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ABSTRACT

Gabriel's code generator allows for rapid, real-time prototyping of DSP systems described as
Syncronous Data How graphs. The static scheduling of the SDF graphs allows for efficient
buffering between actors and a simple in-line code compilation technique. Multirate SDF
graphs presented a problem for in-line coding because of redundancy. A technique for code
generation of multirate systems is developed using a specialized scheduler, iteration, and a
modified static buffering scheme. A 2400bps voiceband data channel is developed as an
examplefor the multiratecode generator.
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1. Introduction

Gabriel's capacity to automatically generate assembly code for DSP systems
desmbed as syncronous data flow graphs makes it very powerful as afast-prototypine
system. In SDF graphs, actors representing DSP functions consume and produce a
fixed number ofsamples on the data arcs connecting them. The SDF model facilitates
asystematic: method ofscheduling the actors (DSP code) on the processors ofthe DSP
hardware [1]. Because ofthe syncronous nature ofthe data flow model, DSP code for
the enure graph may be compiled together and downloaded into the DSP proeram
memory. The code Gabriel produces is an in-line placement ofthe actor codeblocks
in the sequence of the schedule [2]. This implementation uses alow overhead static
buffenng scheme which provides good runtime efficiency. However, in-line code can
be very inefficient in terms of program length, especially for DSP systems with

systems producing or processing larger blocks of data. These systems are easily
SStaJ.10 mMSDF 8n,ph'bUt*' genera,ed i"'linc"*W be impracti-
m„i^S T documen« a»ewod °fPnxiucing efficient iterated Mine code formulnrate pphs presented to Gabriel. This method retains in-line code and static
buffenng for runtime efficiency, and places loops around repetitive sequences of the
schedule. Arbitrary graphs are handled, and an attempt is rrfade to «3EetaL»
mimmize runtime overhead. The system is currently only implemented for single pro-
£55 ^l6 8ene««tion although asimple version for the multiprocessor case may be
modified from the existing code. This multirate capability is implemented as aset of
additions to the Gabriel code, rather than modifications to it These fcnte i££d
IwntSUETT? atT& M*TOW*"» *'«rig»al code generator asshown mthe block diagram of figure 1. The organization of the report rouehly fol-
tow the sequence of the preprocessor after an initial description of iterated in-line

•hh£S ^u31 ??"&* areal-tin« application using several sampling rates, a2400bps voiceband data channel was developed on Gabriel and implemented on a
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DSP56000 processor with a memory mapped A/D converter. An algorithm for baud
rate timing recovery was developed, and has a geometeric interpretation described in
the appendix.

2. Problems of In-line Code

This section first reviews thetechniques of static buffering and in-line code origi
nally used by Gabriel. The shortcomings of this approach are shown for multirate
SDF graphs and, as an alternate form of generated code, iterated in-line code is pro
posed. The details of its implementation are described in the following sections.

2.1. In-LineCode

Gabriel uses an in-line technique for code generation. From the SDF universe,
where each star produces and consumes a known number of tokens per firing, a
schedule of star firings is constructed. The schedule is then directly translated into
code by subsisting instances of the stars withtheir respective codetemplates.

Code templates are the blocks of DSP assembly code that perform the function
of a star. Typically, stars consume (input) and produce (output) samples on the data
arcs using symbolic absolute memory references:

move x:in,a
{body ofcode}
move a*x:out

When code is being generated by Gabriel, the absolute addresses are computed and
subsituted for "in" and "out" in each instance of the star.

The data buffering between stars can behandled using absolute memory address
ing due to the static buffering technique, a benefit of the SDF model. A static buffer
representing a data arc is constrained to a have a certain length, sothat each seperate
invocation of a star references the same buffer locations. In the example of figure 2,
the arc is implemented as a static bufferof length 6. At least 3 locations are needed to
hold the samples written by A before they are read by B. The buffer is shown after
AB. Note at the end of the schedule, after ABABB, the pointers return to their initial
positions. In general, the length of a static buffer,L, must divide into the totalnumber
of samples produced on that arc in oneperiod, N, an integral number of times. This is

©•-Kb)
ABABB
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B

Figure 2. A simple SDF graph, Hs schedule, in-line code, and static buffer. The pointers
are shown after one firing of A and B.
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the number of times the r/w pointers wrap around the buffer in one period of the
schedule. From this set of possible L's, the smallest length larger than the minimum
required is usually chosen.

