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Abstract

The InfoPad project at the University of California at Berkeley is developing a mobile
computing environment in which the terminal device is a small and inexpensive hand-held
unit containing no user programmable hardware. The device, or pad, employs a pen-like
stylus as the primary user input tool; the pad is connected toa high-speed backbone network
viaradiopico-cells. The lack ofa general purpose processor in the pad distinguishes InfoPad
from similar efforts in an importantand unique way: all processing isperformed bycompute
nodes on the backbone network. This paperdescribes a distributedsoftware system that has
been designed and built specifically for InfoPad. The description is divided into two major
parts: architecture and implementation. The architecture is an abstract definition that
specifies how network compute resources are organized to meet InfoPad needs. It outlines
the basic structure necessary to deliver data from a network based application to a mobile
pad. This structure includes basic compute elements, interconnections, communication
protocols, algorithms, and programming interfaces necessary to perform tasks such as pad
location, data management, and connection handoff. Thesecond major section ofthe paper
is a detailed description of an implementation of this architecture. A working prototype is
nowin daily use on a general-purpose Ethernet; the prototype supports InfoPad application
development and research into issues such as radio cell power management, pad relocation,
management of bandwidth, and error rate detection and control. Multiple pads can be
running at any given time controlled by a number of network processes running on any
networkcompute node. Both the architecture and implementation are continually evolving,
and are expected to be a useful research platformfor the life of the InfoPad project.
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1 Introduction

This paper describes the architecture and implementation ofa prototype network-based software
system. The system was built to support research into mobile computing in a multimedia
environment. It forms a development testbed for the network portion of the InfoPad project
currently underway at the University of California at Berkeley.

The system is intended to giveInfoPad applicationprogrammersa "real world" environment
unavailable through analytical modeling or simulation. It is also intended to allow experimen
tation with mobile computing issues suchas connection handoff, bandwidth management, and
qualityofservice. In addition, it serves as a proof-of-concept vehicle to test project assumptions
and expectations in both quantitative and qualitative ways.

1.1 InfoPad Overview

The purpose of InfoPad is to develop a mobile computing environment in which the terminal
device is a small and inexpensive hand-held unit containing no user programmable hardware.
The device, or pad, employs a pen-like stylus as the primary user input tool. The pad is
connected to a high-speed backbone network viaradiopico-cells.1 The lackofa general purpose
processor in the pad distinguishes InfoPad from similar efforts in an important and unique way:
All processing is performed by compute nodes on the backbone network, and data transferred
between pad and network is "raw" in the sense that only primitive operations will be applied
to data on the pad. This approach transfers many tasks normally handled by a local machine
to remote processors, significantly increasing the burden placed on the network. The aggregate
bandwidth of an InfoPad data channel will be 2Mbps.

The system can be viewed as a pair of subnets that connect two endpoints. One of these
endpoints is the pad, and the other is an application process running on a network compute
node. The pad and radio hardware form a "wireless" subnet, and the backbone network forms
a "wired" subnet. The interface between these subnets is the point at which the network-side
radio tranceivers connect to the backbone network.

From the viewpoint of a pad, this interface is temporary i.e. the communication channel
between pad and wired subnet moves from interface to interface as the pad moves from cell to
cell. This action is called relocation or handoff.

The InfoPad project is technically split into two parts. The first is concerned with the
wireless subnet and the second is concerned with the wired subnet. This paper discusses the
wired subnet in detail; the wireless subnet will be covered only indirectly. The prototype
described here exists on the backbone network and has no specific knowledge of wireless subnet
hardware elements. However, the choice of hardware will eventually have a significant impact
on the network system, so developers have attempted to anticipate hardware needs and design
accordingly. At this stage of InfoPad, the network architecture contains elements that are
considered basic and general. Figure 1 shows a top level view of the InfoPad system.

1Pico-cells are about 10 meters in diameter. As an alternative, infrared communicationis under consideration.
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Figure 1: Top level schematic view of major InfoPad components.
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1.2 Goals

As an early prototype in a research environment, ultimate system requirements are difficult to
predict. However, given the role the prototype is expected to play, a set of important generic
goals can be identified:

• Speed: The system must be fast in order to process multiple streams of multimedia data
in real-time.

• Efficiency: The system must present a small overhead burden to the network compute
nodes, since processor cycles consumed by the system could otherwise be used by appli
cations.

• Simplicity: The system must be relatively easy to understand, easy to modify, and
portable. It must not pay for functionality not required [16].

• Reliability: The system must not present a burden to application programmers due to
frequent (or even occasional) unavailability.

• Concurrency: The system must be able to handlemultipleindependent streams ofdata
and control at a relatively fine granularity.

• Fairness: The system must give equal priority to all data streams unless explicitly told
otherwise by a priority based scheduling algorithm.

• Flexibility: The system must allow easy addition and modification of function so that
it can grow with the needs of the project. Individual components must be distributed in
order to take advantageof the compute power of a large network.

1.3 Organization

The terms prototype and system represent all elements of the network portion of InfoPad that
have been implemented in some form or are expected to be implemented in the near future.
This paper examines the prototype on two levels: an abstract architectural specification and
an implementation of that architecture on a realnetwork. There are aspects of the system that
are beyond the scope of this paper. They will be referenced where appropriate.

The architecture describes a software entity. The discussions that follow generally assume
that computation is not limited by specific technologies, and for the most part this is true.
A hardware link has been developed and extensively used for performance testing, but is not
considered to be part of the architecture [8].

The remainder of this paper is organizedas follows: Section 2 introduces InfoPad data types
and traffic characteristics. Section 3 describes the system architecture. Sections 4 and 5 examine
two aspects of architecture implementation. Finally, section 6 presents some conclusions and a
review of the degree to which the system meets the goals outlined above.
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2 InfoPad Data Types and Traffic Characteristics

InfoPad defines four types of traffic: audio, video, pen, and text/graphics. Each type can be
further subdivided, but the subtypes tend to differ in coding schemes rather than the demands
they place on the network.

Audiodata are bidirectional, unstructured (to the delivery service), relatively lowbandwidth
(8K bytes/second),and real-time. The real-time nature of audio implies that the data flow must
be rate and jitter controlled. Audio data are highly sensitive to jitter and loss.

Video data are unidirectional (server to pad), relatively high bandwidth, and real-time.
Although InfoPad can accept several format alternatives, the compression scheme currently
in use is VQ (compression ratio of about 30:1). Video frames under VQ are 2048 bytes in
length, resulting in a data rate of 61.44 kilobytes/second, or almost 500 kilobits/second at 30
frames/sec. This is a significant fraction of the 2Mbps aggregate pad bandwidth, but since only
one video stream will be supported per pad sufficient bandwidth remains for the other three
data types. Video tolerates a higher proportion of lost frames than audio.

Pen data requires very little bandwidth: about 500 bytes/second from the Gazelle pad
currently in use with the hardware link. Pen data are unidirectional and must be delivered
with high reliability. The most important performance metric for pen is loop-back latency
i.e. the time between pen contact and the appearance of ink on the display. Low latency is
critical when working in a draw window, where real pen-like behavior is expected. Since pen
recognition will be an important application, pen data must experience no loss.

Text/graphics dataare highly burstyand mostdataunitsare small. The greatest bandwidth
demand occurs when large changes are made in the screen image such as window creation or a
screen refresh. Much of the time a text/graphics stream willbe composed of cursor information.
Text/graphics is non real-time and can tolerate loss.

In summary, the four data types exhibit real-time and non real-time behavior, highand low
data rates, a continuum of loss tolerance, and varying jitter requirements. All four data types
may be present at the same time in a single pad stream, and multiple pad streams will coexist.
The communication channels used for InfoPad will therefore have to exhibit high bandwidth,
low latency, reliability, and real-time behavior. In practice, some requirements can be relaxed
for some data types if the network interface is parameterized.
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3 Architecture

This section describes the InfoPadnetwork prototypearchitecture. The architectureis a general,
high level description of what the system should do and how it should look to its users in terms
of a programming interface. The mechanisms by which these tasks are accomplished are left
to the implementation [7]. The system is intended to be distributed in a nearly arbitrary way
across the backbone network; although the software implementation described in this paper
imposes no restriction on physical location, integration with the wireless subnet will constrain
at least part of the system to reside on machines dedicated to the wireless interfaces. The
language of this section is purposefully abstract, since the architecture is a template that can
be applied to any compute environment.

The fundamental unit is the module. A module performs a specific set of related tasks;
the term is intended to underline the modular nature of the InfoPad architecture. Modules
communicate with each other through well-defined and tightly controlled interfaces. As an
example, microkernel operating systems are based on the premise that functional isolation
through modularization is essential for flexibility and power [1] [23]. Majorsystem components
such as file systems and virtual memory managers can be implemented as individual modules.
AnInfoPad module resides entirely ona single compute node, but there can be multiple modules
per node.

Modules are combined to form clusters and service groups. Clusters are differentiated by
their view of a pad. One cluster type is permanently associated with a single, specific pad
while the other is temporarily associated with a frequently changing set of pads. Connections
between members of a cluster tend to be created at start-up and exist for the lifetime of the
cluster. A service group is a related collection ofmodules that provide a specific set ofservices.
Forexample, one service group generates a "virtualpad" abstraction that hides pad relocation
mechanisms i.e. physical location ofa pad is irrelevant to a module using this abstraction. The
distinction between clusters and service groups will hopefully become clear as this discussion
progresses.

Modules are interconnected via generic network services that do not depend on a specific
technology. The prototype is connection-oriented in the sense that each module maintains state
with respect to associated modules: the peer module does not have to be explicitly named on
each data transfer at the highest level. The use of the term "connection" in the remainder of
the paper means that an association exists. It does not imply that low-level communication
protocols are connection-oriented. Forexample, the connection-oriented nature of the prototype
is maintained if either TCP or UDP are used as the network/transport level communication
protocol. The terms connection and association are used interchangeably throughout this paper
except in the context of communication protocol implementations, where a different meaning
will be indicated.

The architecture also contains two algorithms that specify methods for carrying out critical
system tasks. Modules, clusters, service groups, interconnects, and algorithms are discussed in
more detail in the following paragraphs.
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3.1 Modules

There are four primary module types: the Gateway, the CellServer, the PadServer, and the
TypeServer. There is one secondary module type called the Emulator. The TypeServer is
further divided into four subtypes, each dedicated to a particular InfoPad data type. Figure 2
shows one instance of each type and subtype with primary connections.

GRAPHICS

TYPESERVER

VIDEO

TYPESERVER

AUDIO

TYPESERVER

PEN

TYPESERVER

PADSERVER

GATEWAY

CELLSERVER
0

CELLSERVER

PAD (hardware)
or

EMULATOR (software)

Figure 2: InfoPad network topology: basic view.

Communication with a module takes place through a port. A module is connection-oriented
between ports; if two ports are associated internally, the module maintains state describing
that association.

The architecture specifies the basic function of each module i.e. that necessary to construct
a working InfoPad system. Developers are free to add capability provided the basic function of
the system is not impaired.
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3.1.1 Gateway

The Gateway is responsiblefor switching multiplestreams of pad data between the wiredsubnet
and the wireless subnet. The architecture imposes no restriction on the number of pad streams
or the nature of connections, although it does maintain a distinction between wired and wireless
peers. The Gateway does not operate on data in a stream except to determine and manipulate
source, destination, and control information. The Gateway must be capable of switching many
pad streams in a fair and efficient manner. The term Gateway arises from the modules role as
an interface between two dissimilar networks.

