Copyright © 1994, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CODE GENERATION FOR MULTIRATE
DSP SYSTEMS IN GABRIEL

by

Stephen How

Memorandum No. UCB/ERL M94/82

26 October 1994

CODE GENERATION FOR MULTIRATE
DSP SYSTEMS IN GABRIEL

by

Stephen How

Memorandum No. UCB/ERL M94/82

26 October 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

CODE GENERATION FOR MULTIRATE
DSP SYSTEMS IN GABRIEL

by

Stephen How

Memorandum No. UCB/ERL M94/82

26 October 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

CODE GENERATION FOR MULTIRATE DSP SYSTEMS IN GABRIEL

Stephen How

Master’s Degree Report
UC Berkeley

ABSTRACT

Gabriel's code generator allows for rapid, real-time prototyping of DSP systems described as
Syncronous Data Flow graphs. The static scheduling of the SDF graphs allows for efficient
buffering between actors and a simple in-line code compilation technique. Multirate SDF
graphs presented a problem for in-line coding because of redundancy. A technique for code
generation of multirate systems is developed using a specialized scheduler, iteration, and a
modified static buffering scheme. A 2400bps voiceband data channel is developed as an
example for the multirate code generator.

MULTIRATE CODE GENERATION 1

i. intreduction

Gabriel’s capacity to automatically generate assembly code for DSP systems
described as syncronous data flow graphs makes it very powerful as a fast-prototyping
system. In SDF graphs, actors representing DSP functions consume and produce a
fixed number of samples on the data arcs connecting them. The SDF model facilitates
a systematic method of scheduling the actors (DSP code) on the processors of the DSP
hardware [1]. Because of the syncronous nature of the data flow model, DSP code for
the entire graph may be compiled together and downloaded into the DSP program
memory. The code Gabriel produces is an in-line placement of the actor codeblocks
in the sequence of the schedule [2). This implementation uses a low overhead staric
buffering scheme which provides good runtime efficiency. However, in-line code can
be very inefficient in terms of program length, especially for DSP systems with
several sample frequencies. Many DSP applications are multirate, with unirate sub-
systems producing or processing larger blocks of data. These systems are easily

described to Gabriel in an SDF graph, but the generated in-line code may be impracti-
cally long.

This report documents a method of producing efficient iterated in-line code for
multirate graphs presented to Gabriel. This method retains in-line code and static
buffering for runtime efficiency, and places loops around repetitive sequences of the
schedule. Arbitrary graphs are handled, and an attempt is made to organize loops to
minimize runtime overhead. The system is currently only implemented for single pro-
cessor code generation, although a simple version for the multiprocessor case may be
modified from the existing code. This multirate capability is implemented as a set of
additions to the Gabriel code, rather than modifications to it. These functions required
to implement iteration are arranged as a preprocessor to the original code generator as
shown in the block diagram of figure 1. The organization of the report roughly fol-
lows the sequence of the preprocessor after an initial description of iterated in-line
code.

As a typical example of a real-time application using several sampling rates, a
2400bps voiceband data channel was developed on Gabriel and implemented on a

scheduler] Ber splice
organizer schedule loopstars

L wead
SDFgraph ¢

[generator
*'l scheduler

Figure 1. Code generation flow diagram. The top path includes pre-processing for the cod-
ing of multirate graphs. The bottom path is the original code generation method.

Stephen How UC Berkeley 2

DSP56000 processor with a memory mapped A/D converter. An algorithm for baud
rate timing recovery was developed, and has a geometeric interpretation described in
the appendix.

2. Problems of In-line Code

This section first reviews the techniques of static buffering and in-line code origi-
nally used by Gabriel. The shortcomings of this approach are shown for multirate
SDF graphs and, as an alternate form of generated code, iterated in-line code is pro-
posed. The details of its implementation are described in the following sections.

2.1. In-Line Code

Gabriel uses an in-line technique for code generation. From the SDF universe,
where each star produces and consumes a known number of tokens per firing, a
schedule of star firings is constructed. The schedule is then directly translated into
code by subsituting instances of the stars with their respective code templates.

Code templates are the blocks of DSP assembly code that perform the function
of a star. Typically, stars consume (input) and produce (output) samples on the data
arcs using symbolic absolute memory references:

move x:in,a

{body of code)

move ax:out

When code is being generated by Gabriel, the absolute addresses are computed and
subsituted for "in" and "out" in each instance of the star.

The data buffering between stars can be handled using absolute memory address-
ing due to the static buffering technique, a benefit of the SDF model. A static buffer
representing a data arc is constrained to a have a certain length, so that each seperate
invocation of a star references the same buffer locations. In the example of figure 2,
the arc is implemented as a static buffer of length 6. At least 3 locations are needed to
hold the samples written by A before they are read by B. The buffer is shown after
AB. Note at the end of the schedule, after ABABB, the pointers return to their initial
positions. In general, the length of a static buffer, L, must divide into the total number
of samples produced on that arc in one period, N, an integral number of times. This is

w>w}v>
-

Figure 2. A simple SDF graph, its scheduls, in-line code, and static butfer. The pointers
are shown after one firing of A and B.

MULTIRATE CODE GENERATION 3

the number of times the r/» pointcrs wrap around the buffer in one period of the
schedule. From this set of possible L’s, the smallest lengtls larger than the minimum
required is usually chosen.

