

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

SCHEDULING COMMUNICATION RESOURCES

IN STATICALLY SCHEDULED MULTIPROCESSOR

ARCHITECTURES

by

S. Sriram and Edward A. Lee

Memorandum No. UCB/ERL M94/74

19 September 1994

SCHEDULING COMMUNICATION RESOURCES

IN STATICALLY SCHEDULED MULTIPROCESSOR

ARCHITECTURES

by

S. Sriram and Edward A. Lee

Memorandum No. UCB/ERL M94/74

19 September 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SCHEDULING COMMUNICATION RESOURCES

IN STATICALLY SCHEDULED MULTIPROCESSOR

ARCHITECTURES

by

S. Sriram and Edward A. Lee

Memorandum No. UCB/ERL M94/74

19 September 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Scheduling Communication Resources in Statically Scheduled
Multiprocessor Architectures

S. Sriram, Edward A. Lee1
UC Berkeley

ABSTRACT

Scheduling dataflow graphs onmultiple processors involves assigning actors to processors, order

ing the execution of actors withineach processor, and determining wheneach actor fires. We con

sider three scheduling strategies: fully-static, self-timed and ordered transactions, all of which

perform the assignment and ordering steps at compile time. In the fully-static strategy the exact

firing time of each actor is alsodetermined atcompiletime. Run time costsare small for this strat

egy; however it is not robust with respect to changes in execution times of actors. In the self-

timed strategy, processors determine when to fire an actor by performing run time synchroniza

tion. This approach is tolerant of variations inexecution times of actors, but pays the penalty of

higher run timecosts. In theordered transactions approach, the order inwhich processors commu

nicate is determined at compile time and enforced at run time. The ordered transactions strategy

lies between the fully-static and self-timed strategies in that it retains some of the flexibility of the

self-timed schedule and atthesame time has lower run time costs than the self-timed approach. In

this paper we show how to determine the best possible ordering of transactions — the criterion

for optimality being the throughput achieved by the schedule — under the given information

about execution times of actors. The main result in this paper is that it is possible to choose a

transaction order such that we do not sacrifice performance compared to the more flexible self-

timed strategy, even if the extra run time cost incurred bythe self-timed strategy is ignored.

1. This research is part of thePtolemy project, which issupported byARPA and USAirForce (under theRASSP program), SRC
(94-DC-008), NSF (MIP9201605). ONT (via NRL), the California MICRO program, and the following companies: BNR, Dolby.
Hitachi, Mentor Graphics, Mitsubishi. NEC, PacBell. Philips. Rockwell, and Sony.

1of14

1.0 Introduction

In this paper we address multiprocessor implementation of applications that are specified

as Synchronous Data Flow (SDF) graphs [1]. We recall that in adataflow representation, an algo

rithm isrepresented as agraph where nodes (actors) are individual computations and directed arcs

between them represent flow ofdata (tokens). SDF refers to asubclass ofdataflow graphs where

the actors lack data dependency in their firing patterns. I.e. the number of tokens produced and

consumed ineach of the output and input arcs ofeach actor isconstant and fixed at compile time.

In this paper we assume that the application is ahomogeneous SDF graph, i.e. a graph in which

the actors always produce and consume exactly one token. A general SDF graph can always be

converted into ahomogeneous graph [2]. SDF has been shown to be auseful model for represent

ing alarge class of DSP algorithms. The dataflow graph (DFG) corresponding to an application

may be extracted directly from a block diagram specification (e.g. in Ptolemy [3]) or from an

applicative language like Silage (as done for example inHyper [4]). The dataflow graphs of inter

est for the purpose of representing DSP algorithms are run in a nonterminating fashion; tokens

flow from source actors to sink actors continually.

Multiprocessor implementation of an algorithm specified as a DFG involves scheduling

computations in the algorithm. By "scheduling" we collectively refer to the task of assigning

actors in the DFG to processors, ordering execution of these actors oneach processor, and deter

mining when each actor fires (begins execution) such that all data precedence constraints are met.

Each of these three tasks may be performed either at run time (a dynamic strategy) or at compile

time (static strategy). In [5] and [6] the authors propose ascheduling taxonomy based on which of

these tasks are performed at compile time and which at run time; in this paper we will use the

same terminology that was introduced there. To reduce run time computation costs it is advanta

geous to perform as many of the three scheduling tasks as possible at compile time. Which of

these can beeffectively performed atcompile time depends onthe information available about the

execution time of each actor.

