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Abstract

The calibration of defocus distance andexposure time in lithographic equipment for integrated

circuits fabrication is currently performed manually. An automated approach promises better

consistencyandreproducibility at a lower cost The two critical parameters that determinethe

performance of a lithographic stepperarethe defocus distance and the exposure time. Currently,

the optimal settings areselected afterexamining a pattern that has been projectedseveral times

across one wafer. Each projection is doneunder a differentcombination of exposuretime and

defocus. The "best*' pattern is chosenby anexperienced operator, who looks for the image that

appears to be the sharpest, having the most vertical sidewalls, and whose critical dimensions are

the closest to those of the desired pattern. The focus andexposuresettings corresponding to this

image arethen selected as the settings to use. This, forexample, is done when choosing the best

exposure and identifying current focus in using a SMILE or Bossung plot. This calibration

procedurehas to be repeated periodically since the stepper, the light source and the chemicals

tend to age. Calibration is also necessary whenever maintenance is performed, or whenever the

machine is configured for the patterning of a new layer.

In this projectwe applied a two dimensional pattern recognitionnetwork which was trained to

choose the "best" developed image.We collecteda database of digitized optical calibration

images generated on our stepperandtagged with a qualification code supplied by a human

expert. A feed forward network was trained using the backpropagation trainingalgorithmto

recognizekey aspects of the patterns exposed underdifferent steppersettings. We used image

processing techniques (such as edge extraction andconvolution) to pre-process the databefore it
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was presented to the neuralnet Results show that using image processingtechniques and neural

nets can identify the optimum settings for the stepperwith a success rateas high as 96%. Also,

this procedure can be extended to ensurethat the exposureand focus settings areoptimal on a

run-to-run basis in a production environment
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Overview

Regular monitoring of semiconductor equipment is essential to the semiconductor

industry to ensure that the quality of the product and the efficiency of the processes are as

high as possible [1]. Automating this monitoring promises better consistency and repro

ducibility at a lower cost This project focuses on automating the calibration of a litho

graphic wafer stepper by using image processing techniques and neural networks to

ensure that this important piece of equipment is operating under the appropriate settings.

In order to accomplish this, we used optical microscope images of resist features that were

exposed by a lithographic wafer stepper under different focus and exposure settings. This

method is applied on the GCA 6200 wafer stepper in the Berkeley Microfabrication Labo

ratory. This wafer stepper is a 1 Megabit generation stepper; however, the techniques

described in this project can be extended to today's more aggressive technologies that uti

lize 64 Megabit and 256 Megabit steppers which can resolve features as small as 0.25 Jim.

It is important to have some understandingabout optical projection lithography in order to

understand the experiments in this project; therefore, lithographic wafer steppers are dis

cussed in the next section.

1.2 Optical Projection Lithography

The photolithographic steps are very important in the semiconductor processing

sequence because they define the patterns on the different layers on the wafer. One of the
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main items involved in photolithography is the mask. Masks are glass with chrome islands

forming the desired patterns. These patterns are transferred to a light sensitive material

called photoresist [2].

Lithographic wafer steppers are used to expose the photoresist through the mask with

high-intensity ultraviolet light Wherever there are openings in the chrome of the mask,

the light can pass through and expose the resist Currently, there are two kinds of photore

sists that are typically used in the Berkeley Microfabrication Laboratory, a G-line resist,

which is made to be specially exposed at a wavelength of 435 nm, and an Mine resist,

which is for exposureat wavelengths of 365 nm. Both of these arepositive resists.As can

be seen in Figure 1, a positive resist thathas been exposed to UV light will be washed

away in the following development step. On the other hand, a negative resist will remain

on the surface wherever it is exposed [2].

Figure 1 Resist and silicon dioxide patterns following photolithography
with positive and negative resists [2].
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A lithographic wafer stepper is atype of projection printer. See Figure 2 for a sche

matic of a projection printer. TheGCA6200 wafer stepper (GCAWS) used in the Berke

ley Microfabrication Laboratory has the capability to project a pattern, and then tomove,

or"step", the wafer stage and project the pattern again elsewhere on the wafer, under dif

ferent exposure conditions, if desired. The GCAWS uses an exposure wavelength of365

nm, the wavelength with which the Mine resist isusually used. Figure 3 shows adrawing

of a typical lithographic waferstepper [3].

/1\
Lensl

/w
-Mask

Lens 2

\l/
Photoresist —IrTTTTTTfTilUIJJIJlj^- gj^

Figure 2 Artist's conception of a projection printer [2].
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REDUCTION LENS
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WAFER

Figure 3 A typical lithographic waferstepper [3].

There are several parameters associated with an optical projection printer (and there

fore with awafer stepper.) One of them is called the numerical aperture (NA), which is a

measure ofalens* capability tocollect diffracted light from alight source and toproject it

onto a surface. Its defining equation is as follows [3]:

NA = rtsinS (1)

where nis the refractive index (of air in this case) and 26 isthe angle ofacceptance ofthe

lens. Typical values for NA are between 0.16-0.63. Ascan be seen in the Figure 2, there

are two lenses in an optical projection system, the condenser lens and the projection lens.

The condenser lens iscollecting the light from the source and projecting it to the mask,

and the projection lens is collecting the light from the mask and projecting it to the silicon
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surface. There are values of NA associated with each of these lenses. The ratio of the NA's

for these lenses (NAc/NAo) is a, the partial coherencevalue of the system. Typical values

for o are between 0.4-0.85 [4].

The GCAWS that was calibrated in this project has an NA of 0.28 and a a of 0.5. The

theoretical limit of resolution for this stepper can by found by using the following equa

tion:

linewidth = Aj x %/ (NA) (2)

where X is the wavelength of the light used the in exposure and kj is a constant which

ranges from 0.4 to 1.2,depending on resisttype andsteppercharacteristics [4]. Fora value

of kj=0.61, thisequation yields alinewidth equal to 0.8 |xm.This impliesthat0.8 Jim lines

are the smallest lines that the GCAWS can clearly resolve.

Anotherimportant factor to consider when dealing with an optical exposuretool is the

exposure time. The longer the resistis exposed to the UV light, the larger the dose of

energy that is imparted to it Areas of resist that are supposedly protected by the chrome

on the mask (especially at the edge ofanopening) may have received some exposure from

the UV light if the exposure time is too long. As shown in Figure 4, areas that should

remain dark can indeed receive some exposure because of diffraction effects [5]. As a

result, for positiveresists, too much of the resist will be developed away and features will

become smaller or even disappear.



Chapter 1 Introduction

t u
-»*• 0* t#i «»

IJ ^ff-01
,^-< .-ff *0«

,

1.1 ^-<^-g»0>
•jO *•0,~"jk£

0.9 lipV XX.

>• OJ \ V\V°
•- \ «• l.s
m 0.7 \. •
X

£ 04
S 05

0.4
•

OJ
9 .1.0.

02 a. I.5.X

0.1

0.0
—£L"J*&* • .

0.«

0.4

O.f

Oji U06EI Ip

•-POSITION-*

2* »*•

Figure 4 Aerial image intensity vs. position for aknife-edge pattern at
a wavelength of 0.436 nm and numerical aperture of 0.28 for various
amounts of partialcoherence [5].

