
 

 

 

 

 

 

 

 

 

Copyright © 1994, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



SYNCHRONIZING NONAUTONOMOUS CHAOTIC

SYSTEMS WITHOUT PHASE-LOCKING

by

Chai Wah Wu and Leon O. Chua

Memorandum No. UCB/ERL M94/77

26 September 1994



SYNCHRONIZING NONAUTONOMOUS CHAOTIC

SYSTEMS WITHOUT PHASE-LOCKING

by

Chai Wah Wu and Leon O. Chua

Memorandum No. UCB/ERL M94/77

26 September 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



SYNCHRONIZING NONAUTONOMOUS CHAOTIC

SYSTEMS WITHOUT PHASE-LOCKING

by

Chai Wah Wu and Leon O. Chua

Memorandum No. UCB/ERL M94/77

26 September 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Synchronizing Nonautonomous Chaotic Systems without

Phase-locking

Chai Wah Wu Leon 0. Chua

Electronics Research Laboratory and

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

Berkeley, CA 94720

U.S.A.

Abstract

Pecora and Carroll [l] have shown how two nonautonomous chaotic circuits driven by periodic forcing
can be synchronized using the master-slave driving principle. However, in their scheme, the periodic
forcing in both circuits needs to be phase-locked through some additional circuitry for the system to

synchronize. In this paper, we show two ways in which this can be avoided.

In the first scheme, the two circuits are connected in a master-slave driving configuration and the
periodic forcing is included in the driving signal such that it eliminates the need for the slave circuit to

have an external periodic forcing signal. In addition, we can recover the periodic forcing signal at the
slave circuit.

In the second scheme, the two circuits are connected in a mutual coupling configuration. The two
circuits will synchronize regardless of what the periodic forcing signal of the two circuits are. In particular,

the two periodic forcing signals could have different phase, different frequency, or different shape.

We discuss two interpretations of these synchronization schemes. First, we consider them as commu

nication systems when the periodic forcing signal is replaced by a properly encoded information signal.
Second, weconsider them as synchronizationschemes for nonidentical systems by considering the external
forcing signal as an error signal due to the difference between the two systems.

1 Introduction

Pecora and Carroll [1] haveshown how two nonautonomous chaotic circuits driven by periodic forcing can
be synchronized. Since the two circuits need to be identical to synchronize, the periodic forcing in the
two circuits must have the same phase. In their implementation, the two periodic forcing signals need to
be phase-locked through some additional circuitry for the two circuits to synchronize. In [2], computer
simulations were performed on two nonautonomous chaotic circuits where the periodic forcing signals in
both circuits also have the same phase. We show here two cases where such phase-locking is not necessary
for synchronization.



First, weshow a master-slave driving scheme where the periodic forcing is included in the driving signal,
and which eliminates the need for the slave system to have an external periodic forcing signal. We can then
recover the periodic forcing signal from the driving signal.

Second, weshow a mutual couplingscheme, where the twosystems are synchronized regardless of whether
the periodic forcing signals in the two systems are identical or not.

One of the key properties of these synchronization schemes for nonautonomous systems is that the

external inputs to the two systems do not need to have the same phase. In fact, they can be arbitrary and
completely different. This allows us to use them as communication systems or synchronization schemes for

two systems which are not identical. These schemes can be considered as communication systems when the

periodic driving signal is replaced by a properly encoded information signal. These schemes are considered as

synchronization schemes for two systems which are not identical when the external forcing signal is considered
as an error signal due to mismatch between the two systems.

In this paper, we assume that we can write state equations for all the nonlinear circuits that we consider

and that for each initial condition, there exists a unique solution for all time.
The organization of this paper is follows. In Sec. 2 we will discuss the master-slave synchronization

scheme. In Sec. 3 we discuss the possibility of synchronization through linear mutual coupling such that the
periodic forcing in both systems can be different. In Sec. 4 we discuss the possibility of using these schemes

as communication systems by replacing the periodic driving signals by properly encoded information signals.

In Sec. 5 we discuss how we can synchronize two systems which are not identical.

2 Master-slave Synchronization Scheme

In the communication systems proposed in [3, 4], the slave system is synchronized to the master system,
even though the master system has an information signal injected into it, while the slave system does not.

As the information signal is an external source, this can be considered as synchronization of nonautonomous

systems. We will use the same principles for our first synchronization scheme.

The chaotic system we use (Fig. 1) is a second order nonautonomous circuit, a modification of the circuit
proposed in [5]. In [5], the periodic forcing is in series with the linear resistor, while in Fig. 1, the periodic
forcing is in series with the nonlinear resistor. For the circuit to be chaotic, we choose R, C and L to be

passive and R\ to be active and have a monotone v-i characteristic.

