

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

INCREMENTAL FORMAL DESIGN VERIFICATION

by

Gitanjali M. Swamy and Robert K. Brayton

Memorandum No. UCB/ERL M94/76

30 August 1994

INCREMENTAL FORMAL DESIGN VERIFICATION

by

Gitanjali M. Swamy and Robert K. Brayton

Memorandum No. UCB/ERL M94/76

30 August 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

INCREMENTAL FORMAL DESIGN VERIFICATION

by

Gitanjali M. Swamy and Robert K. Brayton

Memorandum No. UCB/ERL M94/76

30 August 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Incremental Formal Design Verification *

Gitanjali M. Swamy Robert K. Brayton

Department of Electrical Engineering and Computer Science.

University of California at Berkeley

Berkeley, CA 94720

Abstract

Language containment is amethodfor design verification that involves checking if the behavior of the system tobeverified is

a subset of the behavior of its specifications (properties or requirements). If this check fails, language containment returns

a subset of 'fair' states involved inbehavior that the system exhibits but the specification does not. Current techniquesfor

language containment donot take advantage of thefact that the process ofdesign is incremental; namely that the designer

repeatedly modifies and re-verifies his/her design. This results in unnecessary computation. We present a method that

successively modifies the latest result of verification each time the design is modified. Our incremental algorithm translates

changes made by the designer into anaddition orsubtraction ofedges, states or constraints (on acceptable behavior)from

the transition behavior or specification of the problem. Next, these changes are used to update the set of fair' states

previously computed. This incremental algorithm takes much less time than the current techniquesfor language containment;

a conclusion supported byexperimental results presented in thispaper.

1 Introduction

Design verification is theprocess ofchecking if what thedesigner specified iswhat he/she wants. Oneway toperform design

verification on sequential logic circuits is to specify thedesign (also called the system), as well as, therequirements of the

*This work is supported inpanbytheNational Science Foundation, theCalifornia Micro program, Bell Northern Research and Fujitsu

design (also called the properties) as afinite automaton (or finite state machine), usually by the process of abstraction, and

verify that the language (the setof behaviors) of theproperty is a superset of the language (or behavior) of thesystem. The

requirement that thelanguage of theproperty contains thelanguage of thesystem is called language containment. Language

containment fails due to thepresence of states that show behavior that is in thesystem butnotin the property. This setof

states is called the set of 'Fair* states.

Ingeneral, thesystem itselfneed notbeasingle finite state machine. Itismore commonly expressed asasetof interacting

finite state machines that form acompound entity called the product machine. Figure 1illustrates asystem composed of three

interacting finite state machines (Ml, M2, M3), with transition relations (Ti,T2j T3). The transition relation of this system

describes howthecurrent state of thesystem and inputs relate to thenextstate and outputs; it is theCartesian product of the

individual transition relations of thecomponent machines, namely T = T\ x T2 x T3. Theproblem of language containment

hasto be solvedin thisenvironment of interacting finite state machines.

Figure 1: A System of Interacting FiniteState Machines

Current techniques [1,2] perform language containmentasasingle pass. If thedesigner modifies thedesign after asolution

has been obtained, then theentire language containment algorithm is repeated on thenew design. In practice, the process

of design is incremental; the designer modifies and re-verifies the design many times. If standard language containment

algorithms are used in real-life design situations, they oftenresult in redundant re-computation of information because the

similarity between theoldsystem and thenew system is notutilized. We introduce theconcept of incremental verification,

which allows multiple changes to thesystem butruns theentire language containment algorithm onlyonce, and propagates

successive changes or increments from the latest solution.

The language containment algorithms of Touati et. al.[l] and Hojati et. al. [2] start with all reachable states, and

successively reduce this until only the "fair" statesremain. Thesealgorithms are monotonic in nature, i.e., once a state is

removed from thesetof potential fairstates, it is never added back. Hence, a similar algorithm thatstarts withanysuperset

of thefairset, would return thefairset. Ouralgorithm uses information about thechange in thesystem and the original set

of fair states to derive a smaller superset of new fairstates (smaller than the set of all reachable states). Then, it reduces

this superset with an algorithm similar to [2]. Since this superset is much smaller than the set of all reachable states, the

incrementalalgorithm convergesfaster.

Theaimof thisexercise is togetthenewanswer totheverification decision problem, "Is whatI specified whatI wanted?",

using theoldfairstates (also referred toas Fair+),and theincremental changes thatthedesigner made to theinput problem,

while spending less time andeffort in thiscomputation than if theentire language containment algorithm wasrunon thenew

problem.

Thepaperis organized as follows. Thebasic terms usedin thepaperare given in Section 2. Previous workis described in

Section 3. Ourwork begins inSection 4,byrecognizing thatall(small) changes tothesystem canbetranslated to theaddition

and subtraction ofedges, states and constraints. Next, we analyze how each of these changes tothesystem can bepropagated

togetthenew setoffairstates, also called Fair+new andprove thecorrectness of these techniques. Thissection summarizes

how incremental changes areclassified and how each particular change can behandled individually. Next, theprocedures for

handling individual classes ofchange aremerged togeta general algorithm for handling any change to thesystem. Section 5

describes the entire incremental language containment algorithm. Finally, we conclude bypresenting experimental results,

which demonstrate theefficacy of thismethod, in Section 6, andgivefuture direction forthis research in section7. A shorter

descriptionof this work has been published in [3].

It is important tokeep in mind that all operations are tobecarried out in the context of the Binary Decision Diagram

(BDD) data structure^]. Even though notexplicitly stated, allsets and relations arerepresented as their BDD's [5].