On the other hand, if theexposure time is too low, then the areas maynotbe fully

exposed where they are supposed to be. Therefore, extra resist would remain after devel

opment, resulting in larger features and uncleared resist Figure 5 shows an example of an

overexposed image, and Figure 6 shows an underexposed example. In these examples, the

features (i.e., the squares, lines, and X's) are resist "islands" on the substrate. Note the dif

ference between those two images and the ideal image shown inFigure 7.
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1

Figure 5 An overexposed Image.
4

OOt«

Figure 6 An underexposed image.



Chapter 1 Introduction

•"^Sfefe.^VKt--' -: -••'•:. •••<•'•
inawwSEmmms*f&i&safBte

Figure 7 The ideal image.

The ideal exposure time for a stepper may drift over time, since changes in the light

source, the chemicals, and the cleanroom environment may cause the ideal exposure time

to change as well. For the microlab stepper, the ideal exposure time usually ranges

between 0.6-1.0 seconds for the G-line resist, and from 0.25-0.50 seconds for the I-line

resist. Calibration of exposure time must therefore be performed periodically [1].

Another important parameter ofa lithographic projection system is the defocus dis

tance. There is acertain distance separating the projection lens and the image plane that

will produce the clearest image. Ifthe distance between the lens and the image plane is

moved from this ideal distance by, say, A, then the image will become blurrier and less

well defined. This distance Ais known as the defocus distance (see Figure 8.) Therefore, if

I

i
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the distance separating the projection lens and the image plane is "just right", then the

defocus value is zero, and the correspondingimage will be clear and well defined. If the

lens is 1 |xm further than the ideal distance from image plane, then the defocus distanceis

ljim, and the corresponding image will be blurry [6]. Defocus distance can measured in

RayleighUnits; the Rayleigh defocus distance is given by

RayleighDefocusDistance = p?)
(3)

Forour system, which has an NA =0.28 andX= 365 nm, a Rayleigh Unit is 2.32 nm.

lens

A = defocus
distance

ideal distance from lens
to image plane

image plane

Figure 8 A visualization of defocus distance.
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As can be seen in Figure 9, if the defocus distance is not zero (i.e. the stepper is poorly

focused,) then the light intensity reachingthe wafer will be poorly imaged [4]. This results

in a decrease in linewidth and poorly defined edges and corners, giving the features a

"fuzzy" appearance. Two-dimensional features, such as squares, have been found to be

especially sensitive to focus [4].

Intensity

Intensity at which
resist will develop

Figure9 Light intensity corresponding to a mask oflines and spaces for a the
ideal case, a well focused case, and a poorly focused case. The poorly focused
case would produce a smaller linewidth and poorly defined edges.

See Figures 10 and 11 for an example of a focused pattern and a poorly focused pat

tern. The image will look the same if it is overfocused or underfocused by the same

amount, i.e. if the focal plane is above or below the ideal position by the same amount For

example, if the setting is +1 Rayleigh Unit above the ideal distance, the resulting image

will look the same as if it were exposed with the focus setting -1 Rayleigh Unit from the

ideal distance.
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Figure 10 A well focused image.'

Figure 11 A poorly focused image.
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TheGCA6200 wafer stepper was calibrated in this project During the original instal

lation of this piece of equipment, the "ideal" focus setting was somewhat arbitrarily set to

bearound 300 "divisions" [7]. It is from this "ideal" reference baseline that all changes in

focus are made. Therefore, one can think of this value ascorresponding to the zero defo-

cus case discussed before. This value should remain approximately the same from runto

run; however becausethe stepperagesandits componentsmay drift over time, this value i
i

may change over time, and hasto be adjusted accordingly to producethe best results.This \

value can take on values from about 125-375. Therefore, calibration of the ideal focal dis

tance must be performed periodically to find the correct value that should be used.

One important thing to keep in mind is that thereare0.37 |ims in a "division." There

fore, when the focus setting is moved from, say,300 to 304, the automatic lens focus sys

tem null position moves 4 x 0.37 = 1.48 |im, inducing a 1.48 iim change at the focus

plane. This value is approximately 64% of a RayleighUnit which, for this system, is about

2.32 urn.

1.3 The Manual Method of Calibration

The calibration of defocus distance and exposure time in lithographic equipment for

integrated circuits fabrication is currently performed manually. An automated approach

promises betterconsistency and reproducibility at a lowercost.The two critical parame

ters that determine the performance of a lithographic stepper are the defocus distance and

the exposure time. This calibration procedure has to be repeated periodically since the

stepper, the light source andthe chemicals tend to age. Calibration is alsonecessary when-
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ever maintenance is performed, or whenever the machineis configured for the patterning

of a new layer.

Currently, the optimal settings areselected afterexamining a patternthat has been pro

jected several times across one wafer [1]. Each projection is done under a different combi

nation of exposure time and defocus, forming a 7x7 matrix of images performed under

different settings. The "best" pattern is chosen by an experienced operator, who looks for

the image that appears to be the sharpest, having the most vertical sidewalls, and whose

critical dimensions are the closest to those of the desired pattern. Figure 12 shows the

maskfrom which these resist images were made. Figure 13 shows a case where the resist

was overexposedand poorly focused, which the humanoperator can determineby the dis

appearance of small features and a general blurriness of the corners. Figure 14 shows an

underexposed case, where there is still resist left behind after the development step. As

can be seen in Figure 15, which shows the results of ideal focus and exposure settings,

there is no leftover resist, the features look sharp and well defined, and arenot too small.

Therefore, the human expert would choose this image as the "best" and would reset the

steppersettings with this image's corresponding focus and.exposuresettings.

The above mentioned procedure is laborintensive, expensive and error-prone. There

fore, the objective of this project is to employimage processing techniques andneural net

work modeling in orderto automate the visual analysis performedby the operator.
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Figure 12 The mask from which the manual calibration images were made.

Figure 13 An overexposed, poorly focused image.
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Figure 14 An underexposed image.

Figure 15 A well focused, well exposed image.
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1.4 Outline of this Document

In this project, we investigate an automated way of choosing the best image using

image processing techniques and neural netson optical microscope images of resist fea

tures that were exposed by alithographic wafer stepper under different focus and exposure

settings. The image processing techniques thatwere used are described first, along with

the Khoros[8] framework, within which they were implemented. A discussion of neural

nets is then presented, with special emphasis on how they are used in this project An

experimental example is then shown, which describes the image acquisition setup, the

new mask that was designed, the specific image processing techniques and neural nets

used, and results for selected patterns. Some SAMPLE simulations were performed in

order to investigate how sensitive feature size is to changing exposure time and defocus

values, and to quantify how effective our calibration results are in~keeping the linewidths

close to their ideal values. Lastly, some other specific applications for this type of proce

dure are described.
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Chapter 2 Image Processing

Image processing techniques were needed to preprocess the pictures before they were

sentto the neural network, in order to quantify and simplifythe data intoa suitable repre

sentation. We could then use these values as the input to a neural network on which it

could then betrained. Someimage processing techniques that wereusedwereedgeextrac

tion, pixel extraction, and convolution. These operations wereimplemented withinthe

Khoros [8] framework, which is describedat the end of this chapter.

2.1 Convolution

One image processing technique that was used to pre-process some of the image data

was convolution. Convolution involves a kernel of numbers multiplied by each pixel and

its neighbors in a small region, the results being summed, and the result being placed in

the original pixel location [9]. This is appliedto all of the pixels in the image. The original

pixel values are used in the multiplication and addition, and the new derived values are

used to producea new image. Discreteconvolution can be expressed mathematically:

M N

g[m,n] ®/[m,n] s £ ^flUj] xglm-is-j] (4)
i c0;' = 0

g[m,n] is the image and/[m,n] is the kernel which is nonzero only for 0 < i < M and 0 <j

<N.
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2.2 Edge Extraction

Another procedure that was applied to the images was edge extraction. This greatly

simplifies other image processing procedures and minimizes the impact of noise. It demar

cates the boundaries and enhances the visibility of small steps and other details [9]. See

Figure 16 for an example of edge extraction.

