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Abstract

Language containment is a method for design verification that involves checking if the behavior of the system to be verified is
a subset of the behavior of its specifications (properties or requirements). If this check fails, language containment returns
a subset of ‘fair’ states involved in behavior that the system exhibits but the specification does not. Current techniques for
language containment do not take advantage of the fact that the process of design is incremental; namely that the designer
repeatedly modifies and re-verifies hisiher design. This results in unnecessary computation. We present a method that
successively modifies the latest result of verification each time the design is modified. Our incremental algorithm translates
changes made by the designer into an addition or subtraction of edges, states or constraints (on acceptable behavior) from
the transition behavior or specification of the problem. Next, these changes are used to update the set of ‘fair’ states
previously computed. This incremental algorithm takes much less time than the current techniques for language containment;

a conclusion supported by experimental results presented in this paper.

1 Introduction

Design verification is the process of checking if what the designer specified is what he/she wants. One way to perform design

verification on sequential logic circuits is to specify the design (also called the system), as well as, the requirements of the

*This work is supported in part by the National Science Foundation, the Califomia Micro program, Bell Northem Research and Fujitsu



design (also called the properties) as a finite automaton (or finite state machine), usually by the process of abstraction, and
verify that the language (the set of behaviors) of the property is a superset of the language (or behavior) of the system. The
requirement that the language of the property contains the language of the system is called language containment. Language
containment fails due to the presence of states that show behavior that is in the system but not in the property. This set of
states is called the set of ‘Fair’ states.

In general, the system itself need not be a single finite state machine. It is more commonly expressed as a set of interacting
finite state machines that form a compound entity called the product machine. Figure 1 illustrates a system composed of three
interacting finite state machines (M1, M2, M3), with transition relations (7}, 73, T3). The transition relation of this system
describes how the current state of the system and inputs relate to the next state and outputs; it is the Cartesian product of the
individual transition relations of the component machines, namely T' = T} x T3 x T3. The .problem of language containment

has to be solved in this environment of interacting finite state machines.

Figure 1: A System of Interacting Finite State Machines

Current techniques [1, 2] perform language containment as a single pass. If the designer modifies the design after a solution
has been obtained, then the entire language containment algorithm is repeated on the new design. In practice, the process
of design is incremental; the designer modifies and re-verifies the design many times. If standard language containment
algorithms are used in real-life design situations, they often result in redundant re-computation of information because the
similarity between the old system and the new system is not utilized. We introduce the concept of incremental verification,
which allows multiple changes to the system but runs the entire language containment algorithm only once, and propagates

successive changes or increments from the latest solution.



The language containment algorithms of Touati et. al.[1] and Hojati et. al. (2] start with all reachable states, and
successively reduce this until only the “fair” states remain. These algorithms are monotonic in nature, i.c., once a state is
removed from the set of potential fair states, it is never added back. Hence, a similar algorithm that starts with any superset
of the fair set, would return the fair set. Our algorithm uses information about the change in the system and the original set
of fair states to derive a smaller superset of new fair states (smaller than the set of all reachable states). Then, it reduces
this superset with an algorithm similar to [2). Since this superset is much smaller than the set of all reachable states, the
incremental algorithm converges faster.

The aim of this exercise is to get the new answer to the verification decision problem, “Is what I specified what I wanted?”,
using the old fair states (also referred to as Fair*), and the incremental changes that the designer made to the input problem,
while spending less time and effort in this computation than if the entire language containment algorithm was run on the new
problem.

The paper is organized as follows. The basic terms used in the paper are given in Section 2. Previous work is described in
Section 3. Our work begins in Section 4, by recognizing that all (small) changes to the system can be translated to the addition
and subtraction of edges, states and constraints. Next, we analyze how each of these changes to the system can be propagated
to get the new set of fair states, also called Fair*™** and prove the correctness of these techniques. This section summarizes
how incremental changes are classified and how each particular change can be handled individually. Next, the procedures for
handling individual classes of change are merged to get a general algorithm for handling any change to the system. Section 5
describes the entire incremental language containment algorithm. Finally, we conclude by presenting experimental results,
which demonstrate the efficacy of this method, in Section 6, and give future direction for this research in section 7. A shorter
description of this work has been published in [3].

It is important to keep in mind that all operations are o be carried out in the context of the Binary Decision Diagram

(BDD) data structure[4]. Even though not explicitly stated, all sets and relations are represented as their BDD’s [5].

2 Definitions

Definition 1 Finite State Machine: A finite state machine or finite automaton M is a 5-tuple (Q,Z,T, T, I) where

o Q is afinite set of states



o Zis a finite set of input values

o I'is a finite set of output values

o T C Q x X xT x Q is the transition relation

o I is a set of initial or starting states of the machine.

T(q,0,7,t) = 1 means that from state ¢ € Q on input ¢ € X, there is a transition to some state ¢ € Q, while the output is
7 € I. Thus an FSM can be represented by a directed graph, whose vertices are states, and edges are labelled with elements

of (Z x I'). This directed graph is called a State Transition Graph.