2.2. Iterated In-Line Code

In-line code is a simple, run-time efficient way to implement an SDF universe.
Since buffer management is handled at compile-time, the only overhead is the copy
ing of samples from the data buffer to an arithmethic register. However, because in
line code is simply adirect translation of the schedule, along, repetitive schedule will
result in long, redundant code. This is generally the case for systems with interpola
tion, decimation, or other sample rate changes. For example, nested sample rate
changes are common, as in the simple graph of figure 3 which represents a PAM
transmitter with redundancy coding. A directly coded schedule would result in 48
repetitions of the D/A star codeblock, and 12 instances of the FIR. A similar
transmitter, without coding, required about one-half of the DSP's program space in
the lab's test setup. Any coding of the bit stream would have produced code exceed
ing the available program memory. It's easy to imagine other SDF examples with
high sample rate ratios involving complicated stars producing prohibitively long code
(e.g. subband coding using FFTs).

A solution was sought that would work with Gabriel's existing code generator
for simplicity, and also for the efficiency of the static buffering scheme. Many
methods for just reducing the program space requirement can beimagined where the
star's codeblocks reside inmemory as subroutines, and the main program would con
sist of calls following the schedule. Buffer pointers could be computed at compile-
time and passed in the subroutine calls, or buffers could maintain their own r/w
pointers during runtime. However, the overhead required of these schemes is expen
sive in real-time applications, especially in fine-grain SDF programming.

In the modified code generation technique, repetitions of sequences in the
schedule are coded as software loops around in-line code. First, aschedule is put into
abbreviated form in which repeated patterns are replaced by a period of the pattern
and its repetition factor. This form is called the iterated form of the schedule. In

bit
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Figure 3. A PAM transmitter asan example of a graph with multiple sample rates. Its tena
schedule is representative of its in-line code.
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f!T, 3S* examPle- we fl« schedule is abbreviated as (5A)B(3C(16T») As in-linecode looks very much like its schedule, iterated in-line code vvffl tookvery muc" 5e
ltnf,^hedUle TV6 pMen,hesis subrituted *» code taffS toloops. Most importantly, the code will be of amanageable sire, and will aUow for
previously unpractical multirate applications to be implemented.
3. Scheduling

, m-SlL*?'T??1 fa ««"eradng efficient"^ for amuMrate universe is to obtain
2™J-**?^ since loops require runtime overhead, it is desireable to minimis
die number of loops, and maximize their iteration count Li general, it is more desire-
£.f« S?6 8comP^t'.0,d«1y «""» ofaschedule than along, scattered one. In addi-
Sedform m°re m"""^ a"d St0rage' *' °0de is mxe readabIe when ™
3.1. Minimum Buffer Size Scheduling
n„h ^ly' ,Ga^?.e,'S f?** scheduler was used in the multirate code generationpath mfigure 1. This scheduler was concerned only with keeping buffer sizes minim"
ized. and the resultant iterated schedules were very inefficient To minimize buffer
sizes, the scheduhng algorithm preferentially fires stars whose output buffers contain
less than the number of samples required by its dependents. Afireable m'toS
produce excess samples on these arcs is scheduled only ifi, is the only firerttesrar
In this manner, an attempt is made to data arcs are kept as small as possible. Ho*!
!~C r -i" IT3UC?J.by m aIgorithm « not satifactory for general multiratesystems. Consider the multirate graph in figure 4. Acompact, orderly form fertile
2S^?2Sl^^^HIC(SABCD»pO>- However' *e old scheduSrriucesABCFHIABDACD(2BCpA)BCDEGF(5ABCD)EG. The main fault ofSTSSute
EJU"!^ » ""i"" natural flow in the graph. The path ABCD should be
Sf^i „ « e> IF "° Star shouId to **** me «*• sequence can bescheduled. Because oT djis the old scheduler tends to stagger samples! the data path
with sequences like ABCABAF... and then ... DCDBCDABCD... This problem is
tS^Te" T5 ,CVm? to "P™011081 «"«* ^Presenting aQAM data transmitter.The scheduler produces an iterated schedule that is still 2/3 as long as the flat version
the flauctedde"ha"d"Scheduled iterative {om would* "bout 12 times shorter than
3.2. Multirate Scheduling
«rh^ulW schedu?n8 algorithm was developed that generates ahighly ordered, flat
schedule by recognizing the overall flow of the multirate graph. Apattern wganizer
later groups this schedule into acompact iterated form. This algoritafe Sed
Ss gfvenamP fi6HK 4Md figUre *",d *general argUm'M ***«S5!

