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Chapter 1 Introduction

1.1 Motivation

The goal of this project is to implement the experimental infrastructure for a flexible

supervisory controlled sequence within a photolithographic workcell. We intend to create a

hardware demonstration of distributed run-to-run control across the photolithographic steps

required to define a polysilicon gate. One important objective of this novel implementation is to

realize the idea of a "global" supervisory controUer which oversees the operation of individual

controllers by means ofdynamic modification of the targets the individual controllers must follow.

In aVLSI manufacturing environment, there is ahigh demand for reliable process control.

To obtain bettercontrol for individual process steps, various control systems(feedback control and

feed-forward control) have been developed. However, most control systems are only "local"

controllers designed to regulate only one piece of equipment. In order to develop a global,

supervisory control system, which can coordinate and integrate the control for a workcell

consisting of multiple steps and many pieces of equipment, the use of dynamic-specifications

offers a promising approach.

Traditionally, the specifications ofanyindividual process stepare considered rigidreferences

and in most cases remain fixed. The concept of dynamic specifications allows intermediate

specifications to change inresponse toa final specification change orprocess drift. The spec change

orprocess driftofanindividual stepcanbe propagated "upstream" to allthe preceding stepswhose

specifications are changed accordingly. Since thespecifications are themajor references by which

local controllers function, a global control system is thus built. In thisway, we add flexibility and

capability to the control system.

In order to build an effective and reliable hardware infrastructure for this demonstration,

we developed new models for the three pieces of equipment used in the photolithographic



sequence. These models bear more physical meaning than earlier empirical models. First, the

"SAMPLE" process simulator [1] was used to derive the equipment model for the photoresist

developer. Second, a new parameter, photoactive compound concentration (PAC), is used in the

place of photoresist reflectance, since PAC is more physically meaningful than reflectance.

A new measuring systemcapable of computing thePAC hasbeendeveloped at the BCAM.

This system includes an in-situ photoresist measuring instrument (PR Inspector) and supporting

software developed at BCAM. The PR Inspector, which contains an in-situ spectrometer, can

obtain an in-situ spectrograph by reflecting lighton the coated wafersurface for a few seconds.

The photolithographic workcellconsists ofthreepiecesofequipment: The wafer track (or

the photoresist coater), the stepper, and the photoresist developer. Thefinal output of the entire

workcell is the critical dimension (CD) of thedeveloped resist pattern. This CDis also the output

of the photoresist developer. The intermediate output parameters are the outputs of thewafertrack

and of the stepper. These are the photoresist thickness, the PAC-before-exposure and the PAC-

after-exposure. Foreach measured output parameter a specification (including an absolute target

and an acceptable range) is assigned.

For the experiments that will be described in this document, the BCAM control and

monitoring environment is used for local control within this infrastructure. The programs usedto

propagate the specifications, aswell astheconceptandprocedures ofdynamic specifications, were

developed earlier at the BCAM research group [2], For this project, the programs were partially

modified and updatedto match the new equipmentmodels andparameters.

A series of experiments was performed to demonstrate the superiority of a supervisory

control system using dynamic specifications. These experiments demonstrate that the dynamic-

specification approach is a promising method for improving the capability and flexibility of a

controlled sequence.



1.2 Thesis Organization

The subject of thisthesis is supervisory control for the photolithographic sequence. The

emphasis is on the experimental demonstration of process control by different methods. A

description on howto handle dynamic specifications and some simulation results is provided in

Chapter 2. Chapter 3 discusses thehardware and software infrastructure of this project, including

brief descriptions of the photolithographic workcell, the measuring system, and the alarm and

control system in the BCAM environment. Detailed experimental results and discussion are

presented in Chapters 4 and 5. In Chapter 6 we present our conclusions and we discuss potential

future work.



Chapter2 Multistep Run-to-Run Control Using

Dynamic Specifications

2.1 Principles and Procedures of Dynamic Specifications

The general concept and computerimplementation of a dynamic specification scheme were

firstdescribed in [2].The major advantages of thisnovelapproach are briefly described as follows:

First, the independent local controllers are "linked" and integrated as a whole by specification

propagation, thus a "global" supervisory control system is realized. Second, the overall control

system can respond more effectively to process fluctuation as well as to specification change.

Finally, it can provide the basis for synthesizing a new process, by determining the specifications

and the recipe of all the steps within a new process sequence more efficiently.

It is noteworthy that the inputs to the equipment model of a certain processing step can be

categorized into two types. The first type of inputs are controllable inputs which are easily

modified by adjusting a machine parameter (e.g., thedevelop timeon the developer). The second

type of inputs are not controllable on that machine because they are the measured outputs from the

preceding machine, thus called upstream inputs. For example, the thickness and after-exposure-

PAC (PACxp) are the outputs from the stepper as well as the upstream inputs to the developer.

Figure 2.1 gives a high level view of a photolithographic workcell.Those parameters in rectangular

boxes (spin speed, baking time, exposure dose....etc.) are the controllable inputs while the

parameters inside ellipses (T, PAC, and PACxp) are upstream inputs.
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Temperature
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Spin Speed

coater

Exposure
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stepper

Develop
Time

' '

'T>H( i:
PACx^ KB

developer

Figure 2.1 Two Types of Inputs Within A Photolithographic Workcell

CD



The procedure that handles the dynamic specifications is described next. For simplicity, we

discuss only twoconsecutive processes, where step Bcomes after stepA.Theprocedure is used to

propagate thespecifications of step B upstream to thespecifications of step A.Thisapproach can

berepeated andgeneralized forany number ofprocessing steps. Thesequence of spec generation

is described next.

Spec Propagation Direction
<

Process Flow Direction

Figure2.2 The Relation Between StepA and StepB

2.1.1 SpecificationPropagation UsingMonte CarloSimulation

Inorderto generate thespecifications at theinput ofprocess stepB, wefirst selectthe maximal

range of allupstream inputs of step B.The range is setbytheuserto reflect machine and process

limitations. Then, Monte Carlo simulation is done to randomly generate uniformly distributed

points across the range of upstream inputs to step B. Each point represents a unique setof input

combinations of step B.Consequently, these points are fed into the equipment models ofstep Bto

compute thecorresponding points in theoutput space ofstepB.If step B only hasoneoutput, then

onesuch point represents oneoutput value. In thecase of multiple outputs, onepointstands for a

set ofoutput values.

2.1.2 Selection of Acceptable Input Points

Not allpoints in theinput setforB will lead tooutputs ofB thatmeet theirspecifications. This

is established by the use of a cost function, defined as follows:

(1) For multiple outputs whose specifications are independently defined, the total cost is the

sum of the costs of all outputs:



1 = 1

where n is the number of outputs.

(2) For multiple outputs with dependent specifications (i.e., the specification of oneoutput

depend on the values of otheroutputs), the costfunction is defined as:

Cost = £ £ *,,(( yryr- )•(. yj-yj*" ))
/=i/=l

Once the appropriate cost function is defined, only those points with cost values less than a

given number (thedefault value is 1.0) areconsidered to meet thespecification. Basedon this,we

choose thosepoints in theinputspace of B thatleadto output points thatmeettheirspecifications.

These points at the inputspace aretheacceptable inputs of stepB as wellas thedesired outputs of

step A.

2.1.3 Principal Component Analysis

Oncethe acceptability region hasbeenmapped, principal component analysis is doneon those

desired output points of step A in order to determine the specifications of step A. Principal

component analysis (PCA) is a multivariate technique used to transform a correlated multi

dimensional data set into fewer uncorrected variables. The purpose of using PCA here is to

simplify andanalyze the datato produce a setof specifications for multiple outputs of a machine.

The PCA method [3] is briefly described next for a two-dimensional case. This can be easily

generalized to n-dimensional problems. First, the covariance matrix S of the data set is calculated.

For the two-output case,S is a 2 x 2 matrix. Then,thecovariance matrixis diagonalized using sin

gular value decomposition1:

U'SU = L

whereU = [ uxl u2 ], Uj and u2are the eigenvectors of S.

1.Matrices aresymbolized with uppercasebold letters. Columnvectorsaresymbolized with lower casebold letters.



The direction of the principal component can be obtained by taking the elements of the eigen
vectors as the rotation angles of a principal component axis related to the original axis. For

example, Figure 2.3 shows 20data points in atwo-dimensional space, as well as the first derived

principal component direction (PCj) and the two angles (8nand 62i) between PC! and the two
original axes. It also shows the second principal component (PCy, which is orthogonal to PQ, as
well as the two angles (912 and 9^ between PC2 and the two original axes. The following relations
define the rotation:

cosQjj =ujj, cosQ2] =u2j, cosQj2 =uJ2, cosB22 =u22

whereuu, u2i, u12, u^ are the elementsof the matrixU.

Asshown inFigure 2.3, PCj explains the most variation inthe data set. PC2 is the direction

orthogonal to PCj. This can be generalized to more than two dimensions. In the original space the
data points are correlated, but inthe PCrPC2 space they are independent.

i

^J2
, PC

0/P2
(X2) \s**^1^\

•\

PC2

—•

CVP, (X,)

Figure 2.3Axis Rotation Based OnPrincipal Component Analysis

Looking now at the PCA results inthe context ofdefining specifications for step A, the point

where PCj and PC2 intersect isalso the target point with coordinates (Xj, x2); where Xj and x2 are

the average values of output 1(X,) and output 2 (X2), respectively. If we draw arectangular box

along the PCj and PC2 directions, centered at the target point (as the dashed-line box shown in



Figure 2.4), the box can be seen as the approximate boundary of a set of specifications. In the

rotated space defined by PC! and PC2, this is a setof independent specifications. From the view

point of Xi and X2 (the actual outputs of the equipment), it is aset ofdependent specifications.

Inaddition tothetarget and orientation of principal components, therange of thespecifications

must bedetermined. If thewidth of specifications along thePC2 direction isW (as shown inFigure

2.4) and the variance of the distance from acceptable points tothe PCi axis is c2, the two values
are related as:

since the varianceof a uniform distribution of width W is W2/12.