The state equations for this circuit are given by:

fr = *(«2-/e(«l+*c(0))
*, 1 ,.. . , m (1)

where sc(t) = Acsin(Qt) is the periodic forcing function and the v-i characteristic of the voltage-controlled
Chua's diode /c(v) is a 3-segment piecewise-linear function given by

Mv) =Gbv +±(C7a - Gb) (\v +E\-\v- E\) (2)

where E > 0

After nor

s(0 = i£j3> A—4h anc* redefining r as <, we obtain the following dimensionless equations:
After normalization using G= £, x= ^, y= ^, r = jgfa, a= ^,6=^,w = Q\C/G\, 0=-&5,

% = *(y-/(x+5(«))) ,.
jf = Afl-x-y) K6)



Figure 1: Nonautonomous chaotic circuit 1. For the circuit to be chaotic, we choose R, C and L to be
passive and R\ to be active and have a monotone v-i characteristic.

where k= 1if§ > 0 and k= -1 if§ < 0, s{t) = As'm(u>t) and

/(x) =6* +i(a - 6)(|« +1| _ |X - 1|) (4)

We choose the following set of parameters: a = -1.37, b = -0.84, u> = 0.4, A = 0.5, /? = 0.895, and
k = 1. A chaotic attractor for these parameters is shown in the x-y plane in Fig. 2.

We couple two identical chaotic circuits in the following scheme (Fig. 3) which is similar to the scheme
proposed for the autonomous Chua's circuit in [3]. It is based on the idea proposed in [6] that to synchronize
two chaotic systems, the parts of the system that are responsible for the instability of the system are used
as driving. The corresponding normalized state equations are given by:

£ = *(y-/(x-MshM>0))
$ = k0{-x-y)
§ = k(y-f(x + Asin(u>t)))
<*£ -
dt ~

(5)

= kfi(-x-y)

When k, 13 > 0 (or R,L,C > 0) this setup will synchronize, i.e. x(t) -* x(t) as t —* oo. This implies
that se(t) in Fig. 3 approaches se(t) as t —• oo (s(t) approaches s(t) in the normalized equations, where
s(t) = x + s(t) —x). The proof that this setup will synchronize is similarto that in [3].

An alternative circuit implementation of Eqs. (5) is to transmit the current in to the receiver circuit as
shown in Fig. 4. This implementation will also synchronize the two circuits. If we assume that the nonlinear

resistor R\ is both current and voltage controlled (i.e., fc(v) is one-to-one), then se(t) will approach se(t) as
t —* oo.

3 Mutual Coupling Synchronization Scheme

The nonautonomous chaotic system that we use is the same circuit as Fig. 1, except that we interchange
the linear resistor and the nonlinear resistor, as shown in Fig. 5. Note that this circuit is the dual circuit
of the circuit in [5] except that we replace the current source in the dual circuit by a Thevenin equivalent
voltage source. However, for our synchronization scheme we will use an active linear resistor and a passive
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Figure 2: Chaotic attractor for system (3) in the x-y plane. The parameters are a = -1.37, b = -0.84,
w = 0.4, A = 0.5, 3 = 0.895, and k = 1.

vR is the transmitted signal

+

Figure 3: Two nonautonomous chaotic circuits coupled through unidirectional coupling. This can be viewed
as a communication system when the coupling is considered as the tranmission of the signal vr. The voltage
accross the controlled voltage source is vr and the current through the controlled current source is ir. The
recovered signal sc(t) will asymptotically approach sc(t) as t —* oo.



sc(t)
i Risthe transmitted signal

Figure4: Alternative way of connecting twononautonomous chaoticcircuits through unidirectional coupling.
This can be viewed as a communication system when the coupling is considered as the tranmission of
the signal £r. The current through the controlled current source is *«. The recovered signal se(t) will
asymptotically approach sc(t) as t —♦ oo assuming that R\ is both voltage and current controlled.

nonlinear resistor with a monotone v-i characteristic. Note that since the nonlinear resistor has a passive
and monotone v-i characteristic, the linear resistor must be active for the system to become chaotic (and

exhibit sensitive dependence on initial conditions) as otherwise the system will have a unique steady state
solution [7].

Chua's diode

Figure 5: Nonautonomous chaotic circuit 2. For the system to become chaotic, we use an active linear

resistor and a Chua's diode with a passive monotone v-i characteristic.