First, the scheduler partitions the multirate sdf graph into groups of connected
smrsofthe same frequency. The frequencies of the s£rs are calcrfated by Gabriel
connect-mne, and represent the number of times a star fires in a period of the
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Figure 4. Multirate SDF graph. The graph grouped Into connected stars ofthe same fre
quency.2D stands fortwodelays on the arc.

schedule. Consider the example in figure 4. The groups are identified by a dotted
encircling and their sample rate is noted inside in bold. Assuming the multirate graph
has consistent sample rates (i.e. aschedule exists), the groups partition the sdf graph
into asimplified universe where the groups are galaxy-like structures. Most impor
tantly, because these groups consist ofconnected stars of the same frequency, only
one firing of each star in the group is required to fire the quasi-galaxy. Furthermore,
an ordering of these stars exists so that the buffer sizes for the internal arcs are not
increased. This one-pass schedule of the group stars is valid whenever the quasi-
galaxy is fireable, and will be referred to asa sub-schedule.

Then, if amultirate graph is partitioned, and aschedule exists for the simplified
graph, sub-schedules for the groups may be subsituted into the simplified schedule. In
figure 4, the simplified schedule is X(2(5Y)Z) and subsisting ABCD for Y, HI for X,
and EFG for Z, the compact schedule ofHI(2(5ABCD)EFG) isobtained

A more complicated situation exists when the simplified graph is initially
deadlocked. This can occur for universes that are initially schedulable, but after parti
tioning, the delays that provide starting points become internal to the quasi-galaxies.
For example, in figure 4, if the two delays M2DM were removed and ID was placed on
the arc between Hand I, a schedule would still be exist for the graph. However, on
the level ofthe simplified graph, the 2D delays are gone and the graph is deadlocked.
Assuming aschedule exists for the actual graph, the scheduler must find a set of stars
to fire to break the deadlock. There are fireable stars within the groups, however if
they don't help break the deadlock, then they only disorganize the sequence. Firing a
star without firing the rest ofthe stars in its group means that later the rest ofthe group
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wJl fire without it. This tends to make the iterated schedule less compact, and
decrease the efficiency of the code. The result would be similar to th?orig£u
T^ F6I STO *! ?C m0dificdj dcadlock«J example of figure 4. initially starsA,
L^wv E^ ll S.ClCar Aat AiBd F« ^^ stars *«do not help to breakdeadlock while firing I immediately breaks the deadlock. In general, the scheduler
needs to initialize the graph by firing sequences inside groups that produce samples
car^ntT*1" **** ** ddayS "* AUS PUShed °Ut* ichednBl« of Ae S^P*

Of course, there are many other examples of simplified graphs that are initially
deadlocked, and cannot be "initialized" as above. Consider the graph in figure
5which is initially deadlocked in its simplified form. By searching for sequences that
produce samples on quasi-galaxy output arcs, AB is identified. Notice that even if AB
is scheduled, the same condition will exist for the next 4 schedulings of AB
Meanwhile, the arc between Aand Fis unnecessarily accumulating samples. We are
forced to search for deadlock-breaking sequences at each top-level scheduling step.

At this point, ageneral solution to the deadlock problem would be to break the
group containing the required delay or source into separate groups. A new group is
formed that contains only the deadlock breaking sequence. The rest ofthe stars in the
original quasi-galaxy are re-partitioned into groups ofconnected stars. This is done in
figure 5, where the rate 10 group was re-partitioned after removing AB. The result
n^fpVr^K' schedulible ***• **> ^te that in the resulting schedule
(2(5ABF)D)(10C) is more efficient because the buffering between A and Fis minim
ized. The general algorithm for the multirate scheduler isoutlined in below:

partition graph
loop

(while not_deadlocked
schedule_groups)

(if done, return
elseif noJ5reable_stars, error)
else re-partiton_group)

gSup* 5* AmU,tlrat9 0raphf deadlockftd (n fts •*"*«* form. The graph with re-partHbned
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go loop

3.3. Top Level Scheduling
It has been assumed that the algortihm above produces aschedule with ahigh

degree oforder. Order is actually more dependent upon the top level scheduler than
the group sub-scheduler, since the fixed sub-schedules are just subsituted for the group
SS^w^^f mc lllI*Bfied P^Ph of figure 6. We expect a schedule of
(7Z)(5Y)(3X)A although XYZXYZXYZYZYZZZA or some worse schedule would
also meet the minimum buffer size criterion. Note that if the scheduler checks for
fireable groups in a fixed order, this problem is avoided Currently, the scheduler
sequences through alist ofgroups arranged in descending order of frequency, check
ing ifagroup is preferentially fireable. After scheduling agroup, the search restarts at
the beginning ofthe list In the case when agroup is broken apart, the new groups
are placed in the list in the position ofthe previous group.

