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Abstract

In order to use particle-in-cell (PIC) simulation codes for modeling collisional plas
mas and self-sustained discharges, it is necessary to add interactions between charged
and neutral particles. In conventional Monte-Carlo schemes the time or distance be

tween collisions for each particle is calculated using random numbers. This procedure
allows for efficient algorithms but is not compatible with PIC simulations where the

charged particle trajectories are all integrated simultaneously in time. A Monte-Carlo

collision (MCC) package including the null collision method has been developed, as an
addition to the usual PIC charged particle scheme which will be discussed here. We
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will also present results from simulations of argon and oxygen discharges, and compare

our argon simulation results with experimental measurements.

1 Introduction

RF and DC glow discharges are used widely in the microelectronics industry. Self-consistent
fluid equations have been used by Graves and Jensen [1], Boeuf [2] and Gogolides et al
[3] to study the structural features of RF and DC glows. However, since these discharges
are inherently complex, and the particle velocity distributions can benon-Maxwellian, there
has been a considerable effort to develop self-consistent kinetic models with no assumptions
about the distribution functions. Monte-Carlo methods have been used extensively in swarm
simulations [4, 5, 6, 7, 8, 9]. The conventional method of calculating the time between
collisions for each particle using arandom number can be generalized into efficient algorithms,
especially when the null collision method is also used [6, 10]. However, this conventional

method is not compatible with PIC simulations where all the charged particle trajectories
are integrated simultaneously in time.

Hence, we have developed a Monte Carlo collision (MCC) package, including the null
collision method [11, 14, 15] as an addition to the usual PIC charged particle scheme as
shown in Fig. 1. A thorough description of the PIC technique can be found in Birdsall

and Langdon (1985, 1991) [16]. Vahedi et al [15] also analyzed the PIC techniques and
discussed some of the main issues in PIC simulations of weakly ionized collisional discharges.
Here we will discuss only the MCC package. The full three-dimensional character of a

collision is modeled with three velocity components. The neutral particles can be assumed,
for simplicity, to have auniform density between the boundaries with aMaxwellian velocity
distribution. The model is still valid if the neutral density is a function of position and
time, as will be discussed. In principle, this scheme can also be extended to model Coulomb
collisions between charged particles.

One of the main reasons for simulating weakly ionized collisional plasmas using the PIC-
MCC scheme is to obtain the self-consistent electron energy distribution functions (EEDFs)
in these discharges. Bi-Maxwellian EEDFs were measured experimentally in argon RF dis
charges at 13.56 MHz by Godyak et al [17]. The observed EEDFs at low pressures had



very-low energy and high energy components. We show particle-in-cell Monte-Carlo (PIC-

MCC) simulations which produce the same EEDFs. Excellent agreement is obtained between

the effective low and high electron temperatures in simulations and those measured in the

laboratory. We will also present results from simulations of oxygen discharges and show
EEDFs and density profiles for various species.

2 General description of the mcc model

We first describe the Monte Carlo Collision model and then the addition of a null collision

process as a way to optimize the general MCC scheme. The null collision process can be

especially important in modeling Coulomb collisions. We define a background species as a
species whose density can be described as a function of time and space. Particle species,
on the other hand, are characterized by super-particles whose distribution functions evolve

temporally and spatially as the super-particles move in the system in response to the local
electric field when they are charged.

Assume the particle species s has N types of collisions with a target species. The target
species could be a background species or another particle species. The kinetic energy of the
ith particle of the incident s species is given by:

ft =5m-u«? =2ma(v'> +vl+*£) 0)
This energy is needed in calculating the collision cross sections. The total collision cross
section or(ft) is the sum:

MZ) =*i(S) +''' +<M£) (2)

where <t,-(£), for 1 < j < N, is the cross section of the jth type of collision between the
s species and the target species. The collision probability for the ith particle is calculated,
based on the distance As, = V{At traveled in each time step A*, to be:

Pi = 1- exp(-Asl<rr(£)n<(xt)) = 1- exp(-A<vtar(5t)n,(xt)) (3)

where nt(xt) is the local density of the target species at the position of the ith particle.

A collision takes place if auniformly distributed random number on the interval [0, 1]
is less than Pf. If a collision occurs, then another random number is chosen to determine



the type of collision. The energy and scattering angle of the particle and other fragments

involved in the collision arethen determined, aswewillseelater, based on the model assumed

for that type of collision.

A collision isassumed to take place in thetimeinterval [t, t+At] at the current position of

the ith particle, xt(<). In atime-centered PIC scheme, the velocities, v,-(*+At), are generated
by interpolating the local electric field, E,-(<), hence Pi has numerical noise comparable to
the local truncation error of the PIC scheme. If Ax is chosen for the desired PIC accuracy,
no further constraint is present with MCC.

