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Abstract

Planning and Feedback Control

for Mechanical Systems

with Nonholonomic Constraints

by

Gregory Charles Walsh

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor S. Shankar Sastry, Chair

S. Shankar Sastry

Chair

The goal of this dissertation is to present acomplete strategy for controlling a class

of mechanical systems with nonholonomic velocity constraints. Examples considered in this

dissertation include a simple wheeled mobile robot, a front wheel drive car, a tiller truck, a

satellite mounted with thrusters, and a robot with one unactuated joint called the planar

acrobot. Control objectives are limited to achieving some desired configuration. Several

new methods are presented to achieve these objectives in efficient ways.

The process of control is broken down into three stages. Given a large initial offset

between the configuration and its desired value, first an (optimal) path planner generates

an admissible trajectory connecting the initial and desired configurations. Second, an expo

nential stabilizing tracking law is applied, insuring that the desired trajectory is followed

closely even in the presence of disturbances and modeling errors. Finally, when the config

uration variable is near the desired value, we switch to a feedback law which renders the

desired configuration asymptotically stable.

The five example mechanical systems, when examined in detail, are shown to have

certain structural properties in common. In particular, all except the satellite mounted with



thrusters may be transformed locally into a form called the "Control Canonical Form". The

planning, tracking, and regulation problems are solved for this canonical form. The results

are then applied to the example systems. The satellite with thrusters, representative of a

large class of mechanical systems, requires a different approach.
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Chapter 1

Introduction

The goal of this dissertation is to present a strategy for controlling a class of me

chanical systems with nonholonomic velocity constraints. Control objectives are limited to

reaching the neighborhood of a goal configuration and remaining in it despite disturbances.

Several new methods are presented to achieve these ends in efficient ways.

The process of control is broken down into three stages. The initial configuration

space error is, in general, large. First a path planner, optimal or suboptimal as detailed in

chapter six, generates a valid trajectory connecting the initial and desired configurations.

Second, the exponentially stabilizing tracking law described in chapter five is applied, in

suring that this desired trajectory is followed closely even in the presence of disturbances

and modeling errors. Finally, when nearby the desired configuration, we use the feedback

law of chapter four which renders the desired configuration asymptotically stable.

1.1 Overview of the Dissertation

The dissertation is organized as follows. Chapter two considers methods for build

ing first principle modelsof a certain class of mechanical systems and Lagrangian mechanics

[2, 27] is used as the primary tool. Under certain structural assumptions found in almost

every example system considered, the equations of motion are shown to have a canonical

form (2.1). This canonical form is the kinematic model (2.3) with integrators attached to

the velocity inputs. The inputs of these integrators, the accelerations, are related to the

input torques and forces by a memoryless map. The example of the asymmetric satellite

fails to fit this form, and is representative of a large class of mechanical systems. We keep



track of the example satellite throughout the dissertation.

Chapter three presents the example mechanical systems used. These systems in

clude Hilare, a wheeled mobile robot, a car, a tiller truck, a satellite mounted with rockets,

and a robot with one unactuated joint called the planar acrobot. All of these systems,

except for the asymmetric satellite, may be written in a special set of coordinates where

the dynamics take the power form (4.2).

Chapter four presents a general theory for explicitly constructing feedback control

laws which render goal configurations asymptotically stable. The theory is applied to the

car, the fire truck, and finally the satellite. Because the asymmetric satellite does not fit

into the power form framework, the theory does not apply and an alternative approach is

employed.

These point stabilization laws could be used essentially as large motion planners

but are highly inefficient. The remaining two chapters focus on planning and executing large

motions. First we address the tracking control problem. Given a desired trajectory, we wish

to follow it reliably. The point stabilization laws may be adapted for tracking purposes by

handing them a time series on goal configurationsspaced along the desired trajectory. With

nonlinear systems of this form, this modification tends to be both inadequate and inefficient.

Consequently, we construct control laws especially suited to tracking in chapter five.

The final chapter addresses the problem of finding the feasible path. Path planning

is inherently a kinematic problem for this class of systems and is studied in that context.

Chapter six presents a collection ofad-hoc planners, each exploiting the particular geometry
of the examples. A general method for power form systems is also discussed. Chapter six

also considers a general method for producing optimal solutions. Optimal methods require

the solution of a two-point boundary value problem, and in general are computationally

intensive. Because the trajectory is computed before the motion (off line) and not during

the motion, there is not a pressing need for computational simplicity.

In summary, we present a complete strategy and results for feedback control of

mechanical systems with nonholonomic constraints. Modeling, path planning, tracking and

point stabilization issues are addressed for a specific subclass of systems. The original work

of the dissertation is concentrated in chapters four, five and six. Needless to say, there

is much room for improvement. Point stabilizing control laws would be more robust with

respect to disturbances if they had faster convergence rates. Generalizing these laws to

larger classes; for example, a class of systems which includes the asymmetric satellite; is a



rich area of great promise. Tracking laws and optimal paths are numerically intensive to

compute. By limiting their application to only a small subclass of relevant systems, we may
be able to more, explicitly solve these problems.

1.2 Notational Conventions

Traditionally the configuration space for a mechanical system is labeled Q with

elements q. The configuration space is assumed to be a smooth n-dimensional manifold,

with an associated atlas {$'}. A chart $> maps elements of Q to Rn, as long as q € U\
where Uj is an open set in Q. Sometimes the set Uj does not cover all of Q. This presents
little difficulty when considering local issues like feedback control. Path planning, however,

suffers when several charts must be used. The local view and coordinate chart changes
obscure the path planning task.

The fact that all of the configuration spaces for the systems considered in this

dissertation may be globally represented as matrix Lie groups gives us an alternative. In

summary, for path planning we will use Lie group notation, for feedback control we will use

local coordinates. Coordinate vectors in Rn will typically be written as lower case letters

late in the alphabet like x,y,z. Lower case letters in the middle of the alphabet, like t,j,

and fc, will be indices. Lower case letters early in the alphabet, like a,6,p and h will be

used to represent members of Lie groups. The groups themselves are represented by a script

capital letter Qand sometimes by A. Weoften identify TQ with Qx g, and T*Q with Qx £*,

where g is the Lie algebra of Qand q* its dual. The spaces g, g* are finite dimensional vector

spaces, hence isomorphic to Rn.

Elements of q are denoted e or 77, with basis elements et. The hat distinguishes

the matrix from its corresponding vector representation, denoted E. More explicitly, the

vector E is equal to (Eu..., En)T and given some E 6 Rn, the corresponding matrix in g
is e = £?_! Eiii. Elements of g* are denoted p, with basis elements p,-. Thus given c € fl,

we have E( = p,(e). Again the hat distinguishes the linear operator on matrices, p, from

its corresponding co-vector, denoted P with respect to a basis. We write P as a covector

equal to (Pu... , Pn) where Pt = p(e,). Symmetries play an important role in some of the

example systems. Symmetries in this dissertation are parameterized by a Lie group A, with

elements a and Lie algebra a. Elements of a are labeled a.

Partial and total derivatives pose notational challenges. We often take partials



of the Lagrangian, L with respect to vector arguments. Consider the Lagrangian writ

ten in coordinates x = $(q). The Lagrangian L{x,x) is a function of two vectors x =

(xi,... ,rrn)T,i: = (xu... ,£n)T. For the sake of clarity, we use a standard notation for

writing the partial derivatives. Given the function L(x,x), the partial with respect to the

vector x is §|. Note that both §£ and |4 are row vectors. For example, the row vector |£
is (J^T' •••>d^)- F°r the function M(x,2/,a:,y), the expression ^£ is a row vector equal
to (|^,... , Jj^-). An example double application would be ^jjr, which in this case can be
thought of in coordinates as a matrix. The ijth element of this matrix with respect to some

basis is equal to a? ^ .

We now write the familiar Euler-Lagrange equations on Rn in this notation in

order to see it in use. Consider the Lagrangian L(x,x) with x € Rn.

ddL dL

dt dx dx
(i.i)

Note that this is a row (co-)vector equation. Expanding the full time derivative using the

chain rule makes the need for the regularity condition clear.

XT^7T^7 + XT
dxdx

d2L 8L

dxdx dx
(1.2)

To solve for x we need to invert the mass matrix -g^r. Amechanical system always has a
positive definite symmetric mass matrix. This condition is referred to as regularity.

A chart summarizes the notational conventions.

Symbol Description Elements

Q Configuration Space q
Rn local coordinates of Q X

R(n~m) alternate coordinates, "outputs" y
Rm alternate coordinates, "zero dynamics" z

Q Lie Group 9

£> Lie algebra of Q e,V
Rn Vector representation of fl E

fl" dual of g p,o>

(Rn)* co-vector representation of q* P

A Symmetry group a

a Lie algebra of A a



Chapter 2

Mathematical Preliminaries

In this chapter we develop the tools needed for building models of the mechanical

systems considered in this dissertation. To this end, we use the notions of Lagrangian

mechanics with controls and actuators modeled as force producing mechanisms. A basic

understanding of differential geometry, as presented for example in [38], is assumed.

The description of a mechanism M consists of four parts, (Q,X,2>,r). The con

figuration space Q is an n-dimensional smooth manifold. The Lagrangian L is a real-valued

function on TQ. The regular n - m dimensional constraint distribution V is represented

in terms of m linearly independent sections of T*Q, ft = {w1,... ,wm}. Given any vec

tor field / € P, u>'(/) = 0 for all i. Actuators and forces are written as p sections of

T'Qi {t1, ..., rp}. The force applied at some given instant is r = £Li ri^»» where ti € Rp
is the control input.

The chapter is organized into three sections. The first section considers how to

write the Euler-Lagrange equations in the different representations used in the dissertation.

The second section studies how velocity constraints arise and how they affect the equations

of motion. Finally, the third section presents two special sets of coordinates under which

the example mechanical systems have a unified structure. These coordinates are valid if

certain rank conditions on the input actuators r* are met.

The first special set of coordinates we call control canonical form:

(r»-m)

* = £ fc(X)Vi
i=l

v = u , (2.1)



where the PC€V are linearly independent. The configuration variable x is in Rn, and the

velocity v is in R("-m). The input u 6 R(n_m) are the accelerations, which together with x
and v determine the input forces and torques d. The second special set of coordinates we

denote control reduced:

y = u

z = A(y,z)y. (2.2)

The vector y is in R(n_rn) and the vector z is in Rm. The matrix A(y,z) € R(mx(n"m)) is

referred to as the connection matrix. As in the previous case, the inputs u € R(n~m>, along

with y and y determine the input forces and torques tf. That is, there exists a feedback law

fl(y, y, u) under which the equations of motion take this form.

When planning trajectories, we dispense with the acceleration inputs and assume

that we have direct control over the velocities v or y. The reduced model is called kinematic.

The equations of motion become

(n-m)

i - Y. fc(x>i
$=1

(2-3)

where v is considered the input. The control reduced equations have an analogous form.

There is a hidden assumption of interest. Our model of the actuators assumes we

have unlimited control authority,which implies we can arbitrarily chose ti. In a real control

system, d is limited to a compact set. For our example systems, as long as the commanded

acceleration is not too high and as long as the velocity of the vehicle is sufficiently low, we

may ignore this constraint. However, outside of this regime, the feedback laws may demand

a d which exceeds the abilities of the actuators to dehver. For this reason it is not realistic

to think of, for example, a front wheel drive car, in kinematic terms (2.3) if it moves at high
speeds.

We assume the example mechanicalsystems are operated so that the constraints on

ti are not violated. The dynamics of mechanisms and Lagrangian dynamics in general have

long been [2] and currently are subjects of study [3, 27]. Results relevant to our example

mechanical systems have been collected in this chapter for the reader's convenience.



2.1 Variational Calculus

It isassumed that thereader isfamiliar with variational calculus onR" [2,27]. This
section is divided into three parts. We first consider diffeomorphisms of the configuration
space, and how they affect the computation of the equations of motion. Second we examine

which modifications are required when the configuration space is a matrix Lie group and

the tangent bundle has been left trivialized. Finally, immersions into higher dimensional

spaces are studied. It will be shown that restricting the allowable variations to those which

satisfy the induced velocity constraints produces valid solution trajectories.

2.1.1 Diffeomorphisms

In this section we examine theeffects ofapplying a diffeomorphism x = f(y) to the

equations of motion. We apply such diffeomorphisms for two reasons. First, the coordinates

x = $(q) are in general only valid locally. Coordinate chart changes are required when q(t)
leaves the open region were the coordinate chart $ is valid. Second, we sometimes change
coordinates in order to change the equations ofmotion into, for example, the special forms
(2.1), (2.2).

We write the forces, constraints, and Lagrangianin terms of the coordinate vector

x and its time derivative x. Thus for a fixed value of x,i, and tf, i(ar,x) is a real number
and r is row vector. The solution trajectory x(t) satisfies

..T d2L .T d2L dL _
x dxdx + x dx~dx~-~dx~-T (2-4)

according to the Lagrange-d'Alembert principle. Provided that -^ is non-singular, a fixed
x, t and x uniquely specifies x. The nonsingularity condition is referred to as regularity.

We may write the Lagrangian and forces in terms of the coordinate vector y and

its time derivative y. We now prove that if we apply the Lagrange-d'Alembert principle
to the new Lagrangian and the new forces, the solution y(t) produced solves the equation
x(t) = f(y{t)) for x(t) solving (2.4).

Proposition 1 (Lagrangians under Diffeomorphisms)

Given: L :TRn —• R regular, a set offorces r and a diffeomorphism x = f(y),
Define: the mapped Lagrangian L, L(y,y) =X(/(y), f£y), and mapped forces f =rf£,
Then: the trajectories generated by the application of the Euler-Lagrange



operator to L,f are the same as those generated by the application of the

Euler-Lagrange operator to L,t.

Proof: We compute the application of the Euler-Lagrange operator to L in terms of the

previous Lagrangian L.

dl _ dLd£
dy dx dy

dl MW.dLfldT) ,,-.
dy dxdy* dx \dtdy) {Z'b)

Now compute £§|.

d_dl (L^*l±*L(**£\ (o*\
dt dy \dt dx) dy dx \dt dy) K b)

The resulting Euler-Lagrange equations, written in terms of X, are then given by:

(±dl_dl_ J\ _ (±dL_dL_ n\W
[dtdy dy T) " [dtdx dx T{X)) dy (2*7)

Since / is a local diffeomorphism, the matrix §£ is nonsingular. This imphes that the x
which satisfies the equations derived from applying Euler Lagrange to I is the same x which

satisfies the equations resulting from the application of Euler-Lagrange to L.

2.1.2 Variational calculus on matrix Lie groups

Viewing the configuration spaces of the mechanical systems considered in this

dissertation as matrix Lie groups (see [34, 48] for more details of Lie groups) has two

advantages. First, this representation is global in the examples considered, making this

formulation attractive for path planning. Second, a matrix Liegroup Qhas a trivial tangent

bundle. This imphes we may write second order differential equations which are valid for

every configuration.

To clarify, we identify TQ with Q x g, where g, a finite dimensional vector space,

is the Lie algebra of Q, using the left (body) identification of TQ. The velocity of the

system is represented by e € 0. The Euler-Lagrange equations imply a formula for the time

derivative of e given e and g € Q. This representation of the imphcit differential equation

is on a finite dimensional vector space and is valid for every configuration g. In summary,



Figure 2.1: A small variation g(t) of some nominal trajectory g(t) is shown. Any variation

may be expressed as v(t), and for v(t) close to e, there exists n(t) close to zero such that

Exp(i/(0) = v(t).

by exploiting the triviality of the tangent bundle, we have found a globally valid coordinate

chart in which we may write the differential equations describing the motion. The difficulty

with coordinate charts is minimized.

Some definitions are required. Elements g of an n-dimensional matrix Lie group Q

will be represented by (k x k) matrices with matrix multiplication as the group operation.

An element e € g, the Lie algebra of £, is also represented by a (A: x k) matrix. The time

derivative of the matrix g is written

g = ge. (2.8)

We write the Lagrangian, the constraints, and the forces in terms of Q and q. The La

grangian £(#,e), when evaluated at a particular g and e, is a real number. The applied

force f as well as partial derivatives of L with respect to its arguments are elements of q* ,

the space of hnear operators on g.

A small variation of a nominal trajectory g(t) is denoted g(t). The variation may

be represented by v(t) = </_1(t)^(t). Since the variation is small, the matrix v(t) is close to

the identity. Therefore there exists a unique fj(t) close to zero such that v(t) = Exp(^(<)).

The trajectory 7j(t) 6 fi will represent the variation of g(t).

We now compute the Euler-Lagrange equations in this special representation. We

do so by first considering coordinate charts of Q. Note that |J is a matrix valued hnear
function. Given some point x, v € TR", written x = (xi,..., xn)T andv —(i^,..., vn)T5 the



4> 1

pp^
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Figure 2.2: A local coordinate chart $ of Q.

derivative of $ at x in the direction of v is given by the sum ofmatrices 2?=i fr17*- While
the discussion below uses a local coordinate chart g = $(ar) for Q to compute the equations

of motion, it demonstrates how this may be done in terms of the matrices representing the

Lie group and the Lie algebra.