3.1.2 CellServer

Each radiocell associated with a Gateway is assigned to a specific CellServer. The CellServer is
responsible for traffic management in that cell, including quality of service, error rate detection
and control, power management, and participation in connection remapping when a pad relo
cates. Collectively, CellServers provide a control mechanism for the Gateway; all CellServers
associated with a specific Gateway must be fully interconnected, and must be capable of dia
log with CellServers associated with neighboring Gateways. Although figure 2 shows only two
CellServers, the architecture places no limit on the number of cells under a Gateway. The
CellServer has a "session-oriented" view of pad activity, that is, it maintains parameters for a
current PadServer-CellServer-Gateway association but does not understand the composition of
the data stream.

3.1.3 PadServer

The PadServer is responsible for traffic management for a specific pad. Its duties include
multiplexing type-specific data into a single type-interleaved stream, scheduling of service on
each data type, buffering, and demultiplexing of the pad stream into several typed streams.
The PadServer maintains an association with a unique Gateway/CellServer pair as long as its
pad resides in the cell under control of the CellServer. When the pad moves into an adjacent
cell under the Gateway, the CellServer connection is remapped. If the pad moves to a cell under
a different Gateway, both the CellServer and Gateway connections are remapped.

3.1.4 TypeServers

The TypeServer is the management agent for a particular data type for a specific pad. For
instance, the video TypeServer is responsiblefor assembling video traffic from all sources into a
single stream that is then passed to the PadServer. Generally, the videoTypeServer will choose
a single video source to play at any given time.

There are four TypeServer subtypes, corresponding to the four InfoPad data types: audio,
video, pen, and text/graphics. The PadServer allows only one of each subtype to be attached
at any given time.2 It is anticipated that TypeServers will define the application programming

This restriction may be relaxed in the future to accommodate new video transmission techniques.
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interface to the InfoPad network, although TypeServers can themselves be viewed as an ap
plication if the programmer is willing to provide necessary PadServer interface code. In other
words, the TypeServer is intended to present an abstraction of the pad that is defined by the
TypeServer author. In reality, TypeServers and applications will probably be developed in
tandem until a better understanding of InfoPad traffic characteristics is developed.

The main reason for the division of responsibility between PadServer and TypeServers is
to relieve the PadServer of application-specific tasks in order to limit PadServer function to a
manageable subset and allowPadServer implementations to stabilize quickly. Since a number of
developers will be working independently on type-specific aspects of the project, a well defined
and consistent programming environment is essential (see section 3.4.3).

One criticism of this organization is that TypeServers add an additional level of latency-
inducing overhead. Measurements show that this is not a problem for the current implementa
tion [8].

3.1.5 Emulator

Eventually, the InfoPad world will be equipped witha mature infrastructureincluding network
systems, wireless links, and hardware pads. Unfortunately, it will be some time before the
project can offer these facilities to software designers. To bridge the gap and allow development
to proceed, a software entity called the Emulator (or Emu for short) has been defined that
emulates the actions of a hardware pad. As much as possible, Emu has been designed to look
like a pad when connected to a Gateway. Emu also provides a platform for simulation of pad
capabilities. The Emulator is not a part of the architectureper se, but for the sake of clarity it
is referred to as a secondary module.

In a canonical InfoPad system, the Gateway must reside on a compute node connected
to wireless hardware while the CellServers can be anywhere on the network. In the software
prototype implementation, the Emulator removes this constraint. Emu also allows the system
to reside entirely in a relatively small, self-contained release directory. It is easy, therefore, to
bundle the system and move it to a different network. Completely independent systems can be
created to support independent research.
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3.2 Clusters

As described above, a cluster is a functional grouping of modules that differ primarily in their
relationship to a specific pad. Associations between modules in a cluster tend to be stable i.e.
once established, they are not likely to change. There are two types of clusters: the pad cluster
and the gate cluster. Figure 3 is a copy offigure 2 with clusters identified. The InfoPad naming
scheme, described in section 3.4.2, is based on the cluster. Each cluster is assigned a global
number and each module within a cluster is assigned an identifier unique to that cluster. The
module identifier is composed of a type specifier (e.g. Gateway or Padserver) and a module
number. This scheme forms a two-level hierarchy.

PAD/EMU 1

PAD/EMU 2

Figure 3: InfoPad network topology: clusters.
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3.2.1 Gate Cluster

A gate cluster contains one Gateway and all CellServers associated with that Gateway. Gate
clusters ideally live "forever" i.e. since the Gateway models a piece of hardware that will
eventually be part of the physical infrastructure and CellServers manage radio cells defined
by hardware, gate clusters are expected to be long lived in the absence of hardware failure.
Network connections between gate cluster members are permanent. Once established, they are
never dynamically remapped. The external view of a gate cluster is a set of pad links on the
wireless side and a set of pad cluster connections on the wired side.

3.2.2 Pad Cluster

A pad cluster is a collection of modules dedicated to a specific pad. It contains one PadServer
and (potentially) one TypeServer for each data type. For minimal operation, a pad cluster
must contain the PadServer, a text/graphics TypeServer, and a pen TypeServer. A pad user
may specify a startup environment, in which case there may be an audio TypeServer, a video
TypeServer, and/or applications in the basic environment. The modules in a pad cluster can
reside individually on any compute node, and associations between them are generally perma
nent in the sense that once a TypeServer is attached to a PadServer the association remains
in place until all modules are terminated. This is not an absolute requirement, however. A
user may choose to replace a TypeServer with another offering a different set of capabilities,
but this is expected to be rare. The lifetime of a pad cluster is determined by the pad user; it
can be started when the pad is powered up and terminated when the pad is powered down, or
it can remain in place for an undetermined period of time (over many power cycles). At any
given moment, a pad cluster is typically associated with a gate cluster on one side and a set of
applications on the other, although a gate cluster association will not exist if the pad is off or
out of range. The affect of pad relocation is a simple remapping of the pad cluster/gate cluster
association.
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3.3 Service Groups

A service group, like a cluster, is a grouping of modules for a specific purpose. While clusters
are responsible for management of a single pad or a localized set of pads, service groups are
concerned with providing system-wide services that apply equally to all pads. Also, clusters
are static in terms of inter-module connections while service groups are dynamic or have no
direct association between members at all. By analogy (in ISO terminology), the network layer
of a communication protocol offers a set of services to the transport layer above and makes
use of services offered by the data link layer below. The service groups in InfoPad tend to be
hierarchically related but are not necessarily so. There are three service groups defined in the
InfoPad architecture: delivery support, type support, and applications. Figure 4 is a version of
figure 2 with the service groups identified.

Figure 4: InfoPad network topology: service groups.

One of the essential distinctions between service groups is the level of abstraction they
give to a pad. The delivery support service group maintains detailed information about a pad,
including physical location, model, radio power level, and current bandwidth consumption. The
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type support service group understands the concept of a pad but noneof the specifics. It views
the pad as an entity at the other end ofa network connection that obeys a set of rules imposed
by a well understood interface specification. The application service group can be completely
abstracted from the pad. For instance, an application can bea window system client conducting
a dialog with a text/graphics TypeServer acting as a window system server. Figure 4 shows
the loose hierarchical relationship between service groups.

While the cluster isan important concept, theprototype implementation isorganized around
service groups because of natural programming interfaces created by pad abstractions. A pro
grammer working on one service group has little need for the implementation details of another
service group - the requirements for interconnecting service groups can be made verysimple.

3.3.1 Delivery Support

The delivery support service group includes the Gateway, CellServer, and PadServer modules
and a distributed library. The most important service offered by this group is the "virtual
pad" i.e. to a TypeServer, the PadServer is equivalent to the pad itself. TypeServers need
not concern themselves with the physical location of the pad or any other entity, including
the members of the delivery support service group itself. The delivery support library includes
a name database that maps a module ID into a network location. This database is hidden
beneath a standard uniform interface used byall "clients" to the delivery service. For example,
a video TypeServer wishing to contact pad 25 specifies the triple (PadServer, 25, video) to
the interface, and the delivery support library locates and makes connection to the PadServer
on behalf of the TypeServer. The TypeServer then sends video data along the connection to
the PadServer, and delivery support guarantees that the data will reach the pad regardless
of its current or future location (provided, of course, that the pad is available). If the pad is
not available, the PadServer may choose to discard the data or refuse connection. Although
TypeServers are the most common client, anyentity using the services of delivery support is a
client ofdelivery support; the Emulator is another example. The delivery service isdesigned to
be flexible and general i.e. unforeseen developments may require new, as yet undefined, clients
to make use of the delivery service.

A second service offered by the delivery support service group is a generalized out-of-band
control channel.3 This channel is logically separate from the buffered data channel, and is
designed to be customized for end-to-end control of clients or communication between clients
and delivery service modules. For instance, a TypeServer or application is likely to engage
in type or module specific dialog with a pad or a pad Emulator, possibly to set or retrieve
parameter values or module state. The delivery service allowsa client to carry on an arbitrary
dialog on the control channel by sending and receiving messages containing formatted data [1].
Delivery support does not interpret the contents of the payload unless instructed otherwise e.g.
when a delivery service module is the destination. The CellServer is expected to be the most
common endpoint for a delivery support module/client (internal) dialog.

3In-band implies that data sent first will arrive first i.e. an ordering is enforced. An out-of-band channel can
circumvent this ordering; a data unit sent out-of-band can arrive at its destination before data units that were
sent earlier. Out-of-band channels are typically used for priority data.
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Any services offered by the member modules themselves such as bandwidth control, mul
tiplexing/demultiplexing, and error detection/correction are also part of the delivery support
service set.

The delivery support service group is a user of its own services. That is, each delivery
support module uses a variant of the general interface for inter-module connection, and a
control channel exists between each connected pair of delivery service modules. The set of
control events available to delivery service modules is somewhat richer than the set available
to clients.

3.3.2 Type Support

The type support service group encompasses TypeServers and any additional modules required
to provide a type based interface to an application. Type support modules may consult
each other for cross-type information exchange. For instance, a pen TypeServer will notify
a text/graphics TypeServer when the pen changes position so that a cursor can be moved or
a window exposed. An audio TypeServer may perform dataconversion for a voice recognition
application. In the first case, the text/graphics TypeServer is making use of the service offered
by the pen TypeServer. In the second case, the voice recognition application is making use of
services offered by the audio TypeServer. In turn, the type support service group makes use of
the services offered by the delivery support service group. Sometimes the distinction between
applications and type support modules is fuzzy: voice recognition may ultimately be the role
of the audio TypeServer.

Although division oftype support module function is well defined in terms ofdata type rep
resented, the services offered are not. These will depend on demands made by applications not
yet written, and in some cases not yet visualized. Even though delivery support is internally
subject to change, its service set is stable in comparison to typesupport. This underscores the
need for a strong functional division between the type support service group and the delivery
support service group. Additionally, the roles of the two service groups are very different. A
"firewall" interface is essential.