Definition 2 Run: A sequence of states,r = r,...r;...,r € Q“,isarunorapathof T forawordo = (09...0;...),

o €X¥ifrg € Iandfori >0, T(r;i,0:,7i,rit1) = 1. The set I refers to the set of initial states.

The infinity set of a run r, denoted inf(r), is the set of states that are visited infinitely many times in r. A run r over T is
accepting if inf(r) satisfies some acceptance condition C. The acceptance condition C distinguishes different w-automata (
Automata accepting infinite behavior; e.g. L-automata, Buchi, Streett and Rabin automata), and is used to indicate what is
acceptable behavior.

The behavior (set of fair runs) of the system is a subset of the runs of the system. This subset is specified using faimess
constraints on the processes of the system. The fairness conditions express restrictions on the infinitary behavior of the finite
state machine, and are used to model the system, the environment, and acceptable behaviors. Faimness conditions are modelled
differently for different classes of automata. The language of an automaton M, represented as L(M ), is the set of all strings

accepted by it.
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Figure 2: Forming the Product Machine

Definition 3 Product Machine: Given a collection of interconnected finite state machines { My, Mz, . . ., M,,}, their product

is the finite state machine on the product state space. The transition relation is the Cartesian product of the component

transition relations.



A closed system of interacting FSM's is a system with no external inputs. Any open system can be closed by adding machines
that simulate the environment. Figure 2. shows a system of interacting machines M, and M,, where the corresponding

product machine M is indicated.

Definition 4 Language Containment: The requirement that the language of the property (or specification) is a superset of

the language of the system is called language containment.

In the language containment paradigm, verification of the system is equivalent to determining if there is a fair path starting
at an initial state. This path corresponds to behavior that is generated by the system but rejected by the task or property
automaton and it is a witness to the failure of the property. The set of states which are involved in fair behavior are called Fair

states.

Definition 5 Streett Automata [6]: An FSM that accepts infinite behavior, which satisfies the Streett acceptance conditions is
called a Streett automaton. Streett acceptance conditions consist of afinite set of orderedpairs C = {(Uy, V1), (U2, V3), . . ., (Un, Vi)
where U; and V; are subsets of the state space of the machine and run ris accepting if and only if Vi((inf(r)NU; # 0)U(inf(r) C
V;)), where 0 < i < n. This can also be written as F®(U;) + G®(V;). In addition, fairness constraints may also be given
in the form of Positive Fair Edge E; which must be traversed infinitely often and Negative Fair Edge N; which must not be

traversed infinitely often in any accepting run r.

Rabin Automata [7]: The faimess conditions for a Rabin Automaton are the complements of the faimess conditions for
a Streett automaton, i.., V;((inf(r) N U; = @) N (inf(r) € V;)). In addition, positive and negative fair edges constraints also

exist.

Definition 6 L-Automata: The L automaton(8] acceptance condition consists of a pair (R, Z). R C Q x Q, is termed the
recur edges, and Z C 29 is the set of cycle sets. Run r is accepting if and only if Iz € Z,in f(r) Czorinf,(r)NR#0,

where in f.(r) denotes the set of infinitely occurring edges in r.

Definition 7 L-Process : An L-process is syntactically the same as an L-automata, with one exception; the acceptance
conditionsfor L-automata are complementary to those of L-processes, i.e. run r is accepting if and onlyif Vz € Zinf(r) € z

and inf.(r) N R =0, where in f.(r) denotes the set of infinitely occurring edges in r.



Definition 8 Reachable states: The set of reachable states is denoted by R, ¢ € R if and only if there is a path (not

necessarily fair) from some initial state g0 € I to q.

Definition 9 Fairt: The set of states which can reach a ‘fair cycle’ (including those on it), i.e. a cycle which satisfies the
Jairness constraints, constitute Fair*. The presence of a non-empty set Fair+ indicates that the automaton has non-empty

behavior.

2.1 Some Important Computations

This section describes the computation procedure for all important operators required in this paper. In general, let z represent
the present state variables and y represent the next state variables. T'(z, y) represents the transition relation, which defines
a relationship between present states (z variables) and next states (y variables) in the state transition graph, irrespective of
input and output, and T'(y, ) represents the self same transition relation, with z and y variables interchanged (i.e. y used for

present state). In general, r(z, y), where r is a relation, is the same as r(y, z) with z and y variables interchanged.

1. Least Fixed Point Computation[9]: Given an initial set of states So(z), a transition relation T(z, y), and a variable

set z, the least fixed point returns a function LF P(z, T, So) where LF P is computed as follows.