2.2. lterated In-Line Code

In-line code is a simple, run-time efficient way to implement an SDF universe.
Since buffer management is handled at compile-time, the only overhead is the copy-
ing of samples from the data buffer to an asithmethic register. However, because in-
line code is simply a direct translation of the schedule, a long, repetitive schedule will
result in long, redundant code. This is generally the case for systems with interpola-
tion, decimation, or other sample rate changes. For example, nested sample rate
changes are common, as in the simple graph of figure 3 which represents a PAM
transmitter with redundancy coding. A directly coded schedule would result in 48
repetitions of the D/A star codeblock, and 12 instances of the FIR. A similar
transmitter, without coding, required about one-half of the DSP’s program space in
the lab’s test setup. Any coding of the bit stream would have produced code exceed-
ing the available program memory. It’s easy to imagine other SDF examples with
high sample rate ratios involving complicated stars producing prohibitively long code
(e.g. subband coding using FFT’s).

A solution was sought that would work with Gabriel’s existing code generator
for simplicity, and also for the efficiency of the static buffering scheme. Many
methods for just reducing the program space requirement can be imagined where the
star’s codeblocks reside in memory as subroutines, and the main program would con-
sist of calls following the schedule. Buffer pointers could be computed at compile-
time and passed in the subroutine calls, or buffers could maintain their own r/w
pointers during runtime. However, the overhead required of these schemes is expen-
sive in real-time applications, especially in fine-grain SDF programming.

In the modified code generation technique, repetitions of sequences in the
schedule are coded as software loops around in-line code. First, a schedule is put into
abbreviated form in which repeated patterns are replaced by a period of the pattern
and its repetition factor. This form is called the iterated form of the schedule. In

: SB3T |3 1 1
bit |1 5 ‘ FIR 6 R D/A

source coding

AAAAABCDDDDDDDDDDDDDDDDCDDDDDDDDDDDDDDDDCDDDDDDDDDDDDDDDD

Figure 3. A PAM transmitter as an example of a graph with multiple sample rates. Its long
schedule is representative of its in-line code.

Stephen How UC Berkeley 4

figure 3 for example, the flat schedule is abbreviated as (5A)B(3C(16D)). As in-line
code looks very inuch like its schedule, iterated in-line code will look very much like
the iterated schedule with the parenthesis subsituted with code implementing the
loops. Most importantly, the code will be of a manageable size, and will allow for
previously impractical multirate applications to be implemented.

3. Scheduling

The first problem in generating efficient code for a multirate universe is to obtain
a compact, iterated form of the schedule. Any valid schedule can be grouped into an
iterated form, but since loops require runtime overhead, it is desireable to minimize
the number of loops, and maximize their iteration count. In general, it is more desire-
able to code a compact, orderly form of a schedule than a long, scattered one. In addi-
tion to being more efficient in runtime and storage, the code is more readable when in
iterated form.

3.1. Minimum Buffer Size Scheduling

Initially, Gabriel’s existing scheduler was used in the multirate code generation
path in figure 1. This scheduler was concerned only with keeping buffer sizes minim-
ized, and the resultant iterated schedules were very inefficient. To minimize buffer
sizes, the scheduling algorithm preferentially fires stars whose output buffers contain
less than the number of samples required by its dependents. A fireable star that would
produce excess samples on these arcs is scheduled only if it is the only fireable star.
In this manner, an attempt is made to data arcs are kept as small as possible. How-
ever, the schedules produced by this algorithm are not satifactory for general multirate
systems. Consider the multirate graph in figure 4. A compact, orderly form for the
iterated schedule might be HI(2(SABCD)EFG). However, the old scheduler produces
ABCFHIABDACD(ZBCDA)BCDEGF(SABCD)EG. The main fault of this scheduler
is its inability to recognize natural flow in the graph. The path ABCD should be
treated as a whole, where no star should fire unless the entire sequence can be
scheduled. Because of this, the old scheduler tends to stagger samples in the data path
with sequences like ABCABAF ... and then ... DCDBCDABCD This problem is
seen to be even more severe in a practical graph representing a QAM data transmitter.
The scheduler produces an iterated schedule that is still 2/3 as long as the flat version.
By comparison, a hand-scheduled iterative form would be about 12 times shorter than
the flat schedule.

3.2. Multirate Scheduling

A new scheduling algorithm was developed that generates a highly ordered, flat
schedule by recognizing the overall flow of the multirate graph. A pattern organizer
later groups this schedule into a compact iterated form. This algorithm is described
using the examples of figure 4 and figure 5, and a general argument for its effective-
ness is given.

First, the scheduler partitions the multirate sdf graph into groups of connected
stars of the same frequency. The frequencies of the stars are calculated by Gabriel at
connect-time, and represent the number of times a star fires in a period of the

MULTIRATE CODE GENERATION 5

Figure 4. Muttirate SDF graph. The graph grouped into connected stars of the same fre-
quency. 2D stands for two delays on the arc.

schedule. Consider the example in figure 4. The groups are identified by a dotted
encircling and their sample rate is noted inside in bold. Assuming the multirate graph
has consistent sample rates (i.. a schedule exists), the groups partition the sdf graph
into a simplified universe where the groups are galaxy-like structures. Most impor-
tantly, because these groups consist of connected stars of the same frequency, only
one firing of each star in the group is required to fire the quasi-galaxy. Furthermore,
an ordering of these stars exists so that the buffer sizes for the internal arcs are not
increased. This one-pass schedule of the group stars is valid whenever the quasi-
galaxy is fireable, and will be referred to as a sub-schedule.

Then, if a multirate graph is partitioned, and a schedule exists for the simplified
graph, sub-schedules for the groups may be subsituted into the simplified schedule. In
figure 4, the simplified schedule is X(2(5Y)Z) and subsituting ABCD for Y, HI for X,
and EFG for Z, the compact schedule of HI(2(SABCD)EFG) is obtained.