3.3.3 Applications

This service group propagates InfoPad services to users. It is the least defined of the three
groups. The architecture does not specify the structure of the application service group; it is
identified here to complete the pad-to-user picture. There is currently only one application
builtspecifically for InfoPad: a window program that presents a view ofa note pad. The main
use of the Notebook application has been as a sink of pen data and source of text/graphics
data as part of an effort to measure pen latency [8].
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3.4 Inter-Module Communication

InfoPad Inter-Module Communication (IMC) is based on a connection-oriented packet based
model. Connections are maintained at a high level; underlying communication protocols can be
reliable or unreliable,4 connection-oriented or connectionless, stream or datagram, lightweight
or heavyweight. Physical media can be point-to-point, bus, ring, or other. Elements central to
IMC are ports, IDs, interfaces, and packets. Each of these elements will be discussed below.

IMC exists as a part of each module and in the delivery support service group library. The
library contains algorithms for address mapping, packet manipulation, and connection estab
lishment using a specific protocol. Several versions of the library exist, each using a different
low-level communication protocol. To support the goal of flexibility, most implementation de
pendent function is part of the library so that, if a different protocol implementation is needed,
much of the work needed for the change is performed by simply using a different library. How
ever, each module must include some non-general i.e. protocol specific IMC support. Ports, in
particular, are created and manipulated by the modules themselves. They are included in the
discussion of IMC because they are the IMC end points. All modules that communicate with
other modules must incorporate the library (it's hard to conceive of a module that won't need
communication).

3.4.1 Ports

Within a module, the point of interaction with other modules is the port. There are several
varieties of ports e.g. the link port is used by a Gateway for connection to a pad while the
PadServer port isused for connection to a PadServer. Each PadServer has up to four TypeServer
ports. Every module has a monitor port, which is dedicated to listening for a new connection
and accepting the connection if satisfied with the results of a brief handshake.5 In general,
a separate connect point will be spawned for each connection accepted by the monitor port.
For portability (flexibility) reasons, there are no hard coded addresses. All ports are created
and initialized through contact with the monitor port; this action is transparent to the calling
module. Ports differ mainly in semantics and their view of module data buffers.

3.4.2 IDs and Address Mapping

InfoPad network modules are uniquely identified by the triple (module type, cluster number,
module number). This triple is referred to as the module identifier, or ID. For Gateways and
PadServers, module number is synonymous with cluster number; for a CellServer, module
number is an identifier specifying a cell; for TypeServers, the module number is an identifier
specifying data type. In the prototype implementation described in section 4 there is only one

If the protocol is unreliable, IMC must implement error-free transmission algorithmsfor control information
and data types that require low or zero error transmission, such as pen. Otherwise, IMC uses the services of
standard reliable communication protocols such as TCP.

Similarity with Unix SOCKJ3TREAM terminology is not coincidental; the most common port implementa
tion uses TCP. However, even when other protocols have been used (e.g. UDP) the method of "listen/accept"
is still employed, although with significantly different semantics.
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CellServer per Gateway, so module number is omitted for the CellServer in that case. The
system architecture envisions a globally unique ID for each pad similar to an Internet address.6
This global ID is the cluster number for pad cluster modules. Example ID triples for each
primary module are shown below. The triples with duplicated arguments can be reduced to
pairs in certain contexts.

• Gateway: ("gw", Gateway #, Gateway #)

• CellServer: ("cs", Gateway #, cell #)

• PadServer: ("ps", pad ID, pad ID)

• TypeServer: ("ts", pad ID, data type)

The IMC portion of the delivery support service group library implements mapping of
these triples to physical network locations, including all technology-specific tasks. The library
initiates a connection with the help of delivery support modules involved in the connection,
terminates a connection, and defines the semantics of all control messages.

The sequence of events for address mapping goes something like this:

1. A module requests connection with another module by making a call on the library,
specifying a triple.

2. A library procedure consults a name database in which all currently active members of
the delivery service have registered themselves using another library procedure. From
the database, an entry is retrieved that specifies a technology specific mapping for the
monitor port. For instance, if the communication protocol is TCP, the mapping will be
(module type, cluster number, module number) to (Internet address, TCP port number).

3. Connection is attempted to that network address.

4. If connection is successful, the requesting module is notified that data transfer can begin.
If the connection isunsuccessful, the requesting module receives an error message and the
connection is denied.

3.4.3 Interfaces

An interface is a set of procedures and specifications that define a clean and consistent pro
gramming environment to module designers. The interface hides implementation specific details
from the programmer, so that code using the interface is portable. This is a central aspect of
the firewall interface between delivery support and type support service groups.

IMC interfaces come in two flavors: external and internal [18]. External interfaces define
the boundaries of the delivery supportservice group (the firewall), and are used byTypeServers

In fact, pad ID's can be actual Internetaddresses in future implementations. The current prototypeis limited
to 256 pads by restrictions in the packet header address space.
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and Emulators. Internal interfaces are structurally similar to external-interfaces, but they are
subject to modification. Internal interfaces are used by delivery support modules to conduct
internal business. Interfaces between delivery service clients (e.g. TypeServer to TypeServer)
and between clients and applications are not part of IMC.

Each interface offers two channels: data and control. In basic form, both interfaces support
four procedures on the data channel that employ familiar open/read/write/close semantics:

connect (port, destination, arglist)
Connect port to destination with parameters arglist.

read (buffer, length, port)
Read length bytes into buffer from port.

write (buffer, length, port)
Write length bytes from buffer to port.

close (port)
Close port and free resources.

These procedures can be configured to operate on a byte stream (packet headers removed)
or on packets. That is, the data returned from read() is either payload only or full packets
while data sent with write() can be payload only (the interface adds the header) or complete
packets. Because thearchitecture isdesigned towork with byte stream communication protocols
like TCP, there are no explicit message boundaries defined by a read() invocation: message
boundaries (which are only meaningful when reading packets) are indicated by the value in the
length field of the packet header.7

Both interfaces define two basic procedures on the control channel:

get (buffer, length, port, modulelD)
Get length bytes from modulelD over the control channel for port and put in buffer. The
module specified bymodule ID must beaccessible (orequivalent) to the module associated
with port.

set (buffer, length, port, module ID)
Send length bytes from buffer on the control channel for port to modulelD.

Get() and set() are similar to read() and write(), except that get() and set() operate on
the out-of-band control channel and can (in theory) send a packet to an arbitrary module.
In practice, source/destination pairs will probably be limited to a subset of modules (e.g.
TypeServer to Emulator but not Emulator to Emulator). The extent of connectivity depends
on the sophistication of module implementations.

An internal interface alsodefines procedures in the following classes:

In message passing systems, read and write operations transfer structured data units larger than a byte.
Message boundaries are implied by the operation i.e. one message is passed per call. In this architecture, packets
are the analog of messages.
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disconnect (port)
Disconnect port. Used only with connectionless low-level protocols.

fwdreq (source ID, destination ID, arglist)
Forward a request for connection from module source ID to module destination ID with
parameters arglist.

terminate (cluster #)
Kill all modules in cluster #. Cluster # is a Gateway or PadServer number.

probe (port)
Test a module to see if it's alive. Intended for use in situations where a module is out of
resources and wants to make sure all associated modules really need what they're using.
Similar to Unix ping.

source quench (port)
Stop a data stream originatingfrom peer module at port.

source resume (port)
Start a data stream originating from peer module at port that has been stopped.

Each ofthese has a corresponding acknowledgement procedure and a corresponding response
processing procedure. Fwdreq() is used exclusively to forward a pad connection request from a
Gateway to a CellServer. Afunction can be provided that will allow users to initiate a terminate
request.

3.4.4 Packet Format

InfoPad packets create a level ofabstraction over low-level technology, allowing the prototype
to be used as a testbed for InfoPad research; it can be run over any network, and packet size
and format can be manipulated at will. Packets also enable multiplexing of virtual InfoPad
connections over a single network address association. Furthermore, packets allow relatively
fine-grain resolution ofa datastream toaid inpriority scheduling and toenhance theappearance
of concurrency. The packet format is shown in figure 5.

The sync field is an artifact ofan early version ofpad hardware and is nolonger necessary.
However, it has proven to be such a valuable debugging tool that it has been retained in
the current prototype despite the added overhead. It allows the system to self-recover in the
presence of all too common coding bugs. The corefield contains InfoPad link-level information.
The triples (module type, cluster #, module #) are source and destination module IDs, as
described previously. The info field holds context specific information. Code refers to the
packet type i.e. data or one of several control types. Seq indicates the position of the packet
in a control sequence (see section 3.5.2). The remaining 24 bits of the info field are formatted
in various ways. For example, a data packet carries payload type and length, while the info
field of a connection acknowledgement control packet carries a result code. Some common fields
such as CRC are omitted, since these "user-level" packets are expected to be encapsulated in
low-level protocol data units over which CRCs are computed.
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SYNC
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Figure 5: InfoPad packet format
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3.5 Algorithms

The definition of algorithms is generally left up to an implementation. However, this architec
ture defines two critically important algorithms. One is related to pad mobility, and the other
is concerned with maintaining parallelism in data streams when servicing a control request and
ensuring reliability of control messages regardless of the low-level communication protocol in
use.

3.5.1 Pad Relocation (handoff)

One of the most critical operations in an InfoPad system is the transfer of a pad to a different
cell, called relocation or handoff. This is a global action; several modules must cooperate, so the
algorithm cannot be defined for a specific module. The pseudocode below is an approximation
of the relocation algorithm that does not take into account multiple CellServers per Gateway.
It is presented as an example.

The specifications described here are skeletons that provide simple and easily implemented
relocation functions for the prototype. It is anticipated that these algorithms will be enhanced
as the sophistication of the system grows.

There are two basic cases and two basic conditions that must be considered:

• Case I: Pad enters cell. It could be a pad that has just been switched on, a pad moving
into a new cell, or a pad re-entering a cell before its state has been removed from the cell.

• Case II: Pad exits cell. It could be a pad turning off, or a pad moving to another cell.
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• Condition 1: Pad cluster for the pad exists.

• Condition 2: Connection from the pad cluster for the pad to any gate cluster exists.

There are three possibilities for the two conditions (pad cluster doesn't exist/connection
exists is impossible). Each of the three must be handled for each Case. In order for the
algorithms to be simple, four assumptions must be made:

1) Gateways and CellServers always exist and are in fixed locations once started.

2) PadServers and TypeServers may or may not exist, and if they do exist can be anywhere
on the local net.

3) Each pad has a heartbeat and can send a control packet containing its global pad ID to a
Gateway.

4) Modules are trusted i.e. no authentication is needed.

These assumptions are reasonable within the context of the architecture. Pad hardware
under development will be capable of realizing assumption 3. If assumption 4 becomes a
problem, enhancements to the algorithms may be necessary. At present, authentication is not
implemented.