LFP(z,T(z,y), Sn(z))
Sa+1(2) = (32(T(z,9) - Sa(2)) U Sn(2)),.=,
if (Sps1 = Sn)
return S,
else

return LFP(z,T, Sn41)

2. Greatest Fixed Point Computation[9]: Given an initial set of states So(x), a transition relation T(z, y), and a variable

set z, the greatest fixed point returns a function GF P(z, T, So) where G F P is computed as follows.

GFP(z, T(z,y), Sn(z))
Sn+1 (z) = (ax(T(xs y) . Sn(z)))y::t
if(Sn.H = Sn)



return S,
else

return GFP(z,T, Sp41)

. Forward Reachable Operator: Given T'(z, y), the transition relation and A(z), a set of vertices, the forward reachable

operator returns the set of vertices which can be reached by A. The forward reachable operator F R is computed using

the following algorithm:

FR(T, A)

return LF P(z,T(z,y), A(z))

. Backward Reachable Operator : Given T'(z, y), the transition relation and A(z), a set of vertices, the backward

reachable operator retumns the set of vertices that can reach A. It can be computed as follows:

BR(T, A)

return LFP(z,T(y, z), A(z))

. Reach Reachable States Operator: Given T'(z, y), the Transition Relation and S(z), a set of vertices, the Reach
Reachable States operator returns the set of vertices which can reach S or be reached by S. The Reach Reachable States

operator or RRS(T, S) is computed as follows:

RRS(T, S)

return (BR(T, S) U FR(T, S))

. Forward Stable Set Operator[2]: Given a transition relation T'(x, y) and a set of vertices A(z), the forward stable set
operator or FSS(T, A) returns a set of states in A, which are on a cycle or can reach a cycle in A. Altemately, the FSS
operator removes from A all those states which have no successors states (next states) in the transition structure. The

following algorithm is used to compute the Forward Stable Set operator FSS :

FSS(T, A)

return (GFP(y»T(rnyA(-’”)))



7. Forward Fair Path Operator(2]: Given T'(z, y), the transition relation, A(z), a set of states and C, a set of fairness
constraints, the forward fair path operator or F F P(T, C, A), returns a subset of states in A(z) which are on a fair path.
For our analysis, C(z, y) are Streett faimess constraints in the form C; = F®(U;) + G*(V;) and positive fair edges
E;(z,y). Hence, FF P returns those states a in A such that 1) for each E;, there is a path in A from a to E;, and 2)
for each C;, either a € V; or there is a path in A from a to some state in U;. Note that this operator returns just a path

and not necessarily an infinite path. The FFP operator can be computed by using the following algorithm:

FFP(T, C, A)

return(([]; ..cc(GFP(z, T, A-U)) + V) N (T]; g;ec(GF P(=, T, (3, Ej (v, 2)))))

3 Previous Work

Vardi and Wolper [10] observe that the problem of verifying whether a machine (M) satisfies a given property (P) reduces
to the problem of checking whether the language of the machine automaton is contained in the language of the property
automaton. The language containment check in turn reduces to a language emptiness check for the product of the system
automaton and the complement of the property automaton. Checking whether L(M) C L(P) is the same as checking whether
the language of D = M x P is empty, i.e., whether L(M x P) = ¢.

When P is expressed as an L-automaton, the problem of complementing P is solved by expressing it as an L-process
[1]. The acceptance conditions for L-processes and L-automata are complementary and representing P by a L-process is
easily done (if P is deterministic) by just keeping the same transition structure and complementing the acceptance conditions
(the complementation is implicit by the choice of representation). Similarly when P is expressed as a Rabin automaton the
problem of complementation is solved by expressing P as a Streett automaton, since the acceptance conditions for Rabin and
Streett automata complementary. Our experiments use a Streett and Rabin environment, and hence all successive discussions
in this report are centered around Streett and Rabin automata, but are also applicable to other classes of automata.

A language emptiness check remains to be done, and it is performed by checking the product automata D = M x P for
acceptable infinite behavior{1) (or fair paths), which indicate that the language for the system-property product machine is
not empty. A cycle is associated with any infinitary behavior in a finite graph, and in order for this infinite behavior to be

acceptable, this cycle must also satisfy the fairness constraints. Thus, a machine has a non-empty language if there exists a



path from an initial state to an accepted cycle, i.e., the cycle satisfies the faimess constraints specified in the automaton. The
set of states that lie on such cycles form a set of fair states or states, which cause the fair or non-empty behavior. This set is
also called the set of Fair states. In general, we compute a superset of this set called Fair*, which consists of all states which
are on a path to a fair cycle.