3.4. Organizing Iteration in the Schedule
The product of the multirate scheduler is aflat schedule which contains repetitive

sequences of stars. The repetition is aproduct of the sample rate relationships of the
simplified, partitioned graph. The last scheduling step is to reduce the flat schedule to
the compact iterated form. This task is merely one of pattern matching, and doesn't
require any ^formation from the graph. However, in the next section on buffering,
the iterated schedule will again be interpreted in terms ofthe graph.

The algorithm for pattern organization maximizes the degree of iteration in
terms ofminimizing the length ofthe output schedule. This criterion is implemented
as a preference to represent ABABABABAB as (4AB) rather than (2ABAB), for
instance. Trie basis for the algorithm is afunction that finds repetition in asequence,
which is cal ed recursively to form nested loops. The algorithm is straightforward,
and the details can be found in the code.

fhe'r^^WM :ssssruniwse- ^ "^"^*,he^^*»"-
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4. Code Generation

The previous section describes how information from the SDF graph is used to
produce acompact schedule for amultirate universe. This section covers the prob
lems ofadapting static buffering to iterated in-line code. In static buffering considera
tions, the information required from the graph is different from the partitioning ofthe
previous section. Galaxies will again be encircled, but the stars inside are not neces
sarily of the same rate.

4.1. Local Buffers

The task ofgenerating iterated in-line code is more difficult than generating sim
ple in-line code because ofthe combined usage ofstatic and non-static buffering. As
asimple example ofiterated in-line code, consider figure 7. Because ofthe 3delays
on the arc between B and C, its schedule is CA(2BCCBQBCCBD. The idea of
iterated in-line code is to code (2BCCBC) as a loop of 2 around in-line code for
BCCBC. First note that for the in-line code for BCCBC, B will need to read from 2
fixed buffer locations, and C will write to 3 fixed locations. However, B would nor
mally be connected to A by abuffer oflength 6, and Cconnected to Dby abuffer of
length 9. A solution to this problem is shown in figure 7 where two shorter arcs are
temporarily subsituted during the loop. These temporary local buffers are drawn as
dotted arcs, and the large arrows indicate the samples that must be copied into and out
of them for each iteration. This copying isdone at runtime bythe code implementing
theloop. re

In general, iterated in-line code uses static buffering almost identical to the usual
in-line code except inside loops certain buffers are subsituted by local, temporary
buffers. At the top level of the schedule, all buffers are static buffers, and code gen
eration is the same as in-line. When a loop is encountered, buffers are subsituted
before in-line code is produced for the loop. The buffers to be subsituted are
identified by drawing a circle around the stars of the sub-schedule. TTie data arcs
entering the circle are loop input arcs, and the those leaving are loop output arcs.
These input and output arcs will be replaced by the local buffers during code genera
tion in that loop. Also, for the sub-schedule to be correctly coded as in-line code,

Figure 7. Buffering requirements for iterated in-line code.
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these encircled stars must form agalaxy. This isrequired because the internal arcs are
implemented as aset of fixed memory locations in the in-line code ofthe loop. No net
samples can accumulate on these arcs during an iteration.

4.2. Loopstars

Once the loop inputs and outputs have been identified, local buffers must be sub
situted for them before code is generated for the loop. In addition, samples from the
input buffers must be copied to the local arcs before the loop body, and samples must
be copied from the local buffers to the output arcs after the loop body. Both these
functions are accomplished by loopstars which are subsituted for the parenthesis and
iteration factors of the iterated schedule. In the example of figure 7
CA(2BCCBC)BCCBD becomes CA !topl BCCBC lendl BCCBD. This flat schedule
is sent to Gabriel's in-line code generator. The loopstars !topl and lendl need to have
compiler directive-type instructions to subsitute the buffers, and code generating
instructions to write the copying code. Note that these stars are spliced into the
schedule and not the graph, as with interprocessor communication stars. The splicing
of loopstars occurs before code generation as shown in figure 1, and in this step all
local buffers are identified, their sizes are determined, and their memory allocated.
The read/write pointers for the copying of samples from/to the loop input/output
buffers are also allocated. Once these parameters are determined for the loopstars,
they are used during in-line code generation as:

