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Abstract

COMPILING DATAFLOW PROGRAMS FOR
DIGITAL SIGNAL PROCESSING

by

ShuvraShikhar Bhattacharyya

Doctor ofPhilosophy in Electrical Engineering

Professor Edward A. Lee, Chair

The synchronous dataflow (SDF) model has proven efficient for representing an
important class ofdigital signal processing algorithms. The main property of this model is

that the number ofdata values produced and consumed by each computation is fixed and

known at compile-time. This thesis develops techniques to compile SDF-based graphical
programs for embedded signal processing applications into efficient uniprocessor imple

mentations on microprocessors or programmable digital signal processors. The main prob
lems that we address are the xninimization of code size and the minimization of the

execution time and storage cost required tobuffer intermediate results.

The minimization ofcode size is an important problem since only limited amounts

of memory are feasible under the speed and cost constraints of typical embedded system
applications. We develop aclass of scheduling algorithms that minimize code space
requirements without sacrificing the efficiency of inline code. This is achieved through the

careful organization of loops in the target program. Our scheduling framework provably
synthesizes the most compact looping structures for acertain class of SDF graphs, and
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from our preliminary observations this class appears to subsume most practical SDF

graphs. Also, by modularizing different components of the scheduling framework and

establishing their independence, we demonstrate how two additional scheduling objec

tives — decreasing the memory required for data buffering and increasing the amount of

buffering that occurs through registers — can be incorporated in a manner that does not

conflict with the goal of code size compactness. We carry out these additional optimiza

tionobjectives through graph clustering techniques that avoid deadlock and that fully pre

serve the compact loop structures offeredby the original graph.

We also present compile-time techniques for improving the efficiency of buffering

for agiven uniprocessor schedule. The optimizations include dataflow analysis techniques

to statically determine buffer addressing patterns; examination of the loop structures in a

schedule to provide flexibility for overlaying buffer memory; and techniques to optimize

themanagement of circular buffers, which are useful for implementing dataflow links that

havedelay and for reducing memory requirements.

Edward A. Lee, Thesis Committee Chairman
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1

INTRODUCTION

Algorithms for digital signal processing (DSP) are often most naturally

described by block diagrams in which computational blocks are interconnected by

links that represent sequences of data values. Due to the emergence of low cost

workstations and personal computing systems with graphics capabilities, it has

become feasible for designers of signal processing systems to acquire graphical

block diagram programming environments, and as a result, there has been a prolif

eration of such programming environments in recent years, both from industrial

sources and from research and educational institutions.

The synchronous dataflow (SDF) model, whose fundamental theories were

developed by Karp and Miller in [Karp66] and by Lee and Messerschmitt [Lee87],

has proven efficient for representing an important class of digital signal processing

algorithms, and has been used as the basis for numerous DSP programming envi

ronments, such as those described in [Lauw90, Lee89, Ohal91, Prin92, Ritz92,

Veig90]. The main property of the SDF model is that the number of data values

produced and consumed by each functional component is fixed and known at com

pile time. This thesis develops techniques for compiling block diagram programs

based on the SDF model into efficient object code for microprocessors and pro-
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grammable digital signal processors, which are specialized microprocessors for

DSP applications [Lee88b].

Block diagram programming of DSP systems dates back at least to the

early 1960s, when a group at Bell Telephone Laboratories developed a block dia

gram compiler for simulating signal processing systems developed for visual and

acoustic research [Kell61]. In [Covi87], Covington presents a graphical program

ming environment for designing digital filters based on only two types of computa

tional blocks — adders and constant gains. At Advanced Micro Devices

Corporation, a graphical tool was developed for mapping signal processing algo

rithms onto a two dimensional array of programmable digital signal processors

[Ziss87J. Similarly, at Carnegie-Mellon University, a hierarchical block diagram

format was usedto represent signal processing algorithms for compilation ontothe

iWarp multicomputer [Ohal91]. Currently, several graphical programming envi

ronments for DSP are also available commercially, such as the Signal Processing

Worksystem, developed by Comdisco Systems, which is now the Alta Group of

Cadence Design Systems [Barr91]; COSSAP, developed by Cadis and by Heinrik

Meyer's group at the AachenUniversity of Technology [Ritz92]; and the DSPSta

tion, developed by Mentor Graphics. See [Lee89] for a large number of additional

references to graphical programming andsimulation environments for DSP.

At theUniversity of California atBerkeley, there has been a large effort in

developing efficient and elaborate graphical design environments. This work is

rooted in the BLOSEM simulation system developed by Messerschmitt [Mess84].

Further exploration with BLOSIM inspired the development of the SDF model

[Lee87]; soon afterwards, Ho developed the first compiler for pure SDF semantics

[Ho88b], targetted to the Motorola 56000 programmable digital signal processor,

and this compiler formed the foundation for the Gabriel design environment



[Lee89]. The successor to BLOSIM and Gabriel is the Ptolemy project [Buck92],

an object-oriented framework for simulation, prototyping, and software synthesis

of heterogeneous systems. Unlike Gabriel, which is based on a single model of

computation — the SDF model, Ptolemy allows a system to consist of multiple

subsystems that are specified with different models of computation, and Ptolemy

allows the user to define new models of computation and to interface a newly-

defined model with the existing models. For example, dynamic dataflow, discrete-

event, and communicating processes, are some of the models of computation that

are supported by Ptolemy in addition to SDF. The Ptolemy framework together

with a block diagram programming interface have been used to develop DSP sim

ulation capabilities [Buck91], as well as compilers for the Motorola 56000

[Pino94] and the Sproc microprocessor, developed by Star Semiconductor Corpo

ration [Murt93].

As mentioned above, a primary advantage of graphical programming envi

ronments for DSP is that DSP algorithms are often most naturally represented as

hierarchies of block diagrams. Two additional advantages are the support for soft

ware reuse (modularity) and the support for efficient compilation. Graphical pro

gramming environments for DSP normallycontainpalettes of graphical icons that

correspond to predefinedcomputational blocks, and the program is constructedby

selecting blocks from these palettes and specifying interconnections. If some func

tionality is desired that is not available in the existing library, usually it is easy to

define a new function and add it to the library, upon which the new function can

become available to all other users of the system. Thus, the format of graphical

programming environments makes it natural and convenient to recycle software

and development effort. Forexample, since each function is defined only once, for

frequently used functions it becomes economical to spend a large effort to hand-



optimize the function definition for efficiency.

An alternative means of attaining modularity that has been explored in

DSP design environments is the use of libraries of subroutines that can be called

from high level language programs [Egol93, Tow88]. Here, once the library is in

place, the programmer has the convenience of programming in a high level lan

guage, such as C or FORTRAN, while exploiting the efficiency of hand-optimized

functions written in assembly language.

There have been widespread reports on the inabilityof high-level language

compilers to deliver satisfactory code for time-critical DSP applications [Geni89,

Tow88, Yu93]. The throughput requirements of such applications are often

extremely severe, and designers typically mustresort to careful manual fine-tuning

to sufficiently exploit the parallel and deeply pipelined architectures of program

mable digital signal processors while meeting their stringent memory constraints.

The use of optimized subroutine libraries, as described above, is one approach to

improving efficiency without forcing the user to write or fine-tune code at the

assembly language level. A second approach is to add extensions to a high level

language that facilitate the expression and optimization ofcommon signal process

ing operations [Lear90]. Another approach is the application of artificial intelli

gence techniques to confer optimization expertise to high level language compilers

[Yu93]. Although it has not been extensively evaluated yet, preliminary results on

this method show promise.

The alternative that we pursue in this thesis is the use of graphical or tex

tual block diagram languages based on the SDF model in conjunction with hand-

optimized block libraries. As we will discuss precisely in Chapter 2, the SDF

model allows ustoschedule all of the computations at compile-time and thus elim

inates the run-time overhead of dynamic sequencing. This increased efficiency



comes at the expense of reduced expressive power: computations that include

data-dependent control constructs cannot berepresented in SDF; however, SDF is

suitable for a large and important class of useful applications, as the large number

of SDF-based signal processing design environments suggests. Benchmarks onthe

Gabriel design environment [Lee89] showed that compilation from SDF block dia

grams produced code thatwas significantly more efficient than that of existing C

compilers [Ho88a], although not as efficient as hand-optimized code, and for a

restricted model of SDF in which each computation produces only one data value

on each output and consumes only one data value each input, the Comdisco Pro-

coder block diagram compiler produced results that were comparable to the best

hand-optimized code [Powe92]. Although the performance of the Comdisco Pro-

coder is impressive, the restricted computational model to which its optimizations

apply does not support systems that have multiple sample rates.

In this thesis, we develop techniques for compiling general SDF programs

for multirate DSP systems into efficient uniprocessor implementations. An impor

tant problem that arises when compiling SDF programs is the minimization of

memory requirements— both for code and data (intermediate results). This is a

critical problem because programmable digital signal processors have very limited

amounts of on-chip memory, and the speed and financial penalties for using off-

chip memory are often prohibitively high for the types of applications, typically

embedded systems, where these processors are used. For example, the Motorola

DSP56001 has an on-chip capacity of 512 instruction and 512 data words, and Star

Semiconductor's SPROC can store Ik instructions and Ik data. In the Motorola

DSP56001, one on-chip instruction and two on-chip data words can be accessed in

parallel, while there is only one external memory interface. Thus, there is a speed

penalty for accessing off-chip memory regardless of how fast the external memory



is. Moreover, off-chip memory typically needs to be static, increasing the system

cost considerably. In this thesis, we develop techniques to minimize the code size

when compiling an SDF program, and we combine these techniques with tech

niques for minimizing the amount of memory required to buffer data between

computational blocks.

As we will discuss in the sequel, large sample rate changes result in an

explosion of code size requirements if naive compilation techniques are used. In

this thesis, we develop a class of scheduling algorithms that minimizes code space

requirements through the careful organization of loops in the target code. This

scheduling framework provably synthesizes the most compact looping structures

for a certain class of SDF graphs, andfrom ourpreliminary observations, this class

appears to subsume most practical SDF graphs. Also, by modularizing different

components of the scheduling framework and establishing their independence, we

show that other scheduling objectives can be incorporated in a manner that does

not conflict with the goal of code compactness, and we demonstrate this for two

specific additional objectives — decreasing the amount of memory required for

data storage and increasing the amount of data transfers that occur through regis

ters rather than through memory. Finally, we present techniques to improve the

efficiency ofdata buffering between the computational blocks in an SDF program.

It should be noted that there have been significant efforts to improve the

efficiency of code generated from high level language programs of DSP applica

tions, such as thosedescribed in [Hart88, Kafk90, Yu93], and the success of these

efforts indicates that the range of applications that are adequately supported by

high level language compilers is increasing. However we emphasize that the effi

ciency of the compiled code is not the only advantage ofblock diagram program

ming and the SDF model —- block diagram environments often provide the most



natural specification format for signal processing algorithms, and they promote the

recycling of software, expertise and development effort. All of these advantages

motivate the solutions developed in this thesis.

1.1 Dataflow

The principles of dataflow and their application to the development of

computer architectures and programming languages were pioneered by Dennis

[Denn75]. A central objective of the dataflow concept is to facilitate the exploita

tion of parallelism from a program. In dataflow, a program is represented as a

directed graph, calleda dataflow graph, in whichthe vertices, called actors, repre

sent computations and the edges represent FIFO channels that queue data values,

encapsulated in objects called tokens, as they are passed from the output of one

computation to the input of another. A key requirement of the computation corre

sponding to a dataflow actoris that it beJunctional; that is, each output value of an

invocation of the computation is determined uniquely by the input values to that

invocation.

A dataflow representation of a computation differs fundamentally from a

corresponding representation in a procedural language such as C or FORTRAN in

that it specifies the function being computed rather than specifying a step-by-step

procedure to compute it. This distinction between definitional approaches to pro

gramming, such as dataflow, and operationalapproaches, such as C or FORTRAN

is explored in depth in [Ambl92]. A major disadvantage of operational approaches

is that they leave the programmer responsible for a difficult task, namely ordering

the computations, that is often critical to the speed and memory requirements of

the target implementation. Of course, the compiler can attempt to deduce the



dependencies between computations from an operational specification and then

reorder the computations in a more efficient way, but this endeavor is often made

extremely difficult or impossible by side effects, aliasing, or unstructured control-

flow. Functional languages, such as pure Lisp and Haskell, are exceptions. In these

languages, in which computations arespecified through compositions of functions,

programs can, in principle, be easily converted into equivalent dataflow represen

tations [Acke82]. In [Lee94], Lee explores several more subtle relationships

between functional languages and dataflow-based graphical programming frame

works.

Dennis applied the concepts of dataflow to pioneer a form of computer

architecture; computers that are based on this form of architecture are called data

flow computers. Unlike conventional vonNeumann computers in which theexecu

tion of instructions is controlled by a program counter, computations in a dataflow

computer are driven by the availability of data. This is achieved by maintaining, at

the machine level, arepresentation of the program as adataflow graph, and bypro

viding capabilities in hardware todetect which actors have sufficient data to fire, to

execute the corresponding instructions and toroute the output values to the appro

priate actor inputs.

There are two basic types of dataflow computers — static dataflow com

puters and dynamic, or tagged-token, dataflow computers. The original dataflow

computer architecture, the MIT Static Dataflow Architecture [Denn80], was of the

static variety. In astatic dataflow computer, at most one data value can be queued

on an edge at one time. This restriction allows the storage for the edges tobe allo

cated at compile-time, and it is enforced by adding feedback edges, called

acknowledgment arcs, directed between the sink and source actors ofthe edges in

the original dataflow graph. In the MIT Static Dataflow Computer, the dataflow



graph is maintained at the machine level as a collection of activity templates,

which correspond to actor invocations. Each activity template consists of an

opcode that specifies the associated machine instruction, locations to hold the

operands, and pointers to the appropriate operand slots of the activity templates

that must receive the output value. Each time an instruction is executed, each

activity template referenced by the associated destination address pointers is

updated by the Update Unit to contain the new output value in the appropriate

operand slot. For each activity template that it modifies, the Update Unit checks

whether that last vacant operand slot has been filled, and if so, it forwards a refer

ence to the activity template to the Instruction Queue. Entries in this queue are

processed by the Fetch Unit, which looks up each corresponding activity template

in the activity store, sends an operation packet to the ExecutionUnit, and resets the

activity template.

Since the rate at which instructions are executed is limited mainly by the

rate at which the Execution Unit performs computations and by the rate at which

the Instruction Queue is filled, which in turn depends on the matching of operand

values to activity templates, the problems that arise in conventional von-Neumann

processors due to memory latencies and synchronization are mitigated. Rather than

handling interprocessor synchronization and processor-memory synchronization

by wasteful idle-waiting or by expensive context switches, data dependencies are

enforced by the hardware for each individual instruction, and independent opera

tions are automatically detected and exploited.

A major shortcoming of the static dataflow computer arises from the

restriction that only one data value can be queued on an edge at a given time,

which implies that multiple invocations of a given actor cannot be executed in par

allel. This severely limits the parallelism that can be exploited from loops and pre-



eludes executing multiple invocations of asubroutine in parallel. Toovercome this

shortcoming, Arvind and Nikhil at MTT [Arvi90], and Gurd et al. at Manchester

University [Gurd85] independently developed and explored the tagged-token con

cept, which permits an arbitrary number of invocations of the same actor to exe

cute concurrently. In a tagged-token dataflow computer, an identifying tag is

carried around with each token. This tag designates the subroutine invocation

number, loop iteration number, and the instruction number. For example, in the

MTT Tagged-Token Dataflow Machine, the Waiting-Matching Unit removes

unprocessed tokens buffered in a Token Queue, and compares the tag of each token

it removes with the tags of all tokens that are in the Waiting-Matching unit at that

time. If a matching tag is not found, then the token is storedin the Waiting-Match

ing unit until a matching token arrives. Otherwise the matching token pair is for

warded to the Instruction-Fetch Unit, which accesses program memory to

determine the appropriate machine instruction and constructs an operation packet

consisting of the instruction and its operands. This operation packet is forwarded

to theALU, and simultaneously theoperation is executed and the tag for theresult

token is computed. The result token andits tag are then combined and entered in

the Token Queue.

Although dataflow computers succeed in attacking the problems of syn

chronization and memory latency, challenges remain in coping with the resource

requirements of unpredictable and unbounded amounts of parallelism, and in

amortizing the overhead incurred on sequential code. These issues continue to be

an active research area; for example, see [Arvi91]. However dataflow computer

technology has not yetmatured to the point of being commercially advantageous,

and thus there are no commercially available dataflow computers to this date,

although some commercially available processors have incorporated dataflow con-
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cepts to a limited degree [Chas84, Schm91].

In this thesis, we do not apply dataflow computers; instead, we apply the

concepts of dataflow as they relate to program representation. Another aspect in

which ouruse of dataflow differs from dataflow computers is in the complexity of

the actors — we applya mixed grain dataflow model,meaning thatactors canrep

resent operations of arbitrary complexity, whereas dataflow computers operate on

fine grain, or atomic, dataflowgraphs, where the complexity of the actors is at the

level of individual machine instructions. In the SDF-based design environments to

which this thesis applies, dataflow actors typically rangein complexity from basic

operations such as addition or subtraction to signal processing subsystems such as

FFT units and adaptive filters. Finally, our use of dataflow is limited by the granu

larity of each actor: we use dataflow to describe the interaction between actors, but

the functionality of each actorcan be specified in any programming language, such

as C, as in [Ritz92]; LISP, as in [Karj88]; or a LISP/assembly language hybrid as

in [Lee89], where a high level language is used to customize assembly language

code blocks according to compile-time parameters.

1.2 Synchronous Dataflow

Synchronous dataflow is a restricted version of dataflow in which the num

ber of tokens produced (consumed) by an actor on each output (input) edge is a

fixed number that is known at compile time. Eachedge in an SDF graph also has a

non-negative integer delay associatedwith it, which corresponds to the number of

initial tokens on the edge. The application of the SDF model to mixed-grain data

flow programming of multirate DSP systems was pioneered by Lee and Messer-

schmitt in the mid 1980s [Lee87]. In this section, we informally outline important
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theoretical developments on the SDF model and their application to block diagram

programming of DSP algorithms. These principles will be reviewed rigorously

early in Chapter 2, and they will form much of the theoretical basis for the remain

der of the thesis.

Important foundations for the SDF model were laid by the definition and

exploration of computation graphs by Karp and Miller roughly two decades before

the development of SDF [Karp66]. The computation graph model is equivalent to

SDF graphs, except that in addition to production andconsumption parameters, an

additional threshold parameter is associated witheach edge. This threshold param

eter, which must be greater than orequal to thecorresponding consumption param

eter, determines the minimum number of tokens thatmust be queued on the edge

before the sink actor can be fired. Thus, an SDF graph is a computation graph in

which the thresholdparameter of eachedge equals the number of tokens consumed

from the edge per sink invocation.

Karp and Miller established that computation graphs are determinate,

which means that each computation graph uniquely determines the sequence of

data values produced ontheedges in the graph; these sequences donotdepend on

the schedule of actor executions — that is, on the order in which the actors are

invoked. Also, they developed topological and algebraic conditions to determine

which subgraphs in a computation graph become deadlocked. For the problems

that computation graphs were designed torepresent, only graphs that terminate —

that is, reach a deadlocked state — are correct, and thus, the results of Karp and

Miller do not lead to solutions for constructing efficient infinite schedules,

although the underlying concept of determinacy applies both to infinite and finite

schedules.

However, in DSP applications, weare often concerned with operations that

12



are applied repeatedly to samples in an indefinitely long sequence of input data,

and thus when applying a dataflow representation, it is mandatory that we support

infinite sequences of actor executions. For example, consider the block diagram

program shown in Figure 1.1, which is taken from a snapshot of a session with the

Ptolemy system [Buck92]. This program specifies a sample rate conversion system

developed by Thomas Parks, a graduate student at U. C. Berkeley, to interface a

digital audio tape (DAT) player to a compactdisc (CD) player. The sample rates of

CD players and DAT players are, respectively, 44.1kHz and 48kHz, and thesystem

in Figure 1.1 shows a multistage implementation of the conversion between these

impulse

^idowiiSami^e^ehematic^

Sample Rate Conversion
48 kHz-44.1 kHz (147:160)

use edit-comment
for documentation

DFTofthe
impulse

response

Figure 1.1. Asnapshot of a session with the Ptolemy system [Buck92] that
shows a sample rate conversion system for interfacing between a digital
audio tape playerand a compact disc player.

rates. The sample rate conversion is performed by three polyphase FIR filters that

respectively perform 3:2, 7:5 and 7:18rate conversions, and the cascade of blocks

rooted at each filter's output simply scales the corresponding signal and displays

its frequency content.

Now the system represented in Figure 1.1 would normally receive input

13



continuously from the DAT player. Each rate-changing FIR filter is applied repeat

edly to successive data items that emerge from the output of the previous stage of

thechain. In just 10minutes, this system must process over 28million input sam

ples, and we see that it makes sense to model the input data sequence as a semi-

infinite sequence that starts at some fixed time (the time when the system is acti

vated) andextends to infinity. Correspondingly, we model the computation repre

sented in Figure 1.1 as an infinite sequence of actor executions.

Three important issues emergewhen attempting to derive an implementa

tion of an infinite schedule from a dataflow graph. First, infinite scheduleshave the

potential of requiring unbounded amounts of memory to buffer tokens as they are

queued along the graph edges. Second, if deadlock arises, no more executions are

possible and the infinite schedule cannotbe carried out; similarly, if a subsystem

becomes deadlocked, no more actors in that subsystem can be executed (even

though it may be possible to continue executing actors outside the subsystem). In

either case, if we are attempting to implement a system in which all operationsare

applied repeatedly on conceptually infinite data, then deadlock indicates an error.

Finally, we must provide a mechanism to sequence the actor executions in

accordance with the given schedule. One option is to implement a software kernel

that dynamically detects which actors have sufficient data on their inputs to be

fired and determines when these actors are executed. However, the run-time over

head of this scheme is undesirable, particularly when a significant percentage of

the invocations requires low computation time. An alternative is to store the sched

ule in memory as an infinite loop, thereby achieving static scheduling, and clearly

this is only feasible if the schedule is periodic.

Lee and Messerschmitt resolved these issues for SDF graphs by providing

efficient techniques to determine at compile-time whether or not an arbitrary SDF

14



graph has a periodic schedule that neither deadlocks nor requires unbounded

buffer sizes [Lee87]. They also defined a general and efficient framework for con

structing such a periodic schedule whenever one exists. The suitability of SDF for

describing a large class of useful signal processing applications and the facility for

achieving the advantages of static scheduling have motivated the use of SDF and

closely related models in numerous design environments for DSP [Lauw90,

Lee89, Ohal91, Prin92, Ritz92, Veig90]. A large part of this thesis is devoted to

constructing static periodic schedules in such a way that the resulting target pro

gram is optimized.

A number of generalizations of the SDF model have been studied. In these

new models, the methods for analyzing SDF graphs were extended or combined

with additional techniques to incorporate actors that are more general than SDF,

along with, in most cases, new techniques for constructing schedules. The objec

tives wereto maintain at least a significant part of the compile-time predictability

of SDF while broadening the range of applications that can be represented, and

possibly, allowing representations thatexpose more optimizationopportunities to a

compiler. An example is the token flow model, which was defined by Lee in

[Lee91] and explored further by Buck in [Buck93]. In this model, the number of

data values produced or consumed by each actor is either fixed, as in SDF, or is a

function of a boolean-valued token produced or consumed by the actor. Buck

addresses the problem of constructing a non-null sequence of conditional actor

invocations, where each actor is either invoked unconditionally orinvoked condi

tionally based on the value of boolean tokens, that produces no net change in the

number of tokens residing in theFIFO queue corresponding to each edge. Such an

invocation sequence is referred to as a complete cycle, and clearly, if a finite com

plete cycle is found, it can be repeated indefinitely and a finite bound on the
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amount of memory required (for buffering) can be determined at compile-time.

Buck presents techniques for finding finite complete cycles whenever they exist,

and heuristic techniques are developed to efficiently deal with graphs that don't

have finite complete cycles or cannotbe implemented with bounded memory.

In [Gao92], Gao et al. have studied a programming model in which non-

SDF actors are used only as part of predefined constructs. Of the two non-SDF

constructs provided, one is a conditionalconstruct, and the other is a looping con

struct in which the number of iterations can be data-dependent. This restriction on

the use of more general actors guarantees that infinite schedules can be imple

mented with bounded memory. However, Gao's model, although more general

than SDF, has significantly less expressive power than the token flow model of

Buck.

Third, Lee has proposed a multidimensional extension of SDF [Lee93] in

which actors produce and consume /{-dimensional rectangles of data, and each

edge corresponds to a semi-infinite multidimensional sequence

{*„ t„ tn I(0 <. nv n2,..., nm <°°)} . For example, an actor can be specified

to produce a 2 x 3 grid consisting of six tokens each time it is invoked. Lee dem

onstrated that in addition to substantially improving the expressive power of the

unidimensional SDF model, multidimensional SDF alsoexposes parallelism more

effectively than unidimensional SDF.

Also, in [Lauw94], Lauwereins et al. have proposed a minor but very use

ful generalization of the SDF model, called cyclo-static dataflow. In cyclo-static

dataflow, the number of tokens produced and consumed by an actor can vary

between firings as long as the variations form a certain type of periodic pattern.

For example, consider a distributor operator, which routes data received from a
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single input to each of two outputs, outx and out2, in alternation. In cyclo-static

dataflow, this operation can be represented as an actor that consumes one token on

its input edge, and produces tokens according to the periodic pattern 1,0,1,0,...

(one token produced on the first invocation, none on the second invocation, one on

the third invocation, and so on) on the output edge corresponding to outl, and

according to complementary pattern 0,1,0,1,... on the edge corresponding to

out2. A general cyclo-static dataflow graph can be compiled asa cyclic pattern of

pure SDF graphs, and static periodic schedules can be constructed in this manner.

A major advantageof cyclo-static dataflow is that it can eliminate largeamounts of

token traffic arising from the need to generate dummy tokens in corresponding

SDF representations [Lauw94]. This leads to lower memory requirements and

fewer run-time operations.

The techniques of this thesis are developed for pure (unidimensional) SDF

graphs. Due to the close relation between SDF and Lee's multidimensional SDF,

they can easily be extended work with multidimensional SDF. However, how the

techniques are best extended to the other models described above is not obvious

and calls for further investigation.

To avoid confusion, we emphasize that SDF is notby itselfa programming

language but a model on whicha class of programming languages canbe based. A

library of predefined SDF actors together withameans for specifying how to con

necta setof instances of these actors intoan SDF graph constitutes aprogramming

language. Augmenting theactor library with ameans for defining newactors, per

haps in some other programming language, defines amore general SDF-based pro

gramming language. This thesis presents techniques to compile programs in any

such language into efficient implementations.
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Although the techniques in this thesis are presented in the context of block

diagram programming, they can be applied to other DSP design environments.

Many of the programming languages used for DSP, such as Lucid[Asch75],

SISAL[McGr83] and Silage[Geni90] are based on or closely related to dataflow

semantics. In these languages, the compiler can easily extract a view of the pro

gram as a hierarchy of dataflow graphs. A coarse level view of partof this hierar

chy may reveal SDF behavior, while the local behavior of the macro-blocks

involvedare notSDF. Knowledge of thehigh-level synchrony can beused to apply

"global" optimizations such as those described in this thesis, and the local sub

graphs can be examined for finer SDF components. For example, in [Denn92],

Dennis shows how recursive stream functions in SISAL-2 can be converted into

SDF graphs. In signal processing, usuallya significant fraction of the overallcom

putation can be represented with SDF semantics, so it is important to recognize

and exploit SDF behavior as much as possible.

1.3 Compilation Model

Figure 1.2 outlines the process of compiling an SDF block diagram pro

gramthat is usedin the Gabriel [Ho88a] and Ptolemy [Pino94] systems.This is the

compilation model that the techniques in this thesis are geared towards. The com

pilationbegins with an SDF representation of the block diagram program specifi

cation and from this SDF graph, a periodic schedule is constructed. A code

generator steps through this schedule and for each actor instance that it encoun

ters, it generates a sequence of machine instructions, obtained from a predefined

library of actor code blocks, that implements the actor. The sequence of code

blocks outputby the codegenerator is processed by a storage allocation phase that
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Figure 1.2. Compiling an SDF graph.

inserts the necessary instructions to route the data appropriately between actors

and assigns variables to memory locations. The output of this storage allocation

phase is the target program.

This form of block diagram compilation isreferred to as threading [Bier93]

since thetarget program is formed by linking together predefined code blocks. An

alternative approach, called synthesis, involves first translating the block diagram

to an intermediate language — possibly by threading code blocks that are defined

the intermediate language — and then compiling the intermediate language into C

or assembly language. Examples of code generation systems that use the synthesis

approach are the GOSPL [Covi87] and QuickSig [Karj88] systems, which first

translate the blockdiagram to LISP, and the Mentor Graphics DSP Station. Most
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of the techniques developed in this thesis canbe applied to synthesis; however, for

clarity, we consistently use the threading modelthroughout the thesis.

In our application of threading, we perform strictly inline codegeneration.

An alternative would be to define a subroutine for each actor and map the periodic

schedule into a list of subroutine calls. However, each subroutine call induces run

time overhead. The principal components of the subroutine overhead come from

saving the return address, passing arguments, allocating and deallocating local

variable storage, branching to the subroutine, retrieving the return address, return

ing control from the subroutine, and saving and restoring thestate of machine reg

isters. Clearly if subroutines are used, the total subroutine overhead can be very

detrimental if there are many actors of smallgranularity. The mainreason that we

prefer inline code over subroutines is to avoid subroutine overhead.

There is adanger, however, in using inline code, particularly for embedded

system implementations, which typically can afford only very limited amounts of

memory. The danger is that unmanageably large code size can result from actors

thatare invokedmultiple times in theperiodic schedule. For example, if anactor is

invoked 100 timesin the schedule, a straightforward inline implementation of the

schedule will require 100 copies of the actor's code block to be inserted in the tar

get code. Clearly, such code duplication can consume enormous amounts of mem

ory, especially if complex actors having large code blocks are involved or if high

invocation counts are involved.

Generally, the only mechanism to combat code size explosion whilemain

taining inlinecode is the use of loops in the target code. Clearly, if anactor's code

block is encapsulated by a loop, then multiple invocations of thatactor canbe car

ried out without any code duplication. For example, for the system in Figure 1.1,

asit is represented in Ptolemy, over 9000 actor code blocks are required in the tar-
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get code if inline code generation is applied with out employing any looping, while

by carefully applying loops, the target codecanbe reducedto only 70 code blocks.

A large partof this thesis is devoted to the construction of efficient loop structures

from SDFgraphs to allow the advantages of inline codegeneration under stringent

memoryconstraints. We will elaborate on thisproblem informally in the following

section, and then presentit formally in Chapter 2.

Until recently, it was widely believed that increased code size was the root

cause of all aspects of the subroutine/inline code trade-off that favor the use of

subroutines. However, experimental and analytical studies performed by Davidson

revealed that inlining can also have a negative impact on register allocation

[Davi92]. These effects however are largely artifacts of code generation conven

tions in modern compilers. For example, consider the conventional callee-save

method of maintaining the integrity of registers across subroutine calls. In this

convention, the values in the registers used by a subroutine are saved (stored to

memory) upon entry to the subroutine, and the saved values arerestored in the cor

responding registers just beforereturning from the subroutine.

Figure 1.3 shows an example of how this convention can cause inlining to

increase the amount of register-memory traffic in a program. Figure 1.3(a) shows

an outline of the compiled code for two procedures A and B, where B is called by

A. Here, x is a global variable, and the save and restore operations represent the

register-memory and memory-register transfers involved in saving and restoring

the registers used by a procedure. Also, we assume that B contains no subroutine

calls, and the only subroutine call in A is the call to B that is shown. If procedure

A is called 10 times, x is positive exactly 50% of the time, and B is not inlined

inA, then it iseasily verified that the calls to A result inatotal of 30 register save
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(a)

(b)

procedure A

save rO

save rl

if (x > 0) then

call B

endif

restore rO

restore rl

procedure B

save r2

save r3

body of procedure B

restore r2

restore r3

procedure A

save rO

save rl

save r2

save r3

if (x > 0) then

body of procedure B

endif

restore rO

restore rl

restore r2

restore r3

Body of procedure A

Figure 1.3. An example of how inlining can increase register-memory traffic
under a callee-save register save/restore convention.
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operations and 30 restore operations. On the other hand, if B is inlined in A, as

shown in Figure 1.3(b), then under the callee-save convention, the save/restore

operations of B are moved to a location where they must be executed more fre

quently, and the 10 calls to A now result in 40 save operations and 40 restore

operations.

In [Davi92] it is explained that inliningcan alsodegrade performance with

a caller-save convention, in which the registers used by the calling subroutine are

saved by the caller just before transferring control to the callee, and the caller

restores its registers just after control returns. It is also explained that the possible

penalties for using inlining with the callee-save or caller-save conventions can be

eliminated entirely through the application of dataflow-analysis. This has been

demonstrated for callee-save systems in [Chow88] and for caller-save systems in

[Davi89].

There is however one aspect of the negative interaction between inlining

and register allocation that is not simply an artifact of typical compiler implemen

tations. This is that variables of a subroutine that are placed in registers canbe dis

placed to memory in inlined versions of the subroutine. This can lead to inefficient

register allocation if frequently used variables are involved. Theoretically, this

problem can be avoided since register assignments in inline code can be custom

ized according to the context at the inlining boundaries, and thus, better register

allocation is possible with inlined coded than with noninlned code. However, effi

ciently exploiting these opportunities for improvement is difficult, and it remains a

challenge to systematically perform register allocation of inlined code in such a

way that an improvement is consistently obtained over the register allocation of

corresponding noninlined code [Davi92].

An important conclusion from Davidson's study is that even if the code
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size increase of a particular inlining application does not lead to an increasein exe

cution time, it is not guaranteed that the inlining will not decrease performance.

This refutes the prior notion thatthe onlydetrimental affects of inlining are related

to increases in code size. However, Davidson's study also shows that when the

code size increase is not a factor, inlining is advantageous most of the time. Our

use of inline code generation is motivated by this premise that if the code size

increase is tolerable, then inline code generation is usually more efficient than

heavy use of subroutines, and it is a main purposeof this thesis to examine the lim

its to which we can exploit inline code generation under strict memory constraints

when compiling SDF programs.

1.4 Scheduling

1.4.1 Constructing Efficient Periodic Schedules

This section informally outlines the interactionbetween the construction of

periodic schedules for SDF graphs and thememory requirements of the compiled

code; also we review related work, particularly those efforts that involve interac

tion between scheduling and memory requirements in other contexts. In Section

3.4, we will elaborate in detail on the research efforts that are most closely related

to the techniques developed in this thesis.

To understand the problem of scheduling SDF graphs to minimize code

size, it is useful to examine closely themechanism by which iteration is specified

in SDF. In anSDFgraph, iteration of actors in a periodic schedule arises whenever

the production and consumption parameters along an edge in the graph differ

[Lee88a]. For example, consider the SDF graph in Figure 1.4(a), which contains

three actors, labeled A, B and C. Each edge is annotated with the number of
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(a)

Periodic Schedules

(1).ABCBCCC

(2). A(2 B(2 C))

(3). A(2 B)(4 C)

(4). A(2 BC)(2 C)

(b)

for (i=0; i<2; i++) {
code block for B
code block for C

}
for (i=0; i<2; i++) {

code block for C

}

(c)

Figure 1.4. An example used to illustrate the problem of scheduling SDF
graphs to minimize code size.
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tokens produced and consumed by the incident actors; for example, actor A pro

duces two tokens each time it is invoked and B consumes one token. The 2-to-1

mismatch on the left edge implies that within a periodic schedule, B must be

invoked twice for every invocation ofA. Similarly, the mismatch on the right edge

impliesthatwe must invoke C twice for every invocation of B.

Figure 1.4(b) shows four possible periodic schedules that we could use to

implement Figure 1.4(a). For example, the first schedule specifies that first we are

to invoke A, followed by B, followed by C, followed by B again, followed by

three consecutive invocations of C. The parenthesized terms in schedules 2, 3

and 4 are used to highlight repetitive invocation patterns in these schedules. For

example, the term (2BC) in schedule 4 represents a loop whose iteration count is

2 and whose body is the invocation sequence BC; thus, (2BC) represents the

firing sequence BCBC. Similarly, the term (25 (2C)) represents the invocation

sequence BCCBCC. Clearly, in addition to providing a convenient shorthand,

these parenthesized loop terms, called schedule loops, present the code generator

with opportunities to organize loops in the target program, and we see that sched

ule 2 corresponds to a nested loop, while schedules 3 and 4 correspond to cas

cades of loops. For example, if each schedule loop is implemented as a loop in the

target program, the code generated from schedule 4 would have the structure

shown in Figure 1.4(c).

We see that if each schedule loop is converted to a loop in the target code,

then each appearance of an actor in the schedule corresponds to a code block in

the target program. Thus, since actor C appears twice in schedule 4 of Figure

1.4(b), we must duplicate the code block for C in the target program. Similarly, we
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see that the implementation of schedule 1, whichcorresponds to the sameinvoca

tion sequence as schedule 4 with no looping applied, requires seven code blocks.