The time step, A*, determines how often to check for a collision and can affect the accu

racy of the collision model. For any finite At, P,; < 1. In an electron scattering collision, for

example, the energy of the scattered electron remains roughly constant. Then the probabil

ity for n collisions in the same At is roughly Pp. Since MCC allows only one collision per

particle per At, the generated error, which we define as the number of missed collisions in

At for a given particle, is:
oo p2

r~zp?=T=p. (4)
An error of r < .01 requires P{ < 0.095, i.e. the time step At should be set so that
Ast<7r(£t)nt(x,) would be less than or equal to 0.1.

This scheme is compatible with PIC since the position and velocity of particles are ad
vanced each time step. However, it is obvious that calculating P{ for all the particles each
time step can be computationally very expensive, requiring looking up every particle's ki
netic energy. This look-up can be avoided by choosing aconstant collision frequency v' such
that:

v' = max(nt(TTt;) =max(n,) max(crrv) (5)

In a sense all we have done is to introduce another collisional process with a collision
frequency which, when is added to the total collision frequency nt(x)aT(€)v, gives aconstant
value over all x and S. This collisional process is called the null collision since no real

interaction occurs. Note that typically the target particles are assumed to be uniformly
distributed in the system as abackground species with aconstant nu in which case it is only
necessary to obtain the maximum over S as graphically shown in Fig. 2. However in the
case of, for example, electron-ion recombination, the density of the target particles (namely



ions) is typically a function of position and time, which would make it necessary to obtain

the maximum over x at each time step as well.

The maximum fraction of the total number of particles in the simulation which experience

collisions is then given by:

Pnuii = 1- exp(-v'At) (6)

The colliding particles are chosen randomly (eliminating duplicates), and each particle is
checked for type of collision, see Fig. 2, using:

R <vi{£i)/v' (Collision type 1)

v\(SiW < R <Mft)+ '*(£•))/«'' (Collision type 2)

££,!/,•(£•)/•< R (Null collision)

where R is a random number (R € [0,1]).

The computational efficiency of this method over the standard method depends on Pnuu.
For asimulation with Na particles, the standard method requires Na evaluations of P, whereas

the null method requires only NaPnun evaluations of P,. Note that each evaluation of P,

includes calculation of particle energy, £t, collision frequencies, !/,•(£,•) for 1 < j < TV, and

several other floating point operations. Typically Pnull is on the order of 10"2, so the com
putational saving can be quite significant.

3 Collision types

Typical laboratory gas discharges contain many species, and there are various reactions

among these species. Bell [18] lists over thirty reactions in an oxygen discharge, and the
list is by no means exhaustive. In studying and modeling these discharges we have taken a
subset ofthese reactions for a few species to study each gas and make some comparisons. In
each case, the chosen reactions were selected so that the system would model a self-sustained

and self-consistent discharge. In most cases the selected reactions have the largest reaction
rates which make them the best candidates. The two gases discussed here are argon, an
electropositive atomic gas, and oxygen, an electronegative molecular gas.



3.1 argon

The collision model for argon described below has been successfully used to RF capacitively

coupled discharges [15]. Reactions in the simple argon model are:

(1) e+ Ar —> e+ Ar (Elastic Scattering)

(2) e + Ar—>e + Ar* (Excitation)

(3) e + Ar —» e + Ar+ + e (Ionization)

(4) Ar+ + Ar —• Ar + Ar+ (Charge exchange)

(5) Ar++ Ar —• Ar+ + Ar (Elastic Scattering)

Here we assume that the argon gas (the neutral species) is maintained uniformly in

space, i.e., the neutral particles are not followed as particles, and we assume two types of

collisions for the ions. (The separation between charge exchange and elastic collisions for

ions will be discussed in Sec. 3.1.2.) Note that in some electron-neutral collisions, the target

neutral particles gain some energy or leave the collision in an excited state. However, the

dominant electron-neutral collisions will be between the electrons and the background low

temperature gas particles if the population of the excited and/or energetic neutrals is low

enough, which is assumed to be the case. The neutral species is also assumed to have a

Maxwellian velocity distribution at the gas temperature (e.g., TN = 0.026 eV). Hence, the

neutrals are much less energetic than an average electron inasystem, but because ofthe large

neutral-to-electron mass ratio, the momentum of the neutral remains roughly unchanged in
most electron-neutral collisions.

3.1.1 Electron-neutral collisions

The electron-neutral cross sections in the model are the same as the ones used by Surendra,

Graves and Jellum (1990) [12] as shown in Fig. 3. In an electron-neutral elastic collision,
the incident electron scatters through an angle x which we determine with an approximate
differential cross section of the form [11]:

a(S) 47r[l + £sin2(x/2)]ln(l-r£) (7)



where £ is the energy of the incident electron in electron-volts. This can be solved for cos \
from:

B fo<r(£,x)sinxdx . .
f0"<T(S,x)smxdx W

where R is a random number (R € [0,1]) to produce:

2 + g-2(l+g)*
cosx = ~ — (9)

We use Eq. (9) to determine the electron scattering angle for all types of electron-neutral

collisions. For energetic incident electrons, Eq. (9) gives mostly small scattering angles
(forward scattering) whereas, for low energy electrons, the scattering is more isotropic. The
azimuthal scattering angle <j>, is uniformly distributed on the interval [0,27r], and is determined
by

<f> = 2irR (10)

where R is another random number (R € [0,1]). Once x and <j> are known, the direction of

the scattered velocity is obtained by geometric considerations. In Fig. (4) vtnc and v5cal are
unit vectors parallel to the incident and scattered velocities, respectively. vacat is related to
v,nc by

i * .sin\'sin$ xsinxcos<i , %Vscat =V,-neCOS X+Vinc X1—1__ +Vjnc X(l XVtnc) V g , (H)
where 0 is given by cos0 = vinc •i. Scattered velocity components can then be determined

by taking the projection of v3cat on the coordinate axes [13].