2 Definitions

Definition 1 Finite State Machine; Afinite state machine orfinite automaton M isa5-tuple (Q, 2, T,T,I) where

• Q is afiniteset ofstates

• L is afinite set ofinputvalues

• T is afinite set ofoutput values

• T cQ xJLxTxQisthe transition relation

• I is a set ofinitialor starting statesof themachine.

T(q, <r, 7, t) = 1means that from state qe Qoninput a e I, there isa transition to some state t € Q, while the output is

7 € T. Thus anFSM can be represented bya directed graph, whose vertices arestates, andedges arelabelled with elements

of (Z x T). This directed graph iscalled a State Transition Graph.

Definition 2 Run: Asequence ofstates, r = r0... r^..., r e Qw,is a run,or a path of Tfor a word cr = (<r0 ... <r,...).

<reI?,ifroeI andfor i > 0, T(riy<Ti> 7,-, rI+i) = 1. The set I refers to the setofinitial states.

Theinfinity set of a run r, denoted inf(r), is thesetof states thatare visited infinitely many times in r. A run r over T is

accepting if inf(r) satisfies some acceptance condition C. Theacceptance condition C distinguishes different u/-automata (

Automataacceptinginfinitebehavior; e.g. L-automata, Buchi,Streett and Rabin automata),and is used to indicatewhat is

acceptable behavior.

Thebehavior(setof fair runs) of thesystem is a subset of therunsof thesystem. Thissubset is specified using fairness

constraints on theprocesses of thesystem. The fairness conditions express restrictions on theinfinitary behavior of thefinite

statemachine, andare usedto model thesystem, theenvironment, andacceptable behaviors. Fairness conditions are modelled

differently for different classes ofautomata. The language ofanautomaton M, represented as L(M), is thesetofallstrings

accepted by it.

Ml:il,01 M2n2,o2
M=MlxM2

Figure 2: Forming the Product Machine

Definition 3 Product Machine; Given acollection ofinterconnectedfinite state machines {M1, M%,..., Mn}, their product

is the finite state machine on the product state space. The transition relation is the Cartesian product of the component

transition relations.

Aclosedsystem ofinteracting FSM's isa system with noexternal inputs. Any open system can beclosed byadding machines

that simulate theenvironment. Figure 2. shows a system of interacting machines M\ and A/2, where thecorresponding

product machine M is indicated.

Definition 4 Language Containment: The requirement that the language ofthe property (or specification) isa superset of

the language of thesystem is calledlanguage containment.

Inthelanguage containment paradigm, verification of thesystem is equivalent todetermining if there is a fair path starting

at an initial state. This path corresponds to behavior that is generated by thesystem butrejected by the task or property

automaton and it is a witnessto the failureof theproperty. The set of stateswhichare involved in fair behaviorare calledFair

states.

Definition 5 Streett Automata [6]: An FSM that accepts infinitebehavior, which satisfies the Streett acceptance conditions is

calledaStreettautomaton. Streettacceptance conditionsconsistofafinite setoforderedpairsC= {(U\t Vi), (U2, V2),..., (Un, Vn)

where U{ and Kare subsets ofthe state spaceofthe machine andrun risaccepting ifand only if1i({inf{r)C\Ui ± 0)U(/n/(r) C

Vi)), where 0<i<n. This can also be written as F°°(Ui) + G°°(Vi). In addition,fairness constraints may also be given

intheform ofPositive Fair Edge E{ which must be traversed infinitely often and Negative Fair Edge AT, which must not be

traversed infinitely oftenin anyaccepting run r.

Rabin Automata [7]: Thefairness conditions fora Rabin Automaton are thecomplements of thefairness conditions for

a Streett automaton, i.e., V,((inf(r) n Ui = 0) n (inf(r) £ Vi)). Inaddition, positive and negative fair edges constraints also

exist.

Definition 6 L-Automata. The Lautomaton[8J acceptance condition consists ofapair {R, Z). R C Q x Q, is termed the

recur edges, and ZC2$ isthe set ofcycle sets. Run r isaccepting ifand only if 3x € Z, inf(r) Czor infe (r)r\R^ 0,

where infe(r) denotes the setofinfinitely occurring edges in r.

Definition 7 L-Process : An L-process is syntactically the same as an L-automata, with one exception; the acceptance

conditionsforL-automata are complementary to those ofL-processes, i.e. run risaccepting ifand only if Vz € Zinf(r) g z

and infe(r)n R = 0,where infe(r) denotes the set ofinfinitely occurring edges inr.

Definitions Reachable states: The set of reachable states is denoted by R, q e R if and only if there is a path (not

necessarilyfair) from someinitial state qo€ I to q.

Definition 9 Fair"1": The set ofstates which can reach a 'fair cycle' (including those on it), i.e. a cycle which satisfies the

fairness constraints, constitute Fair+. The presence ofa non-empty set Fair+ indicates that the automaton has non-empty

behavior.

2.1 Some Important Computations

This section describes thecomputation procedure for all important operators required inthispaper. In general, letx represent

the present state variables and y represent thenextstate variables. T(x, y) represents the transition relation, which defines

a relationship between present states (x variables) and next states (y variables) in the state transition graph, irrespective of

inputand output, and T(y, x) represents theselfsame transition relation, with x and y variables interchanged (i.e. y used for

present state). In general, r(x, y), where r is arelation, is thesame asr(y, x) with x and y variables interchanged.

1. Least Fixed Point Computation[9]: Given an initial setof states 5o(x), a transition relation T(x, y), and a variable

set x, the least fixed pointreturns a function LFP(x, T, So) where LFP is computed as follows.

