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Abstract

In this paper, we present new moment models for uniform, nonuniform and

coupled transmission lines. The moment model of a line is simply based on the re

lationships between the two port currents (KCL) and the two port voltages (KVL)

of the line. The parameters of the model depend on the mean values of the volt

age moments and the weighted voltage moments of the line. Simple formulas are

given to compute these mean values efficiently. By using such models and moment

matching techniques, interconnects modeled as transmission line networks can be

efficiently simulated.

1 Introduction

With the rapid increase of the signal frequency and decrease of the feature sizes in high

speed electronic circuits, interconnects play increasingly important roles. Not only the

signal delay due to interconnects is often significantly larger than the transistor delay,

but also the transmission line effect such as reflection, dispersion and crosstalk may

cause false action of the circuits.

"On leave from Nanjing University of Science and Technology



The interconnects of a VLSI system on different level are modeled differently. The

wires on a chip , on a printed circuit board and on an MCM are usually modeled as

lumped or distributed RC lines, lossless transmission lines and lossy transmission lines,

respectively [1].

Many papers dealing with the analysis of interconnect networks have been published

in recent years [2-8,19-26]. The asymptotic waveform evaluation and other moment

matching techniques have recently proven useful in the analysis of interconnects. To

make use of such techniques efficiently, we need good models for interconnect networks,

especially for transmission line networks.

In the early days, interconnects were modeled as lumped or distributed RC networks.

[9] gave the formula for the first moment(Elmore delay) of a node voltage in an RC tree,

which was then used in an RC mesh [10]. AWE [19] extended the moment computation

method to the general RLC network based on a state variable approach. RICE [20] pre

sented moment model of capacitors and inductors and provided methods to compute

moments by analyzing resistive moment model circuits, especially it improved AWE

by exploiting the treelike structure of most interconnect circuits. However, in RICE,

transmission lines are modeled as a large number of RLGC sections, which is neither

exact nor efficient in computation. Moment computation models of transmission lines

have been presented in [23, 24, 26]. In [23], the moment models are formed either by

recursively solving second order differential equations or by computing matrix expo

nentials (even for a single line) which is not very efficient in computation. In [24], the

moment model is based on the transmission matrix (ABCD matrix) of transmission

lines. In order to use such a model, moments of port currents of transmission lines

must be included as unknown variables. In [26], a method called reciprocal expansion

(REX) is introduced which finds the moments of the reciprocal of a transfer function

of an interconnect instead of the moments of the transfer function itself. In REX,

the formation of the moment model is based on recursive integration with the time

complexity 0(p4) for a pth order model, which is cost for high order computation.

Also, this method is good for interconnects modeled as transmission line trees, but its

extension to more general interconnect topology has not been known.

In our recent paper [27], we presented a moment matching model for RLC transmis-



sion lines. The model is a lumped RLC line. When each transmission line is replaced

by its p-th order moment matching model, the resultant circuit has exactly the same

moment as that of the original circuit up to the order ofp for each output node voltage.

In this paper, we will extend this method to develop new moment models for general

RLGC transmission lines, including single uniform and nonuniform fines and coupled

line systems. Starting from the telegrapher's equations of a transmission line, we form

a model of a transmission fine based on the relationships between the two port cur

rents (KCL) and the two port voltages (KVL) of the line. The parameters of the model

depend on the mean values of voltage moments and weighted voltage moments of the

line. Simple formulas are given to compute these mean values efficiently. For uniform

lines, the model is exact, and for nonuniform fines, it can be as accurate as needed.

The model can be used for any transmission line network, and is especially efficient for

RLC transmission line tree networks. Also, the model can be used for distributed RC

lines as a special case.

This paper is organized as follows. In Sec.2, we review the moment model of a

lumped circuit. In Sec.3, we derive a new moment model for a single uniform trans

mission line, and we extend the result to a single nonuniform line and coupled lines

in Sec.4 and 5, respectively. In Sec.6, we present an efficient recursive algorithm for

moment computation of RLC transmission fine tree networks. Experimental results

and conclusions are given in Sec.7.

2 Moment model of lumped circuits

The method of moment computation proposed in this paper is based on the moment

model of circuits. We first review moment model of lumped circuits in this section.

2.1 KCL and KVL of moment model of circuit

Given a linear circuit AT, let V(s) and I(s) be the Laplace transform of its branch

voltage and current vectors, respectively. As far as moment computation is concerned,

the input signal (either a voltage or a current) is set as 6(t). Expand V(s) and I(s)



into Taylor series,

V(s) = V° - V's +VV + ... + (-l)pVpsp + ... (1)

and

1(a) = 7° -11* + JV + ... + (-lyW + ... (2)

Then, Vp and Ip are called the p-th order voltage and current moment vector, respec

tively. The circuit Np induced from the circuit AT for which the branch voltage and

current vectors are Vp and Ip is called a p-th order moment model of N.

Let A and B be the incidence matrix and the fundamental loop matrix of the graph

induced from the circuit N. Then, the KCL and KVL of the circuit can be expressed

as

AI(s) = 0 (3)

and

BV(s) = 0 (4)

Substituting Eq.(2) to Eq.(3) and Eq.(l) to Eq.(4), then for each p > 0, we have

AIp = 0 (5)

and

BVp = 0 (6)

From the above two equations it can be seen that Np and Af have the same circuit

topology.

2.2 Moment model of two terminal elements

A circuit model describing the relationship between the voltage moment and current

moment of an element is called its moment model . A model relating a p-th order

voltage moment with j-th order current moments (j < p) or relating a p-th order

current moment with j-th ordervoltagemoments (j < p) is called a p-th ordermoment

model.

For 2-terminal elements Ry X, C and independent source, their momentmodels are

as follows:



1. For a resistor R, Vp = RIp\ i.e., the p-th order moment model of a resistor is R

itself as shown in Fig.1.1.

2. For a capacitance C, Ip = -CVp~l. This means that the moment model is a

current source with its direction opposite to that of the capacitance voltage and

its value determined by C andVp~l. Such amodel is shown in Fig. 1.2. In the most

practical cases, moment computation is implemented recursively from low order

up to high orders. In this case, the p-th order moment model for a capacitance is

an independent current source.