PCI

O/P 1(X1)

Figure2.4 Specifications derivedby Principal Component Analysis

In Figure 2.4, the distribution of acceptable points in PC! direction is much widerthanthatin

PC2 direction. Thismeans that theprocess is less sensitive tovariation along PCi compared toPC2.

In other words, a tighter specification is required along thePC2 direction. It is noteworthy that in

many other PCA applications PC! is more important since it explains more variation of the data



set. However, in theapplication of specification derivation, PC2 deserves more attention because

theprocess ismore "sensitive" to change along the PC2 direction.

Finally, note that before doing PCA, the X! and X2 (outputs ofstep A, also inputs tostep B)

values need to be normalized such that they carry equal weight inthe PCA. All X! and X2 values
needto be linearly scaledto be within therange -1 to 1.

2.1.4 Cost Function Derivation

After the specifications ofstep Aare derived, the next step is toderive a cost function for step

A which can be used by the controller of step A in order to center that process. The same cost

function will also be used to further propagate the specifications toequipment upstream ofstep A.

Usually the derived specifications of step A are dependent specifications and their cost function

looks like:

Cost =21 kij(( yryf"*" ) • (; yryj«*« ))
i=iy=l

Considering the two-dimensional case (n = 2), the cost function is also an equation of a tilted

ellipse exactly contained in the specification box (as shown in Figure 2.5). In the PCi~ PC2 space

the specifications are independent. Therefore, after coordinate transformation, the cost function

has the form:

C0St= 2 kHyj.yf***.)2
1=1

Thecoefficient lcfis chosen such thatif oneoutput is right on its spec limit, the contribution to

the cost value by this output alone will be 1. Therefore, each *,-' is calculated independently
simply by: (1) setting all other ^-'s to zero, (2) setting yf-ys ter#* tothe tolerance (distance from

thespec limit tothetarget, orW/2 inFigure 2.4), and (3) setting the cost equal to 1.Bycoordinate

transformation the k;j coefficients of the cost function of dependent specifications can be

calculated from the kt coefficients of the cost function of independent specifications.
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BoxofSpecs^ PCi

Cost = l

0/P,(Xi)

Figure 2.5Cost Function and the Specification Box

The overall procedure to handle dynamic specifications is summarized in Figure 2.6. This
procedure assumes nearly linear models in the vicinity ofthe derived specifications. As we will see
next, even when this assumption is not always met, the above procedure offers a decent
approximation tothe actual acceptability region ofaprocess.

a) Monte Carlo Simulation

t

'mwm

Xl

n&de h
ofthe step

Given spec
of the step

c)Principal Component Analysis

X,

%

b) Selection ofAcceptable
Input Points

Xi

«ojSo,

%

d) Generate the Cost Function

%

Figure 2.6 Procedure toHandle Dynamic Specifications
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2.2 Simulated Examples of Dynamic Specifications

Three pieces ofequipment, including aphotoresist coater, awafer stepper, and adeveloper

are used in the photolithographic sequence. In this section, simulation results of spec propagation

are presented. The simulation involved: (1) the spec propagation from the developer output (CD)

tothe wafer stepper outputs (PACxp and thickness1), and (2) the spec propagation from the wafer
stepperoutput to the photoresistcoateroutputs (Thickness and PAC).

Figure 2.7 shows the result of spec propagation from the developer output (CD) to the wafer

stepper outputs (thickness and PACxp). The acceptable points and the derived specifications

(within thedashed-line box)inthethickness-PACxp space are shown. Theequipment model of the

developer (CD model) is described in detail in Chapter 4.2. The inputs of the CDmodelinclude

thickness, PACxp, develop time, and exposure dose, butnoPAC. The CDtarget and tolerance was

1.72 +/- 0.045 Jim. The thickness input range was 11000 A - 14400 A (thus, on the normalized

thickness axis in Figure 2.7, -1.00 represents HOOOA, +1.00 stands for 14400A, 0.00 corresponds
to 12700A). The PACxp input range was 0.2 - 0.68. The develop time was fixed at 60 seconds. The
exposure dose was maintained at 163 mj/cm2.

Note that due to the highly nonlinear characteristics (a cosine term is included) of the CD

model, theacceptable region inFigure 2.7 shows some "holes". Also,evenwhen a point is within

the specification limits (inside the box in the thickness-PACxp space) of the stepper, the

corresponding output of the developer is not guaranteed to meet the CD specification. However,

this usually happens to points near to the edge of the spec box. Usually thecenter of theboxgives

thetargets and it can produce an output of thenextstep wellwithin the specifications. So, although

the PCA derived bounding box is a poor approximation of the acceptability region, the derived

specsstill effectively guidethe controller towards the centerof that region.

1. Thickness is notchanged by theprocess done onthewafer stepper since it is an output of thephotoresist
coater and an input tothewafer stepper. It is also seen asan output of thewafer stepper (directly trans
mitted from the input tothe output without any change) such that theoutput space of thewafer stepper
contains two variables.
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Pac
Scatter Plot for PCA Points

-1.50 -O50 0.00 0.50 1.00
Thickaeu

Figure 2.7 Acceptable Points and Derived Specifications in the Output Space ofthe Stepper

Assuminga Fixed Develop Time

As it is discussed next, this situation is greatly improved when one assumes avariable develop
time, as when the developer is continuously adjusted by arun-to-nin controller. Figure 2.8 shows
another simulation result which was run with the same conditions as that ofFigure 2.7 except that
the develop time was not fixed at 60 seconds, but allowed to vary between 40 to 80 seconds. It is
seen in Figure 2.8 that the "holes'* become less obvious than those in Figure 2.7. This means that

with the addition of feed-forward control (the develop time can be adjusted to produce abetter CD
value), the "box" approximation ofthe acceptability region ismore meaningful.
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Scatter Plot for PCA Points

•1.00 •0.50 0.00 0.50 1.00

Figure 2.8 Acceptable Points and Derived Specifications intheOutput Space of theStepper

with Variable Develop Time

Figure 2.9shows theresult of spec propagation from thewafer stepper outputs (thickness and

PACxp) to the photoresist coater outputs (thickness and PAC). The acceptable points and the

derived specifications (within the dashed-line box) in the thickness-PAC space are shown. The

equipment model of the wafer stepper (PACxp model) is described in detail in Chapter 4.2. The

PACxp target and tolerance was 0.44 +/- 0.02. Thethickness input range was 12000 A - 13400 A.

The PAC input range was 0.86 - 1.06. The exposure dose was fixed at 163 mj/cm2. For each

parameter whichis theoutput of onestep and input to thenext,thetarget of onestepis equal to the

centerof input searchrangeof the next step.
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Pac
Scatter Plot for PCA Points

gooa_potnu~
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Figure 2.9 Acceptable Points and Derived Specifications in the Output Space ofthe Photoresist

Coater with FixedExposure Dose

Figure 2.10 is the same as Figure 2.9 except that the exposure dose is not fixed. The exposure
dose is allowed to vary from 143 to 183 mj/cm2. As aresult, the acceptable region is enlarged.

In the next chapter we discuss the hardware and software infrastructure ofour supervisory
controlsystem for a photolithographic workcell.
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Figure 2.10 Acceptable Points and Derived Specifications in the Output Space ofthe Photoresist

Coater with Variable Exposure Dose
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Chapter 3 The Infrastructure ofthe Supervisory Control
System On The Photolithographic Workcell

In this chapter, we present the hardware and software infrastructure of the supervisory
control system applied on the photolithographic workcell. Descriptions on the photolithographic
workcell, the monitoring system, and the process alarm/control system are included.

3.1 An Overview ofThe Photolithographic Workcell
The photolithographic workcell consists ofthree pieces ofequipment. These three machines

and their input/ output parameters ofthe equipment models are shown in Figure 3.1.

Baking
Temperature

Baking
Time

Spin Speed

coater

Exposure
Dose

stepper

Porcess Flow Direction

Develop
Time

developer

Figure 3.1 Photolithographic Machines And Their Input/Output Parameters

CD

Those parameters in rectangle boxes (spin speed, baking time, exposure dose....etc.) are the

controllable inputs. T (Thickness), PAC (PhotoActive Compound concentration), and PACxp
(PAC after exposure) are not only the outputs from acertain step but also the upstream inputs to
the next step. The CD (Critical Dimension) is the final output of the workcell. The CD is the

measured width of the photoresist pattern after development (but before etching). The CD of the

polysilicon layer isvery important because iteventually determines the physical channel length of
the devices, a feature that dominates the overall performance of the IC.
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In most IC fabs the CD has been given lots of attention, but the measures taken for CD

control are limited, andrequire considerable judgement and experience to employ. Thesupervi

sory control system introduced here is intended to be more flexible and automated than traditional

methods, so that better capability ofCD can beobtained with less cost. This is accomplished by

the effective control ofindividual machines, as well asofthe workcell asa whole. The equipment

models andtheintermediate specifications (T, PAC, and PACxp) for local control are introduced.

Also, the dynamic specifications are used inorder tocreate a flexible supervisory control system.

The thickness and the PAC of photoresist are essential parameters in our photolithographic
control scheme. Therefore, some of their important physical properties are briefly introduced as
follows.

3.1.1 Some Physical Properties of the PAC and Thickness of Photoresist

The PAC (PhotoActive Compound Concentration, or inhibitor concentration) is a measure

ofthe degree ofexposure. For positive photoresist, the absorption oflight destroys the inhibitor so

that the PAC isdecreased. The relation between PAC (M) and the exposure light intensity isgiven
by the following equations [4]:

—/ (x, t) = -/ (xt t) [AM(x, t) + B]

jM(x,t) =-I(x,t)M(x,t)C

where / (x,t) is the light intensity at depth x from the surface and exposure time t. M(x,t) is the

PAC at depth x and exposure time t. The constants A3 and Cdepend onphotoresist material and
exposure wavelength.