The performance metric that isofinterest for evaluating schedules is the average iteration

period T: the average time it takes for all the actors in the graph to be executed once. Equiva-

2 of 14

lently, we could use the throughput T~ (i.e. the number of iterations of the graph executed per
unittime) as a performance metric. Thus an optimal schedule is one that minimizes T.

In this paper we focus on scheduling strategies that assign actors to processors and deter

mine the order ofexecution ofactors on processors, both at compile time, because these strategies
appear to be most useful for a significant class of DSP algorithms. We will look at three such

scheduling strategies: fully-static, self-timed, and ordered transactions. In the fuliy-static sce
nario, the exact firing time ofeach actor isalso determined at compile time; inthe self-timed strat

egy processors determine when to fire an actor by synchronizing with other processors at run

time, whereas in the ordered transactions approach atotal order on all inter-processor communi
cations is determined at compile time and enforced atrun time.

Out of the three strategies, run time overhead is the smallest for the fully-static case and is

the most for the self-timed case; the ordered transactions strategy lies in between. The fully-static
strategy works only if actor execution time estimates are accurate and data-independent. The

ordered transactions strategy is tolerant of variations in execution times of actors, and the self-

timed schedule is even more so. If we ignore the run time communication and synchronization
overhead and assume that the execution time estimates are accurate, then in general the self-timed

strategy yields the rninimum possible iteration period among the three scheduling strategies if we
keep processor assignment and actor ordering fixed. The main result ofthis paper is that it is pos
sible to choose atransaction ordering such that the transaction ordered strategy performs as well
as the self-timed strategy. Thus we show how to find the best possible transaction ordering for the
given processor assignment, actor ordering, and timing estimates.

2.0 Notation

The DFG (assumed to be a homogeneous SDF graph in this paper) is represented as a
weighted digraph G(V, £, r, w) where the vertices ve V represent the actors, directed edges
v,. -> Vj € E represent the data dependencies in G, the function / (v) assigns apositive integer
execution time to each actor v (the actual execution time can be interpreted as t(v) cycles ofa
base clock), and the function d(v., vj) (or d(/, j) for short) assigns apositive integer number of

3 of 14

initial tokens to each edge v. -> v. GE of G. We represent initial tokens on arcs by bullets on
the edges of the DFG (see Fig. 1(a)). Recall that the semantics of a DFG is that an actor v can

begin executing its function when it has tokens on all its input arcs, and itproduces one token on
each of its output arcs r(v) time units after it begins execution.

3.0 Fully-static schedule

A fully-static scheduling strategy is one in which all the three scheduling operations —
assigning actors to processors, ordering of actors on processors, and determining when each actor
fires — are performed at compile time [6]. Although determining an optimal fully-static sched
ule is NP-hard, several heuristics have been proposed for this problem. Some of these heuristics

generate anon-overlapped blocked schedule [7], whereas others generate overlapped schedules
using amodified list scheduling technique [8][9]. Thus, if P processors are available, these heu
ristics determine the processor assignment op (v) -> [1,2,..., P] for each actor v, and specify
when the k invocation of each actor starts: s(v, k) -> Z+ (positive integer). Because the firing
times are enforced by a finite state controller in practice, a fully-static schedule is also con

strained to be periodic, i.e. s(v,k) = ot(v)+kTFS;ot(v) is the starting time ofthe first exe
cution ofactor v and TFS (the subscript FS implies fully-static) is the schedule period. Thus a
fully-static schedule specifies the triple {ap (v), a, (v), TFS] . Clearly, the throughput for such
aschedule is T~FS. An example ofafully-static execution ofaDFG is shown in the Gantt chart in
Fig. 1: Fig 1(c) is one possible fully-static schedule on five processors for the graph G in Fig.
1(a). Note that inter-processor communication primitives (send and receive actors) need to be
inserted when data cross processor boundaries. The fully-static schedule specifies exactly when
these communications occur. If we ignore communication costs, i.e. assume sends and receives
take zero time, then TFS for this example is 11 units. Also, the sizes of buffers between proces
sors can be inferred from the schedule, and hence these buffers can be statically allocated.