Hojati et. al. [2] have presented an algorithm for computation of Fair+, within a Streett environment. The algorithm
computes Fairt by starting with the set of reachable states, and alternately applying the FSS and FFP operators. These
operators successively restrict the original set of reachable states to those on a path from an initial state to a cycle (FSS) and
those which are on a fair (or acceptable) path (FFP). Thus, the set Fair* is obtained by successively shrinking the set of
reachable states until only those states that are on a fair path from some initial state to a fair cycle remain. The algorithm for

verification in the Streett-Rabin environment becomes:

Algorithm 3.1: Non_Incremental_Language_Containment
Fairt = Compute Fairt
if Fairt is empty return(PASS)

else return(FAIL)

The set Fairt is computed using the following algorithm:

Algorithm 3.2: Compute_Fair+
Restrict the Transition Relation T'(z, y) to reachable states
Remove negative fair edges
Set Sp = Reachable states
While Sp41 # Sn
S' = FSS(T, Sy)
Sp41 = FFP(T,C,S")

return S,

The proof of correctness of this algorithm can be found in [2].



This algorithm has a complexity of O(N?), where N is the number of reachable states in the state space. At each iteration
of the fixed point computation, at least one state in the set of reachable states, but not in Fair+ is deleted from the reachable
set, and this step takes O(N ) time, which results in an overall complexity of O(N2). This computation of complexity assumes
that each step takes O(1) time, and all sucessive arguments on complexity in this paper, also make this assumption. Even, if
this assumption did not hold, the complexities are valid for comparing the incremental method to the non-incremental method.

Though not explicitly stated in the above algorithm, the set of reachable states can also be used to minimize the transition
relation BDD. This simplification results in a considerable speedup and will be used throughout this paper without an explicit
mention.

We require that the incremental algorithms in this paper take less time than the corresponding non-incremental algorithm.
This criterion differs from the work done by Ramalingam etal.[11], which studied incremental algorithms for certain graph
problems. This paper defined incremental algorithms as those algorithms, whose time complexity could be written as a
function of the change to the system alone, where the change or A could be written as the sum of the change in the input
and output of the algorithms. Thus, A = Ainpur + Aoutput, and the complexity of the algorithm = O(f(A)). They showed
that some problems were intrinsically non-incremental; i.e. there was no locally persistent (storing only local information)
algorithm that could be written for updating the information, which had a complexity only dependent on the size of the change.
One such problem is the problem of reachability, which is essentially the heart of all verification algorithms. Hence, for our
purposes, we will impose a slightly less rigid criterion for incrementality, by only requiring that the incremental algorithm

take less time than the corresponding non-incremental algorithm,

4 Incremental Language Containment

4.1 Overview

The computation of Fair* involves successive applications of the FSS and F B P operators, which involve the successive
reduction of the set of states involved. It is important to note that the algorithm begins with a superset of the states in Fairt
(namely all reachable states), and eliminates states. Once a state has been removed from this set, it is never added back, and
hence the algorithm is monotonic. Our incremental algorithm is based on the fact that if any superset of Fairt is given

to Algorithm 3.2, it still returns the set Fair*. The trick lies in using the previously computed Fairt and the changes to



the system to obtain a superset of the new Fair*, which is not necessarily as large as the set of all reachable states, and in
most cases is significantly smaller. Given a smaller set, the algorithm converges faster and hence the incremental algorithm is

typically faster.

4.2 Characterizing Incremental Changes

Recall that Fairt isa set of states that characterize the fair or unwanted behavior in the system. We want to use information
about the changes to the system to incrementally modify Fair+. The potential for speedup in this method is that Fair* need
not be recomputed from the beginning; intermediate results can be used to avoid unnecessary computations.

At the start we proceed normally, running language containment to obtain Fairt. Once the designer changes the system,
the current Fairt is modified using information about the changes made to the system and this process is repeated as the
system changes.

We have categorized six different incremental changes to an instance of the language containment problem. Briefly,
changes to the system may consist of 1) addition or subtraction of edges to the transition relation, 2) addition or subtraction
of states (and hence edges) to the state space of the machine and 3) addition or subtraction of faimess constraints. Addition
and subtraction of states can be characterized in terms of edges. Clearly, removing a state from the state space is equivalent (
behaviorally) to removing all edges to the state, thus making it unreachable. Similarly, if a state is added to the state space, it
is similar to making one of the unreachable states in the state space reachable by adding edges.

Thus, we consider four types of incremental change: addition and subtraction of edges and constraints. For each type we
first deal with a set of changes of the same type, and then we provide a general incremental algorithm to handle a complex
change with many individual types. The algorithm is given in terms of implicit BDD operations.

Suppose the designer modifies the original transition relation T to a new transition relation 7%, Using T"¢* and T,
we create T°*® and T°44. T*“ consists of the original transition relation T" minus all transitions, which were removed in
Tmev and T4 js T*¥® plus all the transitions added in 7%, Note that T%9¢ = T™¢% but for the purposes of incremental
modification we can deal with 749 as a single modification to 7*“® by only adding edges. The exact computation of 7244
and 7**® under different methods for changing input, is described in Section 5.

Note that faimess constraints never affect the transition structure; they only affect the FFP operator (Section 2). The new

fairness constraints, with constraints added and subtracted from the original set, are used to compute a new FFP operator.