The state equations for this circuit are given by:

* = -i(vi+9c(i2))
(6)

where se(t) = Aes\n(Qt) is the periodic forcing function and the v-i characteristic of the current-controlled



Chua's diode gc(i) is a 3-segment piecewise-linear function given by

gc(i) = Rbi + l-{Ra - Rb) (\i +I\-\i-I\ (7)

where / > 0.

After normalization using G= ^, x = 2v£, y= if, r = \C)G\, a = GRa, b= GRb, to = £l\C/G\, 0 = jjj>.
s(t) = Sc" 'j "' , A= ^j£, and redefining r as t, we obtain the following dimensionless equations:

f = k{y-x-8(t))
* = kp(-x-f(y))
<ii

(8)

where A: = 1 if -^ > 0 and k = —1 if%< 0, s(<) = J4sin(u;f) and / is as defined in Eq. (4).
We choose the following set of parameters: a = —1.27, b = —0.68, to = 0.5, A —0.2, (3 = 1.4, and k = —1.

There exists a set of corresponding circuit parameter values such that the inductor and the capacitor are

passive, the nonlinear resistor has a passive monotone v-i characteristic and the linear resistor is active, i.e.

C, L, Ra, Rb > 0, R < 0. A chaotic attractor for these parameters is shown in the x-y plane in Fig. 6.

X

Figure 6: Chaotic attractor for system (8) in the x-y plane. The parameters are a = -1.27, 6 = -0.68,
u = 0.5, A = 0.2, 0 = 1.4, and k = -1.

We will sychronize two such circuits by connecting a linear resistor of resistance Rc accross the two linear
resistors, as shown in Fig. 7.

The normalized state equations of the system in Fig. 7 are:

g = k(y-x-s(t) + 7(x + s(t)-x-s(t)))
| = k0(-x-f(y))
f = «($-*-*(«) +?(«+ «(*) -x-s{t)))
f = k0(-x-f(y))

(9)



Figure 7: Two nonautonomous chaotic circuits coupled through a linear resistor. The signal v\ (t) approaches
v\(t) as the system is synchronized.

where 7 = ^j;.
We choose 7 = —i. This corresponds to Re = —2/2, so that if R < 0 is an active resistor, Re will be a

passive resistor. Eqs. (9) can then be rewritten as

£ = c(y-[J(x +x)+J(.(0+ *(<))])
fj = k0(-x-f(y))
§ = c(y-[|(x + *)+ i(«(*)+««)])
$ = k0(-x-f(y))

(10)

If we set 77(f) = —\{x + x) —\{s{t) + s(t)), then by [6, Corollary 1], this system will asymptotically
synchronize (i.e. x —• x and y —• y as f —• 00) if the following system is uniformly asymptotically stable for
all r)(t).

11/ \° P) I *(-«-/(»)) J (11)

The function h(x,y) = (—fcy, —k(—x —f(y)))T is uniformly increasing for k = —1,a < 0,6 < 0 since

(x - x', y - jOWx, y) - A(*', s/0) = -*(x - x')(y - j/) + x(x - *')(y -!/) + fc(y - j/)(/(y) - /(•))

= -(y-i/Mv)-M)) = —iv-i/)7

where s = 'M'ffi ' which depends on y and y* satisfies s < max(a, 6) < 0for all y^ y*. Thus system (11)
is uniformly asymptotically stable for all rj{t) by Theorem 6 in [6] and so system (10) will asymptotically
synchronize for a < 0,6 < 0, 0 > 0 and k = —1.

Note that when the two systems are synchronized (x = x and y = y)t the two systems behave both as a
single system (8) with the external source replaced by the average of the two sources.



4 Communication Systems Based on Chaotic Synchronization

There has been many approaches to implementing communication systems based on chaotic synchronization
[3,4, 8, 9,10,11,12, 13]. In these systems, the input signal is scrambled or converted to a chaotic signal in the
transmitter and this chaotic signal is transmitted to the receiver. Nearly all of them utilize an autonomous

chaotic system and the information signal does not play a significant role in generating the chaos. We
have discussed earlier the relationship between communication systems using chaotic synchronization and

synchronizing nonautonomous chaotic systems by considering the information signal as external input.

Let us now consider the above synchronization schemes in this light. The synchronization schemes in the

previous sections can be considered as communication systems if the periodic signal sc(t) in Fig. 3 (resp.
signals se(t) or sc(t) in Fig. 7) is replaced by an encoded information signal that oscillates at the proper rate.
Some examples of encoding of binary information signals that could be used are coded PCM (Manchester
pulses), FSK or PSK. For FSK and PSK, the frequencies of the keys should be chosen such that system (1)
(resp. system (6)) is chaotic.