In some cases itis advantageous to unfold agraph by acertain unfolding factor, say u, and
schedule u iterations of the graph together in order to exploit inter-iteration parallelism more
effectively [2][7]. The unfolded graph contains u copies of each actor ofthe original graph. In
that case op and a, are defined for all the nodes of the unfolded graph (i.e. a and a, are defined

4 of 14

for the first u invocations ofeach actor) and TFS is the iteration period for the unfolded graph.
Then, the average iteration period for the original algorithm is -^. For the remainder of this

paper, we will assume we are dealing with the unfolded graph and we will refer only to the itera

tion period and throughput ofthe unfolded graph, with the understanding that these quantities can
be scaled by the unfolding factor to obtain the corresponding quantities for the original graph.

Fully-static scheduling requires accurate estimates of execution times of actors and

requires that actors have constant, data-independent execution times because the timings speci
fied by the fully-static schedule guarantee correct sender-receiver synchronization only when the
execution time estimates are accurate and constant. One way to get around this problem is to use
guaranteed worst case execution time estimates. Such worst case estimates are often used in

scheduling hardware in high-level VLSI synthesis. For programmable processors however, deter

mining good upper bounds on execution times is not always possible, especially when the object
code is compiled from a high level language or when processors employ pipelining and other
instruction-level parallelism techniques. The strategy described next is more robust to changes in
execution times ofactors, but it achieves this flexibility at agreater run time cost.

4.0 Self-timed schedules

Consider now the self-rimed scheduling strategy of [5]. In this strategy we retain the pro
cessor assignment op from the fully-static schedule, we also retain the ordering ofactors on each
processor as specified by a,, but we discard the precise timing information specified in the fully-
static schedule. Each processor is assigned asequential list ofactors, some of which are send and

receive actors, which it executes in an infinite loop. When aprocessor executes acommunication

actor, it synchronizes with the processor(s) itcommunicates with. Thus exactly when aprocessor
executes each actor depends on when, at run time, all input data for that actor is available, unlike

the fully-static case where no such run time check is needed. Conceptually, the processor sending
data writes data into a FIFO (first-in-first-out) buffer, and blocks when that buffer is full. The

receiver on the other hand blocks when the buffer it reads from is empty. Such buffers may be
implemented using shared memory, or by using hardware FIFOs between processors. It is possi-

5 of 14

ble to optimize (minimize) buffer sizes such that the throughput is not constrained by the fact that
buffer sizes are bounded [11]; however, since we are mainly interested in determining the best
performance achievable by aself-timed strategy, we will not be concerned with buffer optimiza
tion in this paper. Instead, we will assume that the buffers are large enough so that their finite
sizes do not affect the throughput of the system of processors.

A self-timed strategy is robust with respect to changes in execution times of actors,
because sender-receiver synchronization is performed at run time. However, such run time syn
chronization also implies ahigher inter-processor communication cost compared to the fully-
static strategy because semaphore checks need to be performed to ensure sender-receiver

sychronization and shared resources need to be arbitrated at run time.

Another feature of the self-timed strategy is that it allows successive iterations of the DFG

to overlap in anatural manner. Fig. 2 shows how the self-timed schedule corresponding to the
fully-static schedule in Fig. 1evolves. Note that the self-timed schedule in Fig. 2eventually set
tles to aperiodic pattern consisting oftwo iterations ofthe DFG. Thus the average execution time
for one iteration ofthe DFG, TST, is 9units. Clearly, ifwe neglect inter-processor communication
costs, the overlapping ofsuccessive iterations ensures that TST <, TFS.

Figure 1. Self-timed schedule
repeating pattern

In aself-timed strategy, s (v, k) (time when actor v starts firing for the k time) is deter

mined by how the schedule evolves at run time. To model the evolution ofaself-timed schedule,
we construct another DFG G' by adding arcs (edges) to the original DFG G to reflect the proces
sor assignment and ordering of actors on each processor. More precisely, G' is obtained from G

bylinking actors assigned to each processor into acycle that has asingle initial token. Thus the

fact that actors assigned to the same processor run sequentially is reflected in Gf. Fig. 3 repre-

6 of 14

sents the graph G' for the example of Fig. l(a),(b). Note, for instance, how nodes B and F are

Prod

Proc5 /

G'

Figure2. Construction ofG' from G and from the static schedule

linked into acycle in G' to reflect the fact that they are both assigned to the same processor (Proc
2). Also, note that the initial token isplaced on the input arc ofB; this reflects the fact that the kth

th

firing ofBalways precedes the k firing ofFon Proc 2. Again, we have ignored explicit commu
nication actors and their associated execution times here, but these can be included in the model

in astraightforward manner. The average iteration period for the self-timed schedule is given by:

Jl/(v)l
1ST - cyciccinG-1 <//q j where d(C) is the number of initial tokens on the cycle C?