3. For an inductance L, Vp = -LIP"1. The p-th order moment model is a voltage

source as shown in Fig.1.3.

4. For an independent voltage (current) source, V(s) = 1 (I{s) = 1) and its model is

just a voltage (current) source with the value equal to 1 for the 0-th order moment

and the value equal to 0 for higher order moments.

2.3 Moment model of dependent sources

For the four types of dependent sources: VCCS (voltage-controlled current source),

VCVS (voltage-controlled voltage source), CCCS (current-controlled current source)

and CCVS (current-controlled voltage source), if their parameters are constant, then

their p-th order moment models are the same as themselves.

2.4 Moment model of a lumped circuit

For a given lumped circuit, replaceeach element by its p-th order moment model, the

p-th order moment model of the circuit will be formed. It is a resistive circuit. By

analyzing the circuit, all the p-th moments of the node voltages and branch currents can

be found. After that, the p+1 -th order moment model of the circuit can be formulated.

Thus, the moment computation can be implemented recursively from order 0 to any

order needed.

In the next three sections, we will derive moment models for single uniform trans

mission lines, single nonuniform transmission lines and coupled transmission lines. By



using such models andthe models of lumped elements, moment models of interconnects

made of lumped and distributedelements can be formed and moment computation can

be implemented by using these models.

3 Moment model of single uniform transmission

line

3.1 T-typed moment model of single uniform transmission

line

We first consider a single uniform RLGC transmission line TL. Let r, /, </, c and d

be its resistance, inductance, conductance, capacitance per unit length and the length,

and R = rd, L = Id, G = gd and C = cd be its total resistance, inductance, conduc

tance and capacitance. Let V(x, s) and J(x, s) be its line voltage and line current at

coordinate x, where x = 0 and x = d correspond to the two ends of the line. The

telegrapher's equations of the line are as follows:

^lfl =-rl(x1s)-sll(x,s) (7)

^jj^l =-gV(x, s) - scV(x, s) (8)
Note that these two equations are in fact the KVL and KCL equations for an infinites

imal section of the line at coordinate x. Let

V(x, s) = V°(x) - V\x)s +V2(x)s2 +... + (-l)pVp(x)sp + ... (9)

and

J(s, s) = I°(x) - I1(x)s +P{x)s2 +... + (~l)pIp(x)sp +... (10)

Substituting Eqs.(9) and (10) to Eqs.(7) and (8), and letting the coefficients of sp

(p = 0,1,2,...) on both side of the equations be equal, we have

dx =-rl"(x) +W-\x) (11)

= -9V(x) + cV-\x) (12)
dl"{x)



Now we derive an equation relating Ip(d) with Jp(0). Integrating both sides of

Eq.(12) from d to x, we have

J'(x) - I'(d) =-g j* V(y)dy +cjT V'-\y)dy (13)
and

We define

Jp(0) =Ip(d) +g fd Vp(y)dy - c[* Vp~\x)dx (14)
Jo Jo

up =2jdyp(x)dx • (15)
where Up is the mean of the p-th order voltage moments Vp(x) along the line and is

called the p-th order mean for simplicity. Then, we have

Ip(0) = Ip(d) + GIF - CUp~l (16)

Note that the difference Ip(0) - Ip(d) = GUP - CUP'1. The first term GUP represents

the total p-th order current moment flowing from the Une to ground through the

conductance of the Hne, and the second term —CUP~* represent the total p-th order

current moment toward the Hne through the capacitance of the Hne. These two terms

are characterized by the total conductance G with the p-th order mean Up, and the

total capacitance C with the p-1 the order mean C/p_1, respectively.

Next, we derive an equation relating Vp(d) with Vp(0). Integrate both sides of

Eq.(ll) from 0 to x. By using Eq.(13), we have

Vp(x) - Vp(0) =-rxP(d) +lxlp-\d) +rg j* FVp(z)dzdy
- re f" fV Vp-\z)dzdy - Ig f T Vp'\z)dzdy +Ic [* [* Vp'2{z)dzdy (17)

JO Jd JO Jd Jo Jd

where V"1 is defined as 0 when p = 1. Especially, when x = d, we have

Vp(d) - Vp(0) =-RIp(d) +LIp~l(d) +rg j* j'Vp(y)dydx

"rCJd f VP~l<<y)dydx - l9 jfJ* Vp'1(y)dydx +Icj'£ Vp~2(y)dydx (18)
Now we transform the above double integrals to singleones. Let <?J(x) = f£ V>(y)dy.

Then, in the aboveequation, J* ffV*(y)dydx =J* Qi(x)dx = xQ*{x) |*=g - So x^-dx
= —J0dxV*(x)dx. Therefore, we have

Vp(d) - Vp(0) = -RIp(d) + LF-^d)



-rg [dxVp(y)dx +rc[dxVp-1(y)dx +lg [dxVp-\y)dx-lc [ xVp~2(x)dx (19)
Jo Jo Jo Jo

We define

Wp =1 JdxVp(y)dx (20)
where Wp is the mean value of weighted p-th order voltage moments along a line with

the weight equal to the relative distance x/d. Wp is called a p-th order x-mean for

simpHcity. Then, we have

Vp(d) = Vp(0) - RP(d) + LP~\d) - RGWp + RCW-1 + LGW^1 - LCW^2 (21)

Prom the above equation, it can be seen that the difference of the voltage moments

Vp(d) - Vp(0) consists of two parts. The first part -RP(d) + LP~1(d) represents the

contribution of the load current 1(d). As 1(d) can be regarded as a current component

flowing through the whole line, its effect is the same as if it passed through a lumped

RL branch. The second part can be divided into two subparts. The first subpart

—RGWP + LGWP~* represents the voltage drop caused by the conductance currents,

and the second subpart RCWp~l —LCWP~2 represents the voltage drop caused by

capacitance currents. For this part, the x-mean W characterizes the contribution of

the conductive and capacitive currents. The weight x/d is introduced in W because

the current flowing through a conductance or a capacitance at position x only causes

a voltage drop in the region [0,x].