Development of positive resist can be described as a surface-limited etching reaction and

the developing rate depends strongly on the PAC. F. H. Dill et. al. proposed an empirical
relationship between the rate ofdevelopment (R) and the PAC (M) based onexperimental results
[4]:

R = exp (EJ+E2-M +E3-M2)

where Elt E2, and E3 are fitting constants that change with different photoresist. E3 is usually
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negative. A typical relation between developing rate and PAC is shown in Figure 3.2. We can see

that the PAC (M) is a suitable parameter to include in the equipment models since it is a good

indicator ofexposure energy aswellasan important factor affecting theCD.

R A

100-

10--

1--

0.1

0.5 10 M(PAC)

Figure 3.2 An Approximate Curve ofThe Relation Between Developing Rate And M (PAC)

( Graph Based on a Figure From [4])

Photoresist is a semi-transparent thin film. In practical applications it is usually exposed

with a stack of underlying layers (e.g., polysilicon and oxide layers) and this makes things more

complex. Inside the photoresist, the interference between incident light and reflected light results

in a standing wave of the exposure hght intensity [5], as shown in Figure 3.3.

1.5-

Exposure
Light

Intensity 1.0—

0.5-

0.0
200 400

Depth IntoPhotoresist (nm)

Figure 3.3 Exposure Light Intensity Within a Photoresist Film on Bare Silicon at the Beginning

of Exposure (Graph Based on A Figure From [5])
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The thin film properties of photoresist help to explain the significant effect of thickness on

theCDand thewaythickness mustbe included in theCDmodel. Therefore, photoresist thickness

is averyimportant parameter in thecontrol of CDon aphotolithographic workcell.

3.2 The Measuring System

The goal of the new measuring system is to provide automated andreliable thickness and

PAC measurements in-situ. To accomplish this goal, anewmeasuring tool, thePR(PhotoResist)

Inspector, has been used. Also, a setof programs to compute PAC from measured data has been

developed atthe BCAM research group [6].

The PR (PhotoResist) Inspector [7] is an instrument used to obtain the thickness and other

important properties of athin-film substance, especially photoresist. It can make in-situ measure

ments during the normal production of IC wafers. It consists of three major parts: (l)the fiber

optics/lens probe module, (2)the inspector module, and (3) the data station.

The fiber optics/lens probe module includes a fiber optic cable and alens probe assembly.

The function of the fiber optic cable istotransmit incident Hght from the light source tothe wafer,

and reflected Hght from the wafer to the detector. It is protected by a stainless steel shield and

bifurcated to aUow Hght transmission in both directions. The lens probe isused to coUimate Hght

onto the sample and coUect reflected Hght. The inspector module contains a filtered 38,000 lux

quartz halogen Hluminator and a multi-channel spectrometer. The spectrometer, which includes a

512-element photodiode array, isused to receive the reflected Hght signals coUected by the fiber

optics/lens probe module, and transform these signals into reflected Hght intensity spectrographs.

The data station consists ofa486 computer system. In addition to storing and managing programs
and data of samples and setup conditions, the data station acquires data from the inspector module
to provide fast and accurate thickness computation.

The working principle is briefly described as foUows. A sample consisting of a thin film

and underlying material isiUuminated with white Hght. The Hght reflected from the top surface of

the film combines with the reflected Hght from the underside of the film to create interference

resulting in maxima and minima in the reflected Hght intensity spectrograph, from which the



20

thickness iscomputed bythe PR Inspector. PAC can also be derived from this spectrograph.

The PR Inspector does not provide the PAC measurement, but it creates spectrographs from

which PAC can becomputed. In the BCAM group, Sovarong Leang developed a setof programs

"hlllME" [6] that can compute PAC and thickness from the spectrograph. HITIME optimizes

the parameters (thickness, PAC, andindex ofrefraction) to fit a theoretical curve to the measured

curve. The optimization of thickness and Nais done in along wavelength range (about 500- 620

nm). The optimization of PACand Na is done in a short wavelength range (about 350 ~ 380 nm).

Na is the constant and dominant termin the empirical expression forindex of refraction:

n (index of refraction) =Na + NbA2
Shown in Figure3.4 is an example of reflected Hght spectrograph. Both the measured curve

and the optimized theoretical curve are shown.

Wafer 19150212

Figure3.4 A Spectrograph Measured By The PR Inspector andThe FittingCurve by HTITME

Thin film thickness is computed by the PR Inspector as:

Th=
ytnax X Ami;mm

4 (Xmax X nmax - Xmin X nmin)

where Xmax and Xmin are the wavelengths atwhichreflected Hght intensityis the local maximum

and minimum, respectively. Similarly, nmax and nmin represent the indices of refraction at which
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reflected Hght is themaximum and minimum, respectively. It is assumed that therefractive index

is afunction ofwavelength, and that itcan be approximately computed by the foUowing empirical
relation:

n = Na+ (Nb)/X2 + (Nc)/X4

whereA/la, Nb andNcare fitting constants.

This empirical fitting equation is aHttle different from that ofHITIME and the Nanospec, a

widely accepted thickness-measuring tool in the IC industry. On the Nanospec, n is approximated
by:

Tl=Na + NbA2

In order to match the thickness measured by the PR Inspector and the Nanospec, we
calibrated the PR Inspector to find suitable Na, Nb and Nc. The result is in Chapter 4.2. It is
shown that the PR Inspector can produce thickness values very close to the Nanospec across a
wide range of thickness.

33 The BCAM Control System

The BCAM (Berkeley Computer Aided Manufacturing) system [8] is apowerful and stiU
growing computer-integrated manufacturing environment developed at the BCAM research group
at the EECS department ofUC Berkeley. It includes and integrates many functions such as feed
back and feed-forward control, model-based SPC and simulation within aworkceU, regression
equipment model editing and update, recipe generation, malfunction alarm and control alarm

generation, process/equipment diagnosis, various plotting capabiHties, and interfaces to other

BCAM appHcations. The BCAM is written in C++ and features user-friendly Xwindow display.
Figure 3.5 (courtesy of Bart Bombay) depicts the BCAM environment
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Figure3.5 The BCAM Environment(courtesy ofBart J. Bombay)

The BCAM environment makes use of the Ingres database program which allows multiple

users to share recipes and models. The Ingres Hbrary functions are used to store and retrieve

equipment models and recipes in the database.

In this projectthe BCAM environmentis mainlyused to providecontrol/malfunction alarms

and local feedback control( including statistical tests, equipmentmodel update and editing, and

recipe generation and update ). The dynamic specification feature is not yet part of the BCAM

environment. Forthe examples described in this document, all the dynamic spec generation was
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done outside the BCAM environment.

Do not do

any control

Exit and call

the operator to
make decision

Feedback Control

(model update &

recipe generation]

Figure 3.6 The Decision-makingProcess of DoingFeedbackControlon the BCAM

Environment

If the process has drifted significantly (as determined by the control alarm system), the

equipment model needs to be updated. The model update algorithm performs statistical

regressions to determine the optimum correction to the model based on historical records. For

multiple outputs of a machine, the model update is done separately for each output since one

model only describes one output parameter. In order to give more weight to the latest measure

ment, a forgetting factor is assigned to earlier data. In addition, a"window size** canbe assigned,

determiningthe total number ofobservations to be included in the model update calculations.

The recipe generation function canbe usedto generate the input settings which can produce

a desired output as predicted by the equipment model. Usually the recipe update happens under
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three conditions: the target change, the model update (in feedback control) and compensations in

feed-forward control. Unlike the model update algorithm, the recipe generation algorithm does

notneed historical records. In the appHcation of feedback control, if the process has drifted and

thecontrol alarm is triggered, the equipment model is updated to reflect thecurrent condition of

the process. During feedback control, the recipe is updated to bring the output near the target

when the model isupdated. The recipe can beupdated due toatarget change atany time.

During feed-forward control, the output of one step isused to predict theoutput of thenext

step. If significant difference between themodel prediction and theoutput target of thenextstep is

detected, feed-forward control is triggered and the recipe of the next step is calculated by the

recipe generation algorithm. In this case, neither the target nor the model of the next step is

changed. However, the measured output of this step (also the upstream input to the next step) is

known such that the recipe (i.e., the controllable input settings) of the next stepcan be calculated

accordingly. Detailed algorithms of model update and recipe update are described in Bart J.

Bombay's work [8].

The malfunction and control alarm system has been developed and integrated into the

BCAM environment. A malfunction alarm is a model-based SPC scheme used to detect large,

abrupt shifts which may result from sudden abnormality of the process or the equipment. No

historical records are required to generate a malfunction alarm. For the equipment with only one

output (e.g., the CD of the developer), a model-based Shewhart chart is used to handle the

malfunction alarm. If the difference between the measured value and the model prediction is

larger than a certain number (usually 3) times sigma (the standard deviation of the process), a

malfunctionalarmis triggered. Fora machinewith multiplecorrelated outputs (like thickness and

PAC of the photoresist coater), the T-square statisticis defined as follows:

•* = " t xmeasure "xmodel-pred ) « ( xmeasure "xmodel-pred)

where S is the variance-covariance matrix and x is the vector including all outputs Xj*s. A

malfunction alarm is triggered when the T2 exceeds a certain value, defined at the appropriate

type I error of the T2 distribution.



25

A control alarm is designed to detect smaller, systematic shifts which indicate that the

process may be drifting out of control. A multivariate, model-based CUSUM (Cumulative-Sum)

chart is suitable for the control alarm since it accumulates and manifests small shifts. Unlike the

malfunction alarm, historical records are required inthecontrol alarm system. Inthesingle-output

case, a control alarm is triggered whenever either Sh[n] or Sl[n] exceedsa certain valueh. Sh[n]

and Sl[n] can be calculated as follows:

Sh [ initial ] = SI [ initial 7 = 0

Sh[n] =niax(OAxmeQSure-(xmodeUpred'¥b)^Sh[n-l])

Sl[n] = max(0.0, (xmodel.pred-b)-xmeasure +Sl[n-l])

where b is a number proportional to sigma (the standard deviation of the process). From the

definitions of Sh and SI we notice that they both are cumulative, so they must be reset-to-zero

after an alarm. Sh [n] increases when most measured data are significantly larger than the model

prediction until a control alarm is triggered. On the other hand, SI [n] detects consistently low

measured values.