Proposition 2 (The Euler-Poincare Equations [27])

Given: L : Q x g -* R regular, applied forces f 6 Q*, implicitly defining a set of

Euler-Lagrange equations, and a coordinate chart g = $(x), for Q,

Define: the mapped Lagrangian I, l(x,x) =Z($(jr),($)-1|j£), and the
mapped applied forces f = f(($)-1 |j),

Then: the trajectories generated by applying the Euler-Lagrange

operator to I are the same as implied by (2.9) if
we allow fj to be arbitrary.

ifi) =(IS) *-(?£)*-(!?)[*•« (2.9)

Proof: We will compute the apphcation of the Euler-Lagrange operator to I in terms of
the previous Lagrangian L.

dl
dx

dl
dx

deK ' dx

dgK ' dx^ dey ' \dtdxj de( ' dx
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Now we need to compute ^§4 - ||. Note that: • -

d_dl (l?L\ te_M d* d_L ./dWN
dt0s \dtde)K) dx de6{qf) dx + deK) \dt dx) ' (2-10}

Notice that two terms will cancel each other, another two will form the Lie bracket. The

Euler-Lagrange equations are therefore

(££-*-') - (iS)'^-Sw.r*l

which is equivalent to (2.9). Given any arbitrarily chosen 77 there exists a unique v € Rn

with »=(*„..., t;B)T such that 7) =(S)"1 (^ v^).

Example (The Rigid Body): The configuration space for the rigid bodyis its orientation,

which we represent by a three by three rotation matrix g. The space of all such rotation

matrices is the Lie group SO(3) with Lie algebra so(3). Traditionally, the velocity of a rigid

body is left (body) identified. The coordinate vector in R3 of the left identified Lie algebra
element is referred to as the body angular velocity.

The body angular velocity is traditionally written u> and is regarded as a vector in

R3. We write the corresponding Lie algebra element as w. The map relating the two is

0 -u>3 U)2

& = U>3 0 —U>!

—U2 Wi 0

Since u> is the left identified element, the time derivative of the matrix g is given by

9 = 9& • (2.12)

The Lagrangian has a particularly simple form,

L(g, w) = uTJu (2.13)

where J is a positive definite symmetric matrix. Because it is symmetric, there exists an

orthonormal basis in which it is diagonal. We assume u is represented in terms of one of

this basis (the principal axes). We label the diagonal elements of J by J,-.
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Figure 2.3: An immersion of the configuration space Q, seen in local coordinates.

First we need to calculate some terms,

dLt -XTg{9,«) = 0
dL( m r

We now apply the Euler-Lagrange operator to this Lagrangian.

We now map the Lie algebra so(3) to R3, and compute the equations of motion by chosing

rji = e,-, the standard basis elements in R3. We write,

77 = Jm - (Jw)T (v x e{) ,

which is, using vector identities,

Ju = Juxu> + t. (2.14)

These are the Euler equations for the rigid body.

2.1.3 Immersions of Q

Suppose we have an immersion of Q into a higher dimensional manifold M. In

coordinates, it is given by a map / : Rn —• Rp, where p > n, written y = f(x). Given a y(t)

in the image of Q under /, there exists locally a unique x(t) such that y(t) = f(x(t)) for

all time t. The time derivative of x(t) is equal to ^-y(t) = (f£Tff)~ f£Ty(<). Because /
is an immersion the matrix f£ is full rank, the matrix inverse is well defined. Using these
observations, we define a mapped Lagrangian X(y, jr), using the hft of /-1, and mapped

forces f = T^jfi-*
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The equations ofmotion in higher dimensional space are found by taking variations
only in directions which obey the imphcit velocity constraints. What Mows is a restatement

of the covariance of the Euler-Lagrange equations, as noted by Lagrange.

Proposition 3 (Immersions of Q)

Given: L : TR" —• R regular, implicitly defining a set of Euler-Lagrange equations,
and a local immersion y = f(x), where y € Rp with p> n,

Define: the mapped Lagrangian I, l{y,y) =I(/_1(y),^-y), and the mapped
applied forces f = r^—,

Then: the trajectories generated by a restricted application of the Euler-Lagrange operator to
I are the same as the trajectories generated by the free application ofthe
Euler-Lagrange operator to L.

Proof: Again we compute the apphcation ofEuler Lagrange to I in terms of the previous
Lagrangian L. The formula is identical to the coordinate change case. The resulting Euler
Lagrange equations, written in terms of i, are then given by:

(±dl_dl_ ~\ _ f±^_^_ \^_
\dt dy dy T) ~ \dtdx~lh~T) 1fy~ (2'15)

So the only variations Sy which restrict the above expression are those which are not con

tained in the null space of the matrix ^-. Because of the holonomic constraint, the only
allowable variations are given by 6y = §£&c. The product ^-ff is the identity map.
We conclude that the restricted apphcation Euler-Lagrange to I is equivalent to the free
apphcation of Euler Lagrange to L.

In conclusion, when computing the equations of motion in the space of the y% we

compute the Euler Lagrange equations as before and restrict only for the variations in the

range of §£, or if you wish, all directions satisfying (horizontal) the holonomic constraints
imphed by the immersion. The remaining degrees of freedom must be solved for using the

constraint equations. This method of restricting the allowable variations is also referred to

as the Lagrange-d'Alembert principle [3].

2.2 Symmetries and Constraints

Twomore issues need addressing before writing the final system equations. First,

the systems considered often have externally imposed velocity constraints which are not
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holonomic. Second, the Lagrangian may have symmetries which, in turn, imply velocity

constraints in the form of conservation laws. Understanding how these constraints change

the equations of motion is the focus of this section.

2.2.1 Symmetries

Since we use both a Lie group setting and coordinates, we develop Noether's

theorem [2, 27] for each. First we define what a symmetry is in coordinates. As before, a

symmetry will be a mapping h : Rm x Rn —• Rn where Rn is the configuration space in local

coordinates and Rm is the symmetry group in local coordinates.

A mapping h is a.symmetry of L if

L(h(yyx),—x) = L(x,x) . (2.16)
dx

T is writ.t.pn d. h vjh'irh is onnal tn (
dy

The infinitesimal generator of the symmetry is written dxh, which is equal to (f^)T.

There are both left and right infinitesimal generators in the general matrix Lie

group setting. As before, we denote the Lagrangian L(g,e)i where g € Q and e € fl. Also

as before, we use the left (body) identification of the velocities, therefore g = ge.

A symmetry h is an action of a matrix Lie group A on Q. This map may be lifted

onto TQ. For example, the map |^(a,p) :g —»• Th(a,g)G' In our context, we need the map
from g -* g. The hft of h(a,g) to Q x g follows.

ht:A,Q,g -»• Q,g

a,p,e -» h{a,g),(h(a,g))~l -^-(a,g)e (2.17)
Now we are ready to define a symmetry. A mapping h :Ax Q —»C/isa symmetry of L if

L(h(a,g),(h{",9)Tl-j^(*,9)e) = L(g,e) (2.18)
for all a € A,g 6 G, and e G fl.

There are two instances of symmetries deserving attention. Often the map h(a,g)

may be separated, that is, may be written as h(a)g (a right symmetry) or gh(a) (a left

symmetry). For the right (material) symmetry

g,e -»• h(a)g,e (2.19)

and for the left (space) symmetry,

g,e -> gh(a)ih~1(a)eh(a). (2.20)
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2.2.2 Conservation Laws

First we present Noether's theorem in coordinates [2], then we generalize it to the

matrix Lie group setting [27]. Proofs are included for the reader's convenience.

Proposition 4 (Noether's Theorem in Coordinates [2, 27])

Given: L : TRn —»• R regular, implicitly defining a set of Euler-Lagrange equations,

actuators r e T*Rn, and symmetry h : Rm x Rn -> Rn,

Then: the scalar ^(dih(ei)) is a constant of the motion for every vector e,- in Rm,

for which r(rf1/?.(e,)) = 0.

Proof: Consider first the meaning of symmetry.

0 = —\L(h(y +eei,x),—(y +eei,x)x)J\t=o
dLnu \\±dL(t 92h A

= £(*^»+S(s*^) (2-21)
Using the Euler-Lagrange equations; namely, §£(•) + r(«) = ^fj(*)» m (2.21) we see

which completes the proof.

For the Lie group setting, we first have to express the notion that derivatives of

the Lagrangian with respect to the symmetry group A are zero. To do so, we introduce

the infinitesimal generator of the symmetry. We can generate small left variations of a as

follows:

a(e) = a Exp(ea). (2.23)

where a € a, the Lie algebra of A. Right variations can be generated in a similar manner.

Define the left infinitesimal generator of the symmetry h by

fjA{a) = h-\a,g)—(h(aExp(€a),g))\t=0 . (2.24)
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To first order, we have h(a Exp(a),p) « g Exp(fjA(a)). Note that fjA is a function of g,a

and a. Right infinitesimal generators may be defined in the same manner, with the first

order approximation of h being Exp(i)A(a))g.

Proposition 5 (Noether's Theorem on the Left [27])

Given: L : Q x g —»• R regular, implicitly defining a set of Euler-Lagrange equations,

actuators f € gm, and symmetry h:AxQ-*Q, with left

infinitesimal generator 77.4(•), mapping Q x A x a —• g,

Then: the scalar fj(^(d)) is a constant of the motion for every a, £ a, provided
that f(i)A(d)) = 0.

Proof: The derivative of the Lagrangian with respect to a is zero. This and the Euler-

Lagrange equations are all that are needed.

0=Ji(Ma,«),(*(sI,))-,g(s,,)«)u
dL.. dL ( . ._,0A. , ._, d2h \ , x

= a^+M-^ V +AW) (2-25)
Due to the Euler-Lagrange equations, we have along trajectories of the system

*H+r« = UwJH"-gi(Ifc V'"D (2-26)
So we may write

(ddL\ dL( xdh„ . ,-idh-\ , dL ' , ,dh. t . d2h x

fddL\,m . dL ( d , A

The proof is then complete.

Remark (Noether's Theorem on the Right): Suppose we have defined a right in
finitesimal generator 77.4. Using the relation that the left infinitesimal generator of the right

action is equal to h~1fjAh, we see that jji(hrlfjAh) are constants ofthe motion for all a 6 a.
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Example (The Rigid Body): The rigid body has a right (material) symmetry with
symmetry group 50(3). For some a G50(3), the map h(a,g) is given by

h(a,g) = ag . (2.28)

The hft of h does not change the left (body) angular velocity, and since the Lagrangian
L(g,u) is not dependent on g} it is preserved by the hft of h. We assume that f = 0.

To find the conserved quantities, we need to compute the infinitesimal generator
of the action h. The right infinitesimal generators for the right symmetry can be represent

by the basis elements e, of so(3). As noted before, the left generator in terms of the

right generator is g~le{g. Thus we have §f(p-1^) is conserved for each basis element et.
Expressed in vector form we have

%(9-lei9) = (JuOVei
= eftgju). (2.29)

The vector gJu is the spatial angular momentum of the rigid body. For this reason, the

map generated by Noether's theorem is sometimes referred to as the momentum map [27].

Remark (Internal Forces): The rate of change with respect to time of the conserved

quantities in the presence of applied forces is equal to t(7)>4(-)), where r € g* is the applied

force. Forces for which t(tja(-)) = 0 for all a € a are called internal. They do not affect the
conserved quantities.

Remark (Affine Velocity Constraints): Noether's theorem normally is viewed as gen
erating a momentum map, J, mapping TQ to a* [27], where the value of J is a*constant

of the motion. However, for a fixed momentum in a*, it can also be seen as generating an

affine constraint on the allowable configuration space velocities.

2.2.3 Kinematic Constraints

Not all velocity constraints arise from conservation laws. Some of the systems

studied in this dissertation have nonholonomic kinematic constraints. Such constraints

are generated typically by requirements that a contact not shde. For example, consider
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a rolling wheel: the frictionally induced requirement that it not slide sideways imposes a

nonholonomic kinematic constraint.

In coordinates we may write the constraints as a collection of m row vectors u;,- =

(oj}(x),... ,u?(x)), hnearly independent at each x. A nominal trajectory x(t) is said to

satisfy these constraints if u>ix(t) = 0 for all i. In the Lie group context, such constraints

may be written as sections of gm, that is, a collection of m functions w,- : Q —• g*. A

trajectory g(t) is said to satisfy the velocity constraints if u>t- (0""1 (<)£(<)) = 0 for all i and t.

We apply the Lagrange-d'Alembert principle to model the dynamics of the system

[3]. A nominal solution x(t)'\s considered valid if it satisfies the velocity constraints wt- and

if it extremizes the Lagrangian with respect to variations which also satisfy the a;,-. The

variational argument only produces 2n-m equations, so the constraints must be added to

make a complete description of the system. We will consider computing the equations of

motion in coordinates.

Consider a local diffeomorphism x = $(3/, z), with z € Rm and y € R(n-m). The

chart is chosen so that we map the constraints u to uj = dz - A(y, z)dy. The matrix A(y, z)
is as defined in (2.2). The Lagrangian in these set of coordinates is Z(y,2,y,£), and the

forces divide into tu which operates on £, and r2 which operates on i. We can always

construct locally this kind of chart by considering any locally valid set of coordinates 3,

reordering the coordinate functions in a non-unique way, and dividing by a nonsingular
coefficients matrix.

Allowable variations are parameterized by Sy, and are given by (6y,A6y). Thus
the restricted Euler Lagrange equations are

, . / d dL 0L\ , / d dL dL\ A , x
Tl+T2^ = \jtTy-Ty) +{jtTz-^)A' (2'3°)

We now expand (2.30) in order to solve for y in terms of 3/, z,y. Once we have y, we may
evolve the system of equations using the connection form. That is to say,

z = A(y,z)y. (2.31)

Expanding the equations above we see

d2L , iT d2L , ..T d2L . ..T d2L
tx + t2A = r^-^T + zJ^-zr + tr-ETzr + zdydy dzdy " dydyT dzdy

,.T d2L . .T d2L A ..T d2L A ,T d2L
dydz dzdz dydz dzdz

,dL dL AS
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Differentiate (2.31) to obtain an expression for z in terms of y,z, y. We find that z =

(di^) y + Ay. Thus we may write that

where

j)TM(y,z,y) + N{y,z,y) = f (2.33)

An m .t/02^ , ,t d2^ ^2i . Ard2L A

T/rf A\T f d2L d2L \
+y \dt) \dzdy +'dzTzA)

\dy dz )
f = tx + t2A (2.34)

The regularity condition is now explicitly obvious. We require that M(y, z, y) be an invert-

ible matrix in order to solve for y.

2.3 Reduction

In this section we exploit the structure that velocity constraints impose upon a

mechanical system. We find coordinate charts and an actuator feedback which reduces the

dimensionality of the system. The procedure of reduction is well known [20, 27, 28].

First, if the velocity constraints are holonomic, there exists special sets of coor

dinates, (y,z) in which z = f(y) for a function /. The equations of motion axe found by

applying the Euler-Lagrange operator to the Routhian [28], a real-valued function of y and

y. In this case the Routhian happens to be the Lagrangian. To reconstruct the trajectory

from j/(/), we apply the formula z = f(y).

In the final section we handle the general case which includes possibly nonholo

nomic velocity constraints. Provided some conditions on the input actuators are met, there

exists special coordinates in which we may solve for y(t) independently of z(t). Such re

duction, however, requires feedback control. To reconstruct the trajectory from y(i) we

integrate the connection. In general, the connection is dependent on y, jr, and z. If there is

no dependence on z, well call the reduction principal.
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2.3.1 Holonomic Reduction

Suppose the constraints ft are holonomic. Then there exists coordinates x =

${y,z) for Rn where in the position in z space, known as the fiber, is a function of the
position y space, known as the base. Thus we write

z = f(y) (2.35)

and further the velocity constraint maps to

. df.
z = Tyy' (2-36)

We will substitute these formulas directly into the Lagrangian, forming a reduced La

grangian L. The imphcitly defined differential equation resulting from the apphcation of

the Euler-Lagrange equations to the reduced Lagrangian will be shown to be identical to

the equations imphed by the restricted variational principle of the last section.

Proposition 6 (Holonomic Reduction)

Given: L :TRn —• R regular, applied forces t, and a set of holonomic velocity constraints w$-

Then: there exists a diffeomorphism x = $(y, z), a reduced Lagrangian Z(y, y),
and mapped applied forces f = rx +r2§£, such that the trajectories generated by
applying freely the Euler-Lagrange operator to I are the same as those generated
by the restricted application of the Euler-Lagrange operator on L.