A more complicated situation exists when the simplified graph is initially
deadlocked. This can occur for universes that are initially schedulable, but after parti-
tioning, the delays that provide starting points become internal to the quasi-galaxies.
For example, in figure 4, if the two delays "2D" were removed and 1D was placed on
the arc between H and I, a schedule would still be exist for the graph. However, on
the level of the simplified graph, the 2D delays are gone and the graph is deadlocked.
Assuming a schedule exists for the actual graph, the scheduler must find a set of stars
to fire to break the deadlock. There are fireable stars within the groups, however if
they don’t help break the deadlock, then they only disorganize the sequence. Firing a
star without firing the rest of the stars in its group means that later the rest of the group

Stephen How UC Berkeley 6

will fire without it. This tends to make the iterated schedule less compact, and
decrease the efficiency of the code. The result would be similar to the original
scheduler’s output. In the modified, deadlocked example of figure 4, initially stars A,
1, and F are fireable. It’s clear that A and F arc fireable stars that do not help to break
deadlock, while firing I immediately breaks the deadlock. In general, the scheduler
needs to "initialize" the graph by firing sequences inside groups that produce samples
on their output arcs. After the delays are thus pushed out, scheduling of the groups
can continue.

Of course, there are many other examples of simplified graphs that are initially
deadlocked, and cannot be "initialized" as above. Consider the graph in figure
S which is initially deadlocked in its simplified form. By searching for sequences that
produce samples on quasi-galaxy output arcs, AB is identified. Notice that even if AB
is scheduled, the same condition will exist for the next 4 schedulings of AB.
Meanwhile, the arc between A and F is unnecessarily accumulating samples. We are
forced to search for deadlock-breaking sequences at each top-level scheduling step.

At this point, a general solution to the deadlock problem would be to break the
group containing the required delay or source into separate groups. A new group is
formed that contains only the deadlock breaking sequence. The rest of the stars in the
original quasi-galaxy are re-partitioned into groups of connected stars. This is done in
figure 5, where the rate 10 group was re-partitioned after removing AB. The result
being a simplified, schedulable graph. Also note that in the resulting schedule
(2(5ABF)D)(10C) is more efficient because the buffering between A and F is minim-
ized. The general algorithm for the multirate scheduler is outlined in below:

partition graph
loop
(while not_deadlocked
schedule_groups)
(if done, return
elseif no_fireable_stars, error)
else re-partiton_group)

Figure 5. A multirate graph, deadiocked in its simplified form. The graph with re-partitioned
group.

MULTIRATE CODE GENERATION 7

8o loop

3.3. Top Level Scheduling

It has been assumed that the algortihm above produces a schedule with a high
degree of order. Order is actually more dependent upon the top level scheduler than
the group sub-scheduler, since the fixed sub-schedules are just subsituted for the group
instances. Consider the simplified graph of figure 6. We expect a schedule of
(7Z)(5Y)(3X)A although XYZXYZXYZYZYZZZA or some worse schedule would
also meet the minimum buffer size criterion. Note that if the scheduler checks for
fireable groups in a fixed order, this problem is avoided. Currently, the scheduler
sequences through a list of groups arranged in descending order of frequency, check-
ing if a group is preferentially fireable. After scheduling a group, the search restarts at
the beginning of the list. In the case when a group is broken apart, the new groups
are placed in the list in the position of the previous group.

3.4. Organizing Iteration in the Schedule

The product of the multirate scheduler is a flat schedule which contains repetitive
sequences of stars. The repetition is a product of the sample rate relationships of the
simplified, partitioned graph. The last scheduling step is to reduce the flat schedule to
the compact iterated form. This task is merely one of pattern matching, and doesn’t
require any information from the graph. However, in the next section on buffering,
the iterated schedule will again be interpreted in terms of the graph.

The algorithm for pattern orgainization maximizes the degree of iteration in
terms of minimizing the length of the output schedule. This criterion is implemented
as a preference to represent ABABABABAB as (4AB) rather than (2ABAB), for
instance. The basis for the algorithm is a function that finds repetition in a sequence,
which is called recursively to form nested loops. The algorithm is straightforward,
and the details can be found in the code.

Figure 6. A simplified graph of a multirate universe. The scheduling of the galaxies defines
the compactness of the iterated schedule.

Stephen How UC Berkelsy 8

4. Code Generation

The previous section describes how information from the SDF graph is used to
produce a compact schedule for a multirate universe. This section covers the prob-
lems of adapting static buffering to iterated in-line code. In static buffering considera-
tions, the information required from the graph is different from the partitioning of the
previous section. Galaxies will again be encircled, but the stars inside are not neces-
sarily of the same rate.

4.1. Local Buffers

The task of generating iterated in-line code is more difficult than generating sim-
ple in-line code because of the combined usage of static and non-static buffering. As
a simple example of iterated in-line code, consider figure 7. Because of the 3 delays
on the arc between B and C, its schedule is CA(2BCCBC)BCCBD. The idea of
iterated in-line code is to code (2BCCBC) as a loop of 2 around in-line code for
BCCBC. First note that for the in-line code for BCCBC, B will need to read from 2
fixed buffer locations, and C will write to 3 fixed locations. However, B would nor-
mally be connected to A by a buffer of length 6, and C connected to D by a buffer of
length 9. A solution to this problem is shown in figure 7 where two shorter arcs are
temporarily subsituted during the loop. These temporary local buffers are drawn as
dotted arcs, and the large arrows indicate the samples that must be copied into and out
of them for each iteration. This copying is done at runtime by the code implementing
the loop.