LFP(x,T(x,y),Sn(s))

5„+1(x) = (3x(T(x, y) •5„(x)) US„(x))y:=r

if(Sn+i=S„)

return Sn

else

return LFP(x,T,Sn+i)

2. Greatest Fixed Point Computation^]: Given an initial set of states 50(x), atransitionrelation T(x, y),and avariable

set x, the greatest fixed pointreturns a function GFP{x, T, 5b)whereGFP is computedas follows.

GFP(x,T(x,y),Sn(x))

Sn+y(x) = (3x(T(x,y).Sn(x)))y:=x

lt(Sn+l=Sn)

return Sn

else

return GFP(x,T,Sn+i)

3. ForwardReachableOperator: GivenT(x,y), thetransition relation andA(x), asetof vertices, the forward reachable

operator returns the set of verticeswhich canbe reached by A. The forward reachable operator FR is computed using

the following algorithm:

FR(T,,4)

return LFP{x,T(x,y),A(x))

4. Backward Reachable Operator : Given T(x,y), the transition relation and A(x), a set of vertices, the backward

reachable operator returns the set of verticesthatcanreach A It canbe computedas follows:

BR(T,,4)

return LFP(x,T(y,x),A(x))

5. Reach Reachable States Operator: Given T(x,y), the Transition Relation and 5(x), a set of vertices, the Reach

Reachable States operator returns thesetof vertices whichcan reach S orbe reached by S. TheReach Reachable States

operator or RRS(T, S) is computed as follows:

RRS(T,5)

return {BR(T, S) U FR(T, S))

6. Forward Stable Set Operator[2]: Given atransition relation T(x, y) and asetof vertices A(x), theforward stable set

operator or FSS(T, A) returns a setof states in A, which are onacycleorcan reach acyclein A. Alternately, theFSS

operator removes from A all those states which have no successors states (next states) in the transitionstructure. The

following algorithm is usedto computethe Forward Stable Set operator FSS:

FSS(T,A)

return (GFP(y,T(x,y)}A(x)))

7. Forward Fair Path Operator[2]: Given T(x, y), the transition relation, A(x), a set of states andC, a set of fairness

constraints, theforward fairpathoperator orFFP(T, C,A), returns a subset of states in A(x) whichareona fair path.

For ouranalysis, C(x, y) are Streett fairness constraints in the form d = F°°(t/,) + G°°{Vi) andpositive fair edges

Ei(x,y). Hence, FFP returns those states a in j4 such that 1) for each Ej, there isa path in A from a to £,-, and 2)

foreach C,-, either a e K orthere is a path in A from a to somestate in £/,-. Note thatthisoperator returns justa path

andnot necessarily an infinitepath. The FFP operator canbe computed by usingthe following algorithm:

FFP(T,C,^)

rttum((Uite^c(GFP(xt T, A•Ut)) + Vt) n ins^c(GFP(xt T, (3y^(y,«)))))

3 Previous Work

Vardi andWolper [10] observe thatthe problem of verifying whether a machine (A/) satisfies a given property (P) reduces

to the problem of checking whether the language of the machine automaton is contained in the language of the property

automaton. The language containment check in turnreduces to a language emptiness check for the product of the system

automaton andthecomplementof the property automaton. Checking whether L(M) C L(P) is the sameascheckingwhether

thelanguage of D = M x P isempty, i.e., whether L(M xT5) = <f>.

When P is expressed as an L-automaton, the problem of complementing P is solvedby expressing it as an L-process

[1]. The acceptance conditions for L-processes and L-automata arecomplementary and representing P by a L-process is

easilydone(if P is deterministic) by just keepingthe sametransition structure andcomplementing the acceptance conditions

(the complementation is implicitby the choiceof representation). Similarly when P is expressed as a Rabinautomaton the

problem ofcomplementation is solvedby expressing P asa Streettautomaton, sincethe acceptance conditionsforRabinand

Streettautomata complementary. Our experimentsuse a StreettandRabinenvironment,and hence all successivediscussions

in thisreport arecentered around StreettandRabinautomata, butarealsoapplicable to otherclasses of automata.

A language emptiness check remains to be done,andit is performed by checking the productautomata D = M x P for

acceptable infinitebehaviorfl] (or fair paths), which indicate that the language for the system-property product machine is

not empty. A cycle is associated with any infinitarybehaviorin a finite graph, and in order for this infinite behaviorto be

acceptable, this cycle must also satisfy the fairness constraints. Thus, a machinehasa non-empty language if thereexists a

path from an initial state to an accepted cycle, i.e., the cycle satisfies the fairness constraints specified in the automaton. The

set of states that lie on such cycles form aset offair states or states, which cause the/a/r or non-empty behavior. This set is

also called the set ofFair states. In general, we compute asuperset of this set called Fair*, which consists ofall states which

areon a path to a/air cycle.

Hojati et. al. [2] have presented an algorithm for computation of Patr+, within aStreett environment. The algorithm

computes Fair+ by starting with the set of reachable states, and alternately applying the FSS and FFP operators. These

operators successively restrict the original set of reachable states to those on apath from an initial state to acycle (FSS) and

those which are on afair (or acceptable) path (FFP). Thus, the set Fair+ is obtained by successively shrinking the set of

reachable states until only those states that are on afair path from some initial state to afair cycle remain. The algorithm for

verification in the Streett-Rabin environment becomes:

Algorithm 3.1: NonJncremental-LanguageXontainment

Fair+ = Compute-Fair+

if Fair+ is empty return(PASS)

else return(FAIL)

ThesetFair+ is computed using thefollowing algorithm:

Algorithm 3.2: Compute_Fair+

Restrict the Transition Relation T(x, y) to reachable states

Remove negative fair edges

Set So = Reachable states

While 5„+i #5„

S' = FSS(T,Sn)

Sn+l=FFP(T,C,S')

return 5„

The proofofcorrectness ofthis algorithm can befound in[2].

