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Abstract

The calibration of defocus distance and exposure time in lithographic equipment for integrated
circuits fabrication is currently performed manually. An automated approach promises better
consistency and reproducibility at a lower cost. The two critical parameters that determine the
performance of a lithographic stepper are the defocus distance and the exposure time. Currently,
the optimal settings are selected after examining a pattern that has been projected several tunes
across one wafer. Each pmjectibn is done uﬁder a different combination of exposure time and
defocus. The “best” pattern is chozen by an experienced operator, who looks for the image that
appears to be the sharpest, having the most vertical sidewalls, and whose critical dimensions are
the closest to .those of the desired pattern. The focus and eiposure settings corresponding to this
image are then selected as the settings to use. This, for example, is done when choosing the best
exposure and identifying current focus in using a SMILE or Bossung plot. This calibration
procedure has to be repeated periodically '_since the stepper, the light source and the chemicals
tend to age. Calibration is also necessary whenever maintenance is performed, or whenever the
machine is configured for the patterning of a new layer.

In this project we applied a two dimensional pattern recognition network which was trained to
choose the “best” developed image. We collected a database of digitized optical calibration
images generated on our stepper and tagged with a qualification code supplied by a human
expert. A feed forward network was trained using the backpropagation training algorithm to
recognize key aspects of the patterns exposed under different stepper settings. We used image

processing techniques (such as edge extraction and convolution) to pre-process the data before it
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was presented to the neural net. Results show that using image processing techniques and neural
nets can identify the optimum settings for the stepper with a success rate as high as 96%. Also,
this procedure can be extended to ensure that the exposure and focus settings are optimal on a

run-to-run basis in a production environment.
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Chapter 1 Introduction

1.1 Overview

Regular monitoring of semiconductor equipment is essential to the semiconductor
industry to ensure that the quality of the product and the efficiency of the processes are as
* high as possible [1]. Automating this monitoring promises better consjsiency and repro-
ducibility at a lov)er'cost'. :I'his project focuses on automating the calibration of a litho-
graphic wafer stepper by using image processing techniques and ;xeural networks to
ensure that this important piece of equipment is operating under the appropriate settings.
In order to accornplish this, we used optical microscope images of resist features that were
exposed by a lithographic wafer stepper under different focus and exposure settings. This
method is applied on the GCA 6200 wa}er stepper in the Berkeley Microfabrication Labo-
ratory. This wafer stepper is a 1 Megabit generation stepper; however, the techniques
described in this project can be extended to today’s more aggressive technologies that uti-
lize 64 Megabit and 256 Megabit steppers which can resolve features as small as 0.25 pum.
It is important to have some understanding about optical projection lithography in order to

understand the experiments in this project; therefore, lithographic wafer steppers are dis-

cussed in the next section.

1.2 Optical Projection Lithography

The photolithographic steps are very important in the semiconductor processing

sequence because they define the patterns on the different layers on the wafer. One of the
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main items involved in photolithography is the mask. Masks are glass with chrome islands
forming the desired patterns. These patterns are transferred to a light sensitive material

called photbresist [2).

Lithographic wafer steppers are used to expose the photoresist through the mask with
high-intensity ultraviolet light. Wherever there are openings in the chrome of the mask,
the light can pass through and expose the resist. Currently, there are two kinds of photore-
sists that are typically used in the Berkeley Microfabrication Laboratory, a G-lim; resist,
which is made to be spec:ally exposed at a wavelength of 435 nm, and an I-line resist,
which is for exposure at wavelengths of 365 nm. Both of these are positive resists. As can
be se;an in Figure 1, a positive resist that has been exposed to UV light will be washed
away in the following development step. On the other hand, a negative resist will remain

on the surface wherever it is exposed [2].
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Figure 1  Resist and silicon dioxide patterns following photolithography
with positive and negative resists [2].
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Chapter 1 Introduction . 3

A lithographic wafer stepper is a type of projection ﬁrimcr. See Figure 2 for a sche-
matic of a projection printer. The GCA 6200 wafer stepper (GCAWS) used in the Berke-
ley Microfabrication Laboratory has the capability to project a pattern, and then to move,
or “step”, the wafer stage and project the pattern again elsewhere on the wafer, under dxf-_
ferent exposure conditions, if desired. The GCAWS uses an exposure wavelength of 365

nm, the wavelength with which the I-line resist is usually used. Figure 3 shows a drawing

of a typical lithographic wafer stepper [3].

Figure2  Artist’s conception of a projection printer [2].
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Chapter 1 Introduction 4

Figure 3 A typical lithographic wafer stepper [3].

There are several parameters associated with an optical projection printer (and there-
fore with a wafer stepper.) One of them is called the numerical aperture (NA), which is a
measure of a lens’ capability to collect diffracted light from a light source and to project it

onto a surface. Its defining equation is as follows [3]:

NA = nsin® 0)]

where n is the refractive index (of air in this case) and 20 is the angle of acceptance of the
lens. Typical values for NA are between 0.16-0.63. As can be seen in the Figure 2, there
are two lenses in an optical projection system, the condenser lens and the projection lens.
The condenser lens is collecting the light from the source and projecting it to the mask,

and the projection lens is collecting the light from the mask and projecting it to the silicon

-

"

mersizsarvond ) ool o




Chapter 1 Introduction 5

surface. There are values of NA associated with each of these lenses. The ratio of the NA’s
for these lenses (NAc/NAo) is ©, the partial coherence value of the system. Typical values

for ¢ are between 0.4-0.85 [4].

The GCAWS that was calibrated in this project has an NA of 0.28 and a o of 0.5. The
theoretical limit of resolution for this stepper can by found by using the following equa-

tion:

lingwidth = k, XA/ (NA) Q-

where A is the wavelength of the light used the in exposure and k; is a constant which
ranges from 0.4 to 1.2, depending on resist type and stepper characteristics [4]. For a value
of k;=0.61, this equation yields a linewidth equal to 0.8 pm. This implies that 0.8 pm lines

are the smallest lines that the GCAWS can clearly resolve.

Another important factor to consider when dealing with an optical exposure tool is the
exposure time. The longer the resist is exposed to the UV light, the larger the dose of
energy that is imparted to it. Areas of resist that are supposedly protected by the chrome
on the mask (especially at the edge of an opening) may have received some exposure from
the UV light if the exposure time is too long. As shown in Figure 4, areas that should
remain dark can indeed receive some exposure because of diffraction effects [5]. As a
result, for positive resists, too much of the resist will be developed away and features will

become smaller or even disappear.
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Figure 4  Aerial image intensity vs. position for a knife-edge pattern at
a wavelength of 0.436 nm and numerical aperture of 0.28 for various
amuunts of partial coherence [5)].

On the other hand; if the exposure time is too low, then the areas may not be fully
exposed where they are supposed to be. Therefore, extra resist would remain after devel-
opment, resulting in larger features and uncleared resist. Figure 5 shows an example of an
overexposed image, and Figure 6 shows an underexposed example. In these examples, the
features (i.e., the squares, lines, and X's) are resist “islands” on the substrate. Note the dif-

ference between those two images and the ideal image shown in Figure 7.
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Figure5 An overexposed imaée.
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Figure 6 An underexposed image.
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Chapter 1 Introduction 8

Figure 7  The ideal image.