Part of this algorithm is implemented in the PadServer and part in the CellServer. In each
module, the algorithm is divided into two sections, one for Case I and the other for Case II.
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PadServer

Case I

if (PadServer is connected to correct gate cluster already) {
nothing happens

}
else if (PadServer exists [condition 1]) {

accept connection from new CellServer

if (connection exists to another gate cluster [condition 2]) {
remove connection to old CellServer

remove connection to old Gateway
}
receive Gateway ID/pad ID from new CellServer
check name database for location of Gateway
establish connection to new Gateway

}
else (PadServer doesn't exist) {

get started by CellServer
register self in name database
accept connection from CellServer

receive Gateway ID/pad ID from CellServer
check name database for location of Gateway
establish connection to Gateway
start TypeServers
establish connection with TypeServers

}

Case II

PadServer takes no explicit action.
Connections will be re-mapped if the pad enters another cell.
See CellServer Case I.
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CellServer

Case I

pad sends pad ID to CellServer via Gateway
if (correct pad state exists - maybe pad left cell momentarily) {

do nothing

}
else if (maximum pads in cell already) {

deny connection

}
else {

check name database for location of PadServer

if (entry for PadServer exists [condition 1]) {
attempt connection to PadServer

if (connection fails - maybe PadServer crashed) {
start a PadServer on some machine

establish connection to new PadServer

}
}
else (PadServer doesn't exist) {

start a PadServer on some machine

establish connection to new PadServer

}
send Gateway ID and pad ID to new PadServer

}

Case II

if (timeout) {
terminate connection with Gateway
terminate connection with CellServer

optionally terminate the pad cluster

{
else {

no action

{
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3.5.2 Control

All control information sent by a module must be received by the destination, and it must be
received without error. Since the degree of reliability of the underlying communication protocols
is not defined by the architecture, an algorithm is included that will ensure reliable transfer
of control packets. This algorithm is based on a technique used successfully by Cheriton and
others, [11] [5] [19] and is called little brother (InfoPad term) due to its habit of hanging around
until it gets what it wants.

The control algorithm operates on a request-reply basis. A module wishing to initiatesome
action with a peer transmits a control packet from a port. The receiving module performs
the action (or doesn't) and returns an ack (or nak) to the initiating module. The algorithm
manages both sides of this dialog. There is an instantiation of the algorithmin every module.

The algorithm makes the pessimistic assumption that a packet will be lost. When a control
packet is sent, it starts a timer and returns control to the caller. When the timer expires,
another packet is sent if an acknowledgement from the first has not been received. This process
continues for a pre-defined small number of tries before the algorithm gives up and reports an
error. The system is not allowed to begin another control action of the same type (e.g. connect
request, set request, etc.) until the current action has been acknowledged.8 Because control
packets are relatively infrequent in this architecture and the number of retransmissions is small,
there is no danger of swamping the network withcontrol packets provided the implementation
is correct.

In an unreliable network, packets that are otherwise undamaged can be lost, delayed, or
misordered. Since a number of identical control packets can be outstanding at one time (the
first try and any retransmissions), it is possible to receive an acknowledgment for a previous
control action after a new, subsequent, control action of the same type has been initiated.
In this case, the first action has been acknowledged already and the second is waiting for an
ack. The errant acknowledgement will then cause the second action to believe it is complete if
additional measures are not taken.

To prevent this occurance, each control packet is assigned a sequence number (the seq
subfield of the info header field). The first packet in a control action and any retransmissions
get the same value. Whenanackarrives for a particular value, the sequence number isadvanced
for that control type only. If an ack arrives with a number less than the current sequence value,
it is discarded. A sequence is defined for each control packet type. The seq subfield is three
bits in length; it is expected that by the time the sequence number wraps around, all previous
control packets and acks with the next value have been permanently lost or discarded. The
retransmission timers can be set to ensure that this is true.

Additionally, the "controlspace" for each port is orthogonal with respect to all other ports,
since a port is uniquely defined by the core field of the packet header.

One question that may be asked is: "If pen data must be reliable, why not use whatever
reliable low-level protocol is on the pen data channel for everything?" The answer is in keeping
with the attempt to limit functionality where possible. Pen data channels are one of several

A control action encompasses the time between transmission of the first packet for a specific control type
and the acknowledgement of that first packet or a retransmitted packet.
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channel types. Others, like text/graphics channels, do not require the same levelof reliability.
Data and control channels often coexist on a single network link; if the linkdoes not require high
reliability for data, the system can use a simple unreliable transport/network layer protocol.
The little brother algorithm adds the required reliability for control information while retaining
low overhead.

When a control action is pending, other actions on the port may be delayed or disabled.
The algorithm uses a table to determine which actions are allowed at any given time. Table 1
shows an example for eleven control types.

Table 1

Control Type Recv Data Send Data Recv Cntl Send Cntl Comments

connect yes no yes no data pkt = ack
fwdreq yes no yes no data pkt != ack
disconnect yes no yes no data pkt != ack
terminate - no yes no wait for ack
source quench yes yes yes yes advisory only
source resume yes yes yes yes new pkt is ack
get yes yes yes yes

set maybe yes yes yes

probe yes no yes no new pkt is ack
ack - -

- - never pending
nak —

—
- - never pending

Acopy ofthe table is maintained by each port (there may be small differences incontent).
Each port also keeps state for each control type (e.g. current sequence number or action
pending). On arrival of a control packet or expiration of a timer, the table and state are
consulted to determine which action to take, if any.

For several control types, a new data orcontrol packet serves as an acknowledgment. Source
quench is advisory only: the receiving module is not required to take action. Positive and
negative acknowledgments are sent but not monitored. If an acknowledgment is not received,
another request for action will eventually be issued. For this reason, control actions must be
idempotent.
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4 IPN: Implementation of the Delivery Support Service Group

This section presents an implementation of the delivery support service group. This paper
will cover delivery support implementation in greater detail than type support for two reasons:
because the development of delivery support in the prototype is somewhat more advanced (de
liverysupport had to be operational before work on type support and application modules could
proceed in earnest), and the delivery support service group is a brand new, fully custom imple
mentation while type support relies heavily on welldocumented software. This implementation
of delivery support is called InfoPadNetwork, or IPN.

The general approach and methodology in the development of IPN stresses efficiency of data
transfer. In particular, great care has been taken to limit operating system interaction; IPN
minimizes the use of system calls and does all critical path processing in a single user context.
When system calls are necessary, they perform as much workas possible to maximize the time
between invocations. There has been significant recent work in support of user-level execution
of traditional kernel tasks to avoid the overhead of invoking the kernel [2] [3] [4].

Another measure employed by IPN to enhance efficiency and fairness is the use of "pseudo"
concurrency in port service algorithms. In this approach, all operations are non-blocking, and
no port is allowed to read more than one packet or write more than one buffer at a time.9
Therefore, ports will not starve and the wait time between service of a particular port is
bounded by the time required to service all other active ports and ready buffers once (in the
absence of an involuntary context switch).

This section will begin with a discussion of functions and features common to all delivery
support modules. Each module will then be described in turn. The section will conclude with
a description of the IMC library.

4.1 Physical Environment

The prototype is currently in operation on a general-purpose Ethernet in the Department of
Electrical Engineering and Computer Science at the University of California, Berkeley. This
network provides communication for about sixty hosts, and is used on a daily basis for both
research and administration. Most network compute nodes are Sun Sparc workstations, pri
marily Sparcstation 2's and 10's running SunOS 4.1.3. All standard Sun networking facilities
are supported including an implementation of the Internet protocolsuite (TCP/IP), NFS, and
RPC,

InfoPad modules are implemented with Unix processes, and kernel interaction is through
common system calls. No kernel modifications were required except in one case related to the
hardware link [8]. The programming language used is ANSI 'C\

Most network connections use the services of TCP. The discussions that follow assume TCP

connections. Implementations using UDP and NIT have been created, installed, and tested -

9In traditional request-reply semantics such as RPC, the requester "blocks", or waits, on a system call until
the requested action is possible. There is often no guarantee that the request will be serviced. This means that
the requester could wait indefinitely.
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use of any protocol other than TCP will be noted where appropriate. See [9] for a detailed
discussion of these implementations.

It is expected that the prototype will quickly outgrow Ethernet. Work in progress as ofthis
writing include a port to Sun Solaris and installation ofa limited ATM network specifically for
InfoPad.

4.2 Common Functions and Features

IPN modules are built from a common framework. Differences arise primarily in the organiza
tionofinternal buffers and data paths, but several importantcomponents are virtually identical
in all module types.

4.2.1 Ports, Procedures, and State

As described in section 3.4.1, ports are the communication endpoints for modules. Associated
with each port is a read procedure, a write procedure, and a state structure. Read and write
procedures implement port service algorithms, and the state structure contains information
related to the identity and current state of the port. The read and write procedures discussed
here are distinct from the read and write procedures discussed earlier in the context of the
interface. Port procedures are specific to IPN modules while interface procedures are public
access points to IPN.

Modules internally associate each port with at least one other port in the same module.
For instance, the Gateway associates each PadServer port with a unique pad link port. The
PadServer associates its single Gateway port with all TypeServer ports. A packet read from a
port will be placed in a buffer that is attached to the output of the associated port, and vice
versa. In other words, a read procedure will transfer a packet from a port to a buffer and a
write procedure will transfer the contents ofa buffer to a port. Neither procedure has explicit
knowledge ofthe associated port. Routing information is implied in the port-buffer mappings.

When a port is created, a state structure instance is allocated and initialized with items such
as port name (related to the connecting module ED), pointers to read and write procedures, a
custom I/O package, pre-assembled packet headers (more on this later), connection endpoint
protocol addresses, and several implementation specific parameters. Gateway and PadServer
port structures also contain reference pointers to internal data buffers.

IPN port algorithms are implemented as finite state machines. This approach allows par
allelism at the packet level while maintaining a simple structure. Originally, lightweight pro
cesses were considered for implementation of the state machines, but since the machines are
all relatively simple (another concession to efficiency), the overhead and complexity of LWPs
is unacceptable given the limited enhancements they offer in comparison to the switch based
approach finally adopted.
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Figure 6: Module read procedure generic finite state machine.
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There are two generic state machines and associated procedures. Not surprisingly, one is
dedicated to reading and the other for writing. Figures 6 and 7 show the read and write state
machines, respectively. Differences between port algorithms are concentrated in the format
state (FMT) and below e.g. the CellServer does not include data read (DREAD) or data read
sleep (RDSLEEP) states because it expects to receive control packets only. The FMT state in
figure 6 lists typical actions; those in parentheses apply to the Gateway and PadServer only.

A read procedure is invoked by the scheduler when activity is detected on a port. A write
procedure is invoked by the scheduler when the contents ofa buffer assigned to the port exceed
a pre-defined threshold. The procedure call includes a pointer to the port state structure and,
possibly, a pointer to a buffer (some state structs have pointers to all relevant buffers, so an
explicit pointer argument is not needed). The procedure first enters a switch that tests a state
field to determine if the port is idle or sleeping. Ifit is idle (the common condition), the state
machine is entered at idle. If it is sleeping, the state machine is restarted at the appropriate
sleep state. Sleeping means that the procedure was unable to complete a full cycle ofthe state
machine in its last invocation.

connection
terminated _ . . . _
or fatal error V ™riu buffer

•tart

don*

would I J write
block V I raqueat

Figure 7: Module write procedure generic finite state machine.
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The read procedure will attempt to read a single packet on each invocation. If it is unsuc
cessful for some reason, it marks the port as sleeping on a read and returns to the scheduler.
The write procedure will attempt to write an entire buffer to a port (since a port write ulti
mately involves a system call, the procedure tries to write as much as possible at one time).
Like the read procedure, if the write is unsuccessful (ALL of the buffer must be written) it
marks the port as sleeping on a write and returns. The "buffer write" policy is a write-side
manifestation of the attempt to limit system calls. The read-side equivalent is the custom I/O
package discussed in section 4.6.1.

If certain errors are detected on the port (for instance, the network peer has closed its end of
the connection) a read or write procedure will mark the port for closure and return. When the
scheduler has finished servicing each port it reviews a global table for closed ports. If any are
found, a close procedure is called to dispose of port state and dismantle any internal structure
associated with that port. This delayed close eliminates a problem associated with dangling
references caused by closed ports stillon the service list (see section 4.2.2).