4.3 Subtraction of Edges

Consider the system obtained after subtracting a set of edges from the transition relation. Subtracting an edge cannot make
any unreachable state reachable, nor can it create a new cycle in the state transition graph. Thus, subtracting an edge can never

add a new state to Fair*, Figure 3 indicates that deleting edge ab can potentially remove all states in sets A and B from the

Figure 3: Deleting edge ab can potentially remove all states in A and B from fairt
set Fair*. The following lemma formalizes this idea.

Lemma 4.1 The set Fair*™** for the new system obtained by deleting edges from the original transition relation is a subset

of the Fair of the original system.

Proof Assume the converse. 3,(s € Fairt™e?) (s ¢ Fairt). Hence s € R™*“, where R™*" is the new reachable set,
and s can reach a new fair cycle. Since transitions have only been deleted from the transition structure no states can be made
reachable and no new cycles can be added. Hence, s was reachable in T ( the original transition structure) and s could reach
a fair cycle. This contradicts s ¢ Fairt. =

Thus, if the only change induced in the system consists of subtraction of edges from the state transition graph, then the
following algorithm can be used to generate Fair*"*" given the new transition relation and the old set of states comprising

Fairt,

Algorithm 4.3(T**%, C, Fairt)
InitSts = Initial States

R°Y = FR(T*%, InitSts)



Remove Negative Fair Edges from 7°u®
Fairg = Fairt n R*¥®

While Fairny; # Fairy
A = FSS(T**, Fair,)
Fairay) = FFP(T**,C, A)

return Fair,

Theorem 4.2 If the only changes induced in the system consist of subtraction of edges from the state transition graph then

Algorithm4.3 is correct and returns Fairtnev

Proof From Lemma 4.1 and Hojati et. al. [2] =

Computing the conjunction of R**®, and Fair+ in step 4. of the Algorithm 4.3 is not necessary to the computation, but
increases the efficiency, if the computation of R**® is not expensive. For the evaluation of the complexity of this algorithm,
this operation is ignored.

Subtraction of edges can only remove states from Fairt. At each pass of the fixed-point computation in Algorithm 4.3,
at least one state, which was in the old Fair*, but not in the new Fairt, is removed. Thus, it converges in at most
|Fairt — Fairt™e|| steps. But ||Fairt — Fairt®®®|| = Ayyspu: < A, and each step takes O(N) time. Hence, the

algorithm completes in O(N - A) time.

44 Addition of Edges

Consider the addition of a set of edges to the state transition graph. This may result in the creation of a new reachable cycle,
whose states satisfy the fairness constraints. These states are not necessarily in Fair*. Thus, addition of edges to the state
transition graph may increase Fair+. Figure 4 indicates that adding edge ab can potentially add all states in sets A and B to
the set Fairt. However, we will prove that if the addition of edges results in the addition of one or more states to Fairt,

these states must satisfy at least one of the following conditions in the new Transition system 7"244:

o The state belongs to the set Fairt.



Figure 4: Adding edge ab can potentially add all states in A and B to Fairt

o The state can reach or be reached by one of the new transitions (with negative fair edges removed). This set Fair! is

computed as:

Fair! = RRS(T®%,3,T%4(z, y) - T(z, y)) (Section 2).

Lemma 4.3 The new set Fair*™¢¥ is a subset of Fairt U Fairl,i.e. Fairt®®® C Fairtt = Fairt U Fair',

Proof Assume the converse. 3s(s € Fairt™*¥) (s ¢ Fairtt). Hence s € R%%9 where R°% js the reachable set,
computed using the transition structure 794, and s can reach a fair cycle in the new graph 729, If s € R, where R is the
old set of reachable states (using T)) and could reach a fair cycle, then s € Fair+, which contradicts s ¢ Fairt*. Hence, s
must have been made reachable (and could reach a fair cycle) by addition of some new transition. Hence s € Fair!. This
contradicts s ¢ Fairtt, =

Note that Fairt"®® C Fair*, since the addition of edges can never remove states from Fair+.

If the only changes to the system consist of edge addition, the new set Fairt™** can be computed as a two step process

that first computes Fair*+, and then reduces it by using the Algorithm 4.3.

Algorithm 4.4(T, T°%4, C, Fairt)
Fairtt = Fairt U RRS(T*%,3,T%4(2,y) - T(z, y))
Remove Negative Fair Edges from 7244
Fairg = Fairtt
While Fair,yy # Fair,

A = FSS5(T°%, Fairy,)



Fairny = FFP(T%% A, C)

return Fair,

Theorem 4.4 If the only changes induced in the system consist of addition of edges from the state transition graph then

Algorithm 4.4 is correct and returns the new set Fairtnew,

Proof From Lemma 4.3 and Hojati et. al. [2]. »

Asnoted in Section 3, the set of reachable states can be used to simplify the BDD for the transitionrelation. In algorithm4.3
the set of reachable states is not explicitly involved but may be used to simplify the transition relation BDD. It is important to
note that for changes described in this section, reachability computations do not need to be carried out by starting at the initial
states but need only proceed from the old set of reachable states R. This results in considerable savings in the computation.