The ideal exposure time for a steppér may drift over time, since changes in the light

source, the chemicals, and the cleariroom environment may cause the ideal exposure time

to change as well. For the microlab stepper, the ideal exposure time usually ranges

between 0.6-1.0 seconds for the G-line resist, and from 0.25-0.50 seconds for the I-line

resist. Calibration of exposure time must therefore be performed periodically [1].

Another important parameter of a lithographic projection system is the defocus dis-
tance. There is a certain distance separating the projection lens and the image plane that
will produce the clearest image. If the distance between the lens and the image plane is
moved from this ideal distance by, say, A, then the image will become blurrier and less

well defined. This distance A is known as the defocus distance (see Figure 8.) Therefore, if

waddean
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Chapter 1 Introduction 9

the distance separating the projection lens and the image plane is “just right”, then the
defocus value is zero, and the corresponding image will be clear and well defined. If the
lens is 1 pum further than the ideal distance from image plane, then the defocus distance is
1um, and the corresponding image will be blurry [6]. Defocus distance can measured in

Rayleigh Units; the Rayleigh defocus distance is given by

RayleighDefocusDistance = A 5y 3)
2'~NA )

For our system, which has an NA =0.28 and A =365 nm, a Rayleigh Unit is 2.32 um.

ideal distance from lens
to image plane

A = defocus
distance

image plane

Figure 8 A visualization of defocus distance.
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As can be seen in Figure 9, if the defocus distance is not zero (i.e. the stepper is poorly
focused,) then the light intensity reaching the wafer will be poorly imaged [4]. This results
in a decrease in linewidth and poorly defined edges and corners, giving the features a

“fuzzy” appearance. Two-dimensional features, such as squares, have been found to be

especially sensitive to focus [4].

Intensity . ‘

Intensity at which
resist will develop

poorly focused

X

Figure 9 Lightintensity corresponding to a mask of lines and spaces for a the
ideal case, a well focused case, and a poorly focused case. The poorly focused
case would produce a smaller linewidth and poorly defined edges.

See Figures 10 and 11 for an example of a focused pattern and a poorly focused pat-
tern. The image will look the same if it is overfocused or underfocused by the same
amount, i.e. if the focal plane is above or below the ideal position by the same amount. For
example, if the setting is +1 Rayleigh Unit above the ideal distance, the resulting image
will look the same as if it were exposed with the focus setting -1 Rayleigh Unit from the

ideal distance.
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The GCA 6200 wafer stepper was calibrated in this project. During the original instal-
lation of this piece of equipment, the “ideal” focus setting was somewha; arbitrarily set to
be around 300 “divisions™ [7]. It is from this “ideal” reference baseline that all changes m
focus are made. Therefore, one can think of this value as corresponding to the zero defo-
cus case discussed before.vThis value should remain approximately the same from run to
run; however because the stepper ages and its components may drift over time, this value
may change over time, and has to be adjusted accordingly to produce the best results. This
value can take on values from about 125-375. Therefore, calibration of the ideal focal dis-

tance must be performed periodically to find the correct value that should be used.

One important thing to keep in mind is that there are 0.37 ums in a “division.” There-
fore, when the focus setting is moved from, say, 300 to 304, the automatic lens focus sys-
tem null position moves 4 x 0.37 = 1.48 um, inducing a 1.48 pm change at the focus
plane. This value is approximately 64% of a Rayleigh Unit which, for this system, is about

2.32 um.

1.3 The Manual Method of Calibration

-

The calibration of defocus distance and exposure time in lithographic equipment for
integrated circuits fabrication is currently performed manually. An automated approach
promises better consistency and reproducibility at a lower cost. The two critical parame-
ters that determine the performance of a lithographic stepper are the defocus distance and
the exposure time. This calibration procedure has to be repeated periodically since the

stepper, the light source and the chemicals tend to age. Calibration is also necessary when-
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Chapter 1 Introduction 13

ever maintenance is performed, or whenever the machine is configured for the patterning

of a new layer.

Currently, the optimal settings are selecte;l after examining a pattern that has been pro-
jected several times across one wafer [lf Each projection is done under a different combi-
nation of exposu}e time and defocus, forming a 7x7 matrix of images performed under
different settings. The “best” pattern is chosen by an experienced operator, who looks for
the image that appears to be the sharpest, having the most vertical sidewalls, and whose
critical dimensions are the closest to those of the desired pattzm. Figure 12 shows the
mask-from which these resist images were made. Figure 13 shows a case where the resist
was overexposed and poorly focused, which the human operator can determine by the dis-
appearahce of small features and a general blurriness of the corners. Figure 14 shows an
underexposed case, where there is still resist left behind after the development step. As
can be seen in Figure 15, which shows the resuits of ideal focus and exposure settings,
there is no leftover resist, thé features look sharp and well defined, and are not too small.
Thgrefore, the human expert would choose this image as the “lzest” and would reset the

stepper settings with this image’s corresponding focus and exposure settings.

The above mentioned procedure is labor intensive, expensive and error-prone. There-
fore, the objective of this project is to employ image processing techniques and neural net-

work modeling in order to automate the visual analysis performed by the operator.
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Figure 12 The mask from which the manual calibration images were made.

Figure 13  An overexposed, poorly focused image.
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1.4 Outline of this Document

In this project, we investigate an automated way of choosing the best image using
image processing techniques and neural nets on optical microscope images of resist fea-
tures that were exposed by a lithographic wafer stepper under different focus and exposure
settings. The image processing techniques that were used are describe(i first, along with
the Khoros[8) framework, within which they were implemented. A discussion of neural
" nets is then presented, with special emphasis on how they are used in \thls project. An
experimental exampie is then shown, which describes the image acquisition setup, the
new mask that was designed, the specific image processing techniques and neural nets
used, and results for selected patterns. Some SAMPLE simulations were performed in
order to investigate how sensitive .featurc size is to changing exposure time and defocus
values, and to quantify how effective our calibration results are in'keeping the linewidths
close to their ideal values. Lastly, some other specific applications for this type of proce-

dure are described.
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Chapter 2 Image Processing

Image processing techniques were needed to preprocess the pictures before they were
sent to the ngural network, in order to quantify and simplify the data into a suitable repre-
sentation. We could then use these values as the input to a neural network on which it
could then be trained. Some image processing techniques that were used were edge extrac-
tion, pixel extraction, and convolution. These operations were implemented within the

Khoros [8] framework, which is described at the end of this chapter.

2.1 Convolution

One image processing technique that was used to pre-process some of the image data
was convolution. Convolution involves a kernel of numbers multiplied by each pixel and
its neighbors in a small region, the results being summed, and the result being placed in
the original pixel location [9]. This is applied to all of the pixels in the image. The original
pixel values are used in the multiplication and addition, and the new derived values are

used to produce a new image. Discrete convolution can be expressed mathematically:

M N

glmn] ®f(mn) =Y Y fli,jl xglm—-in-j] @

i=0j=0

glm,n] is the image and f [m,n] is the kernel which is nonzero only for0 <i <M and 0 <j

<N.
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2.2 Edge Extraction

Another procedure that was applied to the images was edge extraction. This greatly
simplifies other image 'proces.sing procedures and minimizes the impact of noise. It demar-
cates the boundaries and enhances the visibility of small steps and other details [9]. See

Figure 16 for an example of edge extraction.
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Figure 16 An example of edge extraction.