•j^ *jmL* • I • Z 3MUL* r.

image edge extracted
image

Figure 16 An example of edge extraction.

The Canny Edge Detector [10] was used as the edge extraction algorithm in this

project. In this method of edge extraction, theimage is convolved with the first derivative

of a Gaussian function"m two directions, resulting in a matrix. Local maxima in this

matrix indicate a change in the intensity of the original image (i.e. a possible edge). The

gradient of thematrix is then computed in order to giveavector perpendicular to theedge.

The next step is to move along this gradient until a maximumis found; that pointis then

marked as an edge point. To prevent detection of false edges, there is a threshold value

placed on the magnitude of the gradient of matrix, belowwhich the outputis ignored.
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2.3 Using Edge Extraction and Convolution

All pictures and images were edge extracted prior to any convolution procedures in this

project. Convolution can identify the location of a specific feature in a larger picture. Ifa

small image of the feature in question is convolved with the larger picture, the pixel loca

tion ofthe maximum resulting convolution value would indicate the location ofthe feature

in the large picture. See Figures 17-21 for avisual example.

Figure 17 A large image.
-. w

Figure 18 A large edge extracted image.
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Figure 19 A subregionof the image
(approximately 50 x50 pixels large.)

Figure 20 A smalledgeextracted image; this will be
used as the convolution kernel.

20
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Figure21 The convolution result of Figure 18 and Figure 20. The
bright spots denote high convolution values and therefore indicate the
most likely location of the pattern within the field of view.

21

An image obtained after a good exposure can serve as a kernel. We could then con

volve this ideal image with other testimages, whichmay havebeenoverexposed, underfo-

cused, etc. The convolution will produce a maximum value for the test image that most

closely matches the ideal image. In this context, convolution can be seen as a two-dimen

sional "correlation" between anideal image and the imagebeingtested.

We were also interested in notonlywhich testimage produced thehighestconvolution

value, but also what the "shape" of the convolution values around that maximum were for

each testimage. We recorded an area of convolution values for each test image. We could

then beable to have information about each test image, independently of howit compares

relative to the other test images. Figure 22 shows aconvolution pattern for a test image.
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Thiswould be useful in determining byhow much thefocus or exposure settings were off

(and in which direction it is necessary to move to correct it).

Figure 22 A convolution pattern for a test image.

2.3 Normalized Intensity Plots

2.3.1 One-dimensional Normalized Intensity Plots

Another image processing tool that was utilized in this project was extracting one-

dimensional pixel cuts of a grey scale image and plotting the pixel intensities [8]. No

edge-extraction is performed prior to the extraction of the one-dimensional cut. This

method is especially convenient for line-space patterns, since much of the information in

this type of pattern can be captured in a one-dimensional cut In order to reduce noise, sev

eral adjacent one-dimensional cuts are taken, and their pixel values are averaged. As can

be seen in Figure 23, which plots the average value of the pixels from five adjacent cut-

lines from a 1 |im line-space pattern, the high intensities represent the bright areas of the

images, and the low values represent the dark areas (the edges) of the image. The wider

the bright areas in the intensity plot, the wider the corresponding line or space. Broad val-
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leys imply that the line has thick edges,which in turn could infer that there is a substantial

sidewall slope. The relative heights of the peaks (indicating lines and spaces alternatively)

also convey valuable information about the conditions under which the line was exposed.

The peaks corresponding to the spaces in overexposed images tend to be higher than the

peaks correspondingto the lines. Forunderexposedimages, the opposite is true; the peaks

corresponding to the lines are higher than the peaks corresponding to the spaces. See Fig

ure 24 and Figure 25 for examples of one-dimensional intensity plots of 1 \ua lines that

were exposed under different settings. All of the pixel intensity values were normalized to

be between 0 and 255.

profile of resist lines i i

n^j^v_r~\

X Am t

Figure 23 An example of an image intensity plot Above is thecorresponding
profile of theresist lines. Thedotted cutlines indicate howtheedges in the profile
correspond to the valleys in the intensity plot.
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profile of resist lines

Figure 24 A one-dimensional pixel intensity plot of an overexposed line-
space pattern.

profile of resist lines

X Am T

Figure 25 One-dimensional pixel intensity plot of an underexposed line-
space pattern.

24
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2.3.2 Two-dimensional Normalized Intensity Plots

In another effort to quantify the picture data into a representation suitable for presenta

tion to the neural net, we also extracted two-dimensional areas of images and recorded the

corresponding pixel intensities. This works best for small images, such as the two-squares

feature shown in Figure 26 so that most of the image can be captured in the extracted area.

The ideal image of this feature is shownin Figure 27, along with the approximate location

of the two dimensional area that was extracted.An example of a two-dimensionalextrac

tion is shown in Figure 28. Again, these values were normalized to be between 0 and 255.

Figure 26 A SAMPLE 3D[11] simulation of thetwo 1 \im resist squares
placed diagonally to each other.
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Figure 27 Ideal image of the squares and the area
extracted.

. _ _. J

'jfcjj&t.

Figure 28 A 2 dimensional normalized pixel intensity
plot ofthe two 1 ujn squares placed diagonally.The dotted
lines outline the ideal image of the squares.

26
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2.4 Khoros

The operations described in the previous sections were implemented within the

Khoros [8] framework. The Khorosimage processing software was used to preprocess the

pictures. The Khoros system encompasses fundamental algorithms for image processing,

and has an interactive image display/editor so that you can visualize the image data. A

data flow graph, similar to block diagrams already usedin image and signal processing, is

used to access and connect routines from the processing library.

As can be seen in Figure 29, which is a simplified version of a workspace that was

used in this project, the workspace contains blocks, or"glyphs", that each perform a cer

tain function. The input glyphis wherethe input file is specified. The outputof this input

glyph is piped into the tiff2viiT glyph, which converts the picture from a tiff format to a

viff format, which is the only format that Khoros deals with directly. The output of this

conversion glyph is connected to two different glyphs, as can be done with many of the

Khoros glyphs. The put.update glyph displays the image fed into it The vextract glyph

extracts subregions from a picture; here we have it configured to extract a one-dimen

sionalcut alongthe 1 \im line-space feature. These pixel values arethen normalized to be

between 0 and 255with the vnormal glyph. Next the numbers are savedto a file usingthe

viff2mat glyph, which will save the data in a matrix of numbers.

Other workspaces which containedroutines to perform the convolution procedures,

the averaging of pixel cuts and the two-dimensional pixel extraction were utilized in this

project as well.
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Figure29 An example Khoros workspacewhich performs a one-dimensional pixel
intensity extraction.
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The previous discussion of image processing techniques dealt with the methods that

were used to pre-process the pictures before they were sent to theneural network in order

to quantify and simplify the data into asuitable representation. We could then usethese

values astheinputto aneural network, which would then be trained using thisdata to rec

ognize whether the resist feature in the image was processed under the correct focus and

exposure settings. A discussion of neural nets is presented in thenext chapter.
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Chapter 3 Neural Network Theory

One of the goals of neural nets is to learn from examples and to generalize, things that

the human brain can easily do. A neural net shares some basic qualities with the human

brain, such as having a parallel distributed processing capability and being based on a

model that emulates a neuron [12]. A neural net can be trained by presenting it with exam

ples of inputs and their corresponding outputs. After the neural net has learned many of

these examples, it can then be applied to new examples, where it now should be able to

generalize and give the right output for these new examples.