In general, iterated in-line code uses static buffering almost identical to the usual
in-line code except inside loops certain buffers are subsituted by local, temporary
buffers. At the top level of the schedule, all buffers are static buffers, and code gen-
eration is the same as in-line. When a loop is encountered, buffers are subsituted
before in-line code is produced for the loop. The buffers to be subsituted are
identified by drawing a circle around the stars of the sub-schedule. The data arcs
entering the circle are loop inpur arcs, and the those leaving are loop output arcs.
These input and output arcs will be replaced by the local buffers during code genera-
tion in that loop. Also, for the sub-schedule to be correctly coded as in-line code,

Figure 7. Buffering requirements for iterated in-line code;

MULTIRATE CODE GENERATION 9

these encircled stars must form a galaxy. This is required because the internal arcs are
implemented as a set of fixed memory locations in the in-line code of the loop. No net
samples can accumulate on these arcs during an iteration.

4.2. Loopstars

Once the loop inputs and outputs have been identified, local buffers must be sub-
situted for them before code is generated for the loop. In addition, samples from the
input buffers must be copied to the local arcs before the loop body, and samples must
be copied from the local buffers to the output arcs after the loop body. Both these
functions are accomplished by loopstars which are subsituted for the parenthesis and
iteration factors of the iterated schedule. In the example of figure 7,
CA(2BCCBC)BCCBD becomes CA !top] BCCBC lend1 BCCBD. This flat schedule
is sent to Gabriel’s in-line code generator. The loopstars !top1 and !end1 need to have
compiler directive-type instructions to subsitute the buffers, and code generating
instructions to write the copying code. Note that these stars are spliced into the
schedule and not the graph, as with interprocessor communication stars. The splicing
of loopstars occurs before code generation as shown in figure 1, and in this step all
local buffers are identified, their sizes are determined, and their memory allocated.
The read/write pointers for the copying of samples from/to the loop input/output
buffers are also allocated. Once these parameters are determined for the loopstars,
they are used during in-line code generation as:

!topstar
save loop input and output buffers
subsitute local buffers
emit_code " do #" iteration_factor , !loop
emit_code {for each input
copy input samples to local buffers
update read pointer)

{ in-line code for loop }

lendstar
emit_code {for each output
copy local samples to output buffer
update write pointer})
emit_label !loop
restore loop input and output buffers

The actual DSP assembly code implementing the loopstars is made as efficient as
possible by making an attempt to implement the loop input read pointers and the loop
Output write pointers as DSP56000 address registers. While the loopstars are being
Spliced into the schedule, all the stars inside a loop are checked for unused address
fegisters. This is done from the innermost loop outward, and the unused registers are
first allocated to the inner loops. This is the most efficient allocation since the inner-
most loop is run the most often. The star must contain a declaration of its address
Tegisier use (see manual page for "defstar”), or it is assumed all the address registers

Stephen How UC Berkeley 10

are affected by the star.

The local buffers subsituted by the loopstars are similar to local variables used in
recursion. The iterated in-line code analogy to recursion is nested looping. An exam-
ple of local buffers and nested looping is shown in figure 8. The three drawings
represent the buffers that exist on the top level, in the first loop, and in the nested loop.
In going from the first loop to the nested loop, a second local buffer is generated for C,
and the code generator thinks that C’s first local buffer is the loop output buffer. Note
that the samples generated by C are first copied from the second local buffer to the
first 3 at a time, then when 9 samples £ill the first local buffer, they are copied again
onto the static buffer. This double copying is characteristic of nested loops where
there are two consecutive parenthesis. A more complicated compiler would eliminate
the unnecessary copying.

4.3. Global Buffers

So far it has been assumed that leaving the internal arcs of a loop as the static
buffers of the level above is valid. It is necessary that the arcs buffer data correctly
between star invocations inside the loop and between star invocations outside the
loop. The static buffer must also pass data between stars straddling a loop. To meet
the conditions for static buffering inside a loop, no net samples can be accumulated on
the arc. This condition is checked by a function in the block entitled "filter schedule”
in figure 1. This function is passed an iterated schedule and returns a valid iterated
schedule where all the buffers internal to a loop are static. This check is done recur-
sively to allow for nested looping. For example, consider the graph in figure 2 with
2D placed on the arc. The schedule is BABAB. However, (2BA)B is not valid since
the internal arc in the loop accumulates one sample per period. The exploded
schedule BABAB is returned. If A and B were actually loops themselves, then
BABAB will still contain those loops. In this manner, the maximum looping is main-
tained.

The above filter on the iterated schedule ensures that at all levels, internal arcs
can be implemented as static buffers. This means that buffering will be correct on
these arcs for star invocations within the same loop. But the global static buffers must

P24

Figure 8. An example of a multirate graph with nested Heration. The temporary local
buffers are shown as dotted arcs on hte top level; the first oop; and the nested loop.

MULTIRATE CODE GENERATION 1

also pass data between stars inside and outside of a loop. In the example of figure 7,
the schedule CA(2BCCBC)BCCBD has firings of B and C straddling the loop. For
the buffering between stars B and C to always be correct, it is necessary that a com-
mon static buffer size exist for all levels. In this example, B and C require a buffer of
size of 6 inside the loop, and also in the top level CAQBCCBD. The first firing of C
outside the loop consumes 2 samples from the arc, leaving one, and passes the buffer
pointers to the loop. The loop then correctly processes the samples on the arc. Since
the buffer is static in the loop, the buffer pointers exit the loop as they entered it.
Then, the rest of the top level schedule continues with one sample on the arc as
expected. In general, if a loop uses a static buffer for an internal arc and both required
buffer sizes are the same, then the loop has no effect on the buffer pointers as seen by
the outer level. However, the loop uses the samples on the arc initialized by the outer
level, and leaves the most current samples on the arc when it exits. This compatabil-
ity of global buffer sizes is also checked in the "filter schedule" block, because the
incompatable subschedules are returned exploded. After this block, a valid iterated
schedule is sent to the rest of the code generator.