In contrast, in schedules 2 and 3, each actor appears only once, and thus no code

duplication is required across multiple invocations of the same actor. We refer to

such schedules as single appearance schedules, and we see that neglecting the

code size overhead associated with the loops, any single appearance schedule

yields an optimally compact inline implementation of an SDF graph with regard to

code size. Typically the loop overhead is small, particularly in many programma

ble DSPs, which usually have provisions to manage loop indices and perform the

loop test in hardware, without explicit software control. A large part of this thesis

is devoted to studying properties of single appearance schedules, determining

when single appearance schedules exist, and systematically constructing single

appearance schedules whenever they exist. Additionally, we analyze the interac

tion between the use ofschedule loops to construct compact schedules and the effi

ciency ofbuffering (the management of the FIFO queues corresponding to each

edge in the SDF graph), and we present techniques to construct schedules that

simultaneously minimize code size and support efficient buffering.

1.4.2 Related Work

Numerous research efforts have focused on constructing efficient parallel

schedules from SDF graphs. These efforts operate on homogeneous SDF graphs;

that is, SDF graphs in which each actor produces asingle token on each output
edge and consumes asingle token from each input edge. Since iteration within a

periodic schedule, as defined in Subsection 1.4.1, does not arise in homogeneous
SDF graphs, scheduling techniques for homogenous SDF graphs do not encounter

the central problem addressed in this thesis —the management ofcode size and
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buffering when large amounts ofiteration are present in general SDF graphs.

However, anumber of the parallel scheduling techniques for homogeneous

SDF graphs have important implications oncode size. Many of these connections

are related to the unfolding factor of a parallel schedule. The unfolding factor of a

given periodic schedule S is the largest common factor (greatest common divisor)

of the actor invocation counts in S (by the invocation count of an actor in 5, we

simply mean the number of times that the actor is invoked in S). The unfolding

factorcan also be viewed as the number of minimal periodicschedules that exist in

the schedule. For example, a minimal periodic schedule for Figure 1.4(a) consists

of 1 invocation of A, 2 invocations of B, and 4 invocations of C. Any schedule

that invokes A, B and C Ut 2U and 4U times, respectively, for some positive

integer U, is also a periodic schedule, and U is referred to as the unfoldingfactor

of the schedule. For example, the unfolding factor of the schedule

A(2B)A(2B) (8C) is 2.

A related term, which we will use extensively in this thesis, is the blocking

factor of a periodic schedule. The blocking factor of a periodic schedule is simply

the unfolding factor of a blocked schedule, which is an infinite repetition of a peri

odic schedule in which each cycle of the schedule must complete before the next

cycle is begun. The distinctions between blocked and non-blocked periodic sched

ules are only relevant in a parallel scheduling context, and for parallel schedules,

the increased flexibility offered by a non-blocked schedule can often provide more

throughput than is possible with any blocked schedule. For example, in [Lee86],

Lee presents a homogeneous SDF graph (hat can be executed at a throughput of

0.5 minimal schedule periods per time unit (assuming that each actor takes unit

time to execute) with a non-blocked schedule, and Lee shows that the best
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throughput attainable with ablocked schedule for this graph is ^^-j, where U

is the blocking factor. Thus, for Lee's example, ablocked schedule cannot match
the performance of the given unblocked schedule for any finite blocking factor.

If inline code generation is performed and no looping is applied within a

period of the periodic schedule, then the total amount of code space (across all pro

cessors) required to implement ageneral parallel periodic schedule is roughly pro

portional to the unfolding factor.

Also, given a representation of a computation as a homogeneous SDF

graph, there is a fundamental upper bound on the throughput. This upper bound,

which was established by Reiter in [Reit68], can be computed as the minimum

over all directed cycles of the number ofdelays in acycle divided by the sum of

the computation times of all actors in the cycle. A multiprocessor schedule is

called rate-optimal if it attains this throughput bound, and the reciprocal of the

rate-optimal throughput is called the iteration period bound.

Thus, for a given homogeneous SDF graph, it is natural to ask if a rate-

optimal schedule is attainable with a finite unfolding factor, and if so, what is the

minimum unfolding factor that achieves the optimum throughput? In [Parh91],

Parhi established that if we allow non-blocked schedules, the answer to the first

question is always affirmative and provided a systematic technique for construct

ing finitely-unfolded rate-optimal schedules. The required unfolding factor for

Parhi's scheme is the least common multiple of the number of delays in each

directed cycle. In [Chao93] Chao found techniques to achieve rate-optimal sched

ules with lower unfolding factors, andhence lower code size. Chao showed that a

rate-optimal schedule can efficiently be constructed for an unfolding factor equal

to the denominator of the reduced-fraction form of the iteration period bound, and
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that this is the minimum unfolding factor for which arate-optimal schedule exists.

Thus, Chao's techniques determine the rate-optimal schedule that has minimum

code size. A related problem has been addressed by Murthy in [Murt94b] for the

more restricted class of blocked schedules. It is shown that for a given homoge

nous SDFgraph, we candetermine in a finite number of steps whether ornot there

is a finite blocking factor for which a rate-optimal blocked schedule exists, and

when such a blocking factor exists, we can determine in a finite number of steps

the minimum blocking factor for which rate-optimal blocked schedulesexist.

In contrast to ourprimary objectiveof minimum code size, many compilers

for procedural languages apply transformations that deliberately increase the code

size. One example is the inlining of subroutines, which we discussed in Section

1.3. Second, in trace scheduling, compile-time branch prediction is performed to

estimate the most likely execution path through a program, and this path, called a

trace, is scheduledas if it were a single basicblock [Fish84]. This permits exploi

tation of the most abundant source of instruction-level parallelism — reordering

code across basic block boundaries. For each instruction that moves across a basic

block boundary, recovery code may have to be inserted just off the trace. For

example, if along the trace, it is assumed that a particular conditional branch will

be taken, then each instruction migrated from after the branchto a point before the

branch may have to be "undone" if the branch is not taken. The insertion of such

recovery instructions increases the code size. Once the most likely trace has been

selected and reorganized, the next most likely trace is selected, and the process is

repeated for any desired number of traces.

In loop unrolling, which is analogous to the unfolding of SDF graphs, the

body of a loop is replicated to cover more than one iteration, and the iteration

count is modified and possibly a prologue or epilogue is generated to guarantee
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that the unrolled version executes the correct number of iterations of the original

loop [Dong79]. As with unfolding, unrolling facilitates the exploitation of inter-

iteration parallelism at the expense of a roughly linear increase in code size.

A fourth example of a code-increasing program transformationis the dupli

cation of code to eliminate unconditional branches [Muel92]. A significantnumber

of unconditional jumpsis generated by typical compilers. For example, whengen

erating code for an if-then-else construct, compilers often place an unconditional

branch at the end of the then section that skips over the else section. Here, the

unconditional branch can be eliminated by appending to the then section adupli

cate copy of the code at the target ofthe branch. The benefits ofsuch code replica

tion include fewer instructions executed, better program locality and increased

opportunities for common subexpression elimination [Muel92].

In the application domain that we are concerned with in thesis — the

domain ofembedded real-time digital signal processing systems —the price paid

for neglecting opportunities such as trace scheduling, loop unrolling, subroutine

inlining or unconditional branch elimination is usually dominated by the penalty

incurred when the target program does not fit within the on-chip memory limits.

Given an SDF graph, we would like to first generate an efficient compact imple

mentation, and then, if there is any remaining on-chip program memory, we can

expand the code in acontrolled manner to utilize it. In this thesis, we focus largely

on the first part ofthis process —generating an efficient uniprocessor implementa
tion with aminimal amount of code space.

The problem of scheduling SDF graphs to minimize the code size expan

sion ofinline code generation was first addressed by How [How90] in the context

of the Gabriel project. How proposed aheuristic that involved consolidating sub
systems ofactors that were iterated the same number oftimes in aperiodic sched-

31



ule. Although How demonstrated that this approach often produced compact

schedules, (he technique did not adequately exploit looping opportunities that

occur across subsystems that are iterated at different rates, and no systematic

method was provided for avoiding or recovering from consolidations that pro

duced deadlock. How's technique was subsequently extended to overcome these

shortcomings [Bhat93], and the resulting scheduler, implemented in Ptolemy, was

significantly more thorough in extracting looping opportunities. However, due to

its use of a data structure that could grow exponentially with the size of the SDF

graph, this scheduler became inefficient for graphs having large sample rate

changes. An alternative loop scheduling algorithm was developed by Buck

[Buck93]. This algorithm, which was in some ways an extension of How's

scheme, was designed to be more time and space efficient that the technique of

[Bhat93] while exploiting looping opportunities almost as thoroughly.

At the Aachen University of Technology, as part of the COSSAP design

environment, the construction of compact schedules for SDF graphs was studied in

the context of minimum activation schedules [Ritz93]. A major objective in this

work was the minimization of context-switches that occur when distinct actors are

executed in succession, and it was found that single appearance schedules are ben

eficial for this purpose. As one would expect, there are similarities between the

techniques developed in this work on minimum activation schedules and the tech

niques developed in this thesis. The parallels between the work on minimum acti

vation schedules and the techniques of this thesis are similar to the relationships

between two major approaches to the compilation of nested loop procedural code

for vector computers. In Section 3.4, we will discuss in detail the problems and

techniques involved in minimum activation schedules and in compiling nested

loops for vector computers. We will also elaborate on the loop scheduling algo-
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rithms developed by How and Buck. Finally, we will also examine thresholds, a

technique primarily used to compile procedural code for vector machines in which

vector instructions on short vectors are cost-effective. The problems addressed by

thresholds are closely related to issues encountered when scheduling loops from

SDF graphs, particularly the issues discussed in [Ritz93] on constructing minimum

activation schedules.

1.5 An Overview of the Remaining Chapters

In this introductory chapter, we have described the use of synchronous

dataflow as an underlying model for block diagram programming of embedded

digital signal processing applications. We have also defined a compilation model

for synthesizing software from SDF-based graphical programs, we have discussed

how scheduling plays a central role in this compilation process, and we have

defined the class of single appearance schedules, which minimize code size under

inline code generation.

In the following chapter, we formally review the basic concepts introduced

casually in this chapter, and we build on the fundamental principles of SDF to

develop a formal framework for constructing and manipulating schedules that con

tain loops. This framework isused first topresent atechnique, calledfactoring, for

transforming a scheduleinto analternative schedule thatcarries out the same com

putation, but with lower memory cost to implement the FIFO buffers correspond

ing to the graph edges. The concept of factoring is then applied todefine a form a

single appearance schedule, called &fully reduced schedule, which is roughly a

single appearance schedule that results when the factoring transformation is

applied to agiven single appearance schedule until no more opportunities exist for
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applying the factoring transformation. It is shown that a fully reduced single

appearance schedule can be constructed from any legitimate single appearance

schedule, and that under certain assumptions, the memory required for buffering

by the fully reduced schedule is less than or equal to the memory required for buff

ering by the schedule from which it is derived.

We alsoshow thatany fully reduced schedule hasunit block factor. Since a

fully reduced single appearance schedule can be derived from any single appear

ance schedule, it follows that the existence of a single appearance implies the

existence ofasingle appearance schedule that has unit blocking factor. We discuss

the implications that this fundamental property has on code generation, and later

weapply this property tohelp establish arecursive necessary and sufficient condi

tion for the existence of a single appearance schedule. To develop this condition,

we also apply a special form of precedence independence, called subindepen-

dence, for strongly connected SDF subgraphs.

In Chapter 3, we apply theconcept of subindependence and our condition

for the existence of single appearance schedules to develop a general class of

scheduling algorithms, and weestablish that all algorithms in this class guarantee

certain useful properties ofcode size compactness. We also demonstrate how algo

rithms in this class can betailored toadditional scheduling objectives while main

taining the properties of compact code size. Two specific additional objectives are

addressed: increasing theamount of buffering performed inregisters and minimiz

ing the amount of memory required for buffering. The scheduling framework

defined in Chapter 3 has been implemented in Ptolemy, a design environment for

simulation, prototyping, and software synthesis of heterogeneous systems

[Buck92]. A large part of the implementation inPtolemy was performed by Joseph

Buck, a graduate student colleague at the time and now with Synopsys Inc., and
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Soonhoi Ha, apost-doctoral fellow at U.C. Berkeley at the time and now alecturer

at Seoul National University.

In Chapter 3, for arestricted class of SDF graphs, we also present a tech

nique that computes the single appearance that minimizes the memory required for

buffering over all single appearance schedules. This work was done jointly with

Praveen Murthy, a fellow graduate studentatU. C. Berkeley.

In Chapter 4, we present techniques for improving the efficiency of buffer

ing for a given uniprocessor schedule. The optimizations include compile-time

dataflow analysis techniques to determine as much as possible about addressing

patterns; analysis of the loop structures in a schedule to provide flexibility for

overlaying buffer memory to a storage allocator; and techniques to optimize the

management of circular, or modulo, buffers, which are useful for implementing

dataflow edges that have delay. Finally, in Chapter 5, we discuss directions for

related future work.
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2

LOOPED SCHEDULES

2.1 Background

Forreference, the definitions behind much of the terminology and notation

that is introduced in this and subsequent chapters can be located by using the index

at the end of the thesis.

2.1.1 Mathematical Terms and Notation

We adopt the convention of indexing vectors and matrices using functional

notation rather than subscripts or superscripts. Thus, for example x (3) represents

the third component of the vector x, and M(iJ) represents the value correspond

ing to the i th row and 7 th column of the two-dimensional matrix M. We denote

T
the transpose of the vector x by x .

Given a finite set P of positive integers, we denote by gcd (P) the great

est common divisor of P — the largest positive integer that divides all members of

P, and we denote the least common multiple of the members of P by Icm (P) . If

%cd (P) = 1, we say that the members of P are coprime. Given a finite set R of
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real numbers, we denote the largest and smallest numbers in R by max (R) and

min (R), respectively. Given a fraction / = -, we define numer (/) = a and
b

denom (f) = b\ and given a positive rational number q, by

ReducedFraction (q) we denote that unique fraction / for which numer (f) and

denom (J) are positive and mutually coprime, and mimer yl = q. Also, ifr is a
denom (J)

real number, wedenotethe largest integer thatis less thanor equalto r (the"floor"

ofr) by \jJ, and we denote the smallest integer that isgreater than orequal to r

(the "ceiling" of r) by |>1.Finally, given two arbitrary sets Sx and S2, we define

the difference of these two sets by S: - S2 b {s € 5XIs £ S2} , and we denote the

number of elements in a finite set S by |5|.

Whendiscussing the complexity of algorithms, we will use the standard O,

Q. and 0 notation. Afunction f(x) is O(g (x)) if for sufficiently large x, f(x)

is bounded above by a positive real multiple of g (x) . Similarly, f(x) is

Cl(g(x)) iff(x) is bounded below by apositive real multiple ofg(x) for suffi

ciently large x, and /(*) is 0 (g (x)) if it is both 0 (g (x)) and Q(g (x)) .

2.1.2 Graph Concepts

This section introduces the basic graph-theoretic concepts that will be

applied in this thesis. For elaboration on any of these concepts, the reader is

referred to [Corm90].

By a directed multigraph, we mean an ordered pair (VJE), where V and

E are finite sets, and associated with each e € E there are two properties
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source (e) and sink(e) such that source (e), sink(e) € V. Each member of V

is called a vertex of the directed multigraph and each member of E is called an

edge. Wesay that a directed multigraph is trivial if it contains only one vertex. If

e is an edge in a directed multigraph, we say that source (e) is the source vertex

of e; sink(e) is the sink vertex of e; e is directed from source (e) to

sink (e); e is an output edge of source (e); and e is aninput edge of sink (e) .

We represent a directed multigraph pictorially by drawinga circle for each vertex,

and for each edge e, drawing a directed line segment from the circle correspond

ing to source (e) to the circle corresponding to sink (e) . For example, the

directed multigraph depicted inFigure 2.1 consists ofvertices Vj, v2, v3, v4, and

edges ev e2> ev e4, e5, where source (ex) = v2, sink(e^ = v2,

source (e2) = v2, sink(e2) = v3, source (e^) = v2, sink(e3) = v3,

source (e^ = vlt sink(eA) = v3, source (e5) = v4,and sink(e5) = v4.

Given two not necessarily distinct vertices vl and v2 in a directed multi-

graph (VJE), we say that v2 isa predecessor of v2 if there exists eGE such that

source (e) = vx and sw£ (e) = v2; we say that Vj is asuccessor of v2 if v2 is

Figure 2.1. A directed multigraph.
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a predecessor of v{; and wesay that Vj and v2 are adjacent if Vj is a successor or

predecessor of v2. Two subsets Vv V2 £ V are adjacent if there exist vertices

Vj G Vl and v2 G V2 such that Vj and v2 are adjacent. By a subgraph of a

directed multigraph G = (V,E), we mean the directed multigraph formed by

any V £ V together with thesetofedges {e GE\ (source (e), sink (e) 6 V')}.

We denote the subgraph associated with the vertex-subset V by

subgraph (V, G); if G is understood from context, we may simply write

subgraph (V) . A path in (yjE) is a nonempty sequence ev e2, ev ... GE such

that sink(ex) = source(e2), sink(e2) = .soMrce(e3), .... We say that the

path p = elye2fe3,... passes through each member of

Zp =fU{sowrce (e.) }JufU{««* (<?,) }J, and we refer to the SDF graph

formed by Zp together with the set ofedges in p as the associated graph ofp.

Observe thatthe associated graph ofp is not necessarily a subgraph since it does

not necessarily contain all of the edges whose source and sink actors are members

of Zp. Given a finite path p = eve2,..., en, we say that p is directed from

source (ex) to sink (en) . A path that is directed from some vertex to itself is

called a cycle ora directed cycle, and a fundamental cycle is a cycle ofwhich no

proper subsequence is a cycle. A directed multigraph is acyclic if it contains no

cycles. Finally, if e is the only edge directed from source (e) to sink (e), then

we occasionally denote e by source (e) -> sink (e); thus, in Figure 2.1, vx -» v2

represents the edge ex, whereas vx -> v3 cannot represent e3 because e4 also has
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the same source and sink vertices.

We say that a directed multigraph is connected if for eachdistinct pair of

vertices vv v2, there is a path directed from v2 to v2 or there is a path directed

from v2 to Vj. Thus, thedirected multigraph in Figure 2.1 is notconnected, while

the subgraph associated with {vv v2, v3} is connected. Given a directed multi-

graph G = (V,E), there is a unique partition (unique up to a reordering of the

members ofthe partition) VVV2, ...,Vn such that for 1£ / £ n, subgraph (V,) is

connected; and for each e G E, source(e), sink(e) G V, for some j. Thus, each

Vi canbeviewed as a maximal connected subset of V,and we refer toeach Vt as

a connected component of G. For example, the connected components of the

directed multigraph in Figure 2.1 are {vv v2, v3} and {v4} . Depth-first search

can be used to find the connected components of a directed multigraph in time that

is linear in the number of vertices and edges.

A directed multigraph (VJZ) is strongly connected if for each pair of dis

tinct vertices vlf v2, there is a path directed from vx to v2 and there is a path

directed from v2 to vx. We say that a subset V ofvertices in V is strongly con

nected if subgraph (y',(V,E)) is strongly connected. A strongly connected com

ponent of (VJE) is a strongly connected subset V'GV such that no strongly

connected subsetof V properly contains V. Forexample, the directed multigraph

in Figure 2.2 has three strongly connected components — {vj,v2},
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Figure 2.2. A directed multigraph that has three strongly connected com

ponents— {vpv2} , {v3,v4,v5} ,and {v6} .

{v3, v4, v5} , and {v6} . The strongly connected components of adirected multi-

graph can be determined in linear time by an algorithm developed by Tarjan

[Tarj72].

Given a directedmultigraph (V, E), a vertex v of (V, E) is a root vertex

of (V,E) if there is no edge e in (V,E) such that sink(e) = v, and a root

strongly connected componentof (V> E) is a strongly connected component V

of (V,E) such that {e£ E\ (source (e) £ Vand sink(e) 6 V')) =0- For

example, in Figure 2.2 there are no root vertices, and there is one root strongly

connected component — {vj, v2} . Finally, if V is a connected component of

(V£), then subgraph (V) is called aconnected component subgraph of (V£);

similarly, if V is a strongly connected component of (V£), then subgraph (V)

is a strongly connected component subgraph of (V£).

A topological sort of an acyclic directed multigraph (V£) is an ordering
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Vp v2,..., v.yj of the members of V such that for each e€£,

((source (e) - v.) and (sink (e) = v) =* (i<j)) ; that is, the source vertex of

each edge occurs earlier in the ordering than the sink vertex. Thus, in Figure 2.2,

subgraph (vv v3, v4, v6) has two distinct topological sorts— (vlfv3, v4, v6) and

(vi» v3» v6» v4) •Anacyclic directed multigraph is said tobewell-ordered if it has

only one topological sort, and we say that an n -vertex well-ordered directed multi-

graph is chain-structured if it has (n-l) edges. Thus, for a chain-structured

directed multigraph, there are orderings vv v2,....vn, and ev e2> ...ien_1 of the

vertices and edges, respectively, such that each ei isdirected from v. to v. j. For

example, in Figure 2.2, subgraph (vp v3, v6) is chain-structured, while

subgraph (v3, v4, v6) is neither chain-structured nor well-ordered; and in Figure

2.1, subgraph (vp v2, v3) iswell-ordered but not chain-structured.

In theremainder of this thesis, bya "graph" ora "directed graph", wemean

a directed multigraph, unless otherwise stated.

2.1.3 Synchronous Dataflow

Formally, anSDF graph is a directed multigraph in which each edge a has

three properties in addition to source (a) and sink (a) — delay (a), which is a

nonnegative integer thatgives thenumber of initial datavalues associated with a;

produced (a) , a positive integer that indicates the number of data values, called

tokens, produced onto the channel corresponding to a by each execution of the

computation corresponding to source (a); and consumed (a), a positive integer

that represents the number of tokens consumed from a by each execution of
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sink (a) . We refer to a vertex of an SDFgraph as an actor, and given an SDF

graph G, we represent the set of actors and theset of edges in G by actors (G)

and edges(G), respectively. If for each <x€ edges(G),

produced (a) = consumed (a) = 1, then we say that G is a homogeneous

SDF graph.

Conceptually, each edge in G, corresponds to a FIFO queue that buffers

the tokens that pass through the edge. The FIFO queue associated with anedge is

called a buffer for that edge, and the process of maintaining the queue of tokens

on a buffer is referred to as buffering. Each buffer contains an initial number of

tokens equal to the delay on the associated edge. A firing of an actor in G corre

sponds to removing consumed (a) tokens from the head of the buffer for each

input edge a, and appending produced (p) tokens to the buffer for each output

edge p. Thus, a firing is only possible if for each input edge a, there are at least

consumed (a) tokens onthecorresponding buffer. After a sequence of 0 or more

firings, we say that an actor is fireable if there are enough tokens on each input

buffer to fire the actor. Aschedule for G is asequence S = AXA2AV.. of actors

in G. Each term A. ofthis sequence is called an invocation ofthe corresponding

actor in the schedule; andfor each actor N, wedenote theyth invocation of TV in

the schedule by Nj, and we call j the invocation number ofN-. The schedule that

consists of no invocations — the empty sequence — is called the null schedule.

An admissable schedule for G is a schedule A^A^.. for G such that each

invocation Ai is fireable immediately after AVA2> ...M/.j have fired in succes

sion. The process of successively firing the invocations in an admissable schedule
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is called executing the schedule, and if a schedule is executed repeatedly, each

repetition of the schedule is called a schedule period of the execution.

Considerthe simpleSDFgraph in Figure 2.3.Each edge is annotated with

&-*rJ& ^©
Figure 2.3. A simple SDF graph.

the number of tokens produced by its source actor and the number of tokens con

sumed by its sink — for example, actor A produces three tokens per firing on its

outputedge and B consumes twotokens from its inputedge.The "2D " next to the

edge directed from A to B indicates that this edge has a delay of 2. Now consider

the schedule BACBA for thisexample. As we fire the invocations in the schedule,

we can represent the state of the system — the number of tokens queued on the

buffers —with an ordered pair whose first and second members are, respectively,

the number of tokens on the edge A-» B and the number of tokens on the edge

B -» C. Then, since there is a delay of 2 on the left side edge, the initial state of

the system is (2,0). Thus, the first invocation ofthe schedule —Bx —is fireable,

and as it fires, two tokens are removed from the left edge and one token is

appended to the right edge, so the state becomes (0,1). Since the corresponding

actor has no input edges, the second invocation of the schedule is fireable, and its

firing leads to the state (3,1). It is easily verified that the remaining three invoca

tions in theschedule are fireable andthesequence of buffer states thatresults from

these remaining firings is (3,0), (1,1), (4,1). Thus, BACBA is an admissable
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schedule for the SDF graph in Figure 2.3. In contrast, the slightly different sched

ule BA CBB is not admissable, since onlyone tokenresideson the input edge of B

priorto invocation B3.

If S = AxA2Ay.. is not an admissable schedule, then some Ai is not fire

ableimmediately afterits antecedents have fired. Thus, thereis at leastoneedge a

suchthat (1) sink (a) = A{ and(2) thebuffer associated with sink (a) contains

less than consumed (a) tokensjust prior to the ith firing in S. For each such a,

we say that S terminates on a at invocation A.. Clearly then, a schedule is

admissable if and only if it doesnot terminate on anyedge.

We say that a schedule S is a periodic schedule if it invokes each actor at

least once and produces nonet change inthe system state —for each edge a, (the

number of times source (a) is fired in S) X produced (a) = (the number of

times sink (a) is fired in S) x consumed (a) .For example for the SDF graph in

Figure 2.3, we saw that if the initial state is (2,0), the state after executing the

schedule BACBA is (4,1). Thus this schedule produces a net change of +2

tokens on the left-side edge and +1 token on the right-side edge, so this schedule

is not periodic.

Suppose that b is a vector ofpositive integers indexed by the actors in a

connected SDF graph G. Non-connected SDF graphs can beanalyzed by examin

ing eachconnected component separately; we willelaborate on thisin Section 2.3.

By definition, a schedule that invokes each actor A b(A) times is a periodic

schedule if and only if

for each edge a in G,
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b (source (a)) x produced (a) = b (sink (a)) x consumed (a). (2-1)

This system of equations in the set of variables

{b (A) | (A G actors (G))} —consisting of oneequation foreachedgein G —

is known as the system of balanceequations for G. Clearly, a periodic schedule

exists for G if and only if the balance equations have a solution whose compo

nents are all positive integers1. The balance equations can be expressed more com

pactly in matrix-vector form as

H> = 0, (2-2)

where T, called the topology matrix of G, is a two-dimensional matrix whose

rows are indexed by the edges in G andwhose columns are indexed by the actors

in G, and whose entries are defined by2

T(a4) =

produced(a), if A = source (a)

- consumed (a), if A = sink(a) (2-3)

0, otherwise

Thus, G has a periodic schedule only if it's topology matrixdoes not have

full rank. Furthermore, in [Lee87], Leeshows thattherankof T is always eithern

or n-l, where n denotes the number of actors in G, and that whenever the rank

is n - 1, a positive-integer vector exists thatsatisfies the balance equations. Thus,

1.Recall that in ourdefinition of periodic schedule, wedonotrequire admissability — a
periodic schedule need not be admissable.
2.This formulation assumes that G does notcontain any self-loops, edges whose source
and sink vertices are identical, such as edge es inFigure 2.1. Inan SDF graph, aself-loop
edge a precludes theexistencea periodic schedule if produced (a) * consumed (a); other
wiseit has noeffectontheexistence of aperiodic schedule, and thus it can be ignored in
this analysis.
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when a periodic schedule exists, the null space of T has dimension 1, and there is

a unique minimum positive integer vector that satisfies (2-2). This unique mini

mum positive-integer vector is called the repetitions vector of G, and we denote

this vector by qG, or simply by q if G is understood from context. Clearly, any

positive integer multiple of the repetitions vectoralso solves the balance equations,

and since the null space of T is of dimension n- (n-l) = 1, every positive-

integervectorthat solves the balance equations is a positive-integer multiple of the

repetitions vector. Notethatthe topology matrix, andhence theexistence of a peri

odic schedule, does not depend on the delays in an SDFgraph. Facts 2.1-2.3 sum

marize the mainproperties that follow from thedefinition of the repetitions vector.

Fact 2.1: A positive-integer vector is the repetitions vector of a connected SDF

graph if and only if its components are coprime and it satisfies the balance equa

tions.

Fact2.2: Anypositive-integer vector that satisfies thebalance equations is a pos

itive-integer multiple of the repetitions vector.

Fact 2.3: A schedule S for a connected SDF graph G is periodic if and only if

qG exists and there exists a positive integer /0 such that S invokes each

AG actors (G) exactly JQqG (A) times.

The positive integer /0 in Fact 2.3 is called the blocking factor of the

associated schedule. If S is a periodic schedule, we denote the blocking factor of

S by J (S) , and if / (S) = 1 wesaythatS is a minimal periodic schedule.

Anexample of a connected SDFgraph thatdoes nothavea periodic sched-
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ule is shown in Figure 2.4. The topology matrix for this SDF graph is

(a) (b)

Figure 2.4. (a). An SDFgraph that does nothave a periodic schedule,
(b). A slightly modified versionthat has a periodic schedule.

r=

3 -1 0

0 1 -1

2 0 -1

_2 0 -1

(2-4)

where each a,, corresponds to the i throw and each A- corresponds to the /th col

umn. Observe that the bottom tworows of T are identical, and the top three rows

form a square matrix whose determinant is nonzero. Thus, the matrix contains

three linearly independent rows, so it has full rank, and there is no nontrivial solu

tion to 2-2.

To understand what is "defective" about this graph, observe that for each

firing of Ax, three firings ofA2 are required to return edge ax to its initial state of

having no tokens queued in its buffer, and then three firings of A^ are required to

return ct2 to its initial state. However, since cc3 is an input edge of A3 and Ax pro-
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duces only two tokens per firing on ct3, only two firings of A3 are possible for

each firing of Ax. Thus, any infinite admissable sequence of firings for this graph

will produce an unbounded token accumulation on ctj, a2, orboth.

If wechange produced (ax) to 2, the resulting SDF graph, shown in Fig

ure2.4(b), has a periodic schedule. The topology matrix of this new SDF graph is

2-1 0

0 1 -1

2 0 -1

2 0 -1

r = * * -* . (2.5)

It is easily verified that thefirst two rows of P arelinearly independent, and each

of the thirdandfourth rowsis thesum of the first tworows. Thus, the rankof T' is

2, one less than the number of actors, so positive-integer solutions to (2-2) exist,

and thus the repetitions vector exists. The repetitions vector for Figure 2.4(b) is

given by

q(AvA2,A3) = (l,2,2)r. (2-6)

From (2-6), we see that A^^A^ and AlA2A2A3A3 are minimal periodic

schedules, and A^A^A^A^A^ is aperiodic schedule having blocking

factor 2. All three of these schedules are admissable.

In this thesis we are primarily concerned with schedules that are both peri

odic and admissable, and we refer to such schedules as valid schedules. An SDF

graph is consistent if and only if it has a valid schedule, and we say that an SDF

graph is sample rate consistent if it has a periodic schedule. Thus, for SDF
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graphs, consistency implies samplerateconsistency,but the converse is not true: a

sample rate consistent SDF graph that is deadlocked is not consistent.

Clearly, an SDF graph is consistent if and only if each connected compo

nent subgraph is consistent, and a necessary condition for a connected SDFgraph

to be consistent is that the topology matrix does not have full rank. However, for

an admissable periodic schedule to exist, an SDF graph must also have a sufficient

amount of delay in each fundamental cycle. For example, consider the SDF graph

in Figure 2.5. The repetitions vector for this graph is given by

Figure 2.5. An SDF graph that has a repetitions vector but does not have
an admissable schedule.

q(AvA2,A3) = (3,3,2)r, (2-7)

and thus periodic schedules exits. However, one can easily verify that there are

only five possible non-null admissable schedules for this SDF graph — A2, A2AX,

A2AXA3, A2AlA3A2, and A2A1A3A2Al. Since none of these five schedules con

tains enough invocations for a periodicschedule,we see that a valid schedule does

not exist. If we increase delay on the output edge of Ax from one to two, valid
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schedules, such as theschedule A2AlA3A2A1A3A2A1, exist.

Associated with any connected, consistent SDF graph G, and a positive

integer blocking factor /, there is a unique directed graph, called an acyclic prece

dence graph (APG), that specifies the precedence relationships between actor

invocations [Lee87] throughout / successive minimal schedule periods for G.

Each vertex of the APG corresponds to an actor invocation and there is an edge

directed from the vertex corresponding toinvocation Ai to the vertex correspond

ing to Bj if and only if at least one token produced by At isconsumed by B' •. As a

simple example, Figure 2.6below shows theAPG for Figure 2.3and blocking fac

tor 1. See [Sih91] for an efficient algorithm that systematically constructs the

APG.

We say that two SDF graphs Gx and G2 are isomorphic if there exist

bijective mappings /x: actors (Gx) -> actors (G2) and

Figure 2.6. The acyclic precedence graph for Figure 2.3 and unity blocking fac
tor.
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f2: edges(Gx)-> edges(G2) such that for each otG edges(Gx) ,

source (f2 (a)) = fx (source (a)), sink (f2 (a)) = fx (sink (a)) ,

delay (f2 (a)) = delay (a), produced (f2(a)) = produced(a) , and

consumed (f2(a)) = consumed (a) . Intuitively, two SDF graphs are isomor

phic if they differ only by a relabeling of the actors and/or edges. For example,

subgraphi {i42,i43} J in Figure 2.5 and subgraph ({A,B}) in Figure 2.3 are

isomorphic.

Finally, given a sample rate consistent, connected SDF graph G and an

edge a in G, we denote the total number of tokens consumed by sink(a) in a

minimal schedule period by total consumed (a, G); that is

total consumed (a, G) = qG(sink(a)) x consumed (a). Since in a periodic

schedule, the number of tokens produced on an edge equals the number of tokens

consumed, we also have that

total consumed (a, G) = qG(source (a)) x produced (a). If, G is under

stood from context, we may suppress the second argument and write

total_consumed (a) in place of total̂ consumed (a, G).

2.1.4 Computing the Repetitions Vector

The repetitions vectorcan be computed efficiently by applying depth-first

search. An algorithm based on the one that is used in the Gabriel [Lee89] and

Ptolemy [Buck92] systemsis described by the pseudocode segment below. In this

algorithm, we maintain an array of fractions called reps. At the end of the algo

rithm, numer (reps (A)) = qG (A), for each actor A in theinput SDF graph G,
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if G has a repetitions vector.

procedure ComputeRepetitions (G)
for each A € actors (G), initialize reps (A) to zero
select an actor A' € actors (G)

SetReps (A', 1)

compute x = lcm({ denom (reps(A)) \A G actors (G)})

for each 4 € actors (G), reps (4) = x x reps (4)
for each edge a e edges (G)

If (reps (source (a)) x produced (a)) *

(reps (sink (a)) x consumed (a))
error: inconsistent graph
exit

procedure SetReps (A, n)
reps (A) = h

for each output edge a of A
If reps(sink (a)) =0

SetReps(sm/:(a),

ReducedFraction ( (nproduced (a)) /consumed (a) ) )
for each input edge a of 4

If reps (source (a)) =0

SetReps(source (a),

ReducedFraction ((nconsumed (a)) /produced (a)))

Assuming the production and consumption parameters on the edges are

bounded — so that computing the least common multiple of two numbers is an

elementary operation — this algorithm has time complexity that is linear in the

number of actors andedges in theinput SDFgraph.

2.1.5 Constructing a Valid Schedule

If a connected SDF graph is consistent and the repetitions vector is com-
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puted, a valid schedule can be constructed. In [Lee87], Lee defines a class of

scheduling algorithms, called class-S algorithms, that construct valid schedules

given a positive integer multiple of the repetitions vector r. A class-S algorithm

maintains the state of the system as a vector b thatis indexed by the edges in the

input SDF graph. A class-S algorithm is any algorithm thatrepeatedly schedules

fireable actors, updating b as each actor is fired, until either no actor is fireable or

until all actors have been scheduled exactly the number of times specified by the

corresponding component of r. Thus, once an actor A has been scheduled r (A)

times, a class-S algorithm does not schedule A again. Lee shows that a class-S

algorithm constructs a valid schedule if and only if the SDF graph in question is

consistent [Lee87].