Consider Fig. 3. The information signal is sc(t), and this is scrambled by the circuit, the scrambled signal
vr is transmitted, and in the receiver the signal se(t) is recovered which approaches sc(t). The signal sc(t)
is now an information-bearing signal at the slave circuit (receiver). Some differences between this scheme
and the other communication schemes using chaos are:

• The information signal plays a crucial role in generating the chaotic signal to be transmitted which
potentially can lead to a secure communication system that is harder to break.

• The minimum number of dimensions needed to generate chaos is less (2 versus 3).

The scheme in Fig. 7 considered this way can be redrawn as a bidirectional communication system, as
shown in Fig. 8. Both circuits transmit and receive to each other at the same time. sc(t) and se(t) are both
informationsignals. The signal sc(t) is recovered in the second system as rc(t) (rc(t) —• sc(t) as t —• oo) and
se(t) is recovered in the first system as re(t) (rc(<) —* sc(t) as t —* oo).

Although it cannot be considered as secure communication system as in [3, 8], since both transmitted
signals can be intercepted, it can nevertheless serve as a system to modulate the information signal which
can be demodulated at the receiver.

5 Synchronization of Nonidentical Systems

In this section we use the two synchronization schemes to synchronize two systems which are not identical.
Since the external forcing voltage source can be arbitrary, we can add a nonlinear (resistive or dynamic)
one-port in series with it and the system will still synchronize. Since the two systems are not identical and
can have different dimensions, synchronization here means that the state variablesin one system which have
a corresponding counterpart in the othersystem will approach each other as <—» oo (see Definition 8 in [6]).

For the master-slave configuration (Fig. 3) this leads to Fig. 9, where the one-port is shown as N2.
As an example, assume the one-port N2 consists of a linear capacitor in series with a nonlinear resistor.

The resulting system is shown in Fig. 10. We assume that Ri is voltage controlled and the driving point
characteristic of Ri in series with #2 is also voltage controlled. Then v\ —♦ v\ and h —*• »2 as t —• 00.

When the one-port N2 is dynamic, this synchronization scheme is similar to the homogeneous driving
scheme of Pecora and Carroll [14] where the driven system is a smaller dimensional system than the driving
system (see [6, Section 4.1]).
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Figure 8: The system in Fig. 7 redrawn as a bidirectional communication system. The signal sc(t) is
recovered in the second system as re(t) (re(t) —• se(t) as t —• oo) and Sc(<) is recovered in the first system as

?c(0 (*e(0 —* sc(t) as t —• oo).
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Figure 9: Synchronization of nonidentical systems. The one-port Ni can be dynamic or resistive.



Vp is the transmitted signal

Figure 10: Figure 9 redrawn when the one-port AT2 is a linear capacitor in series with a nonlinear resistor.

t>i —* v\ and ?2 —*• *2 as t —*• oo.

Similarly, two one-ports can be connected in series to the independent sources in Fig. 7 and the system

will still synchronize1 in the sense that vi —• v\ and ?2 —• *2 as t —*• oo (Fig. 11).

Figure 11: Figure 7 with two one-ports 7V2 and 7V3 inserted in series with the external sources. The system
synchronizes in the sense that tii —> vj and ?2 —• ii as t —* oo.

These exact same approaches can be used to synchronize two nonidentical autonomous systems with a
similar topology. Examples of such systems are Chua's circuit and Chua's oscillator [15, 16].

6 Conclusions

We haveshown how twononautonomous chaotic systems can be synchronized without the need to explicitly
phase-lock the periodic forcing in the two systems. The key feature of these synchronization schemes is that
the external forcing of the two systems can be arbitrary and do not need to be identical. This allows us to
consider them as communication systems and synchronization schemes for nonidentical systems.

In particular, in the master-slave configuration the slave system does not need an external periodic forcing
and can recover the periodic forcing of the master system. This suggests the possibility of using this as a

1As long as we can write state equations for the entiresystem.
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communication system by replacing the external periodic forcing signal in the master circuit by a properly
encoded information signal, which can then be recovered in the slave circuit.

In the mutual coupling scheme, the two periodic forcing signal can be completely different. This suggests
the possibility to use this asa bidirectional communication system with the two systems both receiving and
transmitting at the same time.

Bothschemes can also be considered as synchronization schemes for twosystems which are not identical.
The reason these synchronization schemes work is due to the special topology of the circuits being

synchronized. It would be interesting to see if synchronization without phase-locking is possible for other
circuits.
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