Proof: We have already selected a diffeomorphism x = *(y, z) and shown that we may

hft the map $ and make an equivalent Lagrangian L(y,ziyiz). In these coordinates, the
restricted variational principle states:

, df (ddL dL\x(ddL dL\df , x
Tl +T2% = \7t^-ly-) + \dtTz-Tz)Ty' <2'37)

Some detail remains to be sorted, of course, because the terms involving z have not been

removed. This attention will be proven unneeded.

We now write the reduced Lagrangian X(y, y) by substituting in the formulas for
z and for i.

Hy,y) = L(vJ(v),V,j-ii) (2.38)
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The Euler-Lagrange equations, in local coordinates, state that -£|4 - # = r, + t->2L. For
7 at ay dy l ' * dy

comparison, we need to compute this in terms of the unreduced Lagrangian L. First, the
individual terms. ' '

dl _ dL dLd£
dy dy dz dy

dl _ ^.^W,^/dJ>A
dy dy +dzdy+ dz \dtdy) (2'39)

Thus we have,

Tl T2dy dt\dy dz dy) dy dz dy dz \dtdy)
(±M_M\.(±dL_M\di,(te dL\(ddf\(
\dt dy dy) + \dtdz dz).dy + \dz~ Jk) \j£dj) (2,40)

The term involving (jjrfj) is canceUed, making the resulting equations identical to the
constrained variation equations.

Given a set of holonomic constraints, we may simply insert them into the La

grangian and compute the Euler Lagrange equations on the reduced space. If we did not

notice the constraints were holonomic and applied the Euler Lagrange equations with re

stricted variations, our solution trajectories would not change. The trajectory x(t) may be
computed from y(t), that is x(t) = $(y(t),f(y(t))).

2.3.2 Maximally Actuated Systems

No matter where the velocity constraints derive from, we will write the equations

of motion for the actuated system in a special form (2.1). Under a set of mild conditions on

the actuators r*, there exists a feedback law ti(x,x,u) such that the equations of motion
take the form

(n-m)

1=1

V = u (2.41)

where the hnearly independent vector fields f*(x) null the row vectors u>i(x) for all x, the

vector v(t) € R(n-m) are the velocities, input vector u(t) 6 R(n-m) are the accelerations.
We may also express this differential equation in matrix Lie group notation. Given some

chart g = $(s), we pick (n - m) g-valued functions ofQso that fle(x) = (d^)"1 $e*($)i;f.
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The dynamics in the Lie group setting then take the form

(n-m)

9 = 9(^2 e\(9)vi)
t=l

v = u . (2.42)

where v,u are the velocities and inputs of equation (2.41). We state the result in the form

of a proposition, in coordinates.

Proposition 7 (Maximally Actuated Systems)

Given: L : TRn —• R regular, m 1-form constraint equations ojk = 0,

and a collection of actuators r>,

Choose:a basis of (n —m) linearly independent vector fields

functions fxc satisfying the constraints u)i}

Then: if the matrix B{j = r,(/j), where B(x) € RP*("-m) is full rank for all x 6 Rn, there exists

a smooth control t?(a:, x, u) such that the system evolves as described in (2.^1).

Systems with a full rank B are called maximally actuated.

Proof: The vector v € Rn~m parameterizes the allowable variations. We have simply

defined an isomorphism of the velocities. We need to compute v, and pick r so that the

theorem is satisfied. First we build a special set of coordinates.

In any particular set of coordinates x, write the form constraints with respect to

this basis. Label the jth coordinate function of u>t- by w,j(a;). The matrix Cl(x) describes all

of the form constraints.

un(x) ••• wln(a:)

ft(x) = (2.43)

. wml(x) ••• ojmn(x) m

By regularity we have that ft(ar) is of full rank. By a non-unique reordering of the basis,

we may assume that Q(x) = [ftx(x)ft2(x)] where ft2(x) is a m x m matrix nonsingular for

some neighborhood U € Rn. Now we are ready to define our local diffeomorphism. Set

y = (a?i, ••• ,a:n_m)T and z = (sn_m+1, ••• ,xn)T. This clearly defines a diffeomorphisms.

The form constraints can then be written

i = A(y,z)y (2.44)
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where A(y,z) = - (ft2)" ft1 and is also known as the connection matrix. Certainly there
exists a locally non-singular matrix C(y,z) so that y = C(y,z)v. Thus we have that
y = C{y, z)v + (£tC(y, z)) v. Substituting this into (2.33), we know that

vTCT(y,z)M(y,z,v)-N(y,z,v) = f. (2.45)

where N = N + vT (£C(y,z)M(y,z,v)f. The force applied, f, is a row vector with
components

'* = 2>f(/?) (2.46)

which may be written as f = tiB(y,z,v). If the matrix B(y,z,v) 6 RPx(n"m) is full rank,
set

0(y,*,»,«) = (uTC(y,z)M(y,z,v)- N{y,z,vj)Bi(y,z,v) . (2.47)
Under this set of inputs, we see that v= u. The system evolves according to (2.41), whether
written in Lie group form orin coordinates. The rank condition on B can usually bechecked
by inspection.

Remark (Controlled Reduction): The set of coordinates (y,z) are special. We could
have chosen tf so that y = u. A system under this set of coordinates with this feedback law

is called control reduced,

y = u

z = A(y,z)y. (2.48)

We may evolve the equations for y without regards to the variables z. The variables z may
be reconstructed at a later time by integrating the connection matrix.

Remark (Principal Systems): Iftheconnection matrix Aisnota function ofz, thensuch

a system is called principal. All systems in chained form are principal, as are all examples

used in this thesis except for the asymmetric satellite, which presents a new challenges.

Remark (Input-Output Linearization): The procedure just outhned isofcourse input-
output hnearization with a very careful choice ofoutput functions, y. AU outputs are relative

degree two, which might be expected in a mechanical system. The dynamics z correspond

to the zero dynamics, and are always stable because of the nature of the connection.
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Chapter 3

Example Systems

We now introduce a collection of example mechanical systems. Hilare, a mobile

robot developed at LAAS in Toulouse, France, provides us with a simple model of a nonholo

nomic mechanical system with a three state configuration space and two control torques.

A front wheel drive car is slightly more comphcated, having four dimensional configura

tion space and two input actuators. A fire truck is also considered, with a six dimensional

configuration space and three input actuators. Other applications besides mobile robots

have nonholonomic constraints. We will consider a satelhte mounted with rocket thrusters,

providing two input torques, and a three linked robot with a free joint called the planar

acrobot.

Thanks to the work of chapter two, there are no obtuse conditions to check in order

to write the equations of motion. All we need to do is check if the system is maximally

actuated, which is usually done by inspection. We may then write the equations of motion

in control canonical form (2.1) with state a;, unless coordinates charts are a problem as is

the case with the satelhte. AU of the models are second order. However, since controlling

a velocity through an integrator is a weU understood problem, the kinematic analysis (2.3)

found in the literature is justified for the systems that can be written in control canonical

form, as long as the mechanism is operated in a regime where the feedback laws demand

attainable fl.

We then choose relative degree 2 outputs labeled y, and input-output linearize the

system with respect to them. The zero (remaining) dynamics (labeled with z) are then

computed. Careful choice of outputs y wiU ensure the examples are control reduced. For all

cases except the asymmetric satelhte, this wiU also be principal. The equations of motion



Figure 3.1: Model of the mobile robot Hilare.

wiU locaUy reduce to:

y = u

k\& = ^{yofy, i<k<thi<j<P.
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(3.1)

3.1 Hilare

Hilare is a wheeled mobile robot created at LAAS, Laboratoire dAutomatique et

dAnalyse des Systemes, located in Toulouse, France [23]. This robot has twoparaUel wheels

which can be controUed independently. By commanding the same velocity to both wheels,

the robot moves in a straight line. By commanding velocities with the same magnitude

but opposite directions, the robot pivots about its axis. Although the actual input is the

acceleration, we first perform the kinematic analysis and check for maximal actuation. See

Figure 3.1 for a diagram of Hilare. The control canonical form of Mare's dynamics is as

foUows. The vector v is the velocity vector of the system.

xx cos(x3) 0 "
x2 = sin(33) Vi + 0

. *3. 0 1

V = U

t>2

(3.2)

Note from Figure 3.1 that the coordinates (xux2) represent the position of the robot in the

plane, and x3 € 51 is its orientation. Consequently, the configuration space Q is R2 x S1.

The configuration space may also be viewed as the Lie group SE(2). This fact is explained

in more detail in chapter 6. The wheels provide our two input torques, and the system



26

is clearly maximally actuated. We can thus find a smooth control law so that v = w, the

inputs.

3.1.1 Input-Output Linearization

We now consider a choice of output functions y.

y0 = cos(x3)zi + sin(ar3)a:2

yi = x3

The dynamics of y can be computed by differentiation.

y =
1 - sin(x3)a:i + cos(£s)a?2

0 1

= D(x)v

y = fo(x,x) + D(x)u

(3.3)

(3.4)

The matrix D{x) is the decouphng matrix for this choice of outputs. Its determinant is 1.

Under the choice of inputs u = D~1(x)(u —/0(z,£)), the output dynamics decouple.

y = u (3.5)

This is a four state hnear system. The remaining state is a zero dynamic under this feedback,

meaning it is not observed through the outputs.

3.1.2 Zero Dynamics

There is only one state left. We wiU chose the z coordinate as to make x = $(3/,z)

a global diffeomorphism.

z = sin(x3):Ei - cos(x3)x2

The dynamics can be computed by differentiation.

z = (cos(i3)xi + sm(x3))v2

= yoili

(3.6)

(3.7)
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Figure 3.2: The front wheel drive car.

The system is then principal under this choice of feedback. It is in fact a power form,

dynamics given by,

y = u

* = yoiii • (3.8)

3.2 The Front Wheel Drive Car

We consider now a front-wheel drive car. This system is also controllable [31],

although two levels of Lie brackets must be taken to show this. We first consider the

kinematic model. A sketch of the car is found in Figure 3.2. •

The dynamics, in control canonical form, of the front wheel drive car are

xx

£3

x4

V = u

cos(ar4)

sin(x4)

0

£tan(z3) _

Vl + V2

(3.9)

where (xux2) € M2 is the position of the car in the plane, x3 6 S1 is the angle of the front

wheels with respect to the car (or the steering wheel angle), x4 € S1 is the orientation of

the car with respect to some reference frame, and the constant L is the length of the wheel

base. The configuration space Q of the car is then R2 x T2. The configuration space may
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be viewed as the product of Lie groups ££(2) and 51. The system is clearly maximally
actuated.

3.2.1 Input-Output Linearization

Assume without loss ofgenerality that L = 1. Consider the choice ofoutputs given
below.

2/o = xi

yi = sec3(z4)tan(a;3)

As before, simple differentiation yields the dynamics.

V =
cos(a;4) 0

-3 sec3(x4) tan(z4) tan2(z3) sec3(z4) sec2(x3)
= D(x)v

y = fo(x) + D(x)u (3.10)

The decoupling matrix has determinant sec2(a;3) sec2(z4). The determinant is zero when the

front wheels are oriented perpendicular to the body, orwhen the car is oriented perpendic
ular to the world frame. Away from this subset of configurations, the matrix is invertible.

In particular, it is invertible near x = 0. Choose inputs u = D~l {u - fo(x)). Under this
choice of controls, the outputs decouple.

y = u ' (3.H)

This captures four of the six states of the system. The zero dynamics are therefore two

dimensional.

3.2.2 Zero Dynamics

We now will compute the remaining dynamics, parameterized by z. Again, we

choose z to make the chart x —$(y, z) a local diffeomorphism.

Zi — a;isec3(a;4)tan(a;3) - tan(a:4)

z2 = x2 + -x\ sec3(a;4) tan(ar3) - X\ tan(x4) (3.12)
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It may be verified through differentiation that the dynamics ofz aregiven by

*i = yom

k2 .

^ = 2(y°) y*' (3.13)

The system, in these coordinates and under this choice of feedback, is principal. The
dynamics are in fact power form, given as follows.

y

z\

Zi

This transformation only holds locally.

— u

= yoyi

2to) vi (3.14)

3.3 The Fire Truck System

The fire truck is the next example system we consider. This system is of interest

because it has more than two inputs. It is shown to be controllable in [6]. A fire truck is
sometimes called a tiller truck, and has a rear set of wheels which may by steered. The

dynamics of the fire truck in control canonical form are

i*i

£2

£3
_

£4

£5

. *6 .

V = u

1

tan £4

0

tan j a

L0COSX4

0

L\ cosxJ cosX4

" 0 " "0 "

0 0

Vi +
1

0

0

. 0.

V2 +
0

0

1

0

V3

(3.15)

The configuration space is six dimensional. The Cartesian location of the center of the rear

axle of the cab is given (a;1,x2) € M2; the steering angle of the front wheels relative to the

cab's orientation is x3 € Sl; the absolute cab orientation with respect to the horizontal axis

of the inertial frame is x4 € S1; the steering angle of the rear wheels with respect to the

trailer body is x5 € S1; and the absolute trailer orientation is x6 € S1. The configuration
space Qis therefore SE(2)xT3. Theconstants L0 and Lx correspond to physical parameters
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Figure 3.3: The fire truck or tiller truck.

of the system. The three scalars Vi,v2 and v3 correspond to the driving velocity, the cab's

steering velocity and the trailer's steering velocity, respectively. The system is clearly

maximally actuated. Thus we can find a control law smoothly dependent on u so that

v = u.

3.3.1 Input-Output Linearization

We now choose three output functions y.

2/o = Si

2/i =

2/i

tanx3

Lqcos3 x4
_ - sin(a?5 - x4 + x6)

L\ cos x§ cos X4

As before, we will differentiate the outputs y and input-output linearize them. They are

relative degree two.

y =

' 1 0 0

* 2£ sec2 x3 sec3 x4 0

* 0 cos(Xi-x4+x6) 1 sin(rs—X4+xa)sinx5
Ll COSX< COSX5 COSX4COS3XS

= D(x)v

y = fo(x, v) + D{x)u (3.16)
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Clearly near x = 0 the matrix D(x) is invertible. Choosing u = D~l(x) (u - /0(x,v)), the
dynamics decouple.

y = u (3.17)

This captures six of nine states of the system. The zero dynamics are computed in the next
subsection.

3.3.2 Zero Dynamics

Again, we pick z to make x = $(y,z) a local diffeomorphism. This choice, will

transform the system into power form, a principal system.

i _ x , tanar3
= —tan a:4 -+• #i

Lqcos3 x4
, tans3 1 2 tan x3

z3 = ^6-^17 5—+ oxi7 %—L0 cosd a;4 2 L0 cos3 a?4

2 sin(x5 —x4 + x6)z\ = -x2-Xi-y^ 2 5Z (3j8\
L\ cosar5cosa;4 v y

The indices on z* denote the state's relation to the input variables. Their dynamics may
be verified to be

z\ = yoi/i

z\ = yofa

*l = 2^°)2^ • (3-19)
Thus the total system dynamics are given locally as a power form system. We will write

them as

y = u

z\ = 2fo£i

z\ = yoh

iVofyi . (3.20)2; =
2

3.4 The Planar Acrobot

Consider a planar three linked robot with revolute joints. The two joints between

the links have motors, the joint connecting the machine to earth is unactuated. We assume

there is no friction in this middle joint.
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Figure. 3.4: The planar robot can be considered as a planar restriction of a space based

robot.

The configuration- Q of the machine is given by the total orientation of each joint,

and is consequently T3. The variable x,- measures the angle of link i with respect to the

inertial frame. The first step in analyzing this system is to write the Lagrangian. From

there we may compute the velocity constraint on the system and hence write the equations

of motion in controDed canonical form. A global diffeomorphism will make this system

principal. The Lagrangian is

1 3

2'
(3.21)

»=i

where the functions a,(z) are

ai(x) ^- ku + fci2 cos(x! - x2) + ki3 cos(a;i - a;3)

a2(x) = k21 cos(a;i - x2)+ k22 + k23 cos(ar2 - x3)

a3(x) = k3l cos(zi - x3)+ k32 cos(ar3 - x2) + k33 .

There is a symmetry h acting on the system which corresponds to rotating the system about

the free joint. The symmetry group is S1. It is expressed as

h(6,x) = x + 01.

Now we apply Noether's theorem. In this case, we see

ai(x) a2(x) a3(x) J£

(3.22)

(3.23)

is conserved. We will not bother writing the equations of motion in terms of x. We

immediately proceed to the input-output linearization since we only have internal actuators

and since this constraint is symmetry induced.



3.4.1 Controlled Principal Reduction

Chose the internal variables as outputs. That is, pick

2/i = xx - x2

2/2 = x3 - x2 .
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(3.24)

The system is clearly maximally actuated with respect to these outputs, so there exists
a feedback law smooth with respect to u such that y - u. This four state linear system
characterizes all but one of the states of the system. As before, we chose the coordinate

z in order to complete the diffeomorphism x = ${y,z). We choose z to be the symmetry
group coordinate, represented by x2, total world orientation ofthe robot. We may use the
velocity constraint to solve for the connection. The equations of motion are

y = u

z = ^i(y)i/i + h(y)h

with the following definitions

v(y) = (ai(2/) + a2(y) + a3(y))-1

. 6i(2/) =• -v{y)a1(y)

Hv) = -v{y)a3(y).