One specific class-S scheduling algorithm is given by procedure Con-

structValidSchedule in Figure 2.7. It is easily verified that if we assume that the

number of input and output edges for a given actor is bounded by a constant,

which is a reasonable assumption in practice, then the time complexity of Con-

structValidSchedule is 0( £ r(A)), where Gis the input SDF graph.
A € actors (G)

2.2 Looped Schedule Terminology and Notation

In Section 2.1, we reviewed relevant mathematical background, and we

summarized several important developments in [Lee86]. In this section, we begin

presenting the contributions of this thesis. We start by introducing somebasic con

cepts and terminology pertaining to uniprocessor scheduling that will be used

heavily throughout the remainder of the thesis.
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procedure ConstructValidSchedule (G, r)

• define ready to be a queue of actors

• deferie queued and scheduled to be vectors of non-negative
integers indexed by the actors in G

• define 5 to be a schedule; initialize S to be the null schedule.

for each edge a

b(a) = delay (a)
for each actor A \r\G

r = r04)

for each input edge a of A

r = min ({r, \_delay (a) /consumed (a) J})
If (r>0)

append A to the ready queue

queued (A) = r

scheduled (A) = 0

repeat until ready is empty

remove the actor A at the head of ready
append queued (A) successive invocations of A to S
scheduled (A) = scheduled (A) +queued (A)
n = queued(A) ; queued(A) = 0

for each input edge a of A

b(a) = b(a) - (nx consumed (a))

for each output edge a of 4

b (a) = b (a) + (n xproduced (a))

for each output edge a oi A

r = r (sink (a)) - scheduled (jfafc (a))

for each input edge p of un£ (a)

r = min ({r, |_b (P) /consumed (0) J})

if (r>^ttewerf(«'nJt(a)))

append sink (a) to rea</y
queued (A) = r

for each actor 4 in G

if (scheduled(A) *r(A))
error: inconsistent graph
exit

outputs

Figure 2.7. An algorithm for constructing a valid schedule for a connected
SDF graph.
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Definition 2.1: Given an SDF graph G, a schedule loop is a parenthesized term

of the form (/i7,1r2...rjll), where n is a positive integer, and each Ti is either an

actor in G or another schedule loop. The parenthesized term («7,1r2...r/n) rep

resents thesuccessive repetition n times of the invocation sequence T1T2...Tm.lf

L = (nTfa... Tm) is a schedule loop, wesaythat n is the iterationcount of L,

each T. is an iterandof L, and TlT2...Tm constitutes the body of L. If the body

of L is empty, that is if m = 0, we say that L is a null schedule loop; except

where otherwise stated, we assume that all schedule loops are non-null. A looped

schedule is a sequence V1V2...Vk, where each Vi is either anactor or a schedule

loop. Since a looped schedule is usually executed repeatedly, we refer to each Vi

as an iterand of the associated loopedschedule.

When referring to a loopedschedule, we often omit the "looped" qualifica

tion if it is understood from context; similarly, we may refer to a schedule loop

simply as a loop. Given a loopedschedule S, we refer to any contiguous sequence

of actors and schedule loops in S (at any nesting depth) as a subschedule of S.

For example, the schedules (3AB) C and (25 (3AB) C) A are both subschedules

of A (2B (3AB) C)A(2B), whereas (3AB) CA is not. By this definition, S is a

subschedule of itself, and every schedule loop in 5 is a subschedule of S. If the

sameinvocation sequence appears in morethan oneplacein a looped schedule, we

distinguish each instance as a separate subschedule. For example, in

(3A (2BC)D(2BQ), there are two appearances of (2BC), and these corre

spond to two distinct subschedules. In this case, the content of a subschedule is not

sufficient to specify it — we mustalsospecify the lexical position, as in "the sec-
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ond appearance of (25C)." If 50 is a subschedule of S, we say that 50 is con

tained in S, and we say that SQ is nested in S if 50 iscontained in S and SQ*S.

We denote the set of actors that appear in a looped schedule S by

actors (S), and we denote the number of times that an actor A appears in S by

appearances (A, S) ; thus, actors ((2 (2B) (5A) ) ) = {AtB} ,

actors(X(2Y(3Z)X)) = {X,y,Z}, appearances(C, (3CA) (ABC)) =2,

and appearances (A, (2ABAC) (3A)) = 3. Given a looped schedule S and an

actor A, we define inv (A, S) to be the number of times that S invokes A. Simi

larly, if 50 is a subschedule, we define inv (SQ, S) to be the number of times that

S invokes SQ. For example, if S = A(2 (3BA) C)BA (25), then

i«v(fl,S)=9, inv((3BA)tS) = 2, and

inv (first appearance ofBA, S) = 6. Also, we refer to the invocation sequence

that a looped schedule S represents as the invocation sequence generated by S.

For example, the invocation sequence generated by 5 = A(2 (3BA) C)BA (25)

is i45/45i45i4C5j45A5y4C5,455. When there is no ambiguity, we occasionally

do notdistinguish between a looped schedule and the invocation sequence that it

generates.

A schedule loop is a one-iteration loop if its iteration count is 1. Although

such loops are usually useless in the implementation ofa schedule, they are useful

for analyzing schedules, as will be apparent, for example, in Section 2.4. Since a

one-iteration schedule loop generates the same invocation sequence as its body,

replacing the loop by its body does not change the invocation sequence of an

enclosing schedule. Thus, given an arbitrary looped schedule S, if we select a one-
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iteration loop and replace it with its body, select a one-iteration loop in the result

ing scheduleand replace it with its body, and repeat thisprocess until there are no

one-iteration loops remaining, we will arrive at a new schedule S' that generates

the same invocation sequence as S and contains no one-iteration loops. Thus, the

following fact is obvious.

Fact 2.4: Givena looped schedule S, there exists a looped schedule S' thatgen

erates the same invocation sequence as S such that S' contains no one-iteration

schedule loops, and

V (A € actors (S)), appearances (A,S') = appearances (A,S) .

Given aschedule S, an invocation / issaid tobe part of asubschedule SQ

if / occurs in an invocation of SQ. For example, in the schedule AA(2AB) BB,

invocations A3,A4,Blf and 52 are part ofthe subschedule (2AB), whereas Ax,

A2,53, and54 arenot. Given anSDF graph G, anedge a in G, a looped sched

ule S for G, and a nonnegative integer /, we define P (a, i,S) to denote the

number of invocationsof source (a) that precedethe i th invocation of sink (a)

in S; andwe define T(a, i,S) to denote thenumber of tokens on a just prior to

the i th invocation of sink (a) in an execution of S. For example, consider the

SDF graph in Figure 2.3 and let a denote the edge directed from 5 to C. Then

P (a, 2,BC(2ABC)) = 2, thenumber of invocations of 5 thatprecede invoca

tion C2 in the invocation sequence BCABCABC, and

T(a,2tBC(2ABC)) = 1.

Given a looped schedule S for an SDF graph G, we define the buffer
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memory required by S, denoted bufferjnemory (S), to be the number of storage

units required to implement thebuffering for S if each buffer is mapped to asepa

rate contiguous block of memory. Quantitatively, if maxjokens(a>S) denotes

themaximum number of tokens that are simultaneously queued on edge a during

an execution of the schedule 5, we have that

bufferjnemory (S) = X\ maxjokens (a, S). In Figure 2.3, if
a€ edges (G)

S = BC (2ABC), then maxjokens(4 ->5, S) = 4,

maxjokens (B->C,S) = 1, and bufferjnemory (S) =4+1 = 5.

Our model of buffering here — each is buffer mapped to a contiguous and

independent block of memory — is convenient and natural for code generation,

and it is the model used, for example, in the SDF-based code generation environ

ments described in [Ho88b, Pino94, Ritz92]. However, perfectly valid target pro

grams can be generated without these restrictions. In this and the following

chapter, we examine the interaction of schedulingand memory requirements under

the assumption that each buffer is mapped to a separate, independent block of con

tiguous memory. Developing scheduling techniques that take advantage of more

flexible buffer implementations is a topic for future work; although some of the

pertinent issues are explained in Chapter 4, which discusses how to increase the

efficiency of buffering for a given schedule.

2.3 Non-connected SDF Graphs

The fundamentals of SDF were introduced in terms of connected SDF

graphs. In this section, we extend some basic principles of SDF to non-connected

SDF graphs. We begin with a definition.
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Definition 2.2: Suppose that S is a looped schedule for an SDF graph G and

Z £ actors (G). If we remove from S all actors that are not in Z and then we

repeatedly remove all null loops until no null loops remain, we obtain another

looped schedule, which we call the projection of S onto Z, and which we denote

by projection (S, Z) . For example,

projection ( (2 (25) (5A) ), {At C] ) = (2 (5A)) ,

and projection ((5C), {A, 5}) is the null schedule. If G' is a subgraph of G,

we define projection (S, G') s projection (S, actors (G')) .

We will use the following fact, which follows immediately from Definition

2.2 and the definitions introduced in the previous section.

Fact 2.5: If S and S' are valid looped schedules for an SDF graph G, a is an

edge in G, and / is a positive integer such that 1 £ i £ inv(sink (a), S) and

1 £ / £ inv (sink (a), S') , then

(a). (P(a, itS) = P(a, i,5')) <=> (J(a, /,5) = T(a, i,5'));

(b). P (a, i, 5) = P(a, it projection (S, {source (a), sm/: (a)})); and

(c). maxjokens (a, 5) = max ( {T(a, /, S) \ (1 £ ir £ mv (jwifc (a), 5))}) .

Theprojection of an admissable schedule 5 onto asubset of actors Z fully

specifies the sequence of token populations occurring on each edge in the corre

sponding subgraph. More precisely, for any actor A€ Z, any positive integer i

such that 1£ / £ inv (A, S) , and any input edge a of A contained in

subgraph (Z), thenumber of tokens queued on a just prior to the i th invocation
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of A in S equals thenumber of tokens queued on a just prior to the i th invoca

tion of A in an execution of projection (5,Z). Thus, wehave the following fact.

Fact 2.6: If S is a schedule for an SDF graph G, G' is a subgraph of G, and a

is an edge in G/, then

(a). S is valid (periodic) implies that projection (S, G') is a valid (peri

odic) schedule for G'; and

(b). S terminates on a implies that projection (S, GO terminates on a.

The conceptof blocking factor does not apply directly to SDFgraphs that

are not connected. For example in Figure 2.8 the minimal numbers of repetitions

Figure 2.8. A simple non-connected SDF graph.

for a periodic schedule are given by p (A, 5, C, D) = (1,1,1,1) 1. The sched

ule A (2C)B(2D) is a valid schedule for this example, but this schedule corre

sponds to a blocking factor of 1 for subgraph ( {A, 5}) and a blocking factor of

2 for subgraph ( {C, D] ) — there is no single scalarblocking factor associated

with ,4 (2C) 5 (2D).

Now suppose that S is a valid schedule for an arbitrary SDFgraph G. By

Fact 2.6, for each connected component C of G, we have that projection (5, C)

1.Note that this vector isnotarepetitions vector, and thus it isnotrepresented by q, be
cause theassociated graph isnotconnected. By definition, only connected SDF graphs can
have repetitions vectors.
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is a valid schedule for subgraph (C,G). Thus, associated with S, there is a vector

of positive integers J5, indexed by theconnected components of G, such that

for each connected component C of G,

A€ C=> Aiv (A, 5) = J5 (C) q^,^ (C) (A) . (2-8)

We call Js the blocking vector of S. For example, if S = A(2C) B(2D) for

Figure 2.8, then JS(M, 5}) = 1, and Js( {C,D}) = 2. On the other hand, if

S is connected, then J5 has only one component, which is the blocking factor of

S, J (S) . We refer to any vector of positive integers indexed by the connected

components of G as a blocking vector for G.

It is often convenient toview apart of an SDF graph as asubsystem that is

invoked as asingle unit. The invocation ofasubsystem corresponds to invoking a

minimal valid schedule for the associated subgraph. If this subgraph isconnected,

its repetitions vector gives the minimum number ofinvocations required for aperi

odicschedule. However, if the subgraph is notconnected, then theminimum num

ber of invocations involved in aperiodic schedule is not necessarily obtained by

concatenating the repetitions vectors associated with the connected components of

the subgraph. This isbecause the full SDF graph may contain connections between

thenon-connected components of the subgraph.

For example, let G denote the SDF graph inFigure 2.9(a) and consider the

subsystem subgraph ({A,ByC,D}) in this graph. It is easily verified that

qG (A, 5, C, £>, E) = (2,2,4,4,1) . Thus in a periodic schedule, the actors in

subgraph ({C,D}) must be invoked twice as frequently as those in

62



(b)

Figure 2.9. An example of clustering a subgraph in an SDF graph.

subgraph ( {At 5}). We see that for a periodic schedule, the minimum numbers

of repetitions for subgraph ({A>B,C,D}) as a subgraph o/the original graph

are given by p 04,5, C, D) = (1,1,2,2) , which can be obtained by dividing

each corresponding component in qG by

gcd({qG(A)tqG(B),qG(C),qG(D)}^ =2.

On the other hand, concatenating the repetitions vectors of subgraph ( {A, 5} )

and subgraph ({CtD}) yields the repetition counts

T
p'(i4,5, C,D) = (1,1,1,1) . However, repeatedly invoking the subsystem

with these relative repetition rates can never lead to a periodic schedule for G. We

have motivated the following definition.

Definition 2.3: Let G be a connected SDF graph, suppose that Z is a subset of

actors (G) , and let R = subgraph (Z) . We define
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qG (Z) s gcd( {qG (A) \A €Z} J, and we define qR/G to be the vector of posi

tive integers indexed by the members of Z that is defined by

qR/G (A) s qG 04) /qG (Z), for each A€ Z. We can view qG (Z) as the number

of times a minimal periodic schedule for G invokes the subgraph R, and we refer

to qR/G as the repetitions vector of R as a subgraph of G. For example, in Figure

2.9(a), if R = subgraph (A,BtCtD), then qG(actors (R)) = 2, and

*R/G =q*/oM.*.C,Z>) = (1,1,2,2)7'.

The following fact establishes that for aconnected SDFsubgraph, its repe

titions vector is therepetitions vector of itselfas asubgraph of theenclosing graph.

Fact 2.7: If G is a connected SDF graph and R is a connected subgraph of G,

then qR/G = q^. Thus, for a connected subgraph R, for each A £ actors (R) ,

Proof: Let 5 be any periodic schedule for G of unit blocking factor, and let

S' = projection (5, R). Then from Fact 2.6 and Fact 2.2, for all AG actors (R),

we have qG (A) = / (50 q^ (A) . From Fact 2.1, we know that the components

of q^ are coprime, and it follows that

J(S') =gcd({qG(A')\A'€ actors(R)}} =qQ(actors(/?)) .

Thus, for each actor A inR,qR(A) = qG (A)/qG(actors (R)) = qR/Q(A) .

QED.
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For example, in Figure 2.9(a), let R = subgraph ({A, 5}). We have

qG(AiBtC,DiE) = (2,2,4,4,1)T, qR(A,B) = (l,l)r, and from Defini

tion 2.3, qG (actors (R)) = gcd (2,2) =2 and

q£/G(i4,£) = (2,2) /2 = (1, l)T. As Fact 2.7 assures us, q^ =qR/G.

Finally, we formalize theconcept of clustering a subgraph of a connected

SDF graph G, which as we discussed earlier, we use to organize hierarchy for

scheduling purposes. This process is illustrated in Figure 2.9. Here

subgraph ( {A, 5, C, D} ) of Figure 2.9(a) is clustered into the hierarchical actor

Q, and the resulting SDF graph is shownin Figure2.9(b).Each input edge a to a

clustered subgraph R is replaced by an edge a' having

produced (a') = produced (a) ,and

consumed (a') = consumed (a) x qR/G (sink (a)),

the number of tokens consumed from a in one invocation of R as a subgraph of

G. Similarly, we replace each output edge (3 with P' such that

consumed ((3') = consumed(fi), and

produced (p') = produced(p) xqR/G (source (p)) .

We will use the following property of clustered subgraphs.

Fact 2.8: Suppose G is an SDF graph, R is a subgraph of G, G' is the SDF

graph that results from clustering R into the hierarchical actor Q., S' is a valid

schedule for G', and SR is a validschedule for R suchthatfor each actorA in R,

inv (A, SR) = q^/G (A) . Let S denote the schedule that results from replacing

eachinstance of Q, in S' with 5^. Then 5 is a valid schedule for G.
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As a simple example, consider Figure 2.9 again. Now, (2Q) £ is a valid

schedule for the SDF graphin Figure 2.9(b), and 5 = AB (2CD) is a valid sched

ule for R = subgraph ({A, B,C,D}) such that

(inv (A\ 5) =qR/G (A')), VA'. Thus Fact 2.8 guarantees that (2AB (2CD)) E

is a valid schedule for Figure 2.9(a).

ProofofFact 2.8: Given a schedule 5 and an SDF edge a, we define

A (a, 5) s (inv (source (a), 5) x produced (a))

- (inv (sink (a), 5) x consumed (a)). (2-9)

Then 5 is periodicif and only if it invokes each actor and (A (a, 5) = 0) Va.

We can decompose 5' into slQs2Cl...sk_ 1Clsk, where each s* denotes the

sequence of invocations between the 0' - 1) th and /th invocations of Q. Then

5 = siSRs2SR...SRsk.

First, suppose that p is an edge in G such that

source (&), sink (&) £ actors (R) . Then SR contains no occurrences of

source (p) nor sink (p), so P (P, i\S) = P (p, /, 5') for any invocation num

ber i of sink (P). Thus, since 5' is admissable, S does not terminate on p. Also,

A(p,5) = A(p,^1J2...5it) =A(P,S') = 0, since S' is periodic.

If source (f$), sink (&) € actors (R), then none of the s's contain any

occurrences of source (p) or sink (P) . Thus, for any i,

P(P, i,S) = P(p, i,57), where 5' = SRSR...SR denotes 5 with all of the ^'s

removed. Since 5' consists of successive invocations of a valid schedule, it fol-
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lows that S does not terminate on p, and A(p, 5) = 0.

Now suppose that source (p) G actors (R) and sink(fi) € actors (R) .

Then corresponding to p, there is an edge p' in G', such that source (PO = CI,

5mA: (PO = sink(P), produced (PO = q/j/G(50«rce(P)) x produced (p) ,

and consumed (PO = consumed (p) . Now each invocation of 5^ produces

mv (WMrce (P),5^)produced (P) = q^ (sowrce (p)) produced (P)

= produced (PO

tokens onto p. Since consumed (PO = consumed (P) and 5' is a valid sched

ule, it follows that A ( p, 5) = 0, and 5 does not terminate on p.

Similarly, if sowrce (p) £ flcfors (/?) and mw* (P) e actors (R), we see

that each invocation of 5^ consumes the same number of tokens from P as CI

consumes from the correspondingedge in G', and thus A (p, 5) =0 and 5 does

not terminate on p.

We conclude that 5 does not terminate on any edge in G, and thus, 5 is

admissable. Furthermore, A (a, 5) =0 for each edge a in G, and since 5' and

SR are both periodic schedules, it is easily verified that 5 invokes each actor in G

at least once, so we conclude that 5 is a periodic schedule. QED.

We conclude this sectionwith a fact thatrelates the repetitions vector of an

SDF graph obtained by clustering a subgraph to therepetitions vector of theorigi

nal graph.

Fact 2.9: If G is a connected SDF graph, Z £ actors(G), and G' is the SDF

graph obtained from G by clustering subgraph (Z) into the actor CI, then
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qG, (CI) = qG (Z) , and VA € (actors (G) - Z), qG,(A) = qG (A) .

Proof: Let q' denote the vector that we claim is the repetitions vector for G/, and

recall from Fact 2.1 that q/ = qG, if and onlyif q' satisfies thebalance equations

for G/ and the components of q' arecoprime. From the definition of clustering, it

can easily be verified that q' satisfies the balanceequations for G'. Furthermore,

from Fact 2.1, no positive integergreater than 1 can divide all members of

[inG^)\(^^ ^tors(G) -Z)} u{gcd^{qG(A)\(Ae Z)}^.
Since q'(Q) =gcd( {qG (A) |(A €Z) }J, it follows that the components of

q' are coprime. QED.

Fact 2.8 and Fact 2.9imply that for scheduling purposes, acluster in acon

nected SDF graph can be viewed as monolithic from the outside or as an SDF

graph (possibly non-connected) from the inside, and that the SDF parameters of

the monolith and the repetitions vector of the graph that it is contained in can be

formally bound to the repetitions vector of the original SDF graph.

The concept of acluster inagraph has been defined in and applied inmany

different contexts. In VLSI circuits, for example, a"cluster" is informally defined

as a particularly dense or complex subcircuit, and the problem of detecting such

clustershas been addressed to partition a circuitso that the numberof connections

crossing the partition are minimized [Garb90]. In multiprocessor scheduling, clus

tering is commonly used to group subsets of dataflow actors that are to be sched

uled on the same processor [Gera92]. A third example arises in the context of

dataflow/von Neumann hybrid architectures, which allow collections of data flow

actors, called threads, to execute sequentially under the control of a program
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counter, while the invocation of threads is carried out in a data-driven manner.

Thus, the computation within a thread is performedin a von Neumann style, while

the threads themselves are sequenced in a dataflow style. When compiling for a

hybrid dataflow/von Neumann machine, clustering can be used to construct

coarse-grain threads from a fine-grain dataflow representation of the program

[Najj92].

2.4 Factoring Schedule Loops

In this section, we show that in a single appearanceschedule, we can "fac

tor" common terms from the iteration counts of inner loops into the iteration count

of the enclosing loop. An important practical advantage of factoring is that it may

significantly reduce the amount of memory required for buffering.

For example, consider the SDF graph in Figure 2.10. Here,

Figure 2.10. An SDF graph used to illustrate the factoring of
loops.

T
q (A, B, C,D) = (100,100,10,1) , and one valid single appearance schedule

for this graph is (1004) (1005) (10C) D. With this schedule, prior to eachinvo

cation of C, 100 tokens are queued on eachof the input edges of C, and a maxi

mum of 10 tokens are queuedon the inputedge of D. Thus 210 units of storage
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are required to implement the buffering of tokens for this schedule

Now observe that this schedule generates the same invocation sequence as

(1 (1004) (1005) (IOC)) D. The main result developed in this section allows

us to factor the common divisor of 10 in the iteration counts of the three inner

loops into the iteration count of the outer loop. This yields the new single appear

ance schedule (10(104) (10B)C)D, for which at most 10 tokens simulta

neously reside on each edge. Thus, this factoring application has reduced the

buffer memory requirement by a factor of 7.

There is, however, a trade-off involved in factoring. For example, the

schedule (1004) (1005) (10C) D requires 3 loop initiations per schedule

period, while the factored schedule (10 (104) (105) C) D requires 21. Thus, the

run-time cost of starting loops — usually, initializing the loop indices — has

increased by the same factor by which the buffer memory requirement has

decreased. However, for programmable digital signal processors, the loop-startup

overhead is normally muchsmaller than thepenalty that is paid when the memory

requirement exceeds the on-chip limits. Unfortunately, we cannot in general per

form thereverse of the factoring transformation; that is, moving a factor from the

iteration count of an outer loop to the iteration counts of the inner loops. This

reverse factoring transformation might be desirable in situations where minimiz

ing the buffer memory requirement is not critical.

Figure 2.11 shows a simpleSDFgraph thatcanbe used to demonstrate that

unlike the factoring transformation, reverse factoring does not necessarily preserve

the admissability of a valid single appearance schedule. It is easily verified that

(1045) is a valid single appearance schedule (with blocking factor 10) for this

graph, while thereverse-factored derivative (104) (105) terminates onthe edge
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B -> A at the second invocation of A. Further exploration of reverse factoring is

beyond the scope of this thesis.

The factoring transformation is closely related to the loop fusion transfor

mation, which has been used for decades in compilers for procedural languages. In

the basic version of this transformation, two adjacent loops having the same itera

tion count are merged into a single loop by concatenating the bodies. It is well-

known that loop fusion can reduce a program's memory requirements [Wolf89]

just as the factoring transformation that we present in this section does. Also, loop

fusion has been found to increase data locality, and hence to improve the exploita

tion ofmemory hierarchies [AbuS81]. Incompilers for procedural languages, tests

for the validity of loop fusion include analysis of array subscripts to determine

whether or not for each iteration n of the (lexically) second loop, this iteration

depends onlyon iterations 1,2, ...n of thefirst loop[Zima90]. These tests aredif

ficult toperform comprehensively due to the complexity ofexact subscript analy

sis [Bane88], and due to complications such as data-dependent subscript values,

conditional branches inside one or more of the loops, and input/output statements.

Inthis section, we show that for single appearance schedules ofSDF graphs, these

Figure 2.11. An example used to illustrate that reverse factoring is not
always valid for single appearance schedules.
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complications do not arise, and loop fusion, as well as our more general factoring

transformation, is always a valid transformation. Thus, loop fusion is an additional

example of the increased compile-time predictability that can be gained when

restricting the computational model to SDF.

We will apply the following simple number-theoretic fact in the develop

ment of this section.

Fact 2.10: Suppose that x is a nonnegative integer, and a, b, and y are positive

integers such that x + ya^yb. Then V (i € { 0,1,..., v}), x + ia ^ ib.

Proof: Suppose that i € {0,1,..., v} , and first suppose that a <> b. Then,

jc + ya £ yb => x £ {b - a) y => x £ (b - a) i =^ x + ia ^ ib.

While, on the other hand if a > b, then (b - a) i ^ 0, and since x £ 0, it follows

that (b - a) i £ x, and thus x + ia^ ib. £££•

The following lemma establishes similarities between two looped sched

ules S and S' for a consistent SDF graph, where S' is obtained by replacing some

subschedule SQ in S with another schedule .Sq' that invokes each actor the same

number of times as SQ. For an SDF edge a, Lemma 2.1(a) states that if the mth

invocation of sink (a) is notpart of 50' in S', then the number of invocations of

source (a) that precede the /nth invocation of sink (a) in 5' equals the number

of invocations of source (a) that precede the m th invocation of sink (a) in S;

and Lemma 2.1(b) asserts the same conclusion whenever a is not contained in the

subgraph associated with thesetof actors invoked by S0. We first state and prove

the lemma, and pfesent a corollary, and then we illustrate with an example.
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Lemma 2.1: Suppose that G is a consistent SDF graph, S is a looped schedule

for G, and SQ is a subschedule of S. Suppose also thatS0/ is any looped schedule

such that actors (S0') = actors (S0), and inv (A, S0') = wv (4, SQ),

V(i4 € actors (S0)). Let S' denote the schedule obtained by replacing 50 with

Sq' in S. Then for any actor N G actors (G), any positive integer m such that

1 £ m ^ wv (AT, 5), and any input edge a of N, we have

(a). If invocation A^m is not part of 50' in 5', then

P (a, w, 5') = P (a, mtS); and

(b). If a isnot contained in subgraph (actors ((SQ), G)) , then

/>(a,m,5/) = P(a,m,S).

Proof: The sequence of invocations in 5 can be decomposed into

sl^is2^2'''^nsn +1»wnere ^/ denotes the sequence ofinvocations associated with

the y'th invocation of subschedule SQ, and j. is the sequence of invocations

between the (j'- 1) thand / th invocations of50.Since 5' isderived by rearrang

ing the invocations in 50, we can express 5' similarly as slb1/s2b2/...bn/sn +lt

where bj corresponds to the j th invocation of50' in S'.

For the proof ofpart (a), observe that Nm is part ofsome s.., say ^, in5'.

Then £-1 invocations of SQ' precede Nm in 5', and since for all y,

inv (N, bf) = inv (N, bj) we have that in 5, Nm is also part of sk. It follows

that

P(a,m,5) =
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P(atm- (k- 1) inv (N, S0), s^...sk) + (k- 1) inv (source (a), S0),

and

P(a,m,S') =

P (a, m- (k - l)inv(N, S0'), s^...^) + (k - 1) inv(source (a), S0') .

But, by assumption, inv (source (a), SQ) = inv (source (a), S$) t and

i/iv (N,50) = inv (N, SQ'), so P(a,m,S) = P(aimi S'), and the proof of

part (a) is complete.

For theproof of part (b), first observe that if in S, Nm is part of one of the

Sj's, then from part (a), we have immediately that P(a, m, S) = P(a, m, 5') .

On the other hand, if Nm is part of one of the fc.'s, say b , in 5, then

inv(N,S0) - inv(N,SQ') implies that in 5', Nm is part of b' Also, by

assumption a is notin subgraph (actors ((S0), G)), sosince Nm is part of b ,

N = sink (a) is contained in actors (SQ), and thus source (a) € actors (S0) .

It follows that

P(a,m,S) = inv (source (a), s^2...s) = P(a,m,S'),

and the proof of part (b) is complete. QED.

The following corollary follows immediately from Lemma 2.1. It implies

that under the assumptions of Lemma 2.1 together with the additional assumption

that S is admissable, if an invocation isnot part of 50' inS', then 5' cannot termi

nate at that invocation, and if a is not contained in the subgraph associated with

actors (Sq) , then S' cannot terminate on a.
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Corollary 2.1: Assume the hypotheses of Lemma 2.1 with the additional assump

tion that S is admissable. Then

(a). If invocation Nm isnotpart of iS0' in S', then S' does notterminate on

a at Nm.

(b). If a isnotcontained in subgraph (actors (S0), G), then S' does not

terminate on a.

Consider the example in Figure 2.12. Here, each d. represents the number

Figure 2.12. An example used to illustrate the application of Lemma
2.1.

of delays on the corresponding edge, and the repetitions vector is given by

q(AtBiCiDiE) =(2,4,4,1, l)r. Suppose that the dj's are such that

D(2A(2BC))E is an admissable schedule. Then Corollary 2.1(b) — with

S0 = A(2BC) and S0' = BCABC — guarantees that the schedule

D(2BCABC)E does not terminate on the edges 5-»D, D->At E->At or

C -» E; and Corollary 2.1(a) insures that this schedule does not terminate at invo

cation Dj or £j.

The following lemma establishes a simple sufficient condition for valid
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application of the loop fusion transformation to a looped schedule. It states that

given a valid looped schedule, two adjacent loops having the same iteration count

can be fused to yield another valid schedule if the sets of actors invoked by the

fused loops are mutually disjoint.

Lemma 2.2: Suppose that S is a validschedule for anSDFgraph G, and suppose

that S contains a subschedule 50 = L^, where L2 = (nBJ andL2 = (nB2)

are two schedule loops having identical iteration counts and arbitrary bodies Bl

and B2, respectively. Assume also that actors (B^) n actors (B2) = 0. Then

replacing S0 with the schedule loop SQ' = (nBxB2) in S results inavalid sched

ule for G.

As a counter-example that illustrates the need for the assumption that

actors (5X) n actors (B2) = 0, consider the SDF graph in Figure 2.13. One can

&~^& tl©
Figure 2.13. An SDF graph used to illustrate that the fusion of two adja
cent schedule loops in a valid looped scheduleis not always a legitimate
transformation

easily verify that the looped schedule A (25) (2CCBB) CC is a valid schedule

for this SDF graph. Observe thatalthough the two schedule loops in this schedule

have a common iteration count, they both contain instances of the actor B, and

thus these loops do not satisfy the hypotheses of Lemma 2.2. If we fuse these two

loops, we obtain the schedule A(2BCCBB) CC. The invocation sequence gener-
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ated by this new schedule, ABCCBBBCCBBCC, terminates on the edge B -» C

at invocation C2. Thus, the fusion of the schedule loops (2B) and (2CCBB)

converts a valid schedule into a schedule that is not valid.

Proof ofLemma 22: Let S' denote the schedule that results from replacing SQ

with Sq' in S. By construction of S', we have that for all actors A in G,

inv (A, 50 = inv (A, S). Since S is valid, and hence periodic, it follows that S'

is also periodic. It remains to be shown that S' is admissable.

Clearly S' is admissable if for each edge a in G, S' does not terminate on

a. There are four cases to consider here:

1. (source (a), sink (a) G actors (B^) or
(source (a), sink (a) G actors (B2))

2. (source (a) £ (actors(B^ u actors(B2))) or
(sink (a) € (actors (flj) u actors (B2)))

3. (source (a) e actors (2^)) and (sink (a) G actors (Z?2))

4. (source (a) Gactors (fl2)) and («w* (<x) G actors (Bx))

Case 1:

(source (a), sM (a) Gactors (5t)) or (source (a), sw£ (a) Gactors (52))

Let i be that member of {1,2} such that

source (a), sink (a) G actors (B(), and observe that since

actors (B^ n actors (B2) = 0,

projection (50, actors (5f)) = (nB.) = projection (S0't actors (B.)), and thus

projection (S\ actors (B{)) = projection (5, actors (B.) ) . (2-10)
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Now, (S' terminates on a)

=* (projection (S\ actors (B()) terminates on a) (byFact2.6b)

=> (projection (S, actors (Bt)) terminates on a) (by2-10)

=>(S is not valid ) (by Fact 2.6a).

By contraposition, it follows that under the assumptions of Lemma 2.2, S' does

not terminate on a.

Case 2: (source (a) € (actors (Bx) u actors (B2))) or
(sink(a) $ (actors(B^) u actors (B2)))

By Corollary 2.1(b), S' does not terminate on a.

Case 3: (source(a) G actors(B^)) and (sink(a) G actors(B2)) .

Let r be any positive integer such that 1£ r£ inv (Sq, S); let tr denote the num

ber of tokens on a just prior to the rth invocation of S0 in S; and observe that

since S is admissable, we must have

tr + n(inv (source (a), 5j) ) produced (a)

Zn (inv(sink (a),B2)consumed (a)). (2-11)

Now, by construction of S', we have that

for all actors AG actors (G) , inv (A, 5Q') = inv (A, SQ) . (2-12)

Thus, the number of tokens on a just prior to the rth invocation of 50' in 5' is

equal to fr, and S' does not terminate on a during the rth invocation of SQ if

there is a sufficient number of tokens on a prior to each of the n invocations of
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B2 — that is, if

V(*G {1,2,...,«})

tr + kinv(source(a), B^produced(a) - (k - 1) inv(sink (a), B2)consumed (a)

^:inv(sink (a), B2)consumed (a) .

which is equivalent to

V(£ G {1,2 n}),tr + k(inv( source (a), 5j)) produced (a)

^k(inv (sink (a),B2)) consumed(a). (2-13)

By Fact 2.10, (2-13) is guaranteed by (2-11), and since (2-11) holds for all invoca

tion numbers r, it follows that S' doesnot terminate on a during an invocationof

50'. Furthermore, from Corollary 2.1(a), S' cannot terminate at an invocation that

is notpartof 50'. We conclude that S' does not terminate on a.

Case 4: (source(a) Gactors(B2)) and (sink(a) Gactors(BJ) .

Again, let r be any positive integer such that 1£ r £ inv (SQ, S), and let tr denote

the number oftokens on a just prior tothe rth invocation of SQ inS. Then since

S is admissable,

tr £ n(inv (sink (a), flj)) consumed (a). (2-14)

Now clearly, 5' does not terminate on a during the rthinvocation ofSQ' if

V(*G {1,2, ...,*}),

fr+(£-l) inv(source(d)tB2)produced(a)-(k-l) inv(sink(a)iBl)consumed(a)
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^inv(sink(a), Bl)consumed(a),

which is equivalent to

V(kG {1,2,..., n} ), tr + (k - \)inv (source (a), B2)produced (a)

Zkinv (sink (a), B^)consumed (a) . (2-15)

Now, it is easily seen that (2-14) implies (2-15). Since this analysis holds for any

choice of r, 5' does not terminate on a during an invocation of S0', and from

Corollary 2.1(a), S' cannot terminate atan invocation that isnot part ofS0', sowe

conclude that S' does not terminate on a.

Our treatment of cases 1-4 shows that for any edge a contained in G, 5'

does not terminate on a. QED.

The following theorem establishes a sufficient condition for valid applica

tion of the factoring transformation. The condition is that the sets of actors invoked

by the factored loopsare all mutually disjoint. Clearly, thiscondition is always sat

isfied when working with single appearance schedules, and thus a major conse

quence of Theorem 2.1 is that factoring cannot convert a valid single appearance

schedule into a schedule that is not valid.

Theorem 2.1: Suppose that S is a valid schedule for an SDF graph G, andsup

pose thatL = (m (n^) (n2S2)... (n^Sk)) is a schedule loop in S of any nest

ing depth such that (1 £i</£&) =>actors(S.) nactors(S'.) = 0. Suppose

also that y isany positive integer that divides nvn2,..., nk, and let U denote the

schedule loop [7^[Y"1«i51J[Y"1/2252J...[Y"1/iJt5ikJJ .Then the schedule that
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results from replacing L with V in S is a valid schedule for G.

Proof: We will prove this theorem by induction on k.

First, let S" denote the schedule thatresults from replacing L with V in S,

andobserve that for k = 1, L and L' generate the same invocation sequence, and

thus S and S' generate the same invocation sequence. We conclude that S' is

valid for k = 1, and thus Theorem 2.1 holds for k = 1.

Second, consider the case k = 2. Then L = (m^Sj) («252)) and

V =Iyml y nxSA Iy w2S2JJ.Now, observe that Lgenerates the same invo

cation sequence as the schedule loop L=(ml y( v~ wi^iJJ(y( Y~lw2^2JJJ» so

replacing L with L inthe valid schedule S yields another valid schedule S. Since,

by assumption actors (S^ n actors (S2) = 0, Lemma 2.2 guarantees that

replacing Lwith L' =[w[t[y~1«i51J[y"1«252JJJ m&yields a**""* valid
schedule 5'. But, clearly V and V generate the same invocation sequence, so

replacing V with V in S' results in avalid schedule S". But by our construction,

S" = S', and thus 5' is a valid schedule for G. We conclude that Theorem 2.1

holds for k = 2.

Now suppose that Theorem 2.1 holds whenever k <> k', for some k' £ 2.

We will show that this implies the validity of Theorem 2.1 for k£ (k' + 1) . For

k = *' + l,

L = (01(1!^) (w252)...(^ +15^+1)),and

L' =(irm[y-1n15j(kT-1ii252J...(y-1iir+i^+iJJ -
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Let Sa denote the schedule that results from replacing L with the schedule loop

La = (mClOi^) («252)...(n^)) ('V+A'+l)) in S. Since La and L

generate the same invocation sequence, Sa generates the same invocation

sequence as S. Now Theorem 2.1 for k = k' guarantees that replacing

(l(n1S1)(n2S2)...(nk,Sk,)) with ^y^/nsj^y"1^^...[y'̂ Jt'̂ 'JJ *
Sa results in avalid schedule Sb.