4.2.2 The Scheduler

The scheduler is implemented by a set of procedures that are responsible for detecting read
activity on ports, testing buffers for the "threshold" state, and scheduling port service. If no
ports or buffers require service, the scheduler sleeps on the selectQ system call. When read
activity is detected, the scheduler invokes a procedure called ServiceQ. Service() determines
which ports require service and invokes the read procedure for each port according to a priority
algorithm. The scheduler code is structured so that the priority algorithm is easy to replace
without disturbing the rest of the scheduler. This way, experimentation can be done with
different methods of scheduling. The default method is first-come-first-served.

Aftereach activeport has been serviced, ServiceQ checks all module buffers and schedules a
write for each buffer in which the threshold has been exceeded, again according to the priority
algorithm. Once the buffers have been written, ServiceQ scans a port table for closed ports,
calling a close procedure for each. The scheduler then returns to the selectQ function. This
time, selectQ does not sleep in the absence of read activity; it performsa quick poll and returns
to the scheduler regardless of what it found. If there is new activity, the sequence described
above is repeated. If not, the scheduler calls IdleServiceQ to flush all buffers, then goes to sleep
on selectQ.
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The scheduler maintains a table called the service list that holds information about all
ports ready for service (see figure 8). The service Ust is an array of pointers to structures,
each structure containing an operation flag, a port structure pointer, a buffer pointer, and a
pointer to a service procedure. Normally, the operation flag is set to OP.READ or OP.WRITE.
However, if there is read activity on the monitor port, a peer module is probably requesting
a new connection. In this case, the operation code is set to OP.CONN and the monitor port
read function, when invoked, accepts a new network connection and initializes a new port. The
connection is not immediately validated; the port exists as an orphan until the next scheduler
cycle occurs, at which point a connection request packet is expected on the new port. If the
request is approved the port is adopted and becomes a member of the active port set. Otherwise,
the port is closed.

pointermaintained

byStrvtetO
orUbStrvicaO

Service Node

Operation Flag

X

Service List

\

/ Port \ / Port
Port \ [ Uplink \ 1 Read
State 1 or J1 or

Structure J \ Downlink J \ Write
\ Buffer J \Function

Operation Ftaj

Figure 8: Scheduler service list structures

Simplified pseudocode for the scheduler is shown on the following two pages. This pseu
docode is very general, and does not take into consideration many small but important imple
mentation details.
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while (FOREVER) {
sleep or poll on selectQ
if (read activity detected) {

call ServiceQ

}
else {

call IdleServiceQ
}

}

ServiceQ

{
for all ports {

if (monitor port is active for read) {
add monitor port struct to service list

}
if (any other port is active for read {

add port struct to service Ust

}
}

call priority procedure with service list

for all buffers {
if (buffer contents greater than threshold) {

add port struct and buffer pointer to service list
}

}

call priority procedure with service list

for all ports {
if (port marked for closure) {

call close function on port
}

}
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IdleServiceQ
{

for all ports {
while (the port is in idle state and there is data to read) {

read a packet
if (buffer we just put packet in is over threshold) {

write buffer to appropriate port

}

if (there is any data remaining in the buffer) {
flush the buffer

}
}

}

4.2.3 Control (passive)

Passive control involves responding to an active request in the form ofa control packet received
by a port. This implementation takes a unified approach: all control response occurs in a
localized switch as part of the procedure doContro^). Aport read procedure, on detecting a
control packet, makes a call to doControlQ with pointers to the port struct and the packet just
received. doControlQ examines the control packet and takes appropriate action. An extensive
effort was made to avoid distributing control actions throughout the module code, so that
debugging and further development would be easier (or, more to the point, possible).

A second phase of control management involves building the table structure presented in
section 3.5.2 and implementing the little brother algorithm. As of this writing, system control
needs are not sophisticated enough to justify the effort so the little brother algorithm has not
yet been implemented.

4.2.4 Logging

For debugging and history purposes, each module directs both status and diagnostic messages
to a logfile. A logfile entry is a single line starting witha timestamp. Following the timestamp
is an optional field indicating an error. The rest of the line is a text string that forms the
message itself. Log files are created when a module is started, and are named with the following
convention: ddddmmnn where dddd is month/day, mm is module type (e.g. ps for PadServer)
and nn is module number. The utility ipnstat is used to retrieve log file information. If a
module is started in the foreground from the command line, the argument "-s" will redirect
output to the terminal. Here are some example log file entries:
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[06/02 23:10:03] LINK connected to rainier.1601 from visigoth.1088
[06/03 17:53:40] ERROR: ReadPort: Invalid packet on PS JPORT.12

4.2.5 Drop-Dead Timers

The system is designed to be reliable, but there are situations in which a module becomes
separated from its cluster. This can happen if a module is started when a module using the
same ID is already running. For instance, if a user starts Gateway 3 when a Gateway 3 exists,
the original Gateway 3 will become a zombie when its name database entry is overwritten.
Because a module may die unexpectedly for a variety of reasons, the name database does not
require an entry to be removed (although modules that terminate gracefully will remove their
entries). If a module asks the name database to add an entry, and an entry with the same
module ID is found, the existing entry willbe overwritten i.e. the name database assumes that
the requesting module is properly representing itself and the old entry is no longer wanted.

A "zombied" module will cause no overwhelming problems, but because modules are pro
grammed to live forever, zombies will waste resources and clutter up process tables for an in
definite period of time. More importantly, a zombie PadServer zombies the entire pad cluster; a
full text/graphics windowing environment sitting around unused is undesirable. Furthermore,
a compute node can host only one text/graphics TypeServer at present. A zombie pad cluster
therefore makes that compute node unavailable for another pad cluster.

Tocombat the zombie problem, eachmodule contains a doomsday device called a drop-dead
timer. When a module returns from a selectQ call, it checks its drop-dead timer to see how long
it has been sleeping. If the sleep time exceeds a pre-defined period of time and there is still no
read activity, the module self-destructs. If not, the drop-dead timer is reset. This mechanism
will, ofcourse, cause non-zombie modules to self-destruct, but the timers areset to values larger
than the expected maximum idle time of an active module or cluster.

4.2.6 Optimizations

As mentioned earlier, the primary design motivator was efficiency. Several small but effective
speed optimizations are worthy of mention.

• Header Prediction: Packets can be quite small(20bytes for a pen packet, includingthe
12 byte header). Therefore, header processing can add significant overhead. Fortunately,
because module communication is connection oriented, link-level information included in
the core field of every packet is determined at connection set-up and does not change for
the duration of the connection. IPN takes advantage of this by pre-assembling packet
headers for incoming and outgoing traffic, and including these headers in the port state
structure for the connection. For cases where headers need to be generated (when a
module buffers packet payload but not the header, or when assembling a control packet),
the pre-assembled headers can be copied directly into an outgoing packet rather than
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setting each header field individually. Macros for setting header fields involve several
shift and compare operations, and at least seven macros must be used to completely fill
the sync and core fields of a header. Header prediction replaces these macros with two
integer assignments. Since the info field of a header is packet specific, this field must be
set independently.

A second, and just as important, use of header prediction arises when a packet header
has been read and sync has been established. Forlink-level validation, the port procedure
simplycompares the corefield of the newpacketagainst the core field of the pre-assembled
header for incoming packets. In this case, six macro compares are replaced by a single
integer compare.

• Resync Timer: Although a port read service procedure normally returns after reading
a single packet, if synchronization is lost the procedure will read character by character
until a packet header is recognized by detection of a sync pattern. This is a rare condition
that is usually the result ofa programming error or a hardware pad that is transmitting
junk. Toprevent starvation ofother ports, theprocedure is allowed to read only a limited
number of characters before returning control to the scheduler. The allowable maximum
number of characters to read is defined by a resync timer. If sync is lost, the timer is
set and the procedure begins reading single characters. The timer is decremented by one
each time a character is read. When the timer reaches zero, the port goes to sleep ifsync
has not been restored. This restriction is absolutely necessary to ensure fairness. Resync
timers are needed only when byte stream based protocols such as TCP are used. If the
low-level communication facility offers message based atomic operations, damaged data
will affect only the message in which it is included. This does not mean that damaged
data is nota concern; it simply means that synchronization does notdepend upon locating
a header in an undifferentiated byte stream, because headers are expected to be aligned
with message boundaries.

• Page Alignment: All IPN buffers are aligned on virtual page boundaries to optimize
paging behavior.

4.3 Gateway

As a switch, the most important role ofa Gateway is to transferdata from one port to another
port over many unique port pairs. The Gateway must also efficiently associate port pairs when
a connection is requested, and remove associations when connections are dissolved.

The Gateway implementation is built around a central resource table that binds together
buffers and ports. Paths through the Gateway, called routes, are defined by twoports and two
buffers. A resourcenode attached to the resource table contains a pointer to each port structure
and a pointer to each buffer. Figure 9 shows the internal structure of a Gateway module.
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The Gateway supports five port types: monitor, CellServer, PadServer, hard link, and soft
link (Emulator). Ahard link port supports the Ariel hardware interface described in [8]. There
is one monitor port and one CellServer port per Gateway. Most routes use a soft link and a
PadServer port as internal endpoints.

There are two buffer types: uplink and downlink. Over time, the structure of uplink and
downlink buffers has evolved into the same form. The distinction has been maintained in case
a need arises that changes the form of one but not the other.

The downlink buffer stores whole packets received from a PadServer port. Headers are not
removed in the Gateway because packets in a data stream are interleaved with respect to data
type, and the Gateway has no way of reconstructing type from payload. The downlink buffer is
written to a link port when the threshold is exceeded as discussed in section 4.2.2. Equivalently,
the uplink buffer stores complete packets received from a link port and is written to a PadServer
port when the threshold is exceeded. Control packets received on either a link or PadServer
port are diverted from the data stream; control packets are most often sent to the CellServer,
but the Gateway may choose to dispose of them in some other way.

Global state for a Gateway includes the resource table mentioned above, a port table, a
monitor port pointer, and a CellServer port pointer. Most state can be accessed through the
resource table, but the scheduler uses the port table because it is a more convenient structure
for scanning and because it is the best place to store references to orphan ports, which do not
have a route binding.10

Procedures for route establishment approximate the pseudocode below. Procedures for
route teardown approximate the pseudocode sections for connection failure. As in section 4.2.2,
the pseudocode is general. For more detail, see the Gateway source code.

a pad contacts the Gateway
if there are sufficient resources {

create and initialize a link port
create a resource node, including buffers
assign pointers between the port and the resource node
add port to the port table
add resource node to the resource table

notify the CellServer that a new pad has arrived
}
else {

notify the pad that the connection has failed
}
resume normal processing

The resource table requires two levelsof indirection to access a port structure. The port table requires only
one.
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If the CellServer has been notified of a pad arrival, it invokes the algorithm described in
section 3.5. The CellServer will then report success or failure to the Gateway.

if (success and the link port and resource node still exist) {
create and initialize a PadServer port
assign pointers between the port and the resource node
add port to the port table
notify the CellServer that the connection is successful
notify the pad that the connection is successful

else {
detach the link port from the port table
detach the resource node from the resource table
free the link port
free the resource node and buffers
notify the CellServer that the connection has failed
notify the pad that the connection has failed

}

4.4 CellServer

The internal organization of the CellServer is simple in comparison to the Gateway and Pad-
Server, primarily because there are no buffers. However, the present implementation of the
CellServer is essentially a shell intowhich powerful algorithms can bebuilt. The CellServer is a
central building block for the InfoPad network system; itscritical role as theGateway controller
makes it the proper module for many system control functions. [15] contains a discussion of
projected additions to the CellServer. Figure 10 shows the CellServer internalstructure.