For example, the value of TST obtained from G' in Fig. 4is 9units (corresponding to the cycle
B->E-»D->C-»B,which has total weight of18 and has two initial tokens on it). Thus the aver
age period for the self-timed schedule of Fig. 2is 9. Note that TST is arational number, but it is
not necessarily an integer.

5.0 Ordered transactions

In the ordered transactions strategy we discard the firing time information in afully-static
schedule, but retain the order of execution of nodes on each processor and the order in which pro-

2. d (C) >0 for every cycle C in G' if the schedule S isdeadlock free.

7of14

cessors communicate with one another [6]. This strategy is more constrained than self-timed
scheduling because at run time we impose apre-determined order on the inter-processor commu
nication pattern. However, as in the self-timed scenario, this ordering strategy is tolerant of vari
ations in execution times of actors. Fig. 4 shows an example of how such an order could be
derived from a given staticschedule.

8 of 14

7 $ \ V~
Transaction order: proc2-»l, 5-»2, 4-»3, l-*4, l-*5

Figure 3. One possible transaction order derived from the fully-static schedule

The main advantage of ordering inter-processor transactions is that it allows us to restrict

access to communication resources statically, based on the communication pattern determined at

compile time. Since communication resources are typically shared between processors, run time

contention for these resources is eliminated by statically scheduling them. This can potentially
result in efficient inter-processor communication mechanism atlowhardware cost. We have dem

onstrated the ordered transactions concept by building a prototype four processor DSP board,

called the Ordered Memory Access (OMA) architecture, that uses shared memory and a single

shared bus for inter-processor communication. The order inwhich processors access shared mem

ory is determined at compile time, and a controller on the board enforces this pre-determined

access order at run time, thus eliminating the need for bus arbitration or semaphore synchroniza

tion at run time. This results in efficient inter-processor communication at relatively low hardware
cost. The OMA multiprocessor is described in detail in [13].

The ordered transactions strategy falls in between fully-static and self-timed strategies in

that, like the self-timed strategy, it is tolerant ofvariations in execution times and, like the fully-
static strategy, has low commumcation and synchronization costs. However, theordered transac

tion strategy isnot as flexible as self-timed, because the order in which processors access shared

resources is forced atrun time toexactly match the order determined at compile time.

The OT strategy lies in between fully-static and self-timed in terms of the average

throughput also. In general TFS ^ TQT ^ TST. For example if weenforce the transaction ordering

repeating pattern

Figure 4. Schedule evolution when the transaction ordering ofFig. 4 is enforced

P3 = idle time due toordering
constraint

specified in Fig. 4, then the schedule evolves as shown in Fig. 5, and TQT is 10 units, which is
larger than TST (9 units) but is smaller than TFS (11 units).

6.0 Optimal ordering

To summarize the previous sections, run time costs increase when we move from afully-
static to aself-timed strategy, but the self-timed strategy is robust with respect to changes in exe
cution times of actors, and the throughput achieved is not significantly affected as long as the vari
ations in execution times are small. If the execution times vary significantly, then to obtain
reliably good performance we necessarily have to use amore dynamic strategy such as static
assignment or fully dynamic scheduling [4]. It is possible to quantify the effects ofvariations in
actor execution times on the average throughput achieved by aself-timed schedule; such an anal
ysis is however beyond the scope ofthis paper. Instead we will simply assume that the variations
in execution times are small enough so that aself-timed or an ordered transaction strategy is via
ble.

Suppose we ignore the above two effects, i.e. we assume zero communication costs and

assume the execution times are accurate, and focus on the throughput achieved by the three types
of scheduling strategies. At first it seems that for agiven processor assignment and ordering of

9 of 14

actors on processors, the self-timed approach will perform better than the fully-static or transac
tion ordered approaches simply because of the manner in which it allows successive iterations to
overlap. However, the following result - the main result in this paper - tells us that it is
always possible to modify any given fully-static schedule so that it performs nearly as well as it's
self-timed counterpart. Stated more precisely:

Claim 1: Given afully-static schedule S. {a, (v), a, (v), 7>5} ,let TST be the average itera
tion period for the corresponding self-timed schedule (as mentioned before, TFS ZTST). Then, if
TFS >TST there exists avalid fully-static schedule S' that has the same processor assignment as
S, the same order of execution of actors on each processor, but an iteration period of rrsr"|3. I.e.
s'mi°p(v)*°'t(v)>[TSTm\} where, if actors v., vy are on the same processor (i.e.
°P W = °p ty >men ct (vi) >°t (vj) =* <*', (v,) >a', (v;.) .