For multiple-output equipment, thecontrol alarm requires notonly the historical records but

also the variance-covariance matrix and the standard deviation vector of the outputs. Only one

parameter Y[n] is computed from the measured data, historical records, variance-covariance

matrix and sigma (the standard deviation vector) of the multiple outputs. The algorithm is

complex andnot shown here. A control alarm is triggered ifY[n] >h, andh is selectedin orderto

achieve the proper ARL of this scheme [9].

During feedback control, the control actions (model update and recipe update) are enabled

by acontrol alarm. A malfunction alarm does not trigger feedback control. Rather, the process is

stopped and the operator is notified.

3.4 Summary of The Supervisory Control System
Given the photoUthographic workceU, the measuring system and the BCAM control/alarm

environment, theinfrastructure of the supervisory control system can be constructed. The logical,
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or conceptual connections are shown in Figure 3.7. The physical connections of machines are

presented in Figure 3.8. In Figure 3.8, the neural network stepper calibration belongs to another

project in the BCAM research group, thus it is not applied to this project. The SVG computer

Hnking the SVG coaterand the SVG developer is notemployed in this project, either. Within this

infrastructure, several experiments have been done to demonstrate dynamic specifications in

supervisory control. The experimental results arepresented next, in chapters 4 and5.

Spec Propagation

Product Flow

•

Figure 3.7 Logical Connections of the Supervisory Control System
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Chapter 4 Experimental Results and Discussion: Part I

4.1 Introduction

In order to demonstrate theappHcation of dynamic specifications in process synthesis and

process control, several experimentshavebeen designed andcarried out:

(1) Experiments to calibrate thePRInspector, thecore ofournew measuring system.

(2) Experiments to build equipment models of the photolithographic equipment.

(3) Historical runs of our baseline photolithographic process, in order to obtain the

process capability, trends,and distribution of all parameters of interest.

(4) Process controldemonstration basedon the comparison of three sets ofruns.The first

set used a baseline process without additional control. The second involved fixed-specification

runs controlled by local controllers. The third involveddynamic-specification based supervisory

control. The threeruns were done concurrendy over a period of 3 months.

The design of these experiments,experimental setup,as well as the resultsand discussion

are described in the following two chapters. Experiments (1), (2), and(3) are included in Chapter

Four. Experiments (4) and (5) aredescribed in Chapter Five.

4.2 Experiment #1: Calibration of the PR Inspector

The PR Inspector is a novel instrument capable of measuring photoresist thickness

in-situ.However, it is not as widely accepted for thin-film monitoring as Nanospec from Nano-

metrics. Thus, Nanospec was used as a reference to calibrate the PR Inspector.

Thin film thickness is computed by the PR Inspector as:

Xmax X Xmin
Th=

4 \XmaxX nmax —Xmin X nmin)

where Xmax and hnin are the wavelengths at which reflected Hght intensity is at the local

maximum andminimum, respectively. Similarly, nmax andnmin represent the indicesofrefraction

at which reflected Hght is at the maximum and minimum, respectively. It is assumed that the
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refractive index is a function ofwavelength, and that it can be approximately computed by the
following empirical relation:

n = Na+ (Nb)/X2+ (Nc)/X4

whereNa, Nb andNcare fitting constants.

The purpose ofcaHbration isto find suitable Na, Nb and Nc around the thickness ofinterest (

Na, Nb and Nc may be different at two different film thicknesses) in order to match the PR

Inspector readings to that ofthe Nanospec. The best way to accomplish this isbymeasuring the

refractive index ( n ) at many different wavelengths and by curve-fitting the above empirical
equation to get Na, Nb, and Nc. Unfortunately, the required instrument to do this was unavailable.

Instead, alarge amount ofmeasurements were taken by both the PR Inspector and the Nanospec.
By trial and error, a set ofNa, Nb, and Nc was obtained that gives very good match between the

PR Inspector and the Nanospec across the required thickness range (from about 11700 A to 13700
A). Theresults are shown below:

Na = 1.88, Afo = Uxl06,Mr = 1.918 xlO13

After these values were set, ten wafers with ten different thicknesses were measured by both
the Nanospec and the PR Inspector. On each wafer, measurements were taken at six different

sites. The location of the six sites is shown on awafer map (Figure 4.1). AH measured data were

included to compare the thickness values measured by the Nanospec and the PR Inspector (Figure
4.2).

**

IN

\
#5 \

#2 #4 \
#3 #1

#6 /
\ /

\l
N y

V

Figure 4.1 Wafer Map of Sites where Measurements were Taken (4" wafer)
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Figure 4.2 Comparison of Thickness Measured by PRInspector and Nanospec

4.3 Experiment #2: Building Empirical Equipment Models

In order to build effective equipment models for process control, it is desirable to

determine a minimal set of input/outputparameters includingall factors which significantlyaffect

the process. For the photoHthographic sequence, we have selected the foUowing input/output

parameters for the model of each equipment:

(1) For the photoresist coater(wafer track), the input parameters include (a) spin speed,

(b)bake temperature, and (c) bake time. These are all user-controllable inputs. The output

parameters include photoresist thickness and photoactivecompound concentration(PAC).

(2) For the wafer stepper, the input parameters include photoresist thickness, PAC, and

exposure dose. Only the exposure dose is a controUable input; the other two parameters are

"upstream inputs'* which are also the outputs from the upstream machine (wafer track) and they

are not directly user-adjustable. The output parameters are photoresist thickness and after-
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exposure-PAC (PACxp).

(3) For the developer track, the input parameters are photoresist thickness, PAC, PACxp,
and develop time. Again, only develop time is a controllable input, and the remaining three are
upstream inputs. The output ofthe developer track and the final output ofthe whole photolitho
graphic sequence, is the critical dimension (CD).

Shown in Figure 4.3 is the photolithographic workcell containing these parameters.

Baking
Temperature

Baking
Time

Spin Speed

coater

(pAC?)-» CD

stepper f developer

*•
Porcess Flow Direction

Figure 4.3 The Inputs and Outputs of the Machines within aPhotolithographic Workcell

4.3.1. Design of Experiment for Building Equipment Models

The experimental design for the entire photolithographic sequence (including three pieces
ofequipment) is shown in Tables 4.1,4.2 and 4.3. Table 4.1 describes an economical combination

of three factorial experiments (one for each machine) each including three input variables. This
experiment also includes three repetitions at the center point (standard setting). Eleven wafers
were included in this basic part of experimental design. The symbol "+" represents high values,
"0" for standard setting, and "-" for low values.

The actual values for all controllable inputs are listed in Table 4.2. The values were chosen so

that the models can be valid within the wide range of the inputs. Table 4.1 was aminimal yet com
plete experimental design for this type ofinput combination. However, in order to accommodate

second order terms across the whole range of the inputs, additional wafers with emphasis on
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finding effects ofindividual inputs were added, this part ofthe experiment is shown inTable 4.3.

The two sets ofexperiments together form an approximate central composite experiment.

Table 4.1 Design of Experiment forModel Building (Parti)

wafer SPSt BTEt BTIt THK*t PAC* DOSE PACxp* DevTime

#1 - - - +. - - + +

#2 + - - - - - + +

#3 - - + + - + - +

#4 + - + - - + - +

#5 0 0 0 0 0 0 0 0

#6 0 0 0 0 0 0 0 0

#7 0 0 0 0 0 0 0 0

#8 - + - + + - + -

#9 + + - - + - + -

#10 - + + + + + - -

#11 + + + - +
+

-

-

* Since these parameters (THK, PAC, PACxp) werenot setdirectly by the user, the "+"

"-", and "0" indicationareonly approximate,

t "SPS" = Spin Speed, "BTE" =BakeTemperature, "BIT*=BakeTime, "THK"=Thickness

Table 4.2 Values of the Inputs (from Table 4.1)

SPS

(rpm)
BTE

(°Q
BTI

(sec)
THK*

(A)
PAC*

(no unit)
Dose

(mj/cm2)
PACxp*
(no unit)

DevT

(sec)

-

3600 75 20 11900 0.935 105.5 0.26 50

0

4600 90 60 13100 0.96 167 0.28 60

+

5600 105 100 15000 0.98 246 0.38 90

♦Approximatevalues of the uncontrollable inputs
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Shown in Table 4.3 is theexperimental design of additional wafers processed for equipment

model building. Thirty three wafers were included in this part(data courtesy of Sovarong Leang).

For the entire modeling experiment, a total of forty-four (11 + 33) wafers were used. On each

wafer, six measurements were made for each output parameter. The average of the six measure

ments on one wafer wastaken as onedatapoint. Therefore, forty-four datapoints wereusedto fit

each equipment model. Thelocation of thesixmeasurements is shown on thewafermap (Figure

4.4).
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Figure 4.4 Location of Measurements forExperiments to BuildEquipment Models

Table 4.3 Design of Experiment for Model Building (Part II)

SPS(rpm) BTE(°C) BTI(sec) Dose(mj/cm2) DevT(sec)

#12 4600 74.6 60 76 75

#13 4600 78.1 60 94 75

#14 4600 81.5 60 112 75

#15 4600 84.4 60 131 75

#16 4600 87.4 60 149 75

#17 4600 90.4 60 168 60

#18 4600 93.5 60 186 60

#19 4600 96.5 60 204 60
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SPS(rpm) BTE(°C) BTI(sec) Dose(mj/cm2) DevT(sec)

#20 4600 99.5 60 223 60

#21 4600 102.5 60 241 60

#22 4600 105.5 60 260 60

#23 4600 90 20 89 75

#24 4600 90 30 107 75

#25 4600 90 40 127 75

#26 4600 90 50 147 75

#27 4600 90 60 167 75

#28 4600 90 70 187 75

#29 4600 90 80 207 75

#30 3600 90 60 89 60

#31 4000 90 60 107 60

#32 4300 90 60 127 60

#33 4600 90 60 147 60

#34 4900 90 60 167 60

#35 5200 90 60 187 60

#36 5600 90 60 207 60

#37 4600 90 60 168 60

#38 4600 90 60 168 60

#39 4600 90 60 168 60

#40 4600 90 60 168 60

#41 4600 90 60 168 60

#42 4600 90 60 168 60

#43 4600 90 60 168 60

4600 90 60 168 60
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43.2 Model Development

After the experiment was completed, the data were analyzed by using a statistical tool

"JMP" installed on a power PC Apple computer. In determining the terms of the equipment

models, somephysical considerations were made. For example, we learned thatthickness is about

proportional to theinverse square root of thespin speed. Also,thecritical dimension can bebetter

modeled if a cosine-of-thickness term is included. After these transformations were made, linear

regression analysis was used to fit the models.