The Canny Edge Detector [10] was used as the edge extraction algorithm in this
project. In this method of edge extraction, the image is convolved with the first derivative
of a Gaussian functionin two directions, resulting in a matrix. Local maxima in this
matrix indicate a change in the intensity of the original image (i.e. a possible edge). The
gradient of the matrix is then computed in order to give a vector perpendicular to the edge.
The next step is to move along this gradient until a maximum is found; that point is then
marked as an edge point. To prevent detection of false edges, there is a threshold value

placed on the magnitude of the gradient of matrix, below which the output is ignored.
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2.3 Using Edge Extraction and Convolution

All pictures and images were edge extracted prior to any convolution procedures in this

project. Convolution can identify the location of a specific feature in a larger picture. If a

"

small image of the feature in question is convolved with the larger picture, the pixel loca-
tion of the maximum resulting convolution value would indicate the location of the feature

in the large picture. See Figures 17-21 for a visual example.

Figure 18 A large edge extracted image.
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Figurc 19 A subregion of the image
(approximately 50 x50 pixels large.)

Figure 20 A small edge extracted image; this will be
used as the convolution kemnel.
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Figure 21  The convolution result of Figure 18 and Figure 20, The
bright spots denote high convolution values and therefore indicate the
most likely location of the pattern within the field of view.

An image obtained after a good exposure can serve as a kernel. We could then con-
volve this ideal image with-other test images, which may have been overexposed, underfo-
cused, etc. The convolution will produce a maximum value for the test image that most
closely matches the ideal image. In this context, convolution can be seen as a two-dimen-

-

sional “correlation” between an ideal image and the image being tested.

We were also interested in not only which test image produced the highest convolution
value, but also what the “shape” of the convolution values around that maximum were for
each test image. We recorded an area of convolution values for each test image. We could
then be able to have information about each test image, independently of how it compares

relative to the other test images. Figure 22 shows a convolution pattern for a test image.
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This would be useful in determining by how much the focus or exposure settings were off

(and in which direction it is necessary to move to correct it).

Figure 22 A convolution pattern for a test image.

2.3 Normalized Intensity Plots - -

2.3.1 One-dimensional Normalized Intensity'Plots

Another image processing tool that was utilized in this project was extracting one-
dimensional pixel cuts of a grey scale image and plotting the pixel intensities [8]. No
edge-extraction is performed prior to the extraction of the one-dimensional cut. This
method is especially convenient for line-space patterns, since much of the information in
this type of pattern can be captured in a one-dimensional cut. In order to reduce noise, sev-
eral adjacent one-dimensional cuts are taken, and their pixel values are averaged. As can
be seen in Figure 23, which plots the average value of the pixels from five adjacent cut-
lines from a 1 pm line-space pattern, the high intensities represent the bright areas of the
images, and the low values represent the dark areas (the edges) of the image. The wider

the bright areas in the intensity plot, the wider the corresponding line or space. Broad val-
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leys imply that the line has thick edges, which in turn could infer that there is a substantial
sidewall slope. The relative heights of the peaks (indicating lines and spaces alternatively)
also convey valuable information about the conditions under which the line was exposed.
The peaks corresponding to the spaces in overexposed images tend to be higher than the
peaks co:res;)onding to the lines. For underexposed images, the opposite is true; the peaks
corresponding to the lines are higher than the peaks corresponding to the spaces. See Fig-
ure 24 and Figure 25 for examples of one-dimensional iniensity plots of 1 pm lines that

were exposed under different settings. All of the pixel intensity values were normalized to

be between Q and 255.

profile of resist lines

216.8

Figure 23  An example of an image intensity plot. Above is the corresponding
profile of the resist lines. The dotted cut lines indicate how the edges in the profile
correspond to the valleys in the intensity plot.
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Figure 24 A one-dimensional pixel intensity plot of an overexposed line-
space pattern. .
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Figure 25 One-dimensional pixel intensity plot of an underexposed line-
space pattern.
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2.3.2 Two-dimensional Normalized Intensity Plots

In another effort to quantify the picture data into a representation suitable for presenta-
tion to the neural net, we also extracted two-dimensional areas of images and recgrdg:d the.
corresponding pixel intensities. This works best for small images, such as the two-squares
feature shown in Figure 26 so that most of the image can be captured in the extracted area.
The ideal image of this feature is shown in Figure 27, along with the approximate location
of the two dimensional area that was extracted. An example ;>f a two-dixﬁensional extrac-

tion is shown in Figure 28. Again, these values were normalized to be between 0 and 255.

=12

R

Figure 26 A SAMPLE 3D [11] simulation of the two 1 um resist squares
placed diagonally to each other.
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Figure 27 Ideal image of the squares and the area
extracted.

= e o

Figure 28 A 2 dimensional normalized pixel intensity
plot of the two 1 pm squares placed diagonally. The dotted
lines outline the ideal image of the squares.
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2.4 Khoros

The operations described in the previous sections were iin;;leménted within the
Khoros [8] framework. The Khoros image processing software was used to preprocess the
pictures. The Khoros system encompasses fundamental algorithms for image processing,
and has an interactive image display/editor so that you can visualize the image data. A
data flow graph, similar to block diagrams already used in image and signal processing, is

used to access and connect routines from the processing library.

As can be seen in Figure 29, which is a simplified version of a workspacc that was
used in this project, the workspace contains blocks, or “glyphs”, that each perform a cer-
tain function. The input glyph is where the input file is specified. The output of this input
glyph is piped into the tiff2viff glyph, which converts the picture from a tiff format to a
viff format, which is the only format that Khoros deals with directly. The output of this
conversion glyph is connected to two different glyphs, as can be ;'lone with many of the
Khoros glyphs. The put_update glyph displays the image fed into it. The vextract glyph
extracts subregions from a picture; here we have it configured to eitract a one-dimen-
sional cut along the 1 um line-space feature. These pixel values are then normalized to be
between 0 and 255 with the vnormal glyph. Next the numbers are saved to a file using the

viff2mat glyph, which will save the data in a matrix of numbers.

Other workspaces which contained routines to perform the convolution procedures,
the averaging of pixel cuts and the two-dimensional pixel extraction were utilized in this

project as well.
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Figure 29 An example Khoros workspace which performs a one-dimensional pixel

intensity extraction.
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The previous discussion of image processing techniques dealt with the methods that
were used to pre-process the pictures before they were sent to the neural network in order
to quantify and simplify the data into a suitable representation. We could then use these
vaiues as the input to a neural network, which would then be trained using this data to rec-
ognize whether the resist feature in the image was processed under the correct focus and

exposure settings. A discussion of neural nets is presented in the next chapter.
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Chapter 3 Neural Network Theory

One of the goals of neural nets is to learn from examples and to generalize, things that
the human brain can easily do. A neural net shares some basic qualities with the human
brain, such as having a parallel disﬁt;uted processing capability and being based on a
model that emulétes a neuron [12]. A neural net can be trained by presenting it with exam-
ples of inputs and their corresponding outputs. After the neural net has learned tﬂany of

these examples, it can then be applied to new examples, where it now should be able to

generalize and give the right output for these new examples.