This algorithm has acomplexity of0(N2),where N isthe number ofreachable states inthe state space. Ateach iteration

of the fixed point computation, at least one state in the set of reachable states,but not in Fair+ is deleted from the reachable

set, and thisstep takes O(N) time, which results inan overall complexity of 0(N2). Thiscomputation ofcomplexity assumes

thateach steptakes 0(1) time,and allsucessive arguments oncomplexity in thispaper, also makethisassumption. Even, if

thisassumption didnothold,thecomplexities are valid for comparing theincremental method tothenon-incremental method.

Thoughnot explicitlystated in the abovealgorithm, the setof reachable states canalsobe usedto minimize the transition

relation BDD.This simplification results in a considerable speedup andwillbe usedthroughout thispaper withoutanexplicit

mention.

We require thatthe incremental algorithms in thispaper takelesstime thanthe corresponding non-incremental algorithm.

This criterion differs from the work doneby Ramalingam etal.[ll], which studied incremental algorithms for certain graph

problems. This paper defined incremental algorithms as thosealgorithms, whose time complexity could be written as a

function of the change to the system alone, where the change or A could be writtenas the sum of the change in the input

and outputof the algorithms. Thus, A = A,npu, + A0UtPut, and the complexity of the algorithm = 0(/(A)). They showed

thatsome problems were intrinsically non-incremental; i.e. there wasno locally persistent (storing only local information)

algorithm thatcouldbe writtenforupdating theinformation, whichhadacomplexityonlydependent on thesizeof thechange.

One such problem is the problem of reachability, which is essentially the heart of all verification algorithms. Hence, forour

purposes, we will impose a slightly less rigid criterion for incrementality, by only requiring that the incremental algorithm

take less time than the corresponding non-incremental algorithm.

4 Incremental Language Containment

4.1 Overview

The computation of Fair+ involves successive applications of the FSS and FBP operators, which involve the successive

reduction of the set of statesinvolved. It is important to note thatthe algorithm beginswith a superset of the states in Fair*

(namely all reachablestates), and eliminates states. Once a state has been removed from this set, it is never added back, and

hencethe algorithm is monotonic. Our incremental algorithm is based on the fact that if any superset of Fair+ is given

to Algorithm 3.2, it still returns the set Fair+. The trick lies in usingthe previously computed Fair+ andthe changes to

the system to obtaina supersetof the new Fair+t which is not necessarily as large as the set of all reachable states,and in

most cases is significantly smaller. Given a smaller set, the algorithmconverges fasterand hence the incremental algorithm is

typically faster.

4.2 Characterizing Incremental Changes

Recall thatFair+ isa setof states thatcharacterize the fair or unwanted behavior in the system. We wantto use information

about thechanges to thesystem toincrementally modify Fair+. The potential for speedup in thismethodis thatFair+ need

not be recomputed from the beginning; intermediate results can be used to avoid unnecessary computations.

At the start we proceed normally, running language containment to obtain Fair+. Oncethe designer changes the system,

the current Fair+ is modified using informationabout the changes made to the system and this process is repeated as the

system changes.

We have categorized six different incremental changes to an instance of the language containment problem. Briefly,

changes to the system may consist of 1) addition or subtraction of edges to the transition relation, 2) addition or subtraction

of states (and hence edges) to the state space of the machine and 3) addition or subtraction of fairness constraints. Addition

and subtraction of states can be characterized in terms of edges. Clearly, removing a state from the state space is equivalent (

behaviorally) to removing all edges to the state, thus making it unreachable. Similarly, if a state is added to the state space, it

is similarto making one of the unreachable states in the state space reachable by adding edges.

Thus, we consider four types of incremental change: addition and subtraction ofedges and constraints. For each type we

firstdeal with a set of changes of the same type, and then we provide a general incremental algorithm to handle a complex

change with many individual types. The algorithm is given in terms of implicit BDD operations.

Suppose the designermodifies the original transition relation T to a new transitionrelationTnew. Using 7™*" and T,

we create Taub and Tadd. Tsub consists of theoriginal transition relation T minus all transitions, which were removed in

Tnew and Tadd is T'ub plus all thetransitions added in T1™. Note that Tadd = 7™"', butfor thepurposes of incremental

modification wecan deal with Tadd as a single modification toTsub byonly adding edges. The exact computation of Tadd

and T3ub under different methods for changing input, isdescribed in Section 5.

Note that fairness constraintsnever affect the transition structure; they only affect the FFPoperator (Section 2). The new

fairness constraints, with constraints addedand subtracted from the original set, areused to compute a new FFP operator.

4.3 Subtraction of Edges

Consider thesystem obtained after subtracting a setofedges from the transition relation. Subtracting an edge cannot make

any unreachable state reachable, norcanit create a new cycle inthestate transition graph. Thus, subtractinganedge can never

add a new state to Fair+. Figure 3 indicates that deleting edge ab can potentially remove allstates in sets Aand B from the

Figure3: Deleting edgeabcan potentially remove all statesin A and B from fair+

set Fair+. Thefollowing lemma formalizes this idea.

Lemma4.1 The set Fair+new forthe new system obtained by deleting edgesfrom the original transition relation isa subset

of the Fair+ of the original system.

Proof Assume theconverse. 3s(s e Fair+new), (s $ Fair+). Hence s e Rnew, where Rnew is the new reachable set,

and s can reacha newfair cycle. Since transitionshaveonly beendeletedfrom the transitionstructureno statescan be made

reachable and no newcycles can be added. Hence, s wasreachable in T (the original transition structure) and s couldreach

a faircycle. Thiscontradicts s g Fair*. •

Thus, if the onlychange induced in the system consists of subtraction of edgesfrom the statetransition graph, then the

following algorithm canbe used to generate Fair+new given thenew transition relation andtheoldsetof states comprising

Fair+.