3.1 Basic Background

The building blocks of neural nets are called neurons [12]. A simple neuron which is

shown in Figure 30, is made up of input and output units. The links between them are

assigned weights. This type of neuron sums the weighted inputs and passes the result

through a nonlinear function. This nonlinearity could be a step function, or more com

monly, a sigmoidal function (which can also be seen in Figure 30) and is described by

/(a) =777^ (4)

where 6 is the threshold or offset
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Figure 30 A formal neuronusingthe sigmoidfunction as its nonlinearity
filter.

31

These types of neuronscan be trainedby adjusting the weights in the following way [13]:

Step 1. Initialize Weights and Threshold

Set w;(0) (0< j <N-1) and 9 torandom values. Here w,<t) is the weight from input

/ at time t and 9 is the threshold in the output node.

Step 2. Present New Input and desired Output

Present new continuous valued input x0, xj... xN.t along with the desired output

d(t).
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Step 3. Calculate Actual Output

y(0 »/A(XwiW*iW-e)

Step 4. Adapt Weights

w^t+D^ w^) +T\[d(P)-y(t)}xi(t),Q<iZN-l

where d(t) = +1 if input from class A,-l if input from class B.

In these equations r) is a positive gain fraction less than 1 and d(t) is the desired cor

rect output for the current input. Note that weights are unchanged if the correct deci

sion is made by the net.

Step 5. Repeat by going to step 2

Other types of units that are neither input nor output units of the network are called

hidden units and the play an important role in neural nets [12]. They make up one or more

layers of nodes that are between the input and the output layers. The addition of a hidden

layer enables the net to learn more complex examples. The training algorithm for this type

of net is called the back-propagation algorithm. The general idea of this procedure is that

it is trying to minimize a cost function equal to the mean square difference between the

desired and the actual net outputs. Since the hidden units have no "desired" output value

per se, their error is proportional to a weighted sum of the errors of the following layers,

which had already been computed.Therefore, the errors are propagated backwards. The
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back-propagation training algorithm is described in more detail in [13].

3.2 Stuttgart Neural Network Simulator

We used the Stuttgart Neural Network Simulator (SNNS) [14] to simulate our neural

networks. SNNS creates a simulation environment for the application of neural nets to

variousproblems. The two main components of the SNNS simulatorarethe simulatorker

nel and the graphical user interface (GUI). The simulator kernel operates on all of the

internal network data structures of the neural nets. TheGUI gives a graphical representa

tion of the neural networksand canbe usedto control the kernel during the simulation run.

An example of a neural network display generated by SNNS is shown in Figure 31.
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Figure 31 An example SNNS networkdisplay. This particular structure has 100input
nodes, 2 layers of hidden layers of 10 units each, and 8 output nodes.

OONEirSETSniFBEEZE

™76 07162 07171 07157 8.157 0.162 0.162 0.148 Pi10 0.001
lililiiiii
oTi48 oTiao oTtes 0.099 e.no e.124 o.is7 o.iei o.uo o.oe6

lliililiil
07133 07152 07114 0.092 0.057 O.UO 0.148 0.195 0.129 0.090

lililiiiii
07148 07143 07119 0.090 0.006 0.090 0.148 0.167 f.U4 0.881

iiiiiiiiil
07176 07133'07143 0.148 0.114 0.133 0.181 0.157 O.UO 0.067

lililiiiii
07124 07143 07152 07148 0.143 0.200 0.186 8.157 0.105 0.081

iiiiiiiiil
07124 0.162 0.171 0.186 8.171 0.162 0.124 0.129 0.095 0.806

1111111111
07133 07152 0.148 0.152 0.138 0.124 0.105 0.006 0.881 0.067

iiiiiiiiil
07876 07095 0.114 0.114 0.105 0.188 0.086 0.062 0.071 0.057

Iiiiiiiiil
07852 07067 0.071 0.801 0.071 0.067 0.067 0.048 0.057 0.667

0.431

I
0.183

I
0.342

1
0.236

1
0.056

I
0.214

I
0.394

I
0.2%2

I
0.440

i
0.392

121

0.996
122

0.967
123

0.955

-1 1
07117 0.517

1 I
0.854 0.483

1
126

0.137 0.991

i I
0.102 0.018

1 i
0.395 0.000

I
0.172

I .
0.009



Chapter 3 Neural NetworkTheory 35

3.3 Network Types

There were several different neural network types that SNNS was capable of simulat

ing, such as the feed forward type, which simply has the different layers (the input, the

hidden and the output) feeding into each other sequentially [12].

The Kohonen type network [12] uses a Self-Organizing Map algorithm. It is based on

unsupervised learning. Self-Organizing Maps consist of two layers of units: a one dimen

sional input layeranda two dimensional competitive layer. Each unit in the competitive

layer is linked to its neighbors with weights; all of the weightsconnected to a given unit

canbe described with a weight vector. Beforestarting the learning process, the competi

tive layer is initialized with normalized vectors. The input pattern vectors are presented to

all competitive units.The dot product of theweightvectorwith the inputvectoris anindi

catorof how good the match is, and the best matching unit is chosen as the winner. The

nodesin its neighborhood are also affected, so thatsimilar input patterns tend to produce a

response in units that are close to each other in the grid. Kohonen type networks are good

forclustering input data, such as soundsin speech.

The time delay neural network[12] is madeof neurons receiving inputsthathavebeen

delayed in time. This is good for tasks such as associating a letterwith a corresponding

phoneme in speech recognition.

Thereare many moretypes of neural netsavailable in SNNS, such as the adaptive res

onance theory models, the Hopfield netand theJordan net We usedthe feed forward type

in this project, because its structure wasthe sameasthe one of our problem.
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3.4 Network Structure

There are several things to keep in mindwhen designing the structure of a feed-for

ward neural net One issue is representing the data in the input layer. Usually, the number

of input values describing the example is the number of input nodes used in the input

layer.

Representing the output is more complicated and depends on the example. For

instance, for thenetwork to identify something as being oneof three things, onecould use

three output nodes where-one of the three nodes is set to 1 and the other two to 0. An alter

native way to represent this output would be to haveonly one outputnode thatcantake

three different levels in order to distinguish between the three different things, such as 0,

0.5, and 1. There are many more possibilities, and theoutput representation can bechosen

after investigating several different ones. The output representation that produces the

highest success rate in identifying things correctly should then be used.