3.1 Basic Background

The building blocks of neural nets are called neurons [12]. A simple neuron which is
shown in Figure 30, is made up of input and output units. The links between them are
assigned weights. This type of neuron sums the weighted inputs and passes the result
through a nonlinear function. This nonlinearity could be a step function, or more com-

mdnly, a sigmoidal function (which can also be seen in Figure 36) and is described by
1

fla) = '1+—e_(T_—§)- @

where @ is the threshold or offset.
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v x VS'(V)- ’
-1 N

Figure 30 A formal neuron using the sigmoid function as its nonlinearity
filter. '

These types of neurons can be trained by adjusting the weights in the following way [13]:
Step 1. Initialize Weights and Threshold

Set wj(O) (0 <i<N-1)and 0 to random values. Here wt) is the weight from input

i at time ¢ and 6 is the threshold in the output node.
Step 2. Present New Input and desired Output

Present new continuous valued input xg, X;... xN.; along with the desired output

d(v).
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Step 3."Calculate Actual Output

y (@) = £, Qw; (1) x,(1) -6)

Step 4. Adapt Weights

wi(t+1)= w(t) +n[d(D -y ()]x,(1),0<iSN-1

where d(t) = +1 if input from class A,-1 if input from class B.

In these equations 7 is a positive gain fraction less than 1 and d(t) is the desired cor-
rect output for the current iriput. Note that weights are unchanged if the correct deci-

sion is made by the net.
Step 5. Repeat by going to step 2

Other types of units th;xt Am neither input nor output units of the network are called
hidden. units and the play an important role in neural nets [12]. They make up one or more
layers of nodes that are between the input and the output layers. The addition c{f a hidden
layer enables the net to learn more complex examples. The training algorithm for this type
of net is called the back-propagation algorithm. The general idea of this procedure is that
it is trying to minimize a cost function equal to the mean square difference between the
desired and the actual net outputs. Since the hidden units have no “desired” output value
per se, their error is proportional to a weighted sum of the errors of the following layers,

which had already been computed. Therefore, the errors are propagated backwards. The
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back-propagation training algorithm is described in more detail in [13].

3.2 Stuttgart Neural Network Simulator

We used the Stuttgart Neural Network Simulator (SNNS) [14] to simulate our neural
networks. SNNS creates a simulation environment for the application of neural nets to
. various problems. The two main components of the SNNS simulator are the simulator ker-
nel and the graphical user interface (GUI). The sim]ﬂator kernel opérates on all of the
internal network data structures of the neural nets. The GUI gives a graphical representa-
tion of the neural networks and can be used to control the kernel during the simulation run.

An example of a neural network display generated by SNNS is shown in Figure 31.
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An example SNNS network display. This particular structure has 100 input

nodes, 2 layers of hidden layers of 10 units each, and 8 output nodes.

Figure 31

(Bos) Cene ) (=)

3 5, 3
s &y %3 Bamiemls Ermcem’

LIV S - T JUR " PR U P
= b p b NP R M FE ONE ORU K

ﬁﬁ?&mﬁﬁ Semiem’

A

F o8 8 5 5§ 8 % 6%
oS G ol sl G sl s sl s el s eI G B
e = & =z = g 8 & £ &
..om.oion.&.eﬁom.on.on.o«.a
B & 3§ m m
nlaw.oiam-awlom.om-en.o
m

7.9‘.“9 ieﬂ-o ie ie i' ie ie

hehm.ﬁmimﬁei.iaﬁ.ml.ﬁ.

ien-eiom-a«.emlomlenlen.eﬁe

.I,.ul.,nl.al..q-&l.mﬁ..n-.mloﬁm




Chapter 3 Neural Network Theory 35
3.3 Network Types

There were several different neural network types that SNNS was capable of simulat-
ing, such as the feed forward type, which simply has the different layers (the input, the

hidden and the output) feeding into each other sequentially [12].

The Kohonen type network [12] uses a Self-Organizing Map algorithm. It is based on
unsupervised learning. Self-Organizing Maps consist of two layers of units: a one djmen-
sic;nal input layer and a two dimensional competitive layer. Each unit in the compt;titive
layer is linked to its neighbors with weights; all of the weights gonnected to a given unit
can be described with a weight vector. iBefore starting the learning process, the competi-
tive layer is initialized with normalized vectors. The input pattern vectors are presented to
all compétitive units. The dot pfoduct of the weight vector with the input vector is an indi-
cator of how good the match is, and the best matcl;ing unit is chosen as the winner. The
nodes in its neighborhood are also affected, so that similar input patterns tend to produce a
response in units that are close to each other in the grid. Kohonen type networks are good

for clustering input data, such as sounds in speech.

The time delay neural network [12] is made of neurons receiving inputs that have been
delayed in time. This is good for tasks such as associating a letter with a corresponding

phoneme in speech recognition.

There are many more types of neural nets available in SNNS, such as the adaptive res-
onance theory models, the Hopfield net and the Jordan net. We used the feed forward type

in this project, because its structure was the same as the one of our problem.



Chapter 3 Neural Network Theory 36

3.4 Network Structure

There are several things to keep in mind when designing the structure of a feed-for-
ward neural net. One issue is representing the data in the input layer. Usually, the number
of input values describing the example is the number of input nodes used in the input

layer.

Representing the output is more complicate_d and depends on the example. For
instance, for the network to identify something as being one of three things, one could use
three output nodes where-one of the three nodes is set to 1 and the other two to 0. An alter-
native way to represent this output would be to have only one output node that can take
three different levels in order to distingﬁish between the three different things, such as 0,
0.5, and 1. There are many more possibilities, and the output representation can be chosen
after investigating several different ones. The output representation that produces the

highest success rate in identifying things correctly should then be used.

The number of hiddgn layers and nodes should be kept to the minimum number possi-
ble that will still allow sufficient learning by the net [15]. If there are too many hidden
nodes, the net will lose the ability-to generalize, as it will be learning the training examples
too specifically. So although the net might appear to have learned the problem very well
during the training stage, it will do poorly when applied to new examples. We have found

that in our problem, two hidden layers were sufficient.
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3.5 Training: Optimum Stopping Point

When a neural network is being trained, the weights are altered to decrease the error
on the training patterns. As can be seen in Figure 32, which shows the error curves of an
example neurai net being trained, the network has the largest amount of error in the initial
stages of training, because it has not had enough iteration cycles to fully learn the exam-
ples yet. As it goes through more training cycles, the training error decreases. However,
another issue to consider when training a net is the error curve of a trained net as it is being
applied to new examples (the “testing” data.) At some point in the later stages of learning,
the network may “overfit” tﬁe training data and the testing error would start to actually
increase, even though the training error continues to decrease. It can be seen that after a
certain number of training cycle iterations, (in this case, around 1500) the testing error of
the net increases. This is because the net will have become overtrained on the specific
training examples and will have lost its ability to generalize enough to correctly identify
new data [16]. Therefore, the optimum training stopping point should be where the testing

error curve attains its minimum.
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Error Curves for a Neural Net
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Figure 32 Training and testing error curves vs. # of training cycles of
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Chaptei’ 4 Implementation and Experimental Results

This chapter explains the image grabbing setup, the new mask that was designed, the
specific image processing techniques and neural nets used, and results of how successful
selected. patterns were in identifying focus and exposure settings. Not only were we trying
to identify the “‘best” settings, but we were also interestgd in identifying the specific focus
and exposure setﬁngs for a given image, so that we could indicate in what direction and by

how much to adjust the settings to attain the ideal conditions.