Let Ep = LP-l(d)+RCWp-l+LGWp-l-LCWp~2. Then Eq.(21) can be rewritten

as follows:

Vp(d) = Vp(0) - RP(d) - RGWp + Ep (22)

Prom Eqs.(16) and (22), a p-th order T-typed moment model of a transmission Hne

can be derived as shown in Fig.2a. In this model, Vp(0) and Vp(d) are regarded as the

port voltages, and Jp(0) and P(d) are regarded as port currents. The current source

CUP"1 andvoltage source Ep are independent sources, and the current source GUP and

RGWp are dependent sources. We wiU make the last two sources expHcitly dependent

on the p-th order port voltages as wiU be shown in the next subsection.

In most practical cases, when the operating frequency of a circuit is not very high,

the dielectric loss in a transmission Hne is negHgible compared with the resistance loss,

8



and the leakage current through the dielectric medium is much smaller than that of the

distributed capacitances during the most part of a transient response. In such cases,

the g parameter can be set to 0 and the transmission line becomes an RLC line. Then

, Eq.(16) is simplified to

Jp(0) = P(d) - CIP-1 (23)

and Eq.(22) to

Vp(d) = yp(0) - RP(d) + Ep (24)

where Ep = Lp-X(d) + RCWp~l - LCWP~2, and the moment model is simpHfied to

that shown in Fig.2b. This T-typed model is equivalent to the ir typed model as shown

in Fig.2c, where J& = CU^1 - Ep/R and J& = Ep/R.

3.2 Computation of mean values U and W

From what mentioned in the last section, the moment model of a transmission Hne

depends on two mean values U and W of some order. In this section, we present

formulas for the computation of Up and Wp.

From the ABCD matrix of the transmission Hne, we have

V(x,s)

I(x,s)

chBx —ZqsIiOx

—-g-shOx chOx

V(0,s)

1(0, s)
(25)

where 0= J(sc +g)(sl +r) and Z0 = \/(sl + r)/(sc +g). Let x=d and 7 =$d, we
have

chiV(Q)s)-V(dis)

Define

and

l(0,s) =

V(x,s) =

Zoshy

sh9(d - x)V(0is) + sh9xV(d,s)
shf

1 rdU(s) =^ I V(x,s)dx
d Jo

W(s) =±JdxV(xis)di
U(s) and W(s) are the mean of the voltage V(x,s) and weighted voltage §V(:r,s)

along the Hne, and are caUed the mean and x-mean functions, respectively. It is easy

ix

(26)

(27)

(28)

(29)



to show that U(s) =T&oi-iyuisi and W(s) =Y*o(-lYW>s>, i.e., Up and Wp axe
the p-th order moments of U(s) and W(s), respectively, and we can find Up and Wp

from U(s) and W(s).

Substituting Eq.(27) to Eqs.(28) and (29), respectively, we have

U(s) = f(s)(V(0,s) + V(d,s)) (30)

where

f(s) = (chy -1)/7*&7 ' (31)

and

W(s) = h!(s)V(0,s) + /i2(s)V(<*,s) (32)

where

/^(s) = (shf —7)/725/i7 (33)

and

/i2(s) = (70/17 —shi)/~f shy (34)

Let V(0,5) = E~o(-l)p^p(0)sp, V(rf,*) = T£o(-lYVP(d)s*, f(s) = £?=0/*5*,

hi(s) = T,kL0hikSk, and /*2(s) = ET=oh2kSk. Then, from Eqs.(30) and (32), wehave

Up = £(-1)WP_i(0) + Vp->(<*)) (35)
i=o

and

^P = Et-l^iiV^^O) + h2jV»-*(d)) (36)
i=o

The method for the computation of /,-, h\j and ft2> is shown in Appendix A.

Eqs.(35) and (36) can be rewritten in the following form:

Up = fo(Vp(0) + V»(d)) + Up (37)

where Up = E^-lYfj(Vp-'(0) + Vp~'(d)) only depends on V(0) and V«(<f) with

i < p, and

Wp = hloVp(0) + /i20Vrp(d) + Wp (38)

where W? = EP=i(-l)'(/ii;Vp-J(0) + h2jVp->(d)) is also independent of Vp(0) and

Vp(d). From the above two equations, the p-th order moment model of an RLGC

10



transmission line can be reformed as shown in Fig.3a or b. The parameters of the

model in Fig.3b are as foUows: G0 = G(f0 - h10)y God = G(f0 - h20), Jg. = CUp-x -

GUp - Ep/R + GWP, Gd = Gh20, Gd0 = Gh1Q and J& = Ep/R - GWP. Note that in

this model, the parameters of the resistors and dependent sources are constant w.r.t.

the order p.

4 Moment model of nonuniform transmission lines

In this section, we extend the moment model of uniform transmission Hnes to nonuni

form transmission Hnes. We will foUow the same way as we have done for the derivation

of the moment model of a uniform line.

4.1 Equations of voltage and current moments

Consider a nonuniform Hne with r(x), l(x), c(x) and g(x) being the resistance, in

ductance, capacitance and conductance per unit length at coordinate x where x = 0

and x = d correspond to the near and far end of the line, respectively. Then, the

telegrapher's equation of the line can be written as

dV(x,s)
dx

dl(x,s)
dx

From the above two equations, we have

= -r(x)I(x, s) - sl(x)I(x, s) (39)

= -g(x)V(x, s) - sc(x)V(x, s) (40)

dVp(x) =_r^JP^ +/(x)/P-i(a;) (4i)
dx

and

^1 =-g(x)Vp(x) +c(x)Vp-\x) (42)
Integrating both sides of Eq.(42) from d to x, we have

P(x) - P(d) =- f" g(x)Vp(x)dx + f c(x)Vp~1(x)dx (43)
Jd Jd

and

Jp(0) - P(d) = / g(x)W(x)dx- f c(x)Vp~1 (x)dx (44)
Jo Jo

11



As can be imagined, now Jq g(x)Vp(x)dx and -/q c(x)Vp~l(x)dx represent the con

tribution of the conductance and capacitance currents to the difference 7P(0) —P(d),

respectively. Now let G = Jjf g(x)dx and C = Jjf c(x)dx be the total conductance and

total capacitance of the Hne. We define

U* =±J%(x)V>(x)dx (45)
and

V$ =77 / c(x)Vp(x)dx . (46)
C Jo

Up and Up are the mean values of weighted p-th order voltage moment Ep(x), with the

first one being weighted by g(x) and the second one being weighted by c(x). They are

called the p-th order g-mean and c-mean, respectively. By using the above definitions,

Eq.(44) can be expressed as follows:

7p(0) = P(d) - GUP + CUp~l (47)

Eq.(47) is similar to Eq.(16) except that now Up and Up~l replace Up and Up~l,

respectively. In the case that c(x)/C = g(x)/G, Up = Up. The physical meaning of

Eq.(47) is similar to that of Eq.(16).