Once the scattering angle x isdetermined, we can calculate theenergy loss of the electron
in a scattering event from [22]:

. _ 2m..

A5 ="F(1~cosx) <12)
where m is the electron mass and M is the mass of the neutral. Although this energy loss
is small because of the mass ratio, it is the only energy loss mechanism for the low energy
electrons with energies less than the typical excitation and ionization threshold energies. In
an argon discharge, however, this energy loss is not very significant because of the Ramsauer
minimum in the scattering cross section; see Fig. 3.

In an excitation collision, the incident electron loses the excitation threshold energy of
11.55 eV and is scattered through an angle x determined by Eq. (9). In this simple model,
the excited atoms are not followed and a very short decay time is assumed for the excited



states. This assumption is not accurate for all the excited states. In the future, as the model

becomes more sophisticated, we intend to follow meta-stables as another particle species and

allow them to be ionized. For now, the excitation reaction serves only as an energy-sink for

the electrons.

In an ionizing event, an electron-ion pair is created, and the energy balance equation

becomes:

£$cat + £ej + £{ = £inc + £/V —£ion (13)

where £acat, ftj, and £tnc are energies of the scattered, ejected and incident electrons, respec

tively. £i and £N are the energies of the created ion and the target neutral atom, and fton is
the ionization threshold energy.

Because of the large ion-to-electron mass ratio, we can assume that the momentum of

the incident electron is much less than the momentum of the neutral atom. In other words,
the incident electron strips an electron off the neutral, and the neutral becomes an ion,

continuing on its trajectory virtually undisturbed. This assumption allows us to rewrite Eq.
(13) as:

£scat + £tj — £inc —£%on (14)

ft = ftv (15)

We now need to find an algorithm to partition the remaining energy of the incident
electron between the scattered and ejected electrons, Eq. (14). The simplest way would
be to divide the remaining energy equally between the two electrons. A more detailed

treatment can be found in Opal, et al (1971) [23] as described by Surendra et al. (1990)
[11]. A simplified form of the differential ionization cross section is taken to be of the form
[23]:

s(Sinc'Sei) =eh +B*(£inc) (16)
The function A(£{nc) is determined from:

to be:

(£|'ne"-£ion)/2

S(£inc,£ej)d£ej (17)i(ft„c) = /
Jo

A(£. )— gion°(ftnc) ( .
V"" arctan{[fi„c - £im]/[2B(einc))) (lS>
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This equation can be solved for £ej, by inverting the distribution,

*- £f(*"^ (19)
Jo" S(6„e,%)<*%

where £JJ" = (£lm. - £.<m)/2, and fl is a random number, (R € [0,1]). Hence

£«j = B(fmc)tan *«"" (%^)] (2°)
where B(ft„e) is a known function [23] (e.^., for argon, B(£ine) ~ 10 eV over a range of 1-70

eV.) Eq. (20) is theenergy partition function which allows us to divide theremaining energy
of the incident electron between the scattered and ejected electrons.

Note that when the energy of the incident electron is just above the threshold, (i.e.,
(Sine - £ion)/(2B(£inc) < 1), Eq. (20) reduces to:

£ejcR(^i^l) (21)
which means that on average the remaining energy is divided equally between the two elec

trons. Equation (20) can also be used, with appropriate modifications, for other collision

mechanisms such as electron impact detachment for negative ions.

After the energy assignment, each of the scattered and ejected electrons scatters through
angles \ and 4> determined by Eqs. (9) and (10). Now that the electrons are taken care of,
we must bring our attention to the created ion. As we saw in Eq. (15), the created ion takes

the energy and direction of the neutral atom before the collision. Therefore we can pick a
neutral atom from a 3V Maxwellian distribution at the temperature Tn, and call it an ion.

This gives a very low-temperature Maxwellian source for the ions in the system. This is
important in analyzing ion dynamics and ion-neutral collisions.

3.1.2 Ion-neutral collisions

Figure 5 shows the ion-neutral cross sections used in the model [24]. In electron-neutral
collisions, the assumption that the neutrals were stationary as compared with the incident
electrons made the collision models very simple. In ion-neutral collisions, we cannot make
the same assumption; in the bulk plasma the ions and neutral atoms typically have similar
velocities. However, in a reference frame in which the neutral atom is at rest, for each ion



collision, we can choose a neutral at random from a 3V Maxwellian distribution at T^, and

subtract its velocity from the velocity of the incident ion. Note that the incident ions in

this frame can have higher speeds which affect the type of collision they suffer. Hence, each

ion selected to undergo a collision, in the null collision scheme, must be transferred into this

frame, go through a collision, and be transferred back into the laboratory frame by adding
the chosen neutral velocity to its velocity.