In order to understand how our experiments were designed, it is necessary to be famil-
iar with the exposure tool. See s‘ectic;n 1.2 for some background information on litho-
graphic wafer steppers. The processing steps before the resist image inspection were the
same as the current method of calibration used in the Berkeley Microfabrication Labora-
tory; an oxide layer 5000 A thick was grown on the wafer, and the resist was applied,

exposed and developed according to standard Microlab parameters [1].

4.1 The Image Acquisition Setup

-

Figure 33 is a schematic of the image “grabbing” setup in the Microlab. Attached to an
optical microscope is a Sony CCD camera which is hooked up to a Sanyo color video
monitor/digitizer which is connected to a UNIX workstation. It is therefore possible to
“grab” images of the exposed and developed resist on the wafer from the microscope and
have them sent to UNIX, where further processing of the picture can be performed. Also

attached to the microscope is a video monitor where the images can be viewed in the state
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in which they will be “grabbed”. Whatever image is seen in the monitor is the resulting

picture that is stored in UNIX.
Sony camera
- Sanyo Monitor/ Reidhert Pllylite
Sun Unix Workstation Digitizer Micfoscop
= |
malg%cation  a—
wafer

Figure 33  Schematic of the image grabbing setup in the Berkeley
Microfabrication Laboratory. -

We used the Reichert Polylite #30064 microscope, which is connected to output ports
so that it can produce photographs, hardcopy. printouts and UNIX image files. The images
were captured with a magnification of 1000x, the highest power that was available. The
resolution of the camera under this magnification is about one pixel per 0.1 pm. For exam-
ple, a one micron wide line captured in the picture would appear in the image to be ten

pixels wide.
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4.2 New Mask Design

A new mask was designed so that a pattern processed under the full range of focus and
exposures could be incorporated into one viewing field of the microscope. A picture is
equivalent to one video monitor which can contain about 50 pm x 30 pm worth of infor-

mation under 1000x magnification. See Figure 34 for a picture of a monitor screen worth

of data. (The previous test mask only allowed one focus/exposure setting per picture.)

Figure 34 A monitor screen worth of data. This image shows the full matrix

of the different focus (varying vertically) and exposure (varying horizontally)
settings.

The new mask incorporated several different small features, each fitting within a 6 pm x 6
um area, which would all be stepped and exposed in a 5x5 matrix of focus and exposure
settings. The stage of the GCAWS would move in very small steps for each exposure (9

Km in the x direction, and 6 pm in the y direction) so that one picture could contain all
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twenty-five different combinations of focus and exposure settings for a feature. Figure 35

shows several features stepped on the wafer.
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Figure 35 Several features stepped on the wafer.
several hundred (768) monitor screens worth of data per wafer. This way, very few wafers

All the patterns were each repeated forty-eight times on the mask, so that it could produce

were needed in order to provide all of the necessary training and testing data for our exper-

iments. Figure 36 shows a picture of the mask.
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Figure 36  Picture of the mask. o -

There are sixteen different features on the mask, eight of which are clear field features that
would produce photoresist islands of the shapes on the wafer, and another eight, identical
to these except they were done in the dark field manner so that there was resist everywhere
on the wafer except in the shapes, where the o;cide underneath was revealed. See Figure 37
for an example of resist islands and Figure 38 for an example of resist ‘“valleys”. We col-
lected a database of these digitized calibration images that were generated on our stepper.

A human expert had examined these images and identified the best one.

D Y B R TR R 1,
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Figure 37 SAMPLE 3D [11] simulation of four 1 pm square
“islands” of resist.

Figure 38 A SAMPLE 3D [11] simulation of four 1 um square
“valleys” of resist.
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4.3 Conditions of Exposure

- The experiment covered the same range of exposure and focus as in the runs per-
formed for manual calibration, excépt that the focus and exposure conditions here were
stepped only five times each, as opposed to seven times each (the number of steps used in
the current, “standard” method.) Therefore, the range spanned by the exposure time values
(for the G-line resist) would be, fgr example, from 0.65 seconds to 0.95 seconds for both
the standard run and our run, but the standard run would c<')ntain the e;xposure times of
0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95 seconds, while our new conditions would consist (-)!
exposure times of 0.65, 0.725, 0.8, 0.875, and 0.95 seconds. The same concept is used
when selecting the focus range and values for our experiment. See Tablel for an example
matrix of settings for the “standard”, current method, and Table 2 for an example matrix of

settings for this experiment.

Table 1: Range of Exposure and Focus Settings used in the standard run.

exp (sec) 0.65 0.70 0.75 0.80 0.85 0.90 0.95

foc (div) 306 310 314 318 322 326 330

Table 2: Range of Exposure and Focus Settings used in this Experiment

exp (sec) 065 | 0725 0.8 0.875 0.95
e e —————

foc (div) 306 312 318 324 330
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As can be seen in the above tables, the size of the focus setting increment for this
experiment was 6 “divisions”, which is equivalent to a 2.22 pm change in the focus plane.
This value is approximately one Rayleigh unit of defocus for this system. (see section 1.2
for a discussion of defocus distance.) We performed the training exposures so that the
“best” setting would be in the center of the matrix so that we could geta balanced‘range of

overexposure, underexposure, and focus settings in the matrix.

4.4 Specific Image Processing and Neural Networks Used For Automatic
Calibration ‘

We used image processing techniques to pre-pro}:ess the data before it was presented
to the neural net because we needed to quantify the information contained in the pictures
in order to get a suitable representation of the data. All images were processed using

KHOROS, and SNNS was used as the neural network simulator.

4.4.1 Intensity Plots Method using 1 jtm Lines
We investigated the 1 pm lines and spaces pattern (which is shown in Figure 39) to see

if it could accurately indicate the focus and exposure conditions of the resist.
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Figure 39 A grabbed monitor screen image of 1 pm lines and spaces.

These images were processed by the one-dimensional cuts/intensity plot method (see
section 2.3 for more details.) A neural net with these values was trained to give us the
appropriate focus and exposure settings. We used three wafers tha;t included the “lines”
feature on them. Two of these wafers had the I-line resist and the other wafer had the G-

line resist. Twenty-four monitor screens worth of pictures were digitized; each of the mon-

itor screens contained twenty-five images, resulting in a total of 600 individual images.

The first step was to locate the feature (in this case the lines) so that the appropriate
one-dimensional cut could be taken. To do this, we used convolution. The pixel location of
the peak convolution value would indicate a reference point in the image, which would
indicate exactly where the feature was, since the convolution value would be highest

where two images overlap. From this reference point, we can then figure out where to take
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the one-dimensional cut. First, we had to extract the edges of the images to simplify the

convolution procedures and to minimize noise sensitivity. (See Figure 40.)

where we want to take ) )
the one.dimensional cut edge-extraction convolution result

reference pixel reference pixel

Figure 40 Edge extraction on the 1 pm lines and spaces pattern and the
convolution result. The location of the maximum convolution value indicates the
reference pixel from which we can calculate where to take the one-dimensional cut.