Let R = J0 r(x)dx and L = Jjf l(x)dx be the total resistance and inductance of the

Hne. Integrating both sides of Eq.(41) and substituting Eq.(43) to it, wehave

Vp(d) - Vp(Q) =-RP(d) +LP~\d) + fdr(x) ['g(y)Vp(y)dydx
JO Jd

~L r(l) II ^W'1(y)dvdx-Jl K*) £ g^v-1{y)dydx+Jd /(*) J'^v^-^dydx
(48)

Now we transform the four double integrals in the above equation into single inte

grals. Take Irg = J* r(x) fi g(y)Vp(y)dydx as an example. Let rt(x) = /* r(y)dy be the
total resistance in the interval [0,x] and denote Q(x) = JJ g(y)Vp(y)dy. Then, Irg =

Ior(x)j;g(y)Vp(y)dydx=J0RQ(x)drt(x) = Q(x)rt(x) |*=g - $ rt(x)g(x)Vp(x)dx =
-Iort(x)g(x)Vp(x)dx. Let lt(x) = J0X l(y)dy. We define

KPg =̂ [ rt(x)g(x)V»(x)dx (49)

W?c =̂ g£ rt(x)c(x)Vp(x)dx (50)
12



Wh =Ja Jl l'(x)g(x)V-(x)dx (51)
and

Wrc =Tcfo l<(x)c(x)VP(x)dx (52)
Then, Eq.(48) becomes

Vp(d) = Vp(0) - RP(d) +LP~l(d) - RGWpg +flCW?"1 +LGWff1 - ICWT2 (53)

Eq.(53) is similar to Eq.(21) except that now we have four W's- instead of one. In

the special case that r(x)/R = l(x)/L and c(x)/C = g(x)/G, these four W's become

the same. Wpg, Wpc, Wfg and W£ are mean values of the weighed p-th order voltage

moments with the weights being rt(x)g(x), rt(x)c(x), lt(x)g(x) and lt(x)c(x), and are

called the p-th order rg, re, lg and lc- mean, respectively. From Eqs.(47) and (53), a p-

th order moment model for the transmission line can be derived as shown in Fig.4. This

model is similar to that shown in Fig.2, except that now Ep = LJp~1(d) + RCWf'1 +

LGWff1 - LCWf-2.

4.2 Computation of the values U and W

In order to derive formulas for the values U and W, we use Taylor series expansion

for r(x), /(x), g(x) and c(x) such that r(x) = 52%L0rnxn , etc., and use Taylor series

expansion for any two variable function F(x,s) as Y^Lo ]£2io fnk$kxn. Starting from

the telegrapher's equations, we can find a formula relating E(x,s) with E(0,s) and

E(d,s) as foUows with the derivation shown in Appendix B:

V(x, s) = P(x, s)V(0,5) + Q(x, s)V(d, s) (54)

Expanding P(x, s) and Q(x, s) in Taylor series of x and s and truncating the infi

nite series for x by a finite number N: P(x,s) = T,n=o E*Lo PnkXnsk and Q(x,s) =

££=o EILo QnkXnsk, we have

q?=ib(-i)j(f9ijVp-jw+fMV-fw) (55)
3=0

where fglj =£JU^T X&o fly^*^1 ™* A* =EJU ^T Eto QuO-h**1.

13



The formulas for other U and W values are similar and are omitted for simpHcity.

Let Wpg = T,P=o(-l)j(KgijVp-'(0) + hrg2jVp-'(d))} then the p-th order moment

model of a nonuniform line shown in Fig.4a can be transformed into that shown in

Fig.3b with the parameters Go = G(}g\o —hrg\o), God = G(fg2o —hrg2o), Jpa = CUP~X —

GUpa - Ep/R + GWpg„ Gd = Ghrg2(h Gd0 = Ghrgl0 and J?. = Ep/R - GWpg„ where

Upa = XU(-l)j(fai,Vp-*(0) + f923Vp-*(d)) and Wpga = ^(-^(^liV^ifO) +

K923vp-Kd)Y

5 Moment model of coupled transmission lines

Now we extend our results to coupled transmission Hnes. Here we only deal with

the uniform line case, and the extension to the nonuniform Hne case can be done by

following the same way as stated in the last section.

The extension can simply be done by redefining the parameters r, /, g, c, R, L, G

and C as matrices, and V, J, U and W as vectors. AU the equations in Sec.3.1 are still

valid with the above interpretation. The moment model can be formed by using these

equations. For the i-th line coupled with Hnes from number 1 to n, we have

and

where

lf(0) = I?(d) + -£(GikU£ - GMT*) (56)
fc=l

V?(d) = 17(0) - £(JWf(«fl + Ra, £ GkjW?) + B$ (57)
*=i i=i

K = £{i.*/rV) + EKfttQw +Lufi^wj-1 - i.*cyw?-2]} (58)
*=1 j=l

A moment model for the case n = 2 is shown in Fig.5 for iUustration.

Now we discuss the computation of mean values U and W. We first consider 2

typical cases.

5.1 Case 1.

This is the case with the typical structure that the transmission line system is made

ofmicrostrips with the same size and the same separation between two adjacent Hnes.
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It is also assumed that the resistance and conductance matrices of the system are

diagonal, and the coupHng effects are significant only between immediately adjacent

lines so that its inductance matrix and capacitance matrix aretridiagonal and Toeplitz

matrices and there exists a constant transformation matrix to diagonaHze both the

matrices simultaneously [25].