Thenumber of hidden layers and nodes should bekeptto theminimum number possi

ble that will still allow sufficient learning by the net [15]. If there are too manyhidden

nodes, the netwill lose the ability togeneralize, as itwill belearning thetraining examples

too specifically. So although the netmight appear to have learned the problem very well

during the training stage, it will do poorly when applied to new examples. We have found

that in our problem, two hidden layers were sufficient.
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3.5 Training: Optimum Stopping Point

When a neural network is being trained, the weights are altered to decrease the error

on the training patterns. As can be seen in Figure 32, which shows the error curves of an

example neuralnet being trained, the network has the largest amount of error in the initial

stages of training, because it has not had enough iterationcycles to fully learn the exam

ples yet As it goes through more training cycles, the training error decreases. However,

another issue to consider when training anet is the error curve of a trained net as it is being

applied to new examples(the"testing" data.) At some point in the laterstages of learning,

the network may "overfit" the training data and the testing errorwould start to actually

increase, even though the training errorcontinues to decrease. It can be seen that after a

certain numberof training cycle iterations, (in this case, around 1500) the testingerror of

the net increases. This is because the net will have become overtrained on the specific

training examples and will have lost its ability to generalize enough to correctly identify

new data [16]. Therefore, the optimumtraining stopping pointshouldbe where the testing

error curve attains its minimum.
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Chapter 4 Implementation and Experimental Results

This chapter explains the image grabbing setup, the new mask that was designed, the

specific image processing techniques and neural nets used, and results of how successful

selected patterns werein identifying focus and exposure settings. Not only were we trying

to identify the "best" settings, but we werealso interested in identifyingthe specific focus

and exposure settings for a given image, so that we could indicate in whatdirection and by

how much to adjust the settings to attainthe ideal conditions.

In order tounderstand how our experiments were designed, it is necessary to be famil

iar with the exposure tool. See section 1.2 for some background information on litho

graphic wafer steppers. The processing steps before the resist imageinspection werethe

same as the current method of calibration used in the Berkeley Microfabrication Labora

tory; an oxide layer 5000 A thick was grown on the wafer, and the resist was applied,

exposed and developed according to standard Microlab parameters [1].

4.1 The Image Acquisition Setup

Figure 33 is a schematic of theimage "grabbing" setup in the Microlab. Attached to an

optical microscope is a Sony CCD camera which is hooked up to a Sanyo colorvideo

monitor/digitizer which is connected to aUNIX workstation. It is therefore possible to

"grab" images of theexposed and developed resist on thewafer from the microscope and

have them sent to UNIX, where further processing of the picture can be performed. Also

attached to the microscopeis a video monitorwherethe images can be viewed in the state
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in which they will be "grabbed".Whatever image is seen in the monitor is the resulting

picture that is stored in UNIX.

Sun Unix Workstation

Sanyo Monitor/
Digitizer

Sony camera

Reic hert P< lylite
Mic oscopi •

magnification < >
wafer

Figure 33 Schematic of theimage grabbing setup in the Berkeley
Microfabrication Laboratory. -

We used the Reichert Polylite #30064 microscope, which is connected to outputports

so that it can produce photographs, hardcopy printouts and UNIX image files. The images

were captured with amagnification of lOOOx, thehighest power thatwas available. The

resolution of the camera underthis magnification is aboutone pixel per0.1 nm. Forexam

ple, a one micron wideline captured in the picture would appear in the image to be ten

pixels wide.
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4.2 New Mask Design

A new mask was designed so that a pattern processed under the full range of focus and

exposures could be incorporated into one viewing field of the microscope. A picture is

equivalent to one video monitor which can contain about 50 |im x 30 |J.m worth of infor

mation under lOOOx magnification. See Figure 34 for a picture of a monitor screen worth

of data. (The previous test mask only allowed one focus/exposure setting per picture.)

m

Figure 34 A monitor screen worth ofdata. This image shows thefull matrix
ofthe different focus (varying vertically) and exposure (varying horizontally)
settings.

The"new mask incorporated several different small features, each fitting within a 6 fim x 6

Jim area, which would all be stepped and exposed in a 5x5 matrix of focus and exposure

settings. The stage of the GCAWS would movein very small steps for each exposure (9

|im in the x direction, and 6 |im in the y direction) so that one picture could contain all
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twenty-five different combinations of focus and exposure settings for a feature. Figure 35

shows several features steppedon the wafer.
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Figure 35 Several features stepped on the wafer.

All thepatterns were each repeated forty-eight times onthemask, sothat it could produce

several hundred (768) monitorscreens worth of data perwafer. This way,very few wafers

were needed in order to provide all of thenecessary training and testing data for ourexper

iments. Figure 36 shows a picture of the mask.
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Figure 36 Picture of the mask.

There are sixteen different features onthemask, eight of which are clear field features that

would produce photoresist islands ofthe shapes on the wafer, and another eight, identical

to these except they were done in the dark field manner so that there was resist everywhere

on the wafer except in the shapes, where the oxide underneath was revealed. See Figure 37

for an example ofresist islands and Figure 38 for an example ofresist "valleys". We col

lected adatabase ofthese digitized calibration images that were generated on our stepper.

A human expert had examined these images and identified thebest one.
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Figure 37 SAMPLE3D [11] simulation of four 1 fim square
"islands" of resist.

Figure 38 A SAMPLE 3D [11] simulation of four 1 fim square
"valleys" of resist.

44
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4.3 Conditions of Exposure

The experiment covered the same range of exposure and focus as in the runs per

formed for manual calibration, except that the focus and exposure conditionshere were

stepped only five timeseach,as opposed to seventimeseach (the numberof steps usedin

thecurrent, "standard** method.) Therefore, therangespanned by the exposure timevalues

(for the G-line resist) would be, for example,from 0.65 seconds to 0.95 seconds for both

the standard run and our run, but the standard run would contain the exposure times of

0.65,0.7,0.75,0.8,0.85,0.9, and 0.95 seconds, while our new conditions would consist oi

exposure times of 0.65, 0.725,0.8, 0.875, and 0.95 seconds. The same concept is used

when selecting thefocus range and values forourexperiment. SeeTablel for an example

matrix ofsettings for the"standard**, current method, and Table 2 foranexample matrix of

settings for this experiment.

Table 1: Range of Exposure and Focus Settings used in the standard run.

exp (sec) 0.65 0.70 0.75 0.80 0.85 0.90 0.95

foc(div) 306 310 314 318 322 326 330

Table 2: Range ofExposure and Focus Settings used in this Experiment

exp (sec) 0.65 0.725 0.8 0.875 0.95

foe (div) 306 312 318 324 330
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As can be seen in the above tables, the size of the focus setting increment for this

experiment was 6 "divisions", which is equivalent to a 2.22 fim change in the focus plane.

This value is approximately one Rayleigh unit of defocus for this system, (see section 1.2

for a discussion of defocus distance.) We performed the training exposures so that the

"best** setting would be in the center of die matrix so that we could get a balanced range of

overexposure, underexposure, and focus settings in the matrix.

4.4 Specific Image Processing and Neural Networks Used For Automatic
Calibration

We used image processing techniques to pre-process the data before it was presented

to the neural net because we needed to quantify the information contained in the pictures

in order to get a suitable representation of the data. All images were processed using

KHOROS, and SNNS was used as the neural network simulator.

4.4.1 Intensity Plots Method using 1 |im Lines

We investigated the 1 \xm lines and spaces pattern (which is shown in Figure 39) to see

if it could accurately indicate the focus and exposure conditions of the resist.
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Figure 39 A grabbed monitor screen image of 1 |im lines and spaces.
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These images were processed by the one-dimensional cuts/intensity plotmethod (see

section 2.3 for more details.) A neural net with these values was trained to give us the

appropriate focus and exposure settings. We used three wafers that included the "lines"

feature on them. Two of these wafers had the Mine resist and the other wafer had the G-

line resist. Twenty-four monitor screens worth ofpictures were digitized; each ofthe mon

itor screens contained twenty-five images, resulting in a total of600 individual images.