S' isobtained by solving the following set oflinear inequalities for & :

o't (v,) - o't (vj) Zt(vj) - ^TST~\ xd(j, 0 for each edge v;. -> v. in G'.

Proof: Let S' have aperiod equal to 7\ Then, under the schedule 5', the it'* starting time of
actor vt is given by:

s(Vi>k) = &t(vfr+kT (EQl)

Also, dataprecedence constraints imply:

s(v/f k) Zs(v., k-d (/, /)) +t(vj) for each edge vj -> v,. in G' (EQ 2)
Substituting EQ 1 in EQ 2:

a't (v,) - &t (vj) Zt(vj) -d (/, 0 xT for each edge v; -» Vj. in G' (EQ 3)

Note that the construction of G' ensures that processor assignment constraints are automatically
met: if op (v.) = op (vj) and v. is to be executed immediately after v. then there is an edge
Vj -» Vj in G'. EQ 3 represents a system of \E'\ (the number ofedges in G') inequalities in \V\
unknowns (the quantities &t(v.)).

3. prsr"| is the smallest integer greater than TST

10 of 14

These inequalities fall into a particular class of linear programming problems that can be

solved in polynomial time (0(|£'||V|)) using the Bellman-Ford shortest-path algorithm

[14][15].

Feasible solutions for a'r exist for ([15]):

rE/(v)
ST ~ cycfeCinG' I d (C)

If we set T = |~r5r~|, then the right hand sides ofthe system ofinequalities in (EQ3) are
integers, and the Bellman-Ford algorithm yields integer solutions for a', (v) .

Thus S' a {op (v), a',(v), [rS7]} is avalid fully-static schedule. •

Remark: Claim 1essentially states that afully static schedule can be modified by skewing the rel

ative starting times ofprocessors so that the resulting schedule has iteration period at most 1unit
larger than that of the corresponding self-timed schedule. It is possible to unfold the graph and
generate a fully-static schedule with average period exactly TST, but the resulting increase in
code size may not be worth the benefit of (at most) one time unit decrease in the iteration period.

For example the static schedule Scorresponding to Fig. 1has TFS = 11 >TST - 9units.
Using the procedure outlined in Claim 1, we can skew the starting times of processors in the
schedule S to obtain aschedule S', as shown in Fig. 6, that has aperiod equal to 9units. Note that
the processor assignment and actor ordering in the schedule of Fig. 6 is identical to that of the
schedule in Fig. 1.

Claim 1may not seem useful at first sight: why not obtain afully-static schedule that has a
period [TST~\ to begin with, thus eliminating the post-processing step suggested in Claim 1?
Recall from Section 3.0 that afully static schedule is usually obtained using heuristic techniques
that are either based on blocked non-overlapped scheduling (using critical path based heuristics)
[7] or are based on overlapped scheduling that employs list scheduling heuristics [8][9]. None of
these techniques guarantee that the generated fully-static schedule will have an iteration period
within one unit ofthe period achieved if the same schedule were run in aself-timed manner. Thus

11 of 14

Figure 5. Modified schedule 5'

H pawn | H t h i iiii
^»- mnftfltino nattAmrepeatingpattern

for aschedule generated using any of these techniques, we might be able to obtain again in per
formance, essentially for free, by performing the post-processing step suggested in Claim 1. What
we have proposed can therefore be added as the final step in existing schedulers. Of course, an
exhaustive search procedure like the one proposed in [12] will certainly find the schedule S'
directly.

For an ordered transaction strategy, we use the transaction ordering suggested by the mod
ified schedule 5' rather than the transaction order from S used in Fig. 5. Thus imposing the
transaction order 2->l, 4->3,5-»2, l->4,3->2, and l-»5 as in Fig. 6results in TQT of9units
instead of 10 that one gets if the transaction order ofFig. 4 is used. Under the transaction order
specified by S', T$T <> TQT <> [TST~\; thus this order ensures that the average period is within one
unit ofthe unconstrained self-timed strategy. Again, unfolding may be required to obtain atrans
action ordered schedule that has period exactly equal to TST, but the extra cost of alarger control
ler (to enforce the transaction ordering) outweighs the small gain ofat most one unit reduction in
the iteration period. Thus for all practical purposes the transaction order specified by S' is the
optimal order. The "optimality" is ofcourse only under the assumption that the specified execution
times of actors are accurate, and under the constraint that the processor assignment and order of
execution ofactors is kept the same as the original fiilly static schedule. In other words the trans
action order we determine is the best possible one for the available timing information, given the
processor assignment and actor ordering.