5. Example - 2400BPS Data Channel

As an example of code generation for a multirate graph, a 2400bps 4PSK
voiceband channel was designed and implentented on Gabriel. The transmitter for the
channel consisted of a Motorola DSP56000 evaluation board connected to a modified
Magnavox CD player. The receiver was implemented on a seperate Motorola board
with an Ariel 12 bit A-to-D converter. Several different channels were used including
a DC connection, a Gabriel-based telephone channel simulatior, and an wireless IR
channel. The development set-up is shown in figure 9 with a DC channel.

5.1. The Transmitter

A PAM scheme was chosen that would be roughly suitable for use on a phone
line. Initially, a baseband binary antipodal channel was developed, then the adaptive
filter, iming recovery scheme, etc. were modified for a 4PSK constellation. A sym-
bol rate of 1225Hz was selected based on the CD player’s 44.1kHz clock (1225Hz =

e

la gnavox Ariel M ‘
sl a0 (|
P

ADS56000 D/A | LADSS000]

Figure 8. The hardware setup for the voiceband data channel examplo.

Stephen How UC Berkeley 12

44.1kHz/36). A 100% excess bandwith raised cosine pulse was used for the transmit
pulse. This pulse was rectangularly windowed to contain exactly 2 zero-crossings on
either side of the pulse. The carrier frequency was set at 3/2 times the symbol rate,
approx 1800Hz. This frequency spectrum was chosen to approximate a map needed
for full a duplex transmission (and without any knowledge of standards like v22.bis.)

The Gabriel universe for the transmitter is shown in figure 10. The graph is par-
titioned into groups of the same frequency. In the transmitter, most of the computa-
tion is done at the slower rate of 14.7kHz and then interpolated to 44.1Khz by a zero-
order hold for 3 samples. This is done to conserve processor time, since oversampling
the transmit pulse at 12 samples per baud interval is sufficient to keep the replicated
spectrums far out of band. Also, if 36 samples were used as a baud interval, the inter-
polating FIR filter implementing the transmit pulse would have 144 taps as well as
operating at 44.1kHz. The interpolation also provides a good example of a nested
schedule since it adds an intermediate 14.7kHz to the 44.1Khz CD rate and the
1225hz baud rate.

Three schedules are shown in figure 11. The first is the flat product of the origi-
nal scheduler. The length of the schedule is indicative of the DSP code, which loads
as 2.2k words in the Motorola’s 4k word memory. The second schedule is the iterated
form of the first, and shows that an optimized multirate scheduler is needed. Also,
grouping patterns for long schedules becomes impractical as the pattern recognizer
can require on the order of N2 comparisons, where N is the number of stars in the
schedule. Especially in Lisp, scheduling the simplified graph is many times faster.
Finally, the output of the multrate scheduler is listed, and its iterated in-line code is
266 words long.

Flgu'? 10. The gabriel universe for the QAM transmitter. The CD star performs the D/A at
44.1Khz.

MULTIRATE CODE GENERATION 13

(I56noise1l IS6quantizerl! I56noise2! IS6quantizer2! 156dc]| IS6integratorl| IS66x2! 156£ir1 1afl 1S6c1
56integrator! I56cos11 IS6sin1! lafl 1S6dcl S6integratorl] (56mult1! t56cos1! 156gain1| 56sinll lafl

156dc11 (56integratorl) 56mult2! 156gain1! IS6sinl! [S6add1! S6upsamplel| laf2 IS6magnavox1! I56black_holel!
156black_hole2! lafl 156dc1! I56integrator]| IS6multl! 156mult2! (S6cosi| [S6gain1l I56sin1) 156add1! 1af2
156magnavox1! 156black_holel! 156black_hole2! lafl 56dcll 156integrator1| IS6multl| IS6mult2! iS6cos1!
156gain]l S6sin1 laf2 S6magnavox1! 1S6black_holel! 156black_hole2! lafl 156dc1i 56integratorl |
I56upsamplell 1af2 I56magnavox1l 156black_holell 156black_hole2! 156dc1! 1S6add1! laf2 S6magnavoxil
I56black_holell i56black_hole2! 1$6multl| 56muli2! 560511 156gain| 563in1| a2 56magnavox1!|
I56black_holell 156black_hole2! 1af] i6integratorll S6upsample]! 1af2 IS6magnavox1! 156black_holell
156black_hole2! 56dc1! IS6add1! laf2 I56magnavox1 I56black_hole1! 156black_hole2! 156muhli S6mult2|
I56cos111S6gein1! 156sin1! laf2 IS6magnavox1i I56black_hole1! I56black_hole2! 1afl IS6integratorl|
156upsample1l laf2 IS6magnavox1! 156black_holel! I56black_hole2! 156dc1| 1S6addll 1af2 t56magnavox1!
156black_holell I56black_hole2! 56mult1! I56mult2! 156cos1 156gain1| 156sin1! laf2 IS6magnavox1!
IS6black_hole1l I56black_hole2! lafl I56integratorl| S6upsamplell laf2 IS6magnavox1! {56black_holell
156black_hole2 56dc1! I56eddil taf2 56magnavox1! IS6black_hole1! 156black_hole2! I56multl! 56mult2!
156cos11156gain1! I56sin1! laf2 IS6magnavox1l I56black_hole1! 156black_hole2! lafl [S6integrator]
I36upsample]! laf2 I56magnavox1! I56black_holel| I56black_hole2! 156dc1 156add1! 1af2 S6magnavox1i
I56black_hole1l I56black_hole2! 56multl! IS6mult2! 1S6c0s] | 156gainl| (56sin1! faf2 IS6magnavox1!
IS6black_hole1! IS6black_hole2! tafl I56integratorl! S6upsample]! 1af2 [56magnavox1! 56black_holel!
I56black_hole2! I562dd1! 1af2 56magnavox1! I56black_hole1! I56black_hole2! 56mult1l 56mult2l (56¢cos1!
I56gain1l I56sin1l !af2 (56magnavox1! IS6black_holell 56black_hole2! 1afl {S6upsample1! 1af2 [S6magnavox1|
156black_hole1! I56black_hole2! I56add1! [af2 56magnavox 1! IS6black_hole1! 56black_hole2! 56mulil!
I56mult2! I56cos1! 156gainl IS6sin1l laf2 i56magnavox 1! I56black_hole1l! {56black_hole2! 56upsamplel! laf2
I56magnavox 11 156black_hole1! 156black_hole2! (56add1! 1af2 I56magnavox1! I56black_holel! 156black_hole2|
156multl! 156mult2! 156cos1! 56gain1! laf2 I56megnavox1) 156black_hole1! I56black_hole2! S6upsamplel! laf2
IS6magnavox1! 156black_holel! I56black_hole2! 156add1l af2 IS6magnavox1l 56black_holell 156black_hole2!
I56mult! 56muli2! af2 56magnavox1| I56black_hole1! IS6black_hole2! IS6upsamplel! laf2 ISémagnavox1l
I56black_hole1l I56black_hole2! I56add1l 1af2 B6magnavox1! 156black_holell 56black_hole2! faf2 56magnavox1!
I56black_holell IS6black_hole2! I56upsamplel! !af2 I56magnavox1l t56black_holell {56black_hole2! laf2
I56magnavox1l 156black_hole1! [56black_hole2! laf2 I56magnavox1! IS6black_holel! I56black_hole2l)