The first step was to locate the feature (in this case the lines) so that the appropriate

one-dimensional cut could be taken. To do this, we used convolution. The pixel location of

the peak convolution value would indicate a reference point in the image, which would

indicate exactly where the feature was, since the convolution value would be highest

where two images overlap. From this reference point, we can then figure outwhere to take
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the one-dimensional cut. First, we had to extract the edges of the images to simplify the

convolution procedures and to minimize noise sensitivity. (See Figure 40.)

where we want to take
the one-dimensional cut

V

reference pixel

edge-extraction convolution result

reference pixel

Figure 40 Edge extraction on the 1 Jim lines and spaces pattern and the
convolution result. The location of the maximum convolution value indicates the

reference pixel from which we can calculate where to take the one-dimensional cut

Next, a "best" image was chosen by looking at the matrix of images that were produced,

keeping in mind that the ideal exposure setting would yield clear features, and that focus

effects are symmetrical (i.e. images focused 1 \xm above the ideal setting and images

focused 1 Jim below the ideal setting would look the same. Therefore, the focus setting

about which the images were "symmetrical" would be the "ideal" one.) This image was

then extracted and made into a smaller picture. This picture was then convolved with the

entire test picture (consisting of all twenty-five different settings); the result of this convo

lution is seen in Figure41. The pixel location of the peak convolution value for each of the

twenty-five regions would indicate the location of each of the images (i.e. give the pixel

coordinates of the location of the image), and therefore indicate where to take the one-

dimensional cut.
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Figure41 Convolution result using ideal "lines" as the kernel
across the field of view.
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Once we knew where the lines were, the next step was to extract the pixel intensity

values from the lines, as described in section 3.2. For each of the twenty-five images, a

one-dimensional cut fifty pixels long was taken across the lines and spaces. These pixel

intensities were normalized between 0 and 255 and then recorded. The peaks correspond

to the light colored areas of the picture, and the valleys represent the dark (i.e. the edges of

the lines) parts ofthe picture. This one-dimensional cut was done for the images resulting

from all the different focus/exposure settings. (Actually, the one-dimensional cut wasan

average of five adjacent cuts on the line; this was done to reduce noise [see section 2.3.1].)

Figure 42 shows normalized line intensity plots for different exposure and focus settings.

The fifty intensity values for each setting format the input to the neural network, repre

senting one image setting. The corresponding outputs, whichindicate how far off each of
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the settings is from the ideal setting, would be assigned to each of them so that the net

work could then be trained.
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Figure42 Line intensity plots examples of the 1 pm lines-spaces
pattern for differentexposure and focus settings: (a) good focus,
underexposed (b) good focus, good exposure, (c) good focus,
overexposed, (d) poor focus, underexposed, (e) poor focus, good
exposure, and (f) poor focus, overexposed.
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SNNS was used to simulate a feed forward network trained with the backpropagation

training algorithm to recognize key aspects of the line pixel intensities patterns for the

lines exposed under different stepper settings. The feed forward type of network was cho

sen because it fit the structureof our problem. (See section 3.2 for more detail on'differehf

network types.) The fifty intensity values for each setting were normalized to be between

0 and 1 and were then presented to the 50-node input layer of the neural network as the

input values. We used two hidden layers of ten nodes each. The number of hidden nodes

was chosen after experimentation to be the fewest number of layers that would produce a

small enough errorwithout an over excessive number of cycles.

The eight outputnodesrepresent the different possible settingsof focus andexposure.

There were five different focus values and five different exposure values. Each of the out

put nodes would indicate where in the 5x5 focus/exposure matrix the image would be.

Since being overfocused by a certain amountwould renderan image to look exactly like

beingunderfocused by the sameamount, only three outputnodeswereneeded to represent

the five different focus settings, asit is symmetrical around thebest focal setting. The out

put node assignments for eachof the twenty-five different settings were as follows:
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Table 3: Neural net outputs for the different focus and exposure settings.

under

exposed by
2 settings

under

exposed by
1 settings

perfect
exposure

over

exposed by
1 settings

over

exposed by
2 settings

focus off by
2 settings

\ 100

lOOOO^N^
\ 100

lioooX^ lllOO^v^
\. 10°
inio^s^

V ioo

11111^
focus off by

1 setting

^s.110

iooooN^
\. no

llOOO^X^
\. no
lllOO^s^

\^ no
11110^\

\ 110

lllll^v^
perfect

focus iooooX^
\. Ill

11000%^
"X. Ill

11100^

>S. Ill

111H)\

^s. Ill

11111\

As can be seen from the previous table, if a node was set to 1, all the previous nodes

for the parameter (exposure or focus) were also set to 1, introducing a cumulative affect

This was done to capture the continuity of the process within the neural net in order to

enhance the learning process [15]. A visualization of an example output of the net is

shown in Figure 43.

Exposure

Focus

6
© • O O O

X
the output setting

Figure 43 A visualization of an example output of the neural net. Here,
the focus and exposure setting is indicated by the darkened circles, which
indicate a 1. In this case, the output is indicating that the image is
underexposed by 1 setting and is perfectly focused.
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The neural network was then trained with 425 example images, representing all the

different settings, for 10,000cycles. While training the network, we were also testing it, to

see how well it was learning. There were 100 testing images. It can be seen from Figure 44

that at around 400 training cycles, the testing curve hits its minimum error.The testing

curve errors were calculated to be the percent identifiedincorrectly, where a testing output

was considered to be "correct" if the setting was identified exactly right, or if it was offby

one step in either focus or exposure. As can be seen in Figure 44, at its optimum state, the

trained neural net could identify 96% of the test images* focus and exposure settings cor

rectly. The results are plotted in Figure 45 and Figure 46 which show the correct settings

vs. the settings predicted by the neural network for focus and exposure. There were five

possible exposure settings and three focus settings.

As was noted previously in this section, the interval step size for the focus settings in

this experiment was approximatelyone Rayleigh Unit of defocus. This is a relatively large

amount of deviation from the ideal focus setting. Usually, we would like to be able to

detect a deviation of half a Rayleigh Unit of defocus from the ideal. Further experimenta

tion is needed to confirm that the techniques used in this project can accomplish this.
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Figure 44 The training and testing errorcurves for a neural net trained to
recognize the focus and exposure conditions of 1|im lines andspaces.
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predicted exposure setting

+2-

+1-

0 -

-1-

-2

D D

D

"l2

--0D
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• H

E n

0 +1 +2

actual exposure setting

Figure 45 Plot of the exposure settings estimated by the neural net
vs. the actual exposure settings. The areaof the square is proportional
to the number of occurrences. The settings units are as follows:
underexposed by 2 settings is -2, underexposed by 1 setting is -1,
perfect exposure is 0, overexposure by 1 setting is +1 and overexposure
by 2 settings is +2.These tests represent a variety of focal settings.
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predicted focus setting

0

-1-

D Q

37

20

-2 -1 0
actual focus setting

Figure 46 Plot of the focus settings estimated by the neural net vs.
the actual focus settings. The area of the square is proportional to
the number of occurrences. The settings values are as follows: under
or over focused by 2 settings is -2, under or over focused by 1
setting is -1, and perfect focus is 0. These tests represent a variety of
exposure settings.
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4.4.2 Other Methods

In addition to the 1 urn line-space intensity plots, other methods and features were

examined for their potential in identifying focus and exposure settings.