Algorithm 43(Ttub, C, Fair+)

InitSts = Initial States

R,ub _ j?i2(T*ut) InitSts)

Remove NegativeFairEdges from Tsub

Fair0 = Fair+ n Rauh

While Fairn+\ ^ Fairn

A = FSS(Tsub}Fairn)

Fairn+l = FFP(Tsub,C,A)

return Fairn

Theorem 4.2 If the only changes induced in the system consist ofsubtraction ofedgesfrom the state transition graph then

Algorithm43 is correct and returns Fair+new

Proof From Lemma4.1 and Hojati et. al. [2]•

Computing the conjunction of Rsub, and Fair+ instep 4. ofthe Algorithm 4.3 isnot necessary to the computation, but

increases the efficiency, if the computation of Raub isnot expensive. For the evaluation of the complexity of this algorithm,

this operation is ignored.

Subtraction of edges can only remove states from Fair+. Ateach pass of thefixed-point computation inAlgorithm 4.3,

at least one state, which was in the old Fair+, but not in the new Fair*, is removed. Thus, it converges in at most

\\Fair+ - Fair+new\\ steps. But \\Fair+ - Fair+new\\ = Aotltput < A, and each step takes O(N) time. Hence, the

algorithm completes in 0(N •A)time.

4.4 Addition of Edges

Consider the addition ofa setofedges to the state transition graph. This may result inthe creation ofanew reachable cycle,

whose states satisfy thefairness constraints. These states arenotnecessarily in Fair+. Thus, addition of edges to thestate

transition graph may increase Fair+. Figure 4 indicates that adding edge ab can potentially addallstates in sets Aand B to

theset Fair+. However, wewill prove that if theaddition ofedges results in theaddition of oneor more states to Fair*,

these states must satisfy at least oneof thefollowing conditions in thenew Transition system Tadd:

• The state belongs to the set Fair+.

Figure4: Addingedge abcan potentially add all states in A and B to Fair+

• The statecan reach or be reached by oneof the new transitions (withnegative fair edgesremoved). This set Fair1 is

computed as:

Fair1 = RRS{Tadd, 3yTadd(x, y) •T(x,y)) (Section 2).

Lemma 43 The new set Fair+new is a subset ofFair+ UPair1, i.e. Fair+new C Fair++ = Fair+ U Fair1.

Proof Assume the converse. 3s(s e Fair+new),(s g Fair++). Hence s e Radd where Radd is the reachable set,

computed using the transition structure Tadd, and s can reach a fair cycle in the new graph Tadd. If s e P, where R is the

oldsetof reachable states (using T) andcouldreach a faircycle, then s e Fair+, which contradicts s g Fair++. Hence, s

musthavebeen madereachable (and could reach a faircycle) by addition of some new transition. Hence s e Fair1. This

contradictss g Fair++. •

Note thatFair+new C Fair*, since theaddition ofedges cannever remove states from Fair+.

If theonlychanges to thesystem consist ofedge addition, thenew set Fair+new can becomputed as a twostepprocess

that first computes Pai>++,and then reduces it byusing the Algorithm 4.3.

Algorithm 4.4(T, Tadd, C, Fair*)

Fair++ = Fair*URRS(Tadd> 3yTadd(x, y) •T{x, y))

Remove NegativeFairEdges from Tadd

Fairo = Fair++

While Fairn+l £ Fairn

A = FSS(Tadd,Fairn)

Fairn+i = FFP(Tadd,AtC)

return Fairn

Theorem 4.4 If the only changes induced in the system consist ofaddition of edges from the state transition graph then

Algorithm4.4is correct andreturns thenewset Fair+new.

Proof From Lemma4.3 and Hojati et. al. [2]. •

Asnoted inSection 3,thesetofreachable states can beused tosimplify theBDDforthetransitionrelation. Inalgorithm4.3

thesetofreachable states isnotexplicitly involved but may beused tosimplify thetransition relation BDD. It is important to

note that forchanges described inthissection, reachability computations donotneed tobecarried outbystarting at theinitial

states butneed only proceed from theoldsetofreachable states R. This results inconsiderable savings in thecomputation.

The Algorithm 4.4 converges inat most \\Fair++ - Fair+new || = A'steps. Since, A' < N, forsmall changes, where N

is thenumber of reachable states. Thus, thecomplexity of this algorithm is 0(N •A'). Assuming A' < AT, this is faster than

running thenon-incremental algorithm fromthe beginning.

4.5 Addition of Fairness Constraints

The set Fair* satisfies all the fairness constraints. If new fairness constraints are only added, then the new set Fair+new

must satisfy all of the older constraints as well as the new ones. The set Fair+new must be a subset of the old Fair*.

Lemma 4.5 Ifadditionalfairness constraints are imposed onthe system, then Fair+new C Fair+.

Proof Assume the converse, 3ss e Fair+new,s £ Fair+. Addition of constraints never affect the transition structure.

Since s e Fair+newy s must be on areachable path toafair cycle. Hence, *must also be on a reachable path toafair cycle in

the old transition system, s g Fair+ =}• 3cc € C,s violates c,where C isthe old setofconstraints. However, by assumption

the newset of constraints Cnew D C. Hence 3ec eC,s violates c. This contradicts s e Fair+new. •

If theonly change tothe system consists ofaddition ofconstraints, thealgorithm forcomputation of thenew Fair+netu

is:

Algorithm 4.5(T, Cnew, Fair+)

Remove Negative Fair Edges

Fairo = Fair+

While Fairn+i ^ Fairn

A = FSS(T,Fairn)

Fairn+1 = FFP(T,Cnew, A)

return Fairn

Theorem 4.6 Ifthe only changes tothe system consist ofaddition ofconstraints then Algorithm 4J is correct and returns the

new set Fair+new.