Suppose that in matrix L, /,-,- = / for all i, /y = lm for | i —j |< 1 and i ^ j and

Uj = 0 for | i —,; |> 1. Similarly, in matrix C, c„ = c for aU i, ctJ = Cm for \i—j |< 1

and i ^ j and cy = 0 for 1t-j |> 1. Let m = -2cos(zV/(n+ l)), <f>6(n) = 1, fa(p) = /*,

and ^(/z) = fi<t>j-i(fi) - <t>3-2(li) for j > 1. Let $] = E?=i(^-i(^i))2. Then, there
exists a matrix P = [py] with pij = (j>i-i(^j)/Sj such that P_1 = P', /' = PHP and

c* = P'cP are diagonal matrices, r = PlrP and # = PlgP. Using the transformation

V = PE and J = P J, we wiU have the foUowing decoupled system:

dE(f>3) =-rJ(x, s) - sl'J(x, s) (59)
dx

dJ^s) =-gE(x, s) - sc'E(x, s) (60)
dx

From V = PE we have £(0,s) = P'V(0,s), £(<*,s) = PlV{d,a), Ep(0) = P'Vp(0)

and Ep(d) = P'Vp((/). Let the p-th order U and W values of the i-th transmission Hne

be Uf and W/\ an<^ those of the j-th decoupled transmission line be U$j and WJ. {/£•

and W$j can be found by using formulas (35) and (36), then Uf and Wf can be found

by using the following equations:

ur =t^uSj (6l)

and

5.2 Case 2.

wr = Eftiw* (62)
i=i

In this case all the Hnes are RLC lines, i.e., their conductance matrix g is a zero matrix.

Eq.(13) is now simplified to

P(x) =P(d) +c f Vp~l (y)dy (63)
•/d

15



and Eq.(17) to

Vp(x) = yp(0) + (-rP(d) + IP-^dfix + rcAp'l(x) - lcAp~2(x) (64)

where

Let

and

Aj(x) =-[*["Vj(z)dzdy (65)

1 fdXJ = 1Z I *(x)dx (66)
ar Jo

Z> =2- I xAj(x)dx (67)
d4 Jo

Then, we have

Up = V»(0) +^(-RP(d) +LP~\d)) +RCXp~l - LCXp~2 (68)

and

Wp =iyp(0) +\(-RP(d) +I/""1^)) +RCZp~x - LCZp~2 (69)
Let J°(d) be the 0-th order current moment vector of the Hne system. As the

conductance matrix is zero, so V°(x) = V°(0) —rP(d)x and we can find

U° =V°(0) - ^RI°(d)

and

WQ =Ivo(o) - ip/V)

Starting from j = 0 and using Eqs.(64) - (67), we can find X3 and Z3 recursively. It

can be shown that X3 and Z3 are characterized by a coefficient array C as shown in

Table 1.

From Eqs.(64) - (67), it can be understood that Xp and Zp are polynomials of

variables Vk(0) and Ik(d) with k = 0- p. The coefficient of each term is the product
of some Cj and R, L and C. For example,

X° = ClV°(0) + c2(-RI°(d))

Z° = c2V°(0) + c3(-RP(d))
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C\ c2 cz C4 C5 C6

1

3

5

24

2

15

61

720

17

315

277

8064

C7 cz Cg ClO Cll Cl2

62

2835

50521

3628800

1382

155925

540553

95800320

21844

6081075

598082943

261534873600

Table 1: Coefficient Array C

We define an operator shift(). For a term A = aP where P is independent of c,,

shift(A) = ci+2P; and for a term A = B+ C, shift(A) = shift(B) + shift(C). Then,

from Eqs.(64) - (67), we have the following recursive formulas:

X1*1 = ClVp+1(0) 4- c2(-PJp+1(</) + LP(d)) + RCshift(Xp) - LCshift(Xp~l) (70)

and

Z**1 = c2Vp+1(0) + c3(-RF+1(d) + £/p(</)) + RCshift(Zp) - LCshift(Zp~1) (71)

Example 1

From

X° = c1V°(0)-rc2(-RIo(d))

Z° = c2V°(0) + c3(-P/°((i))

we have

X1 = C! V^O) + c2(-P/1(rf) + LI°(d)) + RCshift(X°)

= dV^O) + c2(-RI\d) + LI°(d)) + PC(c3V°(0) + c4(-RI°(d)))

Z1 = 02^(0) + cz(-RI\d) + LJ°(d)) + RCshift(Z°)

= 02^(0) + c3(-P/1(rf)+ £/°(<*)) + RC(c4V°(0) + c5(-P/0((f)))

X2 = ClV2(0) + c2(-P/2((f) + LJ1^)) + RCshift(Xl) - LCshift(X°)

= ClV2(0)+c3(-RI2(d)+Ll\d))+RC[c3V\0)+c4(-RI\d)+^^^

-LC[c3V°(0) + c4(-RP(d))]

Z2 = c2V2(0) + cz(-RI2(d) + LI\d)) + RCshifi(Zl) - LCshift(Z°)
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= c2V2(0)+c3(-PJ2(d)+£/V))+i^

-LC[c5V°(0)-rCe(-RI0(d))}

and so on.

In the case that thereare no leakage resistors in the network, P(d) = 0 and V°(0) =

e being a unit vector. In the general case, P(d) and V°(0) can be found by replacing

each transmission line with a resistance and then analyzing the circuit. After analyzing

the k-th order moment model of the original network, V*(0) and Ik(d) are known, Xk,

Zfc, Uk and Wk can be computed and the k + 1-th order moment model of the circuit

can be formed. Note that in this case moment models of the coupled transmission

Hne system can be formed and the moment computation can be implemented without

decoupling the system.

5.3 The General Case

Now we consider the most general case. From Eqs.(l) and (2), we have

^dx*^ =(sl +r)(sc +9)V(x,s) (72)
Let A2(s) = diag(\\,\\,...,A2) and T be the eigenvalue and eigenvector matrix of

matrix (si -f r)(sc + g), respectively. Let V(x,s) = T(s)E(x,s). Then, it can be

derived that

£(x, s) = sh-1Ad(shA(d - x)£(0,5)+ shAxE(d, s)) (73)

and

V(x,s) = Tsh-1Ad(shA(d - x)T-1V(0,5) + shAxT~1V(d,s)) (74)

Let T = Ad.Then, the functions U(s) and W($) as defined in Sec.3 can be expressed

as foUows:

U(s) = F(s)(V(0,s) + V(d,s)) (75)

where

F(s) = T(chT - l^sh^TT-1 (76)

and

W(s) = ^(5)^(0,3) + H2(s)V(d,s) (77)
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where

Hx (s) = T(shT - r)r-2**-1IT-1 (78)

and

H2(s) = T(TchT - shT^sh^TT'1 (79)

Let V(0,«) = E~o(-l)pVrp(0)5p, V(d,s) = Z~0(-l)»Vp(d)sp, F(s) = E£oft«*.