Global state for the CellServer includes a port table and a pointer to the Gateway port.
Much of its functionality has already been described in section 4.2.1. All packets received or
transmitted by the CellServer are control, and nothing is stored except port and global state.

The most important job of the current CellServer is implementation of the relocation al
gorithm described in section 3.5. Starting a PadServer on a remote host is the most complex
part of that job. When a pad connection request is forwarded by the Gateway, the CellServer
checks the name database for the location of the respective PadServer. If there is no database
entry, a new PadServer is created on a compute node defined by a second query to the name
database. Equivalently, a new PadServer is created if a message to theaddress returned by the
first query fails because the PadServer has died. CellServers are also required toconduct dialog
with other CellServers, under either the same Gateway or a different Gateway.
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4.5 PadServer

The PadServer is the only module that understands the composition of a pad data stream in
detail. It knows the traffic characteristics of each data type, and is responsible for creating
the type interleaved stream that is delivered to the pad via the Gateway. The PadServer
is also responsible for demultiplexing the uplink pad stream, and dispatching packets to the
appropriate TypeServer.

Like the CellServer, the PadServer has been implemented as a "shell" into which function
ality will be added. The primary task ofthe current PadServer is multiplexing/demultiplexing
of a pad stream and basic management of a pad cluster.

The PadServer does not have a central routing table like the Gateway. It is rather sharply
divided between a top half and a bottom half. The top half contains structures and proce
dures necessary for communication with TypeServers while the bottom half is dedicated to the
Gateway and the CellServer. Figure 11 shows the internal organization of the PadServer.

The PadServer supports four port types: monitor, TypeServer, CellServer, and Gateway.
The monitor port has already been described. Again in contrast to the Gateway, the number
ofactive ports is limited. If all four TypeServers are connected and a link to the gate cluster
exists, a maximum of seven ports are in operation.

Like the Gateway, matching uplink and downlink buffers are defined. In the PadServer,
buffers are directly attached to the TypeServer port state structures rather than a central
resource table since there is no routing per se (all downlink data goes to the same Gateway
port) and buffer contents are ofa specific type (as opposed tointerleaved types). The PadServer
has a concept ofbuffer "ownership" which will be described in more detail later in the paper.
This concept comes directly from the observation that buffer pairs are closely associated to one
TypeServer port; association with the Gateway port is transitory (only when a data transfer
between the Gateway and a buffer is taking place).

The PadServer removes headers from packets arriving at the Gateway port, storing only the
payload in the uplink buffer. This is possible because thestructure ofboth uplink data types is
fully defined in the data stream. Packets arriving from a TypeServer are stored intact,because
the text/graphics payload needs the length value kept in the packet header.11 For consistency
and simplicity, downlink audio packet headers are stored as well, but this is not necessary. As
in the Gateway, control packets can be received on any port and are generally forwarded to
the CellServer, but the fate of any control packet is completely up to the PadServers version of
doControl().

Global state for the PadServer consists ofa port table, a port map, a Gateway port pointer,
a CellServer port pointer, and a monitor port pointer. Uplinkand downlinkbuffers are allocated
and attached to a port state structure when a TypeServer port is created, and the port state
structure is in turn attached to the port table and map.

11Text/graphics data units contain a 32 bit address followed by a variable length data field. There is no place
to encode payload length except in the packet header length field. Uplink data units are fixed length.
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There is no direct relationship (i.e. pointers) between a TypeServer port and the Gateway
port. Gateway/TypeServer port association is many to one on the downlink, and determined
on a packet by packetbasis on the uplink. Uplink routing is accomplished by mapping the data
type extracted from a packet header into the port map at an index pre-defined for the type.
The port map differs from the port table only in the way in which port state pointers are stored.
The port table, like port tables in the other IPN modules, "justifies" pointers to the low indices
in the table array to minimize scan time. The port mapassigns a specific index to a TypeServer
port so that no table scan is required for uplink routing - the array location is implicitlydefined
by the packet data type. There is a small amount of extra overhead for maintaining two port
tables, but this overhead is only incurred during port creation. The operations that benefit
from this optimization are all on the critical path.

Connection establishment generally occurs only once for a TypeServer port. A TypeServer
connection involves allocation of resources and attachment to the port table and map. Since
there is only one map entry per data type, the PadServer will reject connection to a TypeServer
if one of the same type already exists. The reason for this goes beyond array space; the
limitation of one TypeServer per type is defined by the architecture. Connection establishment
and teardown can occur potentially many times for the Gateway and CellServer ports (each
time a pad changes cellor Gateway). In this implementation, Gatewayand CellServer ports are
always created and destroyed together because there is only one cell per Gateway. Connection
remapping follows the pad relocation algorithm described in section 3.5 very closely.

When a PadServer is started, no context exists for the pad user. The PadServer first
establishes monitor and Gateway ports, and then waits for a CellServer connection request
on the monitor port. After a CellServer connects (the one which started the PadServer if
the PadServer was autostarted), the PadServer attempts to autostart essential user state: a
text/graphics TypeServer and a pen TypeServer. If successful, the PadServer connects to the
Gateway specified by the CellServer cluster number. Finally, the PadServer sends acknowl
edgement to the CellServer and begins to forward text/graphics data to the Gateway. The user
now has a window environment and an input device. TypeServer autostart follows the same
procedure as PadServer autostart.

Several other aspects of the PadServer deserve mention because they are either unique or
essential:

• Link Locking: Early implementations of the PadServer exposed a serious flaw in the
basic design through two related pathological conditions: 1) PadServers that had been
idle long after their drop-dead timers should have expired continued to run, and 2) a
Gateway (link) port blocked for any reason caused the PadServer to consume about 95%
of CPU time on otherwise idle compute nodes.12

In the first case, investigation revealed that the Gateway port had been disconnected but,
even though there was no activity from the pad, the text/graphics TypeServer was still

12In this case, "blocked" refers to any inability to write on the Gateway port, not the act of sleeping on a
system call as discussed earlier. A Gateway port can become blocked if the communication protocol in use is
reliable and the pad refuses to consume data sent from the Gateway. That is, IPN modules will write as much
as possible and then stop if the recipient refuses to read, rather than discard the data.
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periodically sending small screen updates. The PadServer would service the input and
reset the drop-dead timer, so the timer would never expire.

In the second case, a busy-wait condition had been entered after the Gateway port became
blocked. Whena downlink buffer filled and the PadServer could not write to the Gateway,
the TypeServer input request could not be satisfied. The select() system call would
continue to invoke the scheduler in an attempt to satisfy the request.

The fix for this problem is the link lock. If the Gateway connection is terminated, all
TypeServer ports are removed from the scheduler port scan making the Gateway port
unavailable to a TypeServer. The Gateway port is locked whenever the PadServer is
unable to write to it e.g. when the connection disappears or when a write fails on an
existing connection. Locks do not affect the monitor or CellServer ports. Also, the lock
applies only to the Gateway write side.

The term "link" in the PadServer context refers to the PadServer-Gateway connection.
It has no relationship to Gateway hard and soft links. Link locking is most important in
the PadServer, but has been implemented in the Gateway because it is useful there as
well and presents only a small load.

• Text/Graphics Data Loss: This topic is related to link locking, and is important to
avoid startup failure. On text/graphics TypeServer startup, link locking is disabled until
the initial screen refresh completes. If the Gateway connection is down, anytext/graphics
data received during this period is discarded. This measure is necessary because the
text/graphics TypeServer is unavailable to its clients until the screen dump is complete,
and the pen TypeServer will quit if it fails to contactthe text/graphicsTypeServer within
a short period of time. Therefore, the entire pad cluster startup will be incomplete
unless the text/graphics TypeServer is allowed to write. No data is lost, because the
text/graphics TypeServer maintains current screen state. The screen can be updated at
a later time.

• Partial Writes on the Gateway Port: The Gateway port write procedure can be
passed any of the four TypeServer downlink buffers on any invocation. If the Gateway
connection is implemented with a bytestream protocol such as TCP, thereis noguarantee
of write atomicity for a packet within a buffer. If the buffer is partially written (the
Gateway port enters a sleep state), a packet may be truncated. If the next write on the
Gateway port is not from the same buffer, several packets may be destroyed13 and the
Gateway will spend valuable time restoring synchronization. The problem is solved in
two ways: First, if a partial write occurs but there is no kernel error (some but not all
of the kernel buffer was sent to the network), the unwritten buffer contents are shifted to
the buffer head and the write immediately retried. Second, if the kernel returns a system
error on a write retry, the link is locked. The only way to unlock the link is to complete
the partial buffer write successfully.

13The truncated packet, the first packet in the new buffer, and the next packet in the first buffer. They are
chewed up by resynchronization.
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• Buffer Ownership: As discussed previously, buffers are closely associated with Type-
Server ports. The ports are said to "own" their buffers. However, buffer ownership is
transferred to the Gateway port in the write procedure, and the Gateway port stores
a pointer to the buffer in its state struct. If a partial write occurs and the respective
TypeServer port closes before the buffer can be completely written, the close procedure
will detect that ownership has been reassigned. The close procedure will close the port,
but will not free the downlink buffer. When the Gateway port has successfully written
the remainder ofthe buffer, it checks to see if the port has been closed. Ifso, it discards
the buffer. Although TypeServer port closure is expected tobe rare, management ofown
ership completes a set ofmechanisms that ensure correct packet delivery to the Gateway.
If the packet sync pattern is ever removed (reducing the header overhead by one third)
this mechanism will be absolutely essential if the PadServer is to operate properly with
all communication protocols.

4.6 Library

The library is the glue that holds InfoPad modules together. It is included into every module
in the prototype. The library is organized into three sections: the custom I/O package, the
name database, and the connect/control library. These sections have a hierarchical relationship
with each other, but the primary entry points of each section are available toall modules. So,
from the point of view of a module, each section is a library in its own right. Figure 12 shows
the relationship between sections of the library. The arrows in the figure show direction of call
invocation, not data flow.

The library is not a module, and does not contain the common elements outlined in 4.2. It
is a distributed body of code statically compiled into modules that make use of its services.

4.6.1 Custom I/O Package

Because system calls are expensive, buffered I/O is essential to efficiency. Buffered I/O allows a
user level process to read entire system buffers into user space ina single call,14 and then meter
data to the program through relatively efficient (in comparison to a system call) byte copies.
Asingle buffered I/O read often gathers multiple packets. In IPN, this is extremely important
since a packet read operation actually consists of two reads: one for the header (12 bytes) and
one for the payload. Module buffers are not well suited to buffered I/O because something
must be known about the packet before data is written to a module buffer. This "something"
is usually contained within the packet header. The I/O buffer will contain everything passed
upward by the system, while module buffers should contain only "good" data and, in some but
not all cases, headers.

14'This is not completely accurate, since the amount available may be larger then the buffered I/O storage
space.