!topstar
saveloop inputand output buffers
subsitute local buffers
emit_code " do #" iterationjactor, Hoop
emit_code {foreach input

copy input samplesto local buffers
update read pointer)

{in-line codefor loop )

lendstar

emit_code {foreach output
copy local samples to output buffer
updatewrite pointer)

emitjabel !loop
restore loop input andoutputbuffers

TTie actual DSP assembly code implementing the loopstars is made as efficient as
possible by making an attempt to implement the loop input read pointers and the loop
output wnte pointers as DSP56000 address registers. While the loopstars are being
spliced into the schedule, all the stars inside a loop are checked for unused address

gisters. This is done from the innermost loop outward, and the unused registers are
«»^located to the inner loops. This is the most efficient allocation since the inner-

roost loop is run the most often. The star must contain a declaration of its address
g1sler use <see manual page for "defstar"), or it is assumed all the address registers
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are affected by the star.

The local buffers subsituted by the loopstars are similar to local variables used in
recursion. The iterated in-line code analogy torecursion is nested looping. An exam
ple of local buffers and nested looping is shown in figure 8. The three drawings
represent the buffers that exist on the top level, inthe first loop, and inthe nested loop.
In going from the first loop to the nested loop, asecond local buffer is generated for C,
and the code generator thinks that C's first local buffer is the loop output buffer. Note
that the samples generated by C are first copied from the second local buffer to the
first 3 at a time, then when 9 samples fill the first local buffer, they are copied again
onto the static buffer. This double copying is characteristic of nested loops where
there are twoconsecutive parenthesis. A more complicated compiler would eliminate
the unnecessarycopying.

4.3. Global Buffers

So far it has been assumed that leaving the internal arcs of a loop as the static
buffers of the level above is valid. It is necessary that the arcs buffer data correctly
between star invocations inside the loop and between star invocations outside the
loop. The static buffer must also pass data between stars straddling a loop. To meet
the conditions for static buffering inside aloop, nonet samples can be accumulated on
the arc. This condition is checked by a function in the block entitled "filter schedule"
in figure 1. This function is passed an iterated schedule and returns a valid iterated
schedule where all the buffers internal to a loop are static. This check is done recur
sively to allow for nested looping. For example, consider the graph in figure 2 with
2D placed on the arc. The schedule is BABAB. However, (2BA)B is notvalid since
the internal arc in the loop accumulates one sample per period. The exploded
schedule BABAB is returned. If A and B were actually loops themselves, then
BABAB will still contain those loops. In this manner, the maximum looping ismain
tained.

The above filter on the iterated schedule ensures that at all levels, internal arcs
can be implemented as static buffers. This means that buffering will be correct on
these arcs for star invocations within the same loop. Butthe global static buffers must

®5-L©iLJ<i>3^<c)i^fi)

Figure 8. An example of a multirate graph with nested iteration. The temporary local
buffers are shown asdotted arcs on hte top level; the first loop; and thenested loop.
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also pass data between stars inside and outside of a loop. In the example of figure 7,
the schedule CA(2BCCBC)BCCBD has firings of B and C straddling the loop. For
the buffering between stars B and C to always be correct, it is necessary that a com
mon static buffer size exist for all levels. In this example, B and Crequire abuffer of
size of 6 inside the loop, and also in the top level CAOBCCBD. The first firing ofC
outside the loop consumes 2 samples from the arc, leaving one, and passes the buffer
pointers to the loop. The loop men correcdy processes me samples on the arc. Since
the buffer is static in the loop, the buffer pointers exit the loop as they entered it.
Then, the rest of the top level schedule continues with one sample on the arc as
expected. In general, if aloop uses astatic buffer for an internal arc and both required
buffer sizes are the same, then the loop has no effect on the buffer pointers as seen by
the outer level. However, the loop uses the samples on the arc initialized by the outer
level, and leaves the most current samples on the arc when it exits. This compatibil
ity of global buffer sizes is also checked in the "filter schedule" block, because the
incompatable subschedules are returned exploded. After this block, a valid iterated
schedule is sentto therest of thecode generator.

5. Example - 2400BPS Data Channel
As an example of code generation for a multirate graph, a 2400bps 4PSK

voiceband channel was designed and implemented onGabriel. The transmitter for the
channel consisted of a Motorola DSP56000 evaluation board connected to a modified
Magnavox CD player. The receiver was implemented on a seperate Motorola board
with an Ariel 12 bit A-to-D converter. Several different channels were used including
a DC connection, a Gabriel-based telephone channel simulatior, and an wireless IR
channel. The development set-up is shown in figure 9 with aDCchannel.