The Algorithm 4.4 converges in at most || Fairt* — Fairtne?|| = A’ steps. Since, A’ < N, for small changes, where N
is the number of reachable states. Thus, the complexity of this algorithm is O(N - A’). Assuming A’ < N, this is faster than

running the non-incremental algorithm from the beginning.

4.5 Addition of Fairness Constraints

The set Fairt satisfies all the fairness constraints. If new fairness constraints are only added, then the new set Fairtnev

must satisfy all of the older constraints as well as the new ones. The set Fair*"** must be a subset of the old Fair+.

Lemma 4.5 If additional fairness constraints are imposed on the system, then Fairtne® C Fairt.

Proof Assume the converse, 3,5 € Fairt™®¥ s ¢ Fairt. Addition of constraints never affect the transition structure.
Since s € Fair*™**, s must be on a reachable path to a fair cycle. Hence, s must also be on a reachable path to a fair cycle in
the old transition system. s ¢ Fair* = 3.c € C, s violates c, where C is the old set of constraints. However, by assumption
the new set of constraints C"¢* 2 C. Hence 3¢ € C, s violates c. This contradicts s € Fairt"*®, a

If the only change to the system consists of addition of constraints, the algorithm for computation of the new Fair+nev

is:



Algorithm 4.5(T, C"*V, Fairt)
Remove Negative Fair Edges
Fairg = Fairt
While Fair, ) # Fair,

A = FSS(T, Fairy,)
Faira4; = FFP(T,C"*%, A)

return Fair,

Theorem 4.6 If the only changes to the system consist of addition of constraints then Algorithm4.5 is correct and returns the

new set Fairtnevw,

Proof From Lemma 4.5 and [2]. »

Using the same reasoning as Section 4.3, this algorithm has a time complexity of O(N - A), where N is the number of
reachable states.

The addition of constraints can very easily be used in conjunction with the addition and subtraction of edges. If edges are
deleted, in addition to adding constraints, algorithm 4.3 can be used with the FFP operator (including the new constraints) to
compute the new set Fairt™¢*, If edges are added then Algorithm 4.4 can be used in conjunction with the new FFP operator.

The following lemmata formalize this idea.

Lemma 4.7 If additional fairness constraints are imposed on the system, and edges are only subtracted from the transition

structure then Fairt™** C Fairt,

Proof From Lemmad4.1 and Lemma4.5w
With the previous lemma, it is easily observed that the subtraction of edges and addition of constraints can be simultaneously

handled by using Algorithm 4.3 (for the subtraction of edges) with the additional caveat that the FFP operator is modified to

include the new constraints.



Lemma 4.8 [fadditionalfairness constraints are imposed on the system, and edges are only added to the transition structure

then Fairt™*¥ C Fairtt, where Fairt+ is as defined in Lemma 4.3.

Proof From Lemma 4.3 and lemma4.5 »
In a similar manner to the previous analyses, it is observed that the addition of edges and addition of constraints can be
simultaneously handled by using Algorithm 4.4 (for the addition of edges) with the additional caveat that the new FFP operator

(as defined in Lemma 4.5) is used for the computation.

4.6 Subtraction of Fairness Constraints

The sét”}}‘air*' contains states involved in infinite behavior that satisfy all fairness constraints C;. If some constraint
Ci = F*(U;) + G=(V;) is subtracted, Fairt still contains states that are involved in infinitary behavior, and satisfy all
constraints C; # C; (as well as C;). Thus, the set Fairt C Fairt"*®, In addition to the states in Fairt, Fairtne® also
contains states that may be in infinitary behavior that violates the deducted constraint C;. Such states are definitely a subset of
RRS(T, U; UV;); namely states that may either reach or be reached by states not in U; or V;. Since more than one constraint

may be deleted, let C;, ¢ € S denoted the set of constraints to be deleted.

Lemma 4.9 If constraints C; = F*°(U;) + G®(V;), i € S are subtracted from the set of original constraints, then the set

Fairtre® C Fairt*t = RRS(T,|J;¢s (Ui UV;)) U Fairt.

Proof If3;,z € Fair*t"*¥, then zisinvolved in infinitary behavior, which satisfies all constraints C; = Fo(U;) 4G (V;),
j ¢ S. The infinitary behavior that z is involved in, may or may not satisfy C;, i € S. If it satisfies all C;, i € S, then
z € Fairt = z € Fair*t*, If it does not satisfy at least one of the C;, i € S, then it must belong to infinitary behavior that
violates the corresponding C;, and it must belong to RRS(T, |J;s(U: U V;)). Hence z € Fairtt. »

This leads to the following algorithm for changes, where constraints are only subtracted from the system.