3.4.2 Singular Configurations

(3.25)

(3.26)

A kinematic model ofthe planar acrobot would consider the internal jointvelocities
as inputs to the system. We write

fa 1 0

fa = 0 Vl + 1

z . 6>(2/) . . b2(y) _
*>2 (3.27)

Which defines two vector fields fields fl(y), /2(y). For our system, their Lie bracket isgiven
by

[fill] =

0

0

(3.28)
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Figure 3.5: A plot of £(•) as a function of y. Note the periodic nature. There is a one

dimensional submanifold of singular configurations.

with the function £(?/) as

2(v(y)) (ai/c23sin(y2) - 03^12sin(t/i) + a2^i3sinj?/!-y2)) • (3.29)

It may be verified also that £(y) = det(ft,ft,[ft, ft}). Thus ft,ft, [ft, ft] are linearly

dependent on the set where £(y) is zero. At these points, we must take Lie brackets twice

to demonstrate controllability [11]. We will refer to the configurations where £(y) is zero as

singular configurations.

3.5 Satellite Mounted with Thrusters

We finish the examples chapter with a mechanical system that does not fit nicely

into the principal bundle framework presented above, the satellite mounted with thrusters.

We model the satellite as a rigid body mounted with thrusters which provide input torques

about the first two principal axes. The Lagrangian exhibits symmetries, but these actuators

do not provide internal forces, thus the conservation laws are not satisfied. Ignoring the

conservation laws, the system is not maximally actuated. A maximally actuated satellite

would have a six state input-output linearization, and consequently would capture the entire

dynamics of the system.

Recall that the configuration space for the rigid body is its orientation, which we

represent by a three by three rotation matrix g. The space of all such rotation matrices is

the Lie group 50(3) with Lie algebra 5o(3). Traditionally, the velocity of a rigid body is
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left (body) identified. The coordinate vector in R3 of the left identified Lie algebra element
is referred to as the body angular velocity. The application of the Euler-Lagrange operator
to this system yields

JCj = r - w x Jw . (3.30)

where J is a diagonal matrix with diagonal entries J,. These are the Euler equations for

the rigid body (2.14). The input torque r,- denote the input torque about principal axis t.
The control system1 for the satellite is:

U>1

u>2

u>3

g = gu

+

Ix.
Jx

12.
J3

The dynamics simplify after the following input transformation,

T\ = J\ f«l + -2—z -UJ2LJ3

T2 = J2 I u2 -f- — o;3W!

Under these inputs, the equations of motion become:

UJX «1

U>2 = u2

W3 au>iu>2

9 = gw (3.31)

The constant a := J*J3J*. At first glance, one can see the standard theory fails because
there is a drift term given by auiu2. If a is zero, we may write the equations of motion in

locally in power form and apply all of the theory in the following chapters. Such a system

is called symmetric. In general, however, a satellite wiD not be symmetric. We keep track

of both cases in the sequel to this chapter, noting the modifications that the asymmetric

satellite requires.

^his is nothing more than Meyer's model[7, 13, 29] of the satellite except we have found it moreconve
nient to evolve the inverse of the orientation matrix they use.
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3.5.1 Input-Output Linearization

In this section we input-output linearize [19] the system (3.31) for both the sym

metric and asymmetric cases. The most natural choice of output is the pointing direction

given by g(t)e3 : 50(3) -*• S2 because it is output controllable and because the control

dynamics involving u;3 and rotations about e3 do not appear in these output functions and

their derivatives. We show the outputs are of relative degree two, consequently, the outputs

can capture only a 4 dimensional subset of the full state. Even accepting this limitation

there are further problems, since coordinate charts which cover 52 are bound to have singu

larities. For example, the popular Euler angle parameterizations of 50(3), when projected

to 52, give us familiar longitude and latitude measurements which have two singularities.

Projective planecoordinates of52have only onepoint ofsingularity whose position

we may choose. The north pole corresponds to the identity configuration and as this is our

goal orientation, we choose the singular point to be maximally far away, the south pole. The

south pole is mapped to infinity; adding it to the projective plane is the classic one-point

compactification of E2.

We can find the output functions by a similar triangles argument. The outputs

are given by:

y\ ~ hi{gtu) = —^—
1 + ei ge3

y2 =h2(g,u>) = t^-.
1 + 4 ge3

(3.32)

We have scaled the outputs by |. Note that for all g 6 50(3) of the form g = Exp(^e3),
yi and y2 are zero.

Proposition 8 (Outputs for the Satellite)

Given: a control system on T50(3) whose evolution is described by equation (3.31),

Then: the output y of equation (3.32) is of relative degree two for all \\y\\ < oo.

Proof: Apply standard exact linearization techniques [19].

_ ejgu)e3 e7ge3eZgu>e3
Vi l +elge3 (l +cfpe3)2



The derivative of the outputs then becomes

2/i

fa
= A(g)

U>2

If we denote gtj = efge,, the ijth element ofthe matrix g, the matrix A(g) is

Ms) =
-1

(l + <733)2
(1 + 033)012 - 913932 "(I + 033)011 + 0i303i

(1 + 033)022 ~ 023032 -(1 + 033)021 + 023031
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(3.33)

Because uxe3 = eiu2 - e2Ui, u3 does not appear in the decoupling matrix, A{g).
In computing the determinant, is useful to recall that g33 = (011022 -0i202i) which

follows directly from g~l = gT plus the standard formula for the inverse of a matrix in

terms of cofactors. The determinant is then:

det(A(s)) =(irW
The determinant is bounded for every yu y2 bounded because having 033 = -1 corresponds

to being at the south pole of 52. In terms of the outputs y2, y2, the determinant2 of the

decoupling matrix is J(l + y\ + y\)2.

The chosen outputs are then relative degree two. The second differential is

fa
= folg,w) + A(g)

Ux

u2

Therefore with the choice of inputs u = i4_1(0)(v- /o(0,u>)) it may be verified that the

output dynamics become:

V\ = vi

fa = v2.

This linear system is trivially controllable.

(3.34)

If the outputs were zero, then yi = fa = y2 = fa = 0. By equation (3.33),

ui = u>2 = 0, thus from equation (3.31) we see that u3 = 0. The system will be rotating at

the constant rate u>3 about the e3 axis. Thus, the zero dynamics manifold is TS1. Further,

the trajectories are bounded.

2In the standard Euler angle parameterization, the determinant is given by the formula n.i.co,(g)cowd\xa-
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3.5.2 Zero Dynamics

To solve for the zero dynamics, we require a coordinate chart for 50(3) which will

keep track of this rotation ip about e3 as measured in the body frame.

Euler angles, although a favorite of the literature [7, 13], are not advisable for

this system. The xyz Euler angle chart, when projected down to 52, is not symmetric.

Any Euler angle chart which is symmetric, for example the zyz chart, is singular at the

north pole. Ofcourse, singularities are unavoidable [38]. Recall that by chosing a coordinate

chart, wehaveimplicitly chosen in the tangent space of 52 a direction which is, for example,

the e2 axis under ij) = 0. If this could be done smoothly, then we will have constructed a

non-vanishing smooth section on TS2.

An optimal choice of coordinate chart would, therefore, be symmetric and have a

singularity at one point; say, conveniently, the south pole. Such a chart exists but is not

standard. Listing, a psychologist studying the movement of the eye, noted that the eye

moves in a way which minimally twists the optic nerve. Listing's law [15, 25] describes

this subset of 50(3) which is actually RP2. The same subset of 50(3) describes the

configuration space of a cat which does not twist its spinal cord [30]. It can be thought

of as the image under the exponential map of a two dimensional subspace of so(3). We

will use polar coordinates of R2 in order to parameterize the subspace. Thus gi(0, <f>) =
Exp(<£(cos(0)ei + sin(0)e2)) for any 0,<j> 6 T2. The formula for gt{0, <f>) is given by

cos2(0)(l - cos(<£)) + cos(<£) cos(0)sin(0)(l - cos(tf)) sm{<f>)sin(0)

cos(0) sin(0)(l - cos(^)) *sin2(0)(l - cos(<0)) + cos(^) - sin(^) cos(0)

—sin(^)sin(0) sin(^) cos(0) cos(^)

The complete chart is 0(0, <f>, $) - gt{0, <j>) Exp(^e3). It may be verified that the

equation for the decoupling matrix has the following pleasing form in these coordinates:

^) =Ii±4±M) - sin(^>) - cos(V>)

cos(ip) - sin(V>)

In keeping with the previous notation, weidentify zx = $ and z2 —u3.

Proposition 9 (Zero Dynamics for the Satellite)
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Given a control system on TS0{3) whose evolution is described by equation (3.31)
and has been input-output linearized as in Proposition 8,

Then the remaining dynamics, parametrized by zx = tp and z2 = u>3 are given by: ' '

*\ = (i+y?+yg)(2/2S/i - yifa) + z2
z2 = (1+yffyj)3 (sin(2^)(y2 - y\) +2cos(22:1)y1y2)
where zx is measured as in the Listing parameterization.

Proof: The derivative of z2 may be computed directly using equation (3.33). To compute

the derivative of zu differentiate the Listing coordinate chart 0(0,0, V>)> identifying ijj with

zx.

0 = gu - gtCjl Exp(22e3) + zxge3

= 0( ExpJ-^ea)^) + z\ge3

This implies that:

z2 = u>£ + ii

The quantity u£ may be computed directly from the derivative ofthe matrix 0/(^,0). The
equation for zx is therefore given by:

Z\ = z2 - (1 - cos(<£))0

The angles <£, 0 and their derivatives depend only on y and y. It may be verified that the

dynamics are then:

* = <i+ri+rf)(**|-|,,fe)+*
—2a*2 = (i +y2 +y2)2 (sm(22:i)(y2 - y\) +2cospsOfafc) (3.35)

We consider the symmetric and asymmetric cases separately. Note that the four

states yi,y2,fa and y2 constitute a controllable linear system and are therefore easy to

stabilize to a point. The challenge then rests with the remaining dynamics, z.

Remark (Chained Form Coordinates): Seeing the "area form" appearance of the ty

dynamics, one might be tempted to try to find chained form coordinates. This is indeed
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possible. Consider the following transformation.

Xi =

Xi =

Vi + y'i + y}
y2

. y/i + yl + yl
x3 = i>

It may be verified through direct computation that the derivative of x3, in terms of these

new variables, is given by the following.

£3 — x2£\ —X\£2

We have found, therefore, chained form coordinates for the two thruster satellite problem.

We include this for interest, since it is not used in what follows.

Remark (Quaternions): By using 4 real numbers to parameterize 50(3), quaternions

avoid the singularities associated with other coordinate charts. The natural split of the

configuration space of the satellite with 2 torque inputs into a point in 52 and a rotation

about e3, when mapped to quaternions, produces the Hopf fibration of 53 .

To see this, notice that qi = cos(f) +isin(f)cos(0) +,7sin(f )sin(0). The total
rotation is given by qt •fcos(^) +/;sin(f )J, which is

W* =cos(|)cos(|) +isin(|)cos(tf- |)+jsin(^)sin(0 - |)+*coe(|)sin(|).
The Hopf fibration coordinates are typically given by (cos(f )exp(iY),sin(f )exp(iV> +0)),
which if mapped to quaternions properly are nearly the same as the Listing parameteriza
tion.

It is also of interest to consider the form as written in terms of these quaternions.

The article [49] uses them to some degree in studying fully-actuated satellite systems. The
form, in these coordinates, is:

-£>3 - (ft9i02 - <&q3 - 203J 0o +f-000103 +o\q2 +-q2J qx +

^-000203 +0201 ~£91J ?2 +f010203 - 0^00 +2?0J03 •
This is none other than the mechanical connection on T53 [27].
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Point Stabilization

We are interested in stabilizing control laws for control systems of the form

p

»=o

v = u (4.1)
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where x in Rn, a local set of coordinates for Q, along with v € Rp+1 are the state of

the system, u € Rp+1 are the inputs and ft(x) are smooth vector fields in Rn, linearly
independent for all x. The problem then is, given a nonlinear control system of the form in

equation (4.1), find a control law u(x,v,t) which makes the origin globally asymptotically
stable.

Mechanical systems with nonholonomic velocity constraints cannot be stabilized

to a point in their configuration space with smooth static state feedback [5]. Consequently,

the traditional techniques of linearization, gain scheduling, and exact linearization fail. It

was shown in [12] that there do exist time periodic smooth feedback laws which render

points asymptotically stable, though their convergence rate was shown to be limited in

[32]. Explicit control laws were soon developed in the author's work [40, 42], on which this
chapter is based.

We focus on a special class of systems, those which can be transformed locally into

power form. While this condition seems restrictive, all mechanical systems considered in

the dissertation meet this requirement except for the asymmetric satellite. All systems in

chained form, for example, may be transformed into power form. Single generator, multiple



input power form systems have dynamics

jjj = uj, 0<j<p
1**o = JfjW»i. l<k<lhl<j<p (4.2)

where y € Rp+1 are the base coordinates, and z € R("-p_1) are the fiber coordinates.

This particular form of equations is weD suited to strategy we employ to explicitly

construct stabilizing control laws. The space is clearly divided into a linear control space,

covered by y, y, and a nonlinear section z whose dynamics are governed entirely by the

movement in the y space. We will perturb a linearly stable control law on the y space. The

perturbation, which will stabilize the zero dynamics, will be higher-order in z. As the z

goes to zero, the perturbation of y goes to zero.

First we present a stabilizingcontrollaw for a (p-f-l)-input, p-chain, single-generator

control systems in power form. We draw heavily on the author's previous work [42], al

though the proof and the law are new. Then we apply the theory to several of the example

systems. First we feedback stabilize the car with six states, then the fire truck with nine.

Because these systems are locally in power form, applying the theory will be straightfor

ward. We consider the satellite last, with two input torques and a two dimensional fiber.

While the symmetric case is standard, the asymmetric case requires some new theory, as

seen in [44].

4.1 A Stabilizing Control Law

The control law will be defined as follows. We will pick a new set of outputs e(t)

for the system (4.2) and exponentially stabiUze them. The outputs e(t) will be a perturbed

version of y(t), where the perturbation p(z,t) is chosen to render the zero dynamics stable.

We define the perturbed outputs as,

e(0 = V(<)-P(*.0 (4.3)

which are relative degree two, since they depend only on the configuration and time. Dif

ferentiate them.

• QP At \- dPe = y--A(y)y-Ti

v* •

42
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To see the inputs u, we must differentiate again.

«= (l-^A)u +f0{y,y,z,t) (4.5)
Notice for small y and small z, the matrix (/ - ff A) is invertible. We are ready to define
the control law.

Proposition 10 (An Locally Asymptotically Stabilizing Control Law)

Given: a p+ 1-input, p-chain, single-generator control system

whose evolution in time is given by:

Vj = UjforO<j<p

z- = -g (yo)k yj forl<k< £j and for 1<j <p, (4.6)

Define: the perturbation vector p(z, t) to be

Po(z,t) = p0(z)cos(t)

Pj(zyt) = J2Pj^z)sin(ht)f°rl^J^P (4-7)
h-l

where p0(z) =£J=1 J^=1 (zf} and pjh(z) =c$z} with each c{ <0.
and define the error outputs e(t) to be

e(t) = y(i)-p{z(t),t). (4.8)

Then: the control

v = -(l-gjjU) (/o +fcie +M) , (4.9)
where kuk2 > 0, renders the origin (y>y,z) = 0 locally asymptotically stable.

Proof: The outhne of the proof is as follows: first we change coordinates to the (e, e,z)

system. In these coordinates the system divides into a linearly stable part parameterized by
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the e,e coordinates, and a higher order time-varying part parameterized by the z variables.
We then apply center manifold theory. The center manifold corresponds to e(t) = e(t) = 0.
The dynamics on the center manifold are exactly z = A(p)p. We then show that phad been
chosen so these dynamics are asymptotically stable. Given that p(0, t) = 0, we have that y
and y goes to zero as z goes to zero, completing the proof.

The coordinate change, (y, z) -*• (e, z) is valid globally for the configuration space
variables due to its triangular nature. However, the matrix (J - ff A) must be nonsingular
in order to solve for y in terms ofe. We assume e and p are small enough so that this may
be done. Under the control law defined, the system closed loop dynamics are given by

e = -{kie + k2e)

z = (l-A(e +p)^y (A(e +p)e+A(e +p)^ (4.10)
Note that the z equation is at least of order 2 in z,e,e, and that the dynamics of e are

linearly stable. We may apply a slightly modified version ofcenter manifold theory.
We now introduce thegeneralization ofthecenter manifold theorem which appears

in [40]. The following statement uses the notation of [9].