Proof From Lemma 4.5 and [2]. •

Using thesame reasoning as Section 4.3, thisalgorithm has a time complexity of 0(N •A), where N is thenumber of

reachable states.

Theaddition of constraints canvery easily beused inconjunction with theaddition andsubtraction of edges. If edges are

deleted, inaddition toadding constraints, algorithm 4.3canbe used with theFFPoperator (including thenew constraints) to

compute thenew setFair+new. Ifedges areadded then Algorithm4.4can beused inconjunction with thenew FFPoperator.

The following lemmata formalize this idea.

Lemma 4.7 Ifadditionalfairness constraints are imposed onthe system, and edges are only subtractedfrom the transition

structure then Fair+new C Fair+.

Proof From Lemma 4.1 and Lemma 4.S •

With theprevious lemma, it iseasilyobserved thatthesubtractionofedgesandadditionofconstraintscanbesimultaneously

handled by using Algorithm 4.3 (forthesubtraction of edges) with theadditional caveat thattheFFPoperator is modified to

include the new constraints.

Lemma 4.8 Ifadditionalfairness constraints are imposed onthe system, andedges areonly added tothe transition structure

then Fair+new C Fair++,where Fair++ isasdefined inLemma 4.3.

Proof From Lemma 4.3 and lemma4.5 •

In a similar manner to theprevious analyses, it is observed thattheaddition of edges andaddition of constraints canbe

simultaneouslyhandled byusing Algorithm4.4(fortheaddition ofedges) with theadditional caveat thatthenew FFPoperator

(asdefined in Lemma4.5) is usedfor the computation.

4.6 Subtraction of Fairness Constraints

The set Fair+ contains states involved in infinite behavior that satisfy all fairness constraints C,\ If some constraint

d = F°°(Ui) + G°°(Vi) is subtracted, Fair+ stillcontains states that are involved in infinitary behavior, and satisfy all

constraints Q ^ C, (as well as d). Thus, the set Fair* C Fair+new. In additionto the states in Fair+, Fair+new also

contains states thatmay be ininfinitary behavior thatviolates thededucted constraint d- Suchstates aredefinitely a subset of

RRS{T,Ui U Vi); namely statesthatmayeitherreach or be reached by statesnot in Uior Vi. Sincemore thanone constraint

may be deleted, let d,ieS denoted the set of constraints to be deleted.

Lemma 4.9 If constraints d = F°°{Ui) + G°°(K), i € S are subtractedfrom the set of original constraints, then the set

Fair+nev> C Fair++ = RRS(T,U^^Tu^)) UFair*.

Proof If3X, x e Fair+new, then xisinvolved ininfinitarybehavior,which satisfies all constraints Cj = F°°(Uj;)+Gcc{Vj\

j g S. The infinitary behavior that x is involved in, may or may not satisfy d, i e 5. If it satisfies all C„ i G S, then

x e Fair+ => x e Fair++. Ifitdoes not satisfy atleast one ofthe d, i e 5, then itmust belong toinfinitary behavior that

violates the corresponding d, and itmust belong to RRS(T, \JieS(Ui UV^)). Hence x e Fair++. •

This leads to thefollowing algorithm forchanges, where constraints areonly subtracted from thesystem.

Algorithm 4.6.1(T, Cntw> S, Fair+)

Fair++ = RRS(T, \Jies(Ui UK))UFair+

Remove Negative Fair Edges from T

Fairo = Fair++

While Fairn+i j- Fairn

A = FSS(TtFairn)

Fairn+1 = FFP{T,Cnew,A)

return Fairn

If, in addition to constraint subtraction, edges were added (added edges = (3yTadd(x, y) •T(xy y))) to the transition

structure, then states inthe new Fair+new must satisfy atleast one ofthe following conditions in the new Transition system

rpadd.

• The state belongs to the set Fair+.

• The state can reach orbereached byone ofthe new transitions. This set Fair1 iscomputed as:

Fair1 = RRS(Tadd,3yTadd(x,y) •7\x~y)) (Section 2).

• Thestate canreach or bereached bystates violating thedeleted constraints.

Fair2 = RRS(Tadd, \Ji€S(WuVi)) (Section 2).

Lemma 4.10 Iffairness constraints are subtractedfrom the system, and edges are only added to the transition structure then

Fair+n™ C Fair++ = RRS(Tadd, U,€s WUV7) U(3yTadd(x, y) -T(x~yj)) UFair+

Proof Assume the converse. Consider some state s e Fair+new. It must reach a fair cycle, and it must bereachable. If s

was reachable intheoldtransition graph T and could reach a fair cycle, then s e Fair+. Hence s must bemade reachable,

andmust reach a faircycle by theaddition ofedges, or thesubtraction ofconstraints. Hence, s must be reachable or reached

bytheadded edges, or thesubtracted constraints. Butthis implies that either s e Fair1 or s e Fair2, or s e Fair+-\-. •

If subtraction of constraints is used in conjunction with addition of edges, then the following algorithm describes the

computation of the new Fair+new.