5.1. The Transmitter

A PAM scheme was chosen that would be roughly suitable for use on a phone
line. Initially, abaseband binary antipodal channel was developed, then the adaptive
filter, timing recovery scheme, etc. were modified for a4PSK constellation. A sym
bol rate of 1225Hz was selected based on the CD player's 44.1kHz clock (1225Hz =

SunJ/60JM>

Motorola
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ADSSfionn

Magnavox

(2)
EHEayHJ

Stereo

Ariel
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Figure 9. The hardware setup for the voiceband data channel example.
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44.1kHz/36). A 100% excess bandwith raised cosine pulse was used for the transmit
pulse. This pulse was rectangularly windowed to contain exacdy 2zero-crossings on
either side ofthe pulse. The carrier frequency was set at 3/2 times the symbol rate,
approx 1800Hz. This frequency spectrum was chosen to approximate amap needed
for full aduplex transmission (and without any knowledge ofstandards like v22.bis.)

The Gabriel universe for the transmitter is shown in figure 10. The graph is par
titioned into groups ofthe same frequency. In the transmitter, most ofthe computa
tion is done at the slower rate of 14.7kHz and then interpolated to 44. lKhz by azero-
order hold for 3samples. This is done to conserve processor time, since oversampling
the transmit pulse at 12 samples per baud interval is sufficient to keep the replicated
spectnims far out ofband. Also, if 36 samples were used as abaud interval, the inter
polating FIR filter implementing the transmit pulse would have 144 taps as well as
operating at 44.1kHz. The interpolation also provides a good example of a nested
schedule since it adds an intermediate 14.7kHz to the 44.1Khz CD rate and the
1225hz baud rate.

Three schedules are shown in figure 11. The first is the flat product ofthe origi
nal scheduler. The length ofthe schedule is indicative of the DSP code, which loads
as 2.2k words in the Motorola's 4k word memory. The second schedule is the iterated
form of the first, and shows that an optimized multirate scheduler is needed. Also
grouping patterns for long schedules becomes impractical as the pattern recognizer
can require on the order of N2 comparisons, where N is the number of stars in the
schedule Especially in lisp, scheduling the simplified graph is many times faster.
Finally, the output of the multirate scheduler is listed, and its iterated in-line code is
266 words long.

..•••***^*^«

/'"44.1kHz X.
1225Hz

4491UKhz1°' Th9 9abn01 UniV9r89 f0f the QAM tw»m,,tor- T"0 CD 8tar Performs the D/A at
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Figure 11. The schedules of the QAM transmitter: the original scheduler output, it's iterated
form, and the output of the multirate scheduler. VM n*r««o
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5.2. Receiver

hoarHIi!/eC?^er wasAal.S0 ^Pkmented on asingle processor Motorola evaluationboard connected to an Ariel A/D and D/A board. The analog front-end of the receWw
KdSS,* fir*"",**was ^ *«** HE™Z™i tL^ ?• P0"" N° extemal "WlMto. « external pll circuitry wasrequired. The basic archjtecture of the receiver is shown in the simpUied diamnTof

recovery loops A decimating complex adaptive filter using the 1ms algorithm was
written to implement afractionally spaced'equalizer. The actual GaMeT^ve^
Renting this receiver is included in Appendix Awhich describes s«ne dSTf
*e timing recovery The partitioned graph of connected groups of stars of thTsame
mfflz^rJ" figUre13- ^ Stoplified «"* is ***** dead^ked a^idX1225Hz group is be re-pamtioned into 9groups after pulling the delays out The
resulting schedule is listed in figure 14. again compared °o me origtaal scheduler to
to example the receiver universe doesn't contain as high asample rate ratio «th2
transmitter did and the benefits of the scheduler aren't as (Iramatic flowed tf anv
coding was added to the channel, iterated in-line code would agata beSal ta
implementing the system. 6 m