Lemma 11 ("Time-varying" Center Manifold)

Given: the system

e = i?ie + B2e + g(e,e,zyw)

z =' Az + /(e, e, 2, w)

w = Sw . (4.H)

with e e Rp+1, z € R""?"1, and w € R*, and k sufficiently large.
Assume: the eigenvalues of A and 5 have zero real part, and further,

the functions f,g and h are C2. In addition assume

/(0,0,0, w) = 0, dif(Q, 0,0, w) = 0, for i = 1,2,3,

0(0,0,0, w) = 0 and$0(0,0,0, w) = 0 for i = 1,2,3.

Then: given M > 0, there exists a center manifold for (4.11),

e = /ii(z, w),e = h2(z,w) for \\w\\ < M, \\z\\ < 6(M),
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for some 6 > 0 and dependent on M, where

h(z,w) is C2 and h(0,w) = 0.

To apply this result to our system, create the vector w, with w{ = cos(jt) and
w*2 = sin(jt). Note that the dimension ofw, given by k, is then twice the maximum lj of
the chains in (4.2) for 1 < j < p. The differential equation describing the evolution of this

vector may be written as w = Sw, with the eigenvalues of 5 having zero real part. We

can then substitute an element of the vector w for each of the time-varying terms in the

equations. In this form, we may apply the "Time-varying" Center Manifold theorem [9].

Consequently there exists locally a center manifold given by e = e = 0. The

dynamics on this center manifold determine the asymptotic dynamics of the total system.

We now examine closely the dynamics of z on the center manifold. Recall that

%= ^(Vofvi (4.12)
where on the center manifold, we have that

yo(z,t) = p0(z)cos(t)
Li

yj(z,t) = J2pjk{z)sm(kt) . (4.13)
fc=i

Clearly we need to solve for y;-.

yj = ^(hcos(ht)pjh(z)-rsm(ht)^-A (4.14)
Using this formula, we may solve for the dynamics of chain j.

2j = fcj^o) yj

=I (p0(z) cos(t))k I£ (hpJh(z) cos(ht) +2a* sin(to)ii) J (4.15)
We now expand some of the powers. Note that cos*(i) = £?=i a*,- cos(it) where a« > 0,
and akk > 0. The first term then divides into two parts, a time average zero section and a

steady state section.
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Using the identities,

cos(ht) cos(it) = '- (cos((h - i)t) +cos((h + i)t))

sm(ht) cos(it) = - (sm((h + i)t) + sin((h - i)t))

we see that equations (4.16) for if divides into 3 parts, an average part f(z), a time average

zero part f(z,t) with cosine time variations, and finally a term z dependent, time average
zero, with only sine time variations. We label this last term v$(z,t)z. The average piece is
as follows,

#(*) = E#*rfM»»W- (4-17)
A=l

with 0$k > 0, and all other 0kjh > 0. We now examine the dynamics of£, on the whole.

(I-V^tyzj = /,(*) +/(*,*) (4.18)

We wish to solve for the dynamics of Zj, and this requires a matrix inverse. We know that

in/j(2r>0ll < 1» tnus we may approximate the inverse in power series form. Recall that the

i*h row of Vj is oforder 2i. The ith row ofOj (*,*), the sum ofthe tail ofthe power series,
is of order at least 2i + 2.

if = (I +Vj(z,t) +Oi(z,t))(f(z) +f{z,t)) (4.19)

Note that Vj(z, t)fj(z) is oftime average zero, Vj(z, t)fj(z, t) involves terms ofsin(ht) cos(it)
thus will be of time average zero as well. In conclusion, we have

Zj = 7jM+ /;(*,*) + <* CM) (4.20)

where fj(z) and fj(z, t) is of order (2i + 1), and o)(z, t) is oforder (2i + 2) in z.
Our proofis nearly complete. We need to apply averaging theory in order to move

the time average zero terms up to higher order. This requires a non-standard version of

averaging theory, because we need to preserve the order ofeach component of fj,fj.

Lemma 12 ("Averaging" Transformation)

Consider: the time-varying nonlinear system

x = /(«,*) (4.21)
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where f is of period T , Cr, and where the iih entry of ' *

the vector f satisfies ft = 0(x)2kt1, with k > 1.

Then: there exists aCr local change of coordinates x= y-f $(y,t) under which (4.21) becomes

v = f(y) + f(y,i)

where f is the time average of f and fi(y,t) = 0(y)2k+2 and of period T.

Proof: The proof closely resembles aresult described in [18]. We will divide f(x,t) into its
time average, given by /(z), and the remainder f(x,t). We make the coordinate change:

a = y + ¥(y,«)

with ^f(y,t) specified later. We now solve for the dynamics of y

dt
(I + DyV) y + — = £ = f(y + ¥) + f(y + $,*)

y=(I +DyV)-1 (j(y +tf) +/(y +¥,*)- 0tf\

Set ^ = f{y,t). As /(y,J) has zero mean, $ is a bounded function oftime. Furthermore,
this implies that \P is of higher order, thus the coordinate change is valid locally. Expanding
the terms, we see:

y =(/ +i?^r1(/(») +/(y +tP,0-/(»,0)
= (/ - D„9 +0(\\Dyn2)) (/+ Dyf* +0(\\n2))

= f(y) + f(y,t)

Now we will check the order of /,-.

/ = Dyfy-DyVifM + fiiy-rV^-fiiyS)) (4.22)

As the order of the element /, is 2k + 1, the elements of the corresponding row of Dyf are

of order 2A:. The lowest order in <I>, as it is the time integral of /, is 3 from the case k = 1.

We conclude that the first term is of order 2k + 3. The same argument holds for the second

term, as the element ^ is of order 2k + 1, the elements of the corresponding row of DyV is

of order 2k. The product is then at least of order 2k + 3.
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We can apply this averaging theory in order to find a time varying coordinate

chart z such that

z = h(z)^Oj(z,t) (4.23)

where o^(z,t) is oforder (2i+ 2) and fj(z) is oforder (2i+ 1). We are almost done. All we
need to do is apply a special case Lyapunov result found in [40, 42].

Lemma 13 (Case Specific Lyapunov Result) Given: the time-varying nonlinear sys
tem

V = f(y) + f(y,t) (4.24)

where y 6 Rn. //

ll/(y,*)ll<7£||y||8(l+')

for all y in some open neighborhood of the origin and

/?(*) = EtPIMI** . (4.25)
A=l

with 7^ < 0,
Then: the origin of (4-24) is locally asymptotically stable.

In our application, 7** = c*/?£. The proof is finished. Each chain has locally
asymptotically stable dynamics, thus the total system is stabilized.

Remark (Chained-form systems): Chained form systems are locally much like power

form systems. In fact, given ap+ 1 input, p(p+ 1) chained form system described by

Xj = Uj 0 < j <p

£)i = x^Vi j > i and x}j := x?z? - x){

£kj{ = x)rlVi l<k< 4, 0 < j,i < p; j £ i ,

there exists a global transformation to power form given by

Vj = x? 0 < j < p

zkt = (-i)^ +E(-0n7T^^
n=0 \k ~ n)-

(4.26)
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Corallary 2.1 [40] may be easily extended to the multiple input case. We may therefore

conclude that the controls (4.9) will locally asymptotically stabilize the chained form system
as well the power form.

Remark (Globally Stabilizing Laws): Although of little practical interest due to the

local nature of the coordinate charts and due to the poor large motion behavior of feed

back laws, these laws may be made global with little effort. Essentially, the effect of the

perturbation has to be limited for large z. This may be done by using saturation functions.

That is, function which for small values of z are identity maps, as to preserve the local

stability properties, but for larger values of z reach at never exceed some limit e. The only

additional difficultly is the matrix inverse of(/- fjA), which might not be well defined for
large values ofy or e. In regions ofthe state space where y is large, implying that e is large
since p(z,t) is bounded by saturation functions, we may employ the law y = k^y + k2y,
making y dynamics linearly stably. At some point, y will be sufficiently small so that the

matrix will be invertible. There we may smoothly transit to the local (in terms of y and e)
law.

4.2 Applications

The control laws developed in the previous section are directly applicable to every

example system except for the satellite and the planar acrobot. The acrobot requires little

modification and locally is much hke Hilare, so we will skip this example. The car and the

fire truck, however, are more sophisticated.

4.2.1 Power form systems

First consider the front wheel drive car. Figure 4.1 shows the results of applying

the stabilizing control law to the four dimensional power system. The constants ct- were

chosen to be 1 and the initial condition is given by x = (0,0,0,1). This corresponds to a

parallel parking maneuverin the original set of coordinates. The first two plots in Figure4.1

show the evolution of the state variables as a function of time. Note that the convergence

rate of x4 dominates the convergence of the other variables. The plot in the upper right

shows trace of the back wheel of the automobile and the plot in the lower right shows the

wheel and steering velocities. The effect of saturation functions is illustrated in Figure 4.2.
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Figure 4.1: Stabihzation of a four dimensional, two input power system
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Figure 4.2: Phase plane plot, x versus y, of two simulations. Note the effects of the satura

tion function on the hmits of travel in the x direction.
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Figure 4.3: X-Y Trajectory of the Parallel Parking Maneuver

The Fire Truck

We now present the simulation of the fire truck system. The simulation was

performed on the system in power form with the states being stabilized to the origin from a

given initial point. The cuc2,c3 are chosen to be 1, and saturation functions were employed

to insure global convergence. The coordinates in power form were then transformed back

into the original coordinates for analysis and a movie animation. Figure 4.3 shows the x-y

plot for a parallel parking maneuver, starting from an arbitrary initial point that illustrates

the control law. The plot contains Lissajous figures.

Figure 4.4 shows the slow convergence of the y position of the center of the rear

axle of the cab for the same parallel parking maneuver.
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Figure 4.4: Y-Trajectory of the Parallel Parking Maneuver

4.2.2 The Satellite

The symmetric satellite has one uncontrollable state, z2. Under the assumption
that z2 is zero, the system has essentially 5 states and looks hke a power form system of

the most basic type. The asymmetric satellite does not fit into this simplified picture, so
some new theory is made to fit this special case.

The Symmetric Satellite

First we simulate the symmetric satellite. If z2 is zero, the angle z1 may be

stabilized. Control of the phase of z\ when u>3 is not zero is an identical problem. There is
no need to subdivide this problem into two cases.

As before we will employ saturation functions. Simulations of the control law have

been run. Figure 4.5 shows the trajectory of the systems in the projective plane space.
Figure 4.6 shows the effect of this trajectory on the coordinate ifr.

An Asymmetric Stabilizer

We present, in this final subsection, the regulator for the asymmetric satellite. A

look at the system in the coordinates presented here gives some idea as to how a regulator
may be constructed.

To present the law, first we define some outputs involving a periodic forcing func

tion, cos(tf). The control law stabilizes the outputs exponentially, and in doing so the
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Phasepint in projectiveplane

'•0.06 -0.04 -0.02

Figure 4.5: The is a phase plot of yu y2 for the symmetric satellite. Notice how the resulting

figure is essentially spiral in the yx, y2 space, steadily decreasing in size as the error along
the fiber zx is reduced.

Pint ofz versus lime

Figure 4.6: This is a plot of Zi vs. time for the symmetric satellite. The error reduces

steadily, albeit slowly.



asymmetric satellite follows albeit somewhat more slowly.

Now we define the relative degree one outputs. The output e is defined to be

e = +
{Z\ +22)C0S(<)

•a(zi + z2)2cos(t)
+

—sm(zi) cos(z1)

—cos^j) —sm(zi)
yi

2/2
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(4.27)

Differentiate the output and notice that:

e =

u2
+ h(h,y,z,t)

Proposition 14 (The Asymmetric Stabilizer)

Given a control system on TS0(3) whose evolution

is described by equation (3.31)

with q/0,

Then all smooth control laws u(i2,w,t) jofthe form

« = -(e + /i(e,y,*,<))

with ki > 0 as in the definition of y and

render the point R = /, u = 0

locally asymptotically stable.

Proof: Theouthne ofthe proof is asfollows. First,we solve for the dynamics ofthe systems

under these inputs. Second, we perform a transformation of y2 to remove a time-varying
first order dependence. Then, we examine the hnearization of the system about 0.

The hnearization is time-invariant. Thus, we may apply center manifold theory

[40, 42]. We then solve the dynamics on the center manifold and consider their average.
The average system is shown to be stable.

Let's first examine the dynamics of a; under these controls.

2
u>i = -- (zx + z2) cos(t) + sin^)^ - cos^x)^

2 2
k>2 = ~ (*i + z2) cos(t)+ cos(zl)yl -j- sin(2!)y2



We know that y = A(y, zx)u, thus we have:

1 + y2 + y2
2/i = 2 (~ sm(*i)wi ~ ^os(z1)uj2)

1+ 2/f + 2/f / / x . / x x2/2 = ^ (cosfojw!-smfa)^)

Which is to say, to a certain order,

2/i = -2/i + — (*2(*i + z2)) cos(t) + 0(3, t)

fa = -y2--{zi + z2)cos(t) + 0(2,t)
a
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We wish to compute the third order terms of zx and u exphcitly. To this end, we
need to find expressions for y on the center manifold to a certain order. Start with y2.
Define y2 as follows:

fa = 2/2 + Azx sin(t)+ Bz2 sin(*) + Czx cos(t) + Dz2 cos(i)

Thus we can say:

£2 = -{y2 + Azlsm(t) + Bz2sm{t) + Cz1cos(i) + Dz2cos(t))

+ (A-C)z1sm{t)

+ {B + A- D)z2sm(t)

+(c +A )Zl cos(t)
+[p +B+C- - )z2 cos(t)
+0(2,*)

We wish all but the first term to be zero. Thus we have A= C = £. Adding the 3rd and
5th lines gives us 2B = 0, which implies that D= j^.

Finally we have,

2/2 = •^•(2isin(t) +(21 +z2)cos(i)) +0(2,t)

Now solve for yx in a similar manner. Define:

2/i = y\ + (M2 + B*i*2 +C*?) cos(*) -I- (Dz2 + Ezxz2 + Fz22) sin(*)
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The dynamics follow.

Vi = ~ (2/1 + (Az2 + Bzxz2 + Cz2) cos(t) + (Dz2 + Ezxz2 + Fz2) sin(O)
+z2cos(t) (A+ D)

+z:z2 cos(t) (b +2A +E- i)
+z2 cos(t) (c +B+F- -}
+z2sm(t) (D - A)

+z1z2sin(t)(E-B + 2D)

-\-z\ sm(t) (F-C-rE)

+0(3,t)

This implies that D = A= -A = 0. Then we have that E = B = ^. This means F = 0,
and C = —. In summary,

This imphes,

2/1 = 2o~ K*2^1 +*2^ C0S^ +^1J?2^sin^^ +°(3'')
2/2 = ^-(zism(t)-r(z1+z2)cos(t)) +0(2,t)

2a

Recall, to some order,

^1 = - (21 + z2) cos(t) + Ziyi - 2/2

^2 = — (21 + 22 )2 cos(t) + yi + 2iy2

3 1"1 = 2^(^i +22)cos(<)-r—2lSin(t) +O(2,0
-3 2 1"2 = ^ (zi + z2) cos(t)-—*i(z1 + 2&)sin(t) + 0(3,<)

We are ready to solve for the dynamics of z2.

z2 = au)iu>2

-1

= 4o7 (9 (Zl +*2)3 C°s2(t) +*'(2ri +22) Shl2W)
4q

+t- (21(21 + 22)2sin(2<)) + 0(4,t)

(4.28)
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Pint of zl and z2 versus time

Figure 4.8: This plot shows the time history of zx and z2 for the asymmetric sateUite. Note

they converge at a slower than linear rate. The damping can be improved with different
choice of gains kx and k2.

4.3 Conclusion

We have solved the point stabihzation problem for our class ofmechanical systems.
Such solutions are basic results. They may be extended to achieve several other standard

control objectives, for example, path planning and trajectory tracking. The performance

with regards to these other tasks is lacking. The trajectories it produces are far from

optimal. For example, see figure (4.3) for the fire truck. The slow convergence rate of the
regulators when they are adapted for the purpose of tracking.

Consequently, these feedback laws are useful for regulation, that is, maintaining
some configuration in the presence of disturbances. For large motions, entirely new strate

gies arerequired. The rest of this dissertation is devoted to solving the problems associated

with large motions.
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Chapter 5

Trajectory Tracking

In this chapter, we develop a set of control laws which stabilize about trajectories

instead of points, using the results found in [47]. For reasons we will explain shortly, the

tracking laws are not generalized from the point stabihzation results of chapter 4. Instead,

given a feasible trajectory g(-) (or x(-)) parameterized by time, with velocities v(-), and

nominal inputs u(-) generated by an open-loop path planner, we compute the hnearization

of the system about this nominal trajectory. If the linear time-varying system thus obtained

is uniformly completely controllable in a certain sense (to be madeexplicit),wewrite a linear

time-varying feedback law which will locally exponentially stabilize the system about the

nominal trajectory.