Extracting a Two-Dimensional Area From an Image

Extracting a two-dimensional array of pixel values from a picture of a feature and

sending that array of numbers to the neural net is another way of quantifying and simplify

ing the picture data. The feature on which this method was used is two island squares
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placed corner to corner, which can be seen in Figure 47. Note that in even the ideal focus

and exposure case, because of their small dimension (1 \xm x 1 fim), the small squares

appear to be rounded. This is because it is reaching thediffraction limits of the GCA 6200

wafer stepper's optical system, which as was mentioned before, can only clearly resolve

down to about 0.8 ^im lines. We used one wafer that included this two-squares feature on

it; this wafer was coated with G-line resist. Twenty-one monitor screens worth ofpictures

were digitized. However, this feature was very sensitive to changing focus and exposure

values; for some of the extreme settings, no pattern was present. Therefore, there were

about eighteen images in each picture (as opposed to the expected twenty-five), resulting

in a total of 372 individual training images.

;wwiM&&£^

Figure 47 A monitor screen of the 2 squares feature.
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As before, the first step was to locate where in the field of view the two-squares feature

was so that the appropriate two-dimensional segment could be extracted. To do this, we

again used convolution techniques to identify the location of this feature. Once we knew

the location of the two-squares features in the picture,we extracted the pixel intensity val

ues, as described in section 3.2. For each of the images, a two-dimensional areaof 20x20

pixels was taken. These pixel intensities were normalized between 0 and 255 and then

recorded. Figure 48 shows an example of an area segment. This is equivalent to sending

the neural net the normalized image directly. This two-dimensional extraction was done

for the images resulting from all the different focus/exposure settings. The 20x20 intensity

values for each setting (after being normalized between 0 and 1) would then be the input

to the neural network, representing one image setting. The corresponding outputs, which

indicate how far off each of the settings is from the ideal setting, would be assigned to

each of them so that the network could then be trained.

f.*, ---..>?.;-Pi«..5?=. .•:'••;/. .:••

J

Figure 48 A normalized 200x200 pixel segment of the image of the
2 squares feature. One pixel corresponds to 0.1 |im.
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SNNS used to simulate a feed forward network trained by using the backpropagation

training algorithm as before. The structure was similar to the one used before, except that

now there are 400 input nodes, and 2 hidden layers of 15 nodes each. (For the one-dimen

sional data from before there were 50 input nodes and 2 hidden layers of 10 nodes each.)

This two-dimensional representation is more complex than the previous one-dimensional

one, thereby necessitating more hidden nodes. The neural network was then trained with

290 example images, representing all the different settings, for 10,000 cycles. While train

ing the network, we were also testing it against an independent set of patterns, to see how

well it was learning. There were 82 testing images. At its optimum state, the trained neural

net could identify 81% of the test images* focus and exposure settings correctly.

Convolution Method with Two Squares Feature

Another method that deals with this same feature consisting of the two diagonal

squares uses only convolution procedures. (See section 2.3 for a detailed description of

convolution.) The convolution will produce a maximum value for the test image that most

closely matches the ideal image. We were also interested in not only which test image pro

duced the highest convolution value, but also what the "shape" of the convolution values

were for each test image. We recorded an area of convolution values for each test image

by considering a 10x10 pixel area of convolution values surrounding the highest convolu

tion value for the image, which would have the peak at the center, and get smaller far from

the peak. Each setting would then have a "shape" of 10x10 convolution values associated

with it, which could then be sent to a neural network as the input and have corresponding

outputs assigned to it. The results of the convolutioncan be seen in Figure 49. For compu-
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tational economy, the small picture was used as a convolutionkernel over the twenty-five

small regions of interest in the big picture (where the features were) and skipped over the

"informationless" space between them.

Figure 49 Convolutionresult of convolvinga small 2 squares image
with the large image. The black spaces between each of the 25 areas were
skipped over, since they convey no information.

Again, we used the twenty-one monitor screens worth of pictures that were grabbed;

therewereapproximately eighteen images per picture (as opposed to the expected twenty-

five), resulting in a total of 372 individual images.

This area convolution method was done for the images resulting from all the different

focus/exposure settings. The 10x10 pixel array of convolution values for each setting

would then be the input to the neural network, representing one image setting. The corre-
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sponding outputs, which indicate how far off each of the settings is from the ideal setting,

would be assigned to each of them so that the network could then be trained as it was

before with the other nets.

SNNS was again used to simulate a feed forward network trained by using the back-

propagation training algorithm as before. The structure was similar to the one used before,

except that now there are 100 input nodes, and 2 hidden layers of 15 nodes each. The neu

ral network was then trained with 290 example images, representing all the different set

tings, for 10,000 cycles. While training the network, we were also testing it, to see how

well it could generalize. There were 82 testing images. The trained neural net could iden

tify 67% of the test images* focus and exposure settings correctly. It can be seen that this

method with this feature did not yield as good results as the other methods.

Convolution Method with Four Squares Feature

The same convolution method was also applied to another feature, the four island

square, which is shown in Figure 50. Again, we recorded a 10x10 pixel array of convolu

tion values resulting from convolving an ideal image with each of the test images for each

of the images. The data was taken from three wafers, two of which were coated with I-line

resist, and the other with G-line resist. A total of twenty-four monitor screens were

grabbed, which results in approximately 577 images.
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•vUviv.v;. --.v-•.::•••:•;•...

Figure 50 A monitor screen of the 4 squares pattern.

The 10x10 pixel array of convolution values for each setting would again be the input

to the neural network, representing one image setting. SNNS was again used to simulate a

feed forward network trained by using the backpropagation training algorithm as before.

The structure was the same as the one used for the two-squares feature, with 100 input

nodes, 2 hidden layers of 15 nodes each, and 8 output nodes. The neural network was then

trained with 438 example images, representing all the different settings, for 10,000 cycles.

While training the network, we were also testing it, to see how well it was learning. There

were 139 testing images. At its optimum state, the trained neural net could identify 70% of

the test images' focus and exposure settings correctly.

It is interesting to note that even though two-dimensional features, such as squares, are

more sensitive to focus conditions than "line" features that convey one dimensional infor-
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mation [4], the feature with the squares was not as successful as the feature with the lines

in this project This may be becauseof the specificmethods we used to quantize and pro

cess the images of the features.

• • • —

The following table summarizes the results for the various features and methods that

were investigated.

Table 4 Summary of testing success rates for different features and methods.

feature method
chapter

reference

#of

training
patterns

# of testing
patterns

testing
success

rate1

1 |im lines
and spaces

One Dimen

sional Pixel

Extraction

4.4.1 425 100 96%

2 Squares
placed diag

onally

Two

Dimen

sional Pixel

Extraction

4.4.2 290 82 81%

2 Squares
placed diag

onally

Convolu

tion

4.4.2 290 82 67%

4 Squares Convolu

tion

4.4.2 438 139 70%

1.Testing successratewas defined to be the percentage of settings the neuralnet estimated "correctly",
where a "correct" estimate was if it estimated the settings exactly right or was offby one setting in
either focus or exposure.
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Chapter 5 Error Analysis for Possible Control Application

Feature sizecan depend on the focus and exposure conditions of the lithographic

wafer stepper. For example, if the resist is overexposed, the linewidth may become

smaller than desired because moreof the resist will have been exposed (and therefore

developed away) than was originally designed for on the mask. On the other hand, if the

resist isunderexposed, the linewidth may become larger, as not all ofthe resist would have

cleared in the spaces between the lines. The linewidth may decrease if the focus istoo far

off from itsideal setting because less of the line will have been clearly imaged. See section

1.2 for more detail on how focus and exposure conditions can affect feature size. Focus

conditions may also affect the edge taper width of aline of resist The further away the

focus settings are from the ideal focus condition, the more significant the edge taper width.