(I56noise1l 56quantizer]! t56noise2! I56quantizer?! 156dc1 I56integrator1! IS6£ir2! 1566ir1! 1afl 1S6dc1|
I56integratorl! IS6cos1! IS6sin1! 1afl 1S6dcll I56integratorl! I56multl! (56cos1l 156gain1! 56sin1! 1afl

156dc1! I56integratorl S6mult2! 156gain1 ! 1S6sin1! I56add1! B6upsamplell laf2 IS6magnavox1! 56black_holel!
156black _hole2! lafl 156dc1! IS6integrator]| I56mult! IS6mult2! IS6cos]i I56gain]| S6sin1 I568dd1! 1af2
I56magnavox1! 156black_holel! I56black_hole2! laf1 156dc1! IS6integrator1! S6multl! I56mul2! 156cos1|
156gain1! I56sin1! faf2 I56magnavox11 156black_holell [56black_hole2i tafl 156dc1) (5 I56integratorl|
I56upsample1i !af2 IS6magnavox1! I56black_holel! IS6black_hole2! 156dc1! IS6add1! 1af2 56magnavox1|
I56black_hole1l I56black_hole2! 56multl! IS6mult2! 156cos1! 56gain! I56sin1! 1af2 I56magnavox1|
I56black_hole1! 156black_hole2! 1af1) I56integrator1l (S6upsample1l laf2 [S6magnavox1! 156black_holel!
I56black_hole2! 56add1! 1af2 (56magnavox1l I56black_holell I56black_hole2! 56multl! I56mult2l (S6cosi|
I56gain1! I565in1l laf2 I56magnavox1 I56black_holell 56black_hole2! lafl IS6upsamplel| 1af2 IS6magnavox1|
I56black_hole1! {56black_hole2! (56add1i 1af2 B6magnavox1! I56black_holel! 56black_hole2! 56multll
I56muli2! I56cos11 IS6gain1! I56sin1l faf2 156magnavox1! I56black_holel! I56black_hole2! 56upsamplel! 1af2
I56magnavox1! IS6black_holell 156black_hole2! I562dd1! laf2 IS6magnavox]! I56black_holel! 56black_hole2!
I56mult]! 56mult2! I56cos1! I56gain1! 1af2 56magnavox1! IS6black_hole1! IS6black_hole2! {S6upsamplell jaf2
I56magnavox1! I56black_holell I56black_hole2! (56add1! 1af2 (S6magnavox1| IS6black_holell 56black_hole2i
156mult1! I56mult2i 1af2 [56magnavox1! IS6black_holell 156black_hole2! 56upsamplel! 1af2 |56magnavox1|
I56black_holell 156black_hole2! 56add1l (2 !af2 I56magnavox1l 56black_holel! 56black_hole2!) S6upsamplel!
(3 1af2 I56magnavox1! 156black_holel! (56black_hole2!))

(56noise2! 56quantizer2! 156£ir2! IS6noisel | B6quantizerl! I566ir1 (12 IS6dc1 (56integrator 1afl
156cos1! I56multl! 156sin11 I56gain1! IS6mult2 156add]| I56upsamplel| (3 laf2 I56magnavox1| (56black_hole2!
I56black_hole1l)))

Figure 11. The schedules of the QAM transmitter: the original scheduler output, it's erated
form, and the output of the multirate scheduler.

Stephen How UC Berkeley 14

5.2. Receiver

The receiver was also implemented on a single processor Motorola evaluation
board connected to an Ariel A/D and D/A board. The analog front-end of the receiver
consisted only of the 12 bit A/D converter which was triggered directly by a signal
from the DSP56000°s SSI port. No external anti-aliasing or external pll circuitry was
required. The basic architecture of the receiver is shown in the simplified diagram of
figure 12. The signal is first filtered by a matched analytic bandpass filter and then
demodulated by the nominal carrier frequency before entering the timing and carrier

implementing this receiver is included in Appendix A which describes some details of
the timing recovery. The partitioned graph of connected groups of stars of the same
frequency is shown in figure 13. This simplified graph is initially deadlocked, and the
1225Hz group is be re-partitioned into 9 groups after pulling the delays out. The
resulting schedule is listed in figure 14, again compared to the original scheduler. In
this example, the receiver universe doesn’t contain as high a sample rate ratio as the
transmitter did, and the benefits of the scheduler aren’t as dramatic. However, if any
coding was added to the channel, iterated in-line code would again be critical in
implementing the system.