We start with a short comparative study of methods for achieving large motions

for ourclass of mechanical systems. First, do weneed to study path planning at all given the

regulators we have developed in chapter 4? This may be answered by lookingat the kinds of

paths produced by the smooth feedback stabilizers (see figure 4.3). Our experience is that

the regulators make local decisions, moving the robot in the way which will immediately

improve the error on the short term. Path planning, one the other hand, produces more

efficient larger-scale paths.

Second, if we do solve the path planning problem, why do we need to study the

tracking problem? In a real world situation there are many types of disturbances which

would lead to great error. For example, the initial configuration of the system might be

slightly in error. Figure 5.1 shows the result of such initial error.

We may adapt regulators for tracking by adding a feed-forward term. Figure 5.2

shows the application of such a strategy to the robot Hilare. The lawis apphed with twenty
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Figure 5.1: The figure shows the path of the robot Hilare with zero initial error, and the

path with some small initial error.

seven different initial condition errors, all near the correct starting point.

Better performance is achieved by the laws developed in-this chapter. For the

purpose of comparison, we simulate the robot Hilare with one of the tracking controllers

developed here. The gains are chosen as to make the control efforts of the two laws roughly

equal. All twenty seven initial condition errors are chosen to be the same as in the earlier

runs.

The problem solved in this chapter is: given a nonholonomic system, a feasible

desired trajectory to follow, a knownclearance betweenobstacles, and a measureof accuracy

of the sensors, find a control law which will stabilize the system to this path, avoiding the

obstacles robustly in the face of disturbances.

In the examples, we focus on mobile robots with an objective of creating a com

posite controller that will: first, have off-line computation of a trajectory which avoids the

obstacles [24]; second, apply the control law given here to stabilize the system to the open

loop collision-free trajectory; third, while executing, use sensors to detect possible collisions

due to poor a priori information. In this case, new information can be used to update

the model of the environment and restart the process. Such a controUer would be able to

reject many types of disturbances including noise in the sensors, initial condition errors,

and errors introduced along the trajectory.
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Figure5.2:Simulationoftheregulatorlawadaptedfortracking,shownasaxx-x2phase

plot.Notethatwhilethelawcorrectswellforerrorinthexxandx3directions,itperforms
poorlyin.correctingalongthex2direction.

0.8
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-0.2

-0.20.3x0.8

Figure5.3:Simulationofthetrackingcontrollaw,shownasaX\—x2phaseplot.Nomatter

thedirectionoftheperturbation,thecontrollertracksthedesiredtrajectoryexponentially

fast.
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5.1 Linearizations

Nominally, we are given a desired trajectory as g°(>) with g°(t) G £,v°(-) with

v°(t) € Kp, and w°(-) with u°(t) € Rp in the matrix Lie group setting (see equation (2.42)).
Since linear control theory is written for systems in coordinates, we first need to find a

valid coordinate chart $ for Q. The desired trajectory is then, expressed in coordinates,

x°(t) € Rn, v°(t) 6 Rp, and u°(t) GRp at each time t with dynamics given by (2.1). We then
compute the linearization of the mechanism about the trajectory and apply linear control

theory to the result.

There is one difficulty to this approach. The nominal trajectory may or may not

reside completely inside the region of validity of the coordinate chart $. The feedback

control laws computed in this chapter depend on the choice of coordinate chart, and if we

change regions and charts we change control laws. The effects of switching is outside the

scope of this dissertation.

If a coordinate chart coveringthe area of interest can be found, then the procedure

outlined in the next subsection is used. A general procedure for constructing a coordinate

chart valid in an open region about any C2 trajectory is given in the following subsection.

5.1.1 Locally Valid Linearizations

Suppose we have a coordinate chart $ for Qwhich is valid for the entire trajectory.

The state of the system at time t is given by ($(</(<)), v(t)). In general the dynamics are

written

x = f(x,v)

v = u (5.1)

where x € Rn are the coordinates, v 6 Rp are the velocities, u € Ep are the inputs, x°(>) is

the desired trajectory, v°(-) is the desired velocity, and u°(-) are the nominal inputs. The
vector field f(x,v) is at least C2 with respect to x and v. Thelinearization may proceed in

the standard way, with the linear time varying system matrixes A(<),B(t) given by:

%(X\t)y(t)) &*•(*),•»(*))
0 0

A(t) :=

B(t) :=
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5.1.2 Linearizations Valid for Entire Trajectories

A coordinate chart valid for a neighborhood about the trajectory may always be

found, provided that the desired trajectory g°(>) is C2. What follows is a constructive

procedure for building such a chart provided one does not already exist.

Recall that the exponential map Exp : g —• Q is a local diffeomorphism. Thus we

may write g(i) —g°(t) Exp(?)(t)), assuming that g(t) is close to g°(t). Using a basis for g

and £f, define N{(t) = Pi(fi(t)). Given t € R and N(t) € Rn we may find g(t). Provided

that g(t) is close to g°(t), we may find N(t).

Now we wish to solve for the dynamics of N to first order. Consider the dynamics

of fir.

g(t) = ^)((Exp(^)))-1ejExp(7)(0) +^)

We need a series expansion of the first term, with respect to 77.

( ExpM(0)r %Exp(7)(*)) = e°c-+[elrj] + h.o.t

We can also consider the system equation variation.

»(*) '= 9(t) \ii +̂ W))+^(»- «") +h.o.tj
By setting the two observations equal to each other, we solve for JV,- = p,(^(t)).

m=§J«(0) -K. v)+^f(« -«°)+h.0.t
As before, we may identify x = JV, and the linearization matrices A(t),B(t).

i4(<) :=

B(t) :=

i4„(t) A12

0 0

where (/l.O.j =ft ($?(<*)- K.«il) ^d (A12)y =ft (f£).

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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5.2 An Exponentially Stabilizing Control Law

No matter what type of chart is chosen, the equations of motion become

x = f(x,v)

v = u (5.7)

x € R" coordinates

v £ Rp velocities

u € Rp inputs

£°(-) desired trajectory

v°(-) desired velocity

u°(-) nominal inputs

with f{x,v) C2 with respect to x and u.

Inspired by the result on linear systems found in [10], we have picked the following

control law.

Proposition 15 (A Tracking Control Law)

Given: a system of the form (5.7), a desired trajectory x°(')f velocities v°(-), and a

nominal input u°('), each bounded for allt, define the following:

A(t) :=

B(t) :=

fi(«°WXW) U(«°(*).*0(0)

0

Define: $(t,t0) € R(n+P)x<n+P), to be the solution to the

differential equation $(t,<0) = 4(i)$(i,t0) with $(t0,<o) = I- Further,

define for some a > 0

Hc(t0,t) = [\6a(t°-T)*(to,T)B(T)B(T)T*(t0,T)TdT

If there exists a 6 such that He(t, t + 6) is bounded away from singularity

for all t, then define Pc(i) as follows,



Pe(t) := H;\t,t + 6). • *

If: there exist two numbers p™,p%* such that

0 < p?I < Pe(t) < p?I V* € R+ ,

Then: for any function 7 : R+ —»• [5,00), continuous and bounded, the linear

time-varying feedback law:

u = u°-i(t)B(t)TPe(t)
x — ar

v — tr
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locally, uniformly, exponentially stabilizes the system (5.7)

to the desired trajectory x°(f) and the desired velocities v°(t) at a rate greater

than 2ap™(pM)~l > 0.

Remark: If the linear time-varying system is uniformly completely controllable over inter

vals of length 6 > 0 then Hc(t,t + 6) is uniformly invertible.

Proof: First, define the error signal e and error input w as

.0

e =

x — x
(n+p)

v — IT

w = u - u° € Rp .

We solve for the dynamics of these error signals using the Taylor series expansions

e =

f(x° + e\v0 + e2)-f(x\v°)

w

= A{t)e + B(t)w + h.o.t. .

All terms with dependencies on z°, v°,w° will be rewritten as functions of time. In addition

to A(t),B(t), define o(e, v,t) to be the higher order terms

o(e,v,t) =
f(x0 + e\v° + e2)-f(x°,v0)

- A(i)e - B(t)w .
w

Note that since w = —ty(t)BT(t)Pe(t)e1 we may rewrite o(e,v,t) so it depends only on c,i;

call this 6(e,t). As rc0(<),v0(t),w0(t) are bounded for all t, B(t) is bounded for all t which
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implies that \\<y(t)BT(t)Pe(t)e\\ < K\\e\\ for some K < oo as i(i),Pc(t) are also bounded for
all t. Given this we may show

limsupMU = 0. (5.8)
l|e||-.o«>{, ||e|| v ;

Thus we have

e = A(t)e + B(t)w + o(e, u, t)

~e = A(t)e+ 6(e,t) (5.9)

with

A = A(t)-i(t)B(t)B(t)TPe(t).

Inspired by [10], we pick a Lyapunov function

V(e,t) = eTPe(t)e. - (5.10)

and calculate its time derivative alongtrajectories of the system (5.9). One may verify that

Pc(t) = -6aPe(t)-Pc(t)A(t)-AT(t)Pe(t)

+Pc(t)[B(t)BT(t) - e-^^i +6)B(t +6)BT(t +6)$T(t,t + 6)]Pe(t) .

Thus the time derivative of the Lyapunov function is

V(e,t) = -eT[6aPc(t) + (27(t) - l)Pe(t)B(t)BT(t)Pe(t)]e

-eT6"4^Pc(t)$(t, t +6)B(t + 6)BT(t +*)$T(t, t +6)Pe(t)e

+2eTPe(t)6(e1t). (5.11)

Note that if i(t) > |,Vi, then the first two terms in (5.11) are less than or equal to
-6ap^||e||2. Secondly, because of (5.8), there exists a number e > 0 such that

INKM)|| < oft(rfVlleH.Ve such that ||e|| < * ,

which implies

\2eTPe(t)o(e,t)\ < 2a^||e||2,V||e||<€.
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Thus, as in [10], we may say

V(e,t) < -4ap?\\e\\2 . (5.12)

Further we may state

V(e,t) < -4atf{tf)-lV{e,t) . (5.13)

Finally we conclude

V(e,t) < V(e0,tQ)e-4QpT{p"rl{t-to)
l>nM »- ,IWOII < \\eM\\J^e-'°'?W'lt-<,) , (514)

V *c

which gives us the specified convergence rate for the error signals.

5.2.1 Convergence Rate Estimation

This convergence rate may be shown to be independent ofp™ and p%*. To demon

strate this, define 2, y:

z = ey

y € . R with

y = ay

Now we wish to solve for the dynamics of z.

z = (A + al)z + 6(e, t)y

We will pick the same Lyapunov equation and calculate its derivative, using the same

arguments as before,

V(z,t) = zTPc(t)z

V(zyt) < -4ap?\\z\\2 + 2ztPe(t)6(e,t)y.

Given the exponential convergence of e when it starts sufficiently close to the origin, we

may say that after some time T the last factor may be bounded as follows,

|2*Pe(t)o(e,t)y| < 2ap?\\z\\2.
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Thus we may write, as before,

. V(z,t) < -2ap?\\z\\2 .

And following equations (8) and (9) we will obtain the same convergence rate, (pj*)"1.
However, we may note

Ml = ea(<-'o)kl||e|| •

Thus, if z is exponentially convergent at a rate (p^)~l after some time T, then e is expo

nentially convergent at a rate (pf)"1 + a > a after some time T, thus for a sufficiently
large k we may state

||z|| < *,r°<'-'°>||*0||.

5.2.2 Causal Control Laws

For some regulator applications, it is desirable for the controller to be "causal",

that is to not need information on the future desired trajectory of the system. To deal with

this concern, define Pr(t), similar to Pc(t)> again assuming the inverse in the formula exists,

Pr(t) = (H^t-6))-1 .

Notice that this matrix is dependent on past values of the trajectory and not on future

values. As before, if there exists two numbers p™ and p^ such that

-0 < p?KPr(t)<p?I V*€R+,

then for any 7 : R+ -• [|,co), continuous and bounded, the linear time varying feedback
law

u = u0-i(t)B(t)TPr(t){x-x°)

locally uniformly exponentially stabilizes the system (1) at a rate greater then a.

The proof is similar to the last control law and so will be left to the interested

reader. It is useful to note

Pr(t) = -6aPr(t) - Pr{t)A(t) - AT(t)Pr(t)

+Pr(t)[B(t)BT(t) - e4*'$(t,t - 6)B(t - 6)BT(t - 6)$T(t,t- S)]Pr(t) .

Finally, it should be noted that it is equivalent to design a velocity feedback law

for all of these systems.
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5.3 Applications

We apply this control law to three example systems. The first is a kinematic

system with a simple structure, allowing for the explicit computation of the control laws.

The second is the Hilare-like mobile robot and the third example is a front wheel drive car.

5.3.1 The Heisenberg Control Algebra

Here we consider one ofthe simplest nonholonomic systems: the kinematic system
whose control Lie algebra is the Heisenberg algebra with two generators [4]. Starting with
a simple example will help with what follows. The differential equations are as follows,

X\ = Wj

x2 = u2

x3 = x2Ui . (5.15)

This system's straightforward structure allows us to compute the control laws in

closed form. We will investigate two trajectories for this system, a "trivial" trajectory which
is just a point, and a straight line.

Much of the control law can be found without reference to the specific form of the

desired trajectory. The first step is to find the matrices A(t), B(t).

A(t) = g(,V)
0 0 0

0 0 0

0 ttj 0

i o'

B(t) = 0 1 (5.16)
x°2(t) 0

With these, the state transition matrix associated with this particular A(t) can be

found. Using the fact that $(t0,*o) = I and that $(Mo) satisfies the differential equation

$(2,<o) = A(t)$(t,t0), it can be shown that

" 1 0 0
$(Mo) = 0 10

0 *}(*)-*?(<o) 1
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Now that we have the state transition matrix, we solve for the derivative of Hc(t0it) as
follows,

Hc(to,t) = e4ft<'"-'>*(<0,0£(0*(0T*T(<o,0
1 0

_ e4a(t„-t)
4(t)

0 ~ 1 *?(<o) "*?(<)
*§(0 *?(<o)-*?(<) W(0)2+W(<0)-x?(t))2

The first nominal trajectory that we choose is the trivial one, where the system stays fixed

at a given point for all time. Note that stabilizing to this trajectory is equivalent to finding
a point stabilization feedback law. The trajectory is highly degenerate in the sense that

both nominal inputs are zero. We choose our desired point x°(t) to be the origin, (0,0,0).
It may be shown that in this case, He(t0,t) has the following form (for a = 1)

1 - e'0-' 0 0

0 1 - e'0"' 0

0 0 0

Hc{to,t) =

Thus the matrix Hc(t,t + 6) is not invertible for any choice of £, we cannot find the

matrix Pe(t) = H~l(t, t +6) which is used in the definition of the control law, and therefore

the method presented in this paper-cannot beused'to stabilize the system (5.15) to a point.

The second sample trajectory will be less trivial. We have chosen the straight line in state

space described by x°(t) = (0,*,0), with nominal input u°(t) = (0,1). This trajectory is
somewhat degenerate in the sense that oneof the nominal inputs is^ero. However, since the

matrix Hc is invertible, our strategy will work for this trajectory. In fact, the determinant

of Hc is independent of time, as can be seen by the following formula (where a = 1):

det(He(t,t + 6)) = l-e36 + (3 + 62)(e-26-e-6)

We can choose any value of 6 for which the previous expression is non-zero. In our sim

ulation, 6 = 1 was chosen. (Note: nearly identical simulation results are obtained for the

trajectory given by u°(t) = (1,0)).

The initial error for this simulation was (0.2,-0.3,0.2). The simulation was run

for 8 seconds, and the results are given in Figures 5.4 - 5.6. Since the graphs of the state

variables were in general difficult to interpret, we have instead shown the error coordinates

e(t) and the error inputs w(t) versus time.
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Figure 5.4: Plot of errors e versus time. The errors all quickly converge to zero for this

path.

-0.2.

•0.4

Figure 5.5: Graph of the error inputs w versus time. Note how all inputs are bounded and

smooth.

Figure 5.6: This x1,x2 phase plot shows the actual trajectory, projected onto the (xi,x2)
plane. The desired trajectory is a straight line along the x2 axis.
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5.3.2 Trajectory Stabilization for Hilare

Again, one would hope the system's straightforward structure allows the control

laws to be computed in closed form. The first step is to find the matrices A(t), contained

in l5x5, and B(t) which is contained in R5x2:

H(x°y) i£(*v°)
0 0

A(t) =

dfr^0 „0n _
dx

(x°,v°) =

dv~7ri*°y) =

0 0 -sin(x°K

0 0 cos(x°)vf

0 0 0

cos(x5) 0

sin(a:g) 0

0 1

Now the state transition matrix associated with this particular A(t) may be found.