Algorithm4.6(Tadd, T,Csub, 5, Fair+)

Fair++ = RRS{Tadd, U,€5(£/< UVt) U(3yTadd(x, y). T(x, y))) UPair+

RemoveNegative FairEdges from Tadd

Fairo = Fair++

While Pairn+i ^ Faarn

^FSStT^.Patrn)

Pairn+i = FFP{Tadd,Caub,A)

return Fa*rn

This algorithm has a complexity of0(N •A'), where N is thenumber ofreachable states. Thenext section deals with putting

these individual algorithms together toform a general algorithm which handles any change to thesystem.

5 General Algorithm

We describe an incremental algorithm for language containment, when a general set of changes consisting of deletion and

addition ofedges from thetransition structure and addition and subtraction ofconstraints, isapplied to thesystem.

We begin byseparating theaugmented transition relation Tnew intoTaub, which consistsoftheoriginal transitions relation

Tminus alltransitions which were removed inTnew and Tadd which isseen as Taub plus all thetransitions, which are added

inTnew.

The change to thesystem can beseen asa two stage process; in the first stage, constraints are added and edges areonly

subtracted from the system. In the second stage constraints areonly subtracted and edges are only added to the transition

structureobtained from theprevious stage. The first stage computes anintermediate Fair+newl under theassumption that the

onlychanges consist of edgesubtraction andconstraint addition andfor thisstage, the transition structure Taub is used. The

second stage computes thenew Fair+newl using as input theintermediate Fairnewl andthenew transition structure Tadd.

5.1 ComputingTadd and T8ub usingTnew and T

Recall that, the augmented transition relation T"™ is expressed as twoseparate transition relations Taub and Tadd, where

fadd _ rpnew _ 'psub • frmew <t>\

The designer modifiesthe original transition relation T to a newtransition relation Tnew by addingand subtracting edges

from the transitionstructure. In practice, this may be done in two ways:

1. The designer might choose to directly modify the transition structure of the original system. If Tadd-edgea and

Tsub-edges represent mext 0f^g^ wmcn are tobeadded and subtracted, respectively, from the system transition

graph; the corresponding Tadd and Tsub can becomputed byusing the following equations.

psub _ 2"»f*| ^sub—edges

rpadd rpsub i,rpadd—edges

2. A designer canalsomodify thesystemby adding orsubtracting processes from the systemof interacting processes and

imposing additional constraintsonthese newprocesses. T\ is theproduct transitionrelation of onlytheadded processes,

Told isthe transition relation ofthe original processes, and T1™ isthe new transition relation ofthe augmented system.

Pi is the set of states within the transition structure T\ thatarereachable from the initial states (InitStsl) in it and it

can be computed as Pi = FP(Ti, InitStsl). In order to compute Tadd and Tsub in this framework the following

equations may be used:

T = Told x Rx(x) x Pi(y)

rpsub _ T C\ TtleW

rnadd _ rpnew _ p C\T

Thissetof equations essentially augments theoldTold totheproduct space of theCartesian product Told x T\.

Modifications can be made at many different levels. The designer may input the changes in a high level language

(e.g. Verilog). Alternately, he/she might choose to augment individual subprocesses in the system of interacting processes

by directly modifying the data-structure that stores their transition relations and constraints. In our implementation, the

designer is allowed to direcdy change the individual transition relations, or input process constraints and new processes via

the intermediate *Pif [12] format.

5.2 Incremental Language Containment

Thegeneral algorithm for computation of Fair+new is basedon Algorithm 4.3 and Algorithm 4.4, with the additionalcaveat

that the FFP is modified to account for the changes in the set of constraints. As described previously, the algorithm has two

stages for its computation. First, the changes due to deletion of the edges and next the changes due to addition of new edges

are handled. Let T*u\ Ta<w, and Fair+ be defined as before, and let Cadd be the set of constraints, whichconsistof the old

setof constraints plusadded constraints. Let Csub refer to thefinal setof constraints; i.e., C$ub = Cadd - d, i G 5. The

general incremental language containment (ELC) algorithm:

Algorithm 5.2.1: IncrementaLLanguage.Containment

Fair+ = IncrementaLCompute_Fair+

if Fair* is empty return(PASS)

else return(FAIL)

wherethealgorithm for the incremental computation of Fair+ is:

Algorithm 5.2.2: Incremental-Compute-Fair+

Fair+newi _ Algorithm 43(Tsub,Cadd, Fair*)

Fair+new _ Algorithm 4.6(Tadd, Taxih, Caub, S,Fair+newl)

return Fair+new

Theorem 5.1 Algorithm 522 is correct andreturns the new set Fair+new.

Proof The first stageof thealgorithmdoes not involve additionof edges,hence the use of algorithm4.3 is validand returns

thecorrect set of fair states, patr+newl for this subproblem to the nextstage(refer to theorem 4.2 and lemma 4.7). The

second stagedoes not involve the subtraction of edges; hencethe use of algorithm 4.6 is validand the correct set Fair+new

is returned (refer to Theorem 4.4, Lemma 4.8 and Lemma 4.10) •

6 Results

We have implemented the algorithms described in the previous sectionand tested these on a set of verification benchmarks.

Each example wasmodified, andtheFair+ wasrecomputed for ageneral change to thesystem,whichconsistsof addition and

subtraction of edgesandconstraints. The actual edges/constraints thatwereadded or subtracted from the transition relation

are arbitrary, andwerechosen so as to makethe systempass thelanguage containment check.

The first rowin each table reports the name of theexample, andthe iteration number. The second rowreports the time

taken by the incremental language containment (ILC) algorithm; thisincludes the time for incremental update of inputdata,

and re-initialization. Thelast row reports thetime for thenon-incremental (NLC) algorithm withthenon-incremental update;

thisincludes thetime for non-incremental input of data and initialization. The last column reports the total incremental, and

non-incremental times, summed over all iterations.