Figure 12. Simplified block diagram of the receiver implemented in Gabriel.

MULTIRATE CODE GENERATION 15

Figure 13, Partioning of Gabriel receiver universe into simplified graph. The graph is repar-
titioned 1o break the deadlock,

(I56data_source1l I56data_source2! 156fork1! IS6fork2! 1af9 1af10 I56data_source3! 1af11 laf12 [56zero_hld1!
I56quantizer2! 1af3 1S6sub2! car_recl %56gain] [562er0_hid2! laf? 56quantizer]! 1af8 [S6adda2]|

(56fork2! 1af12 I562ero_n1d2) 156fork1l 1af11 t56zero_hld| (2 (6 1562432211 156gain2) 1af2) IS6fir1l

I56data_source2| 156data_sourcell 15662 I56cx_mult2l) 56quantizer]| |af8 [S6dats_source3| |af

156quantizer2l 1af3 car_rec1%56gain] 1af10 56s5ub2! faf7 56subll 1af6 car_rec1%56cx_multl

car_rec1%56black_holel car_rec1%56dsplay_bql car_rec1%!laf] car_rec1 %56sin1 lafS [56gain3| car_rec1%56c0s1 !af4
S6cx_mulid! 156ex_lms]) 56cx_mult3| 156fork4! 1S6fork3| I56cx_edd1l 156gain6| 56cx_mult5! 156£ir3|

156gain7! (56add]| I56quantizer3| 56baud1| 156black_hole2! I56gainS| 156gaind) -

Figure 14. Three schedules for the QAM receiver: the original scheduler output, i's iterated
form, and the output of the multirate scheduler,

Stephen How UC Berkeley 16

6. Conclusions

A set of Lisp functions were written as a preprocessor to the Gabriel in-line code
generator to allow for efficient coding of multirate universes. Many DSP systems
operate at several sample rates, where the sample rate ratios may be very high, as in
speech coding, transform coding, modems, etc. Gabriel previously attempted to pro-
duce in-line code for these universes, and in many cases the generated code was
impractically long. A modified form of in-line code was proposed where loops are put
around the repetitive portions of the schedule. The existing Gabriel in-line code gen-
crator was used to produce this iterated in-line code with the use of loopstars using
directive-type instructions and local buffers. Thus the multirate code generation
preprocessor is seperate from the in-line code generator, and no modifications were
made to the existing Gabriel code. A scheduler designed for producing natural-flow
iterated schedules was developed to maximize the efficiency of iterated in-line code.
As an example of the multirate code generating system, a voiceband data channel was
developed and code was generated for this system which resulted in a dramatic
improvement compared to in-line code. Code was generated by other students for a
LPC-type speech coder universe which would not have been implementable using the
in-line code generator. For prototyping many multirate systems, it is will probably be
necessary to use the multirate code generator.

APPENDIX A
A Baud-rate Timing Recovery Scheme

The actual Gabriel universe implementing the QAM receiver is shown in figure
21. Its basic architecure is fairly standard and was described in Section S. This section
will describe the algorithm for estimating the phase error between the receiver baud
clock and the incoming baud interval. This estimator was used in the timing recovery
loop.

When using Gabriel in the simulator mode, it was noticed that an error in sam-
pling phase manifiested itself as imbalanced ISI in the equivilent discrete-time chan-
nel. That is, the difference between the pre-cursor and post-cursor components of the
IST was seen to be approximately proportional to the timing phase error. A simple
estimator of this differential ISI was implemented around the slicer, and the timing
recovery loop based on this estimate converged for baseband and passband receivers
in real-time. The estimator is described quantitatively for a simple receive pulse, and
more graphically for the more general cases. However, the result is the same as a sto-
chastic gradient timing recovery algorihtm [3), and this description provides a more
geometric interpretation to the update equations. Timing phase error 1 is defined for
“Tooua/2<TSTpoy/2 as in figure 15. A demodulated, equalized, isolated pulse is
shown sampled with both positive and negative timing phase error. Under these cir-
cumstances the samples represent the equivilent discrete-time channel, and thus the
ISL. In this example, the equalized pulse meets the zero-forcing criterion. Note that
for >0 the pre-cursor ISI is negative while the post-cursor component is positive.

MULTIRATE CODE GENERATION 17

B N

Figure 15. Positive and negative timing phase error for received isolated pulse with a zero-
forcing equalizer. The equally spaced samples also represent the equivilent discrete-time
channel and ISI. For T>0 pre-cursor ISl is negaitve and the post-cursor contribution is posi-
tive. The situation is reversed in the case of t<0.

LT,

N N~
vv Vv

Figure 16. Positive and negative timing phase error for received isolated pulse with a non-
ZF equalizer. The samples also represent the equivilent discrete-time channel and ISI. For
0 pre-cursor ISl is less than the post-cursor contribution. The situation is opposite for
1<0.

When 1<0, the situation is opposite. An example of a non-zero-forcing equalized
pulse, figure 16 shows the same sampling on a pulse with zero-crossing intervals less
than the baud period. The relationship between differential ISI and 1 are similar in
both these examples.