Next, a “best” image was chosen by looking at the matrix of imaées that were produced,
keeping in mind that the ideal exposure setting would yield clear features, and that focus
effects are symmetrical (i.e. images focused 1 um above the ideal setting and images
focused 1 um below the ideal setting would look the same. Therefore, the focus setting
about which the images were “symmetrical” would be the “ideal” one.) This image was
then extracted and made into a smaller picture. This picture was then convolved with the
entire test picture (consisting of all twenty-five different settings); the result of this convo-
lution is seen in Figure 41. The pixel location of the peak convolution value for each of the
twenty-five regions would indicate the location of each of the images (i.e. give the pixel
coordinates of the location of the image), and therefore indicate where to take the one-

dimensional cut.
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Figure 41 Convolution result using ideal “lines” as the kernel
across the field of view.

Once we knew where the lines were, the next step was to extract the pixel intensity
values from the lines, as described in section 3.2. For each of the twenty-five images, a
one-dimensional cut fifty pixels long was taken across the lines and spaces. These pixel
intensities were normalized between 0 and 255 and then recorded. The peaks correspond
to the light colored areas of the picture, and the valleys represent the dark (i.e. the edges of
the lines) parts of the picture. This one-dimensional cut was done for the images resulting
from all the different focus/exposure settings. (Actually, the one-dimensional cut was an
average of five adjacent cuts on the line; this was done to reduce noise [see section 2.3.1].)
Figure 42 shows normalized line intensity plots for different exposure and focus settings.
The fifty intensity values for each setting format the input to the neural network, repre-

senting one image setting. The corresponding outputs, which indicate how far off each of
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the settings is from the ideal setting, would be assigned to each of them so that the net-

work could then be trained.
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Figure 42 Line intensity plots examples of the 1 pm lines-spaces
pattern for different exposure and focus settings: (a) good focus,
underexposed (b) good focus, good exposure, (c) good focus,
“overexposed, (d) poor focus, underexposed, (e) poor focus, good
exposure, and (f) poor focus, overexposed.
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SNNS was used to simulate a feed forward network trained with the backpropagation
training algorithm to recognize key aspects of the line pixel intensities patterns fo;' the
lines exposed under different stepper settings. The feed forward type of network was cho-
sen because it fit the structure of our problem. (See section 3.2 for more detail on'different
network types.) The fifty intensity values for each setting were normalized to be between
0 and 1 and were then presented to the 50-node input layer of the neural network as the
input values. We used two hidden layers of ten nodes each. The numt;enj of hidden nodes
was chosen after experimentation to be the fewest number of layers that would produce_a

small enough error without an over excessive number of cycles.

The eiglit output nodes represent the different possible settings of focus and exposure.
There were five different focus values and five different exposure values. Each of the out-
put nodes would indicate where in the 5x5 focus/exposure matrix the image would be.
Since being overfocuse_:d by a certain amount would render an image to look exactly like
being underfocused by the same amount, only three output nodes were needed to represent
the five different focus settings, as it is symmetrical around the best focal setting. The out-

put node assignments for each of the twenty-five different settings we:ze as follows:
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~ Table 3 Neural net outputs for the different focus and exposure settings.

under under over
exposed by | exposed by exposed by

2 settings 1 settings exposure 1 settings

focus off by
~ 2 settings

focus off by
1setting |1

perfect

focus

As can be seen from the prévious table, if a node was set to 1, all the previous nodes
for the parameter (exposure or focus) were also set to 1, introducing a cumulative affect.
This wés done to capture the continil.ity of the process within the neural net in order to
enhance the learning process [15). A visualization of an example output of the net is

shown in Figure 43.

Exposure _ >
00 O OO0
E the output setting

‘ ><4/'

Figure 43 A visualization of an example output of the neural net. Here,
the focus and exposure setting is indicated by the darkened circles, which
indicate a 1. In this case, the output is indicating that the image is
underexposed by 1 setting and is perfectly focused.
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The neural network was then trained with 425 example images, representing all the
different settings, for 10,000 cycles. While training the network, we were also testing it, to
see how well it was learning. There were 100 testing images. It can be seen from Figure 44
that at around 400 training cycles, the testing curve hits its minimum error. The testing
curve errors were calculated to be the percent identified incorrectly, where a testing output
was considered to be “‘correct” if the setting was identified exactly right, or if it was off by
one step in either focus or ex.posure. As can be seen in Figure 44, at its optimum state, the
trained neural net could identify 96% of the test images’ focus and exposure settings cor-
rectly. The results are plotted in Figure 45 and Figure 46 which show the correct settings
vs. the settings predicted by the neural network for focus and exposure. There were five

possible exposure settings and three focus settings.

As was noted previously in this section, the interval step size for the focus settings in
this experiment was approximately one Rayleigh Unit of defocus. This is a relatively large
amount of deviation from the ideal focus setting. Usually, we would like to be able to
detect a deviation of half a Rayleigh Unit of defocus from the ideal. Further experimenta-

tion is needed to confirm that the techniques used in this project can accomplish this.
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Error Curves for a Neural Net
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Figure 44 The training and testing error curves for a neural net trained to
recognize the focus and exposure conditions of 1 pm lines and spaces.
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predicted exposure setting
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Figure 45 Plot of the exposure settings estimated by the neural net
vs. the actual exposure settings. The area of the square is proportional
to the number of occurrences. The settings units are as follows:
underexposed by 2 settings is -2, underexposed by 1 setting is -1,
perfect exposure is 0, overexposure by 1 setting is +1 and overexposure
by 2 settings is +2. These tests represent a variety of focal settings.
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Figure 46 Plot of the focus settings estimated by the neural net vs.
the actual focus settings. The area of the square is proportional to
the number of occurrences. The settings values dre as follows: under
or over focused by 2 settings is -2, under or over focused by 1
setting is -1, and perfect focus is 0. These tests represent a variety of
exposure settings.

XY

4.4.2 Other Methods

In addition to the 1 pm line-space intensity plots, other methods and features were

examined for their potential in identifying focus and exposure settings.

Extracting a Two-Dimensional Area From an Image

Extracting a two-dimensional array of pixel values from a picture of a feature and
sending that array of numbers to the neural net is another way of quantifying and simplify-

ing the picture data. The feature on which this method was used is two island squares
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placed comer to corner, which can be seen in Figure 47. Note that in even the ideal focus
and exposure case, because of their small dimension (1 pm x 1 pm), the small squares
appear to be rounded. This is because it is reaching the diffraction limits of the GCA 6200
wafer stepper’s optical system, which as was mentioned before, can only clearly resolve
down to about 0.8 pm lines. We used one wafer that included this two-squares feature on
it; this wafer was coated with G-line resist. Twenty-one monitor screens worth of pictures
were digitized. However, this feature was very sensitive to changing focus and exposure
values; for some of the extreme settings, no pattern was present. Therefore, there were

about eighteen images in each picture (as opposed to the expected twenty-five), resulting

in a total of 372 individual training images.

