number counted from

the left; for instance W = 3P + 1 in magenta group.

Fig.5. Three-dimensional view of level-II staircase in group 1. In this case, W = /'+1 = 3

(green step), W = P + 1 = 4 (magenta), W = P + 1 = 6 (blue), etc.

Fig.6. Arnol'd tongues in groups 4 through 8. The color scheme for period numbers is

the same as in Fig.4a.

Fig.7. Magnification of a subregion from Fig.6. Levels I through V are coded as red, green,

blue, magenta, and white, respectively. The sequences of winding and period numbers for

individual tongues are the following (from left): 7/1 (level I, red); 13/2 (level II, green);

20/3, 27/4, 34/5, ..., 69/10 (level III, blue); 137/21, 124/19, 111/17, ..., 33/5, 47/7, 61/9,

75/11 (level IV, magenta); 131/20, 105/16, 79/12, 53/8, 73/11, 93/14, 74/11 (level V,
white).

Fig.8. Cross-section from Fig.7 at amplitude A = 1.048, showing parts of staircase levels

III through VII. The correspondence of winding/period number sequences for individual

levels is as follows (from left): 20/3 (level III, blue); 33/5 (level IV, magenta); 53/8, 73/11,
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93/14, 113/17, 193/29 (level V, red); 185/28, 152/23, 119/18, 86/13, 179/27, 126/19,
239/36, 166/25 (level VI, green); 271/41, 291/44, 225/34, 199/30 (level VII, white).

Fig.9. Three-dimensional view of the devil's staircase corresponding to Fig.6. The ratio
of winding and period numbers (W/P) is plotted as the third coordinate.

Fig.10. Devil's staircase at amplitude A = 1.

Fig.l 1. Structure of Arnol'd tongues for higher frequencies.

Fig.12. Waveforms illustrating coexistence of attractors. The excitation signal / is drawn
in cyan, (a) Period-5 waveform of the x variable (green) for the parameter values from
Table 1. (b) Period-6 waveform of the x variable at the same parameter values , started

from a different initial condition.

Fig.13. Period-2 step gives rise to staircases between steps 3/1 and 8/3.
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Table caption

Table 1. Initial conditions and parameter values for coexistence phenomena. Small step-
size (5 x 10"5 or less) and long simulation times ( 2000 time units) should be used to
obtain the periodic solutions via the forward Euler method.
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! A w initial conditions (x, y, z) W/P
0.2400005 0.45 0.024 0.0 -0.023 2/1 1
0.2400005 0.45 0.02353 0.02082 -0.02286 3/2
0.80852 0.45 0.024 0.0 -0.023 3/2
0.80852 0.45 -3.28727 -2.12605 1.144012 4/3
1.249398181818 0.45 0.024 0.0 -0.023 4/3
1.249398181818 0.45 -3.28727 -2.12605 1.144012 5/4
1.5222 0.45 0.024 0.0 -0.023 5/4
1.5222 0.45 -3.28727 -2.12605 1.144012 6/5
1.6960961 0.45 0.024 0.0 -0.023 6/5
1.6960961 0.45 -3.28727 -2.12605 1.144012 7/6
1.0 1.69109559020408 0.035208 0.755609 0.415944 5/1
1.0 1.69109559020408 0.024 0.0 -0.023 14/3
1.50290273 1.7 -3.28727 -2.12605 1.144012 9/2
1.50290273 1.7 0.024 0.0 -0.023 22/5
1.71402684563758 1.7 -3.28727 -2.12605 1.144012 13/3
1.71402684563758 1.7 0.024 0.0 -0.023 30/7
1.8302928 1.7 0.048188 1.271739 0.8817774 17/4
1.8302928 1.7 . 0.024 0.0 -0.023 38/9
1.902296 1.7 0.024 0.0 -0.023 21/5
1.902296 1.7 -3.28727 -2.12605 1.144012 46/11

TABLE 1
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