Figure 12. Simplified block diagram of the receiver implemented in Gabriel.
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14.7kHz 2450Hz 1225Hz

flKteb^^ Qraph. The graph isrepar-

I56gain2l!.£2!56rfd^llc'»mcl*ST^r .S^1*11 me(V>MlaCB6*d<h21leirjecl*S«d«,lm, w,i

WcunuMI I56e,jmsll B&umSSB6^BMbK?2£?%%£U!5e*,hai '^ S6WiSmi

B6bbckJ»,!e2l B6&3I I56g^7l Bfcddll Bo^SfeS t^S?r> * W"i"61 Bfa,-»»W|

W*~We£5£B2^o£M
t£**S2 ?SC,Jmt11 B^*^fe^6^BteSSiS1,^il,B B«««M'c«rJ«l*S6co«l W4
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6. Conclusions

Aset ofLisp functions were written as apreprocessor to the Gabriel in-line code
generator to allow for efficient coding of multirate universes. Many DSP systems
operate at several sample rates, where the sample rate ratios may be very high, as in
speech coding, transform coding, modems, etc. Gabriel previously attempted to pro
duce in-line code for these universes, and in many cases the generated code was
unpractically long. Amodified form of in-line code was proposed where loops are put
around the repetitive portions ofthe schedule. The existing Gabriel in-line code een-
erator was used to produce this iterated in-line code with the use of loopstars usine
directive-type instructions and local buffers. Thus the multirate code generation
preprocessor is seperate from the in-line code generator, and no modifications were
made to the existing Gabriel code. A scheduler designed for producing natural-flow
iterated schedules was developed to maximize the efficiency ofiterated in-line code
As an example ofthe multirate code generating system, avoiceband data channel was
developed and code was generated for this system which resulted in a dramatic
irnprovement compared to in-line code. Code was generated by other students for a
LPC-type speech coder universe which would not have been implementable usine the
in-line code generator. For prototyping many multirate systems, it is will probably be
necessary to usethemultirate code generator.

APPENDIX A
A Baud-rate Timing Recovery Scheme

51 t,ni!cVtUal^abriel.^,fe ^P^enting »e QAM receiver is shown in figure
Iil^ShTS?*'• If f8fly Standard md was described ta Section 5- ™» sectionZtv^ *6 ^onthm for estimating the phase error between the receiver baud
clock and the incoming baud interval. This estimator was used in the timing recovery

When using Gabriel in the simulator mode, it was noticed that an error in sam-
nerglT,a^,^m^ted"^ ifflb?lanced Klin the equivilent discrete-time channel. That is, the difference between the pre-cursor and post-cursor components of the
ISI was seen to be approximately proportional to the timing phase error A sfarofe=,orof this differential ISI was implemented around iteSS^S* tiZg
recovery loop based on this estimate converged for baseband and passband receivers
%£?£!£ ™e,e$Tat0ris dcScribed ^"^ely for asimple receive pulse, andmore graphically for the more general cases. However, the result is the sani as asto
chastic gradient timing recovery algorihtm [3], and this description provides amore
geomernc intapretauon to the update equations. Timing phase error t is defined for
-Tu^rKxZT^n as in figure 15. A demodulated, equalized, isolated pulse is
shown sampled with both positive and negative timing phase error. UndeTme*cir*
cumstances the samples represent the equivilent discrlS-timeXnd? a?d Z Z
for r^ £? !XamP C' **«!"*»*?** meets the zero-forcing criterion. Note thatfor t>o the pre-cursor ISI ts negative while the post-cursor component is positive.
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Figure 15. Positive and negative timing phase error for received isolated pulse with a zero-
forcing equalizer. The equally spaced samples also represent the equivilent discrete-time
channel and ISI. For t>0 pre-cursor iSI isnegaitve and the post-cursor contribution is posi
tive. The situation is reversed in the case of x<0.

Figure 16. Positive and negative timing phase error for received isolated pulse with a non-
ZF equalizer. The samples also represent the equivilent discrete-time channel and ISI. For
T>0 pre-cursor ISI is less than the post-cursor contribution. The situation is opposite for
t<0.

17

When i<0, the situation is opposite. An example of a non-zero-forcing equalized
pulse, figure 16 shows the same sampling on apulse with zero-crossing intervals less
than the baud period. The relationship between differential ISI and t arc similar in
both these examples.