InfoPad Network Prototype: Architecture and Implementation

CUSTOM 10 PACKAGE

InilPortBufO, FreePortBufl),
PortRtad(),PortWritti,

x S

EXTERNAL INTERFACE

"O

CONNECT/CONTROL UBARY

lPNCoMectO,lPNClost()
IPNRcadOJPNWriuO

lPNSet().lPNGet()

^w>
NAVE DATABASE

NDBGaStanO,NDBGetHome<),

NDBUakeHonuO. NDBCtoseHomei)
NDBGetNameEtuO, NDBSetNameEiaO

IPN LIBRARY

Figure 12: Delivery support library subsections.

47



InfoPad Network Prototype: Architecture and Implementation 48

Most operating system releases include buffered I/O packages. However, IPN has several
special requirements not met by standard I/O packages: 1) Module programming is consider
ably simplified if the buffered I/O read procedure is looks atomic i.e. when a read is issued
that requests N bytes, either N bytes are returned or zero bytes are returned. For instance, if a
module tries to read from a port and the read is not atomic, the module code must be prepared
to handle partial reads. It must be capable ofstoring the data it acquired and restarting the
read at some offset on the next try. This can get quite ugly. 2) The I/O package must be
flexible. For instance, IPN I/O buffer structures include small counters for execution tracing.
These counters can be modified without affecting the normal operation of a module. Other
structure fields may be added or removed to meet thechanging needs ofthe system. 3) Generic
I/O packages often contain functionality not needed by IPN. In accordance with the principle
offrugality [16], a custom I/O package will contain only the function required, thus allowing a
module to be smaller and meaner.

Entry point procedures for the buffered I/O package are described below. As mentioned
previously, these procedures are available to any module that includes the library. However,
direct use is discouraged. The connect/control library defines macros for each procedure; since
the connect/control library contains communication protocol specific code, use ofmacros helps
to ensure library compatibility.

I/O procedures:

InitPortBuf (fd)
Initialize buffer structure. Fd is the Unix socket descriptor for a port. The procedure
returns a pointer to an I/O structure. This pointer must be included as an argument with
all future read and write actions on the port.

FreePortBuf (fi)
Free the I/O structure. Fi is the pointer returned by InitPortBuf().

PortRead (buf, sitems, qitems, fi)
Read qitems of size sitems into buf from the port specified by fi Returns qitems or zero.
This procedure is modeled after the Unix buffered I/O function freadQ.

PortWrite (fi, buf, qreq)
Write qreq bytes from 6«/to the port specified by fi. Returns the numberof bytes written
or error. Unlike PortRead, this procedure is not atomic.
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4.6.2 Name Database

The name database offers a way to transparently map ID triples into network addresses. It is
currently implemented in a limited form: data is stored in files, and a module running on a
compute node that does not mount the file system containing the database files cannot use the
database. A dynamic network-based name server is in the planning stages. The name server
will have essentially the same functionality as the name database, at least at first.

The name database maintains two sets of data: the startup set and the run set. The
startup data set contains the desired start-up location of several text/graphics TypeServers,
pen TypeServers, and PadServers. Gateways and CellServers are not included in the startup
set because they are manually started by invoking one of the IPN utilities. Listing all possible
entries would be difficult (3 x 256 = 768), so a default entry is included for all module numbers
not included. Here is a sample entry from the startup set:

ts 4 15 yellowstone.eecs.berkeley.edu 0

The first three fields contain the modules ID triple. This entry indicates that the pen
TypeServer for pad 4 should be started on yellowstone. The number 15 is the module number
for penTypeServers, which isalso itsdata type(OxOf). Thefourth field isan unused placeholder.

The run data set contains the network locations of currently running modules. Here is a
sample entry from the run set:

gw 0 49 visigoth.eecs.berkeley.edu 1232

This entry shows that Gateway 49 is running on visigoth at network port 1232 (network
ports are not equivalent to module ports). The module number (third field) is zeor if the
entry refers to a Gateway or PadServer. The run set contains entries only for modules that
accept connections, namely the Gateway, the PadServer, and the CellServer. The location of
TypeServers can be determined from the startup data set. Limiting membership in the run set
reduces contention for database files (modules must wait on a lock for about 50ms if the file is
in use). The format of entries in both data sets is identical to allow manipulationby the same
procedures.

As with other sections of the library, name database access points are directly accessible by
modules. Gateways and PadServers call one name database procedure on startup to register
themselves and another procedure when they exit to remove their run set entry. Otherwise,
name database procedures are typically invoked by the connect/control library as part of con
nection establishment. For instance, if a CellServer wishes to connect to a PadServer, it calls
a single function in the connect/control library with the module ID of the PadServer (among
other things) as an argument. The connect/control section invokes the name database on behalf
of the CellServer, and manages all tasks required to complete a connection.
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Name database entry points:

NDBGetStart (moduletype,modulenum,clusternum, hostname)
Get the starting location of(moduletypetmodulenum,clusternum) and return in hostname.

NDBGetHome (moduletype,modulenum,clusternum, hostname,hostport)
Get the current location of (moduletype,modulenum,clustemum) and return in (host
name,hostport).

NDBMakeHome (moduletype,modulenum,clusternum, hostname,hostport)
Register (moduletype,modulenum,clusternum) at (hostname,hostport) in the run set.

NDBCloseHome (moduletype,modulenum,clusternum)
Remove the run set entry for (moduletype,modulenum,clusternum).

NDBGetNameEnt (datafile, lockfile, ep)
Get anentry from datafile using advisory lock file lockfile that matches theentry structure
ep. Return in ep.

NDBSetNameEnt (datafile, lockfile, ep)
Create an entry in datafile using advisory lock file lockfile using data in structure ep.

NDBGetNameEntQ and NDBSetNameEnt() are generalized procedures that operate on both
data sets. Other NDB procedures use the services ofNDBGetNameEntQ and NDBSetNameEntQ.

4.6.3 Connect/Control (active)

The connect/control section of the library implements the interface defined in section 3.4.3. It
forms the top layer of the library hierarchy. The term active means that the Control/Connect
library is the initiator of control actions. The module procedure doControl() described in
section 4.2.3 implements the passive side of module control.

The term connect/control indicates the functional division of the section. Connect pro
cedures are responsible for establishing and terminating connections, and providing packet-
oriented I/O operations using the custom I/O package. Control procedures are responsible for
hiding operations on packet data structures. Connect and control procedures together provide
an abstraction that simplifies implementation of low-level communication protocols. A detailed
description of a study in which three protocols were installed into the prototype and tested is
presented in [9].

As described in section 3.4.3, the library defines an external interface and an internal in
terface. The distinction lies in policy more than mechanism, and is realized through procedure
groupings. Any of the procedures available to one interface are available to the other, but the



InfoPad Network Prototype: Architecture and Implementation 51

formal (programming) definition of procedures intended for use with the external interface are
not subject to unannounced changes. Modules using the external interface (e.g. TypeServers)
can be confident that the procedures will always behave as specified. The internal interface,
on the other hand, may be changed at any time. Procedures included in both interfaces are
governed by the rules for external interfaces.

Procedures included in both interfaces:

IPNConnect (smt,smn,scn, dmt,dmn,dcn, isnonblock, rdpkts, wrpkts)
(smt,smn,scn) defines the source module ID, (dmt,dmn,dcn) defines the destination mod
ule ID, isnonblock is a flag that is true if the connection should be non-blocking, and
rdpkts/wrpkts are flags that are true if the caller wants to read or write IPN packets. The
default is a depacketized byte stream. Generally, a TypeServer (or Emulator) will use
a macro to simplify the call. For instance, a pen TypeServer might use the command
PenConnectToPS(padid). IPNConnect() returns a pointer to an I/O structure.

IPNRead (ptr, size, nitems, fi)
Ptr is a pointer to the destination buffer, size is the size in bytes of the object to read,
nitemsis the number of objects to read, and fi is an I/O structure pointer. The semantics
ofIPNRead areidentical to PortRead() - in fact, IPNRead() is builton topofPortRead().

IPNWrite (ptr, size, nitems, fi)
These parameters have the same meaning as those for IPNRead, except that ptr points
to a buffer containing data to be written on the channel. The semantics of IPNWriteQ
are modeled after the Unix buffered I/O function fwriteQ. IPNWrite() is built on top of
PortWrite().

IPNClose (fi)
This call closes the connection referenced by fi and frees all associated resources.

Most of the following procedures follow a "4-phase" pattern. In the first phase, a control
packet is dispatched to a remote module. In the second, the remote module receives and
processes the packet. The remote module acknowledges the sender in the third phase, and the
sender processes the acknowledgement in the fourth. The first and fourth phase correspond to
the active participant (the module that initiated the dialog) while the second and third phases
correspond to the passive participant.

The first and third phases implement a 2-way request-reply handshake procedure. This
procedure is essentially the common 3-way handshake where the third phase is implied under
TCP. If UDP or another unreliable transport protocol were used, an explicit third "way" would
be needed.

Currently, eight operations are defined for generalized message passing. These operations
are implemented by the following library calls.
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IPNSendGetReq (fi, msgtype, code, srcID, dstID)
IPNProcGetReq (fi, hdr, msgtype, code, srcID, dstID)
IPNSendGetACK (fi, msgtype, msglen, msgdata, srcID, dstID)
IPNProcGetACK (fi, hdr, msgtype, msglen, msgdata, srcID, dstID)

Fi is a pointer to the port I/O structure, hdr is a pointer to the header of a packet
received on the port indicated by fi, msgtype is a user-defined constant that is interpreted
in an arbitrary (but consistent) way at the endpoints, msglen is the length of a payload,
msgdata is a payload,code is an arbitrary resultcode,and srcIDand dstID are the endpoint
source and destination ID triples encoded into a single value. A module requiring data
from another module sends IPNSendSetReqQ, and the receiving module replies with
IPNSendSetACK(). The requested data is stored in the payload. IPNProcGetReq() and
IPNProcGetACKQ extract information from their respective packet types and return the
information via value-result parameters. Control data will typically be a structure cast
to a character string.

IPNSendSetReq (fi, msgtype, msglen, msgdata, srcID, dstID)
IPNProcSetReq (fi, hdr, msgtype, msglen, msgdata, srcID, dstID)
IPNSendSetACK (fi, msgtype, code, srcID, dstID)
IPNProcSetACK (fi, hdr, msgtype, code, srcID, dstID)

Interpretation of the arguments for Set procedures is identicalto that for Get procedures.
IPNSendSetReq() requests that the destination module store msgdata in some pre-defined
location. The destination responds with IPNSendSetACK(). IPNSendSetReq() and IP-
NProcSetReq() a'e duals of IPNSendGetACK() and IPNProcGetACK(), respectively,
while IPNSendSetACK() and IPNProcSetACK() are duals of IPNSendGetReq() and IP-
NProcGetReqQ. The effect of Set and Get actions is similar: in the first case, the active
module produces the payload. In the second case, the payloadoriginatesfrom the passive
module.
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Procedures defined for the internal interface only are generally intended to support connec
tion procedures and inter-module utilities.

Procedures included in the internal interface only:

IPNQckConnect (smt,smn,scn, dmt,dmn,dcn, isnonblock,rdpkts,wrpkts)
This procedure offers the same function as IPNConnect, but does not perform a connection
handshake. This leaves thedestination process (Gateway orPadServer) inan intermediate
"registered but not formally connected" state for the calling process, allowing relaxed
connection semantics for administrative tasks.