Models of SVG 8626 Wafer Track

Two models, one for thickness and one for PAC, were derived for the SVG coater(wafer

track). During model fitting, the following parameter transformation were used:

SPS_normal= SPS/1000, (SPS in revolution perminute )

BTE_normal = BTE/100 (BTEin'C)

Whole-Model Test

15500

15000-

14500-

14000-

o 13500-1

13000-

12500-

12000"

11500'

11000 12000 13000 14000 15000
Thick Predicted

[Analysis of Variance
Source

Mode!

Error

C Total

DF Sum of Squares Moan Squaro F Ratio
3 24133278 8044426 1779.265

39 176327 4521 Prob>F
42 24309606 0.0000

Figure 4.5 Whole-model Test and ANOVA Table for SVG 8626 Wafer Track Thickness Model
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As shown in Figure 4.5, the thickness modelcan predict the measured data very well. A

very high F-ratio of 1779 was obtained, which meant most variation could be explained by the

model. In Figure 4.6, four tables, including summary of fit, lack of fit, parameter estimates and

effect test of thickness are presented. From the "parameter estimates" table, the constant and

coefficients as well as their statistical significance canbe obtained.

Response: Thick

Summary of Fit

Rsquare
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Lack of Fit

Source

Lack of Fit

Pure Error

Total Error

DF

27

12

39

Sum

0.992747

67.23993

13150.09

43

of Squares
170587.45

5739.69

176327.14

Parameter Estimates

Mean

Term

Intercept
1/SPS_normalA.5
BTI

BTE_normal

Estimate

1291.9774

29353.311

•1.624123

•1948.854

Std Error

225.832

411.734

0.52852

125.98

Effect Test

Square
6318.05

478.31

Ratio

5.72

71.29

-3.07

15.47

F Ratio

13.2092

Prot»F

0.0000

Prob>ltl

0.0000

0.0000

0.0039

0.0000

Source

1/SPS_normalA.5
BTI

BTE_normal

Nparm DF Sum of Squares F Ratio Prob>F
1 1 22979205 5082.536 . 0.0000

1 1 42695 9.4432 0.0039

1 1 1081956 239.3072 0.0000

Figure 4.6 Various Statistical Significance Tests for theSVG 8626 WaferTrack Thickness Model

From theabove table, converting SPS_normal and BTE_normal backto SPS and BTE,the

thickness model for the SVG 8626 wafer track was obtainedas follows:

1Thickness = 1291.98 + 928233 x
Jsps

-19.4885 xBTE- 1.62412 x BTI
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In Figure 4.7, the whole model-test and ANOVA table for the PAC model of SVG 8626

wafer track aredemonstrated. Although the fit is not as good as for the thickness model, the model

is statistically significant.

1.03" *
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0

*
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i
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I
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?

Analysis
— <

of Variance
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24.3116

Prob>F

0.0000

Source

Model

Error

C Total
J

DF Sum of S(
2 0.011C

37 . 0.0081
39 0.020'

luares

50735

33265

uooo

Mean Sqi
0.005

0.000

tare

B04
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Figure 4.7 Whole-Model Test and ANOVA Table for SVG 8626 Wafer Track PAC Model

In Figure 4.8, four tables, including summary of fit, lack of fit, parameter estimates and

effect test of PAC are shown. Again, the constant and coefficients can be obtained from the

"parameter estimates" table.
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Response: PAC

Summary of Fit

Rsquare 0.567874
Root Mean Square Error 0.015451
Mean of Response 0.957
Observations (or Sum Wgts) 40

Lack of Fit

Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 18 0.00595487 0.000331 2.1842

Pure Error 19 0.00287778 0.000151 Prob>F
Total Error 37 0.00883265 0.0498

Parameter Estimates

Term

Intercept
SPS_normal
BTE_normal

Estimate

0.9092807

-0.020977

0.1607003

Effect Test

Std Error

0.0348

0.00496

0.02895

Ratio

26.13

-4.23

5.55

Prob>ltl

0.0000

0.0001

0.0000

Source Nparm DF Sum of Squares F Ratio Prot»F
SPS_normal 1 1 0.00426619 17.8711 0.0001
BTE normal 1 1 0.00735681 30.8177 0.0000

Figure-4.8 Various Statistical Significance Tests forSVG 8626Wafer Track PACModel

From the above table, converting SPS_normal and BTE_normal back to SPS and BTE,

the model ofPAC for the SVG 8626 wafer track was restated as follows:

PAC =0.90928-2.0977x10 5xSPS+0.001601 XBTE
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Model for the GCA 6200 stepper

In Figure 4.9 the whole-model test and ANOVA table for APAC are shown. APAC is

defined as APAC = PAC - PACxp. The purpose of introducing APAC is that it lead to more

significant models. Once the modelof APAC is obtained, themodelofPACxp canbe obtained by

simply moving the PACterm to the othersideof the equalsign.

Whole-Model Test
0.8"

0 f

•

0.75-
4

/ y

0.7-

0.65"

y*y
•

o 0.6"

<0.55"

•/yy

'- -

0.5-
y' / /

0.45"
** y *

0.4"
*" y */ 4

x *

X *

0.35"

0.3~i i i i i i i . i -i

0.30.35 0.45 0.55 0.65

ABAC Predicted

I I

0.75 |
i

r. ^ .

Analysis of Variance
-<

F Ratio

34.0693

Prob > F

0.0000

Source DF Sum of

Model 2 O.Oi

Error 37 0.0'

C Total 39 0.12
. _

Squares
'872493

(274844

>147337

Mean

.0

0

Square
.039362

.001155

Figure 4.9 Whole-Model Test and ANOVA Table for APAC for the GCA 6200 Stepper
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In Figure 4.10, four tables, including summary of fit, lack of fit, parameterestimates and

effect test of APAC are shown. Again, the constant and coefficients can be obtained from the

"parameterestimates" table.

Response: APAC

Summary of Fit

Rsquare
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Lack Of Fit

.6480838

.0339906

0.642375

40

Source

Lack Of Fit

Pure Error

Total Error

DF Sum of Squares
35 0.03656344

2 0.00618500

37 0.04274844

Parameter Estimates

Term

Intercept
dose

Thick

Estimate

.64294819

.00090945

-.0000112

Std Error

.108817

.000123

.000007

Mean Square
0.001045

0.003093

F Ratio

0.3378

Prob > F

. 0.9351

t Ratio

5.91

7.34

-1.48

Prob>|t|
0.0000

0.0000

0.1484

Effect Test

DF

1

1

Sum of Squares
0.06216812

0.00251769

F Ratio

53.8083

2.1791

Prob > F

0.0000

0.1484

Source

dose

Thick

Nptirm

1

1

Figure 4.10 Various Statistical Significance Tests forAPAC for the GCA 6200 Stepper

From the above table, by substituting APAC with PAC-PACxp, the model of PACxp for

the GCA 6200 stepper was obtained as follows:

PA Cxp =- 0.64295 - 0.00090945 xDose+\PAC+1.12 x10"5 xThickness)
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Model for the SVG 8632 Develop Tr^

Fitting the CD model was more difficult, since linear model fitting alone did not produce a
significant model. As stated before, it is necessary to include aterm ofthe form cos(A*Thickness
+B), where A and B are unknown constants. In order to obtain asignificant model for CD, a
process simulation program (SAMPLE) was used to compute atable ofCD's based on 12,800
input combinations. After this, the computed CD's (by SAMPLE) were non-linearly fitted by
using JMR The result was a CD model including a constant term and terms of
cos(A*thickness+B), thickness, PAC, exposure dose, and develop time. In this way we obtained
values for the constant, coefficients, as well as A and Binside the cosine term. Since exposure
dose is not acontrollable input ofthe developer, itwas replaced by PACxp, PAC, and thickness
(from the model ofPACxp). Finally, this SAMPLE-based model was compared to real measured
data from our experiments. This comparison led to anew value for the constant term (SAMPLE
data and nonlinear fitting data courtesy of Sovarong Leang).

Shown in Figure 4.11 is the result of nonlinear fitting based on 12,800 SAMPLE-

measured CD's.This intermediate CDmodelwasexpressed as:

CD =al 1+ a2*thickness +a3*cos(a4*thickness +a5)+al2 * dose+a9*PAC

+ alO*DevTime

Shown in Figure 4.12 is the scatter plot comparing the real measured CD from

experiments and SAMPLE-calculated CDbased on inputs from the experiments.