Observe that Sb is theschedule 5 with L replaced by

Theorem 2.1 for k - 2 guarantees that replacing Lb with

Lc =(y4^"^i51)(y"W2J..{y"V5JJ(y"1^+i5^+1JJ
yields another valid schedule Sc. Now clearly Lc generates the same invocation

sequence as L', so replacing Lc with V in Sc yields avalid schedule Sd. But, by

our construction, Sd = S', so 5' is avalid schedule for G.

We have shown that Theorem 2.1 holds for k = 1 and k = 2, and we

have shown that if the result holds for k£ k', then it holds k £ (#' + 1). We con

clude that Theorem 2.1 holds for all it. QED.

We have demonstrated that factoring may decrease the buffer memory

requirement for a schedule. Although the transformation is not guaranteed to

always decrease the buffer memory requirement, factoring never increases the

buffer memory requirement. This is established by the following theorem.

Theorem 2.2: As in Theorem 2.1, assume that S is a valid schedule for an SDF
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graph G; L - (m(nxS^ (n2S2) ... (n^^) is a schedule loop in S of any nest

ing depth such that (l£i<j£k) => actors(St) n actors(S'.) = 0; and y is a

positive integer that divides nv «2, ...tnk. Let V denote the schedule loop

Iym\ y" niSi)[y~ n2S2J"\y~ nksk)j* and let $' denote the schedule that

results from replacing L with V in S. Then

bufferjnemory (S*) <> bufferjnemory (S).

Proo/: We show that for each edge a in G,

maxjokens (a, S') £ maxjokens (ayS), which clearly implies the desired

result. We consider three cases.

Case 1: (source (a) € actors (L)) or (sink (a) € actors (L)). From

Lemma 2.1(b), we have that

V(i € {1,2,..., inv (sink (a),S)})tP (a, /, SO = P (a, i, S),

and from Fact 2.5(a), it follows that

V(i€ {1,2, ...,inv(sink(a),S)}),T(a,i,S') = T(a)iiS) .

Thus,from Fact 2.5(c), we have maxjokens (a, S') = maxjokens (a, S) .

Case 2: For some j G {1,2, ...,*} , sowrcc (a), sm£(a) G actors (S-) .

Then since actors (Sx) n actors (52) n...n actors (Sk) = 0, it is easily veri

fied from the construction of 5', that projection (5, {source (a), swit(a)} )

generates the same invocation sequence as

projection (S\ {source (a), sink (a)}). From Fact 2.5(b) and Fact 2.5(a),

T(a, i,5') = T(a, i,5), and thus maxjokens (a, 5') = maxjokens (a, 5) .

Case 3: (source (a) Gactors (Sp)) and (sink (a) Gactors (5 )),
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where p, a G {1,2, ...,£} and p * q. We define

:( {T(a, i, 5) |smit (a) fis part of L} J;

:( {T(a, /, 5') \sink (a). is part of L'} J;

:f {T(a, i, 5) |sink (a),. is not part of L} J;

,' s max( {T(at /, 50 |sink (a). is not part of L'} j.

Then clearly,

maxjokens (a, 5) =maxf {rvr2} ] and

maxjokens (a, 50 =max! {r/.r^} J. (2-16)

Now, if in 5, sw£ (a) t is notpart of L, then clearly by theconstruction of

U, sink (a). is not part of V in 5', and from Lemma 2.1(a) and Fact 2.5(a), we

have that T(a, /, 50 = T(a, /, 5), and thus

r2 = r2'. (2-17)

On the other hand, if sw£ (a) f ispart of L in5, and thus s/wit (a) , ispart

of V in 5', we define

As (n^ x wv (source (a), 5 ) xproduced (a)) - ;
(nq x inv (sink (a), 5 ) x consumed (a))

rj smax]

r1'&max\

r« s max\

r2

84



M(aJ) bmaxi {T(a, i,S) \sink(a)i is part of the jth invocation of L} ]; and

M'(aJ) s maxy {T(a, i, 50 \sink (a),- is part ofthe jth invocation ofL'} j.

Also, we define jc. to denote the number of tokens on a just before the j th invoca

tion of L (L') in 5 (5'), and we define y. to denote the number of tokens on a

just after the Jth invocation of L (L')inS (S/).

Clearly, if A £ 0, then during a particular invocation of L in an execution

of 5, the maximum number of tokens on a is attainedjust after the last invocation

of (npS ) . Similarly inan execution of5', the maximum number of tokens on a

during the /th invocation of U is attained just after the last invocation of

Iy" npSp) •Thus, if p<q, then

M(a, j) = Xj +mn inv (source (a), 5 )produced (a) -
(m - 1) n inv (sink (a), 5 ) consumed (a)

= *y +mA +nqinv (sink (a), 5 ) consumed (a),

and similarly,

A** (a.y) =*y +(jm) —inv (source(a), Sp) produced(a) -
n

(ym - 1) -*inv (sink(a), 5 ) consumed(a)

n

= Xj +mA +-^mv (sM (a),5 )consumed (a).

Thus, since y^ 1, we have that M' (aj) <, M(aj), and since this holds for all

j, rx' cannot exceed rx. From (2-16) and (2-17), it follows that
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maxjokens (a, 50 ^ maxjokens (a, 5).

If (A £ 0) and (p > q), thenclearly y. cannot be less than M(aj) nor

M'(oLyj) for any;. Thus,

maxjokens (a,5) =maxf {r^y^y^ ...,v/llv(L 5)} J=maxjokens(a,S/).
If (A < 0) and (p < q) , then for any /,

M(a,j) = Xj+npinv(source (a),5 )produced(a), and

M' (a, j) = *, +-* inv (source (a), 5_)produced (a) .
J y P

Thus, M' (a,/) £ M(aJ) for all ;', and we have rx' <> rx. From (2-16) and (2-

17), we conclude that maxjokens(a, 50 £ maxjokens(a, 5).

Finally, if (A <0) and (p >a), thenclearly M(a,j) = Mx (a,;) = jc.

for aU /.Thus r^ = rlf and (2-16) and (2-17) yield that

maxjokens (a, 50 = maxjokens (a, 5).

Any edge a in G must fall into the domain of case 1, case 2 or case 3,

and in each of these cases, we have established that

maxjokens (a, 50 ^ maxjokens (a, 5) . QED.

Recall that our definition of buffer memory requirement assumes that each

buffer is implemented as a separate, contiguous block of storage, and thus Theo

rem 2.2 does not necessarily apply under more flexible bufferimplementations —

such as when storage is shared between multiple buffers that are active (contain

unread data) in mutually disjoint segments of time. In Chapter 4, we will discuss

shared buffers and buffers that do not necessarily reside in contiguous memory

locations.
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2.5 Reduced Single Appearance Schedules

Definition 2.4: Supposethat A is either aschedule loop ora loopedschedule. We

say that A is non-coprime if all iterands of A are scheduleloops and thereexists

an integer / > 1 that divides all of the iteration counts of the iterands of A. If A is

not non-coprime, we say that A is coprime.

For example, the schedule loops (3(4A) (2B)) and (10(7C)) are both

non-coprime, while the loops (5(34) (IB)) and (70C) are coprime. Similarly,

the looped schedules (4AB) and (6AB) (3C) are both non-coprime, while the

schedules A (IB) (7C) and (2A) (3B) are coprime. From our discussion in the

previous section, we know that non-coprime schedules or loops may result in

much higher buffermemoryrequirements than their factored counterparts.

Definition 2.5: Given a single appearance schedule 5, we say that 5 is fully

reduced if 5 is coprime and everyschedule loop contained in 5 is coprime.

In this section, we show that we can always convert a valid single appear

ance schedule that is not fully reduced into a valid fully reduced schedule, and

thus, we can always avoid the potential overhead associated with using non-

coprime schedule loops over their corresponding factored forms. First, however,

we showthat any fully reduced schedule has unitblocking factor. This implies that

any schedule that has blocking factor greater than one is not fully reduced. Thus, if

we decide to implement a schedule that has nonunity blocking factor, then we risk

introducing a higher buffermemoryrequirement.

Theorem 2.3: Suppose that G is aconnected SDF graph and 5 is a valid fully
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reduced single appearance schedule for G. Then J(S) = 1.

Proof: First, suppose that not all iterands of 5 are schedule loops. Then some

actor A is an iterandof 5. Since A is not enclosed by a loop in 5, and since 5 is a

single appearance schedule, inv (A, 5) = 1, and thus J(S) = 1.

Now suppose that all iterandsof 5 areschedule loops and suppose that / is

an arbitrary integer that is greater thanone. Then since 5 is fully reduced, / does

not divide at least one of the iteration counts associated with the iterands of 5.

Define /Q = 1 and letLx denote one of the iterands of 5 whose iteration count i^

is not divisible by / =j/gcdi {/, i"0} j. Again, since 5is fully reduced, if all iter

ands of Lx are schedule loops, then there exists and iterand L2 of Lx such that

j/gcdi {/, i'qj'j} j does not divide the iteration count i2 of L2. Similarly, if all

iterands of L2 are schedule loops, there exists an iterand L3 of L2 whose iteration

count /3 is not divisible by j/gcdi {/, /gi^} J•

Continuing inthis manner, wegenerate asequence Lv L2, L3,... such that

the iteration count ik of each Lk is not divisible by //( gcdi {/, iQix ...ik_ x) jj.

Since G contains a finite number of actors, we cannot continue this process indef

initely— for some m^ 1, not all iterands of Lm are schedule loops. Thus, there is

an actor A that is an iterand of Lm. Since 5 is asingle appearance schedule,

inv (A, 5)
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= inv (Lv 5) inv (L2,Lx) inv (LvL2) ...inv (Lm,Lm_x) inv (A,LJ

= i0iv..im. (2-18)

By our selection of the Lks, jA gcdl {/, iQix... im _x} Jj does not divide im, and

thus from (2-18), / does not divide inv (A, 5) .

We have shown that given any integer / > 1, there exists an actor A in G,

such that inv (A, 5) is not divisible by/. If follows that the blocking factor of 5 is

one. QED.

Theorem 2.4: Suppose that G is a consistentSDF graph and 5 is a valid single

appearance schedule for G. Then there exists a valid single appearance schedule

5' for G such that 5' is fully reduced and

bufferjnemory (50 ^ bufferjnemory (5).

Proof: We prove this theorem by construction. This construction process can eas

ily be automated to yield an efficient algorithm for synthesizing a valid fully

reduced schedule from an arbitraryvalid single appearance schedule.

Given a looped schedule ¥, wedenote thesetof schedule loops in ¥ that

are not coprime by non-coprime (*¥). Now suppose that 5 is a valid single

appearance schedule for G, and let Xx = (m (n^) (n^^ ... (/i^)) beany

innermost member of non-coprime (5) —that is, Xx is non-coprime, but every

schedule loop nested within Xx is coprime. From Theorem 2.1, replacing Xx with

V =Wt'^iVJIy'S^J~(/V*JJ • where
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Y=gcd\ {nv n2>..., nk] J, yields another valid single appearance schedule Sx,

and from Theorem 2.2, bufferjnemory (Sx) £ bufferjnemory (5). Furthermore,

Xx is coprime, and since every schedule loop nested within Xx is coprime, every

loop nested within Xx is coprime as well. Now let X2 be any innermost member

of non-coprime (Sx), and observe that A,2 cannot equal Xx .Theorem 2.1 guaran

tees areplacement X2 for X2 in Sx that leads to another valid single appearance

schedule 52, and Theorem 2.2 guarantees that

bufferjnemory (52) £ bufferjnemory (5). If we continue this process, it is clear

that no replacement loop Xk everreplaces one of the previous replacement loops

\x'yX2't..., Xk_ x , since these loops and the loops nested within these loops are

already coprime. Also, noreplacement changes the total number of schedule loops

in the schedule. It follows thatwe can continue this process onlya finite number of

times — eventually, wewill arrive at an Sn such that non-coprime (Sn) is empty.

Now if Sn is acoprime looped schedule, we are done. Otherwise, Sn is of

the form (pxTx) (p2T2)... (pJJ , where /s gcd[ {pvpv ...»Pm}) >1.

Applying Theorem 2.1 to the schedule (15fl) = (1 (pxTx) (p2T2)... (pmTm) ) ,

we have that

M (/>-ViXm"Vij ••( w "VJJ
is a valid schedule for G. From the definition of a valid schedule, it follows that

*.'s(w -ViX w "VJ...(en -lPmrm)
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is also a valid schedule, and by our construction of 5R and 5/}/, Sn' is a coprime

single appearance schedule, and all schedule loops in Sn' are coprime. Thus, Sn'

is a valid fully reduced single appearance schedule for G. Furthermore, since

(15n) generates the same invocation sequence as Sn clearly

bufferjnemory ((15n)) = bufferjnemory(Sn) . From Theorem 22y

bufferjnemory (S/) £ bufferjnemory ((lSn)) , and thus

bufferjnemory (5n0 ^ bufferjnemory (5). QED.

2.6 Subindependence

Since valid single appearance schedules implement the full repetition

inherent in an SDF graph without requiring subroutines or code duplication, we

examinethe topological conditions required for suchschedules to exist. First, sup

pose that G is a connected, consistent acyclic SDF graph containing n actors.

Then we can take some root actor Rx of G and fire all qG (Rx) invocations of Rx

in succession. After all invocations of Rx have fired, we can remove Rx from G,

pick aroot actor R2 of the new acyclic SDF graph, and schedule its qG (R2) rep

etitions in succession. Clearly, we canrepeat this process until no actors are left to

obtain the single appearanceschedule

(qG(Rx)Rx) (qG(R2)R2)... (qG(Rn)Rn)

for G. Thus, we see that any consistent acyclic SDF graph has a valid single

appearance schedule.

Also, observe that if G is an arbitrary connected, consistent SDF graph,
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then we can cluster the subgraph associated with each nontrivial strongly con

nected component of G. Clustering a strongly connected component into a single

actor CI never results in deadlock since there can be no cycle containing CI. Since

clustering all strongly connected components yields an acyclic graph, it follows

from Fact 2.6 and Fact 2.8 that G has a valid single appearance schedule if and

only if each strongly connected component has a valid single appearance sched

ule.

Observe that we must, in general, analyze a strongly connected component

subgraph 0 as a separate entity since G may have a valid single appearance

schedule even if there is an actor A in 0 for which we cannot fire all qG(A)

invocations in succession. The key isthat q@ (A) may beless than qG (A), sowe

may be able to generate a single appearance subschedule for 0; for example, we

may be able to schedule A qQ(A) times in succession. Sincewe can schedule G

so that the subschedule for 0 appears only once, this will translate into a single

appearance schedule for G. For example, in Figure 2.14(a), it can be verified that

CIABJ

(a) (b)

Figure 2.14. An example of how clustering strongly connected compo
nents can aid in generating compact looped schedules.
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T
q (At ByC) = (10,4,5) , but we cannot fire so many invocations of A, B, nor

C in succession. However, consider the strongly connected component subgraph

0' s subgraph ({AtB}). Then we obtain q@,(A) = 5 and q@,(B) = 2, and

we immediately see that q@/ (B) invocations of B can be fired in succession to

yield a subschedule for 0'. The SDF graph that results from clustering 0' is

shown in Figure 2.14(b). This leads to the valid single appearance schedule

(2(2B)(5A))(5C).

Theorem 2.5: Suppose that G is a connected SDF graph and suppose that G has

a valid single appearance schedule for some arbitrary blocking factor. Then G has

valid single appearance schedules for all blocking factors.

Proof: Clearly, any valid schedule 5 of unity blocking factor can be converted

into a valid schedule of arbitrary blocking factor / simply by encapsulating 5

inside a schedule loop having iteration count /. Thus, it suffices to show that G

has a valid single appearance schedule of unity blocking factor. Now, Theorem 2.4

guarantees that G has a valid fully reduced single appearance schedule, and Theo

rem 2.3 guarantees that the blockingfactor of this schedule is unity. QED.

Corollary 2.2: Suppose that G is anSDF graph that has a valid single appearance

schedule(G need not be connected). Then G has a validsingleappearance sched

ule for all blocking vectors.

Proof: Suppose that 5 is a valid single appearance schedule for G, let

Kj, k2, ..., Kn denote the connected components of G, let
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J' (Kp k2, ..., Kn) s (zj, z2,..., zn) be an arbitrary blocking vector for G, and

for 1£ / £ a, let St denote the projection of 5 onto k,.. Then from Fact 2.6,each

5{. is a valid single appearance schedule for the corresponding subgraph (k.) .

From Theorem 2.5, for 1 £ i £ n, there exists a valid single appearance schedule

5/ of blocking factor zf for subgraph (k,., G). Since the k/s are mutually dis

joint and non-adjacent, it follows that Sx'S2'...Sn' is a valid single appearance

schedule of blocking vector J' for G. QED.

The condition for the existence of a valid single appearance schedule can

be expressed in terms of a form of precedence independence, which is specified in

the following definition.

Definition 2.6: Suppose that G is a connected, sample rateconsistent SDFgraph.

If Zj and Z2 are disjoint nonempty subsets of actors (G), we say that Zx issub-

independent ofZ2 in G if for every edge a in G such that source (a) GZ2 and

sink (a) € Zj, we have delay (a) £ totaljonsumed (a, G) . We occasionally

drop the "in G" qualification if G is understood from context. Also, if

(Zx is subindependent of Z2) and (Zx uZ2 = actors (G)), then we say that

Z1 is subindependent in G, and we say that Zx and Z2 form a subindependent

partition of G.

In other words, Zx is subindependent of Z2 if given a minimal periodic

schedule for G, data produced by Z2 is never consumed by Zx in the same sched

ule period in which it is produced. Thus, at the beginning of each schedule period,
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all of the datarequired by Z1 from Z2 for that schedule period is available at the

inputs of Zj. For example, let G denote the SDF graph in Figure 2.15. Here

1 1

1>-<1 ^

Figure 2.15. An example used to illustrate the concept of subindependence.

q(AyByCyD) = (2,1,2,2)7, and we see that

{A} is subindependent of {C} ; {AtD} and {BtC} form a subindependent

partition of G; and trivially, {At BfC] is subindependent of {£>} .

The following properties of subindependence follow immediately from

Definition 2.6.

Fact 2.11: Suppose that G is a connected, samplerate consistentSDF graph, and

Xt Y and Z are disjoint, nonempty subsets of actors (G). Then

(a). (X is subindependentof Z) and (Y is subindependentof Z) =>
(XuY) is subindependent of Z

(b). (X is subindependent of Y) and (X is subindependent of Z)
=>X is subindependent of (Y u Z)

Recall that an arbitrary consistent SDFgraphhas a valid singleappearance

schedule if and only if eachstrongly connected component hasa singleappearance

schedule. The following theorem gives necessary and sufficient conditions for a

stronglyconnected SDF graph to havea valid single appearance schedule.
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Theorem 2.6: Suppose that G is a nontrivial, consistent, strongly connected SDF

graph. Then G has a valid single appearance schedule if and only if there exists a

nonempty proper subset X c actors (G) such that

(1). X is subindependent of (actors (G) -X) in G; and

(2). subgraph (XyG) and subgraph (actors (G) -XtG) both

have valid single appearance schedules.

Proof: (<= direction). Let 5 and T denote valid single appearance schedules for

Ys subgraph (X, G) and Zs subgraph ((actors (G) -X), G), respectively; let

v1} y2,..., yk denote the connected components of Y; and let zXiz2t...,z; denote

the connected components of Z. From Corollary 2.2, we can assume without loss

of generality that for l£/££, J5(y.) = qG(yt), and that for l£/£/,

Jr (z.) = qG (z.) . From Fact 2.7, it follows that 5 invokes each A€ X qG (A)

times, and T invokes each A€ (actors (G) -X) qG (A) times, and since X is

subindependent in G, it follows that ST, the schedule obtained by appending T to

5, is a valid single appearance schedule(of blocking factor one) for G.

(^ direction). Suppose that 5 is a validsingleappearance schedule for G.

From Theorem 2.5, we can assume without loss of generality that 5 has blocking

factor one, and from Fact 2.4, there exists a valid single appearance schedule 5'

that has blocking factor one and contains no one-iteration loops. Then 5' can be

expressed as SaSb, where Sa and Sb are nonempty single appearance subsched-

ules of 5' that are not encompassed by a loop, since if 5' is a schedule loop
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(/!(...)(...)...(...)), then gcd( {qG(A) |(Ae actors (G))}1^« so 5'

does not have unity blocking factor — a contradiction. Since SaSb is a minimal,

valid single appearance schedule for G, every actor A£ actors (Sa) is invoked

qG (A) times before any actor outside of actors (Sa) is invoked. It follows that

actors (Sa) is subindependent ofdent of actors (Sb) in G. Also, by Fact 2.6, 5fl

is a valid single appearance schedule for subgraph (actors (Sa)) and Sb is a

valid single appearance schedule for subgraph (actors (Sb)). QED.

Theorem 2.6 states that a strongly connected SDF graph G has a valid sin

gle appearance schedule only if we can find a subindependent partition Zx, Z2. If

we can find such Z1 and Z2, then we can construct a valid single appearance

schedule for G by constructing a valid single appearance schedule for all invoca

tions associated with Z1 and then concatenating a valid single appearance sched

ule for all invocations associated with Z2. By repeatedly applying this type of

decomposition, we can construct singleappearance schedules whenever theyexist,

and we will elaborate on this extensively in the following chapter.

The following theorem presents a simple topological condition for the

existence of a subindependent partition thatleads to anefficient algorithm for find

ing a subindependent partition whenever one exists.

Theorem 2.7: Suppose that G is a nontrivial, strongly connected, consistent SDF

graph. From G, remove all edges a for which

delay (a) £ total_consumed (a, G), and call the resulting SDF graph G'. Then
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G has a subindependent partition if and only if G' is not strongly connected. Fur

thermore, if G' is not strongly connected, then any root strongly connected com

ponent Z of G' is subindependent of (actors (G) -Z) in G.

Proof: First suppose that G/ is not strongly connected, and let Zx be any root

strongly connected component of G'. Thus, no edge in G that is directed from a

member of (actors (G) - Zx) to a member of Zx is contained in G'. Thus, by

the construction of G', for each edge a in G directed from a member of

(actors (G) -Zx) to a member of Zp we have

delay (cc) £ totaljconsumed (a, G). It follows that Zx is subindependent in G.

Thus, since Zj is anarbitrary root strongly connected component of G', we have

shown that if G' is not strongly connected, then G hasa subindependent partition

and any root stronglyconnectedcomponent of G' is subindependent in G.

To complete the proof, we show that whenever G has a subindependent

partition, G' is not strongly connected. If G has a subindependent partition, then

actors (G) can be partitioned into Zx and Z2 such that Zx is subindependent of

Z2 in G. By construction of G', there are noedges in G' directed from amember

of Z2 to amember of Zx, so G' is notstrongly connected. QED.

Theorem 2.7 establishes the validity of the following algorithm, which

takes asinput anontrivial consistent, strongly connected SDFgraph G, and finds a

subindependent partition of G if one exists.

98



procedure SubindependentPartition(G)
Compute the repetitions vector q of G.
From G, remove each edge a for which

delay (a) £ total^consumed (a, G).
Denote the resulting graph by G'.
Determine the strongly connected components of G'.
Iff G' consists of only one strongly connected component,
actors (GO ,

G' does not have a subindependent partition
else

for each strongly connected component Z
Iff no member of Z has an input edge a such that
source (a)|Z

Z is subindependent in G.

Let m = max({\actors(G)\,\edges(G)\}). The algorithm presented

in Subsection 2.1.4 computes the repetitions vector in time O (m); it is obvious

that the next step of algorithm SubindependentPartition — removing the edges

with insufficient delay — can also be performed in O (m) time; Tarjan's algo

rithm allows the determination of the strongly connected components in O (m)

time [Tarj72]; and the checks in the if-else segment are clearly 0{m) as well.

Thus, the time complexity of algorithm SubindependentPartition is linear in the

number of actors and edges in G.

The operation of algorithm SubindependentPartition is illustrated in Figure

2.16. For the strongly connected SDF graph on the left side of this figure, which

we denote by G, q(A, B, CtD) = (1,10,2,20)T. Thus, the delay on the edge

directed from D to B (25) exceeds the total number of tokens consumed by B in

a minimal schedule period of G (20). We remove this edge to obtain the new

graph depicted on theright side of Figure 2.16. Since this new SDF graph is not
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Figure 2.16. An illustration of algorithm SubindependentPartition.

strongly connected, a subindependent partition of G exists: the root strongly con

nected component {A, B] is subindependent of the remaining actors {C,D} in

G.
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3

SCHEDULING TO MINIMIZE CODE SIZE

Inthis chapter, we present systematic techniques for compiling SDF graphs

into implementations that require minimum code size. We define a graph decom

position process that can be used to construct single appearance schedules when

ever they exist. Based on this decomposition process, we define a general

framework for developing scheduling algorithms, and we show that all scheduling

algorithms that are constructed through this framework construct single appear

ance schedules whenever theyexist. Also,we show that thecode sizeoptimality of

the scheduling framework extends in a restricted way to SDF graphs that do not

have single appearance schedules: the framework guarantees minimum code size

for all actors that are notcontained in subgraphs of a certain form, called tightly

interdependent subgraphs.

In Section 3.2, we discuss considerations that must be addressed when

incorporating clustering techniques into our scheduling framework, and wepresent

a clustering technique that can be incorporated, into the framework to increase the

amount of buffering that occurs through registers. A large part of Section 3.2 is

devoted to establishing thatthisclustering technique does not violate the code size
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minimization properties of the schedulingframework. In the following section, we

discuss the problem of constructing single appearance schedules that minimize the

buffer memory requirement. Here, we focus on the class of chain-structured SDF

graphs, and some extensions to more general graphs are given in Subsection 3.3.4.

Finally, in Section 3.4 we describe in detail a number of research efforts that are

closely related to the work presented in this section. These efforts include loop

scheduling mechanisms in Gabriel, which were examined by How [How90]; a

related loop scheduling technique described in [Buck93] for the Ptolemy system;

the construction of uniprocessor schedules that minimize the number of context-

switches, a problem that has been addressed in the COSSAP design environment

[Ritz93]; and a number of techniques developed to compile procedural programs

into efficient code for vector computers [Mura71, Alle87].

3.1 Loose Interdependence Algorithms

Definition 3.1: Suppose that G is a sample rate consistent, nontrivial strongly

connected SDF graph. Then we say that G is loosely interdependent if G has a

subindependent partition. We say that G is tightly interdependent if it is not

loosely interdependent.

For example, consider the strongly connected SDF graph in figure 3.1.

Here, the repetitions vector is q (A, Bt C) = (3,2,1) , and dx, d2 and d3 rep

resent the number of delays on the associated edges. From Definition 3.1, this SDF

graph is loosely interdependent if and only if (d1^6) or (d2 ^ 2) or (d3 £ 3);

equivalently the graph is tightly interdependent if and only if

(dx<6) and (d2<2) and (d3<3).
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Figure 3.1. An example used to illustrate the concepts of loose and tight
interdependence.

Wewill use the following fact, whichfollows immediately from the defini

tion of loose interdependence.

Fact 3.1: If G2 and G2 are two isomorphic SDF graphs and Gx is loosely inter

dependent, then G2 is loosely interdependent.

Ourcode scheduling framework is based onthefollowing definition, which

decomposes the scheduling process into four distinct functions, and defines how

algorithms for these functions can becombined to generate a class of scheduling

algorithms.

Definition 3.2: Let dx be any algorithm that takes as input a nontrivial strongly

connected SDFgraph G, determines whether G is loosely interdependent, and if

so, finds a subindependent partition of G. Le #2 be any algorithm that finds the

strongly connected components ofadirected multigraph. Let #3 be any algorithm

that takes an acyclic SDFgraph and generates a valid single appearance schedule.

Finally, let #4 be anyalgorithm that takes a tightly interdependent SDFgraph and
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generates a valid looped schedule of blocking factor one.Wedefine the algorithm

L(^j, d2, #3, #4) by the sequence of steps shown in fig

ure 3.2. This process for combining the algorithms #j, d2, #3, and d4 defines a

family of algorithms L (•, •, •, •), which we call loose interdependence algo

rithms because they exploit loose interdependence to decompose the input SDF

graph. Given a loose interdependence algorithm £ = L($v $2,fl3, £4) , we call

thecomponent algorithms dx, #2, #3, and d4 the subindependence partition

ing algorithm of £, the strongly connected components algorithm of £, the

acyclic scheduling algorithm of £, and the tight scheduling algorithm of C>

respectively.

Sincenested recursive calls decompose a graph intofiner andfiner strongly

connected components, it easy to verify that a loose interdependence algorithm

always terminates on a finite input graph. Also, since the /or-loop in step 4

replaces each £1. inS' with a valid looped schedule for subgraph (Z,), we know

from Fact 2.6 that these replacements yield a valid looped schedule for G, and

thus thattheoutput SL (G) of a loose interdependence algorithm is always a valid

schedule.

We will also make use of the following observations in the remainder of

this section.

Remark 3.1: Observe that step 4 does not insert or delete appearances of actors

that are not contained ina nontrivial strongly connected component Zk. Since #3

generates a single appearance schedule for G', we have that for ever actor A that
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procedure ScheduleLoops
input: a connected, consistent SDF graph G.
output: a valid unit blocking factor looped schedule SL (G) for G.

step 1: Use $2 to determine the nontrivial strongly connected

components ZltZ2, ...,ZS.

step 2: Cluster Zv Z2,..., Zs into theactors Clv Q2 Qs respectively,
and denote the resulting graph by G'. This is an acyclic graph.
step 3: Apply #3 to G', and denotethe resulting scheduleby S'.
step 4:

for/ = 1,2, ...ts

Let Gz denote subgraph (Z.).

Apply #! to G2.

If X, Y£ Z. are found such that X is subindependent of Yin G2.
• Let Gxdenote subgraph (X) and Gy denote subgraph (Y)
• Determine the connected components Xv X2,..., Xv
and ylf r2,..., Yw of G^ and Gr respectively.
• Recursively apply ScheduleLoops to construct

Sx = (<?G,(*1> 5L (subgraph (XJ))... (^(Xv) 5L (subgraph (Xv)))
and

Sy = (?G, (yi> 5L (subgraph (YJ ))... (^(FJ 5L (subgraph (YJ )) .
• Replace the single appearance of CI. in S'

With (qG(X)Sx)(qG(Y)Sy).
else (subgraph (Z.) is tightly interdependent)

• Apply $4 to obtain a valid schedule 5, for subgraph (Zt).
• Replace the single appearance of Q. in S' with 5,.

step 5: Output S' as 5L (G).

Figure 3.2. The specification of how algorithms d2, #2, #3, #4 in Definition
3.2 arecombined to form a loose interdependence algorithm.
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is not contained in a nontrivial strongly connected component of G,

appearances (A, Si (G)) = 1.

Remark 3.2: If Z is a nontrivial strongly connected component of G and A € Z,

then since SL (G) is derived from S' (G) by replacing the singleappearance of

each Q{,wehavethat

appearances (A, SL (G)) = appearances (A, SL(subgraph (Z))) .

Remark 3.3: For each strongly connected component Zk whose associated sub

graph is loosely interdependent, L partitions Zk into X and Ysuch that X is sub-

independent of Yin subgraph (Zk), and replaces the single appearance of Qk in

S'(G) with (qG (X) Sx) (qG (Y) Sy). IfA is amember of the connected com

ponent Xi% then At Y, so

appearances (A, (qGf (X) Sx) (^ (7) ty)

= appearances (A, SL (subgraph (Xt))).

Also, since A cannot be in any other strongly connected component besides Zk,

and since S'(G) contains only one appearance of Qk, we have

appearances (A, SL (G)) = appearances (A, (qG^ (X) Sx) (qG^ (Y) Sy)) .Thus,

fori = 1,2, ...,v,

appearances (A,SL(G)) = appearances (A, SL (subgraph (Xf))) .

By a similar argument, we can show that for /= 1,2, ...,w,
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(A e Yt) =» appearances (A, SL(G)) = appearances (A, SL (subgraph (Yt)))

We will apply a loose interdependence algorithm to derive nonrecursive

necessary and sufficient conditions for the existence of a valid single appearance

schedule. First, we introduce two useful lemmas.

Lemma 3.1: Suppose G is a connected, consistent SDFgraph; A is an actorin G

that is notcontained in any tightly interdependent subgraph of G; and £ is a loose

interdependence algorithm. Then A appears only once in S»(G), the schedule

generated by £.

Proof: From Remark 3.1,if A is notcontained in a nontrivial strongly connected

component of G, the result is obvious, so we assume, without loss of generality,

that A is in some nontrivial strongly connected component Zx of G. From our

assumptions, subgraph (Zx) must be loosely interdependent, so £ partitions Zx

into X and Y, where X is subindependent of Yin subgraph (Zx). Let Zx' denote

that connected component of subgraph (X) or subgraph (Y) that contains A.

From Remark 3.3,

appearances (A, S^ (G)) = appearances (A, S^subgraph (Zx'))) .

From our assumptions, all nontrivial strongly connected subgraphs of

subgraph (Zxf) thatcontain A areloosely interdependent. Thus, if A is contained

in a nontrivial strongly connected component Z2 of subgraph (Zx') , then t, will

partition Z2, and we will obtain aproper subset Z2 ofZx' such that

appearances (A, S+ (subgraph (Zx')))
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= appearances (At S* (subgraph (Z2))) .

Continuing in this manner, we get a sequence Zx\Z2i... of subsets of

actors (G) such that each Z( is aproper subset ofZi _x , A is contained in each

Z/, and

appearances (A, S^ (G)) =appearances (A, S^subgraph (Zj'))) =
appearances (A,SUsubgraph (Z2))) = ...

Since each Z( is a proper subset of its predecessor, we can continue this process

only a finite number, say m,oftimes. Then A€ Zffl', A isnot contained in a non-

trivial strongly connected component of subgraph (Zm'), and

appearances (A, S^ (G)) = appearances (A, S^ (subgraph {Zm') )) .

But from Remark 3.1, S^ (subgraph (Zm')) contains only one appearance ofA.

QED.

Lemma 3.2: Suppose that G is a strongly connected, consistent SDF graph,

Y£ actors (G) is subindependent in G, and Z is a strongly connected subset of

actors(G) such that YnZ*Z and YnZ*0. Then (YnZ) is subindepen

dent in subgraph (Z) .

Proof: Supposethat a is an edgedirected from a member of (Z- (YnZ)) to a

member of (YnZ). By the subindependence of Y in G,

delay (a) £ consumed (a) qG(sink (a)), and by Fact 2.7,

qG(sink(a)) >qsubgraph(Z) (sink(a)).

Thus, delay (a) £ consumed (a)qsubgraph (Z) (sink (a)). Since this
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holds for any a directed from an actor in (Z - (Y n Z)) to an actor in (YnZ),

we conclude that (YnZ) is subindependent in subgraph (Z) . QED.

Corollary 3.1: Suppose that G isa strongly connected, consistent SDF graph, Zx

and Z2 are subsets of actors (G) such that Zx issubindependent ofZ2 in G, and

T is a tightly interdependent subgraph of G. Then

(actors (T) EZ2) or (actors(T) £Z2) .

Proof: (By contraposition). If actors (T) has nonempty intersection with both Zx

and Z2, then from Lemma 3.2, (actors (T) nZx) is subindependent in T, and

thus, T is loosely interdependent. QED.

Theorem 3.1: A nontrivial, strongly connected, consistent SDF graph G has a

single appearance schedule if and only if every nontrivial strongly connected sub

graph of G is loosely interdependent.

Proof: (<= direction). Suppose that every nontrivial strongly connected subgraph

of G is loosely interdependent, and let £ be any loose interdependence algorithm.

Since no actor in G is contained in a tightly interdependent subgraph, it follows

from Lemma 3.1 that S» (G) is a single appearance schedule for G.

(=> direction). Suppose that G has a single appearance schedule and that

Z is a strongly connected subset of actors (G) such that |Z| >1. Set Z0 = G.

From Theorem 2.6, there exist XQ, Y0 £ Z0 such that X0 is subindependent of YQ

in subgraph (ZQ) , and subgraph (XQ) and subgraph (YQ) both have single

109



appearance schedules. If XQ and YQ donotboth intersect Z, then Z is completely

contained in some strongly connected component Zx of subgraph (XQ) or

subgraph (YQ). We can then apply Theorem 2.6 to partition Zx into Xx and Yx,

and continue recursively in this manner until we obtain a strongly connected

Zk £ actors (G) with the following properties: there exist Xk, Yk £Zk such that

Xk is subindependent of Yk in subgraph (Zk); Z^Zk; and (X^nZ) and

(^nZ) are both nonempty. From Lemma 3.2, (Xk n Z) is subindependent in

subgraph (Z), so subgraph (Z) must be loosely interdependent. QED.

Corollary 3.2: Given a connected, consistent SDF graph G, any loose interde

pendence algorithm will obtain a single appearance schedule if one exists.

Proof: If a single appearance schedule for G exists, then from Theorem 3.1, G

contains no tightiy interdependent subgraphs. In otherwords,no actor in G is con

tained in a tighdy interdependent subgraph of G. From Lemma 3.1, the schedule

resulting from any loose interdependence algorithm contains only oneappearance

of each actor in G. QED.