To quantitatively show the relationship between ISI imbalance and x, assume
that the received QAM or PAM signal has been equalized and demodulated. The
complex equivilent baseband received signal is

*(0= ZAkb(t-*-kT) (2)

where Ak are the possibly complex symbols of the constellation, and b(t) is the real
equivilent baseband pulse which describes the transmit pulse through the channel.
After equalization,

v(0=J I,Akb(t-*-kT^)h<y)dy
—*

(3)

where h(t) is the equalizer impulse response. Interchanging integration and



Stephen How UC Berkeley

summation and then sampling at t=nT gives

yW= %Ak Jb(nT-*-r-*T)h(y)<*y

The integral repesents the equivilent discrete-time channel since

y(n)= £ A(k)p£n-k), p,(«)= j6(nT-x-<y)ACy)<fY

For x=0 and a zero-forcing equalizer, b(t-nT) and h(t) are orthogonal for all n*0.
Then po(n )=5(n) and there isno isi. Consider the simple case where

IntlT
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(4)

(5)

(6)

are 0% excess bandwidth Nyquist pulses. In this simple case the convolution of two
sine functions is itself asine function, and sampling the sine function at f=nT-x gives
the equivilent channel

Pt(«)=P(«T-x)=fe(r)*A(f)l sin(2ftf/r)
IntlT

r-nr-t

(7)

For this simple case, p^-1) (pre-cursor ISI) and p^l) (post-cursor ISI) is plotted for
T,AOW//2<T<r6oittf/2 in figure 17. Pre-cursor ISI is positive and post-cursor ISI is nega
tive for -7w/2<x<0, and visa versa for \<Thavda. Their difference, the "differential
ISI" is also plotted against x. This differential ISI isn't amonotonic function of x, but
indicates the required direction for phase correction. Since timing phase is corrected
for in adigital PLL, only the sign ofxisimportant anyway.

In the general case where the equalization isnot zero-forcing, the differential ISI
is still a similar function ofx. In figure 18 and figure 19, pre-cursor and post-cursor

post-cursor ISI

pre-cursor ISI

Figure 17. Pre-cursor and post-cursor ISI as a function of timing phase error t The dif
ferential ISI as a function oft. The arrows show the direction of thephase adjustment as a
function of t.
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ISI is shown for pulses with zero-crossings at intervals slighdy larger and smaller than
Tw. The differential ISI versus x for both these cases have the same shape as the
zero-forcing case. Looking at this timing recovery scheme graphically, equalizing the
pre-cursor and post-cursor ISI is equivilent to centering isolated pulse as in figure
15 and figure 16 and obtaining x=0.

The simple estimator ofdifferential ISI in the receiver uses 3input samples to
the sheer, and 1sliced symbol. Trie algorithm for three transmitted symbols -1-i, -1+i,
and l+i are received. The received version ofthe symbol -1+i is affected by the other
two transmitted symbols according to the ISI. If post-cursor ISI is larger than pre
cursor ISI, then the received version of -1+i would be "drawn" towards 1+i In other
words, the received data symbol will contain alarger component ofthe future symbol
ifPt(l)>Pt(-l). In general, an error vector from the slicer output to the slicer input is

post-cursor ISI
pre-cursor ISI

Figure 18. Pre-cursor and post-cursor ISI as afunction of timing phase error x. Differential
ISI as afunction of x. The equalized receive pulse has zero-crossings at intervals >Tbaml.

— post-cursor ISI
pre-cursor ISI

Figure 19. Pre-cursor;and post-cursor ISI as a function of timing phase error x. Differential
i&i as afunction of t. The equalized receive pulse has zero-crossings at intervals <7^.
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Q0O A(k+1)

< h

A(k-D

Figure 20. Three received symbols arriving in a clockwise order. The difference vector
from theslicer output -1+1 totheslicer input shows a component in thedirection ofthe future
sample.

computed. The projections of this error vector onto the previous and future transmit
ted symbol vectors gives an estimate of the pre-cursor and post-cursor ISI com
ponents. The difference of the components is then used as an estimator of the dif
ferential ISI

A/^^^-c^^.j-^-^M^^^-jeiH^.,-^^ (8)
where the Ak 's are the slicer inputs and Qk is the slicer output. Note that if the previ
ous and the future sample are the same symbol, the timing phase estimate will be
small. This corresponds to the case when the transmitted sequence doesn't contain
any timing information, as 101010101.... On average, for awhite symbol stream tim
ing information will beavailable at 1/2 the symbol rate, since

M&-i*&+i]=5 (9)

Assuming AAS/^ =*x, then the timing phase update equation can direcdy use the
above inner product as

i=RejAT=Re^H2*)*G4*-r*W•} (10)

This result is equivilent to Qureshi [4], but provides a graphical interpretation rather
than a derivation based on an approximated discrete-time derivative. The form of the
estimator shows it can beeasily implemented around the slicer.
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Figure 21. The Gabriel universefor the QAM receiver.
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