Using the fact that $(i0, to) = I and that $(<, t0) satisfies the differential equation $(*, t0) =

>l(<)$(t,*o)> it may be shown that

where

$(Mo) =

$n(Mo) =

$nOMo) *i2(Mo)

0 /

1 0 /,(*,*o)

o i Mt,t0)

0 0 1

/,(Mo) = /'- sin (x°(r))W;(r)dr

fc(t,to) = f cos (x°(r)) u\(r)dT .

The expression of $i2(Mo) *s complicated. Now that we have the state transition matrix,

we can solve for the derivative of Hc(t0,t) as follows,

Hc(t,to) = e4a(t,-|)*(io,0*(0*WT*(*o,0

However, for the nominal trajectories x° that we have chosen to simulate, the

integrals /,, fe do not have a closed form. Thus we cannot directly compute the control
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Figure 5.7: Plot of the errors in the trajectory versus time.

2 time 4

Figure 5.8: Plot of the errors in the velocities versus time.

law, and so we must compute the matrix Pe and the control law numerically. In doing so

the following identity is useful:

$(*,*+ *) = A(t)*{t,t + 6) - *(*,*+ 6)AT(t + 6)

The first nominal trajectory for this system (Hilare) is generated by the velocity

V! = sin(t), v2 = cos(t). We set a = 0.1,6 —1.0. After one cycle these velocities steers the

system in the direction given by the Lie bracket of the two input vector fields, or [/lj/b].

The initial condition was chosen to be (-0.1, 0.2, 0.1), and the simulation was run for 27r

seconds. See Figures 5.7 - 5.9 for results.

The second nominal trajectory to which we have applied our stabilization proce

dure is a circular path. This choice was inspired by the work of Reeds and Shepp [36],
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o.o ,

Figure 5.9: This phase plot shows the nominal and actual trajectories projected onto the

(xi,x2) plane (the orientation of the robot is not shown). The desired trajectory starts at

(0,0) whereas the actual trajectory has an initial offset of (-0.1,0.2). Note how quickly and

smoothly the system converges to the desired trajectory.

who showed that time-optimal paths for Hilare-like robots with actuator limits consist of

straight-line segments and arcs of circles.

The nominal velocity for this trajectory is v° = (1,1). We set a = 0.1,£ = 1.0 as

before. We again choose an initial condition error of (-0.1, 0.2,0.1), and run the simulation

for 2t seconds. See Figures 5.10 - 5.12 for the results.

Although we have used the same values of a, 6 and initial error as in the previous

example, the convergence-seems less rapid, indicating that the convergence rate depends on

the chosen trajectory. However, the convergence rate is also a function of a, which we are

Figure 5.10: Plot of the errors in the trajectory versus time.
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-o.i .

-0.2

-0.3

Figure 5.11: Plot of the errors in velocity versus time.

-o.i ..

Figure 5.12: This phase plot shows the nominal and actual trajectories, projected onto

the (xi,x2) plane (the orientation of the robot is not shown). The desired trajectory is

the perfect circle. Note how quickly and smoothly the system converges to the desired

trajectory.
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free to choose. If we needed faster convergence, we could simply choose a larger a.

5.3.3 Trajectory Stabilization for a Front Wheel Drive Car

Now consider the front wheel drive car, since it is a more sophisticated example

with four states and a two level chain when in power form.

The matrix A(t) is

A(t) =

dx£(*V) =

df(„0 „0x _

f$(*0,*0)
0

^(sV0)dv

0

0 0 -cos(x5)sin(z§)t;0 - cos(a:§)sin(x°)u°

0 0 - sin(z3) sinfrcj)^ cos(zl|) sin(a;5)vf

0 0 0 0

0 0 £cos(z°)t;° 0

cos(x§) cos(xj) 0

cos(x§) sin(a;5) 0

0 1

fsin(x°) 0

Inspired by [31], we chose the nominal input v° = (sin(i),cos(2tf)), roughly corre

sponding to a parallel- parking maneuver (see Figure 14). Again, we chose a = 0.1, £ = 1.0.

After one period (T = 27r), this input steers the system in the direction given by the

second-level nested Lie bracket of the two input vector fields (i.e. One write the system

as x = /i(x)v! + f2(x)v2, thus the nested Lie bracket would be [/i,[/i,/2]]). Because the

equations for this example are not simple, we have not tried to find He in closed form; all of

the computations were done by the simulation program. The initial condition was chosen

to be (0.1, -0.1, 0.05, 0.2), and the simulation was run for 2ir seconds. Figures 5.13 - 5.15

show the results. Note the rapid convergence to zero in the error terms.

.(5.17)

5.4 Conclusion

The control law and simulation results presented in this chapter suggest that for

nonholonomic systems, stabilizing to a trajectory is perhaps a better problem to consider

than stabilizing to a point. It can be noted that for drift-free systems, allpoints areequilib

rium points (in the sense that with zero input, the system will remain at any configuration).
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• o.i

2 time 4 6 8

Figure 5.13: Plot of errors in the trajectory versus time.

-0.3

-0.4 .,

Figure 5.14: Plot of the errors in velocities versus time. Note they are bounded, smooth,

and go to zero.
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•0.2 .,

Figure 5.15: This phase plot shows the desired and the actual trajectories projected onto

the (&i,z2) plane (the orientation of the car and the steering wheel angle are not shown).

The desired trajectory is the one which starts at (0,0). Note how quickly and smoothly the

control law stabilizes the system to this trajectory.

However, if one adopts this point of view, one must also face the problem of finding

feasible trajectories; a rich problem which has not been solved for-all systems. Excellent

work has been done [24, 31, 36, 39] in this area, and methods for finding trajectories exist

for a wide range of nonholonomic systems.

The control law presented in this chapter is robust to three types of error: initial

condition errors, perturbations introduced along the trajectory, and noise in the sensor data.

We have only shown the convergence results when there is an error in the initial condition,

but it can be seen that the effects of the other two types of errors also are reduced using

this law.
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Chapter 6

Path Planning

This chapter is devoted to solving the path planning problem for the specific

example systems of chapter 3. We wish to find a trajectory x(t) or g(i) which satisfies

the constraints u>,-. If we view the problem in this manner, path planning is inherently a

kinematic problem. We assume direct control over the velocities, using (2.3) to model the

system. In order to find the u(t) which generates the desired trajectory and velocities, we

differentiate the desired velocity. The results of this chapter are based largely on the results

presented in the author's work with collaborators in [43, 45, 46].

6.1 Steering Power Form Systems

Given that most of the mechanical systems considered can be locally transformed

into power form, it is tempting to write a path planner for this general class. This is,

of course, ignoring the fact that for most systems this transformation to power form is a

local property. Path planning by definition involves large distances; hence, very likely, will

require changes in these local charts.

However, when the coordinate chart changes can be avoided, many planners may

be applied. We present one in this section derived from the stabilizing law of chapter 4. As

in the point stabilization section, the principal nature of the equations inspires a two step
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Fiber z

Initial

Figure 6.1: This figure illustrates a general sub-optimal path planner for power form sys

tems. The first step corrects for the error on the base coordinates. The second step corrects

for the error on the fiber.

planning process. We write the kinematic system as

yr = vj 0<j<(p)

#0 = ^(Vofifj l<k<tj,l<j<p (6.1)
where v, the velocity of j/, is considered the input. Note that these equations are almost

identical to (4.2), except that v controls y, not y.

Given some goal configuration, for example, (y, z) = 0 and some initial configura

tion y(0), *(0), we may set v = -y(0). At theend ofone second we have that y(l) = 0 and
z(l) is some nonzero vector. All we must do then is construct some procedure for correcting
this last error without perturbing the y.

First we make some definitions in order to be specific. Define the vector z 6 Rm

as z = (z\T,z2r,...zJ)T where Zj = {z},z],...,zt/)T. We define the matrices fa as the lower
triangular matrices derived in chapter four, with (0j)kh = 0fh. Recall that /3*A > 0, thus
each fa is invertible. Define the matrix p to be the block triangular m x m matrix with

diagonal blocks /?,•, which is invertible since each diagonal sub-block is.
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Algorithm (Steering for Power Form Systems):

Base Correction, (0, j).

Apply: velocity v = -£ (y(0) -(1,0,..., 0)T) for f seconds.

Fiber Correction, (j,^1).

Define: c€ Rm =(Cl,c2, ...,cp)T = -fP'lz{^) with Cj- =(cj,.. .$).
Apply: velocities v0 = ^sin(^t),

Vj = i:l3=iC*cos(kft).

Final Base Correction, (^,T).
Apply velocity: v = -|Ly(2Z:) for | seconds.

Verification: To verify that this planner works, we need to calculate the net movement of

the system under the controls u. Certainly in step one, the error in y is corrected, leaving
y = (1,0,0,...)T. What requires checking are the controls for step two. The velocity of z
is given by

$=Mcost(y')f|:^cos(fcft)j (6.2)
which is, of course, very similar in form to the control law of chapter 4. If we integrate the

i equation of a time j, all of the periodic terms will be set to zero. The only terms of note

are then the steady state terms. We conclude

*(T} = r^c+2(3} <6'3)
and with our choice of constant vector c, we have z(T) = 0.

The previous discussion uses a simple general strategy for planning trajectories.

The strategy corrects first the error in the base and next in the fiber. The correction in

the fiber is simplified when the equations are principal. The required motion in the base is

dependent only on the desired change in z and not on z itself.
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6.2 Applications

We now examine some of the applications in detail. First we consider the car,

and apply the power form planner to it. Planning for the planar acrobot, even though it is
not in power form, is very similar though singular configurations must be avoided. Similar

geometric arguments will motivate a path planner for the symmetric satellite.

6.2.1 The Car

We build a planner based on the general procedure outlined in the previous section.

We will assume that the car will remain in the valid region of the coordinate transformation.

To apply the planner, first we compute the effect of the velocities

4w . Aw .v0 = —sin(yt)
47T 4wvx = Clcos(y<) +c2cos(2—t) . (6.4)

The derivative of the fiber coordinates is

Aw (• 4ir Aw \*i = cos(—t) (Cl cos(—t) +c2 cos(2—t)J
1 9/47T . / Aw. . , 4ir Az2 = 2COS (y*)(^cos(2^) +c2cos(2—0) . (6.5)

Now expand the previous expression.

1 / 4ir 4ir 4ir \
*l = 2\Cl +C2 "*( r"')+ Cl cos(2Y^ +°2 cos(3t^j

1 / Aw .Aw A

22 = 2 vCl C0S^ T" ^+°2 cos(2"r ^ )+
1 / 4w Aw Aw \- \c2 +wos^) +cico5(3~0 +c2cos(4—t)j (6.6)

In conclusion we have that at theend ofstep two, the z coordinates aregiven bythe formula
2T T T

2T T T

2r'(T) = 12C2 +2:2(3) (6J)
The planner then corrects the remaining error in y0 without affecting the fiber, in step
three. The choice of gains c is clear.
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Shape Space

Figure 6.2: The application of Green's theorem to the planar acrobot.

6.2.2 The Planar Acrobot

For the planar acrobot, we develop a planner similar in spirit to the power form

steering algorithm, except this time we improve the method by insuring that regions were

planar acrobot cannot be transformed into a power form system are avoided. Not all of

our example systems are globally diffeomorphic to the power form system. For example,

consider the fire truck in the jack knife configuration. Away from this configuration, the

coordinate change holds.

In keeping with the spirit of the power form steering algorithm, we first correct

error in the base variable, then consider how motions in the base changes the fiber coor

dinate. Although the system is not in power form, it is principal. We will use this fact in

what follows.

Given some motion in the base y, we reconstruct the change in the fiber z, by

applying Green's theorem. The time integral of the derivative of z may be converted into

a line integral in the base space. We start with the case where the path in the shape space

is a simple closed curve. We assume without loss of generality that the trajectory is one

second long.

z{l)-z(0) = J {bi(yuy2)yi + b2(yuy2)y2)dt
Jo

= L {hi(yuV2)dyi +b2(yuy2)dy2)
J line

The integrand been calculated above as £(•). Thus we may write the following.

*(l)-*(0) = -/ ((y)dA (6.8)
J area

The shift in z is sometimes referred to as the geometric phase. In general, the
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procedure for finding the geometric phase can be broken down into three increasingly com
plicated cases

Case 1 The path is a simple closed curve. The positive orientation case has been discussed

above. If the curve is negatively oriented change the sign of (6.8).

Case 2 The path is a self-intersecting closed curve. Divide the curve into simple closed

pieces and apply case 1 to each piece. Add the results together.

Case 3 The path is an open-curve. Join theend points with a straight segment andcompute

the line integral over this segment. The resulting figure is a possibly self intersecting

closed curve. Apply case 1 or 2 and then subtract value of the line integral.

Given this analysis, one path planning algorithm becomes evident. The fact that

f (•) = 0 only on a one-dimensional subset of the y space implies that there exists an open

subset of the shape space where £(♦) is strictly positive or negative. Any simple closed curve

contained in this region will result in a non-zero geometric phase if it is followed as a path.

The sign of the correction in z changes if the direction traveled in this path is reversed.

We will simply pick circles for our loops in the y space. Given any initial configu

ration (z/, z), and a final one, the final one may be reached using this procedure:

Step 1 (Initial Base Error Correction): Using constant inputs i>i,v2, drive the system

to the desired y ignoring the drift in the z term. Measure the amount of phase shift

in z required to bring the system to the exact desired location.

Step 2 (Singularity Avoidance): Let k be the amplitude of the driving sinusoids for

which one loop will give the desired phase shift of z. Figure (6.3) shows the graph

of this relation for a particular set of parameter values. If the needed phase shift is

larger than the maximum value shown in figure (6.3), then two or more loops may

be required. Again using constant inputs, drive the system to (-w/2 + k,w/2). The

offset is to ensure the path is centered at y = (—7r/2,7r/2).

Step 3 (Fiber Correction): Drive the system with v^ = fcsin(i), v2 = kcos(t) forenough

cycles to obtain the desired phase shift.

Step 4 (Final Base Adjustment): By following the same path used in step two, return

the system to the desired y. Because this return route lieson top of the route generated
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Figure 6.3: This graph shows the net phase shift in 2 as a function of radius k for circular

motions in shape space about the point (-f, f).

in step 2 together they enclose no area. Consequently, the phase shift of the total path

generated in steps 2 through 4 is equal to the phase shift obtained in step 3 only.

Even if there are limits on the joint angles, there still will exist an open subset of

the shape space in which the system is free to move. Thus there will exist a feasible closed

path enclosing an area of shape space where £(•) has only one sign. With this loop and

other similar ones inside of it one may design an analogous path planner for this restricted

system.

6.2.3 The Satellite

The last path planner we consider solves the steering problem for the symmetric

satellite. The angular velocity about the first two principal axes are considered as inputs.

Recall that the control system may be viewed as

g = g (iiVi-\-e2v2) . (6.9)

This may require an input transformation and a change of coordinates if w3 ^ 0.

We again will construct a path planner similar in spirit to the power form steering

algorithm. A good choice for the base spaceof a symmetricsatellite is the sphere. As noted

in chapter three, coordinates for the sphere are bound to have some singularities. We will,

for the time being, avoid these coordinates.

First we check if this base space is free of velocity constraints. Indeed, one may
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examine the allowed velocities as projected down into R3.

d^e3 = g((e1v1 +e2v2)x)e3
= 9(ei x e3)v! + g(e2 x e3)v2

Note that this velocity is perpendicular to ge3 for all Ci,v2. Thus, it is contained in the

tangent plane of the sphere at the point ge3. Finally, note also that these two input velocities

are not collinear; thus, they span the tangent plane to the sphere at the point ge3.

Now we wish to examine how the orientation of the satellite changes if the path

in shape space is a closed loop. As noted before, the change in orientation is called the

geometric phase.

Call the starting and ending orientations of the satellite g0 and <?i respectively.

By assumption gxe3 = g0e3 so we may conclude that glgie3 = e3, implying that g%gi is a

rotation about e3. We wish to compute the angle of this rotation.

The matrix g(t) will represent the orientation of the satellite at time t. Attach

at g{t)e3 on S2 embedded R3 an orthonormal frame with one axis collinear with c3. This

frame tracks the true orientation of the satellite. Notice that by construction the inputs

may not rotate this frame only about the axis collinear with e3. This implies that the frame

is parallel transported along this path. Assume that the path is constructed out of finitely

many smooth segments parameterized by arc length. Label each one of these segments d

and the region they enclose R. By the Gauss-Bonnet Theorem [8],

3 3

2*X(R) = E/ *#(*)<*«+ / Kda-rf^Oi
where x(R)1S tne Euler-Poincare characteristic of the region, K being the curvature at each

point, kg being the geodesic curvature of curve C,-, and 0,- being the exterior angle at each

discontinuity in the path.

In the case of the sphere, x(R) is equal to 1, so we may disregard the term on

the left hand side since it is a multiple of 2w. In addition, the curvature of the sphere is

constant and equal to 1 therefore the surface integral is equal to the area enclosed by the

path. Finally the two summations give the net phase shift in the parallel transported frame

and hence the angle of rotation about e3 of the original system.