The CD model for the SVG 8632developtrackis as follows:

CD =3.41735+0.358965xcos(5.7125xl0""3xr^icitne55-57.6204j
- 3.70536 x 10"6 x Thickness - 2.12452 x PAC

+2.36433 xPACxp- 2.518 x10~3 xDevT
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a1 2.518273526 0
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a5 -57.62038294 0.14543169 • •
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a8 -0.000000064 0 » •

a9 0.2298082143 0.00403616
a10 •0.002518152 0.00001884
a11 1.8972053645 0.00543718
?12 -0.002150237 0.0000055

Figure 4.11 Nonlinear Fitting ResultsBasedon SAMPLE-measured CD
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Figure 4.12 Comparison of Modelled CD andReal Measured CD from the SVG 8632
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These equipment models are mainly empirical, response-surface models with the addition ofmore

physically meaningful parameters (PAC), as well as certain knowledge ofthe photoUthographic
process. As aresult, they are more efficient for control purposes than purely "physical" models
like those used inTechnology CAD process simulators, like SAMPLE.

There are some other factors that may affect the process but are not included in the

models. For example, environmental parameters such as relative humidity and room temperature
may have certain effects on thickness and PAC. They are not included in the models because they
are not "controllable inputs'* of the equipment. However, the sensors at the yellow-light room do

provide the data of these factors. Over along period, these environmental factors may drift; thus
the trends of historical runs may be used to explore these effects. This will be discussed in the

next section.

4.4 Experiment #3: The Baseline Historical Runs

In order to observe the process capability, including trends and distribution of the output

parameters of our baseline process, several wafers were ran over a period of timeusing standard

settings. The data acquired are useful in deterrriining suitable targets and control limits for the

experiments on process control. These historical lots were simply ran using the fixed recipe of our

baseline process.

4.4.1 Experimental Setup

(1) Wafers: p-type, 4-inch silicon wafers with 1000 A ofoxide on the top

(2) Equipment: SVG8626/36 photoresist coater track, GCA 6200 wafer stepper, SVG 8632

developer track, SC PR Inspector (modified with Xe light source), and Nanoline (for CD mea

surement)

(3) Photoresist: OCG820 G-line positive photoresist
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(4) Recipe: same as the recipe used for the baseline processat the microlab

SPS(rpm) SPT(sec) BTE(°C) BTI(sec) DOSE DevT(sec)

4600 30 90 60 ** 60

Note(l): "SPS" =spin speed, "SPT =spin time, "BTE" =bake temperature, "BIT =baketime, "DOSE" =

exposure dose (in milijoule/cm2), "DevT' =develop time.
**Note(2): Exposuredose was not always fixed.Sincethe lampofthe stepperwas changedaboutevery threeweeks,

a focus-exposure test wasdoneaftereach lampchange to obtain anoptimal setof focus andexposure values.

(5) Duration, frequency of runs, and amount of lots and wafers: The historical lots were run for

about two months. The lapsed time between two consecutive lots ranged from three to six days,

due to some practicalconstraints.There were a total of twelve lots. Each lot had five wafers from

lot#l to lot#7. Three wafers were included in each lot from lot#8 to lot#12.

(6) Measurements: Three readings of four output parameters were made on each wafer. The

readings were taken at three different sites near the center of a wafer (as shown in Figure 4.13),

and their average was treated as one measurement.

• —«»

IN,
\

/
[ #2

#1 #3

\
V

N
V

^5

Figure 4.13 Location of Measurements Used in the Historical Runs
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4.4.2 Trendcharts of the Four Output Parameters

Shown in Figures 4.14, 4.15, 4.17, and 4.18 are the trendcharts of the four output
parameters: thickness, PAC, PACxp, and CD. Each point represents the average ofthree readings
for one wafer.

12900-1

UCL=12824.9

Avg=12720.6

LCU12616.2

60 wafer #

June29/94 July25/94 Aug25/94
date

Figure 4.14 Trendchart of Photoresist Thickness

1.05-
UCU1.058

Avg=0.961

LCL=0.865

0.85
10 20 30 40 50 60

Figure 4.15 Trendchart of PAC of Photoresist
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As shown in Figure 4.14, photoresist thickness exhibited an obvious drift even when the

recipe of the SVG coater was fixed during the entire period. Two other factors, relative humidity

and room temperature were recorded and compared against thickness. The scatter plots in Figure

4.16 show thatneitherof the two factors had a significant effect on thickness. However, this may

be attributed to the relatively small range of variation for both humidity and room temperature

since neither of these factors was intentionally varied. Past data showed that, at a relative

humidity of 24%, thickness of about 13100 A was measured, as opposed to thickness around

12700 A at 38% humidity. A much longer series of historical runs is required to obtain a
quantitative relation between humidity, room temperature, and thickness. Since relative humidity

and room temperature could hardly explain thickness variation of the historical rans, there must

have been some other less obvious factors. The trendchart of thickness well justified the need for
additional process control.

Figure 4.15 shows noobvious trend of PAC, though considerable fluctuation can be seen.
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i
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12550-
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•vg Thick

' I I I 1 1
24.2 24.4 24.6 24.6 25.0 25.2 25.4

room temp

Figure 4.16 Effects of Relative Humidity and Room Temperature on Thickness
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Figure 4.17 Trendchart of PACxp
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Figure 4.18 Trendchan of CD
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Figure 4.17 shows that PACxp had a more obvious drift than PAC did. This may be

attributed to two reasons: First, as shown in Figure 4.19, PACxp had a strong correlation with

thickness, but PAC did not. When thickness drifted, PACxp followed. Second, the exposure dose

was not actually fixed throughout the entire period. The lamp of the stepper was changed twice

during the experimental period. Right after each lamp change, a routine focus-exposure test was

done to get the optimal focus and exposure values for the baseline process. Since three different

lamps were used during theexperimental period, three different exposure doses were applied. The

degradation dueto lamp aging between two lamp changes wasautomatically compensated by the

GCA wafer stepper itself.

This situation is further demonstrated by the trendchart of CD (Figure 4.18). The first

lamp change happened between wafer #15 and #16, the second lamp change happened between

wafer #35 and #36. The actual exposure dose of the third group (wafer #36 to #50) was a little

higher than those of the first two groups and resulted in lower CD for the third group. The

variation of CD within the third group could be well explained by thickness fluctuation. The only

lot behaving strangely was lot #3 (wafers #11 to #15) which was not supposed to show such low

values of CD, given the very similar process conditions to wafers #1 to #10.

4.4.3 Correlation Between the Output Parameters

Figure 4.19 shows that PACxp had a strongcorrelation (p = 0.7941) with thickness. In table

4.4, the correlation coefficients between output parameters are listed.

In addition to the correlation between thickness and PACxp, some correlation was observed

between thickness and CD. It is interesting to compare this result with the data from another

experiment which was designed to explore solely the effect of thickness on CD, with exposure

dose and develop time fixed. In that lot, ten wafers were run through photolithographic sequences

with ten different spin speeds, thus ten different thickness ranging from 12000 A to 14000 A (the

thickness ofhistorical runs ranged only from 12500 Ato 12850 A). All other controllable inputs
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Figure 4.19 Scatter Plot Matrix for the Four Output Parameters

Table 4.4 Correlation Matrix of Output Parameters (Historical Run)

Thickness PAC PACxp CD

Thickness 1 0.1419 0.7941 -0.2572

PAC 0.1419 1 0.0637 -0.0507

PACxp 0.7941 0.0637 1 0.0426

CD -0.2572 -0.0507 0.0426 1
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were the same for all ten wafers. The result is shown in Figure4.20. At this figure, CD decreased

as thickness increased from 12500 A to 12850A, the range of variation of the historical runs. This

explained the negativecorrelation between thicknessand CD for historical runs. It alsoexplained

the CD variation of wafers #35 to #50 due to thickness fluctuation.

CD By thick
1.95"

1.70-

1.65 —I 1 1 • 1 . , j—

12000 12500 13000 13500 14000
thick

Fitting

Polynomial Fit, degree=6

[Polynomial Fit, degree=6~]

Figure 4.20 Effect ofThickness on CD (One point represents one measurement. Ten

wafers were run. On each wafer three readings were made.)

Surprisingly the correlation between PACxp and CD during the historical runs was rather
insignificant. It is assumed that PACxp is agood measure ofexposure dose and should affect CD
significantly. The reason might be as follows: During the historical runs, the exposure dose was
relatively stable. Thus the limited variation of PACxp came mainly from thickness flucmation, not
achange of dose. For the factorial experiments, the exposure dose was changed over avery wide
range; thus the distribution of PACxp was much wider. Thus the correlation between PACxp and
CD was more apparent during the factorial experiment, as shown in Table 4.5
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Table 4.5 Correlation Matrix ofOutput Parameters (data from the model-building
factorial experiment, not historical runs)

Thickness PAC PACxp CD

Thickness 1 0.3818 0.3729 -0.1598

PAC 0.3818 1 0.5082 -0.068

PACxp 0.3729 0.5082 1 0.2771

CD -0.1598 -0.068 0.2771 1

4.4.4 Distribution of Output Parameters

The distribution (histograms), along with statistical moments and quantiles of the four

output parameters are shown in Figure 4.21 and Figure 4.22. These data show the process

capability of the baseline process at the BerkeleyMicrofabrication Laboratory. These histograms

form a useful reference for setting specifications on process control and alarm systems.

4.5 Summary

In this chapter the experimental results of the PR Inspector calibration, the photolitho

graphic equipment model generation, and the baseline historical runs are presented and discussed.

These experiments are essential to construct an infrastructure for the supervisory control on a

photolithographic workcell. In the next chapter experimental results of comparing different

control methods to the one that uses dynamic specifications will be discussed.
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Chapter 5 Experimental Results and Discussion: Part II

In the preceding chapter, results of several experiments used to build the infrastructure of a

supervisory control system have been presented and discussed. In this chapter we present the

experimental results of a comparison of different control methods, including the use of dynamic

specifications.

5.1 Experiments to Compare Different Control Methods

In order to demonstrate the benefits of applying dynamic specifications to supervisory

control, three groups of wafers were run through the photolithographic sequence. These three

groups were:

(1) Baseline historical runs, without additional process control (described in the previous
chapter).

(2) Runs with local feedback control to each piece ofequipment. Fixed specifications were used

for all outputs, intermediate as well as final.