In a charge exchange collision, an electron is assumed to hop from the neutral onto the

ion, causing the neutral to become an ion with zero velocity in the neutral frame. After

transferring back to the laboratory frame, the new ion leaves the collision with the velocity

of the incident neutral, and the new neutral takes the velocity of the incident ion.

The ion-neutral elastic scattering events are assumed to behard sphere collisions in which
the energy of the scattered ions are determined by [22]:

£scat = (1 - Ox)ftnc (22)

where ftnc and £3cat are the energies of incident and scattered ions, respectively. The energy
loss factor, ax, is given by [22]:

ql =kw(1-cos0) (23>
where mi and m2 are the ion and neutral masses and 0 is the scattering angle in the center-
of-mass frame. For mi = m2,

©= 2x (24)

where x is the scattering angle in the laboratory frame; hence aL = sin2 x and

£*cat = ftnc COS2 X (25)

The angle x can be determined by assuming scattering to be uniform and isotropic in the
center-of-mass frame which gives:

cos© = 1-2/? (26)

where R is a random number (R € [0,1]). For 0 = 2x, we have:

X= y/1-R (27)

10
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The azimuthal scattering angle <f> is determined with Eq. (10). As in charge exchange, the

ion must be transferred into a frame in which the neutral particle is stationary, scattered,

and transferred back to the laboratory frame.

The separation between charge exchange and elastic scattering for identical collision part

ners is an artificial construct which is useful since it parallels collisions between nonidentical

particles. Nonetheless, care must be taken to ensure that the prescribed cross sections for

each process are consistent with the momentum transfer cross section for the ions. The more

proper approach would be to use the differential cross section for ion-neutral collisions in or

der to determine the scattering angle which would then be used to determine the ion-energy
loss from Eq. (25). Vestal et al [25] used crossed-beam measurements to determine the

differential cross sections for low-energy Ar+ - Ar collisions. Their measurements show that

most of the scattering angles are either close to 180 degrees in the center-of-mass (which is
what we call charge exchange), or close to zero degrees (small angle scattering). This sug
gests that the average ion angle calculated with the differential cross section of Vestal et al

[25] may be smaller than the average angle obtained using isotropic hard sphere collisions.

Unfortunately, measurements of differential cross sections for most ion-neutral collisions

are not available, and the measurements ofVestal et al. [25] were made in argon for relative
ion energies of 2-20 eV. However, one can attempt to fit the measured differential cross

section with a function of the form

Aa(£) [1 +cos 0 +a(£)][l - cos 0 +a(£)) W
where £ is the relative energy of the incident ion, 0 is the scattering angle in the center-of-
mass, c(£) is the total ion-neutral cross section, and a(£) is adimensionless fitting parameter.
The parameter A is a normalizing factor and is obtained from

cr(£) =2n l* <t(£,G>) sin OdQ.
Jo

Equation (28) is plotted in Fig. 6 for several values ofa. According to the measurements of
Vestal et al [25], a is on the order of 10"3 in argon over relative energies of 2-20 eV.

The differential cross section in Eq. (28) can be used to determine the scattering angle
using

o Joe<r(£,Q)sinQcfQ
/o*<7(£,©)sin0d0 <29)
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where R is a random number (R € [0,1]). Solving this for the scattering angle 0 in the
center-of-mass gives

cose=(i-m)1+;;?;„„, (30
Equation (30) is plotted in Fig. 7 for various values of a and compared with the hard

sphere isotropic limit in Eq. (26). As expected, for small values of a most of the ion-neutral

collisions are either forward or backward scatterings in the center-of-mass, whereas for larger
values of a the distribution approach the isotropic limit where all angles are equally likely.

The fit to the differential cross section given in Eq. (28) has not been verified for higher
relative ion energies, however, it is clear that the same analysis can be done with other more

exact fits to obtain the scattering angle. Presently, we have the two separate reactions for

argon, and are in the process ofincorporating the differential scattering cross sections in our
model.
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3.2 oxygen

Reactions in our oxygen model are:

(1) e + 02

(2) e + 02

(3)-(6) e + 02

(7) e + 02

(8) e + 02

(9) e + 02

(10) e + 02

(11) e + 02

(12) e + 02

(13) e + 02

(14) e + 02

(15) e + 02

(16) e + Oj

(17) e + O-

B3Er

e + 02

e + 02(r)

e + 02(u = n, n = 1,4)

e + O^A,)

e + Oa(J"E+)

0 + 0-

e + O^E^^Ej)

e + 0(3P) + 0(3P)

e + 0(3P) + 0(\D)

e + 0(l£) + 0(ljD)

e + 0} + e

e + 0 + 0'(3p3P)

O + O

e + O + e

(18) 0- + Of
—> 0-r02

(19) 0- + 02 —• 0 + 02 + e

(20) 0- + 02
—* 0- + 02

(21) 0}-r02
—

o2 + ot

(22) 0 + 02 > 0 + 02

(Momentum Transfer)