This result may be generalized to more complicated paths in exactly the same

manner as with the planar acrobot. As in the case of the planar skater, an algorithm for

steering becomes apparent from the analysis.
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6.3 Optimization

The original motivation for using the path planners in the previous sections was

to find paths more efficient, in some sense, than those produced by the regulating feedback

laws. Further improvement requires a quantitative measure of how a good a path solving

the end point conditions is. Our choice of cost will be the square of the required velocities

integrated over the trajectory. The goal is to find a trajectory g(t) or x{t) which minimizes

this cost.

= /£«?* (610)cost

' 3-0

This is very similar to the integral of the Lagrangian for mechanical systems, if we label

L(xy v)= Y?j=o vj- The formulation is the same in the Lie group context.
We will apply the calculus of variations to help solve this problem. There are sub

stantial differences between solving this optimal control problem and standard mechanics.

In particular, the Lagrangian is usually not regular. This has to do with constraints on the

allowable variations: those directions which are disallowed have undefined cost.

From this point on, we will use the Lie group formulation because we will be

planning large motions. The control system considered is

9 = 9(*c(g,v)) . (6.11)

with the cost of any given trajectory (g(t), v(t)) being

J(g(t),v(t)) = JL(g,v)dt (6.12)
where L(g, v) is called the Lagrangian for the optimal control problem.

6.3.1 The Maximum Principle

Associated with the control system and a particular Lagrangian is a controlled

Hamiltonian. Typically the cost is thought of as an extra state, g0i with co-state p0. The

derivative of g0 is the Lagrangian, L(g, v).

H{9,M = PoH9,v) + p(ee{gyv)) (6.13)

Notice as there is no dependence on go, p0 is a constant of the motion. It is equivalent to

consider all non-zero values of p0i so this is typically set to —1. Trajectories generated with
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p0 = -1 are called normal extremals. However, if p0 = 0 then the nature ofthe trajectories
changes dramatically. Theseextremals are called abnormal, and they will not be considered

as viable trajectories in the path planning algorithms.

We now state the maximum principle as it applies to Lie groups. A coordinate

free version similar the this one can be found in [21]. For details on a proof, see [16,17, 50].

Proposition 16 (The Maximum Principle)

Given: a trajectory (g(t),v(t)) of system (6.11), optimal with respect to (6.12) on [0,T],

relative to boundary conditions <7(0),p(!T),

Then: g(t) is a projection of a curve ofHv{t), given by (6.13), with p0 € {0,1}

and HV(t) > Hu for any u, for almost all t € [0,T].

By Hv(t) we mean H evaluated on v(t). The Maximum principle provides a recipe

for finding candidate solutions to theoptimal control problem. Solutions to (6.13) arecalled
extremals, and satisfy necessary but not sufficient conditions.

In order to compute the extremals, we need to know how to compute Hamilton's

equations in the Lie group setting. Given an optimal Hamiltonian H(g,p), recall that

^p(9iP) = ee(g, v), which corresponds to the derivative of g. As for the derivative of p, we
may solve for this in coordinates using the natural- symplectic two-form on T(Q x £*) [1].

"W)((c« AM**,A)) = Pa(h)-Pb(ea)-p([ea,eh}) (6.14)

The derivatives of the coordinate functions Pi(g,p) = p(c<) can then be computed by ex
amining the Poisson bracket between the function and H. The Poisson bracket is, in this

case, the symplectic form operating on the partials of the functions on G x n*. Recall that

for a function / :Qx $* -> R, §£ € g* and §£ €fl.

Pi = {Pt,H}
ffdPi dPA (dH dH\\

dPi (dH\ dH (dPi\ „,.dPi 0J?n , x
= ^[W'lF{WJ-p{[W-dp]) (6'15)

We refer to [17, 50] for the proof. However, we will offer a plausibility argument
in the form ofa much weaker theorem. It only considers normal extremals; further, it only
considers systems where the optimal v(t) satisfies ^(g,p>v(t)) = 0. All ofour examples
meet these criteria.
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Proposition 17 (Normal Extremals)

Given: a solution to (6.13) with pQ(t) = —1, with maximizing v(t) satisfying

f?(s,p,»W) = o,
Then: the solution g(t),v(t) extremizes the functional go with respect to variations

leaving the boundary conditions fixed.

Proof: We consider a Lagrangian formulation of the optimal control problem, using La

grange multipliers to enforce the control system constraint. The reader may be rightly

worried about the lack of regularity. Regularity guarantees that we have well defined Euler-

Lagrange equations, as well as equivalence between Hamilton's and Lagrange's formulations.

It is a sufficient but not necessary condition, as will be illustrated in this case.

To enforce the constraint, we expand the space to include a Lagrange multiplier,

A(f) € fl". The new Lagrangian is then:

cost = / Z(p,e,v)- A(e(i) - ee(g,v))dt

= / X(p,A,e,v)dt (6.16)

Notice that as the argument of X(t) is zero for all trajectories that satisfy the constraint,

this cost is equivalent to (6.12) as long as g(t) is a valid trajectory. Of course, to be a proper

variational argument with side conditions, we should have a A0 and a. go as defined earlier.

As with po, A0 would be a constant of the motion. In this treatment, however, we will not

consider the abnormal case thus we implicitly set A0 = 1. Now consider the three parts of

the Euler-Lagrange equations.

i (£)<•> -**> -*(&<«.•>.•]+&•>)
This equation tells us how X(t) evolves as a function of time. Since L is independent of the

time derivative of A, we the following relation.

° = Tx
= e(t)-ec(0,t>)

Thus we have that trajectories extremizing (6.16) satisfy our side condition, e(t) = ee(</, v).

The last specifies conditions for the inputs. Note that L is independent of v. Thus we know
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something about ~.

» = ?dv

In all of our examples, the equation f£ = 0 may be solved uniquely for v for fixed Aand g.
Now we show that asolution of (6.13) solves these equations. First, set p=|| = A.

Define the following Hamiltonian:

H(9,P,v) = p(ee(g,v))-L(g,v),

= P(e(9,v))-H9,v)

Note that this is simply the controlled Hamiltonian with p0 = -1. Let us examine the

formula obtained by maximizing this Hamiltonian at a fixed point in T*G. By assumption,
this unique v sets —• = 0.

— = 0
dv

= ^(A(ec(0,*)))-03Z

dv

Consequently, at every point g,p we have the same controls. Using the canonical two-form

on TmG wemay verify, in a similar manner, that the evolution of Aagrees with the evolution

of p, finishing the proof.

In general when computing the dynamics of g and p, the formula for the optimal

input v in terms of g, pis substituted in after the computation of the v dependent dynamics.

The formula for the inputs may be inserted before the dynamics computation. We find this

more convenient and do so.

6.3.2 Extremal Characteristics

We have a very special class of systems and cost functional. For all systems without

drift, the two norm of inputs is shown to be a constant of the motion. For left invariant

systems without drift, there exists a right (material) symmetry for the system and at least

n + 2 conserved quantities. We examine these structures in the following.
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Proposition 18 (Norm Preservation [37])

Given: a drift-free control system Q, whose evolution is a normal extremal

described by (6.13),

Then: then two norm of the control inputs v is a constant of the motion.

Remark (MonotonicaHy Related Optimization): This proposition implies

that it is equivalent to minimize the integral of any monotonicaHy increasing functions of

the norm. Examples include the square of the two norm, ||v||2.

Proof: We first will show that ||v||2 is a constant of the motion. That the norm

is preserved follows. We assume the control system is linear in the inputs v,
p

ec(9,v) .= ^ej(p)vy .
3=1

Define the control momenta to be

P3{9,P) = M{9)). (6.17)

Note that for left invariant system, Pj will be independent of g. The controlled Hamiltonian

for normal extremals is given by

H{g,p,v) = E(Pivi-^i) (6-18)
which may be maximized by setting the controls Vj = Pj. The Hamiltonian under these

controls simplifies to

*(*.#) = sEjy. (6.19)

Note that 6.19 is Q invariant for left invariant control systems. Now we compute the time

derivative of ||v||2.

^ = Ep;{p"p;} (6.20)

Using this and noting that {PitPj} = -{Pj,Pj}, we find

* = S{g,p)v (6.21)

where 5(</,j&) is a skew symmetric matrix, completing our proof.

Now we consider the consequences of having a left invariant control system in

addition to the drift free property. The symmetric satellite and Hilare are left invariant.
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Proposition 19 (Reduction)

Given: a left-invariant control system on Q, whose evolution described by (6.19),

Then: the evolution of the co-state p depends only on its initial conditions and not g.

That is, the evolution of the p's does not depend on g. This is known in the

mechanics literature as reduction. We can evolve the co-state p separately and later compute

the phase (change in the state ofg) if we wish. The real draw back of this approach is that

the only thing we really careabout is exactly the geometric phase. For the proof, we pick a

basis for q so that the first p elements correspond to the vector fields of the control system.

Proof:

Pi = {Pi,H}

= flPiiPiiPi}

The next proposition concerns itself with the conserved quantities generated when

symmetries are present.

Proposition 20 (Noether's Theorem Applied)

Given: a left-invariant control system on Q, whose evolution described by (6.19),

Then: there exists n + 1 constants of the motion, given by H and /?,- = p{g~leig).

Proof: Certainly H = {H,H} = 0. For the others, simply differentiate the formula.

Pi = £(s-1e.-0) + P(srletf + S~1etf)

= -P([9~lei9,e]) + +P(-e9~1eig + g'^ige)

= -P{[9~^i9^]) + p([g~1eig,e\)

= 0

These constants arise naturally as the left Lagrangian is Q invariant. The con

stants are the left costates mapped to the right. The left co-states change, represented by

the functions Pt dependent on Q and the constants. For the rigid body, the left (body)

frame Lagrangian is independent of g. An application of Noether's theorem finds the right-

constants, the total angular momentum. The left translation of these are exactly the body
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angular momenta, which may be solved using the g and the total angular momenta con

stants.

6.3.3 Applications

In this section we consider several of the examples and discuss solution techniques,

exploiting what ever structure may exist. In general, since one cannot solve the optimal con

trol problem explicitly, a numerical strategy is required. Numerical optimization concerns

itself with minimizing functions of n variables subject to equality and inequality constraints

[26, 35].

Our problem involves finding inputs w(-) which belongs to a function space. By

using Pontryagin's maximum principle, we need consider only an n dimensional subset of

this space. These n degrees of freedom are parameterized by the initial co-state values.

How we decide to characterize the path planning problem determines which tech

niques we use. We could have even ignored the results of Pontryagin and attempted to form

approximate problems, restricting the inputs to lie in some r dimensional function space

and solving a series of sub-problems of increasing dimension r. Such methods are referred

to as semi-infinite [35].

We, however, have a great deal of structure. We can find the optimal inputs v

as a function of g,p and numerically compute the resulting phase, g(T, P). This may be

compared in the most natural way to gj, by setting

ge(T,P) = g(T,P)gJ1.

To convert this error term to a vector in Rn, it is natural to take the logarithm of ge(T,P).

That is to say, we find ne such that Exp(?ye) = ge(T,P). If ne = 0, then g(T,P) = gj. At

this point we have formed an n dimensional root finding problem. Even with the relatively

simple systems we consider here, this is difficult to solve.

Consider,for example, the positive scalarfunction /(T, P) = rffne. Many shooting

methods can be applied with such a function, depending on the amount of information and

computational time one is willing to expend. The simplest approach uses the simplex

method [14]. This method requires no derivative or gradient information and is the easiest

to program, though convergence is slow and not guaranteed.

For the computational price of a gradient calculation, steepest descent methods

offer more speed and reliability. It can be shown to converge linearly [26, 35] in certain
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convex situations. If one is willing to compute the Hessian, quadratic convergence is locally

given by Newton-Raphson [35] methods. Conjugate-gradient methods offer a compromise

between the two by estimating the Hessian using the past history of the algorithm. Local

convergence rate is faster than gradient decent, slower than Newton-Raphson.

Since we have a root finding problem, we use Newton-Raphson methods. The

inherent instability [35] in the technique is handled by using an Armijo step size rule [35].

The methods converge quickly, provided we start with good seeds.

The Symmetric Satellite

As before, we write the kinematics of the symmetric satellite as follows.

g = ghvi + ge2v2 (6.22)

where" the matrices et, i € {1,2,3}, form a basis set for the tangent space of 50(3) at the

identity in this particular representation, and hence form a basic for the Lie algebra so(3).

The norm of the inputs is conserved, and in addition, the system is left invariant. The

optimal inputs are

which are a family of sinusoids.

vt = ci cos(c2t+ c3)

v2 = cx sin(c2t + c3) (6.23)

Hilare

We now embed the configuration of Hilare into the 3-dimensional matrix Lie group

SE(2). The configuration will be represented by a 3 x 3 matrix, g, below:

9 =
R x

0 1

with R € 50(2), a 2 x 2 rotation matrix, and with x €

The dynamics will be given as:

9 = 9

0 -v2 Vi

v2 0 0

0 0 0
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with v the scalar inputs corresponding to driving and turning velocity. This can be written

more compactly as

g = geM + ge3v2 (6.24)

where the e,-, i € {1,2,3} form a basis set for the tangent space of SE(2) at the identity in

this particular representation, and hence form a basis for the Lie algebra se(2). They are

given by

ei =

0 0 1

0 0 0

0 0 0

" 0 0 0 "

, h = 0 0 1

0 0 0

, e3 =

0-10

1 0 0

0 0 0

(6.25)

The maximizing inputs are given by Vi — P\,v2 = P2. Their norm is conserved. The

optimal inputs solve the following equation,

Vi = Ci cos(0)

v2 = Ci sin(0)

9 = |-sin(20) (6.26)
where c2 = 0(0) and c3 = theta(0). These equations are those of a pendulum.

The Planar Acrobot

There are only two velocity inputs to the system, and their norm is a constant of

the motion. We can then write the optimal inputs as

Vi = Ci cos(0 + c2)

v2 = ci sin(0 + c2)

0 = c3£(y), (6.27)

where £(y) is as defined in (3.29). These formulae are easily verified by differentiation.

Recall that vi = Pi, v2 = P2. We have,

vi = -P2{Pi,P2}

vi = Pi{P2,Pi} (6.28)

We set 0 = {Pi,P2}, which is related to the bracket of /*,/* as before, which picks out c3

and £(y).
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6.4 Conclusion

We have considered a small number of path planners for control systems with

nonholonomic constraints. The literature contains many such planners [31, 46, 22, 41,

24, 33]. Optimal planning, while desirable, poses numerical difficulties. Consequently, as

is often the case in engineering, the best approach is determined by the application and

not the engineer. For example, the savings offered by optimal paths may not justify the

computational expense of finding them. However, the approach of computing off-line a large

set of trajectories and selecting among them at run time is viable as information storage is

inexpensive.
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Chapter 7

Conclusion

We have presented a strategy for controlling a class of mechanical systems with

nonholonomic velocity constraints. There were two control objectives. First, we wished to

reach the neighborhood of a goal configuration in an efficient manner, even with distur

bances. We also wished to remain in this neighborhood again despite disturbances. Several

new methods were presented which achieve these objectives.

The work of the dissertation included the following results along with examples of

their application.

• In chapter 2, we presented a set of coordinates and a feedback law which when applied

to the example mechanisms transformed them into control canonical form.

• Sets of coordinates and feedback laws under which the example mechanisms appeared

control reduced were detailed in chapter 3, along with

• a special set of coordinates and a feedback law for the satellite mounted with thrusters.

• Chapter 4 focused on a feedback law which renders the configuration of multiple-input

power form dynamic systems stable.

• A feedback law stabilizing the attitude of the asymmetric satellite was also presented

in chapter 4.

• A tracking control law which insured that the desired trajectories were followed was

detailed in chapter 5.
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• A suboptimal path planner for nonholonomic mechanisms was presented in chapter
6, along with

• an optimal path planner for nonholonomic mechanisms.

Many questions remain unanswered. In addition, there is much room for im

provement in each of the results presented. Some directions for future research include the

following.

• The feedback laws assumed unlimited control authority, and consequently the kine

matic properties of the example systems dominated the analysis. It would be inter

esting to study the example systems in regimes where dynamic properties dominated

the analysis.

• The satellite is representative of a large class of underactuated systems. Generalizing
the laws developed for the asymmetric satellite seems a promising avenue of future

research. In addition, it would be good to understand the connections between the

results in the dissertation and the energy-momentum methods found in the literature.

• Point stabilizing control laws would be more robust with respect to disturbances if

they had faster convergence rates.

• By restricting the optimal path planning problem to a small but relevant subclass

of problems, the numerical effort required to plan trajectories may be reduced. For

example, consider the problem of planning trajectories for airplanes near airports.

The airplane may be modeled as a left invariant control system on the Lie group
5£(3). The optimal planning problem in such a case has a great deal of structure,
which, when exploited, reduces computational effort.
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