(3) Runs with local feedback control to each machine. In addition, the intermediate specifica
tions ofthe system were dynamically adjusted. Only the final specification was fixed.

5.1.1. Experimental Setup

(1) Wafers: p-type, 4-inch silicon wafers with 1000 Aofoxide on the top.

(2) Equipment: SVG8626/36 wafer track, GCA 6200 wafer stepper, SVG 8632 develop track,
SC PR Inspector INS-800-1, and Nanoline IV critical dimension measurement system.

(3) Photoresist: OCG820 G-line positive photoresist

(4) Control system: The BCAM (Berkeley Computer Aided Manufacturing) system was used
as the process alarm system (providing multivariate model-based, statistical process control
alarms and malfunction alarms) and the local feedback controller (providing model update and
recipe update).

(5) Duration, frequency of runs, and wafer size: The three groups with different control
methods were run independently within the same period of about one month. Thirty four-inch
wafers (in ten lots) were run for each of the three groups. For each group, the separation between



55

two consecutive lots was about three days. Control was done on a run-to-run (lot-to-lot) basis;

thus no change ofrecipe, models, ortargets took place within one lot. Model updates were based
on data from the last six wafers. No feed-forward control was used inany ofthe experiments.

(6) Measurements: Four readings of all output parameters were taken on each wafer. These

readings were taken at four different sites near the center ofa wafer (as shown inFigure 5.1). The

average of thesefour readings wasused as onedatapoint.

—N

[N
\

#2 #4

#1 #3

/
^! ^

V

Figure 5.1 Location of Readings During the Control Comparison Experiments

5.1.2. Thickness Trend and Distribution of Control Comparison Experiments

In this section, the thickness trendcharts and distribution of the three groups are presented

in Figures 5.2, 5.3, and 5.4. The specifications (targets, upper spec limits, lower spec limits),

model predicted values, and actual measured values are included in these charts.

Tables 5.1 and 5.2 list the control actions on thickness of the two controlled groups. From

these two tables and Figures 5.2,5.3, and 5.4, several observations are made:

As seen in Figure 5.3 of the second group (local control only), wafers #7 - #9 and wafers

#16 ~ #18 both drifted away from the model prediction and target. Therefore, two control alarms

were triggered at wafers #9 and #18. Consequently, the thickness models were updated and model

prediction was changed twice. In Figure 5.3, the second such change brought the model

prediction away from the target. Usually this is undesirable. The reason was that the first model

update also resulted in a recipe update, but the second one did not. The second model update was

based on measured data of wafers #13 - #18; thus, it predicted a lower thickness value if the
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recipe was not updated accordingly. Usually, after each model update, the recipe was updated

accordingly to produce an output closer to the target. However, in this case, the recipe was not

updated since the thickness prediction was "close enough" (as judged by the BCAM controller) to

the target. Tighter thickness specifications would have led togreater sensitivity.

Table 5.1 Summary ofAlarms and Control Actions ofThickness of the Local-Control Group

wafer

ID*
Target Change Control

Alarm**

Malfunction

Alarm
Model Update Recipe

Update
#3 NONE

#6

#9 V V V
#12

#15

#18 >/ yl V
#21

#24

#27

#30 V V

Table 5.2 Summary ofAlarms and Control Actions ofThickness of the Dynamic-Spec Group

wafer

ID*
Target Change Control

Alarm**

Malfunction

Alarm
Model Update Recipe

Update
#3

#6

#9 V V
#12 V V
#15

#18

#21

#24

#27 V V >/ V
#30

*The wafers listed here were all thelast (third) wafer inalot Control alarms were valid only if they occurred at

thesewafers sinceonly lot-to-lot control wasemployed.

** Thickness and PACjointly determinedthe controlandmalfunctionalarms of the SVG coater.
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As seen inFigure 5.4 of the dynamic-specification group, wafers #7- #9 drifted away from

the model prediction and a control alarm was triggered (as shown in Figure 5.6). The model was

updated but the recipe was not (for the same reason mentioned above). The specification was

changed at wafer #13 and #28 due to CD drift and subsequent spec propagation. In general, a

specification change did not update the model (unless acontrol alarm and a model update were

also triggered at the same time), but it updated the recipe to fit the new target. In the case of

wafer#13, the thickness specification was changed, but the model was not For wafer #28,both

the specification and the model were changed. The recipe was changed tobring model prediction

closer to the new target, and the actualmeasured values followed.

water*

♦ — •vgtrack-cont-tlt-YIn]

x — svBtrack»con.ala-h

Figure 5.5 SVG Track Control Alarm of theLocally Controlled Group

10 15

walart
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Figure 5.6 SVG Track Control Alarmof the Dynamic-Spec Group
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From the thickness distribution of the three groups in Figure 5.7, the following
observations are made:

The mean value of the second group (locally controlled) was the closest to the target

(mean =12705.44 A, target =12700 A). This was reasonable since the target was fixed and
control was applied. The mean value and the target of the first group (baseline without additional

control) were 12725.6 A and 12700 A, respectively. The third group (by the local controller and
the dynamic specification) did not have a fixed target. In fact, the distribution of thickness (an

intermediate output) was not as important in adynamic-specification system as that in a locally

controlled system (with fixed intermediate specifications). What really mattered was the

distribution ofCD (the final output). Thus adynamic-specification system isexpected toproduce

amore accurate and tighter distribution of the final output than alocal control system.

The standard deviation of the three groups showed no significant difference, though the

standard deviation of the first group (baseline) was indeed larger than those of the other two

groups. This was probably because the baseline lots happened to have tighter distribution during

the period of this experiment. Another thirty baseline wafers done about one month before this

experiment had astandard deviation of89 A,larger than the deviation ofthis experiment, 77.4 A.
A tighter distribution of the baseline process coupled with measurement noise might make the

effects of control less obvious.

In retrospect, both controlled groups werecontrolled on a run-to-run, not wafer-to-wafer

basis. The model used for the current lot were actually checked and updated (as directed by the

control alarm) based on the measured data from the preceding lots. An tighter distribution can be

expected with wafer-to-wafer control and/or with feed-forward control activated.
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5.13 TVends and Distribution ofPAC and PACxp ofControl Comparison
Experiments

PAC and thickness are both outputs ofthe SVG coater. Therefore, the malfunction and
control alarms were calculated for the SVG coater in amultivariate way. The variance-covariance
matrix between thickness and PAC was taken into account. Therefore, acontrol alarm on the SVG
coater could be triggered by process drift ofeither thickness or PAC, or both. After a control
alarm was triggered, the feedback controUer was enabled. Model update did not necessarily
happen even if acontrol alarm was triggered. The model update worked independently for the
thickness model and the PAC model even though the control alarm test was done jointly.

The specifications, model prediction and measured values of PAC from the three groups
are shown in Figures 5.8,5.9, and 5.10. As in the case of thickness, the target ofPAC of the third
group (dynamic specification) was changed twice due to specification propagation. The recipe
was also modified twice to bring the model prediction to the new target (as shown in Figure 5.10).
Although the control alarm was triggered twice on the SVG coater for the third group (Figure
5.6), no model update was done by the feedback controUer, as explained in the preceding
paragraph. This was reasonable since PAC exhibited more oscUlation around the model prediction
rather than drifting to one direction.

For the locally controUed group, the target was always fixed. The PAC model of the

locally controlled group was also not updated even though three control alarms were triggered on
the SVG coater (Figure 5.5). However, the thickness model of the local-control group was indeed
updated and the recipe was updated accordingly. This explained the change of PAC model
prediction in Figure 5.9. Although the PAC models ofboth the local-control and the dynamic-spec
groups were not updated throughout the experiment, the PAC distributions ofboth groups were

better than that of baseline lots (Figure 5.11). This might beattributed to better thickness control

and to recipe updates ofthe SVG coater due to the thickness model update.
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Table 5.3 Summary ofAlarms and Control Actions ofPAC ofthe Local-Control Group

wafer

ID
Target Change Control

Alarm**

Malfunction

Alarm
Model Update Recipe

Update
#3 NONE

#6

#9 V a/
#12

#15

#18 V a/
#21

#24

#27

#30 V V

Thickness and PAC jointly determined the control and malfunction alarms of the SVG coater.

Table 5.4 Summary of Alarms andControl Actionsof PAC of the Dynamic-SpecGroup

wafer

ID
Target Change Control Alarm

Malfunction

Alarm
Model Update

Recipe
Update

#3

#6

#9 V

#12 V V

#15

#18

#21

#24

#27 V V V

#30
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Figure 5.11 Comparison ofPAC Distribution ofthe Three Groups

Shown in Figures 5.12, 5.13, and 5.14 are the PACxp specifications, model prediction and
measured values of the three groups.
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Shown in Figure 5.15 is the residual values ofPACxp (= Measured value -Model prediction
) of the baseline group. Except for wafers #19 and #29, the residual values were distributed

between -0.05 to 40.05 or so. This distribution indicates that the model ofPACxp was not avery
precise model. Measurement noise and process variation both contributed to it. However, if we
observe the distribution ofreal measured PACxp values in Figure 5.12, we notice that the values

were roughly distributed between 0.35 to 0.5 (a wider range than that ofthe residuals) and showed
adrifting-down trend. These residual values did not show any obvious drift. This means that the
model could still predict the real values, and that it would have been useful in the application of
feed-forward control.

Tables 5.5 and 5.6 show the summary ofalarms and control actions ofPACxp (on the
GCA stepper). Itisnoteworthy that the model prediction and measured values ofwafer# 28 - #30

ofthe dynamic-spec group did not follow the target. This was because the new target (0.55, a
result of specification propagation caused by an extraordinary CD drift) was too high to be
reached by any allowed exposure dose with two other '̂ controllable" inputs (thickness and
PAC) from the upstream machine. In fact, the exposure dose was reduced to the minimal value

(80 mj/cm2) in order to produce ahigh PACxp value. However, given also the unusually low PAC
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value, neither the model prediction ofPACxp nor the measured value could match the target.
Table 5.5 Summary ofAlarms and Control Actions ofPACxp ofthe Local-Control Group

wafer

ID

Target
Change

Control

Alarmihigh
Control

Alarmrlow
Malfunction

Alarm

Model

Update
Recipe

Update*

#3 NONE

#6 V
#9 V

#12 V
#15

#18

#21

#24

#27

#30 V V

♦All recipeupdates were due to baselineadjustments, not controlactions.