Thus, a loose interdependence algorithm always obtains an optimally com

pact solution when a single appearance schedule exists. When a single appearance

schedule does not exist, strongly connected graphs are repeatedly decomposed

until tightly interdependent subgraphs are found. In general, however, there may

be more than one way to decompose actors(G) into two parts so that one of the

parts is subindependent of the other in G. Thus, it is natural to ask the following

question: Given two distinct partitions {ZVZ2} and {Zj',Z2'} of actors (G)
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such that Z1 is subindependent of Z2 in G, and Zx is subindependent of Z2 in

G, is it possible that one of these partitions leads to a more compact schedule than

the other? Fortunately, as we will show in the remainder of this section, the answer

to this question is "No". In other words, any two loose interdependence algorithms

that use the same tight scheduling algorithm always lead to equally compact

schedules.The key reasonis that tight interdependence is an additive property.

Lemma 3.3: Suppose that G is a connected, consistent SDFgraph, Y and Z are

distinct strongly connected subsets of actors(G) such that (YnZ) *0t and

subgraph (Y) and subgraph (Z) are both tightly interdependent. Then

subgraph(YuZ) is tightly interdependent.

Proof: (By contraposition). Let H = (YuZ) , and suppose that subgraph (H)

is loosely interdependent. Then there exist Hx and H2 such that Hx is subinde

pendent of H2 in subgraph (H). From HxuH2 = H = KuZ, and YnZ*0,

it iseasily seen that Hx and H2 both have anonempty intersection with Y, or they

bothhave a nonemptyintersection with Z. Withoutloss of generality, assume that

Hx n Y* 0 and H2 n Y* 0. From Lemma 3.2, (Hx n Y) is subindependent in

subgraph (Y) , and thus subgraph (Y) is not tightly interdependent. QED.

Lemma 3.3 implies that each SDF graph G has a unique set

{Tx, T2,..., Tn} of maximal tightly interdependent subgraphs such that

(i*j) => actors (Tt) n actors (TJ) = 0, and every tightly interdependent sub

graph in G is contained in some Tt. We call each set actors (T.) atightly inter-
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dependent component of G. It follows from Theorem 3.1 that G has a single

appearance schedule if and only if G has no tightly interdependent components.

Furthermore, since the tightly interdependent components are unique, the perfor

mance of a loose interdependence algorithm, with regards to schedule compact

ness, is not dependent on the particular subindependence partitioning algorithm,

the component algorithm used to partition the loosely interdependent subgraphs.

The following theorem develops this result.

Theorem 3.2: Suppose that G is a connected, consistent SDF graph, A is anactor

in G, and £ is a looseinterdependence algorithm.

(a). If A is not contained in a tightly interdependent component of G, then

A appears only once in Sv (G); and

(b). If A is contained in a tightly interdependent component X, then

appearances (A,S^(G)) = appearances (A,S^(subgraph (X))) —

the number of appearances of A is determined entirely by the tight scheduling

algorithm of £.

Proof: If A is not contained in a tightly interdependent component of G, then A

is not contained in any tightly interdependent subgraph. Then from Lemma 3.1,

appearances (A,S).(G)) = l.Thus theproofofpart (a) is complete.

Now suppose that A is contained in some tightly interdependent compo

nent XofG.JfX = actors (G), we are done. Otherwise, set MQ = actors (G),

and thus X*MQ; by definition, tightly interdependent graphs are strongly con

nected, so X is contained in some strongly connected component Z of
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subgraph (MQ) .

If X is a proper subset of Z, then subgraph (Z) must be loosely interde

pendent, since otherwise subgraph (X) would not be a maximal tightly interde

pendent subgraph. Thus £ partitions Z into V and W such that V is

subindependent of W in subgraph (Z) . We set Mx to be that connected compo

nent of subgraph (V) or subgraph (W) that contains A. Since V and W parti

tion Z,MX is aproper subset of MQ. Also from Remark 3.3,

appearances (A, SU subgraph (MQ)) )

=appearances(A,SJisubgraph (Mx)))t (3-1)

and from Corollary 3.1, X £ Mx.

On the other hand, if X = Z,thenweset Mx = X. Since X* MQ, Mx isa

proper subset of MQ; from Remark 3.2, (3-1) holds, and trivially, X£ Mx.

If X * Mj, then we can repeat the above procedure to obtain a proper sub

set M2 of Mx such that

appearances (A, S»(subgraph (Mx) ) )

= appearances (A, SA subgraph (M2))) ,

and X£ M2. Continuing this process, we get a sequence MQ) Mv M2,.... Since

for each />1, Mi is a proper subset of its predecessor M._ x, we cannot repeat

this process indefinitely — eventually, for some kZ 1, we will have X = Mk.

But, by construction
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appearances (A, S^ (G)) = appearances (A, S^ (subgraph (MQ)) )

= appearances (A, S^ (subgraph (Mx)))

= ...= appearances (A,S+(subgraph (Mk)))\

and thus, appearances (A, S^(G)) = appearances (A,S*(subgraph (X))) .

QED.

Theorem 3.2 statesthat the tight scheduling algorithm is independent of the

subindependence partitioning algorithm and vice-versa. Any subindependence

partitioning algorithm guarantees that there is only one appearance for each actor

outside the tightly interdependent components, and the tight scheduling algorithm

completely determines the number of appearances for actors inside the tightly

interdependent components. For example, if we develop a new subindependence

partitioning algorithm that is more efficient in some way (for example, it is faster

or minimizes the memory required to implement buffering), we canreplace it for

any existing subindependence partitioning algorithm without changing the com

pactnessof the resulting schedules— we don't need to analyze its interaction with

the rest of the loose interdependence algorithm. Similarly, if we develop a new

tight scheduling algorithm that schedules any tightly interdependent graph more

compactly than the existing tight scheduling algorithm, we are guaranteed that

using the new algorithm instead of the old onewill lead to more compact sched

ules overall.

The complexity of a loose interdependence algorithm £ depends on its

subindependence partitioning algorithm £ , strongly connected components algo

rithm £JC. acyclic scheduling algorithm £fl5, and tight scheduling algorithm £ts.

From Definition 3.2, we see that £/5 is applied exactly once for each tightly inter-
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dependent component. For example, the algorithm specified in Subsection 2.1.5,

ConstructValidSchedule, can be used as the tight scheduling algorithm. If this

algorithm is applied to atightly interdependent component X, it runs in timethatis

linear in the total number of invocations in a minimal schedule period of

subgraph (X). That is, the running time is O(Ix), where

lx = Y. ^subgraph (X) (A) •Thus»tf Kts ** algorithm ConstructValidSchedule and
Aex

Cis applied to an SDF graph G, the total time that %ts accounts for is O(IG),

where IG = £ qG (A).
A € actors (G)

The other component algorithms, £5C, Kas> and £ , are successively

applied to decompose an SDF graph, and the process is repeated until all tightly

interdependent components are found. In the worst case, each decomposition step

isolates a single actor from the current n-actor subgraph, and the decomposition

must be recursively applied to the remaining (n - 1) -actor subgraph. Thus, if G

denotes the input SDF graph, then £ performs \actors (G) | decomposition steps

in the worst case. Tarjan's algorithm [Tarj72] allows the strongly connected com

ponents of G to be found in O(m) time, where

m = max({\actors(G)l\edges(G)\}) .Hence £JC can be chosen to be linear,

and since at most \actors (G)\ <>m decomposition steps are required, the total

time that such a £JC accounts for in £ is 0\rnj . Finally, in Section 2.6 we

described asimple linear-time algorithm that constructs asingle appearance sched

ule for an acyclic graph. Thus t,as can also be chosen such that its total time isalso
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We have specified ?5p, £sc, £fl5, and %ts such that the resulting loose inter

dependence algorithm £has worst-case ninning time that is ol m2 +l) , where

m=max({\actors(G)l\edges(G)\}) and / = £ qG(A).Note
A € actor* (G)

that our worst-case estimate is conservative — in practice, usually only a few

decomposition steps are required to fully schedule astrongly connected subgraph,

while our estimate assumes \actors(G)\ steps. Furthermore, a more accurate

expression for the total time that the tight scheduling algorithm accounts for is

O ( ' 1Y Y ^t,(a) »where TvTv~>TT> are toe subgraphs associated
\ i=lA€ actors (Tt) ) V

with the tightly interdependent components ofG.When the tightly interdependent

components form only a small part of G this bound will bemuch tighter than the

Y Qg^ bound.
A 6 actors (G)

3.2 Clustering in a Loose Interdependence Algorithm

Aswe discussed in2.3, clustering subgraphs —grouping subgraphs so that

they are invoked as single units — can beused to guide a scheduler toward more

efficient schedules. However, certain clustering decisions conflict with code-space

minimization goals, and thus if any clustering is to be incorporated into a loose

interdependence algorithm, then the possible degradation on code-compaction

potential should be considered. In this section, we present auseful clustering tech

nique for increasing the frequency ofdata transfers that occur through machine

registers rather than memory, and we prove that this technique does not interfere

with the code compactness potential ofaloose interdependence algorithm — this
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clustering preserves the properties of loose interdependence algorithms discussed

in the previous section.

Figure 3.3 illustrates two ways in which arbitrary clustering decisions can

(a) (b)

®—i

(c) (d)

Figure 3.3. Examples of clustering decisions that conflict with code com
pactness goals.

conflict with code compactness objectives. Observe that the SDF graph in figure

3.3(a) is acyclic, soit must have asingle appearance schedule. Figure 3.3(b) shows

the hierarchical SDF graph that results from clustering actors B and C in figure

3.3(a) into the single actor Q. It is easily verified that in figure 3.3(b),

subgraph ( {Q,£>}) is tightly interdependent. Thus, the clustering of B and C in
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figure 3.3(a) cancels the existence of a singleappearance schedule.

In figure 3.3(c), subgraph ( {5, C, D}) is a tightly interdependent com

ponent and actor A is not contained in any tightly interdependent subgraph. From

Theorem 3.2, we know that any loose interdependence algorithm will schedulethe

graph of figure 3.3(c) in such a way that A appears only once. Now observe that

the hierarchical SDF graph that results from clustering A and B, shown in figure

3.3(d), is a tightly interdependent graph. It can be verified that themost compact

minimal periodic schedule for this graph is QC (2D) Q., which leads to the sched

ule ABC (2D) AB for figure 3.3(c). By increasing theextentof the tightlyinterde

pendent component subgraph ({B,C,D}) to subsume actor A, this clustering

decision increases the minimum numberof appearances of A in the final schedule.

Thus, we seethat a clustering decision can conflict with optimal codecom

pactness if it introduces a new tightly interdependent component or extends an

existing tightly interdependent component. In this section, we present aclustering

technique of practical use and prove that it neither extends nor introduces tight

interdependence. Our clustering technique and itscompatibility withloose interde

pendence algorithms is summarized by Fact 3.2 below. This fact is an immediate

corollary of Theorem 3.3, which will be presented later in this section. Establish

ing Theorem 3.3 is the main topic of the remainder of this section.

Fact 3.2: Clustering two adjacent actors A and B in an SDF graph does not

introduce or extend a tightly interdependent component if (a) Neither A nor B is

contained in a tightly interdependent component; (b) At least one edge directed

from A to B has zero delay; (c) A and B areinvoked the samenumber of times in

a periodic schedule; and (d) B has no predecessors other than A or B.
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We motivate our clustering technique with the example shown in figure

3.4. The repetitions vector for the SDF graph in figure 3.4(a) is

'©^-f^©^ *<& "®

(a)

*® 10D »®

(b)

Figure 3.4. An example of clustering to increase the frequency of data
transfersthat occurthrough registers rather than memory.

T
q (A, By C, Z>, E) = (1,10,10,10,1) , and one valid single appearance sched

ule for this graph is (IOC) (10D) EA (105). This schedule is inefficient with

regards to buffering. Due to the schedule loop that specifies ten successive invoca

tionsof actor C, the data transfers between C and D cannot takeplace in machine

registers and 10 units of memory are required to implement the edge C-*D.

However, observe that the four conditions of Fact 3.2all hold for theadjacent pairs

{C,£>} and {A,E} . Thus, we can cluster these pairs without cancelling the

existence of a single appearance schedule. The hierarchical SDF graph that results
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from this clustering is shown in figure 3.4(b); this graph leads to the valid single

appearance schedule

(10C12)QX(10B) => (XOCD)EA(IOB).

In this secondschedule, eachtoken produced by C is consumed by D in the same

loop iteration, so allof the transfers between C and D can occur through a single

machine register. Thus, the clustering of C and D saves 10 units of memory for

the data transfers between C and D, and it allows thesetransfers to be performed

through a register rather than memory, whichwill usually result in faster code.

When it is not ambiguous, we will the following additional notation in the

development of this section.

Definition 3.3: Let G bean SDF graph and suppose that we cluster asubset W of

actors in G. We will refer to theresulting hierarchical SDF graph as G', and we

will refer tothe actor in G' into which W has been clustered as Q.. For each edge

a in G that is not contained in subgraph (W, G), we denote the corresponding

edge in G' by a'. Finally, if XQactors (G), we denote the corresponding subset

of actors (G') as X'. That is, X' contains all members of X that are not in W,

andif X contains one or more members of W, then X' alsocontains Q..

For example if G is the SDF graph in figure 3.3(a), W = {5, C} , and a

and P respectively denote B-» D and A-> B, then we denote the graph in figure

3.3(b) by G', and in G', we denote Q->D by a' and A-» Q. by p'. Also, if

X = {A,B} then*' = {A,Q} .
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Lemma 3.4: Suppose that G is a strongly connected, consistent SDF graph, and

Xx and X2 form apartition of actors (G) such that Xx is subindependent of X2

in G. Also, suppose that A and B are actors in G such that A,Be Xx or

A,Be X2. If we cluster W= {A,B] , then the resulting SDF graph G' is

loosely interdependent.

Proof: Let 4> denote the set of edges in Gthat are directed from an actor in X2 to

an actor in Xx, andlet 4>' denote thesetof edges in G' that aredirected from an

actor in X2 to an actor in Xx . Since subgraph ( {A, B]) does not contain any

edges in 0, it follows that <!>' = {oc'|a€ <!>} . From Fact 2.9, we have that for

all a', qG,(sink (a7)) consumed (a') = qG( sink (a)) consumed (a) . Now

since Xx is subindependent of X2 in G, for all ct€ O,

delay (a.) 2>qG (sink (a)) consumed (a). It follows that for all ot'€ O',

dfe/ary (a7) £ qG, (sw* (a')) consumed (a'), and we conclude that Xx' is sub-

independent of X2' in G'. But, by construction, Xx' and X2' partition

actors (GO ; thus, G' is looselyinterdependent. QED.

Lemma 3.5: Suppose that G isa connected, consistent SDF graph, Z isa proper

subset of actors (G), Ax € Z, and A2 is an actor that is contained in actors (G)

but not in Z such that

(1). A2 is not adjacent to any member of (Z - {4 x} ), and

(2). for some positive integer k, qG (A2) = *qG (Ax) .
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If we cluster W= {AX,A2} in G, then subgraph(z~ {Ax} +{Q},G'J is

isomorphic to subgraph (Z, G).

As a simple illustration, consider again the clustering example of figure

3.3(c) and figure 3.3(d). Let G and G' respectively denote the graphs of figure

3.3(c) and figure 3.3(d), and let Z = {fl.C} , Ax = Bt and A2 = A. Then

(z- {Ax} +{Q}) ={C,Q} , and clearly, subgraph ({C,Q},G') is iso

morphic to subgraph ( {Bt C], G).

Proof ofLemma 3.5: Let X=subgraphiz - {Ax} +[CI], G') ,let Odenote

the set of edges in subgraph (Z, G), and let O' denote the set of edges in X.

From (1), every edge in X has a corresponding edge in subgraph (Z, G), and

vice-versa, and thus O' = {a'|a € O} . Now, from the definition ofclustering a

subgraph, we know that produced (a') = produced (a) for any edge ocG O

such that sow/re (a) *i4j. If jowce (a) = Ax then a is replaced by a' with

source (a') = ft, and

produced (of) =proceed (a) qG 0^) /go/ {qG (Ax), qG (A2)} ).

But, *«*( {qG Wj), qG (Aj) })=gcd[ {qG (Ax), *qG (Ax) })=qG 0^) ,
so produced (a') = produced (a) . Thus produced (a') = produced (a) for

all a € O. Similarly, we can show that consumed (a') = consumed (a) for all

a G4>. Thus, the mappings /j: Z-»actors (X) and /2: 4> -»<!>' defined by
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fx(A) = Ai£A*Ax,fx(Ax) = Q; and Vcc,/2(a) = a'

demonstrate that subgraph (Z, G) is isomorphic to X. QED.

Lemma 3.6: Suppose that G is aconsistent, strongly connected SDF graph and Z

is astrongly connected subset of actors in Gsuch that qG (Z) = 1. Suppose Zx

and Z2 form a partition of Z such that Zx is subindependent of Z2 in

subgraph (Z, G). Then Zx is subindependent ofZ2 in G.

Proof: For each edge a directed from amember of Z2 to a member of Zx, we

have delay (a) Zqsubgraph (Z) (sink (a)) consumed (a) . From Fact 2.7,

^subgraph(Z)(A>> = Qg^) for ^ ^eZ. Thus, for all edges a in

subgraph (Z),

Qsubgraph (Z) (sink (a)) consumed (a) = qG (jiw* (a)) consumed (a),

and we conclude that Zx issubindependent ofZ2 in G. QED.

Lemma 3.7: Suppose that G is a consistent, strongly connected SDF graph, A

and B are distinct actors in Gf and W= {A,B} forms a proper subset of

actors (G) . Suppose also thatthefollowing four conditions all hold:

(1). Neither A nor B is contained ina tightly interdependent subgraph of

G.

(2). There is at least one edge directed from A toB that has zero delay.

(3). B has no predecessors other than A or B.

(4). qG(B) = kqG(C) for ke {1,2,3,...} , and for some
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C € actors ( G) such that C * B.

Then the SDFgraph G' thatresults from clustering W in G is loosely interdepen

dent.

Proof: From (1), G must be loosely interdependent, so there exist subsets Zx and

Z2 of actors (G) such that Zx and Z2 partition actors (G) , and Zx is subinde

pendent of Z2 in G. If A,5 € Zj or A,B € Z2, then from Lemma 3.4, we are

done. Now, condition (2) precludes the scenario ((B € Zx) and (A € Z2)), so

the only remaining possibility is ((A € Zx) and (B € Z2)). There are two sub

cases to consider here:

(i). B is not the only member of Z2. Then from (3), (Zx + {B}) is sub-

independent of (Z2 - {B} ) . But A,BeZx+ {B} , so Lemma 3.4 again guaran

tees that G/ is looselyinterdependent.

(ii). Z2 = {5} . Thus, we have Zx is subindependent of {5} , so

V(ot€ {at edges (G)\sink (a)* B})f

(source (a) =B) => <&% (a) £ total consumed (a, G) . (3-2)

Also, since C GZx, we have from (4) that

qG(Zx) =gcd({qG(N)\(NeZx)}^)

=gcd^{qG(N)\(N£ Zx)} u{kqG(C)}>j

=8cd({qG(N)\(N£ Zx)} u{qG(5)}j
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=gcdf {qG (N) |tf€actors (G) }1=1.

That is,

<1G(ZX) = 1. (3-3)

Now if Zx is notstrongly connected, then it has aproper subset Y such that

there are no edges directed from amember of (Zx - Y) to amember of Y. Fur

thermore, from condition (3), A$ Y. This is true because if Y contained A, then

there would be no path directed from a member of (Zx - Y) to B, and thus G

would not be strongly connected. Thus, A€ (Zx - Y), and there are no edges

directed from amember of (Zx - Y) toamember of Y. So all edges directed from

a member of (Zx - Y+ {B}) to Y have actor B as their source. From (3-2), it

follows that Y is subindependent of (Zx-Y+ {B}) in G. Now,

A, Be (Zx - Y+ {B} ), soapplying Lemma 3.4, weconclude that G' is loosely

interdependent.

If Zj is strongly connected, we know from condition (1) that there exists a

partition Xv X2 of Zx such that Xx is subindependent of X2 in subgraph (Zx) .

From (3-3) and Lemma 3.6, Xx is subindependent of X2 in G. Now if A€ Xx,

then from condition (3), {5} issubindependent ofX2 inG, so from Fact 2.11(a),

(Xx u {£}) and X2 constitute a subindependent partition of G. Applying

Lemma 3.4, we see that G' is loosely interdependent. On the other hand, suppose

that Ae X2. Then from (3-2), we know that Xx issubindependent of {B} in G.
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From Fact 2.11(b), it follows that Xx and (X2 u {B} ) constitute a subindepen

dent partition of G, so again we can apply Lemma 3.4 to conclude that G' is

loosely interdependent. QED.

Theorem 3.3: Suppose that G is aconsistent, connected SDFgraph, A and B are

distinctactors in G suchthat B is a successor of A, and W = {A, B] is a proper

subset of actors (G). Suppose alsothat the following four conditions allhold:

(1). Neither A nor B is contained in atightly interdependent component of

G.

(2). At least oneedge directed from A to B has zero delay.

(3). For some positive integer k, qG (B) = kqG (A) .

(4). Actor B has no predecessors otherthan A or B.

Then the tightly interdependent components of G' are the same as the tightly

interdependentcomponents of G.

Proof: Observe that all subgraphs in G that do not contain A nor B are not

affected bythe clustering of W, and thus it suffices to show that all strongly con

nected subgraphs in G' that contain Q. are loosely interdependent. So we suppose

that Z' is a strongly connected subset of actors in G' that contains Q., and we let

Z denote the corresponding subset of actors in G; that is

Z = Z'- {Q} + {A,B} . Now, in subgraph (Z\ G') , suppose that there is a

cycle consisting of fit and two other actors, C and D. From condition (4), this

implies that there is acycle in G containing A, C, D, and possibly B. The two

possible ways inwhich acycle in G introduces acycle consisting of Q in G' are
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illustrated in figure 3.5(a) and (b); the situation in figure 3.5(c) cannot arise

because of condition (4).

Now in subgraph (Z', G'), if one or more of the cycles that pass through

Q correspond to figure 3.5(a), then Z must bea strongly connected subset in G.

Otherwise, all of the cycles involving Q correspond to figure 3.5(b), so

(Z- {B}) is strongly connected, and from condition (4), no member of

(a) (b)

Figure 3.5. An illustration of how a cycle containing Q. originates in G' for

Theorem 3.3. The two possible scenarios are shown in (a) and (b); (c) will
not occur due to condition (4). SDF parameters on the edges have not
been assigned because they are not relevantto the introduction of cycles.
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(Z- {A,B}) is adjacent to B. In the former case, Lemma 3.7 immediately

yields the loose interdependence of subgraph (Z\ G').

In the latter case, Lemma 3.5 guarantees that subgraph (Z - {B}, G) is

isomorphic to subgraph (Z't G') . Since Ae (Z - {5}), and since from condi

tion (1), A is not contained in any tightly interdependent subgraph of G, it follows

that subgraph (Z\ G') is loosely interdependent. QED.

If we assume that the input SDF graph has a single appearance schedule,

then we can ignore condition (1). From our observations, this is a valid assumption

for a large class of practical SDF graphs. Also, condition (3) can be verified by

examining any single edge directed from A to B; if a is an edge directedfrom A

to B, then condition (3) is equivalent to produced (a) = kconsumed (a) . In our

current implementation, we consider only the case k = 1 for condition (3)

because in practice, this corresponds to most of the opportunities for efficiently

using registers to implement the buffers for the edges in anSDF graph.

The following corollary assures us that when applying Theorem 3.3, no

further checks are necessary todetermine whether the clustering ofA and B intro

duces deadlock.

Corollary 3.3: Assume the hypotheses ofTheorem 3.3, including conditions (1)

through (4). Then G' is not deadlocked.

Proof: (By contraposition). If G' is deadlocked, then there exists a fundamental

cycle in G' whose associated graph Gf is deadlocked. By the definition of tight

interdependence, G^ is tightly interdependent, so actors (Gf) is contained in

some tightly interdependent component X of G'. Thus, Theorem 3.3 guarantees
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that subgraph (X, G') is a tightly interdependent subgraph of G, and hence that

the deadlocked graph Gf is contained in G. It follows that G is deadlocked, and

G is not a consistent SDF graph. QED.

Under the assumption that the input SDF graph has a single appearance

schedule, the clustering process defined by Theorem 3.3 requires only local data

flow information, and thus it can be implemented very efficiently. If our assump

tion that a single appearance schedule exists is wrong, then we can always undo

our clustering decisions. Since the assumption is frequently valid, and since it

leads to anefficient algorithm, this is the form in whichwe have implemented The

orem 3.3. Finally, in addition to making buffering more efficient, our clustering

process provides a fast way to reduce the size of an SDF graph without cancelling

the existence of a single appearance schedule. When usedas a preprocessing tech

nique, this can sharply reduce theexecution time of aloose interdependence algo

rithm.

3.3 Minimizing Buffer Memory: Chain-Structured Graphs

In this section, we address the problem of constructing single appearance

schedules that minimize the buffer memory requirement. The work presented in

this section was done jointly with Praveen K. Murthy, a fellow graduate student at

U. C. Berkeley [Murt94a].

Our model of buffering here is that discussed in Section 2.2 — each buffer

is mapped to acontiguous and independent block of memory. Scheduling to mini

mize theamount of memory required for buffering while taking advantage of more

flexible buffer implementations, a more difficult problem, is mainly beyond the

scope of this thesis; one simple techniqueis given in Subsection 3.3.4, and some of
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the pertinent issues are elaborated on in Section 4. Also, in this section, we focus

on SDF graphs that are chain-structured; some extensions to more general graphs

are discussed in Subsection 3.3.4.

In [Ade94], Ade develops upper bounds on the minimum buffer memory

requirement for a number of restricted classes of SDFgraphs. The graphs consid

ered each consist of a chain-structured subgraph, together with zero ormore edges

directed between distinct actors in the chain-structured subgraph. For graphs that

fall into the categories considered, Ade presents an efficiently computable upper

bound on the minimum buffermemoryrequired overallvalidschedules, and Ade

presents simulation data that demonstrates that on average, the computed bounds

are close to the corresponding actual minima. Since Ade's bounds attempt tomini

mize over all valid schedules, and since single appearance schedules generally

have much larger buffer memory requirements than schedules that are optimized

for minimum buffer memory only, Ade's bounds cannot consistently give close

estimates of the minimum buffer memory requirement for single appearance

schedules.

In Section 2.6, we demonstrated that every consistent, acyclic SDF graph

has avalid single appearance schedule since given atopological sort Av A2,...An

for a connected, consistent, acyclic SDF graph G,

(Qg (AJAJ (qG (A2)A2) ... (qG (An)An) is always avalid schedule. However

single appearance schedules constructed from topological sorts in this way can be

inefficient with regards buffer memory. For example, consider the SDF graph in

figure 3.6. Here, q(Ay B, C, D) = (9,12,12,8)7, and there is only one topolog

ical sort —AtB,C,D. Thus, the approach outlined inSection 2.6 yields the valid

single appearance schedule Sx a (9A) (125) (12C) (SD) , and one can easily
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verify that bufferjnemory (Sj) = 36+ 12+ 24 = 72. In contrast,

S2 s (3 (3A) (45)) (4 (3C) (2D)) is an alternative single appearance schedule

(with the same blocking factor as S1 — unity) with amuch lower buffer memory

requirement: bufferjnemory (S2) = 12 + 12 +6 = 30.

As we will showin Subsection 3.3.1, for chain-structured SDF graphs, the

number of distinct valid single appearance schedules increases combinatoriaUy

with the number of actors, and thus exhaustive evaluation is not, in a general, a

feasible means to find the single appearance schedule that minimizes the buffer

memory requirement. Inthis section, weshow that the problem of finding thevalid

single appearance schedule that minimizes buffering memory for a chain-struc

tured SDF graph is similar to the problem of most-efficiently multiplying a chain

of matrices, for which a cubic-time dynamic programming algorithm exists

[Godb73]. We show that this dynamic programming technique can be adapted to

our problem to give an algorithm with time complexity oi rn\, where m is the

number of actors in the input chain-structured SDF graph. Finally, in Subsection

3.3.4, we discuss how the dynamic programming technique of Subsection 3.3.2

can beapplied toother problems inthe construction of efficient looped schedules.

0^2©^©^^0

Figure 3.6.A chain-structured SDF graph.
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For simplicity, in this section we assume that the edges in a chain-structured SDF

graph have no delay; however, the techniques presented here can be extended to

handle delays.

3.3.1 A Class of Recursively Constructed Schedules

Let G be a chain-structured SDF graph with actors AVA2, ..-Mm and

edges alf c^,.... am _x such that each a^ is directed from Ak to Ak+ 2. In the

trivial case, m = 1, we immediately obtain Al as a valid single appearance

schedule for G. Otherwise, given any i € {1,2,..., m - 1} , define

left (i) ssubgraphi {Av A2,..., A.}, GJ, and

right (0 bsubgraphi {Ai+l,AU2, ...,AJ, GJ .

From Fact 2.7, if SL and SR are valid minimal single appearance schedules for

left (/) and right (i), respectively, then (qLSL) (qRSR) is a valid minimal sin

gle appearance schedule for G, where qL =gcd( {qG04) II £j£i} ] and

<?/? =8cd[{qG(Aj)\i<j£m}\

For example, suppose that G is the SDF graph in figure 3.6 and suppose

i =2. It is easily verified that qfe^(|) (A,B) =(3,4)r and

<ln^(o(C'D) = (3,2)7. Thus, 5L= (3^) (45) and 5^ = (3C) (2D) are

valid minimal single appearance schedules for left(i) and right (i) , and

(3(3A) (45)) (4(3C) (2D)) is a valid minimal single appearance schedule
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for figure 3.6.

We can recursively apply this procedure of decomposing a chain-structured

SDF graph into left and right subgraphs to construct a schedule. However, differ

ent sequences of choices for / will in general lead to different schedules. For a

given chain-structured SDF graph, we refer to the set of valid minimal single

appearance schedules obtainable from this recursive scheduling process as the set

of R-schedules.

We will use the following fact, which is easily verified from the definition

of an R-schedule.

Fact 3.3: Suppose that G is a nontrivial chain-structured SDF graph, and

(delay (a) = 0), V(a € edges (G)). Then a valid single appearance schedule

S for G is an R-schedule if and only if every schedule loop L contained in the

schedule (15) satisfies the following property:

(a). L has a single iterand, which is an actor; that is, L = (nA) for some

positive integer n and some A € actors (G) ;or

(b). L has exactly two iterands, which are schedule loops having coprime

iteration counts; that is, L = (m (nxS^) (n2S2)), where m, nl and n2 are posi

tive integers; gcd (nv n2) = 1; and Sx and S2 are looped schedules.

If a schedule loop L satisfies condition (a) or condition (b) of Fact 3.3, we

say that L is an R-Ioop. Thus, a validsingleappearance schedule S is an R-sched

ule if andonly if every schedule loop contained in (15) is an R-loop.

Now let ew denote the number of R-schedules for an n-actorchain-struc

tured SDFgraph. Trivially, for a 1-actor graphthere is only one schedule obtain-
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able by the recursive scheduling process, so£j = 1. For a 2-actor graph, there is

only oneedge, and thus only one choice for i, j = 1. Since for a 2-actorgraph,

left (I) and right (1) both contain only one actor, we have %= ex x ex = 1.

For a 3-actor graph, left(l) contains 1 actor and right (I) contains 2 actors,

while left (2) contains 2 actors and right (2) contains a single actor. Thus,

e3 = (the number of R-schedules when (i = 1))
+ (the number of R-schedules when (i = 2))

= (the number of R-schedules for left(I))
x (the numberof R-schedules for right (2))

+ (the number of R-schedules for left(2))
x (the number of R-schedules for right (1))

= (CjX^) + (EjXEj) = 26^.

Continuing in this manner, we see that for each positive integer n> 1,

n-l n-l

e,, = £ (the number of R-schedules when (/ =*)) = V (e^xe,,^) .(3-4)

The sequence of positive integers generated by (3-4) with ex = 1 is

known as thesetofCatalan numbers, and each e. is known as the (/ - 1) th Cat

alannumber. Catalan numbers arise in many problems in combinatorics; forexam

ple, the number of different binary trees with n vertices is given by the nth

Catalan number, en+ Y. It can be shown that the sequence generated by (3-4) is

given by

e» =n(2»""l2) •fOT" =L2.3 0-5)

134



where I j\ s —^—~ —- -, and it can be shown that the expression on

the right hand side of (3-5) is Q^V/iJ [Corm90].
For example, the chain-structured SDF graph in figure 3.6 consists of four

actors, so (3-5) indicates that this graph has -(111 =5 R-schedules. The R-sched

ules for figure 3.6 are (3 (34) (45)) (4 (3C) (2D)),

(3(34) (4(15) (1C))) (8D), (3(1(34) (45)) (4C)) (SD),

(94) (4(3(15) (1C)) (2D)), and (94) (4(35) (1 (3C) (2D))); and the

corresponding buffer memory requirements are, respectively, 30, 37, 40, 43, and

45.

The following theorem establishes that the setof R-schedules always con

tains a schedule that achieves the minimum buffer memory requirement over all

valid single appearance schedules.

Theorem 3.4: Suppose that G is a chain-structured SDF graph;

(delay (a) =0), V(cc € edges (G)); and S is avalid single appearance sched

ule for G. Then there exists an R-schedule S' for G such that

bufferjnemory (S') £ bufferjnemory (S).

Proof: We prove this theorem by construction. We use the following notation

here: given aschedule loop L and alooped schedule S, wedefine nonR (S) tobe

the setof schedule loops in S that are not R-loops; wedefine / (L) tobethe num

ber of iterands of L; and we define / (S) s V / (L').
L'e nonR(S)

First observe that all chain-structured SDF graphs are consistent sono fur-
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ther assumptions are required to assure that valid schedules exist for G, and

observe that from Theorem 2.4, there exists avalid fully reduced schedule SQ for

G such that bufferjnemory (S0) £ bufferjnemory (S).

Now let L0 = (nTfo^.TJ be an innermost non-R-loop in (1S0); that

is, L0 is not an R-loop, but every loop nested in L0 is an R-loop. If m = 1 then

since S0 is fully reduced, LQ = (n (IT')), for some iterand V. Let SQ' be the

schedule that results from replacing LQ with (nV) in (1SQ) .Then clearly, SQ' is

also valid and fully reduced, and S0' generates the same invocation sequence as

Sq , so bufferjnemory (S0') = bufferjnemory (SQ). Also,

nonR(S0') = nonR((lSQ)) - {L} ,so/(S0') </((lS0)).

If on the other hand m£ 2, we define Sa s (17^) if T1 is an actor and

Sa b Tx otherwise (if Tj isaschedule loop). Also, if T2, Tv ..., Tm are all sched-

ule loops, we define Sb S(l(^Ba)(^*3) -(^bJ) ,

where y=gcd( {I(Tt) |(2<.i <>m)} J, and B2,B3, ...,5m are the bodies of the

loops T2, Tv ...,Tm, respectively; if T2, Tv ...tTm are not all schedule loops, we

define Sb& (lT2...Tm) . Let S0' be the schedule that results from replacing L0

with L0y = (nSaSb) in (150). It is easily verified that Sq' is a valid, fully

reduced schedule and that LQ' is an R-loop, and with the aid of Theorem 2.2, it is

also easily verified that bufferjnemory (S00 £ bufferjnemory (SQ) . Finally,
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observe that if m = 3, then nonR(SQ') = nonR((lS0)) - {L0} , while if

m*3, then nonR(S0') = non/?((150)) - {LQ} + {S^} . Since

/ (Sb) = / (L0) - 1, it follows that for any value of m, / (SQ') </ ((1S0)).

Thus, from (1S0) , we have constructed a valid, fully reduced schedule

S0' such that bufferjnemory (SQ') £ bufferjnemory (S0) £ bufferjnemory (S)

and / (S00 </ ((1S0)) . By construction, S0' = (IT), for some iterand T. We

define S1&T. Thus, bufferjnemory (SY) <> bufferjnemory (S) and

/((1S1))</((1S0)).

Clearly, if/((lS1)):Jfc0, we can repeat the above process to obtain a

valid, fully reduced single appearance schedule S2 such that

bufferjnemory (S2) £ bufferjnemory (Sx) and / ((1S2)) </ ((1S2)) . Con

tinuing in this manner, we obtain a sequence of valid single appearance schedules

S0,SltS2iS^... such that for each Sf in the sequence with />0,

bufferjnemory (S,) £ bufferjnemory (S), and /((IS,.)) <?((1S/_1)). Since

I((1S0)) is finite, we cannot go on generating S( 's indefinitely —eventually, we

will arrive at an Sfl,«^0, such that ?((1SW)) =0.From Fact 3.3, Sn isanR-

schedule. QED.

Theorem 3.4 guarantees that from within the set of R-schedules for agiven

chain-structured SDF graph, wecan always find a single appearance schedule that

minimizes the buffer memory requirement over all single appearance schedules;
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however, from (3-5), we know that in general, the R-schedules are too numerous

for exhaustive evaluation to be feasible. The following subsection presents a

dynamic programming algorithm that obtains an optimal R-schedule in polyno

mial time.