We ran the incremental, andnon-incremental algorithms on four examples, andmade 5 successive sets of changes. The

columns labelled with integers i = 1,2,3,4,5 report the times taken on iteration (set of changes) i. The first example,

Gigamax, was a description of the gigamax distributed multiprocessor, using a shared memory architecture. The second

example, Scheduler, describes a version of the scheduler example by Milner [13], and the system consistsof a token ring,

whereelementof the ring,called a cell, communicates with its "job", andits two nearest neighbor cells. The thirdexample,

Tcp, describes a simplified version of the TCP/IP communication protocol. The final example, Idle, describes an industrial

data link controller example. All theexamples werewritten in Verilog, andtranslated intothe blif-mv format usingthe vI2mv

.translator [14]. All successive incremental changes weremadedirecdyto the system withinthe HSIS environment.

The changes themselves were made by examining an error trace (describing some non-emptybehavior in the system)

generated, anddeletingand addingedges andconstraints so as to remove the particular error trace, and eventuallymake the

system pass language containment.

The results showthatthe incremental algorithm wasalways considerably faster thanthe non-incremental algorithm.

7 Conclusions and Future

We have presented a framework for incremental language containment and shown that the incremental algorithms can be

superior to non-incremental algorithms forchanges in the input problem. It shouldbe noted(from the results)that as the size

Gigamax 1 2 3 4 5 Total

ILC1

NLC2
25.0

42.4

9.1

29.1

35.2

53.9

22.8

41.1

25.1

44.9

117.3

211.5

Scheduler 1 2 3 4 5 Total

ILC

NLC

18.5

25.4

0.8

7.7

21.7

27.6

8.5

23.8

19.6

29.2

69.2

113.8

Tcp 1 2 3 4 5 Total

ILC

NLC

40.6

447.7

14.6

420.6

97.3

463.9

22.3

431.0

8.4

417.2

183.2

2180.5

Idle 1 2 3 4 5 Total

ILC

NLC

247.1

2403.2

369.8

2659.4

463.2

2461.6

176.6

2573.3 -

1256.7

10094.5

Table 1: NLC Vs ILC (in seconds)
1: ILC ^Incremental algorithm andincremental data update
2: NLC =Non-incremental algorithm andnon-incremental data input

of theexample increases (from gigamax to idle), sodoes the gain from using anincremental algorithm. In addition, we are

examining alternate methods for entering changes to the system. We are also searching for a set of larger benchmarks to

get more evidence for the superiority of the incremental methods. Since language containment is just one approach to the

problem of design verification; we intendto extendthisworkto modelchecking methodsaswell.

8 Acknowledgements

The authors would like to thank Felice Balarin, Adnan Aziz, and theUC Berkeley CAD group for their help. The authors

would also liketo thank theNational Science Foundation for thesupport of anNSF fellowship.

References

[1] H. Touati, R. K.Brayton, and R.P. Kurshan, "Checking Language Containment using BDDs," inProc. ofIntl. Workshop

on FormalMethodsin VLSI Design, (Miami, FL), Jan. 1990.

[2] R. Hojati, T.R. Shiple, R. K. Brayton, and R. P. Kurshan, "A Unified Environment for Language Containment and Fair

CTL Model Checking," inProc. ofthe Design Automation Conf., (Dallas, Texas), pp.475-481, June 1993.

[3] G. M. Swamy and R. K. Brayton, "Incremental Formal Design Verification," in Proc. Intl. Conf. on Computer-Aided

Design, pp. 130-133, Nov. 1994.

[4] R. Bryant, "Graph-based AlgorithmsforBoolean Function Manipulation,'7££E Trans. Computers, vol.C-35, pp.677-

691, Aug. 1986.

[5] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, "Implicit State Enumeration of Finite

StateMachines usingBDD's,"in Proc. Intl. Conf. onComputer-Aided Design, pp. 130-133,Nov. 1990.

[6] R. S. Streett, "Propositional Dynamic Logic of Looping and Converse is Elementary Decidable," Information and

Control, vol. 54, pp. 121-141,1982.

[7] M. O. Rabin,Automata on Infinite ObjectsandChurch's Problem, vol. 13 of Regional Conf. Series in Mathematics.

Providence, RhodeIsland: American Mathematical Society, 1972.

[8] R. P. Kurshan, Automata-Theoretic Verification ofCoordinating Processes. Princeton University Press, 1993. Toappear.

[9] E. A. Emerson, "Temporal andModalLogic,"inFormalModels andSemantics (J.vanLeeuwen,ed.), vol. B ofHandbook

ofTheoretical ComputerScience,pp. 996-1072, Elsevier Science, 1990.

[10] M. Y. Vardi and P. L. Wolper, "An Automata-Theoretic Approach to Program Verification," in Proc. IEEE Symposium

on Logic in Computer Science, pp. 332-334,1986.

[11] G. Ramalingam and T. Reps, "On the Computational Complexity of Incremental Algorithms,"Tech. Rep. TR 1033,

UniversityofWisconsion, Madison,UniversityofWisconsion, Madison, 1991.

[12] R. Hojati, V. Singhal, and R. K. Brayton, "Edge-Streett/Edge-Rabin Automata Environment for Formal Verification

Using Language Containment," Tech. Rep.UCB/ERL M94/12,Electronics Research Lab,Univ.ofCalifornia, Berkeley,

CA 94720,1994.

[13] R. Milner,Communication andConcurrency. New York: Prentice Hall, 1989.

[14] R. Braytonet al.,"HSIS: A BDD-BasedEnvironment forFormal Verification," in Proc.of theDesignAutomation Conf.,

pp. 454-459, June 1994.

	Copyright notice 1994
	ERL-94-76