Hi(s) = ZZL0Hlksk, and #2(s) = ZZL0H2ksk. Then, from Eqs.(75) and (77), we have

p

tfp = E(-1)i^(^P"i(0) +Vp~3(d)) ' (80)
j=o

and

Wp = E(-l)J'(^ii^p-J'(0) + H2jVp~3(d)) (81)

In order to use the above equations to compute Up and Wp, we need to compute the

matrices Py, H\j and H2). The formulas for these coefficients are given in Appendix C.

6 Moment computation of RLC transmission line

tree networks

In the previous three sections, we derived moment models for single uniform and

nonuniform lines and coupled lines. By using such models and moment models of

lumped elements, moment models for orders from low to high can be formed and mo

ment computation can be done by analyzing these models for which any circuit analysis

techniques can be used.

Now we consider the moment computation of a typical network: an RLC transmis

sion line tree network. Such a network consists of resistors, inductors, RLC transmis

sion Hnes and lumped capacitors. Each transmission Hne consists of a floating wire

and a ground wire. The resistors, inductors, and the floating wires form a tree, and a

voltage source is appHed to the root of the tree. The capacitors are connected between

the nodes on the tree and the ground. Such a network is of our special interest because

it is a model of most practical interconnects and the computation of its moments can

be done with extreme efficiency.
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We use the foUowing notations to describe the circuit. We denote the lumped

capacitance connected between node k and the ground by Ckk. For each node k on

the tree, let D(k) be the set of nodes in the subtree rooted at node k except node k

itself, let S(k) be the nodes in D(k) and adjacent to node k. S(k) is called the set of

son nodes of node k and k is caUed the father node of any node j € S(k). We denote

the father node of node k by k and the branch connected between nodes £ and k by

bk. bk either consists of a series of resistance Rk and inductance Lkl or consists of a

transmission Hne denoted by TLk. In the later case, the total resistance, capacitance,

inductance, p-th order U and W values of TLk are denoted by Rkl Lki Ck, C/£ and W£,

respectively.

The 0-th order moment model are formed simply by replace each capacitor with

an open circuit, each inductor with a short circuit, and each transmission Hne with

a resistor. As all the resistors in the model are floating, all the 0-th order voltage

moments are 1 and all the 0-th order current moments are 0, and it can easily be

shown that for each transmission Hne, U° = 1 and W° = 0.5.

Now consider the p-th order moment computation with p > 1. We replace each

element in the network by its p-th order moment model and form a p-th order moment

model of the network. Note that in such a case, the model is still a tree. Let Ik be the

current in branch bk entering node k. From KCL, we have

n=-wr1 + £ (p5 - cju?-1) (82)
J€S(k)

where Ckk is the lumped capacitance connected to node k and Cj is the total capaci

tance of transmission line TLj.

From Eq.(82), we have a recursive algorithm to compute /£ for aU tree branches

from the leaves to the root as foUows.

Algorithm 1: findl(k,p)

findl(k,p)

{n=-Ckkvr1-,
if bk is a transmission Hne

find Of1;

else Ul~l = 0;
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if k is not a leaf node

for each node j E S(k) do

/£+ = findl(j,p)-,

return(/P - C^"1);

}

After using the above algorithm to compute all the p-th order moments of the tree

branch currents, the p-th (p > 1) order moments of the node voltages can be computed

recursively from the root to the leaves by using the foUowing algorithm.

Algorithm 2: moment(k,p)

moment(k,p)

{if k is the root

V? = 0;

else

if branch bk is a transmission Hne TLk

{find Wf1;

V£+ = RtCkWT1 - LkCkWfr2; }

}

if k is not a leaf

for each j 6 S(k) do

moment(j,p);

return;

}

The time complexity of these algorithm is Hnear to the number of nodes n of the

network. From Eq.(35) and Eq.(36) it can be seen that the computation of the function

C/jf"1 takes 0(p) time. Therefore, the time complexity of this algorithm is 0(np). By

using the above algorithms recursivelyto compute the moments from order 1 to p takes

time 0(np2).

The abovealgorithms can be applied to tree networksmade of singleuniform and/or

nonuniform transmission Hnes. Fora tree network made of coupled transmission Hnes, a

similar algorithms can be written. The main changes from the above algorithms are as
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follows. 1. All the mean values U's and W's of transmission Hnes are computed first; 2.

In the "return" statement of Findl(k,p), CkUl~l should be replaced by Yj^kjUf1
where j is taken over aU the transmission Hnes coupled with TLk including k\ 3.1n

moment(k,p), for a transmission line TLk coupled with other Hnes, RkIk should be

replaced by EjRkjI^ LkPk~l by Ei^-JJ"1, RkCkWi'1 by E;Rkj;£<,C3iWf-\ and

LkCkWr2 by E; Lkj E, CjiW?-2.

7 Experiments and Conclusions

7.1 Experiments

We wiU show three examples of using the moment matching technique to find the

time domain response. The input to the three circuits is a unit ramp function with a

rising time of 0.1ns. We use our moment model to compute the moments of output

node voltages. After extracting a flight time, we use Pade approximation to find

their rational approximations and obtain the time domain response by inverse Laplace

transform. For each example, SPICE simulation is done and the results are shown

in the figures with a postfix "s" for comparison. As SPICE cannot handle RLGC

lines, each uniform RLGC line is modeled by 50 identical lumped RLGC sections, and

each nonuniform line is modeled by 50 different RLGC sections. It can be seen from

the figures that the moment matching method is quite accurate for the simulation of

interconnects.

Example 2. This circuit is shown in Fig.6 which contains 7 uniform lossy transmis

sion Hnes. An 8-th order moment matching is used to find the output voltage "vout",

which is compared with the SPICE simulation result "vouts" as shown in Fig.7.