3.3.2 Dynamic Programming Algorithm

The problem of detennining the R-schedule that minimizes the buffer

memory requirement for a chain-structured SDF graph can be formulated as an

optimal parenthesization problem. A familiar example of anoptimal parenthesiza-

tion problem is matrix chain multiplication [Corm90, Godb73]. In matrix chain

multiplication, we must compute the matrix product MlM2...Mn, assuming that

the dimensions of the matrices are compatible with one another for the specified

multiplication. There are several ways in which the product can be computed. For

example, with n = 4, one way of computing the product is (Mx (M2M3)) MA,

where the parenthesizations indicate the order in which themultiplies occur. Sup

pose that Mv M2, M3, Af4 have dimensions 10 x 1,1 x 10,10x 3,3 x 2, respec

tively. It is easily verified that computing the matrix chain product as

((MXM2) M3) MA requires 460 scalar multiplications, whereas computing it as

(A/j (Af2Af3)) MA requires only 120 multiplications (assuming that we use the

standard algorithm for multiplying two matrices).

Thus, we wouldlike to determine an optimal way of placing the parenthe

ses so that the total number of scalar multiplications is minimized. This can be

achieved using adynamic programming approach. The key observation is that any

optimal parenthesization splits the product MlM2..Mn between Mk and Mk+1

for some A: in the range 1£ k <> (n - 1), and thus the costof this optimal paren-
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thesization is thecostof computing the product MXM2.. Mk, plus thecostof com

puting Mk +xMk+2.. .Mn, plus thecostof multiplying these two products together.

In an optimal parenthesization, the subchains MxM2..Mk and Mk+1Mk+2...M

must themselves be parenthesized optimally. Hence this problem has the optimal

substructure property and is thus amenable to adynamic programming solution.

Determining the optimal R-schedule for a chain-structured SDF graph is

similar to the matrix chain multiplication problem. Recall the example of figure

3.6. Here q(4,5,C,D) = (9,12,12,8)T; an optimal R-schedule is

(3(34) (45)) (4(3C) (2D)); and the associated buffer memory requirement

is 30. Therefore, as in thematrix chain multiplication case, theoptimal parenthe

sization contains a break in the chain at some ke {1,2,..., (n - 1) } . Because

the parenthesization is optimal, the chains to the left of k and to the right of k

must both be parenthesized optimally. Thus, we have the optimal substructure

property.

Now given a chain-structured SDF graph G consisting of actors

Av42,.... An and edges alfa2,..., an _x, such that each a, is directed from Ai

to Ai+l, given integers ij in the range 1£i£/£ n, denote by b [i,j] themini

mum buffer memory requirement over all R-schedules for

subgraphf {Ai%Au v ...,4;}, GJ .Then, the minimum buffer memory require

ment over allR-schedules for G isfc[l,w] .If 1£/</£/*, then,

b[ij] =ra»( {(b [/, k] +b[k+1,7] +ctJ [k])\(i£k <j) }V (3- 6)
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where b [/, j] = 0 for all i ,and c{ . [k] is the memory costatthesplitif we split

the chain at Ak. It is givenby

*lG(Ak) produced (ak)
cijW - / —r. 0-7)

^{qG(4m)|(i£m£/)}J

The go/ term in the denominator arises because from Fact 2.7, therepetitions vec

tor q' of subgraphi {4,.,4/+ p..., A.), GJ satisfies

q'(V = 7 ^—£ -,forallp€ {i,i+1 j}.
^{qG(4J|(/£m£;)}J

A dynamic programmingalgorithm derived from the above formulation is

specified in figure 3.7. In this algorithm, first the quantity

gcdi {qG (Am) |(i£ m£y)} j is computed for each subchain 4.,4|+p...,4 •.

Then the two-actor subchains are examined, and the buffer memory requirements

for these subchains are recorded. This information is then used to determine the

minimum buffer memory requirement and the location of the split that achieves

this minimum for each three-actor subchain. The niinimum buffer memory

requirement for each three-actor subchain 4|,4| +1,4|+2 is stored in entry

[/, i +2] of the array Subcosts, and the index of the edge corresponding to the

split is stored in entry [i, i + 2] of the SplitPositions array. This data is then

examined to determine the niinimum buffer memory requirement for each four-

actor subchain, and so on, until the minimum buffer memory requirement for the

n-actor subchain, whichis the original graph G, is determined. At this point, pro-
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procedure ScheduleChainGraph
Input: a chain-structured SDF graph Gconsisting of actors Av A2,..., An
and edges a., a,,..., a , such that each a, is directed from A. ioA.t.

output: an R-schedulefor G that minimizes the buffer memory requirement.

for i = 1,2,.... n /*Compute the god's of all subchains 7
GCD [i(i] =qG(4/)

fory= (i+l),(i + 2)....,«

GCD[i,j] =gc^{GCD[i,y-l],qG(4;.)})

for i = 1,2f....n Subcosts [/, i] = 0;
for chain_size = 2,3, ...,n

for right = chain.size, chain_size+1,..., n

left = right - chain.size + 1;
min_cost = «»;

for i = 0,1,....chaioLsize- 2

split_cost = (qG(4left+/)/GCD[left,right]) xproduced(ateft +.) ;
totaljcost = split_cost + Subcosts [left, left + i] + Subcosts [left + / +1, right] ;
If (total_cost < min_cost)

split = i; min_cost = total.cost

Subcosts [left, right] = min_cost; SplitPositions [left, right] = split;
output CanvertSplits (1,n); /* Convert the SplitPositions array into an R-schedule 7

procedure ConvertSplrts(L, R)

Implicit inputs: theSDF graph G and the GCD and SplitPositions arrays
Of procedure ScheduleChainGraph.
explicit Inputs: positive integers L and R such that 1£L£R&n = \actors (G) |.

output: An R-schedule for subgraph^ {AL, AL+,,..., 4^}, G\ that minimizes
the buffer memory requirement.

If (L =rt) output AL
else

s = SplitPositions [L, R] ; iL = GCD [I, L+s] /GCD [L, /?] ;

ij, = GCD[L+ s+l,R]/GCD[L,R] ;

output (iLConvertSplits (L, L+*) ) (^ConvertSplits (L +j +1,R)) ;

Figure 3.7.
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cedure ConvertSplits is called to recursively construct an optimal R-schedule

from a top-down traversal of the optimal split positions stored in the

SplitPositions array.

Assuming that the components of qG are bounded, which makes the gcd

computations elementary operations, it is easily verified that the time complexity

of ScheduleChainGraph is dominated by the time required for the innermost for

loop — the (for i = 0,1,..., chain_size - 2) loop— and the running time of one

iteration of this loop is bounded by a constant that is independent of n. Thus, the

following theorem guarantees that under our assumptions, the running time of

ScheduleChainGraph is ©I nJ .

Theorem 3.5: The total number of iterations of the (for

i = 0,1,..., chain_size - 2) loop that are carried out in ScheduleChainGraph is

o(yj and Q.[n3j.

Proof: Let S denote the (for i = 0,1,.... chain_size - 2) loop, and denote total

the number of iterations of S by / (S). Observe that an iteration of S is carried

out for each possible split of each possible subchain in G that contains two or

more actors. Now for k = 2,3,.... n, there are exactly (n - k + 1) distinct k-

actor subchains, and for each k-actor subchain, there are exactly (k - 1) distinct

split positions. Thus,

n

1(E) = £ («-*+l)(*-l). (3-8)
* = 2
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2 3 I 31
It is easily observed that / (S) ^Vn = n , and thus, / (S) is 01 n I.

*=i

To see that /(S) is q[ai3J ,define zsIt71"1) I, and observe from (3-8)

m m

,, iU .j .... v-,. m(m+l) j w-i 2 m(m+l) (2m+ 1) f
and from the identities V i = —*-r—- and V i = — '-± for

me {1,2,3,...} ,that

2 — JU' 6
i=i i=i

(n-l) 2 z

/(S) = £ *(/i-*) £ £*(n-*) ^ J^ >t(^~^)
*=i * = i Jt = l

z z

=zL*-£* -g*(*+D(*-l). (3-9)
*=1 t=l

Now from the definition of z, z£ ^ ~ , so (3-9) implies that

/(S) £-£ (n - 1) (w -2) (w -3), and thus /(S) is &[n3) .<2£D.

3.3.3 Example: Sample Rate Conversion

The recently introduceddigital audio tape (DAT) technology operates at a

sampling rate of 48kHz, while compact disk (CD) players operate at a sampling

rate of 44.1 kHz. Interfacing the two, for example, to record a CD onto a digital

tape, requires a sample rate conversion.

The naive way to do this is shown in figure 3.8(a). It is more efficient to

perform therate change in stages. Rate conversion ratios are chosen by examining

the prime factors of the two sampling rates. The prime factors of 44,100 and
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48,000 are 22325272 and 273*53, respectively. Thus, the ratio 44,100: 48,000 is
12 5 1

3 7 :2 5 , or 147 :60. One way to perform this conversion in three stages is

4:3, 8:7, and 5:7. Figure 3.8(b) shows the multistage implementation.

Explicit upsamplersand downsamplers are omitted, andit is assumed that the FIR

filters aregeneral polyphase filters puck91].

Here q (A, Bt C, D, E) = (147,49,28,32,160) T; the optimal looped

schedule given by our dynamic programming approach is

(49(3A) (IB)) (4(7C) (8(1D) (5E))); and the associated buffer memory

requirement is 260. In contrast, the alternative schedule

(147/1) (49B) (28C) (32D) (160£) has a buffer memory requirement of 729.

160 147

(a)

^ZMEK^M
(b)

DAT

Figure 3.8. (a). CD to DAT samplerate changesystem.
(b). Multi-stage implementation of a CD to DAT sample rate

system.
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This is an important savings with regard to current technology: a buffer memory

requirementof 260 will fit in the on-chip memory of most existing programmable

digital signal processors, while a buffer memory requirement of 729 is too high

for all programmable digital signal processors, except for a small number of the

most expensive ones.

3.3.4 Extensions

There are three simple extensions of the dynamic programming solution

developed in Subsection 3.3.2. First, the technique applies to the more general

class of well-ordered SDF graphs. Thisrequires that we modify the computation of

C;j[k] , the amount of memory required to split the subchain A-, Ai+V ...,Aj

between the actors Ak and Ak+l. This cost now gets computed as

T\ Q (Ak) produced (ak)
'ijW =̂ f^ -, (3-10)

gcd[{qG(Am)\(i£m <>])})

where

SiJfk={P\(source(P)<: {AfiAuv.„tAk}) ;
and^M(p) €{Ak+vAk+2t...tAj}>j}

that is, Stj kisthe set ofedges directed from one side ofthe split to the other side.

The dynamic programming technique of Subsection 3.3.2 can also be

applied to reducing the buffer memory requirement of agiven single appearance

schedule for an arbitrary acyclic SDF graph (not necessarily chain-structured or

well-ordered). Suppose, we are given avalid single appearance schedule S for an
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acyclic SDF graph and again for simplicity, assume that the edges in the graph

contain no delay. Let ¥ = BVB2, ...,Bm denote the sequence of lexical actor

appearances in S (for example, for the schedule (4A(2FD))C,

¥ = A,F,Dt C). Thus, since S is a single appearance schedule, ¥ must be a

topological sortof the associated acyclic SDF graph. The technique of Subsection

3.3.2 can easily be modified to optimally "re-parenthesize" S intotheoptimal sin

gle appearance schedule (with regard to buffer memory requirement) associated

with the topological sort ¥. The technique is applied to the sequence *F, with

Cj -[k] computed as in (3-10).

Thus, given any topological sort *¥* for a consistent acyclic SDF graph,

we can efficiently determine the single appearance schedule that minimizes the

buffer memory requirement over all valid single appearance schedules for which

the sequenceof lexical actor appearances is ¥*.

Another extension applies when werelax the assumption that each edge is

mapped to a separate block of memory, and allow buffers to be overlaid in the

same block of memory. There are several ways in which buffers can be overlaid;

the simplestis to haveone memory segment of size

csu =

max( {total consumed (ak) +totaljconsumed (ak+ x) I(ii £k<j - 1) }\

gcd({q(Ai)tq(Aul),...,q(Aj)}>)
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for the subchain A(i At+v ..., A*. We follow this computation with

V[ij] =min( {b [ij], CSitj}) , (3-11)

to determine amount of memory to use for buffering in the subchain

Ap Ai+ j,..., Aj. In general, this gives us acombination ofoverlaid and non-over

laid buffers for different sub-chains. Incorporating the techniques of this section

with more general overlaying schemes is a topic for future work.

3.4 Related Work

3.4.1 Loop Scheduling in Gabriel

As part of the Gabriel project [Lee89], How [How90] was the one of the

first to investigate the problem of scheduling SDF graphs for compact code. The

first uniprocessor scheduler for Gabriel did not attempt to minimize code size, and

was based on a simple heuristic for minimizing the buffer memory requirement

[Lee89, Ho88a]. This heuristic involves deferring the firing of actors whose suc

cessors are fireable until all successors have used up the tokens on their input

edges, and are no longer fireable. Furthermore, no actor is scheduled twice until all

other actors have been tried. The technique is an intuitive way to keep excess

tokens from accumulating inbuffers, and thus tokeep the buffer memory require

ment low.

How's first approach to generating compact code was to post-process the

minimum buffer memory scheduler with a pattern matching algorithm that finds

successively repeated sequences of firings. The scheduler then groups such

sequences into schedule loops. Since in this approach, looping is not considered at
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all when constructing the ordering of invocations, the technique fails to synthesize

compact schedules for even very simple examples. For example, for the simple

acyclic SDF graph of figure 3.9, it is easilyverified that the minimum buffer mem-

& ^& ^©

Figure 3.9. An example used to illustrate scheduling techniques used in
the Gabriel design environment.

ory heuristic yields the schedule ABCABCBC. The most compact schedule that

How's post-processor can extract from this is ABCA (2BC) , which contains two

appearances per actor; since the graph of figure 3.9 is acyclic, valid single appear

ance schedulesexist, and thus, the minimum buffermemoryheuristicyields a sub-

optimal result both with and withoutpost-processing.

Gabriel's minimumbuffermemory heuristic together with How's post-pro

cessing approach fails to provide looping opportunities because it does consider

looping when it orders the invocations [How90]. Having made this observation,

Howproposed a technique that analyzes theSDFgraphto directly construct repet

itive invocation sequences. The technique involves isolating connected sub

graphs of uniform repetition count1, abbreviated CSURC. Given a connected,

consistent SDF graph G, a subgraph G' is a CSURC of G if G' is connected, and

there is a positive integer k such that qG (A) = k, Vj4 e actors (G'). How dem

onstrated experimentally that detecting and clustering CSURC's often greatly

increases codecompactness over theminimum buffer memory heuristic with post-

1. How used the termfrequency in place of repetition count.
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processing. This is mainly because multirate signal processing systems frequently

consist of single sample rate subsystems, with changes in sample rate occurring

only at scattered interface points.

Although How's CSURC-based scheduling greatiy improves the ability to

extract looping from SDF graphs, it has two major limitations. The first shortcom

ing is illustrated in figure 3.10(a)1. Here the clustering of the CSURC

/
/

/

(a) (b)

Figure 3.10. An example of how How's CSURCscheduling can lead to deadlock.

subgraph ({A, B,C,F}) results in a deadlocked graph. The deadlock arises

because the root actor A has been subsumed by a hierarchical actor which is no

longer a rootactor. The execution of the graph must begin with A, but the cluster

containing A needs external data to fire. A similar situation can occur when an

edge with nonzero delay is subsumedby a CSURC.

Thus, subgraph ( {A, B, C, F}) must be decomposed to retain as large a

CSURC as possible without creating adeadlocked graph. The desired partition is

1. This example is taken from [How90].
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shown in figure 3.10(b), and a corresponding looped schedule is

(2 (3ABF) D) E(6C). Unfortunately, How was unable todeduce ageneral solu

tion to the problem of efficiently decomposing aCSURC in adeadlocked clustered

graph.

The second shortcoming of the CSURC approach arises from its inability

to detect looping that occurs across changes in repetition count. In figure 3.11, we

Figure 3.11. An SDF graph that offers opportunities for looping that span
changes in repetition count.

show an SDF graph with opportunities for this kind of looping. Here

q(A,BtC,DtE) = (8,2, l,4,2)r and S=C(2E(2D(2A))B) is aschedule.

Although this schedule reveals that a large amount of looping is inherent in the

graph, clearly none of the looping results from CSURC's, since every edge induces

a change in repetition count. In this case, the How's CSURC-driven schedule is the

same as that produced by the minimum buffer memory heuristic with post-pro

cessing, which is E(2D(2A))ECB (2D (2A))B. Clearly, this schedule applies

significantly less looping than S. It fails to recognize the opportunity to repeat a

firing pattern involving A, D and E. As a result, C is allowed to fire midway

through the schedule, and this breaks upthe nested loop which could have spanned
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almost the entire schedule.

In [Bhat93], a technique is described that generalizes How's CSURC

scheme to exploit looping opportunities that occur across changes in repetition

count. The approach involves constructing the cluster hierarchyin a pairwise fash

ion by clustering exactly two vertices at each step. The cluster selection is based

on frequency of occurrence — the pair of adjacent actors is selected whose associ

ated subgraph has the highest repetition count. This approach favors nested loops

over "flat" loop hierarchies, and thusreduces the buffer memory requirement.

The technique of [Bhat93] also included a systematic method for dealing

with deadlock. This method maintains the cluster hierarchy on the acyclic prece

dencegraphrather than the SDFgraph. Thus, it verifies whether or not a grouping

introduces deadlock by checking whether or notit introduces a cycle in the APG.

Furthermore, it is shown that this check can be performed quickly by applying a

reachability matrix, which indicates forany two APG vertices (actor invocations)

Px and P2,whether there is aprecedence path from Px to P2.

Unfortunately, the storage cost of the reachability matrix proved prohibi

tive for multirate applications involving very large sample rate changes. Observe

that this cost is quadratic in the number of distinct actor invocations in a minimal

schedule period. Forexample, a rasterization actor that decomposes animage into

component pixels may involve a change in repetition count on the order of

250,000 to 1. If the rasterization output is connected to homogeneous actor (for

example, a gamma level correction), this block alone will produce on theorder of

2 10(250,000) = 6.25 x 10 entries in the reachability matrix! Thus very large

changes inrepetition count preclude straightforward application ofthe reachability

matrix; this is unfortunate because looping is most important precisely for such
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cases.

In contrast, for SDF graphs that contain no tightly interdependent compo

nents, the scheduling framework of Section 3.1 does not require use of the reach

ability matrix, the acyclic precedence graph, or any other data structure that can

becomeunreasonably large. As mentioned in Section 3.2,ourobservations suggest

that a large majority of practical SDF graphs fall into this category. For SDF

graphs that contain tightly interdependent subgraphs, our scheduling framework

naturally isolates the minimal subgraphs thatrequire special care. Only when ana

lyzing these tightly interdependent components, may the need arise for reachabil

ity matrix analysis, or some otherexplicit deadlock-detection scheme.

A second limitation of the technique of [Bhat93] is that, although it

extracts looping morethoroughly that How's CSURC approach, it fails to process

cycles in the graph optimally. This is illustrated in figure 3.12. Figure 3.12(a)

depicts amultirate SDF graph, and here q (A, B, C) = (10,4,5)T. Two pairwise

clusterings lead to graphs that have valid schedules — subgraph ( {A, B}), hav

ing repetition count 2, and subgraph ( {A, C}), having repetition count 5 (the

clustering of subgraph ( {B, C]) results in deadlock). Clustering the subgraph

with the highest repetition count yields thehierarchical topology in figure 3.12(b),

for which the most compact minimal valid schedule is

(2B)(2QAC)BaACB(2ClAC), which yields the schedule

(25) (2(2A)C)B(2A)CB(2(2A)C) for figure 3.12(a). On the other hand,

clustering the subgraph of lower repetition count, subgraph ({A,B}), as

depicted in figure 3.12(c), yields the more compact schedule

(2^) (5C) => (2(25) (5A)) (5C) .
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(c)

Figure 3.12. This example illustrates how clustering subgraphs based on
repetition count alone can conceal looping opportunities that occur within
cycles.

On the other hand, any loose interdependence algorithm guarantees that a

minimum amount of code will be required for any actor thatis not contained in a

tightly interdependent component. Aswe discussed inSection 3.2, our preliminary

observations suggest that tightly interdependent subgraphs are rare in practice, and

thus, loose interdependence algorithms guarantee code size optimality for a large

class of useful SDF graphs.

3.4.2 Buck's Loop Scheduler

The clustering algorithm developed in Section 3.2 is based largely on part

of an alternative technique for constructing compact looped schedules that was

developed by Buck [Buck93]. Buck's technique isdesigned tobe more space and

time efficient than the technique of [Bhat93], while extracting looping opportuni-
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ties accross boundaries in repetition count almost as thoroughly. The main space

and speed advantages are gained by using simple and efficient heuristics, rather

than a reachability matrix, to decide whether a consolidation of multiple invoca

tions should be avoided.

In addition to applying clustering, Buck's technique employs an alternative

mechanism for building hierarchy in which an individual actor A is replaced by an

actor T(A, n) that represents n successive invocations of A, for an arbitrary pos

itive integer n. Thuseach input edge a of A is replaced by an edge cc' that differs

only in the sink actor and the consumption parameter — sink (a') = T(A, n)

and consumed (a') = n x consumed (a); and similarly, each output edge p is

replaced by an edge p' that has identical parameters, with the exception that

source (p') = T(A, n) and produced (p') = n x produced (&) .Buck refers to

this process as looping actor A with a loopfactor of n.

Buck's techniqe involves aclustering step, called the merge pass, in which

adjacent actors that have the same repetition count are clustered; and a looping

step, called the loop pass, in which selected actors are looped to eliminate mis

matches in repetition count between adjacent actors. The merge pass and loop pass

are alternated until neither pass produces any transformations, and then the algo

rithm terminates.

Given an SDF edge a, the merge pass clusters source (a) and sink (a)

only if the following three conditions aremet

1. produced (a) = consumed(a); and

2. there is no path directed from source (a) to sink (a) that

passes through an actor thatis not a member of { source (a), sink (a) } ; and
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3. a is not contained in a strongly connected component subgraph,

or

min ( { delay (a') | (source (a') = source (a)) and (sink(a') = sink (a))})

= 0,

or

min ({delay (a') | (source (a') = sink(a)) and (sink (a') = source (a))})

= 0.

The merge pass repeatedly clusters pairs of adjacent actors that satisfy conditions

1 through 3 until no pairs remainthatsatisfy the conditions.

The loop pass is divided into two steps — the integral loop pass and the

nonintegral loop pass. In the integral loop pass, a candidate looping opportunity is

introduced by each edge a that satisfies produced (a) = kx consumed (a) or

consumed (a) = kXproduced (a), for some positive integer k> 2. If the can

didate looping opportunity corresponding to a is chosen, then that member

z(a) € {source (a) tsink (a)} that has higher repetition count (repetitions

vector component) is looped with loop factor k. The candidate is selected if the

following conditions hold

1.There is no edge a' directed to (from) z (a) suchthat

produced (a') * consumed (a'), delay (a') >0, and a' is amember ofacycle.

2. No actor adjacent to z(a) can be looped to match the repetition count

(repetitions vectorcomponent) of z (a) .

3. After looping z(a), {T(z(a),n),z'} satisfies the merge pass clus

tering conditions, where z' is the single member of

( {source (a), sink (a) } - {z (a)}).
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Here, conditions 1 and 3 are sufficient, but not necessary, to avoid dead

lock; and condition 2 is provided to favor nested loops, which reduce the buffer

memory requirement over schedules thatdon't involve nesting [Bhat93].

The nonintegral loop pass is designed to accommodate looping opportuni

ties that arise from edges whose production andconsumption parameters are not

related by integer multiples. Here, the integral loop pass looping conditions are not

sufficient toguarantee deadlock-free looping, and thus, thenonintegral loop pass is

applied only to graphs thatare tree structured orcontain only two actors. With this

restriction, deadlock avoidance is not an issue, butnonintegral looping opportuni

ties that involve actors in the strongly connected components cannot beexploited.

Together, the merge pass, integral loop pass, and nonintegral looppass pro

videameans for rapidly obtaining compact looped schedules. However, since they

are based on heuristics, each pass can introduce suboptimalities (with regards to

code size). For example, figure 3.13 illustrates how the merge pass can introduce

tight interdependence from a graph that has a single appearance schedule. For the

graph in figure 3.13(a), q(A,BtCtD) = (6,3,6,2)r, and

(3 (2A)B) (2(3C)D) is a valid single appearance schedule. Now observe that

the edge A -> C satisfies the merge pass clustering conditions, and that it is the

only edge that satisfies the conditions. Thus, the merge pass clusters

subgraph ( {At C] ) . It can easily be verified that thegraph that results from this

clustering, shown in 3.13(b), is tightly interdependent. Hence, a schedule con

structed from acluster hierarchy that includes the result of this merge pass opera

tion cannotbe a single appearance schedule.

Observe that in figure 3.13(a) there is only one possible subindependent

partition — {A,B}, {C,D} . The merge pass cancels the existence of a single
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(a)

(b)

Figure 3.13. An example thatillustrates how Buck's merge pass can fail to
preserve the existence of a single appearance schedule.
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appearance schedule here because it consolidates actors from both sides of the par

tition, andthus, it destroys the subindependent partition.

As an example of how the integral loop pass can introduce suboptimality,

consider figure 3.14. For the SDF graph in figure 3.14(a),

q(A,BtC,D) = (5,10,4,4)T and (5A) (2(2D) (5B) (2Q) is a valid

looped schedule. No pair of adjacent actors in this graph satisfies the merge pass

clustering conditions, so the first transformation of the graph is performed by the

integral loop pass. It is easily verified that the edge A -» B is the only edge that

satisfies theintegral loop pass conditions, and thus actor B is looped with loop fac

tor 2. Theresulting hierarchical SDF graph is shown in figure 3.14(b), and therep

etitions vector for this new graph is given by

q(AiT(Bi2)tC,D) = (5,5,4,4) . Examination of this repetitions vector and

figure 3.14(b) reveals that the transformation performed by the integral loop pass

0

Figure 3.14. An example that illustrates suboptimal performance from
Buck's integral loop pass.
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introduces a tightly interdependent subgraph — subgraph ( {T(B, 2), C,D] ) .

The hierarchical graph that corresponds to the subsequent merge pass operation is

shown in figure 3.14(c). As expected, the tight interdependence introduced by the

loop pass persists, and weconclude that in this example, the integral loop pass has

steered the solution away from a single appearance schedule.

Comparing Buck's merge pass / loop pass scheme with the techniques

developed in this thesis reveals atrade-off incompile-time efficiency vs. optimal

ity. Buck's scheduling technique is more time-efficient because it applies only

local dataflow information; there is no need to recompute repetitions vectors and

repeatedly determine connected and strongly connected components, for example.

This same trade-off is observed with How's CSURC approach, butBuck's sched

uler is more thorough than How's since itconsiders looping opportunities that span

repetition-count boundaries and it systematically avoids deadlock.

Buck's merge pass directly inspired the clustering technique presented in

Section 3.2 for increasing the use of registers in buffering. The merge pass was

attractive for this purpose because it handled edges on which the production and

consumption parameters are identically unity; it handled many actors that occur

frequently in practice; and itwas based on aclustering scheme that could easily be

incorporated into the framework of loose interdependence algorithms. Our main

modification to the merge pass clustering conditions was to replace the condition

that there is no "external" path directed from the source actor to the sink actor

(condition 2) with the stronger condition that the sink actor in the pairwise cluster

candidate must have no predecessors other than the two actors in the candidate

cluster. The previous example of figure 3.13 illustrates how a violation of this

modified condition can result in suboptimal scheduling. The rigorous theory of

looped schedules developed in this thesis allowed us to formally establish that our
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modification of Buck's merge pass algorithm always preserves code size optimal

ity.

3.4.3 Vectorization

The techniques developed in Sections 3.1 and 3.2 in this thesis are related

to techniques for transforming serial procedural programs into programs that are

suitable for vector processors. Vector processors are computers that have special

operations, called vector instructions, for operating onarrays of data. For example,

in a vector processor, the following loop can be implemented by a single vector

instruction:

DO 10 I = 1, 100

X(I) = Y(I+10) + Z(I+20)
10 CONTINUE

A common syntax for the vector instruction corresponding to this loop is

X(l:100) = Y(ll:110) + Z(21:120)

In a vector instruction, the computations of the components of the result

vector are independent of oneanother, sodeep pipelines can be employed without

any hazards [Kogg81]. Also with a vector instruction, the number of instructions

that must be fetched and decoded is reduced; interleaved memories can be

exploited to reduce the average time required to read an operand from memory;

and thepipeline hazards arising from theloop branch in theoriginal (unvectorized)

loop are eliminated[Henn90]. Often, as a consequence of upgrades in computing

resources, programs written for conventional scalar processors must be ported to

vector processors. Also, from the programmer's viewpoint, it is often more natural

or convenient to write serial programs without worrying about efficiently utilizing

vector instructions. These considerations have motivated the study of automatic

techniques for vectorizing serial procedural programs.
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Vectorization algorithms normally operate on a data structure called a

dependence graph. The dependence graph of a procedural program segment is a

directed graph in which each vertex corresponds to a statement of the program. If

Vj and v2 are vertices of adependence graph and s± and s2 are, respectively, the

corresponding statements, then there is an edge directed from v1 to v2 if it has

been determined that some invocation of s2 is dependent on an invocation of sl;

that is, there exist invocations ij and i2 of sl and s2, respectively, such that exe

cuting ij before /j may be inconsistent with the semantics of the original pro

gram.

Unlike the precedence relationships specified by anSDF graph, the depen

dences in a dependence graph cannot always be determined exactly at compile-

time. This is because the programming languages to which dependence graphs are

applied are based onmore general models of computation than SDF. For example,

consider the following FORTRAN code segment in which the value of the variable

X is not known at compile-time.

DO 10 I = 1, X

sl : A(I) = 1

s2: B(I) = A(100 - I)

10 CONTINUE

Here, s2 depends on sx if and only if X £ 50. Unless it is known that thevalue of

X will definitely be less than 50, there is a dependence graph edge directed from

the vertex corresponding to sx to the vertex corresponding to s2.

Another significant difference between SDF graphs and dependence graphs

is that SDF graph edges specify iteration implicitly — through mismatches in the

production and consumption parameters — whereas with dependence graphs, the
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repetition of statements results from control-flow structure thatis specified explic

itly in the corresponding program. With SDF graphs, no control-flow structure

exists a-priori, and we must construct one carefully with regards to the available

memory in the target processor before proceeding with other scheduling optimiza

tions. Once the control-flow hasbeen specified for an SDF graph, andcode blocks

for each actor havebeeninlined, dependence graphs can be constructed and depen

dence graph analysis canbe applied to further optimize the target program. How

ever, the construction of the initial control-flow structure is a crucial step, and we

expect that failure in this stepis generally difficult to overcome through post-opti

mization. Forexample, recall that How's study [How90], discussed in Subsection

3.4.1, confirmed thatpattern matching on a schedule designed forminimum buffer

memoryrequirement does not acceptably minimizethecodesize.When compiling

an SDF graph, the scheduling framework of Section 3.1 can be applied first. If the

resulting target program fits within theavailable processor memory, then post-opti

mization techniques, such as those that apply dependence graphs, loop unrolling

[Dong79], or reorganizing the loop structure to improve memory access locality

[Wolf91], canbe applied until theremaining memoryis exhausted.

The vectorization problem is similar in structure to the problem of con

structing compact looped schedules for SDF graphs since just as strongly con

nected components in an SDF graph can limit looping opportunities, cycles in a

dependence graph limit vectorization. Vectorization is mostcommonly applied to

the innermost loop of a group of nested loops. If the dependence graph for the

innerloop is acyclic, theneach statement canbe vectorized provided that amatch

ingvector instruction exists. If cycles are present, then they are carefully analyzed

to see if they can be ignoredor if transformations canbe applied to eliminate them

[Wolf89].
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A common tool for vectorization is the loop distribution transformation,

which was introduced by Muraoka in [Mura71]. Li loop distribution, the body of a

loop is partitioned into segments, and a separate loop is created for each segment.

As an example of loop distribution, and how it can be applied to vectorization,

consider the FORTRAN loop below.

DO 10 I = 1, 10

sx : A(I) = B(I) + C(I - 1)

s2: D(I) = 2 * A(I)

s3 : C(I) = A(I) + 5

10 CONTINUE

The dependence graph for this loop is:

-©

We see that sx and s3 form adependence graph cycle, and that s2 is not

part ofany cycle. We can replace the loop with one loop that spans the s1 -s3 cycle

and a second loop for s2, which can bevectorized. The transformed program that

results from this combination of loop distribution and vectorization is shown

below.

DO 10 I = 1, 10

A(I) = B(I) + C(I - 1)
C(I) = A(I) + 5

10 CONTINUE

D(l:10) = 2 * A(l:10)

We see that this method of transformation bears similarities with the loose interde

pendence scheduling framework.
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If the target processor has multidimensional vector instructions available,

then it may be desirable to vectorize across multiple nested loops1. Nested loop

vectorization is the form of vectorization that is mostclosely related to the tech

niques developed inSection 3.1 of this thesis. Two main approaches tonested loop

vectorization have emerged — the outside-in vectorization of Allen and Kennedy

[Alle87], and the inside-out vectorization of Muraoka [Mura71]. Respectively, the

relationship between these two techniques is somewhat analogous to the differ

ences between our loose interdependence scheduling framework and the method

of Ritz et. al [Ritz93] described in the following subsection.

Suppose that LVL2, ...,Ln is a sequence of perfectly nested FORTRAN

loops; that is, there are no statements between the loops. Suppose that L1 is the

outermost loop, L2 is thenextoutermost loop, and so on. In outside-in vectoriza

tion, the L.'s are traversed starting with the outermost loop and working inward.

First, the dependence graph for Lv L2,...,Ln is examined, and loop distribution is

applied to isolate strongly connected components and vectorizeable statements.

Then, for each strongly connected component, the Lx loop is fixed and the depen

dence graph for L2,L3 Ln is examined. Again, loop distribution is applied,

and the method continues recursively on each strongly connected component of

the dependence graph for the L2, L3,..., Ln combination.

Forexample, consider the nestedloops below.

DO 10 I = 1, 100
DO 20 J = 1, 100

*1 : A(I, J) = X(I, J) + Y(I, J)

1.In[Wolf89], Wolfe states that modem vector processors do not support multidimension
al vector instructions, and thus, nested loop vectorization isseldom applied anymore.

164



s2: B(I, J) = A(I, J) + C(I - 1, J)

ss: C(I, J) = B(I, J) * 6

20 CONTINUE

10 CONTINUE

The associated dependence graph is:

©•

Since sl is notpart of adependence cycle, it is isolated and vectorized, and

this results in the transformed program below.

A(l:100,1:100) = X(1:100,1:100) + Y(1:100,1:100)
DO 10 1= 1, 100

DO 20 J = 1, 100

S2' B(I, J) = A(I, J) + C(I - 1, J)

s3: C(I, J) = B(I, J) * 6

20 CONTINUE

10 CONTINUE

Next, the dependence graph for theinner loop is examined:

© K5)

Since nodependence graph cycles exist, the inner loop can bevectorized,

and the final result of applyingoutside-in vectorization is:

A(l:100,1:100) = X(l: 100,1:100) + Y(1:100,1:100)
DO 10 1= 1, 100

B(1,1:100) = A(1,1:100) + C(I-1,1:100)
C(I,1:100) = B(I, 1:100) * 6

10 CONTINUE
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This approach bears resemblance to the scheduling framework of loose

interdependence algorithms. When scheduling SDF graphs, the outermost loop

corresponds to a singe period of the periodic schedule. The strongly connected

components of theSDF graph are isolated by theclustering process of step 2 in fig

ure 3.2. Then, for each strongly connected component, we focus on the next inner

loop nesting level of the target program by examining the interdependences

withinaminimal schedule period for thegiven strongly connected component, and

attempting to find a subindependent partition. Just as some dependence graph

edges disappear as we descend the nesting levels of a group of nested loops, SDF

graph edges can become "ignorable" as a loose interdependence algorithm recur

sively decomposes strongly connected components of anSDFgraph. Given a con

sistent, connected SDF graph G, an edge a does not impose precedence

constraints within a minimal schedule period for G if and only if

delay (a) £ qG (sink (a)) x consumed (a). From Fact 2.7, whenever G' is a

connected subgraph of G and A€ actors (GO , we have qG,(A) £qG(A) .

Thus, as a loose interdependence algorithm decomposes a strongly connected

component into finer and finer components, the amount of delay required for a

given edge to be ignorable (within a minimal schedule period) decreases, in gen

eral.

In contrast to the top-down approach of outside-in vectorization,

Muraoka's inside-out vectorization works by examining the innermost loops first

and working outward. If both techniques are fully applied, inside-outvectorization

and outside-in vectorization yield the same result. However, the outside-in method

is computationally more efficient since a statement that can be vectorized for a

series of nested loops is examined once rather than repeatedly for each loop.
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3.4.4 Minimum Activation Schedules in COSSAP

The techniques in this thesis focus on compiling SDF graphs to minimize

thecodesizeand to increase theefficiency of buffering. At the Aachen University

of Technology, as part of the COSSAP software synthesis environment for DSP,

Ritz et. al have investigated the minimization of code size in conjunction with a

different secondary optimization criterion: minimization of the context-switch

overhead, or the average rate at which actor activations occur [Ritz93]. An actor

activation occurs whenever two distinct actors are invoked in succession; for

example, the schedule (2 (2B) (5A)) (5C) for figure 3.12(a)results in five acti

vations per schedule period. Activation overhead includes saving the contents of

registers that are used by the next actor to invoke, if necessary, and loading state

variables and buffer pointers into registers. In the code generation system

described in [Ritz93], the context-switch overhead also includes a function call,

which in turn requires saving thecurrent value of theprogram counter (the return

address of the function call), branching to the location of the function, retrieving

the return address when the function is completed, and branching to that return

address.