To quantitatively show the relationship between ISI imbalance and 1, assume
that the received QAM or PAM signal has been equalized and demodulated. The
complex equivilent baseband received signal is

x(,)=t§, A (t——kT) @

where A, are the possibly complex symbols of the constellation, and b (z) is the real
equivilent baseband pulse which describes the transmit pulse through the channel.
After equalization,

Y= | T AbGaATph()dy)

a0 kmse

where h(t) is the equalizer impulse response. Interchanging integration and

Stephen How UC Berkeley 18
summation and then sampling at r=nT gives

y()= T A [b(T—y-kT)h(W)dy)
kw—es —ee
The integral repesents the equivilent discrete-time channel since

y(n)=ki AR)p(nk), pn)= [b(T—ph@)dy)

For 1=0 and a zero-forcing equalizer, b(t~nT) and h(t) are orthogonal for all nx0.
Then py(n)=8(n) and there is no isi. Consider the simple case where

=p (1)< SNERL/T)
b(@)=h()= 2mt /T (6)
are 0% excess bandwidth Nyquist pulses. In this simple case the convolution of two
sinc functions is itself a sinc function, and sampling the sinc function at r=nT—1 gives
the equivilent channel

P(n)=p(nT)= b(t)*h (t)] R MJ)]
m /T t=nT—

For this simple case, p(-1) (pre-cursor ISI) and p(1) (post-cursor ISI) is plotted for
Taud/2<T<Tpgyq/2 in figure 17. Pre-cursor ISI is positive and post-cursor ISI is nega-
tive for ~T,,4/2<1<0, and visa versa for 1<T,,4/2. Their difference, the "differential
ISI" is also plotted against . This differential ISI isn’t a monotonic function of 7, but
indicates the required direction for phase correction. Since timing phase is corrected
for in a digital PLL, only the sign of 1 is important anyway.

In the general case where the equalization is not zero-forcing, the differential ISI
is still a similar function of . In figure 18 and figure 19, pre-cursor and post-cursor

25 S

0 0
-25 St
IR 0 ™” & V7] 0 ™”

== post-cursor ISI
=== pre-cursor ISI

Figure 17. Pre-cursor and post-cursor IS! as a function of timing phase error . The dif-
ferential ISI as a function of 1. The arrows show the direction of the phase adjustment as a
function of 1.

MULTIRATE CODE GENERATION 19

ISI is shown for pulses with zero-crossings at intervals slightly larger and smaller than
Toaus- The differential IST versus 1 for both these cases have the same shape as the
zero-forcing case. Looking at this timing recovery scheme graphically, equalizing the
pre-cursor and post-cursor ISI is equivilent to centering isolated pulse as in figure
15 and figure 16 and obtaining 1=0.

The simple estimator of differential ISI in the receiver uses 3 input samples to
the slicer, and 1 sliced symbol. The algorithm for three transmitted symbols -1-i, -1+,
and 1+ are received. The received version of the symbol -1+i is affected by the other
two transmitted symbols according to the ISI. If post-cursor ISI is larger than pre-
cursor IS, then the received version of -1+i would be "drawn" towards 1+i. In other
words, the received data symbol will contain a larger component of the future symbol
if p(1)>p«(~1). In general, an error vector from the slicer output to the slicer input is

25 S

—— post-cursor IS]
=== pre-cursor ISI

Figure 18. Pre-cursor and post-cursor IS| as a function of timing phase error 1. Differential
ISI as a function of 7. The equalized receive pulse has zero-crossings at intervals > Ty ..

25 5

0 0
-25 -5 . L 1 N
-T2 0 ™ -T2 0 7"
— post-cursor IS]
=== pre-cursor IS]

Figure 19. Pre-cursor and post-cursor ISI as a function of timing phase error 1. Differential
IS! as a function of 1. The equalized recsive pulse has zero-crossings at intervals < Tocud-

Stephen How UC Berkeley 20

o A®)]

Q)

A(k+1)

v

Figure 20. Three received symbols arriving in a clockwise order. The difference vector
from the slicer output -1+i to the slicer input shows a component in the direction of the future
sample.

computed. The projections of this error vector onto the previous and future transmit-
ted symbol vectors gives an estimate of the pre-cursor and post-cursor ISI com-
ponents. The difference of the components is then used as an estimator of the dif-
ferential ISI

AlSlee = (Ar= Q1) A1~ (Ar= Q1) Ar 1 =(As - Oy) (As = Arsy) (®)

where the 4, ’s are the slicer inputs and Q, is the slicer output. Note that if the previ-
ous and the future sample are the same symbol, the timing phase estimate will be
small. This corresponds to the case when the transmitted sequence doesn’t contain
any timing information, as 101010101.... On average, for a white symbol stream tim-
ing information will be available at 1/2 the symbol rate, since

Pr(Qy1#0;11=.5)]

Assuming AJSI,,, =k, then the timing phase update equation can directly use the
above inner product as

A‘t'-‘Re{(Ak -0, (At-x-Ak-n)} (10)
This result is equivilent to Qureshi [4], but provides a graphical interpretation rather

than a derivation based on an approximated discrete-time derivative. The form of the
estimator shows it can be easily implemented around the slicer.

MULTIRATE CODE GENERATION

Figure 21. The Gabrie! universe for the QAM receiver.

21

Stephen How UC Berkeley 22

References

(1

(2]

3]

[4]

E.A. Lee and D.G. Messerschmitt, "Syncronous Data Flow", Proceedings of the
IEEE, September, 1987.

E.A. Lee, W. Ho, E. Goei, J. Bier, and S. Bhattacharyya, "Gabriel: A Design
Environment for DSP", IEEE Trans. on ASSP, November, 1989.

E.A. Lee and D.G. Messerschmitt, Digital Communication, Kluwer Academic
Publishers, Boston, MA (1988).

S.U.H. Qureshi, "Timing Recovery for Equalized Partial-Response Systems",
IEEE Trans. on Communications, December, 1976.

	Copyright notice 1994
	ERL-94-82