IPNSendConnReq (fi, smt,smn,scn, dmt,dmn,dcn)
IPNProcConnReq (fi, hdr, callermt,callermn,callercn)
IPNSendConnACK (fi, code)
IPNProcConnACK (fi, hdr)

As before, (smt,smn,scn) and (dmt,dmn,dcnt) refer to the source and destination modules,
and fi is a pointer to the I/O struct. Code is a context specific value. IPNSendConnReq()
sends a connection request to the destination module. IPNProcConnReq() processes
a connection request by verifying source and destination, and forms the pre-assembled
headers for the destination port. Hdr is the received connection request packet and
(callermt,callermn,callercn) is the module ID of the caller. IPNSendConnACK() sends
a connection acknowledgment to the active module. Code represents the result of the
connection attempt: 0 for success and -1 for failure. EPNProcConnReqQ processes a
connection request acknowledgment by verifying source and destination, and forms the
pre-assembled header for the source port.

IPNSendTermReq (fi, code)
IPNProcTermReq (fi, hdr)
PNSendTermACK (fi, code)
IPNProcTermACK (fi, hdr)

Send and process a terminate signal. Terminate signals are designed to terminate pad
and gate clusters. Terminate requests are sent to Gateways and forwarded to CellServers.
In IPNSendTermReq(), code is a value that specifies the extent of the action: 0 means
kill a pad cluster and 1 means kill the gate cluster. In IPNSendTermACK(), code is the
result of the terminate action. IPNProcTermReq() and IPNProcTermACK() both return
code from the packet represented by hdr.
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IPNSendFwdReq (fi, code)
IPNProcFwdReq (fi, hdr)
IPNSendFwdACK (fi, code)
IPNProcFwdACK (fi, hdr)

These procedures are used only by the Gateway and the CellServer. Their semantics
are identical to the terminate request procedures, but instead of propagating a terminate
request they propagate a connection request from a pad to the CellServer.

IPNSendPrbReq (fi, code)
IPNProcPrbReq (fi, hdr)
IPNSendPrbACK (fi, code)
IPNProcPrbACK (fi, hdr)

Send a probe to the module referenced by fi with a parameter in code. The receiving
module will return an acknowledgment immediately if it is still alive. The semantics of
these procedures are identical to the semantics for the terminate set. Any module can
send a probe packet.

IPNSrcQnch (fi, code)
Ask a connected module tostop sending data. This is an advisory message: the receiving
module should stop if it can, but is not required to do so. It indicates that resources in
the sending module are limited and that data may be dropped. The acknowledgement
for a source quench is the cessation of data flow.

IPNSrcResm (fi, code)
Inform a "quenched" module that data flow can resume. Acknowledgment ofthis message
is a data packet arriving at the port.
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5 Implementation of Type Support, an Application, and the
Emulator

This section presents a brief summary of the type support service group, one application, and
the pad Emulator. Figure 13is a version of figure 2 showing the modulesdiscussed in this section
with interconnections. All processes are relocatable, but text/graphics and pen TypeServers
are run on the same network host by convention so that location of active InfoPad processes
is made easier, and because both the text/graphics and pen TypeServers have host specific
hard-wired parameters.

X draw events

CUSTOM
X-GRAPHICS

SERVER

X bitmapped
pixel packets

library instances

NOTEBOOK
APPLICATION

GATEWAY •—•

coordinate data

CELLSERVER

Figure 13: InfoPad network topology: modules and data flow for pen loop-back.

5.1 TypeServers

At present, two type support modules have been developed to support a basic user environment:
a text/graphics TypeServer and a pen TypeServer. The pen TypeServer receives pen packets
from a PadServer, performs some data conversion on the pen data, and transfers the data to



InfoPad Network Prototype: Architectureand Implementation 56

the text/graphics TypeServer as cursor positioning information or to the application as inking
data. The text/graphics TypeServer provides a window based user interface.

5.1.1 Text/Graphics

The text/graphics TypeServer is implemented with a modified version of an X-Windows R5
server. The server is "split" above the frame buffer: data normally sent to the frame buffer is
packetized by an instance of the IPN libraryand sent to the PadServer. The packet payload is
an address/data pair where the address is the starting X-Y location on a 480x640 monochrome
screen and the data is a set of 32 bit integers, each bit representing a screen pixel.15 The
server is modified only from the viewpoint of the PadServer; all other modules and applications
communicate with the server through an interface defined by the X Consortium, normally by
sending standard X events. The X server is an excellent example of the abstraction hoped for
in TypeServers. An X client connected to the server does not have to know that its terminal
device is an InfoPad. The X server appears exactly as if it were controlling the monitor on a
local host. The X server places one restriction on InfoPad network topology: there can be no
more than one InfoPad Xserver per host, because theserver number ofthe Xbased TypeServer
is hard coded. This will be corrected in the future.

5.1.2 Pen

The pen TypeServer is a custom X client with an IPN external interface and a specialized
interface for the application. The pen server manages pen data for several different types of
hardware pads, including the Gazelle pad used for all performance measurements. For Gazelle,
data arriving at the pen TypeServer from the PadServer is a depacketized stream offive byte
data units. The first byte indicates a button press (the pen used with the Gazelle pad has one
button at the tip and one on the side) and the last four record an X-Y coordinate. The pen
TypeServer extracts and remaps the X-Y data into a different coordinate system and applies
a mask to the button byte before forwarding the data in a similar form to the X server. If an
application is connected, a copy of the data is also sent to the application.

A simple video TypeServer has been constructed to deliver VQ encoded video data to a
prototypechipset via the hardware interface supported by the Gateway. This server isa simple
program that transfers the contents of a file to an IPN interface at a more-or-less metered rate.
It is useful only for testing purposes, but has been included here for completion. Currently,
there is no audio TypeServer.

15'5The X server calls IPNConnect with the wrpkts bit reset so that the library performs packetization. Since
data boundaries are maintained on IPN writes, an address/data pair can be sent in a single IPNWrite call with
no delimiter. It will be placed in its own IPN packet.
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5.2 Application

The only application written specifically for InfoPad is an X client called Notebook. This
application generates a graphics window with a region that resembles a paper note pad. If
a user draws in the window with a pen or a mouse, electronic ink appears under the pen on
the screen. Notebook is an instrumental part of the measurement system, since pen loop-back
latency is a critical system metric [8]. Notebook sends inking information to the Xserver using
X events. It receives pen information from the pen TypeServer via a TCP connection.

5.3 Emulator

The Emulator is implemented as an X client, like the pen TypeServer. However, in contrast
to the TypeServer, the Emulator contacts the X server that controls the console screen on the
host where Emu was started. So, the Emulator has at least two connections: one to the local X
server and one to a Gateway. The Emulator displays the X environment created by the InfoPad
X server in a window on a local workstation. The window is intended to "emulate" the screen
of the hardware pad. Emulators can be nested i.e. an Emulator can be started from an xterm
inside an Emulator window. Fairly complex module interconnection can be generated in this
way.

It is expected that the Emulatorwill be modified extensively to support TypeServer devel
opment. Most TypeServers will havean end-to-end view with the TypeServer itself on one end
and a pad on the other. The Emulator can be programmed to emulate pad behavior under may
different conditions.
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6 Conclusions

This system represents the first serious attempt to construct a working InfoPad network pro
totype. It is a beginning from which, it is hoped, a widely used technology with a rich set of
capabilities will grow. If the work presented here is successful, system growth and maturation
will be possible the template architecture.

The prototype is currently in everyday operation, and application developers are beginning
to use the programming model in varied and aggressive ways. As expected and welcomed, these
developers are exercising weak points in the implementation, so the prototype is undergoing
frequent minor change. These changes are typically related to unanticipated needs and removal
of inflexibilities. For example, although the InfoPad display will be black and white for quite
some time, one developer requires the ability to autostart either color or black and white
X servers in support of advanced work. This need will result in a further generalization of
parameter passing in EPN. So far (and surprisingly), only one problem has been detected that
can be blamed on a coding bug.

Although the body of practical experience is still small, enough insight has been gained to
at least begin reviewing the system goals.

• Speed: At its best, the system appears to be fast. An X screen update completes in
about a half second, and cursor movement is nearly as rapid as on the console. There is
an unacceptable degree of variation in performance, however. At worst, screen updates
may take several seconds (in bursts), and cursor movement is delayed. Average perfor
mance is difficult to identify; the difference between "good" and "bad" performance is
almost exclusively related to pad ID, which implies that network host assignment is more
important than expected. To clarify, each pad ID represents a specific set of machines
for the PadServer, text/graphics TypeServer, and pen TypeServer. One pad ID may
generally run fast while another may generally run slow.

• Efficiency: About the only comment that can be made at present regarding efficiency is
that operation of processes not related to the prototype do not appear to be affected by
the presence of InfoPad processes. The developers have not noticed anyaffect, and there
have been no complaints from others.

• Simplicity: If anything, the implementation became simpler as work progressed. Many
common elements emerged that could be applied across several modules, and insistence
on simple structures and algorithms was not diluted. As a result, code is not unduly
complex and should be easy to understand by those new to the system.

• Reliability: As mentioned above, only one bug has been identified, and that bug is
exercised only under specific conditions. Modules have not been mysteriously dying or
mangling data. Log files have revealed some unsuspected behavior, but the system is
robust enough to self-correct.

• Concurrency: So far, very little is known about the effect of concurrency measures.
The complete lack of pathological conditions when multiple pads are in operation seems
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to indicate that the time-sliced/non-blocking approach is operating as intended. That is,
the system does not "hang" waiting for an event, and service intervals appear to be load
dependent and uniform across pads rather than related to specific pad activity.

• Fairness: Like concurrency, this goal is difficult to quantify at present since no attempt
has been made to take advantage ofscheduling capabilities. There is no reason to expect
that fairness is violated, because it is enforced by the first-come-first-served nature of the
scheduler.

• Flexibility: The system has already proven to be flexible. Modifications have been easy
to make, and the learning curve for new module developers has been short mainly because
the structure allows modularization of tasks.

Some of these goals will be aided by system evolution. For example, the present move to
Solaris on ATM will potentially remove network induced bottlenecks.

Work is in progress on the next version of the architecture. The central element that
distinguishes the next generation from that presented here is the use of proxy connections:
instead ofdirecting all data for a pad through the PadServer, TypeServers will connect directly
to the Gateway. The PadServer will continue to act as "proxy" control for the individual
connections. This will require a far more sophisticated method ofconnection management than
presently exists. [15] gives an overview of the next generation architecture.

Two important aspects of the current architecture and implementation are explored in [8]
and [9].

Thefirst describes a detailed study ofpen loop-back latency, including measurements under
varied system load. This study found that loop-back latency (the time between pen contact
and the appearance of ink on the display) is approximately 10ms with pen data only (pen
packets on the uplink and X packets on the downlink). With addition ofa video load, the tail
of the approximately exponential distribution extends somewhat, but the mode remains fairly
stationary. The paper also compares the performance impact of various low-level protocols.

The second reference discusses an investigation into low-level communication protocols for
InfoPad. It presents a survey ofexisting methods, describes the implementation of three pro
tocols, and reviews a set ofmeasurements. In part, this paper concludes that packet filters are
an attractive alternative to heavyweight transport/network layer protocols.

In summary, this paperhas described an extensive effort into building infrastructure for the
InfoPad project. The prototype will continue to evolve and grow throughout the lifetime of the
project. The ultimategoal of this work is to facilitate the learning process, and to demonstrate
that InfoPad is a promising and realizable concept.
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