In [Ritz93], theaverage rate ofactivations fora periodic schedule S is esti

mated as the number ofactivations that occur inone iteration ofS divided by the

blocking factor ofS, and this quantity is denoted by N'm (S) . For example, for

figure 3.12(a), N'^ ((2 (IB) (5A)) (5C)) = 5, and

N^ ((4 (25) (5A)) (IOC)) = 9/2 = 4.5. If for each actor, each invocation

takes the same amount oftime, and ifwe ignore the time spent on computation that

is not directly associated with actor invocations (for example, schedule loops),

then N'm (S) is directly proportional to the number ofactor activations per unit
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time. In practice, these assumptions are seldom valid; however, N'^t (S) gives a

useful estimate and means for comparing schedules. For consistent acyclic SDF

graphs, clearly N'^t can be made arbitrarily large by increasingthe blocking fac

tor sufficiently; thus, as with the problem of constructing compact schedules, the

extent to which the activation ratecanbe minimized is limited by the stronglycon

nected components.

The technique developed in [Ritz93] attempts to find the valid single

appearance schedule that minimizes N'^ over all valid single appearance sched

ules. The techniqueapplies only to SDFgraphs thathave singleappearance sched

ules. Minimizing the number of activations does not imply minimizing the number

of appearances, and thus, the primary objective of the techniques in [Ritz93]

agrees with our primary objective — code size minimization. As a simple exam

ple, consider the SDFgraph in figure 3.15. It can be verified that for this graph, the

1 1

Figure 3.15. This example illustrates that minimizing actoractivations does
not imply minimizing actor appearances.

lowest value of N'^ that is obtainable by a valid single appearance schedule is

0.75, and one valid single appearance schedule that achieves this minimum rate is

168



(45) (4j4) (4C) . However, valid schedules exist that are not single appearance

schedules, and thathave values of N'^i below 0.75; for example, the valid sched

ule (45) (4i4) (35) (3i4) (7C) contains two appearances of A and 5, and sat

isfies N'an = 5/7 = 0.71.

In [Ritz93], the relative vectorization degree of a fundamental cycle C in

a consistent,connectedSDFgraph G is definedby

NG(C) smax( {mini {DG(a') |a'€ parallel(a)}]aG edges(C)}\

(3-12)

where DG (a) s delay (a) I^ ^ delay Qn ^^ a normalized by
Itotalconsumed (a, G) J

thetotal number of tokens consumed by sink (a) in aminimal schedule period of

G,and

parallel (a)
s {a7€ edges (G) \source (a') = source (a) and sink (a') = sink (a)}

is the set of edges with the same source and sink as a. For example, if G denotes

the SDF graph in figure 3.12(a) and % denotes the cycle in G whose associated

graph contains the actors Aand 5, then DG (%) =I—I=0; and ifGdenotes
L20j

the graph in figure 3.15 and %denotes the cycle whose associated graph contains

Aand C, then DG(x) =|Z| =7.

Ritz et. al postulate that given astrongly connected SDF graph, avalid sin

gle appearance schedule that niinimizes N'^ can be constructed from acomplete

hierarchization, which is acluster hierarchy such that only connected subgraphs
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are clustered, all cycles at a given level of the hierarchy have the same relative

vectorization degree, and cycles in higher levels of the hierarchy have strictly

higher relative vectorization degrees that cycles in lower levels. Figure 3.16

12D 16D 12D

(a)

12D 16D 12D

(b) (c) (d)

Figure 3.16. A complete hierarchization of a strongly connected SDF
graph.

depicts acomplete hierarchization of an SDF graph. Figure 3.16(a) shows theorig

inal SDF graph; here, q (A, 5,C, D) = (1,2,4,8)T. Figure 3.16(b), shows the

top level of the cluster hierarchy. The hierarchical actor Qj represents

subgraph ( {5, C,D]), and this subgraph is decomposed as shown in figure

3.16(c), which gives thenextlevel of thecluster hierarchy. Finally, figure 3.16(d),

shows that subgraph ( {C, £>}) corresponds to Q2 and is the bottom level of the

cluster hierarchy.
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Now observe that the relative vectorization degree of the fundamental

cycle in figure 3.16(c) with respect to the original SDF graph is i§ = 2, while

the relative vectorization degree of the fundamental cycle in figure 3.16(b) is

ii = 6; and the relative vectorization degree ofthe fundamental cycle in fig

ure 3.16(c) is ir = 1. Thus, we see that the relative vectorization degree

decreases as wedescend the hierarchy, and thus the hierarchization depicted in fig

ure 3.16 is complete. The hierarchization step defined by each of the SDF graphs

in Figures 3.16(b)-(d) is called a component of the overallhierarchization.

The technique described in [Ritz93] constructs a complete hierarchization

by first evaluating the relative vectorization degree of each fundamental cycle,

determining the maximum vectorization degree, and then clustering the graphs

associated with the fundamental cycles that do not achieve the maximum vector

ization degree. This process is then repeated recursively on each of the clusters

until nonew clusters are produced. In general, this bottom-up construction process

has unmanageable complexity; for example, in the worstcase, the number of fun

damental cycles in adirected graph is £ f n. J(n - 1)! [John75]. How-
i = l

ever, this normally doesn't create problems in practice since the strongly

connected components ofuseful signal processing systems are often small, partic

ularly in large grain descriptions.

Once a complete hierarchization is constructed, the technique of [Ritz93]

constructs a schedule "template" —- a sequence of loops whoseiteration counts are

to be determined later. For agiven component II of the hierarchization, if vn is

171



the vectorization degreeassociated with II, then all fundamental cycles in II con

tain atleast one edge a for which DQ (a) = vn. Thus, if we remove from II all

edges in the set {a|£>G(a) = vn} , the resulting graph is acyclic, and if

^n, i» ^n, 2» •• •»^n,n k a topological sort ofthis acyclic graph, then valid sched

ules exist for II that are of the form

rns ('nO'ru^ru) (/n,2Fn,2)-(/n,nnFn,iin)) This is the subschedule tem

plate for n.

Here, each Fn . is a vertex in the hierarchical SDF graph Gn associated

with II. Thus, each Fnj is either a base block —an actor in the original SDF

graph G — or a hierarchical actor, which represents the execution of a periodic

schedule for the corresponding subgraph of G. Now let An denote the set of

actors in G that are contained in Gn and in all hierarchical subgraphs nested

within Gn; and let kn sgcd( {in ;.|1<>j £nn] j. Thus we have

'nj =*n*Gn (Fn,y) J = L2 "n C3"^)

In [Ritz93], it is stated that number ofactivations that Tn contributes to

\Bn\qG (An)
N'act ^ given by I—l—r , where 5n is the set ofbase blocks in Gn. Thus,

if H denotes the setofhierarchical components in the given complete hierarchiza

tion, then
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^ N^ (3.14)

In the proposed technique, an exhaustive search over all i'n and kn iscar

ried out to minimize (3-14). The search is restricted by constraints derived from

the requirement that the resulting schedule for G be valid. As with the construc

tion of complete hierarchizations, it is argued that the simplicity of strongly con

nected components in most practical applications permits this expensive

evaluation scheme.

As with the techniques presented in Sections 3.1 am 3.2 of this thesis, the

minimum activation scheduler of [Ritz93] provides a solution for constructing

schedules that minimize code size. However, withregards to scheduling for mini

mum code size, the solution in this thesis is more general for three reasons. First,

our scheduling framework guarantees code size optimality for all actors that lie

outside the tightly interdependent components, and thus, it handles graphs that do

not have single appearance schedules. In contrast, the techniques of [Ritz93] apply

only to SDF graphs thathave singleappearance schedules.

Second, the minimum code size scheduler of [Ritz93] is designed for the

specific secondary goal of minimizing actor activations. In contrast, our schedul

ing framework can be adapted to different secondary optimization goals. For

example, the clustering techniques of [Bhat93] can be incorporated into the acyclic

scheduling algorithm to minimize the buffer memory requirement; the technique

of Section 3.3 can beapplied toany chain-structured graphs that arise inthe cluster

hierarchy; and the technique related toTheorem 3.3 can beemployed to increase

the use ofregisters.

Finally, we have demonstrated that loose interdependence algorithms exist
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that have polynomial time-complexity. In contrast, the solution of [Ritz93] does

not have polynomially-bounded complexity, and it will rapidly become infeasible

if the input graph is sufficiently complicated. Fortunately, this threshold will rarely

be reached by the systems for which the technique was designed — large grain

specifications of signalprocessing algorithms.

Despite the differences in generality, for the specific purpose of jointly

minimizing code size and actor activation rate for SDF graphs that have single

appearance schedules, the method of [Ritz93] is superior to that proposed in this

thesis. Furthermore, since the techniques of [Ritz93] require an optimization pass

that traverses all levels of the cluster hierarchy, it is unlikely that these techniques

can be directly incorporated into our scheduling framework, which restricts the

component algorithms to operate only on one specific level of the hierarchy at a

time.

3.4.5 Thresholds

Constructing looped schedules for SDF graphs that minimize actor activa

tions is related to the concept of thresholds, which is discussed by Allen and

Kennedy [Alle87] in the context of compiling FORTRAN programs into code for

vector computers. As asimple example, consider theFORTRAN code fragment in

figure 3.17(a). Due to the recurrences in the body of this loop, loop distribution

cannot be applied and none of the statements can be vectorized. However, if we

"split" the loop up as shown in figure 3.17(b), loops amenable to distribution and

vectorization emerge. Figure 3.17(c) shows theresult of applying distribution and

vectorization to the inner loops of figure 3.17(b).

The transformation from the loop in figure 3.17(a) to the loop in figure

3.17(b) is an application of thresholds. A threshold is loosely defined as the mini-
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DO 100 1=1, 100

Y(I) = Fl(X(I-5))

Z(I) = F2(Y(I))

X(I) = F3(W(I-10), Z(I))
W(I) = F4(X(I))

100 CONTINUE

(a)

DO 100 1=1, 10

DO 90 J = 1, 2

DO 80 K = 1, 5

II = 10*(I-1) + 5*(J-1) + K

Y(II) = Fl(X(II-5))

Z(II) = F2(Y(II) )

X(II) = F3(W(II-10), Z(II))
80 CONTINUE

90 CONTINUE

DO 70 J = 1, 10

II = 10*r(I-D + J

W(II) = F4 (X(II) )

70 CONTINUE

10C) CONTINUE

(b)

DO 100 1=1, 10

DO.90 J = 1, 2

II = 10MI-1) + 5*(J-1)

Y(II+l:II+5) = F1(X(II-4:II))
Z(II+l:II+5) = F2(Y(II+l:II+5))
X(II+l:II+5) = F3(W(II-9:II-5),Z(II+l:Il+5))

90 CONTINUE

W(10*I - 9:10*1) = F4(X(10*I - 9:10*1))
100 CONTINUE

(C)

Figure 3.17. An illustration ofthresholds, and ofa relationship between thresh
olds and minimum activation schedules for SDF graphs.
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mum number of iterations that elapse between the definition of a variable and its

use in adependence. Thus, if we can construct an inner loop whose iteration count

is equal to oneless than the threshold, then this inner loop maybe amenable to dis

tribution and/or vectorization. This transformation is particularly useful for vector

machines in which vector instructions outperform equivalent scalar instruction

sequences for short vector lengths; that is, if thestart-up overhead for performing a

vector instruction is small compared to the execution time of a scalar instruction.

10D

Figure 3.18. An SDF graph that corresponds to the dependence relation
ships in figure 3.17(a).

In somecases, the problem of applying thresholds efficiently can be solved

by constructing a minimum activation schedule for a homogeneous SDF graph.

For example, thedependence relationships in figure 3.17(a) can bemodeled by the

homogeneous SDF graph depicted in figure 3.18. Here, the actors correspond to

the subroutines Fl, F2, F3 and F4 in figure 3.17, and each edge corresponds to

one of the arrays W, X, Y or Z. It. can be verified that

(2 (5F1) (5F2) (5F3)) (10F4) is a single appearance schedule that minimizes

the activation rate for figure 3.18, and the correspondence between this schedule
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and the vectorized FORTRAN code of figure 3.17(c) is easily seen.

The problem of applying thresholds is in some ways more general, and in

some ways less general than the problem of scheduling SDF graphs to minimize

activations. It is more general becausecomplicated patterns ofdatatransfers — for

example data dependent, multi-dimensional, ornonlinear patterns — can be speci

fied by arbitrary FORTRAN statements whereas in SDF graphs, each edge always

corresponds to alinear stream of data withthe producing and consuming computa

tions offset by a constant amount (the edge delay) that is known at compile time.

On the other hand, the threshold application problem is less general because in its

underlying model of computation, each fundamental operation consumes and pro

duces a single data value. Thus, unlike the SDF case, there is no issueof repetition

and looping arising implicitly from mismatches in production and consumption

parameters along datadependence edges.
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4

INCREASING THE EFFICIENCY

OF BUFFERING

4.1 Introduction

Ho [Ho88a] developed the first compiler for pure SDF semantics. The

compiler, part of the Gabriel design environment [Lee89], was targeted to the

Motorola DSP56000 programmable digital signal processor and the code that it

produced was markably more efficient than that of existing C compilers. However,

due to its inefficient implementation of buffering, thecompiler could notmatch the

quality of good handwritten code, and the disparity rapidly worsened as thegranu

larity of the graph decreased.

The mandatory placement of all buffers in memory, rather than in registers,

is amajor cause of thehigh buffering overhead inGabriel. Although this is anatu

ral way to compile SDF graphs, it can create an enormous amount of overhead

when actors of small granularity are present. This is illustrated in Figure 4.1. Here,

a graphical representation of an atomic addition actor is placed alongside typical

assembly code that would be generated if straightforward buffering tactics are

used. The target language is assembly language for the Motorola DSP56000,

input1 and input! representmemory addresses where the operands to the addition
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actor are stored, and outputrepresents the location in which the output token will

be buffered.

In Figure 4.1, observe that four instructions are required to implement the

addition actor. Simply augmenting the compiler with a register allocator and a

mechanism for considering buffer locations as candidates for register-residence

can reduce the cost of the addition to three, two, or one instruction. The Comdisco

Procoder graphical DSP compiler [Powe92] demonstrates that integrating buffer

ing with register allocation can produce code comparable to the best manually-

written code.

The Comdisco Procoder's performance is impressive, however the Pro-

coder framework has one major limitation: it is primarily designed for homoge

neous SDF, and thus, it becomes less efficient when multiple sample rates are

present. Furthermore, the techniques apply only when the buffers can be mapped

staticallyto memory. In general, thisneednot be the case, andwe will elaborate on

this topic in Section 4.2.

In this chapter, we develop compile-time analysis techniques to optimize

the buffering of SDF graphs that involve multiple sample rates. Multirate buffers

>
move input"!, a
move input2, xO
addxO, a
move a, output

Figure 4.1. An illustration of inefficient buffering for an SDF graph.
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are often bestimplemented as contiguous segments of memory to be accessed by

indirect addressing, and thus they cannot be mapped to machine registers. Effi

ciently implementing such buffers requires reducing the amount of indexing over

head. We show that for SDF, there is a large amount of information available at

compile-time thatcanbe used to optimize the indexing of multirate buffers. Also,

multirate SDF graphs maylead to very large memory requirements if large sample

rate changes are involved, and this problem is compounded by the presence of

schedule loops. Thus, it may be highly desirable to overlay noninterfering buffers

in the same physical memory space as much as possible. This chapter presents

ways to analyze the dataflow information to detect opportunities for overlaying

buffers that can be incorporated into best-fit and related memory allocation

schemes.

We begin by reviewing theimportant code generation issues that are perti

nent to multirate SDF graphs. In Section 4.2, we present a classification of buffers

based ondataflow properties and wediscuss these different categories with respect

to storage requirements. The following three sections present code optimization

techniques. Section 4.3 discusses minimizing spills of address registers tomemory.

Section 4.4examines theproblem of overlaying buffers for compact memory allo

cation. Section 4.5 considers optimization opportunities that apply to circular buff

ers. Finally, Section 4.6 presents adetailed summary of theproposed methods.

4.1.1 Code Generation for Looped Schedules

An important code generation issue for looped schedules is the accessing

of a buffer from within a schedule loop. The difficulty lies in therequirement for

different invocations of the same actor to be executed with the same block of

instructions. As a simple example, consider Figure 4.2, which shows a multirate
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SDF graph, a looped schedule for thegraph, and an outline of assembly code that

could efficiently implement this schedule. In the code outline, the statement "do

#w LABEL" specifies n successive executions of the block of code between the

do statement and the instruction atlocation LABEL. Thus, the successive firings of

actor B are carried out with a loop. This requires thatboth invocations of B must

access their inputs with the same instruction, and that the output data for A be

stored inamanner that can beaccessed iteratively. This in turn suggest writing the

data produced by A to successive memory locations, and having B read this data

using the register autoincrement or autodecrement addressing modes that are typi

cal in programmable digital signal processors. Here, the output tokens of A are

storedin successive locations buf and buf + 1, and B reads these values into local

register xO through theautoincremented buffer pointer r2.

The techniques in this chapter do not depend on a specific language for

<£>
Schedule: A(2B)

code for "A"

outputs in xO and yO

move xO, buf

move yO, buf +1
move #buf, r2

do#2,LOOPEND
move (r2)+, xO

code for "B"

input in xO

LOOPEND:

Figure 4.2. Anexample ofcompiled code for a looped schedule.
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defining the actors. However thetechniques are best-suited when actor inputs and

outputs are referenced symbolically, and the assignment of machine registers and

memory locations is performed by the compiler, as in the Comdisco Procoder

[Powe92]. In this type of actor definition language, a simple addition actor might

have the following as its defining code block:

add inl, in2, out

It is left to thecompiler to replace inl, in2, and out with register references and

to make sure that data is routed appropriately between theregisters. For example,

if the adder is executed through a loop, and this loop does not contain the actor

whose output is consumed by input port inl, it is generally desirable to load the

register corresponding to inl through anaddress register. This is the case with the

input to actor B in Figure 4.2. Alternatively, the schedule may permit data to be

exchanged directly through registers, in which case the generated code might look

like:

addr0,rl,r2

addr2,r3,r4

(this corresponds to a cascade of adders).

Another important code generation issue is register allocation, which is

critical both for data and address registers. Scheduling heuristics for improving

register allocation in homogeneous SDF block diagrams are discussed in

[Powe92]. These techniques can be applied to homogeneous subgraphs in multi-

rate graphs in conjunction with clustering techniques, such as those presented in

Section 3.2. A recently-developed approach to register allocation studied by Hen-

dren et al. [Hend92] appears promising for multirate code generation. In this tech

nique, a hierarchy of circular-arc graphs is extracted from nested loop code, and
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heuristics for coloring this class of graphs are applied. The techniques developed

in this chapterdo not depend on a specific method of register allocation.

We conclude this subsection with two definitions.

Definition 4.1: Given an SDFgraph G, a loopedschedule S for G, and an actor

A in G, a common code space set, abbreviated CCSS, for A is the set of invoca

tions of A that are represented by some appearance of A in S.

A CCSS is thus a set of invocations carried out by a given sequence of

instructions in program memory (code space). For example, consider the looped

schedule (4A) C(2B (2C)BC) (2BC) for the SDFgraph in Figure 4.3(a). The

CCSS's for this looped schedule are {AVA2,AVAA} , {Cj} , {BVB3} ,

{C2,C3,C5tC6} , {BVBA} , {C4,C7} , {B5,B6} ,and {C8,C9} .

It will be useful to examine fhtflow of common codespacesets. This can

be depicted with a directed graph, called the CCSS flow graph, that is largely

analogous to the basic block graph [Aho88] used in conventional compiler tech

niques. Each CCSS corresponds toa vertex inthe CCSS flow graph, and anedge is

inserted from a CCSS S2 to a CCSS 82 if and only if there are invocations

At € 5j and Bj € 62 such that Bj is invoked immediately after At. To illustrate

CCSS flow graph construction, Figure 4.3(b) shows the CCSS flow graph associ

ated with the schedule (4A)C(2B(2C)BC) (25C) for the SDF graph inFigure

4.3(a).
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Figure 4.3. Anillustration of common codespacesets andtheCCSS flow graph.
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4.1.2 Modulo Addressing

Most programmable DSPs offer a modulo addressing mode, which can be

used in conjunctionwith careful buffersizing to alleviate the memory cost associ

ated with requiring buffer accesses to be sequential. This addressingmode allows

for efficient implementation of circular buffers, for which indices need to be

updated modulo the length of the bufferso that they can wrap around to the other

end.

For example, in the Motorola DSP56000 programmable DSP, a modifier

register MX is associated with each address register RX. Loading MX with an

integer n > 0 specifies a circular buffer of length n+ 1. Thestarting address of the

buffer is determined by the value v that is stored in RX. If we let b denote the

value obtained by clearing the |"log2(/i+ 1)] least significant bits of v, then

assuming that b£v£ (b + ri) ,m autoincrement access (RX)+ updates RX to

b+ ((v-b+1) mod (n + l)).

Figure 4.4 illustrates the use of modulo addressing to decrease memory

requirements when sequential buffer access is needed. The schedule U(2UV)

would clearly require a buffer size of 6 for iterative access if only linear address

ingis available. However, as the sequence ofbuffer diagrams inFigure 4.4shows,

only four memory locations are required when postincrement modulo addressing

is used. W and R respectively denote the write pointer for actor U and the read

pointer for V, and a black dot inside a buffer slot indicates a live token — a token

that has been produced but not yet consumed. Note that the accessesof the second

invocation of U andthesecond invocation of V wrap around theend of the buffer.

Observe also that the pointers R and Wcan be reset at the beginning of
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each schedule period to point to the beginning of the buffer, and thus the access

patterns depicted in Figure 4.4 could be repeated every schedule period. This

would cause the locations in each buffer access to be static — fixed for every

schedule period— and hencetheywould be known values at compile time.

This illustration renders false the previous notion that for static buffering,

the total number of tokens exchanged on an edgeper schedule periodmustalways

be a multiple of the buffer size. As we will show in the following section, the

requirement holds only when there is a nonzero delay associated with the edge in

question.

4.2 Buffer Parameters

To guide memory allocation and code generation, we must determinefour

qualities of each buffer — the logical size of the buffer, whether the buffer occu-

¥

&-^s>
j
W W R

W R

Figure 4.4. An illustration of moduloaddressing.
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pies a region of contiguous memorylocations, whether the accesses to the buffer

are static, and whether the buffer is circular or linear. By the logical size of a

buffer, we mean the number of memory locations required for the buffer if it is

implemented as a single contiguous block ofmemory. Forexample, the buffer for

the graph in Figure 4.4 will have a logical size of four or six depending, respec

tively, onwhether ornotwe are willing topay the cost ofresetting the buffer point

ers before the beginning of every schedule period. In Section 4.4, we will show

that it may bedesirable toimplement a buffer inmultiple nonadjacent segments of

physical memory.

Note that in our model of buffering, as in Figure 4.4, each token is read

(consumed) from thesame memory location thatit is produced into, andthus there

is norearrangement oflive tokens in the physical memory space.

4.2.1 Static vs. Dynamic

For an SDF edge a, static buffering means that for both source (a) and

sink (a) , the itfa token accessed in anyschedule period resides in the samemem

ory location as the zth token accessed in any other schedule period [Lee87]. A

buffer that isnot static is called a dynamic buffer. From our discussion ofFigure

4.4, it is clear that if delay (a) =0, static buffering can occur with a logical

buffersize equal to the maximum number of live tokens that coexist in the buffer.

However, if a has nonzero delay, then wemust impose the additional constraint

that total consumed (a) is some positive integral multiple of the buffer length.

Theneed for this constraint is illustrated in Figure 4.5. Here, theminimum

buffer size according to the rule for zero delay isfour, since up tofour tokens con

currently exist in the buffer for the given schedule. Figure 4.5 shows the succes

sion ofbuffer states ifa buffer ofthis length is used. Since there is a delay on the
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edge, there will always be a token in the buffer at the beginning of each schedule

period — this is the first token consumed by invocation Vx. For static buffering,

we need this "delay token" — which is consumed in the schedule period after it is

produced — to reside in the same memory location every schedule period. Com

parison of the initial and final buffer states in Figure 4.5 reveals that this is not the

casesince the write pointer W didnot wrap around to pointto its original location.

Clearly, W couldhavereturned to its original position if andonly if the total num

ber of advances madeby W (six, in this case) wasaninteger multiple of the buffer

length. But the total number of advances made by W is simply

total_consumed (U -> V) .We summarize with the following theorem.

Theorem 4.1: For agivenschedule, the logical buffer size n mustsatisfy the fol

lowing two conditions:

TT
R W n

©sh© vs;
I W I

W R R W

Figure 4.5. The effect of delay on the minimum buffer size required for
static buffering.
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(1). 7i cannot be less than the maximum number of live tokens that coexist

on the corresponding edge a.

(2). If delay (a) =0, then static buffering is possible with any logical

buffer size that meets criterion (1). Otherwise, static buffering is possible if and

only if for some positive integer k, total consumed (a) = kn.

Thus, static buffering for anedge with delay may require additional storage

space — 50% more in the case of the example inFigure 4.5. The difference may

benegligible for most buffers, but it must bekept in mind when sample rates are

very high. Further trade-offs between static and dynamic buffering are discussed in

Section 4.3.

4.2.2 Contiguous vs. Scattered

Once wehave decided whether a buffer is to bestatic or dynamic, wemay

decide uponwhether it willbe a contiguous buffer, occupying a section of succes

sive physical memory locations, or whether the buffer may be scattered through

memory. Scattered buffering allows more flexibility in memory allocation, which

can lead to lower memory requirements. However, as we discussed in Section 4.1,

contiguity constraints between the location of successive buffer accesses may be

imposed by loops in the schedule. Similarly, loops that are containedin actor code

blocks lead to contiguity constraints.

Dynamic bufferingalso induces contiguity constraints. In dynamic buffer

ing, no invocation accesses the logical buffer at the same offset every schedule

period. To see this, suppose that some invocation A. accesses a buffer T for some

edge a at the same offsetevery schedule period. Since the bufferpointer for A.

advances total consumed (a) positions from one schedule period to the next, it
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follows that total consumed (a) must be a positive integer multiple of the logical

buffer size of T, and thus the buffer must be static. Thus, a dynamic buffer cannot

be implemented with only absolute addressing, and if an actor A accesses a

dynamic buffer, the current position in the buffer must be maintained as a state

variable of A. We will elaborate on the contiguity requirements for dynamic buff

ering in Section 4.4.

An important aspect of the physical layout of a buffer is the effect on total

storage requirements. The locations of a scattered buffer are not restricted to be

mapped to continuous memory addresses, and graph coloring [Golu80] can be

used to assign physical memory locations to the set of scattered buffers. If all scat

tered buffers correspond to delayless edges, then the interference graph becomes

an intervalgraph, and interval graphs canbe colored with the minimum numberof

colors in timethatis linear in thenumber of vertices and edges [Carl91]. The pres

ence of delay on one or more of the relevant edges complicates graph-coloring

substantially. A delay results in a token that is read in a schedule period after the

period in which it is written, and thus the lifetime of the token crosses one or more

iterations of the program's outermost loop. The resulting interference graphs

belong to the class of circular-arc graphs [Hend92]. Finding an optimal coloring

for this class of graphs is intractable, but effective heuristics have been demon

strated [Hend92].

When subsets of variables must reside in contiguous locations, we expect

that the memory requirements will increase since this imposes additional con

straints onthestorage allocation problem. Until further insight is gained about this

effect, wecannot accurately estimate how much more memory will berequired if a

particular scattered buffer is changed to a contiguous buffer. However, since opti

mallycompact storage layout requires scattered buffers, it is likely that when data-
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memory requirements are severe, edges should be implemented as scattered buff

ers wheneverpossible. We will discuss storage optimization further in Section4.4.

4.2.3 Linear vs. Modulo

For each contiguous buffer, we must determine whether modulo address

updates will be required to make the buffer pointer wrap around the end of the

buffer. Such modulo address updates normally require overhead; the amount of

overhead varies from processorto processor. For instance, recall the discussion in

Section 4.1.2 regarding the Motorola DSP56000's hardware support for modulo

address generation. Here a "modifier register" must be loaded with the buffer size

before modulo updates can be performed on thecorresponding address register, so

there is a potential overhead of one instruction every time the buffer pointer is

swapped into the register file. When there is no hardware support for modulo

addressing, as with general purpose microprocessors such as the MIPS R3000

[Kane87], the moduloupdate must be performed in software every time the buffer

is accessed. This typically requires an overhead of several instructions for each

buffer access.

In Section 4.5, we will present general techniques for eliminating modulo

accesses. Presently, we conclude thatcircular buffering may potentially introduce

execution-time overhead. For edges with delay, this risk is unavoidable — circular

buffersare mandatory. However, for somedelay-free edges, it may be preferable to

forego the data-memory savings offered by modulo buffering so thatthe overhead

can be avoided. For anSDF edge a, a buffer sizeof totaljconsumed (a) clearly

guarantees that no modulo accesses will be required — provided that we reset the

buffer pointer at the start of every schedule period. Smaller buffer sizes (divisors

of total consumed (a) which meetorexceed themaximum number of coexisting
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tokens) are also possible, but one must first verify that no access within a loop

wraps aroundthe buffer. This expensive check is rarely worth the effort. A simple

rule of thumb can be used to decide whether to switch to linear buffering for a

delayless edge: we prioritize each delayless edge a by the "urgency measure" \i

defined by

U.(ct) =

[total consumed (a) "1
minimum buffer size of ou * '

r i i
ltotal_consumed (a) - (minimum buffer size of a) J

The first bracketed term is the number of modulo accesses that occur on

each end of a every schedule period, and the denominator in the second term is

the storage cost toconvert this edge toastatic buffer of size total_consumed (a) .

Thus \i (a) denotes the number of modulo accesses eliminated per unit of addi

tional storage. We simply convert the edges with the highest \i values until we

have exhausted the remaining data memory. Many variations on this scheme are

possible, and architectural restrictions on the layout of storage, such as multiple

independent memories [Lee88b] mayrequire modification.

4.3 Increasing the Efficiency of Static Buffers

The storage economy ofdynamic buffering comes atthe expense of poten

tial execution-time overhead. When apointer to adynamic buffer is swapped out

of its physical register, it is mandatory that its value be spilled to memory so that

the next time the pointer is used, it can resume from the correct position in the

buffer. With static buffering, we know the offset at which every invocation
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accesses the buffer. Thus we can resume buffer addressing with an immediate

value and there is noneed to spill the pointer tomemory. As aresult, every time a

buffer pointer of the source or sink actor is swapped out, dynamic buffering

requires anextra storeto memory.

For instance, consider the example in Figure 4.6. Here, it is easily verified

0^0
Schedule: A(2B(2DCE))

Figure 4.6. An example of how loops can limit the advantages of static
buffering.

t „.that q04,fl,C,Z),£) = (1,2,4,4,4) . Since total_consumed(B->C) =4,

abuffer of size four suffices for static buffering on the edge B-» C. Now, the code

block for actor C must access B-» C through some physical address register R ,

and R must contain the correct buffer position C every time the code block is

entered. If it is not possible to dedicate R to C for the entire inner loop

(2DCE) , then R must be loaded with the current value of C just prior to

entering the code block for C. Since the code block executes invocations CltC2,

C3, and C4 — the members of theassociated CCSS — and each of these invoca-
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tions accesses the buffer at a different offset, we cannot load R with an immediate

value. The value to load into R must be obtained from a memory locationand the

current value of C must be written into this location whenever R is swapped

out. It can easily be verified that at most three tokens coexist on B -» C at any

given time, and thus a dynamic buffer of size three could implement the edge.

Since the organization of loops precludes exploiting the static information of a

length four buffer,dynamicbuffering is definitely preferable in this situation.

It is not always the case that different members of a CCSS access a static

buffer atdifferent offsets. As an illustration of this, consider again the SDF graph

in Figure 4.3(a), and consider thelooped schedule (AA) C (2B (2C) BC) (2BC) .

We can tabulate the offsets for every buffer access in the program to examine the

access patterns for each CCSS. Such a tabulation is shown in Table 4.1, assuming

access port invocation offset

(A-»B)»B 1 0

2 2

3 4

4 6

5 8

6 10

B»(B->Q 1 3

2 0

3 3

4 0

5 3

6 0

access port invocation offset

(B^>C)»C 1 0

2 2

3 4

4 0

5 2

6 4

7 0

8 2

9 4

A»(A ->B) 1 0

2 3

3 6

4 9

Table 4.1. A tabulation of the buffer access patterns associated with the
schedule (4A) C (25 (2C) BC) (2BC) for the SDF graph in Figure 4.3(a).
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that static buffers of length 12 and 6 are used for the edges A->B and B->C,

respectively. The access port column specifies the different actor-edge incidences

in the SDF graph. For example, A» (A -» B) refers to the connection of edge

A -> B as the output edge of actor A, and (B -» C) » C refers to the connection

of edge B->C as the input edge of actor C. The invocation column lists the fir

ings of the actor with the associated access port, and the offset at which the i th

invocation of this actor references the access port is given in the i th offset entry

for the access port. Examination of Table 4.1 reveals that the members of CCSS

{C4» C7} read from edge B-> C atthe same offset. Similarly, the write accesses

of the common code space sets {BVB3} and {B2>BA} occur respectively at the

same offsets. If allmembers of aCCSS T access an edge a atthe same offset,we

say that T accesses a statically.

Thus, when a pointer into a static buffer is spilled, and the pointer is

accessed elsewhere from within a loop, it is not always necessary to spill the

pointer tomemory. The procedure for determining whether aspill is necessary at a

given swap point can beconceptualized easily in terms of the CCSS flow graph,

which we introduced in Section 4.1.1. Suppose that a buffer pointer associated

with actor A and edge a must be swapped out of its register at some point in the

program. First, wemustdetermine the vertex x in the CCSS flow graph that corre

sponds to this swap point. From x, we traverse all paths until theyeither reach the

end of the program, they traverse the same vertex twice (they traverse acycle), or

they reach an occurrence of aCCSS for A. We are interested only in the first time

a path encounters a CCSS for A. Let P be the setof all paths p directed from x
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that reach a CCSS for A before traversing any vertex twice, and let A (p) denote

the first CCSS for A that p encounters. Then the bufferpointermust be spilled to

memory if and only if the set P contains a member that does not access a stati

cally.

Traversing paths at every spill may be extremely inefficient. Instead, we

can perform a one-time analysis of the loop organization to construct a table con

taining the desired reachability information. The concept is similar to the conven

tional global dataflow analysis problem of determining which variable definitions

reach which parts of the program [Aho88]. However, ourproblem is slightly more

complex. In global dataflow analysis, we need to know which variable definitions

are live at a given point in the program. For eliminating buffer pointer spills, we

need to know which points in a program canreach a given CCSS without passing

through anotherCCSSfor thesame actor. This information can be summarized in

a boolean table that has each entry indexed by an ordered pair of common code

space sets (Cv C2). The entry for (CvC2) will be true if and only if there is a

control path directed from C1 to C2 that does not pass through another CCSS for

the actor thatcorresponds to C2. We refer to this table as the first-reaches table,

since it indicates the points (the common code space sets) at which control first

reaches a given actor from a given CCSS. Table 4.2 shows the first-reaches table

for the looped schedule (4A) C(2B(2C) BC) (2BC). The CCSS flow graph

corresponding to this scheduleis depicted in Figure4.3(b).

The first-reaches table can be systematically constructed by a technique,

specified in [Bhat92], that is based largely on the methods described in [Aho88]

forcomputing reaching definitions. An important difference is that a separate pass

through the loop hierarchy is required to construct the columns associated with
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each actor, whereas reaching definitions can all be dealt with in a single pass. In

practice, however, we are concerned only with the columns of the first-reaches

matrix that correspond to actors that access multiword contiguous buffers, so often

a large number of passes can be skipped.

To fully assess the benefits of choosing static buffering over dynamic buff

ering for a particular edge, we must consult the first-reaches table at every spill

point. Performing thischeck for everymultiword bufferis very expensive. Instead,

we should generally perform this check only for the sections of the program that

are executed most frequently.

^ 0?
$* C3
£3 gl 8* B2 c4 Bfi c8
A4 ^1 *3 ^6 B4 C7 B6 <*

A1.A2.A3.A4 T T T F F F F F

£1 T F T T F F F F
B1.B3 T F F T T F F F
02.03,05,05 T F F T T T F F

52»f*4 T F T F F T T F

2*& T F T T F F T T

°S>°6 T F T F F F T T
C8.C9 T T T F F F T T

Table 4.2. The first-reaches table associated with the looped schedule
(44) C(25 (2C) BC) (2BC) (the corresponding CCSS flow graph is shown

in Figure 4.3(b)). The entry corresponding to a row CCSS X and a column
CCSS Y is true fT) if and only if there is a control path directed from X to Y
that does not pass through another CCSS for the actor that corresponds to Y.
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4.4 Overlaying Buffers

When large sample rate changes are involved, assigning each buffer to a

single contiguous block of physical memory may require more data memory space

than what is available. In this section, weshow how to fragment buffers in physi

cal memory, which can expose more opportunities for overlaying [Fabr82]. This

technique canbe usedto improve first-fit, best-fit, and related storage optimization

schemes, which arefrequentlyapplied to memory allocation for variable sized data

items. In [Fabr82], Fabri has studiedmore elaborate storage optimization schemes

that incorporate a generalized interference graph. Such schemes are also compati

ble with the methods developed in this section.