Figure 47 A monitor screen of the 2 squares feature.
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As before, the first step was to locate where in the field of view the two-squares feature
was so that the appropriate two-dimensional segment could be extracted. To do this, we
again used'convolution techniques to identify the location of this feature. Once we knew
the location of the two-squares features in the picture, we extracted the pixel intensity val-
ues, as described in section 3.2. For each of the images, a two-dimensional area of 20x20
pixels was taken. These pixel intensities were normalized between 0 and 255 and then
recorded. Figure 48 shows an example of an area segment. This is equivalent to sending
the neural net the nonr;alized image directly. This two-dimensional extraction was done-
for the images resulting from all the different focus/exposure settings. The 20x20 intensity
values for each setting (after being normalized betw;aen 0 and 1) would then be the input
to the neural network, representing one image setﬁng. The corresponding outputs, which
indicate. how far off each of the settings is from the ideal setting, would be assigned to

each of them so that the network could then be trained.

Figure 48 A normalized 200x200 pixel segment of the image of the
2 squares feature. One pixel corresponds to 0.1 pum.
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SNNS used to simulate a feed forward network trained by using the backpropagation
training algorithm as before. The structure was similar to the one ﬁsed before, except that
now there are 400 input nodes, and 2 hidden layers of 15 nodes e.acl‘n. (For the one-dimen-
sional data from before there were SO input nodes and 2 hidden layers of 10 nodes each.)
This two-dimensional representation is more complex than the previous one-dimensional
one, thereby necessitating more hidden nodes. The neural network was then trained with
290 example images, teprese;xﬁng all the different settings, for 10,000 cycles. While train-
ing the network, we were also testing it against an independent set of patterns, to see how
well it was learning. There were 82 testing images. At its optimum state, the trained neural

net could identify 81% of the test images’ focus and exposure settings correctly.
Convolution Method with Two Squares Feature

Another method that deals with this same feature consisting of the two diagonai
squares uses only convolution procedures. (See section 2.3 for a detailed description of
convolution.) The convolution will produce a maximum value for the test image that most
closel& matches the ideal image. We were also interested in not only which test image pro-
duced the highest convolution value, but also what the “shape” of the convolution values
were for each test image. We recorded an area of convolution values for each‘test image
by considering a 10x10 pixel area of convolution values surrounding the highest convolu-
tion value for the image, which would have the peak at the center, and get smaller far from
the peak. Each setting would then have a “shape” of 10x10 convolution values associated

with it, which could then be sent to a neural network as the input and have corresponding

~outputs assigned to it. The results of the convolution can be seen in Figure 49. For compu-
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tational economy, the small picture was used as a convolution kemel over the twenty-five
small regions of interest in the big picture (where the features were) and skipped over the

“informationless” space between them.

Figure 49  Convolution result of convolving a small 2 squares image
with the large image. The black spaces between each of the 25 areas were
skipped over, since they convey no information.

Again, we used the twenty-one monitor screens worth of pictures that were grabbed;
there were approximately eighteen images per picture (as opposed to the expected twenty-

five), resulting in a total of 372 individual images.

This area convolution method was done for the images resulting from all the different
focus/exposure settings. The 10x10 pixel array of convolution values for each setting

would then be the input to the neural network, representing one image setting. The corre-



Chapter 4 Implementation and Experimental Results 61

sponding outputs, which indicate how far off each of the settings is from the ideal setting,
would be assigned to each of them so that the network could then be trained as it was

before with the other nets.

SNNS was again used to simulate a feed forward network trained by using the back-
propagation training algorithm as before. The structure was similar to the one used before,
except that now there are 100 input nodes, and 2 hidden layers of 15 nodes each. The neu-
ral network was then trained with 290 example images, re.presenting all the diﬂ’eregt set-
tings, for 10,000 cycles. While training the network, we were also testing it, to see how
well it could generalize. There were 82 testing images. The trained neural net could iden-
tify 67% of the test images’ focus and exposure settings correctly. It can be seen that this

method with this feature did not yield as good results as the other methods.
Convolution Method with Four Squares Feature

The same convolution method was also applied to another feature, the four island
square, which is shown in Figure 50. Again, we recorded a 10x10 pixel array of convolu-
tion values resulting from convolving an ideal image with each of the test images for each
of the images. The data was taken from three wafers, two of which were coated with I-line
resist, and the other with G-line resist. A total of twenty-four monitor screens were

grabbed, which results in approximately 577 images.
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Figure 50 A monitor screen of the 4 squares pattern.

The 10x10 pixel array of convolution values for each setting would again be the input
to the neural network, representing one image setting. SNNS was again used to simulate a
feed forward network u'gi‘ned by using the backpropagation training algorithm as before.
The structure was the same as the one used for the two-squares feature, with 100 input
nodes, 2 hidden layers of 15 nodes each, and 8 output nodes. The neural network was then
trained with 438 example images, representing all the different settings, for 10,000 cycles.
While training the network, we were also tcsﬁng it, to see how well it was learning. There
were 139 testing images. At its optimum state, the trained neural net could identify 70% of

the test images’ focus and exposure settings correctly.

It is interesting to note that even though two-dimensional features, such as squares, are

more sensitive to focus conditions than “line” features that convey one dimensional infor-
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mation [4], the feature with the squares was not as successful as the feature with the lines
in this project. This may be because of the specific methods we used to quantize and pro-

cess the images of the features.

The following table summarizes the results for the various features and methods that

were investigated.
Table 4 Summary of testing success rates for different features and methods.
- # of . testing
feature method r:?:rzt::e training # o;'ntismu:g success
patteins P rate!
— — — — — — |
1 um lines | One Dimen- 44.1 425 100 96%
and spaces | sional Pixel
Extraction
2 Squares Two 442 290 82 81%
placed diag- Dimen-
onally sional Pixel
Extraction
2 Squares Convolu- 442 290 82 67%
placed diag- tion
onally
4 Squares Convolu- 442 438 139 70%
tion

1. Testing success rate was defined to be the percentage of settings the neural net estimated “correctly”,
where a “correct” estimate was if it estimated the settings exactly right or was off by one setting in
either focus or exposure.




Chapter § Error Analysis for Possible Control Application 64

Chapter 5 - Error Analysis for Possible Control Application

Feature size can depend on the focus and exposure conditions of the lithographic
wafer stepper. For example, if the resist i—s overexposed, the linewidth may become
smaller than desired because more of the resist will have been exposed (and therefore
developed awayj than was originally designed for on the mask. On the other hand, if the
resist is underexposed, the linewidth may become larger, as not all of the resist would have
cleared in the spaces between the lines. The linewidth may decrease if the focus is too far
off from its ideal settiﬁg because less of the line will have been clearly imaged. See section
1.2 for more detail on how focus and exposure conditions can affect feature size. Focus
conditions may also affect the edge taper width of a line of resist. The further away the
focus settings are from the ideal focu's‘ condition, the more significant the edge taper width.

This is because the outline of the feature would be unclearly defined, resulting in a very

non-vertical sidewall.