Example 3. This circuit is formed by replacing TL7 in Fig.6 by a paraboHc Hne

as shown in Fig.8. The Hne parameters are: r = r0(l + ax)2, I = /0(1 + ax)2, c =

Co(H-ax)"2 andg = g0(l+ax)-2 , where r0 = 75Q/m, /0 = lOOnH/m, Co = ISOpF/m,

go = 0.015/m, a = 20.0 and LEN = 0.02m. The output voltage "voutl" is found by

using an 8-th order moment matching, which is compared with the SPICE simulation

result "vouts" as shown in Fig.9.
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Example 4. This circuit is shown in Fig. 10 which contains two coupled Hne systems.

The length of each Hne is 0.1m. The parameters of the first systems are:

/ =

C =

494.6 63.3

63.3 494.6

62.8 -4.9

-4.9 62.8

nH/m

pF/m

R =
75

75
n/m.

The parameters of the second system are:

/ =

C =

494.6 63.3

63.3 494.6 63.3

63.3 494.6 63.3

63.3 494.6

62.8 -4.9

-4.9 62.8 -4.9

-4.9 62.8 -4.9

-4.9 62.8

75

nH/m

pF/m

R =
75

75

n/m.

75

The waveforms v7 and v9 are found by using a 5-th order and an 11-th order mo

ment matching and are compared with the SPICE simulation results v7s and v9s,

respectively. They are shown in Fig.11 and 12, respectively.

The CPU time by using moment matching techniques in each of the above three

examples is less than 1/60 second. The CPU time for SPICE simulation is 37.6s, 38.54s

and 17.346s for Example 1, 2 and 3, respectively. The moment matching technique

runs three order of magnitude faster than SPICE.
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7.2 Conclusion

We have presented new moment models for transmission Hnes. These models are

directly derived from telegrapher's equations. Their parameters are based on the mean

valuesof the voltage moments and weightedvoltagemoments alongthe Hnes, which can

be efficiently computed. For uniform Hnes, these models are exact; and for nonuniform

Hnes, the model can be made as accurate as needed. These models can be used in

any transmission Hne networks. As the models have the T-typed or ir-typed circuit

structure, when an interconnect is of the tree structure, its moment model circuit is of

the same type. Therefore, these models are especially well suited for the use of moment

computation algorithm for RLC transmission line tree networks. Meanwhile, all the

models can be applied to distributed RC Hnes as a special case.

Our moment model of transmission Hnes is different from other known models.

Compared with the lumped model made of a large number of RLGC sections, ours

is more accurate and efficient. Compared with the models suggested in [23], which

are formed either by recursively solving second order differential equations or by the

computation of exponential matrix functions, the formation of out model is simpler

and faster. When using the models suggested in [24], two port currents of transmission

lines are introduced in circuit equations. In contrast, by using our model, for single

Hnes and couple Hne system with diagonal resistance matrices, no port currents are

needed; and for Hnes with resistive coupling, only one port current (the far-end port

current, See Fig.5) is introduced for each Hne. Therefore, our model results in fewer

unknown variables for the circuit equations in the general case. Compared with REX

[25], the formation of a p-th order model in REX takes 0(p4) time, while the formation

of our model takes 0(p2) time.

Appendix
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A Computation of /j, hy and h2j

Let P(s) be any function of /(a), h^s) or h2(s). Then, P(s) can be expressed as
T^oo 2n oo

P(3) =WT^ =E^" (83)
Z^n=0 wn7 n=o

where b0 = 1. For P(s) = f(s), an = l/(2(n+1))!, bn = l/(2n + 1)!; for P(s) = h^s),
an = l/(2n +3)!, bn = an.x (n > 1); and for P(s) = /i2(s), <zn = 2(n +l)/(2n +3)! and

6„ = l/(2n + 1)!. The coefficients cj,s (n = 0,1,...) can be computed from the known

a'ns and Vns by using the following formula starting from n = 0:

n-l

Cn = On - 2 C*fcn-* (84)

Let 72n = (a252 +ais +a0)n be expressed as Ejfc=o<*"si- Then, ag = 1, aj = 0 for
j > 0; and the coefficients of a" with n > 1 can be computed by using the foUowing

recursive formula. Let m = mm(j,2), then

<*" = £<*#«< (85)
i=0

Let fc = L^-J- Then, P(s) can be expressed as Y,%oPis3 w*tn

P; = £c„a? (86)
n=k

and ]?j « E^Lfc Cn^J where TV is so chosen that the error due to the truncation is small

enough.

B Derivation of Eq.(54)

We differentiate both sides of Eq.(41) w.r.t. x, and have

^^li)+a(l),)^ii+6(l) s)V(x,s) =0 (87)
where

r'(x) + sl'(x)
a{X's) =-r(x) +sl{x) {88)

and

b(x,s) = -Z(x, s)Y(x, s) = -(r(x) + sl(x))(g(x) + sc(x)) (89)
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a(ar, 5) and b(x, s) can be expressed as

a(x, s) =£) an(s)x" =£ f)S'^" (*>°)
n=0 n=Oj*=0

and

Hz, *) =•£ b„(s)xn =£ £ 6„,Vx" (91)
n=0 n=Oj'=0

The coefficients anJ- and 6nj- can be expressed as follows.

Let r(x) = E~=o*>.*", Kx) = E~=o'n*n> <x) = EZo^xn1 and g(x) = E~=o^a:n.

Then

bn(s) = bn0 + 6nl5 + bn2s2 (92)

where 6n0 = EE=or*0n-fc, &m = ELofafcCn-* + 9kL-k] and 6n2 = E*=oc*k-*. From

the definition of a(x,s), we have

/ x Zn=in(rn + sln)xn-1 ~
(93)

or

- £ n(rn +sQx"-1 = E(r" +*M*n £ *n(s)xn (94)
n=l n=0 n=0

From Eqs.(88) and (94), we have

and

fln(5) = (* +l)(*Wi +j/w+i) +ELifrfc +g/fc)an-fc(j)
r0 + 5/0

(96)

and an(s) can be computed recursively from n=0 to any order.