Algorithm 4.6.1(T, C"¢?, S, Fairt)
Fairtt = RRS(T,U;¢s(Us UV:)) U Fairt

Remove Negative Fair Edges from T'



Fairg = Fairt+t
While Fair, 41 # Fair,
A = FSS(T, Fairy,)
Fairg41 = FFP(T,C™v, A)

return Fair,

If, in addition to constraint subtraction, edges were added (added edges = (3,7°9(z,y) - T(z,y))) to the transition
structure, then states in the new Fair+™** must satisfy at least one of the following conditions in the new Transition system
Tadd:

o The state belongs to the set Fair™.

o The state can reach or be reached by one of the new transitions. This set Fair® is computed as:

Fair! = RRS(T?%,3,T%4(z,y) - T(z, y)) (Section 2).

o The state can reach or be reached by states violating the deleted constraints.

Fair? = RRS(T*%,| ), s(T; UV;)) (Section 2).

Lemma 4.10 Iffairness constraints are subtracted from the system, and edges are only added to the transition structure then

Fairtne® C Fairtt = RRS(T*%,|J;. (T UV;) U (3,T°%(z, ) - T(z, y))) U Fair+

Proof Assume the converse. Consider some state s € Fairt™*”, It must reach a fair cycle, and it must be reachable. If s
was reachable in the old transition graph T" and could reach a fair cycle, then s € Fair*. Hence s must be made reachable,
and must reach a fair cycle by the addition of edges, or the subtraction of constraints. Hence, s must be reachable or reached
by the added edges, or the subtracted constraints. But this implies that either s € Fair! or s € Fair?,or s € Fairt+. =

If subtraction of constraints is used in conjunction with addition of edges, then the following algorithm describes the

computation of the new Fairtnew,

Algorithm 4.6(7°4, T, C*%}, S, Fairt)



Fairtt = RRS(T*%, kes(UiUVR) U (3,T%(z, y) -T(z,y))) U Fairt
Remove Negative Fair Edges from T°%4
Fairg = Fairtt
While Fair,,y # Fair,
A = FSS(T*%, Fair,)
Fairayy = FFP(T%%,C*, A)

return Fair,

This algorithm has a complexity of O(N -A"), where N is the number of reachable states. The next section deals with putting

these individual algorithms together to form a general algorithm which handles any change to the system.

5 General Algorithm

We describe an incremental algorithm for language containment, when a general set of changes consisting of deletion and
addition of edges from the transition structure and addition and subtraction of constraints, is applied to the system.

We begin by separating the augmented transition relation 7" into T**?, which consists of the original transitions relation
T minus all transitions which were removed in 7¢* and 7% which is seen as T*“? plus all the transitions, which are added
inTmev,

The change to the system can be seen as a two stage process; in the first stage, constraints are added and edges are only
subtracted from the system. In the second stage constraints are only subtracted and edges are only added to the transition
structure obtained from the previous stage. The first stage computes an intermediate Fair+"¢“! under the assumption that the
only changes consist of edge subtraction and constraint addition and for this stage, the transition structure 7°%* is used. The

second stage computes the new Fair+”**! using as input the intermediate Fair™*! and the new transition structure 749,

5.1 Computing T°% and T**® using T"* and T

Recall that, the augmented transition relation 7" is expressed as two separate transition relations 7*%® and T%94, where

Tedd — Tnew — Taub + (Tncw - T).



The designer modifies the original transition relation T to a new transition relation 7"¢* by adding and subtracting edges

from the transition structure. In practice, this may be done in two ways:

1. The designer might choose to directly modify the transition structure of the original system, If T9dd—edses apd
T2ub-edges represent the set of edges which are to be added and subtracted, respectively, from the system transition

graph; the corresponding 794 and T*“* can be computed by using the following equations.

T*ud — T Teub—cdges

Tadd - TsubuTadd-edgea

2. A designer can also modify the system by adding or subtracting processes from the system of interacting processes and
imposing additional constraints on these new processes. 7; is the product transitionrelation of only the added processes,
T°!4 is the transition relation of the original processes, and 7™<* is the new transition relation of the augmented system.
R, is the set of states within the transition structure 7; that are reachable from the initial states (InitSts1) in it and it
can be computed as Ry = FR(T}, InitStsl). In order to compute 724 and T*** in this framework the following

equations may be used:

T = T%xR(z)xRi(y)
v = TnTRew

Tadd = Tnew =T]nT

This set of equations essentially augments the old T°'¢ to the product space of the Cartesian product 7% x T3.

Modifications can be made at many different levels. The designer may input the changes in a high level language
(e.g. Verilog). Alternately, he/she might choose to augment individual subprocesses in the system of interacting processes
by directly modifying the data-structure that stores their transition relations and constraints. In our implementation, the
designer is allowed to directly change the individual transition relations, or input process constraints and new processes via

the intermediate ‘Pif’ [12] format.