(Rotational Excitation)

(Vibrational Excitation)

(Meta-stable Excitation [0.98 eV])

(Meta-stable Excitation [1.63 eV ])

(Dissociative Attachment[4.2 eV ] )

(Meta-stable Excitation [4.5 eV])

(Dissociation [6.0 eV])

(Dissociation [8.4 eV])

(Dissociation [10.0 eV])

(Ionization [12.06 eV])

(Dissociative Excitation [14.7 eV])

(Dissociative Recombination)

(Electron Impact Detachment)

(Mutual Neutralization)

(Detachment)

(Scattering)

(Charge Exchange)

(Scattering)

The 02 particles are assumed to be maintained uniformly in space with a3V Maxwellian
velocity distribution at room temperature (TN = 0.026 eV) as a background species. All
the other species are followed as particle species. Note that the electrons in this model
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collide with three species, two of which are particle species, i.e., the target species are

not the same in all electron collisions. For purposes of the null collision method, it is

easier to divide the electron collisions into three groups. Currently, we do not consider

Coulomb collisions between charged particles since for low density weakly-ionized discharges,

interactions between charged-neutral species are the dominant collision mechanisms.

3.2.1 Electron-02 collisions

The first fifteen reactions in the list are electron-02 collisions. The null collision method

for these reactions is the same as what we had for electron-neutral reactions in argon, since
the incident electrons collide offa spatially uniform background species. The cross section

used for the dissociative attachment reaction is obtained from Rapp et al (1965) [26] and
is shown in Fig. 9. The rest ofcross sections are from Phelps [36, 37] and are shown in Figs.
8 and 9.

The momentum transfer, along with rotational, vibrational, and electronic excitationsare

included in this model to serve as energy loss mechanisms for the electrons. The cross section

for rotational excitation is a few orders of magnitude smaller than the other processes and
is found to be a relatively unimportant reaction compared with the other electron-neutral

reactions. On the other hand, the vibrational excitations are found to be very important

processes and can greatly influence the shape of the electron energy distribution function

(EEDF) in the system since the cross section for these processes are non-zero only over a
small range of energies. Simulations have shown that the addition of vibrational excitations

can lead to strongly non-Maxwellian EEDF's [38, 39].

Reactions (7), (8), (10), and (11) in the list above are generation mechanisms for several
types of meta-stable oxygen molecule (a'A,, b%, c'E", and 43£+) [37]. These reactions
are important energy loss mechanisms for the electrons. Currently, we do not include two-

step ionization processes (via meta-stables states). These can be included by adding the
appropriate meta-stable species.

The dissociative attachment reaction is the main bulk negative-ion creation and bulk
electron loss mechanisms. The incident electron loses the threshold energy of 4.2 eV and is
absorbed by the oxygen molecule to form aOj which then dissociates to form the fragments

14



Oand 0~ [26]. The electron transition is assumed to be rapid on anuclear time scale [28], so
that one can use the Franck-Condon principle tocalculate the energy ofthe ejected fragments.
The remaining incident electron energy (ftnc - £th) is divided between the fragments. Since
the cross section has a threshold of 4.2 eV and peaks at about 6.5 eV, the created O and
0" typically have energies of 1-2 eV. The fragments are assumed to scatter isotropically.

Reactions (12) and (13) lead to dissociation ofthe oxygen molecule; the incident electron
loses the threshold energies of 8.4 or 10 eV to electronically excite the 02 molecule into
a higher state which will then dissociate into two O's; the created fragments are assumed
to scatter isotropically. The created atoms are each born with the most probable energy
ofabout 1-2 eV [18, 37]. These reaction are the main mechanisms responsible for bulk O
production.

Ionization is the sole reaction to produce the positive ions (0}) in the system. The model
used for ionization here is identical to that described for argon. The incident electron loses
the 12 eV of threshold energy, and shares the rest of its energy with the ejected electron
according to Eq. (20). We assume the function B(£inc) in Eq. (20) to have the same value
as in the case of argon.

The dissociative excitation (130 nm line excitation) reaction, with athreshold of 14.7 eV,
is just added as an energy sink for the high energy electrons. However, simulation has shown
that this reaction is an unimportant one since its cross section is two orders of magnitude
smaller than the cross section for ionization.

In all the electron-02 reactions (1)-(15) listed above, the incident electrons lose at least
the threshold energy, and (except for the dissociative attachment reaction) scatter through
angles Xand <j> determined by Eqs. (9) and (10). We use the same electron scattering
model here as for argon. As discussed previously, in an elastic collision, the incident electron
loses a small amount of energy calculated from Eq. (12). Note that there are important
differences between momentum transfer cross section and elastic scattering cross section
for e-n collisions when using anisotropic differential scattering. If the momentum transfer
collision is the elastic momentum transfer cross section then we should use isotropic scattering
for x, i.e., Eq. (26) (with 0 replaced with x) and not Eq. (9). Alternatively, we can multiply

15



the elastic momentum transfer cross section by [12]

gln(l+g)

PW 2[£-ln(l+£)]' ( '
where £ is the energy in electron-volts, to get the elastic cross section and then use Eq. (9)
to determine the scattering angle x [12]. If the momentum transfer collision cross section is

the effective momentum transfer collision cross section (as defined by Phelps [36, 37]), then
we need to multiply it by fi(£), to get the sum of all cross sections included. We must then

subtract all the inelastic cross sections that have been included in the effective cross section,
(e.g., vibration cross sections) to get the elastic cross section.