- We wanted to know how much the linewidth would vary if it were exposed under the
different conditions of the matrix of settings that we had used for our experiment. We also
wanted to investigate how well our calibration of these settings would be able to keep the
linewidth close to what was desired. We used SAMPLE [17] to simulate what the I-line
resist profile would look like under the different focus and exposure settings foralpum
line feature. The units of defocus had to be adjusted for the simulations; from previously
performed experiments [18], it had been found that for every 8 “divisions” of defocus in

the GCAWS, there was 1 pm of defocus in the SAMPLE simulations. (See section 1.2 for
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a discussion on defocus distance.) We only simulated 3 different focus settings because of
the symmetry involved (underfocused images look the same as overexposed images.) Fig-
ure 51 shows an example of a SAMPLE profile, and how linewidth was measured to be

the width of the line at 50% of the resist height.

X-Y LINE PLOT

Y-AXIS

Figure 51 An example of a SAMPLE simulated line-space pattern.

The following table shows a typical range of settings of focus and exposure and what
their simulated linewidths (in pm) would be under those conditions. It can be seen that the
simulated linewidth decreases as the exposure values increase and as the focus values

stray away from the ideal. These results are plotted in the surf;ce plot shown in Figure 52.
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Table 5: Simulated lw (um) for different focus and exposure settings.

under- under- rfect over- over-
exposed by | exposed by ege osure exposed by | exposed by
2 settings 1 setting P 1 setting 2 settings
focus off by 0.907 - 0.887 0.874 0.858 0.842
2 settings
focus off by 0915 0.904 0.887 0.872 0.860
1 setting
perfect 0918 0.904 0.890 0.876. 0.865
focus o 0T
Iw
9.20E-01
9.10E-01 3
9.00E-01 "5
8.90E-01

8.80E-01
8.70E-01
8.60E-01
8.50E-01
8.40E-01

focus

exposure

Figure 52 A surface plot of the linewidths as the exposure and focus

settings are varied throughout the settings of the matrix.
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Alw / Afocus

& -
- exp

Figure 54  Surface plot of Alw / Afocus (as exposure is held
constant) as a function of focus and exposure.

Edge taper width was measured to be the horizontal distance from the top of the resist

to the extrapolated bottom (on one side of the line only), as can be seen in Figure 55.

Y-AXIS

e

l X-Aﬁls

| !
Figure 55 How edge taper width is measured in the simulated profiles.
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Alw / Afocus

Figure 54  Surface plot of Alw / Afocus (as exposure is held
constant) as a function of focus and exposure.

Edge taper width was measured to be the horizontal distance from the top of the resist

to the extrapolated bottom (on one side of the line only), as can be seen in Figure 55.
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Figure S5 How edge taper width is measured in the simulated profiles.
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The following is a table of the edge taper width of the six;mlated lines for the different
settings. It can be seen that the further away the focus settings were from the ideal, the
broader the edge taper width. Howgver. these changes in the edge taper widths are rajnher
small; this might imply that using cross sectional SEMs of the resist lines to evaluate:focus
settings may not be as sensitive as the techniques described in this project. Changing the

exposure time settings did not seem to affect the edge taper width.

Table 6 Simulated edge taper width (tm) for different focus and exposure
settings. :
under- under- ) over- over-
e?g; - | exposed by | exposed by ege;f:‘f:e exposed by | exposed by
2 settings 1 setting P 1 setting 2 settings
focus off by 0.22 0.21 0.20 0.21 0.20
2 settings
focus off by 0.19 0.19 0.17 0.17 0.17
1 setting .
perfect 0.18 0.17 0.16 0.16 0.17
focus

As was stated previously, our system predicted the settings to be ex.actly right or off by
one interval in either focus or exposure 96% of the time. Therefore it would be able to
indicate by how much and in what direction to move in order to get to the ideal settings
most of the time relatively accurately. If it were off by one setting interval in either the
exposure settings or the focus settings, the linewidth tolerances would be much smaller
(i.e. be within 0.015 pm of the desired linewidth) than if the calibration procedure had not
been used and the settings were to run the full range of the matrix, which could produce

delta linewidths as large as 0.048 um. So under the current experimental setting, our cali-
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bration procedure is sensitive enough that it can identify and correct inappropriate settings
that would lead to linewidth changes as little as 0.02 pm. Greater magnification can reduce
that number. Also, because convolution methods can be used to identify the exact location
of the lines (see section 2.2,) no precise alignment of the image is required. Therefore,

these techniques are very inexpensive and convenient to utilize.
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Chapter 6 Conclusions and Future Work

6.1 Conclusions

In this project, we investigated an automated method of choosing the best image (and

therefore the best setting) when calibrating a lithographic wafer stepper that utilized image
processing techniques and neural nets. In order to accomplish this, we used optical micro-
scope images of resist features that were exposed by a lithographic wafer stepper under

different focus and exposure settings.

| Convolution and pixel intensity extraction were used to pre-process the picture infor-
mation before it was sent to the network. Feed-forward nets were then trained with the
backpropagation algorithm to identify focus and exposure settings for a giveﬁ image. An
image grabbing setup was installed, and a new mask was designed especially for use in the

experiments in this project.

Results for selected patterns were presented; the best rcsults;, which utilized a one-
dimensional pixel extraction technique performed on 1 pm lines and spaces, showed that
our system could recognize the focus and exposure conditions witi\in one setting for a
given image 96% of the time. It is interesting to note that even though two dimensional
features, such as squares, are more sensitive to focus conditions than “line” features that
convey one dimensional information [4], the feature with the squares was not as success-
ful as the feature with the lines in this project. This may be because of the specific meth-

ods we used to quantize and process the images of the features.

) i
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From SAMPLE simulations that were performed in order to investigate how sensitive
linewidth was to changing exposure time and defocus values, it was found that by using
the calibration techniques described in this project, we can identify inappropriate settings

that would lead to linewidth changes of less than 0.02 pm.

6.2 Future Work

There are other applications for the techniques described in this project that are cur-
. rently being investigated. One further application is Ehe run-to-run mqniioring of stepper
conditions in a px;odixctio.n.environment. By incorporating some features on a production
wafer, the focus and exposure settings can be evaluated during prod.uction. A picture of
the features could be taken, and the image could then be processed and sent through a neu-
ral net, which could then indicaté by how much focus and exposure settings were off. It
would then be possible to determine in which direction to move in order to be at the opti-

-

munm settings. (See Figure 56.)
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Figure 56 The neural net would be able to identify how far off and in
which direction the focus and exposure settings are, and then be able to
indicate how to change the settings in order for the stepper to perform
optimally.

Also, inexpensive CD measurement applications can be developed using techniques
similar to ones described here, namely the line intensity plots. An image of the lines could
be grabbed, and one-dimensional cuts could then be taken across the lines to form inten-
sity plots. If a pixel to um ratio is established, then the number of pixels between the val-
leys (representing the dark edges in the picture, and therefore the edges of a line or space)

could be converted to um to measure linewidth. (See Figure 57.)
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Figure 57 An example of an image intensity plot. Above is the
corresponding profile of the resist lines. The cut lines indicate how the edges in
the profile correspond to the valleys in the intensity plot, and therefore how
CDs of the lines can be measured by looking at the distances between the
valleys in the intensity plot.
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