If the generated fully-static schedule is to be run in aself-timed fashion, then of course
there isnoneed for the post-processing step of Claim 1.

12 of 14

7.0 Conclusions

Determining the order of processor transactions at compile time and enforcing this order

at run time leads to alow-cost inter-processor communication mechanism. In this paper we have

shown how to determine the best possible transaction order under the given timing information.
The procedure, instead of simply extracting the transaction order from the given fully-static
schedule, first modifies the fully-static schedule by skewing the starting times of processors. The
resulting fully-static schedule has aperiod within one time unit ofthe average period obtained if

the same schedule were run in aself-timed fashion. Using the transaction ordering specified by
the modified schedule results in atransaction ordered schedule with an average period that is at
most one unit larger than that ofthe self-timed strategy. Thus enforcing this particular order on the

transactions has almost no penalty over the unconstrained self-timed strategy, under the given
actor execution time information.

13 of 14

[1]

[2]

[3]

[4]

[7]

[8]

[9]

REFERENCES

E. A. Lee and D. G. Messerschmitt. "Synchronous Data How." IEEE Proceedings, vol.75 dd 1235-1245
September 1987.

E A. Lee. "A Coupled Hardware and Software Architecture for Programmable DSPs." Ph. D. Thesis Depart
ment ofEECS. University ofCalifornia Berkeley, May 1986.

J. T. Buck. S. Ha. E. A. Lee. and D. G. Messerschmitt. "Ptolemy: AFramework for Simulating and Prototyping
Heterogeneous Systems," International Journal ofComputer Simlutation, January 1994.

^*Rabaey'C Ch1, RHoang'md M' PotkonJ<*. "Fast Prototyping ofDatapath Intensive Architectures."
IEEE Designand Test ofComputers, June 1991.

[5] E. A. Lee, and S. Ha, "Scheduling Strategies for Multiprocessor Real-Time DSP." Globecom, November 1989.
[6] E A. Lee. J. C. Bier. "Architectures for Statically Scheduled Dataflow."Journal ofParallel and Distributed

Computing, December 1990.

G. C. Sin, "Multiprocessor Scheduling to account for Interprocessor Communication," Ph. D. Thesis, Depart
ment ofEECS, University ofCalifornia Berkeley, April 1991.

M. Lam. "A Systolic Array Optimizing Compiler." Ph D. Thesis. Carnegie Mellon University. May 1987.
S. M. H. de Groot. S. Gerez. and O. Herrmann. "Range-Chart-Guided Iterative Data-How Graph Scheduling "
IEEE Transactions on Circuits and Systems, May 1992.

[10] K. Parhi. and D. G. Messerschmitt, "Static Rate-optimal Scheduling of Iterative Data-flow Programs via Opti
mum Unfolding," IEEE Transactions on Computers, Vol. 40. No. 2. pp. 178-194. February 1991.

[11] S. Y. Kung. P. S. Lewis, and S. C. Lo. "Performance Analysis and Optimization ofVLSI Dataflow Arraya,"
Journal ofParallel and Distributed Computating, Vol. 4,pp. 592-618.1987.

[12] D. A. Schwartz. "Synchronous Multiprocessor Realizations of Shift-invariant How Graphs "Ph DThesis
Georgia Institute of Technology, June 1985.

[13] S. Sriram, E. A. Lee, "Design and Implementation of an Ordered Memory Access Architecture." Proceedings
ofthe International Conference on Acoustics Speech and Signal Processing, April 1993.

[14] E L. Lawler, "Combinatorial Optimization: Networks and Matroids." Holt. Rinehart and Winston. New York
pp. 65-80,1976.

[15] T. H. Cormen, C. E Leiserson, and R. L. Rivest, "Introduction to Algorithms." The MIT Press and the McGraw
Hill BookCompany, Sixth printing, pp. 542-543,1992.

14 of 14

	Copyright notice 1994
	ERL-94-74