3.2.2 Electron-Oj collisions

Since the ion temperature in the bulk plasma is typically much lower than the electron tem

perature, we take the ions as the target particles in this reaction. Note that the ions in this

model are followed as particles, and the ion density, nt(x,<) is not necessarily uniform in
space or constant in time; the collision frequency is a function of space and time. Hence, in

calculating the null collision cross section from Eq. (5) for this reaction, we must also take

the maximum v over all x each time step to obtain the instantaneous maximum collision

frequency. Once the null collision frequency is calculated, we sample the electrons to deter

mine which ones are to be recombined. If an electron is to be annihilated, we find an ion

partner for the reaction by picking an ion in the same cell as the electron.

The cross section used for the dissociative recombination reaction is obtained from

Akhmanov et al. (1982) [30] and is shown in Fig. 10. Although the reaction rate for this
process is lower than the others, it is important to include this process in our model be

cause the fragments in this reaction are typically created with 5-6 eV energy. The fragments
are assumed to scatter isotropically. This reaction is also responsible for bulk electron-ion
annihilation.

3.2.3 Electron-O- collisions

The negative ions are mainly created in the bulk plasma through the dissociative attachment
process which gives them 1-2 eV energy. In a typical plasma with a electron temperature of a
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few electron-volts, the negative ions are clearly trapped in the bulk plasma by the ambipolar

potential. Hence the negative ion loss to the walls becomes nearly zero, and the density

of the 0" particles builds up in the bulk. To bring the system to equilibrium, we must

introduce some other loss mechanisms for the negative ions.

Electron impact detachment is one of the reactions considered in this model to destroy

the negative ions in the bulk. As in the dissociative recombination case, we take O" which

has a lower temperature in thebulk plasma than theelectrons, as the target particles in this
reaction. The null collision cross section must also be recalculated each time step to obtain

the instantaneous maximum collision frequency, and we pick negative ion partners for the
electrons in the same manner as in dissociative recombination.

The cross section used for this reaction has a threshold of 1.46 eV and peaks at about

30 eV as shown in Fig. 10 [31]. Our model for electron impact detachment is the same

as for ionization. The created oxygen atom takes the identity of the negative ion and the
remaining energy of the incident electron is partitioned between the scattered and ejected
electrons according to Eq. (20). The function B(£inc) in Eq. (20) is assumed to be roughly
10 eV for this process.

3.2.4 O- - OJ collisions

Among all the negative ion loss mechanisms, mutual neutralization has the highest reaction
rate and must be included. The average cross section for this process, shown in Fig. 11 peaks
as the relative energy of the colliding particles approaches zero [32, 33, 34, 35]. Although
both species have roughly the same temperature as the neutrals, we chose the positive ions
(0}) to be the target particles and O' as the incident projectiles. As in the dissociative
recombination case, the null collision cross section is recalculated every time step to obtain
the instantaneous maximum collision frequency, as the density of the target particles is a
function and position and time.

This process is very similar to the ion-neutral collision reactions discussed in Section 3.1.2,
because the projectiles and target particles in the collision typically have the same velocities.
Thus, we find apositive ion partner in the same cell for each negative ion selected to undergo
acollision, transfer the negative ion into aframe in which the positive ion is stationary, and
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calculate the reaction rate. The negative ion is transferred back into the normal laboratory

frame if the collision is null, and recombine to create a O and a 02, if the collision is real.

In this process, the incident particles create an O5 which then relaxes to O and 02. The

created species have typical energies of 3-6 eV and are assumed to scatter isotropically.

3.2.5 0" - 02 collisions

Detachment and scattering of the 0~ are the reactions considered in this section. The cross

sections used for the scattering [41] and detachment [40] reactions are shown in Fig. 12. The

target particles are the neutrals, which we have assumed to be uniformly distributed in the

system. As in the previous section, these processes are also very similar to the ion-neutral

collision reactions discussed in Section 3.1.2, because the velocities of both projectiles and

target particles are roughly the same. Thus, each negative ion selected to undergo a collision,

in the null collision scheme, is transferred into a frame in which the neutral is stationary,

goes through a collision, and is transferred back into the normal laboratory frame.

The scattering process is assumed to be a hard sphere collision. The incident O" scatters

through an angle \ in the laboratory frame, and transfers some momentum to the neutral

particle. The energy of the scattered 0" can be found through the energy and momentum

conservation equations to be:

/ r r»c v 4- * /rnc*\7j-3 \
P — P.
t'scat — ^v

/cosx + \/cos^x + 3\

where £3cat and £,nc are the scattered and incident energies. Note that since the negative

ions and the neutrals do not have the same mass (Mo2jMo- —2), this expression differs

from what we obtained for argon ion scattering in Eq. (25).