5.2 Incremental Language Containment

The general algorithm for computation of Fairt™*¥ is based on Algorithm 4.3 and Algorithm 4.4, with the additional caveat
that the F F P is modified to account for the changes in the set of constraints. As described previously, the algorithm has two
stages for its computation. First, the changes due to deletion of the edges and next the changes due to addition of new edges
are handled. Let T*4®, 7994, and Fair* be defined as before, and let C294 be the set of constraints, which consist of the old
set of constraints plus added constraints. Let C*¥® refer to the final set of constraints; i.e., C*%® = %4 — C;,i € S. The

general incremental language containment (ILC) algorithm:

Algorithm 5.2.1: Incremental-Language_Containment
Fairt = Incremental_Compute_Fair+
if Fair* is empty return(PASS)

else return(FAIL)

where the algorithm for the incremental computation of Fairt is:

Algorithm 5.2.2: Incremental_Compute_Fair*
Fairtnewl = Algorithm 4.3(T*4b, C%44, Fairt)
Fairtrev = Algorithm 4.6(T%4¢, T*44, C**®, S, Fairtnew!)

return Fairtnev

Theorem 5.1 Algorithm5.2.2 is correct and returns the new set Fairtmev,

Proof The first stage of the algorithm does not involve addition of edges, hence the use of algorithm 4.3 is valid and returns
the correct set of fair states, Fairt™**! for this subproblem to the next stage ( refer to theorem 4.2 and lemma 4.7). The
second stage does not involve the subtraction of edges; hence the use of algorithm 4.6 is valid and the correct set Fair*tmv

is returned ( refer to Theorem 4.4, Lemma 4.8 and Lemma 4.10) »



6 Results

We have implemented the algorithms described in the previous section and tested these on a set of verification benchmarks.
Each example was modified, and the Fair* was recomputed for a general change to the system, which consists of addition and
subtraction of edges and constraints. The actual edges/constraints that were added or subtracted from the transition relation
are arbitrary, and were chosen so as to make the system pass the language containment check.

The first row in each table reports the name of the example, and the iteration number. The second row reports the time
taken by the incremental language containment (ILC) algorithm; this includes the time for incremental update of input data,
and re-initialization. The last row reports the time for the non-incremental (NLC) algorithm with the non-incremental update;
this includes the time for non-incremental input of data and initialization. The last column reports the total incremental, and
non-incremental times, summed over all iterations.

We ran the incremental, and non-incremental algorithms on four examples, and made S successive sets of changes. The
columns labelled with integers i = 1,2,3,4,5 report the times taken on iteration (set of changes) i. The first example,
Gigamax, was a description of the gigamax distributed multiprocessor, using a shared memory architecture. The second
example, Scheduler, describes a version of the scheduler example by Milner [13], and the system consists of a token ring,
where element of the ring, called a cell, communicates with its "job", and its two nearest neighbor cells. The third example,.
Tep, describes a simplified version of the TCP/IP communication protocol. The final example, Idlc, describes an industrial
data link controller example. All the examples were written in Verilog, and translated into the blif-mv format using the vI2mv

.translator [14]. All successive incremental changes were made directly to the system within the HSIS environment.

The changes themselves were made by examining an error trace (describing some non-empty behavior in the system)
generated, and deleting and adding edges and constraints so as to remove the particular error trace, and eventually make the
system pass language containment.

The results show that the incremental algorithm was always considerably faster than the non-incremental algorithm.

7 Conclusions and Future

We have presented a framework for incremental language containment and shown that the incremental algorithms can be

superior to non-incremental algorithms for changes in the input problem. It should be noted (from the results)that as the size



(Gigamax | 1 | 2 | 3 | 4 [ 5 [ Total
ILCT 250 | 91 [ 352 | 228 [ 251 [ 1173
NLC? 424 | 291 | 539 | 411 [ 449 | 2115
(Scheduler [ 1 [ 2 | 3 | 4 [ 5 | Totl
ILC 185 ] 08 [ 21.7 | 85 [ 196 | 692
NLC 254 | 77 [ 276 | 238 | 292 | 1138
[Tep [ 1 [ 2 [ 3 [ 4 [ 5 ] Toul |
ILC 406 | 146 | 973 | 223 | 84 | 1832
NLC 4477 | 4206 | 4639 | 4310 | 4172 | 21805
[Tdic [T T T 2 17T 3 17 4 ] S [ Total |
ILC 24701 | 3698 | 4632 | 1766 | - | 1256.7
NLC 2403.2 | 26594 | 2461.6 | 25733 | - | 10094.5

Table 1: NLC Vs ILC ( in seconds)
1: ILC =Incremental algorithm and incremental data update
2: NLC =Non-incremental algorithm and non-incremental data input

of the example increases (from gigamax to idlc), so does the gain from using an incremental algorithm. In addition, we are
examining alternate methods for entering changes to the system. We are also searching for a set of larger benchmarks to
get more evidence for the superiority of the incremental methods. Since language containment is just one approach to the

problem of design verification; we intend to extend this work to model checking methods as well.
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