Table 5.6 Summary of AlarmsandControl Actions of PACxpof the Dynamic-SpecGroup

wafer

ID

Target
Change

Control

Alarmihigh
Control

Alarm:low

Malfunction

Alarm

Model

Update
Recipe
Update

#3

#6 V*

#9 -V*

#12 V V

#15

#18

#21

#24

#27 V M

#30 M V

♦These recipe updates were due to baseline adjustments,not control actions.
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If we compare the trendcharts of PAC and PACxp of the dynamic-specification group

(Figure 5.10andFigure 5.14),we canseethat the PAC ofwafers #28 - #30 dropped significantly

while the PACxp of the same group did not. Therefore, APAC (PAC-PACxp) decreased as

predicted by the exposure dose decrease. This was also consistent with the fact that the CD of

wafer #28 ~ #30 was brought up toward the target. In this example, CD is a strong function of

exposure dose, which correlates significantly with APAC rather than PACxp, as demonstrated in

Chapter 4.3 (equipment model generation). However, PACxp is still useful in a dynamic-

specification system in that it can serve as a target by which the exposure dose is computed by the

local controller on the GCA stepper. In other words, PACxp effectively links CD to exposure

dose.

In collecting the measured data of PAC and PACxp, significant measurement noise was

evident. In addition, some computed PACxp values were discarded because they were too far off

the normal values (for PACxp, about0.3 to 0.55). Of the fourmeasurementsmade on each wafer,

only those withnormal values were taken and averaged. Overall, nearly fifteen to twenty percent

ofPACxp average values werecomputed from less than four validmeasurements.

This was not the case for thickness. Almost all measured thickness values were valid and

tightly distributed on any given wafer. The noisy measurement of PAC and PACxp might result

from the relatively complex algorithm of computation, combined with limits set by our in-situ

automatic measuring instrument and incomplete information on properties of photoresist.

However, from the experimental results, PAC and PACxp were still useful parameters for control

purposes, even if they werenot aspredictable asthickness (due to measurement noise).

The distribution of PACxp of the three groups were shown in Figure 5.16. Again, both

controlled groups showed tighter distribution than the baseline group. The second group (local

feedback control with a fixed PACxp target) had amean value of0.439, which was very close to

the target (0.44). The third group (dynamic specification) did not have a fixed PACxp target.
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Figure 5.16 Comparison of PACxp Distribution of the Three Groups
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5.1.4 CD Trends and Distribution of Control Comparison Experiments

CD (Critical Dimension) of photoresist is the final output of a photolithographic workcell.

It is the most important of the four output parameters. The essence of supervisory control using

dynamic-specification is to control the final output (CD) more effectively than local control

methods, while intermediate outputs (thickness, PAC, PACxp) are allowed to distribute even

wider than those controlled by local controllers.

The CD specifications, model prediction, and measured values of the three groups are

shown in Figure 5.17,5.18, and 5.19. Unlike otheroutput parameters, the CD specification of the

third group (Figure 5.19) was always fixed. Sowere the CD specifications ofother two groups.

Several control alarms were triggered at the third group (as shown in the SVG developer

control alarm chart, Figure 5.20). At the first control alarm, no specification propagation was done

(by the user's choice). Only the local feedback controller worked on the SVG developer, which

caused CD model update and a recipe change (of develop time) on the SVG developer. For the

other two alarms at wafers #12 and #27, CD model update and recipe change happened on the
SVG developer, and specification propagation was done to create new specifications ofPACxp,
PAC, and thickness, which were outputs from upstream machines (the GCA stepper and the SVG
coater).
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Figure 5.17 CDTrendchart of Baseline Runs (without additional control)
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Table 5.7 Summary of Alarms and Control Actions of CD of the Local-Control Group

wafer

ID

Target
Change

Control

Alarm

high

Control

Alarm

low

Malfunction

Alarm**

Model

Update
Recipe

Update*

#3 NONE

#6 V V V •J
#9 V V V V

#12

#15

#18 V V V V
#21

#24

#27 V V a/ V
#30 V V

The rate ofmalfunction alarm ishigh due to the larger-than-usual CD drift and shift during this experiment.

Table 5.8 Summary ofAlarms and Control Actions ofCD ofthe Dynamic-Spec Group

wafer

ID

Target
Change

Control

Alarmihigh
Control

Alarmrlow
Malfunction

Alarm

Model

Update
Recipe

Update*

#3 NONE V S ^——i—
#6

#9

#12 V V v V
#15 V

#18 V

#21

#24

#27 V V v v
#30 V V yl 1
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Figure 5.20 Control Alarm Chart ofSVG Developer (Dynamic Specification Group)

Summary and Discussion

The superior performance of dynamic-specification control overlocal control wasobvious

when the CD trends and control actions of both methods were compared. At wafers #10 - #12,

both groups had a CD drop that resulted to control alarms. In the local-control group, the CD

model was updated and a new recipe was calculated. The only controllable input at the SVG

developer was the develop time. Itwas updated inorder toraise CD back tothe target. However,

even with the lowest allowable develop time (50.2 seconds) combined with the fixed-target thick

ness, PAC, and PACxp, the CD model prediction still could not bebrought back tothetarget. As a

result, the next lot (wafers #13 - #15) was improved but still below-target with a CD of about

1.66 pm, while the targetwas 1.72|un).

On the other hand, in the dynamic-specification group, not only the CD model and

develop time(recipe of SVG developer) were updated, butalso thespecifications of PACxp, PAC,

andthickness were changed. Consequently, new recipes of the GCA stepper and the SVG coater

were also calculated. This way the CD model prediction could be easily brought back to the

target. As a result, the measured CD values of about 1.74 pm of the next lot (wafers #13 - #15)
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were very close to the 1.72 pm target.

The contrast was even more dramatic at wafers #27 to #28. A serious drop of CD was seen

in all three groups at wafers #25 ~ #27. Malfunction and control alarms were triggered on both

controlled groups. In the local control group, only limited corrections could be made on CD

model prediction and measured values of wafers #28 - #30 (only brought the CD from 1.12 pm

up to 1.25 urn). However, in the dynamic-specification group, the CD model prediction and

measuredvalues were broughtmuch closerto the target (CD values broughtback from 1.15pm to

1.63pm).The reason was the sameas stated in the preceding paragraphs.

It was known that exposure dose had a stronger effect on CD than develop time did.

However, in the local control group, only develop time was directly updated in response to aCD

control alarm and model update. Notbeing a controllable input of the SVG developer, exposure

dose could not be modified due to any CD control alarm or model update. The exposure dose

could only beupdated onthe GCA stepper after acontrol alarm and model update of PACxp were

triggered.

Considering asituation where exposure dose went wrong and both PACxp and CD drifted

away inthe same direction and created control alarms, the local-control system should work well

tobring CD back to the target. However, inour experiments, PACxp did not show obvious drift

when CD drifted significantly. Therefore, CD control in the local-control group was obviously
less effective than that in the dynamic-specification group. The question remains, why the CD

drift was not accompanied by a PACxp drift? It was suspected that other less obvious factors,

which had little effect on PACxp, appeared and affected CD significantly for these wafers. Since

PACxp (or more relevant toexposure dose, APAC) did not drift away from the target, no control

actions onexposure dose could betaken by the locally controlled sequence.

On the other hand, the dynamic-specification control worked very well to bring CD back

to its target since all preceding parameters (exposure dose, PACxp, thickness, PAC) as well as

develop time were "linked" through the dynamic specifications and allowed to be modified. As

explained inChapter 5.1.3, PACxp served as agood "media" to translate aCD model update to
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exposure dose update when PACxp itself might not be on target. Also the dynamic-specification
control exhibited the capability to correct things, even when some factors not included in the
equipment models might have affected the process. Shown in Figure 5.21 is the CD distribution
of the three groups. It is obvious that the dynamic-specification group had the tightest distribution
and amean value closest to the 1.72 urn target. The performance of the locally controlled group
was worse than that of the dynamic-specification group but better than that of the baseline group.
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Figure 5.21 Comparison of CD Distribution of the Three Experimental Groups
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If we treat data fromthe lasttwo lots(wafers #25 - #30)asoutliers (because they weretoo

far away from normal values and triggered serious malfunction alarms) and exclude them in

calculating the distribution, the CD distribution is shown in Figure 5.22. In Figure 5.22 the CD
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Figure 5.22 Comparison ofCD Distribution ofthe Three Group (Excluding the last two lots)

distribution improvement of the local-controlled group over the baseline group was more obvious
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than that in Figure 5.21. In Figure 5.22 the dynamic-specification group still had the tightest and
most accurate distribution. This means that under usual process drift and variation the local

controller worked reasonably well (though not as well as the dynamic-specification group), but

under serious process variation, like those ofwafers #25 ~#30, the control capability of the local-

control group was quite limited while the dynamic-specification control still worked well. The

results of Figure 5.22 can bequantified as follows. Assiiming that the process capability (Cpk) of

thehistorical baseline was 1.00, then therelative Cpkof thelocally controlled process is 1.90 and

therelative Cpk of the process using dynamic specifications is 2.90.

To sumup, we have demonstrated that thedynamic specifications can be usedto produce

atighter and more on-target distribution, which means higher Cpk, of the final output (e.g. CD) of

a workcell consisting of multiple process steps. If feed-forward control is applied, we can expect

better distributions of PACxp and CD. If wafer-to-wafer control and a tighter thickness spec are

used, even betterdistributions of alloutputs can be expected.
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