The angle \ can be determined by assuming the scatterings to be uniform and isotropic

in the center-of-mass frame, which gives:

cos0 = l-2# (33)

where 0 is the scattering angle in the center-of-mass frame and R is a random number

(R € [0,1]). The relationship between the scattering angles \ and 0 is [22]:

sin 0
tanx = — s (34)

7 + cos 0 v '
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where 7 is the mass ratio; in this case 7 = Mo-/Mo2 = 1/2. Solving this for x gives:

JR(\ - R)

where R is yet another random number (R 6 [0,1]).

As we discussed before, the negative ions are typically trapped in the bulk plasma by the

time-average potential. This scatteringprocess is then the main mechanism for the negative

ions to lose energy and thermalize with the neutrals.

The cross section for the detachment process has a threshold at 1.46 eV. This process

can serve as a bulk negative ion loss mechanism in the system. However, as a result of

scattering collisions, the negative ion temperature in the bulk, T!_, is on the order of Tn, the

02 temperature, which makes it very hard for the negative ions to get over the threshold

energy for detachment. If a detachment collision does occur, an electron will be created with

a very low energy and is assumed to scatter isotropically. The moremassive particles in this

process, the created O and the scattered 02, leave with most of the incident energy. Since

the remaining energy is typically small, it is not crucial to derive an accurate model for the

energy partition. A simple energy partitioning scheme would be to divide up the energy
based on the mass ratio of the 0 and 02.

3.2.6 Ot - 02 collisions

Our model for positive ion-neutral collision is identical to thecharge exchange model derived
for argon ions in Section 3.1.2. The cross section is shown in Fig. 13 and has no threshold [42].
The positive ion is transferred into a frame in which the neutral is at rest. The ion then goes
through a collision and finally is transferred back into the laboratory frame. This process
is responsible for thermalization of positive ions with 02. As in Ar+ —Ar collisions, the

separation between charge exchange and elastic scattering (not included here for 0} - 02)
is an artificial construct. These collisions can be modeled more accurately if a fit to the
differential cross section for Oj —02 collisions is known.
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3.2.7 0-02 collisions

The O atoms are created primarily through dissociation, with typical energies of 1-3 eV.

They are also created through dissociative attachment, dissociative recombination, electron

impact detachment, and mutual neutralization withenergies of 1-5 eV. In the absence of any

other collisions, the O atoms are unaffected by the local electric field would simply drift to
the walls.

Currently, scattering is the only collision which the 0 atoms are allowed to have in the

model. The scattering event is assumed to be a hard sphere collision which makes our

model for this process identical to the scattering collision for the negative ions discussed in

Section 3.2.5. The cross section is shown in Fig. 14 [42]. The O is scattered through an
angles x and <j> determined by Eqs. (35) and (10), and loses energy to the neutrals, 02,
according to Eq. (32).

4 Comparisons between PIC-MCC simulations and

laboratory measurements in an argon RF discharge

The Monte Carlo procedure described above is implemented in a one-dimensional electro

static code called PDP1 [15]. PDPl was used to simulate a one-dimensional capacitively-
coupled argon RF discharge symmetrically driven at 13.56 MHz, and the simulation results

were compared with the laboratory measurements of Godyak et al. [17]. This comparison
has been reported previously [15]. The experimental system was very carefully designed to
drive the discharge symmetrically. The discharge, confined radially by a Pyrex glass cylinder
with a diameter of 14.3 cm, had a cross sectional area of 160 cm2. All probe measurements
were made in the mid-plane on the axis of the discharge which occurred between two parallel
aluminum electrodes. We compare results from PDPl with those measured by Godyak et
al in an argon RF discharge with a gap separation of 2 cm, and discharge current of 2.56
mA/cm . Figure 15 shows the electron energy probability function (EEPF) obtained from
PDPl at the gas pressure of 100 mTorr. We refer to the effective temperature and density
associated with the low-energy electrons as Tt and m(labeled Ti and nj in Fig. 10 of Godyak
et c/.[17]). We also use 7\ and nh for the same quantities associated with the high-energy
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group (labeled T2 and n2 in Fig. 10 of Godyak et al.[17]). The effective temperature of the

high energy electrons obtained from PDPl is in excellent agreement with Godyak's measure

ment, while the temperature of the low energy electrons from PDPl is slightly higher. This

higher temperature may be due to numerical heating (so-called self-heating) [16, 43, 15] of

the electrons in PDPl.

The EEPFs measured by Godyak et al. [17] (in Fig. 16 of [17]) also vary considerably

in detail, being convex at high pressures and concave at low pressures. For the 2 cm gap

discharge, the transition occurred at a neutral gas pressure of roughly 350 mTorr. Simulation

results from PDPl, shown in Fig. 16, display thesame convex-concave transition from low gas

pressures to high pressures. The change in the shape of the EEPFs is proposed by Godyak

et al [17] to be a transition in the electron heating-mode from predominantly collisionless

heating at low-pressures to collisional heating at high-pressures. This point was confirmed

by Vahedi et al [15].