From Eqs.(95) and (96), it can be seen that an(s) can be expressed as T,JLoanjS3>
From Eq.(95), it can be derived that aoo = —ri/r0 and

For n > 0,

and

=14^(v«(^-maoj = ^—^—(fy-^nf - h) (97)
ro r0 r0 '

1 n
a«o = — [(n + l)rn+1 + £ ^fln-ik,o] (98)

ank =-±[(-l)*(n +1)A*"1^- _/n+1)
r0 Tq Tq
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+£ EMn-.j +han-ij-t )(-l)"-H-)k~j] (99)
•si .7=0 r0

In the special case that l(x)/r(x) = const, an0 = an(s).

Suppose that the boundary conditions to Eqs.(41) and (42) are known as V(0,«)

and 7(0,5). Then, fi^fl |x=0= -(r(0) +sl(0))I(Ots). Let the solution V(x,s) to
Eq.(87) be

V(x,s) =f^Vn(s)xn (100)

then V0(s) = V(0,s) and V,(s) = *%£& |x=0= -(r(0) + s/(0))/(0,s). Substituting
Eq.(lOO) to Eq.(87), we have

f> +l)(k +2)Vk+2(s)xk +£ anxn f> +l)Vk+1(s)xk +£ 6nx" f) 14(5)s* =0
fc=0 n=0 Jb=0 n=0 fc=0

(101)

and

v- r,x StoK'+i)K+i(*K-.-(s) +vU*)k-,(*)] nn,v
H+2(s)" (Jfc+ i)(* +2) (102)

Vi(s) can be expressed as a,(s)V(0,s) -f- /?,(,s)J(0,s). For example, a0 = 1, /?o = 0,

c*i = 0 and ft = -Z(0,s). From Eq.(102), we have

Qk+2(S) = (* +l)(* +2) (1°3)
and

0w{3) = (* +1)(* +2) (1°4)
Now we truncate the infinite series in Eq.(lOO) to a finite series with N-f 1 terms, then

V(X,S) « EjLoK(5)l" = A(x,s)V(0,s) + B(x,s)I(0,s) With A(X,S) = Zn=0<*n(s)xn

andB(i,5) = EjLoW5)xn.

From what mentioned above, an and /?„ can be expressed as ESk=o Qnk$k and EfcLo PnkSk-

It has been shown that ao, /?o> and ai areconstant, ft0 = ~r(0) and fti = —1(0). From

Eqs.(103) and (104), it can be derived that

Ei=o[(i + !) Ep=o Qt+i,p"fc-i,j-p -r ,Qp=o "t,j-p*/fc-i,pj /inc\
<**+2,j = "—/L , lWl. , ^ E (105)

and

Pfc+2J - (Jb +l)(* +2) l ;
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Then, A(x,s) and B(x,s) can beexpressed as EH=o Ak(x)sk and E?Lo Bk(x)sk, where

>U = E^=o«nfcXn and ^ = E2Lofl**n-

Now we have the equation

V(x, s) = A(x,s)V(0,s) + £(*, 3)7(0, s) (107)

and

V(d, s) = A(d, s)V(0, s) + B(d, 5)7(0,3) (108)

From the above equations, we have

V(x, s) = P(x, s)V(0, s) + Q(s,«)V(<*, s) (109)

where P(x,s) =A(x,s) - ^0jB(x,s) and <?(£,$) = ffefj. The expansion of P(x,s)
and Q(x, s) into Taylor series can be done similarly and is omitted.

C Computation of U and W for coupled transmis

sion lines

C.l Eigenvalues and eigenvectors of matrix M = (r+sl)(g+sc)

We first present formulas for the eigenvalues and eigenvectors of the matrix M =

(r + sl)(g + sc).

Let Q = A2 be the eigenvalue matrix of matrix M and T be the matrix of its

eigenvectors, then we have MT = TQ. Let M = M0 + Mis + M2s2 where M0 = rg,

Mi = re + /flr and M2 = /c, and Q = E*i0 <?*** and T = E£=o ?*sfc. Then,

M0T0 = T0Qo (110)

and Q0 and To can be found by using any algorithm of eigenvalue problems. Also,

MoTj + MxTo = ToQi + TxQo (111)

and
fc-i

MoTjfe + M1Tk^1 + M2r*_2 = TkQ0 + r0Q* + £ T3Qk.3 (112)
i=i
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let Tk = [Tkl,Tk2,...,Tkn], Q3 = diag{q3l,qj2,...,qjn},A = E;=i*T3Qk_3 -M1Tk^1 -
M2Tk_2 = [Ai, ^42, •. •,An] where Tjy and A3 are the j-th column vector ofmatrices Tk

and A, respectively. Then, from Eq.(112), we have

(M0 - qojI)Tk3 = qkjT03 + A3 (113)

There are n + 1 unknowns in the above n equations. By an additional constraint

II Ttj \\2= 1, we can solve for qk3 and Tk3.

As A2 = Q, we have Ag = Q0 and 2A0A* = Q* - E*=J A/A*-,-, and we have

Ao = \/^o and

A^jAj^-fjA^-A*.^ (114)
z i=i

C.2 Taylor series expansion of F(s), Hi(s) and H2(s)

C.2.1 Taylor series expansion of an inverse matrix

Suppose that matrix A(s) = ESkLo-A*5* and Ba = A-1(s) = E£o^fc5*- Prom

5(s)A(s) = E£o E;=o -Bj^it-i = i", we have B0 = Aq1 and

ft^^E*;^-; (115)
i=o

Then, Bk can be found recursively from k = 0 up to any k = p.

This method can be used to find the Taylor series expansion of T~x(s), T"1, T~2

and s/t_1r. For the last three matrices, the computation should be done for diagonal

elements only.

C.2.2 Taylor series expansion of a matrix product

The matrix functions F(s), Bi(s) and H2(s) are products of 5 matrices. Exceptfor the

first and last factors T and T"1, the other three factors are diagonal matrices whose

product is also a diagonal matrix so that they can be expressed as P = ABC in the

general case, where B isa diagonal matrix. Assume that A(s) = E?Lo Aksk and similar

expansions exist for matrices B and C. Then, we have To = AqBqCo; and for p > 1,

TP= £ AiBjC„ =1tAiPflBjCp.i.i (116)
i+j+kssp »=0 j=0
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