This is because the outline of the feature would be unclearly defined, resulting in a very

non-vertical sidewall.

We wanted to know howmuch thelinewidth would vary if it were exposed under the

different conditions of the matrix of settings that wehad used for our experiment We also

wanted to investigate how well our calibration ofthese settings would be able to keep the

linewidth close to what was desired. We used SAMPLE [17] to simulate what theI-line

resist profile would look like under the different focus and exposure settings for a1Jim

line feature. The units of defocus had to be adjusted for the simulations; from previously

performed experiments [18], ithad been found that for every 8"divisions" ofdefocus in

the GCAWS, there was 1\im of defocus in the SAMPLE simulations. (See section 1.2 for
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a discussion on defocus distance.)We only simulated 3 different focus settings because of

the symmetry involved (underfocused images look the same as overexposed images.) Fig

ure 51 shows an example of a SAMPLE profile, and how linewidth was measured to be

the width of the line at 50% of the resist height

X-Y LINE PLOT

3

3-Ais

Figure 51 An example of a SAMPLEsimulated line-space pattern.

The following table shows a typical range of settings of focus and exposure and what

their simulated linewidths (in |im) would be under those conditions. It can be seen that the

simulated linewidth decreases as the exposure values increase and as the focus values

strayaway from the ideal. Theseresults are plotted in the surface plot shownin Figure52.
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Table 5: Simulated Iw (|im) for different focus and exposure settings.

under

exposed by
2 settings

under

exposed by
1 setting

perfect
exposure

over

exposed by
1 setting

over

exposed by
2 settings

focus off by
2 settings

0.907 0.887 0.874 0.858 0.842

focus offby
1 setting

0.915 0.904 0.887 0.872 0.860

perfect
focus

0.918 0.904 0.890 0.876. 0.865

lw
9.20E-01

9.10E-01

9.00E-01

8.90E-01

8.80E-01

8.70E-01

8.60E-01

8.50E-01

8.40E-01

focus

exposure

Figure52 A surface plot of the linewidths as the exposure and focus
settings arevaried throughout the settings of the matrix.
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Alw / Afocus

Figure 54 Surfaceplot of Alw / Afocus (asexposure is held
constant) as a function of focus and exposure.

68

Edgetaper width was measured to be the horizontal distance from the top of the resist

to the extrapolated bottom (on one sideof the line only), ascan be seen in Figure 55.

>-

lM XA*?

Figure 55 Howedgetaper width is measured in the simulated profiles.
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Alw / Afocus

Figure 54 Surface plot of Alw / Afocus (as exposure is held
constant) as a function of focus and exposure.

68

Edge taper width was measured to be the horizontal distance from the top of the resist

to the extrapolated bottom (on one side of the line only), as can be seen in Figure 55.

*
>

l« **ff

Figure55 How edge taperwidth is measured in the simulated profiles.
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The following is a table of the edge taper width of the-simulated lines for the different

settings. It can be seen that the further away the focus settings were from the ideal, the

broader the edge taper width. However, these changes in the edge taper widths are rather

small; this might imply that using cross sectional SEMs of the resist lines to evaluate'focus

settings may not be as sensitive as the techniques described in this project Changing the

exposure time settings did not seem to affect the edge taper width.

Table 6 Simulated edge taper width (Jim) for different focus and exposure
settings.

exp->

fool'

under

exposed by
2 settings

under

exposed by
1 setting

perfect
exposure

over

exposed by
1 setting

over

exposed by
2 settings

focus offby
2 settings

0.22 0.21 0.20 0.21 0.20

focus offby
1 setting

0.19 0.19 0.17 0.17 0.17

perfect
focus

0.18 0.17 0.16 0.16 0.17

As was stated previously, our system predicted the settings to be exactly right or off by

one interval in either focus or exposure 96% of the time. Therefore it would be able to

indicate by how much and in what direction to move in order to get to the ideal settings

most of the time relatively accurately. If it were off by one setting interval in either the

exposure settings or the focus settings, the linewidth tolerances would be much smaller

(i.e. be within 0.015 fim of the desired linewidth) than if the calibration procedure had not

been used and the settings were to run the full range of the matrix, which could produce

delta linewidths as large as 0.048 Jim. So under the current experimental setting, our cali-
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bration procedure is sensitive enough that it can identify and correct inappropriate settings

thatwould lead to linewidth changes aslittle as0.02 Jim. Greater magnification canreduce

thatnumber. Also, because convolution methods canbe usedto identify the exactlocation

of the lines (see section 2.2,) no precise alignment of the image is required. Therefore,

these techniquesare very inexpensive andconvenientto utilize.



tef 6 Conclusions and future wore.

Chapter 6 Conclusions and Future Work

6.1 Conclusions

In this project, we investigated an automated method of choosing the best image (and
therefore the best setting) when caHbrattogaUmographic wafer stepper mat utitizedimage
processing techniques and neural nets. In order to accomplish mis. we used optical micro
scope images of resist features that were exposed by alithographic wafer stepper under
different focus and exposure settings.

Convolution and pixel intensity extraction were used to pre-process the picture infor
mation before it was sent to the network. Feed-forward nets were then Wned with the
backpropagation algorithm to identify focus and exposure settings for agiven image. An
image grabbing setup was installed, and anew mask was designed especially for use in the
experiments in this project

Results for selected patterns were presented; the best results, which utilized aone-
dimensional pixel extraction technique performed on 1mlines and spaces, showed that
our system could recognize the focus and exposure conditions within one setting for a
given image 96% of the time. It is interesting to note that even though two dimensional
features, such as squares, are more sensitive to focus conditions than "line" features mat
convey one dimensional information [4], the feature with the squares was not as success
ful as the feature with the lines in this project This may be because of the specific meth
ods we used to quantize and process the images of the features.
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From SAMPLE simulations that were performed inorder toinvestigate how sensitive

linewidth was to changing exposure time and defocus values, it was found that byusing

the calibration techniques described in this project, we can identify inappropriate settings

that would lead to linewidth changes of less than0.02 pm.

6.2 Future Work

There are other applications for the techniques described in this project that are cur

rently being investigated. One further application is the run-to-run monitoring ofstepper

conditions in aproduction environment. By incorporating some features on aproduction

wafer, the focus and exposure settings can be evaluated during production. A picture of

the features could betaken, and the image could then beprocessed and sent through aneu

ral net, which could then indicate by how much focus and exposure settings were off. It

would then be possible to determine in which direction to move in order to be at the opti

mum settings. (See Figure 56.)
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Figure 56 Theneural netwould beable to identify howfar off and in
which direction the focus and exposure settings are, and then be able to
indicate how to change the settings in order for the stepper to perform
optimally.
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Also, inexpensive CD measurement applications can be developed using techniques

similar to ones described here, namely the line intensity plots. An image of the lines could

be grabbed, and one-dimensional cuts could then be taken across the lines to form inten

sity plots. If a pixel to |im ratio is established, then the number of pixels between the val

leys (representing the dark edges in the picture,and therefore the edges of a line or space)

could be converted to \im to measure linewidth. (See Figure 57.)
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Ucd*!
profile of resist lines

Flot 1

Figure 57 An example of animage intensity plot Above is the
corresponding profile of theresist lines. Thecutlines indicate howtheedges in
theprofile correspond to thevalleys in theintensity plot, and therefore how
CDs of the lines can bemeasured by looking atthedistances between the
valleys in the intensity plot
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