The effective temperatures for the low and high energy electron groups obtained from

simulation with and without secondaries, shown in Fig. 17, are in very good agreement

with those measured by Godyak et al [17]. The effective bulk temperatures obtained from

simulation with secondary electron emission are slightly, but not significantly, higher than

in cases with no secondaries. At higher pressures, where the EEPFs lose their bi-Maxwellian

profiles, the effective temperature of both groups of electrons tends to be the same.

5 PIC-MCC simulations of capacitively-coupled oxy

gen RF discharges

Note that the reactions included for oxygen in Sec 3.2 does not include ionization of atomic

oxygen. Hence, this model is adequate only for modeling weakly dissociated oxygen dis

charges in which one would expect Of to be the dominant positive ion species, and 02

as the dominant neutral species in the discharge. However, as the fractional dissociation

(no/no2) scales directly with the electron density, the low fractional dissociation assump
tion is typically justified in conventional capacitive RF discharges where the electron density
is relatively low (ne ~ 109 cm"3). For modeling high density sources where the electron den-
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sity is two to three orders of magnitude higher (ne ~ 1012 cm-3), one needs to also include

reactions involving 0+.

We incorporated the Monte Carlo scheme described in Sec. 3.2 in PDPl to model a

capacitively coupled oxygen discharge at relatively low input powers. The simple scaling law

developed by Lichtenberg et al. [38] for electronegative discharges predicts that, at low input

powers and relatively high pressures, the ratio of the negative ion density to the electron

density at the center of the discharge is greater than one, i.e., a0 = n_(0)/ne(0) > 1, where

n_ = no-. Simulation results for q0 and n+, positive ion density, are plotted in Fig. 18

versus the input power for two neutral pressures of 10 and 50 mTorr. Note that as the input

power increases, ion and electron densities increase, while a0 decreases, which verifies the

scaling of Lichtenberg et al [38].

The simple model of Lichtenberg et al. also predicts the spatial density profiles of the

electrons, positive ions and negative ions in the system. A comparison of time-averaged

density profiles obtained from PDPl simulation and the analytic profiles of Lichtenberg et
al is shown in Fig. 19 at 50 mTorr, 0.02 W/cm2, and a gap size of 4.5 cm. Because the

system is symmetric, Fig. 19 shows the density profiles for only halfof the system.

We can divide the system into three regions, from the center of the symmetric discharge
to the driven electrode. First is a central electronegative region where n_(x)/ne(x) > 1,
and potential variations are on the order of the negative ion temperature (71 ~ T+ < Te).
In this region, due to small potential variations, the electron density is essentially constant.

Once the potential variations become larger than the negative ion temperature the density
of negative ions becomes negligible and we enter an intermediate electropositive region. In
this region, the usual ambipolar fields retard the electrons and accelerate the ions to arrive

into the sheath with energies on the order of the electron temperature. The last region is
a large capacitive sheath which further accelerate the ions toward the electrode. Note that

the simple profiles of Lichtenberg et al. compare favorably with the time-averaged density
profiles from PDPl simulation.

As the plasma becomes more electronegative, the central region expands at the expense
of the electropositive region to the limit where the Bohm criterion is modified to account

for the presence of negative ions near the plasma sheath boundary. On the other hand as
the negative ion density decreases, the central region shrinks and the negative ions become
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confined to the very center of the discharge. Our reasoning here assumes that the negative
ions are in a Boltzmann equilibrium with the potential and that the negative ion temperature

ismuch smaller than theelectron temperature, which has been verified by PDPl simulations.

Figure 20 show two typical electron energy distribution functions in an oxygen capac
itively coupled discharge. Both EEDFs at 10 and 50 mTorr are non-Maxwellian. The

non-Maxwellian feature of EEDFs has also been seen in Boltzmann simulations of molecular

gases and is largely due to relatively large cross sections of low energy inelastic collisions,
such as vibrational excitations. Electron sheath heating at low pressures [17] can also distort
the EEDFs.

6 Conclusions

A Monte Carlo collision (MCC) handler, including the null collision method, has been de
veloped as an addition to the PIC scheme for modeling self-sustained discharges. The full
three-dimensional character of a collision is modeled with three velocity components. A
subset of typical reactions present in laboratory gas discharges is modeled for argon, an
electropositive gas, and oxygen, an electronegative gas. The addition of the null collision

method makes the scheme computationally more efficient, as the collision frequency in
creases, so does the fraction of particles undergoing collisions, and more time is spent in
the MCC handler (see fig. 1). Typically, the fraction of time taken up by the MCC handler
per time step is about 10-20%. This Monte Carlo scheme is implemented in PDPl [15], a
one dimensional code electrostatic code, and PDP2 [44] a two dimensional electrostatic code
for simulating processing plasmas. Comparisons of argon simulation results with laboratory
measurements of Godyak et al are very favorable.
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