4.4.1 Fragmenting Buffer Lifetimes

Figure 4.7 illustrates how lifetime analysis and fragmentation information

can be used to reduce storage requirements. Here, a multirate SDF graph is

depicted along with a looped schedule for the graph and the resulting buffer life

time profiles. In the first profile, each edge is treated as an indivisible unit with

respect to storage allocation. We see that this straightforward designation of buffer

lifetimes reveals no opportunities to share storage and thus the edges A -» B,

A -> C, B -> D, and C -» E require 2, 2, 10, and 10 units of storage, respec

tively, for a total of 24 units.

Notice, however, that the invocations that access B->D can be divided

into two sets {BVDVD2 Dl0} and {B2, Dn, Dl2, ...,D20] such that all

tokens are produced in the same set in which they are consumed — there is no

interaction among the two sets. Thus, they can be considered as separate units for
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Schedule: AB(10D)C(10E)B(10D)C(1 OE)

(a)

A, Bi Dv.. D10 C, E1 ... E10 B2 D„ ... D20 C2 E„ ... E20

aTb

W/////AbTd

7//////T/A cTe

aTc

Aggregate Buffer Lifetimes

(b)

W//A

At B, D,... D10 C, Ei... E10 B2 D^ ... D^ C2 E„ ... E20

0 bTd <i> c?e <i> bTd <2> cTe <2>

a1rB I
aTc

Buffer Period Lifetimes

(c)

Figure 4.7. An illustration of opportunities to overlay buffers based on the
periodicity of accesses.
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storage allocation, with lifetimes ranging from Bx through Z>10, and B2 through

D2Qt respectively. We call these two invocation subsets the buffer periods of

B->D, and wedenote them by successive indices as B -> D(1> and B -> D(2).

The concept of abuffer period willbedefined precisely in thenext subsection. The

liverange for C -» E can bedecomposed similarly and the resulting lifetime pro

file is depicted in Figure 4.7(c) (we suppress the"<1) " index for edges that have

only onebufferperiod). Thisnewprofile reveals that wecan map both B -» D and

C->E to the same 10-unitblock of storage, because even though the aggregate

lifetimes of these edges conflict, the buffer periods do not. Thus, the memory

requirement for buffering canbe reduced almostin half to 14 units of storage.

This fragmentation technique can be exploited by first-fit, best-fit, and

related storage optimization schemes. In such schemes, we maintain a list of vari

ables along with their sizes and lifetimes; if a variable x becomes live earlier than

another variable v, then x occurs earlier in the list than y. Also, we maintain a

free-list of unallocated contiguous segments of memory. At each step, we remove

the head of the variable list from the list, and we assign it to a free memory block

for the duration of the variable's lifetime. In first-fit allocation, we choose the first

free block of sufficient size, while in best fit, we choose the free block of sufficient

size whose size differs from the size of the variable by the least amount. In general,

best-fit leads to more compact allocation, while first-fit is computationally more

efficient.

For example, if we use the aggregate buffer lifetimes in Figure 4.7(b), then

neither first-fit, best-fit, nor any other storage allocation scheme will achieve any

overlaying between the four variables to be allocated, and 24 units of storage are
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required. On the other hand, the fragmented buffer information in Figure 4.7(c)

separates the items to be allocated into six variables. It can easily be verified that

both first-fit and best-fit allocation require only 14 units of storage to achieve a

valid storage layout for Figure 4.7(c).

4.4.2 Computing Buffer Periods

There are four mechanisms that can impose contiguity constraints on suc

cessive buffer accesses of an edge a — writes to a occurring from a loop inside

source (a) ; reads from a occurring from a loop inside sink (a); placement of

source (a) or sink (a) within a schedule loop; and dynamic buffering. The con

straints imposed by these mechanisms can be specified as subsets of tokens that

must be buffered in the same block of storage. For example, suppose that for the

SDF graph in Figure 4.8(a), actor A is programmed so that it writes its output

tokens from within asingle loop inside the actor code block. The resulting conti

guity constraints are illustrated in Figure 4.7(b) — the three tokens produced by

each invocation must be stored in three adjacent memory locations. We specify

these two constraints by the subsets {4 [I],A [2],A [3]} and

{A [4], A[5], A[6] } ,where A[i] represents the /th token accessed by A in a

minimal schedule period1, for 1£z£ total^consumed(A -»B). The constraints

that result if the reads of actor B occur from within a loop inside the actor are

depicted in Figure 4.8(c), and we represent these constraints as {B [1], B[2] } ,

{B [3], B[4] } ,and {B [5], B[6] } .However, since we must ultimately super

impose all constraints, wewould like to express them in terms of the same actor.

1. This notation assumes that the edge inquestion (in this case A -¥ B) isunderstood. Al
so, for simplicity, we assume that the blocking factor is one; however, the analysis in this
section generalizes easily toany finite blocking factor.

201



Our convention is to express all contiguity constraints for an edge in terms of the

source actor. Thus, noting the unit delay on A-> B, we translate Figure 4.8(c) to

M [6],A [1] } , {A [2],A [3]} , and {A [4], A [5] } .

As a more complete example, consider the SDF subgraph in Figure 4.9,

whichwe use to represent acommon cascade of multirate DSP actors. Here, actor

E represents an 8-foldupsampler, which consumes one token per invocation and

outputs a token with the same data value along with 7 zero-valued tokens; and

A)5_^B

(a)

Ai A2

(b)

B1 B2 B3

(C)

Figure 4.8. An illustrationof buffering constraints when edges are accessed
through loops inside actor definitions.
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actor F represents a 5 -fold decimatort which consumes 5 tokens and outputs one

token with the same data value as the first token consumed. For clarity, we have

specified £ to be a simple form of upsampler; however, similar contiguity con

straints can apply to more elaborate upsamplers, such as an upsampler that per

forms linear interpolation. Now if clustering subgraph ({£,£}) in the enclosing

graph does not produce deadlock, then it is easilyverifiedthat the looped schedule

(2EF) (3£(2£)) can be used to invoke this subsystem. Figure 4.10 shows a

possible implementation of this loop schedule if the target language is C.

Now, from examination of the code blocks for E in Figure 4.10, we see

that in each invocation of E, the last seven accesses of the output edge (all butthe

first) are generated from within aloop inside the corresponding code block for E.

Thus, we constrain the last seven data values output by E to be written to contigu

ous memory locations. This leads to the contiguity constraints {£[1]} ,

{£[2-8]}, {£[9]}, {£[10-16]}, {£[17]}, {£[18-24]},

{E [25] } , {£ [26 - 32] } , {£ [33] } , {£ [34 - 40] } , where we have used

£ [/ -j] as shorthand notation for £ [/], £ [/+ 1] ,...,£[/]. If there were no

other contiguity constraints for the output edge of £, the tokens {£[1]} ,

Figure 4.9. An SDF subgraph that represents acascade of an upsampler
and a decimator.
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{ /* begin subschedule for subgraph({E,F}) */
/* initialize read and write pointers for
edges that are internal to the subgraph */
E__writeptr = 0;
F_readptr = 0;

for (i=0; i<2; i++) {

/* begin code block, for CCSS {E1,E2} */
tempi = E_inpbuf[E_readptr++];
E_outbuf[E_writeptr++] = tempi;
for (i2=0; i2<7; i2++) {

E_outbuf[E_writeptr++] = 0;
}

/* end code block for CCSS {E1,E2} */

/* begin code block for CCSS {F1,F2} */
temp2 = E_outbuf[F_readptr++];
F_outbuf[F_writeptr++] = temp2;
F_readptr +=4; /* skip over next 4 tokens */
/* end code block for CCSS {F1,F2} */

} /* end schedule loop (2 E F) */

for (i=0; i<3; i++) {

/* begin code block, for CCSS {E3-E5} */
tempi = E_inpbuf[E_readptr++];
E_outbuf[E_writeptr++] = tempi;
for (i2=0; i2<7; i2++) {

E_outbuf[E_writeptr++] = 0;
}

/* end code block for CCSS {E3-E5} */

for (i2=0; i2<2; i2++) {

/* begin code block for CCSS {F3-F8} */
temp2 = E_outbuf[F_readptr++];
F_outbuf [F__writeptr++] = temp2;
F_readptr +=4; /* skip over next 4 tokens */
/* end code block for CCSS {F3-F8} */

} /* end schedule loop (2 F) */
} /* end schedule loop (3 E (2 F)) */

} /* end subschedule for subgraph({E,F}) */

Figure 4.10. An example of C code that can be used to implement the

looped schedule (2££) (3£ (2F)) for the subsystem of Figure 4.9.
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{£ [9] } , {£ [17] } , {£ [25] } and {£ [33] } could be mapped to five dis

tinct memory locations, and the sets of tokens {£ [2 - 8] } , {£ [10 - 16] } ,

{£ [18 - 24] } , {£ [26 - 32] } , and {£ [34 - 40] } could be mapped to five

independent seven-unit blocks of contiguous storage. However, due to additional

contiguity constraints that arise due to schedule loops, which we discuss below,

this flexibility cannotbe exploited for the implementation in Figure 4.10.

As with computing the contiguity constraints that arise from intra-actor

loops, detennining the constraints due to schedule loops is straightforward. Given

an edge a, and an actor N€ ({source (a)} u {sink(a)}), each outermost

schedule loop L in the periodic schedule defines a constraint set that consists of all

access by N of a that occur within L. We can derive these from the contiguous

ranges of invocations of A and B that L encapsulates. Wemap all accesses within

a loop to the same physical block of memory because we cannot easily perform

isolated resets of read/write pointers inside loops. Expensive schemes — such as

testing the loop index to determine which physical buffer to use or maintaining an

array of buffer locations — are required to fragment buffering within aloop. We

do not consider such schemes presently because we expect that their benefits are

rare, and thus weconsolidate accesses within loops tothe same physical buffers.

For the example of Figures 4.9 and 4.10, the given looped schedule is

(2£F) (3£(2F)) .This schedule has two outermost schedule loops, (2££) and

(3£ (2F)), and thus two constraint sets emerge. The first schedule loop encapsu

lates the first two invocations of£, which together produce tokens {£ [1- 16] } ,

and the first two invocations ofF, which consume tokens {£ [1- 10] } .Taking

the union of these two sets gives us the constraint set imposed by the outermost

loop (2£F) — {£[1-16]} .The other outermost loop, (3£(2£)) .encapsu-

205



lates the third through fifth invocations of £, which produce {£ [17 - 40] } , and

the third through eighth invocations of F, which consume {£ [11 - 40] } . Tak

ing the union yields {£ [11 - 40]} as the constraint set imposed by the outer

most loop (3£(2F)). Thus, the two outermost loops of (2£F) (3£(2F))

respectively impose the constraint sets {£ [1- 16] } and {£ [11 - 40] } . Since

these two constraint sets overlap (over the tokens £[11-16]), they are equiva

lent to a single constraint set that is obtained by taking their union —

{£[1-40]}.

Thus, the schedule loops in Figure 4.10 impose a single constraint set on

the edge £->F, and this is the set {£[1-40] } . It follows that for the given

schedule, £ -» F must be mapped to a single block of contiguous memory —

fragmentation cannot be performed. In Figure 4.10, the singleblock of contiguous

memory for £ -» F is implemented by the array E_outbuf.

So far we have only mentioned that dynamic buffering can also lead to

constraint sets, but we have not described this effect. The effects of dynamic buff

ering, which are more subtle than the conditions imposed by loops, will be dis

cussed fully in Subsection 4.4.3.

For an SDF edge a, the constraint sets due to intra-actor looping, inter-

actor looping (schedule loops), and dynamic buffering together define the logical

sections of a buffer that arerestricted to contiguous segments of physical memory.

We also include the trivial singleton constraints

M [1] } » M [2] },..., {A [total consumed {a)] } , where A = source (a) ,

which we need to account for tokens that don't appear in any of the other con

straint sets. We refer to the entire collection of constraint sets, including the single-
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ton constraints, as the collection of constraint sets imposed on a. Then,

determining the buffer periods, which can be viewed as the maximal independent

constraint sets, amounts to partitioning the entirecollection into maximal noninter-

secting subsets.

Definition4.2: Given anSDFgraph G, anedge a in G, and alooped schedule 5

for G, let C = CVC2> >.->Ck denote thecollection of constraint sets imposed on

a. Suppose that b = {bvb2 bn} isasubset of C such that

(1). No memberof b is independent of allother members of b — if n> 1,

then for each b., there is at least one b,* b( such that binb.*0; and

(2). b is independent of the remainder of C — that is,

fuO nf U £l=0.
V2=l J Uc (C-b) )

Then ( \J b\ is called abuffer period for a.

One can easily verify that for agiven schedule, each edge a has aunique

partition into buffer periods. Furthermore, tokens in the same buffer period must

be mapped to the same contiguous physical buffer, whereas distinct buffer periods

can be mapped to different segments ofmemory. Finally, the amount ofmemory

required for a buffer period is simply the maximum number of coexisting live

tokens in that buffer period.

Figure 4.11 depicts an example that we will use to illustrate the consolida

tion ofdifferent constraint sets into buffer periods. The schedule ofFigure 4.11(a)
does not contain any loops. If the buffer accesses within A or B do not occur
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within intra-actor loops, then only the singleton constraint sets apply to A -> B,

and thebufferperiods are M[l]}, {A [2] },..., {A [12]} .

Now suppose that allaccesses of A -» B by A are performed from within a

loop inside A. Thecorresponding constraint setis shown inthe second row of Fig

ure4.11(b), and we obtain theresulting buffer periods by superimposing the first

two rows of Figure 4.11(b) —

CCJ *\ A/ n**(B) Schedule: CAABABBABBB
(a)

Some Possible Constraint Sets

Singletons {A [1] }, {A [2] } ,..., {A [12] }
Actor 4 writes to A-> B from a loop M[l-3]} , {A [4-6]} ,

M[7-9]}, {4 [10-12]}

Encapsulate AltA2 in&schedule loop {A [1- 6] }
Encapsulate B5, B6 in a schedule loop {j4 [8 - 11 ]}
Actor 5 reads ,4->B fromaloop {A[12]tA[l]} , M [2],i4 [3] } ,

M[4M[5]}, M[6M[7]},

MI81.il [9]},
M [10],A [11]}

(b)

Figure 4.11. This example illustrates how superimposing different constraint
sets can lead to different buffer periods. The figure depicts an SDF graph, a
schedule for the graph and five possible mechanisms for imposing contiguity

constraints on the edge A->B.
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{A[l-3]}t {A[4-6]}t M[7-9]}, {A[10-12]} . If we add the addi

tional condition that the first two invocations of A are grouped into a schedule

loop (we change the schedule to C(2A)BABBABBB)t then we must consider

another constraint set {A [1 - 6] } . The new buffer periods are the combination

of the 17 constraint sets in the first three rows of Figure 4.11(b) —

{A[l-6]}, {A[7-9]}> {A[10-12]} . Now if we encapsulate B5 and B6

within aschedule loop (the newschedule is C (2A)BABBAB (2B)), theresulting

constraint set is {B [9 - 12] } , which is equivalent to {A [8 - 11] } , due to the

unit delay. This new constraint forces us to mergebufferperiods {A [7 - 9] } and

{A [10- 12] } , and the resulting buffer periods are {A [1 - 6] } and

{A [7 - 12] } . Finally, if we impose the condition that B reads A -» B through

an intra-actor loop, then we have the six additional constraint sets shown in the

fifth row of Figure 4.11(b). The first of these constraint sets intersects both of the

remaining buffer periods and we are left with a single buffer period

{A[l-12]}.

4.4.3 Contiguity Constraints for Dynamic Buffers

Dynamic buffering imposes contiguity constraints between buffer accesses

whenever a read occurs when the number of tokens on an edge a exceeds

total consumed (a). In such situations, the token to be read co-exists with the

corresponding token of the next schedule period — so we cannot dedicate a single

memory location to that token. For agiven edge, anefficient way to dealwith such

cases is to force all of these accesses to occur in the same contiguous block q of

memory.Since the location of each of theseaccesses varies betweenschedule peri-
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ods, the accesses are performed through read/write pointers. Any read that occurs

when the token population is within totaljconsumed (a), however, corresponds

to a token whose location is independent of <;. To explain this effect precisely, we

introduce the following definition.

Definition 4.3: Let G be an SDFgraph andsuppose that a is an edgein G. Then

a transaction on a is an ordered pair (/,/), such that

1 <i i,j £ total^consumed (a) and1

j = ((i - 1 + delay(cc)) mod total consumed (a)) + 1.

Thus, (i,j) is a transaction on a if thejth token consumed by sink (a)

in any given schedule period is the ith token produced by source (a) in that

schedule period or some earlier schedule period. For a given periodic looped

schedule S for G, we say that the transaction (/, j) is a static transaction if the

number of tokens existing on a justprior to the ; th read access by sink (a) of a

is less than or equal to total consumed {a). We canexpress this condition as

delay (a) +produced (a) A^ - consumed (a) (NB - 1) - ,
(/- 1) mod consumed (a) £ totalconsumed (a)

where NB = 1+ L(/-!)/(consumed (a)) J is the invocation of sink (a) dur

ing which the jth read access of a occurs, and A^ is number ofinvocations of

source (a) that precede the A^th invocation of sink (a) in S. We say that a

transaction is a dynamic transaction if it is not a static transaction.

The transactions onan edge can be determined easily from the acyclic pre-

l.The+1 and-1 are required inthis expression because we (by convention) number to
kens starting at 1 rather than 0.
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cedence graph, and the static and dynamic transactions can be identified by simu

latingthe activity on the edge over one schedule period. Figure 4.12 illustrates the

decomposition of a buffer based onstatic and dynamic transactions. Here, therep

etitions vector is given by q(A,B) = (3,2)7, and thus

totaljoonsumed (A-+B) = 6, Now, it is easily verified that for the given sched

ule, the maximum number of tokens that coexist on A -» B is 8 — so clearly

dynamic buffering applies. However, from the lower table in Figure 4.12(a), we

see that the third, fifth, and sixth read accesses of B occur when there are

total_consumed (a) or fewer tokens queued on A -»B. This corresponds to the

set of static transactions, which is summarized in the table labeled transactions in

Figure 4.12(a). Thus tokens associated with transactions (1,5), (2,6) and

(5,3) can be buffered in independent memory locations, while (3,1), (4,2)

and (6,4) must be maintained in contiguous memory. The resulting constraint

sets are {A[l]} , {A [2] } , {A [5] } , and {A [3],A [4], A [6] } . Figure

4.12(b) illustrates the use of these constraint sets to form independent buffering

units. Here, A [1] , A [2] and A [5] are mapped to independent (not necessarily

contiguous) memory locations LI, L2, and L3 respectively, and the remaining

constraint set is mapped to a contiguous five-word block of storage, labeled the

"dynamic buffer component". Five words are required because this is the maxi

mum number of coexisting tokens from {A [3] ,A [4] ,A [6] } . Figure 4.12(b)

shows how the profile of live tokens inthis buffering arrangement changes through

the first schedule period. Each live token is represented by an ordered pair itj,

which denotes the j th token to beconsumed by actor B in schedule period i, and

a shaded region designates the absence of a token. Observe that for each live token
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(a)

(b)

initially

after A-|

after A2

after B

after A3

after B2

G>^0 Schedule: AABAB

transactions

(1.5) <static> (4,2) <dynamic>
(2.6) <static> (5,3) <static>
(3,1) <dynamic> (6,4) <dynamic>

read number of tokens on A-»B

access just prior to the access

B[l] 8

B[2] 7

B[3] 6

B[4] 7

B[5] 6

B[6] 5

L1 L2 L3 Dynamic Buffer Component

1,3 1,5 1,6

1,3 1,5 1,6

1,5 1,6

2,3 1,5 1,6

Figure 4.12. An illustration of static and dynamic transactions for a dynamic
buffer. In (b). i,j represents the live token that is to be the7th tokenconsumed
by actor B in schedule period i.
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s in the dynamic buffer component, there is some point in the schedule period

when s coexists with the corresponding token of the next or previous schedule

period. This is precisely why these tokens must be buffered as a contiguous unit.

Observe also thatin thedynamic buffer component, theread and write pointers for

B and A, respectively, each shift threepositions to the right (in a modulo-5 sense)

every schedule period. These pointers arenot involved in accesses of LI, L2 and

L3 — these locations canbe accessed usingabsolute addressing.

For the example in Figure 4.12, mapping all accesses of A -» B to a single

contiguous segment q of memory requires an 8-word block of memory, while

decomposing this buffer based on static and dynamic transactions allows a parti

tion into four mutually independent blocks of 1, 1, 1 and 5 words. Although the

net requirement of physical memory is the same, there is less potential for frag

mentation, or equivalently, more opportunity for buffer reuse [Fabr82] when this

example is a subsystem in a larger graph. Furthermore, the lifetime of c, extends

throughout the entire schedule period, whereas L2 and L3 are live only in the

interval between invocations Ay and B2. These two locations may thus bereused

for other parts of the graph.

It is not obvious, however, that decomposing a buffer based on static and

dynamic transactions willnever increase the netmemory requirements. If we refer

to the tokens associated with static transactions and dynamic transactions as static

tokens and dynamic tokens respectively, then the transaction-based decomposition

requires aset ofmemory blocks whose sizes total Ns +Nd words, where N is the

number ofstatic tokens (in asingle schedule period) and Nd isthe maximum num

ber of coexisting dynamic tokens. If this sum exceeds the maximum number of
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coexisting tokens on the edge, then without further analysis —for which currently

there are no general techniques — we cannot guarantee that decomposing the

buffer will not bedetrimental. Fortunately, however, (Ns +Nd) isalways equal to

the undecomposed dynamicbuffersize, as the following theorem suggests.

Theorem 4.2: Supposethat G is a consistent, connected SDFgraph, S is a mini

mal, valid schedulefor G, and a is an edge in G. Supposealso that the maximum

number of coexisting tokens M(a) on a during an execution of S exceeds

total_consumed (a) . Then Ns +Nd = M(a), where Ns is the number ofstatic

tokens and Nd is the maximum number ofcoexisting dynamic tokens.

Proof: Suppose that at some time t in the scheduleperiod there are R live tokens

on a, and first suppose that R £ total_consumed(a). Since the tokens buffered

on an edge are successive, the last total_consumed (a) tokens produced by

source (a) are live at time t . Thus, there is a token corresponding to each static

transaction on the edge. It follows that there are R- Ns dynamic tokens on a at

time t.

Now suppose that R < total_consumed (a). We consider two cases here:

Case 1 — (R < total_consumed (a)) and (Ns < total consumed (a) - R) .

Then,

(The number of dynamic tokens at time x) <, R <
totaljconsumed(a) -Ns<M(a) -Ns

Case 2 — (R < total_consumed (a)) and (Ns £ total_consumed (a) -R) .

Then,
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(The number of dynamic tokens at time t) £
R- (Ns- (totaljconsumed(a) -R))

= total consumed (a) - Ns <M(a) - Ns.

From the above discussion — for both (RZ total consumed (a)) and

(R < total_consumed (a)) — the numberof dynamic tokens when R = M (a)

is (Af (a) - A^), and thisamount of dynamic tokens cannot beexceeded withany

other value of R. Therefore, Nd = M(a) - A^,which is equivalent tothe desired

result. QED.

We conclude this section by pointing out that it is possible to decompose

thedynamic buffercomponent further — each dynamic transaction canbemapped

to an independent blockof memory. For example, the dynamic buffer component

in Figure 4.12 can be separated into three two-word fragments corresponding to

transactions (3,1), (4,2) and (6,4). This could be achieved simply by using

different read and write pointers for each of the associated accesses — we would

needthree separate write pointers for A [3] , A [4] and A [6] , and three separate

read pointers for B [1] , B [2] and B [4] . The overhead associated with this

scheme is significant, but difficult togauge precisely. First, it places more pressure

on the address-register allocator and mayincrease the amount of spilling. This, in

turn requires an extra memory location to save each spilled item. Finally, the sum

of the independent dynamic transaction segments (in this case 2 +2+2 = 6)

may exceed the maximum number of coexisting dynamic tokens (in this case 5).

Thus, for small to moderate dynamic buffer sizes it is unlikely that decomposing

the dynamic buffer component further will be of value. However, when large

delays are involved, it may provide substantial new opportunities for overlaying.
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For example, for the SDF graph and schedule in Figure 4.13, there are no static

transactions for the edge B -> C, and a 100 -word blockof memoryis required for

this edge if we do not decompose the dynamic buffer component. However, if we

view each of the four dynamic transactions (1,1), (2,2), (3,3) and (4,4) as

a separate unit, we can implement B -> C with four independent 25-word blocks

of memory. This additional freedom may lead to much better overall memory use

if this example is usedas a subsystem in amore complex graph.

4.5 Eliminating Modulo Address Computations

In Subsections 4.1.2 and 4.2.1, we discussed the use of circular buffers to

decrease memory requirements and to implement edges that have delay, and in

Subsection 4.2.3, we discussed the overhead associated with accessing circular

buffers, whichranges from zero to a few instructions for processors that havehard

ware support for circular buffering, such as the Motorola DSP56000, to several

instructions for processors that do not have hardware support, as with general pur

pose microprocessors such as the MIPS R3000. In this section, we develop a sys-

V J VB3 \°) Schedule: ACBCBCBCB

Figure 4.13. An example that illustrates the benefits of decomposing the
dynamic buffer component into a separate segment for each dynamic
transaction.
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tematic approach to eliminating modulo accesses.

4.5.1 Determining Which Accesses Wrap Around

First, we show how to efficiently determine which accesses of a circular

buffer wraparound the end of the buffer. For astaticcircular buffer, this is straight

forward — if a denotes the edge in questionand / denotes the blocking factor, we

simply determine the values of n € {0,1, ...tJxtotal_consumed{a) - 1} for

which

Po +n ~ (some positive integer) x BUFSIZE,

where BUFSIZE denotes the length (number of words) of the circular buffer, and

p0 denotes the buffer position of the initial access — that is, p0 = delay (a) if

we are concerned with the accesses of source (a) and p0 = 0 if we are con

cerned with sink (a) .

For dynamic buffers, different accesses will wrap around the end of the

buffer in different schedule periods. However, there may still exist invocations

whose accesses do not wrap around in any schedule period. To determine these

invocationswe need to use two simple facts of modulo arithmetic.

Fact 4.1: Suppose that a, b and c are positive integers, and suppose that a

divides both b and c. Then for somenonnegative integer k, (b mod c) - ka.

Proof: By definition,

(b mod c) =b- (\ k Ixc\. (4-2)

Both the subtrahend and minuend of the lefthand side of (4-2) are divisible by a,
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so a must divide (b mod c). QED.

Fact 4.2: Suppose thatp and q arecoprime positive integers, let / denote the

set {0,1, ..., (<?-l)} , and suppose that r€ Iq. Then for all kx e /fl there exists

#2€ /^ such that (r+pk2) modq = A^.

Proof: (By contraposition). Suppose that for some *i € /„, there is no k0 € /,

such that (r+pk2) modq = *j. Then ((r+px) modq) takes on at most

(#-1) distinct values as x varies across I . Thus, there exist distinct

*2fl»*2*€/?suchthat

(r+*2*P) mod <7 = (r+k2bP) mod ? = *, for some #€ lqy (4-3)

which implies that there exist distinct nonnegative integers rQ and rb such that

(r+k2ap) = (rfl<7 +*),and (r +*2fe/>) = (rbq +k), (4-4)

and thus,

(k2a~k2b)P = (ra~rb)a' (4-5)

Now since *2fl, *26 e {0,1,..., (q - 1)} , it follows from (4-5) that p and q are

notcoprime. Thus, the original assumption that p and q arecoprime cannot hold.

QED.

Applying Fact 4.1 with

a = gcd ( {/ x totalconsumed (a), BUFSIZE} ),
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b = ^x/xtotal^consumed(a),and

c = BUFSIZE,

wesee that for each positive integer kx, there isanonnegative integer k2 such that

(kxxJx total^consumed (a)) modBUFSIZE (4-6)
= k2gcd ( {/ X total_consumed (a), BUFSIZE} )

This means that we can consider each dynamic buffer asconsisting of suc

cessive "windows" of size gcd( {JX total_consumed(a),BUFSIZE} ) . In

some schedule period, if source (a) or sink (a) performs its i th access at offset

j of window wx, then since the /th access shifts (/ x total consumed (a) ) posi

tions from schedule period to schedule period, weknow that the ithaccess in any

schedule period will occur at offset / of some window. For example, for the

dynamic buffer inFigure 4.14, it is easy toverify that for all odd schedule periods,

the window offset for the first access of A is 0.

Now let ws denote gcd({Jx total consumed {a), BUFSIZE} ) , thesize

of each window. Also, let nw = BUFSIZE/^, the number ofwindows. Suppose

that in the first schedule period, access i occurs atoffset j of window w (assume

now that windows and offsets are numbered starting at 0). Then the windownum

ber of the /th access in some later schedule period k can be expressed as

((w + ((k xj x totaljoonsumed (a)) /ws)) mod nw). This is simply the initial

window number plus the number of windows traversed modulo the number of

windows. To this expression, we can apply Fact 4.2 with

_ / x total consumed (a) _ / Xtotal consumed (a)
ws gcd ( {J x total consumed (a), BUFSIZE} ) '
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0^0
Schedule: AABAABAB

total_consumed {A->B) = 15

BUFSIZE = 10

/ = 1

gcd( {/ x totaljconsumed (A -* B), BUFSIZE} ) = 5 ("window** size)

first access by actor A in
all odd schedule periods

first access by actor A in
all even schedule periods

1 i

J* window 1 ->(<*• window 2 H

Figure 4.14. An illustration of repetitive access patterns in
gcd ( {/ x totaljconsumed(a), BUFSIZE}) -word windows within a
buffer.
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BUFSIZE

* ="w = gcd ( {J xtotal_consumed (a), BUFSIZE}) ' Md r =W' *****

ing this result, we see that for each window w', there will be schedule periods

(values of k) in which the j th access occurs in w'. Thus, the ;th access of some

schedule period will wrap around theendof thebuffer if and onlyif the j th access

of the first schedule period occurs at the end of a window.

We have proved the following theorem.

Theorem 4.3: Suppose that a is an edge in aconnected, consistent SDF graph;

suppose Ae ({source (a)} u {sink (a)}); and define p0 = delay (a) if

A = source (a), and p0 = 0 if A = sink (a). Then for

je {1,2,..., Jx totaljconsumed(a)} , they'th access of a by A wraps around

the end of the buffer if and only if

(Po+ 0-1)) modw^ = w^-1,

where wg = gcd ( {/ x total consumed (a), BUFSIZE}) .

The check of Theorem 4.3 can be further simplified by observing the peri

odicity of the modulo term — we need only determine the first access that wraps

around, which wedenote by jw,explicitly:

Jw = ws~ (P0modws> • (4-7)

Then, we immediately obtain the complete set Sw ofaccesses that wrap around by
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Sw = Sw (a, BUFSIZE,/) = (4-8)

{jw +nxws\(ne {n i \(J* total consumed (a)) -1j} \ }

For theexample of Figure 4.14, we have jw = 5, and Sw = {5,10,15} .

Code to implement these accesses must perform modulo address computations.

These modulo computations will correspond to accesses that wrap around only

one-third of the time. However, unless, we increase the blocking factor, we must

ensure that these accesses are always performed with moduloupdates. In general,

modulo computations will wrap around one out of every

_ BUFSIZE
w gcd ( {/ x total^consumed (a), BUFSIZE}) S*

We can reduce the average rate at which modulo computations must be

performed by a factor of nw if we increase the blocking factor to nw. Assuming

that all invocations of the same actor require the same amount of time toexecute1,

the rate at which modulo computations must be performed is proportional to

IS I
RM s -j-, where |SW| denotes the number of members in the set Sw. The denom

inator term / is required because the amount of execution time required for a

schedule period (an iteration of the target program's outermost loop) is propor

tional to the blocking factor. For example, in Figure 4.14, / = 1,

Sw = {5,10,15} , [Sj = 3, and RM =3. Ifwe increase the blocking factor to

2 and retain the same buffer size, Sw = {10,20,30} , (Sj =3, and RM = 1.5

— thus the frequency of required modulo address computations decreases by a

1.Ingeneral, thisassumption does nothold; in such cases our analysis is notexact, butit
gives a useful estimate.
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factor of 2.

Observe that the number of modulo computationsrequired also depends on

the choice of the buffer size. Clearly, one out of

gcd ({Jx total_consumed (a), BUFSIZE}) accesses requires a modulo com

putation. Thus the modulo overhead varies (neglecting looping considerations,

which will be discussed in Subsection 4.5.2) inversely with

gcd ( {/ x totaljconsumed (a), BUFSIZE}). For example in Figure 4.14, a 7 -

word buffer can support the given schedule. However, this requires

15/gcd ({15,7}) = 15 modulo computations per minimal schedule period:

every access must perform a modulo update! Increasing the buffer size to 10

results in 5 times fewer modulocomputations. Thus, for frequently executedsec

tions of code, it may be beneficial to explore tolerable increases in buffer size for

the possible reduction of modulo updates.

4.5.2 Handling Loops

In the absence of schedule loops and loops within the actor code blocks,

the number of modulo computations required in the target code is exactly IS I.

However, a loop maycause the same physical instructions to perform both wrap

around accesses and linear accesses. In such cases, we must either unroll theloop

to isolate the accesses that wrap around, or we must perform a modulo address

computation for every access that is executed from within the loop. Here we

assume thatthe loop structure is fixed: we focus on analyzing the loop structure to

eliminatemodulo accesses while leaving the loops intact.

To eliminateunnecessary moduloaddress computation for the read orwrite

accesses performed by some actor A from/to anedge a, we first identify the set of
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distinct physical instruction sequences, called buffer access instruction

sequences, that will be used to access a by A. This concept is similar to common

code space sets, which associate blocks of program memory with actor invoca

tions. However, the buffer access instruction sequences depend on intra-actor

loops as well as schedule loops.

For a given bufferaccess instruction sequence, the corresponding machine

instruction(s) mustperform a modulo address computation if and onlyif the asso

ciated set of buffer accesses Ia intersects the set of wrap-around accesses —that

is, if and only if (Ia n Sw) * 0. In practice, however, we do not need to explicitly

compute and maintain Sw nor the access sets associated with each buffer instruc

tion sequence. Wesimply simulate the buffer activity, traversing the buffer access

instruction sequences in succession, for one schedule period and apply Theorem

4.3 foreach access. If <f> denotes the current buffer access instruction sequence in

oursimulation, andthecurrent access is thej thaccess of edge a by actor A, then

we mark O as requiring a modulocomputation if

(Po+ 0' - 1)) mod gcd( {J x totaljconsumed (a), BUFSIZE}).

= (gcd({Jx total_consumed (a), BUFSIZE}) - 1).

All bufferaccess instruction sequences that are not marked by this simula

tion can be translated into simplelinearaddress updates.

4.6 Summary

We have presented a classification of buffers based on whether they are
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static or dynamic, linear or modulo, and contiguous or scattered; we have evalu

ated the impact of these choices on storage requirements; and we have suggested

guidelines for choosing between them. More thorough and systematic techniques

to determine an optimalcombination of buffering parameters is an important and

challenging area for further study.

In Section 4.3, we introduced dataflow analysis techniques to minimize the

spilling of address registers under static buffering. How useful and effective these

techniques are depend both on the number of available registers and on how

expensive a spill to memory is. For example, in the Motorola DSP56000, eight

registers are available for addressing, while spills can often be performed with no

run-time overhead (by doing them in parallel with other operations [Powe92]). In

contrast, in the MIPS R3000, any of the available 32 registers can be used for

addressing, and at least oneinstruction cycle is required for a spill. Being able to

accurately andefficiently estimate the effects of spilling would be useful in decid

ing between static anddynamic buffering.

In Section 4.4, we developed lifetime analysis techniques that aid in reduc

ingstorage requirements for buffers. An important area for further investigation is

the incorporation of addressing trade-offs between contiguous and scattered buff

ering. For example, if a logical buffer of length n is assigned to n mutually non

contiguous memory locations, then in general n absolute addresses must be

employed. For programmable DSPs such as the DSP56000, arbitrary absolute

addresses require an additional word of program memory and an additional

instruction cycle, while register-indirect accesses toacontiguous buffer involve no

program memory overhead and canoften be performed in parallel with otheruse

ful operations [Powe92]. In contrast, many general purpose microprocessors allow

large absolute displacements to be accessed through single-word instructions, but
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they do not allow register-indirect accesses to issue in parallel with other instruc

tions. Furthermore, many do not support hardware autoincrement — a separate

instruction must be issued to update the buffer pointer. Thus, more aggressivescat

teringofbuffers may favor suchgeneral purpose processors, while thereis a strong

trade-off between buffer storage, address storage, and execution time in the

DSP56000 and most other digital signal processors.

Also a scattered buffer can consist of multiple contiguousblocks of mem

ory, each of which is accessed through a separate buffer pointer. Managing these

multiple buffer pointers introduces another machine-dependent trade-off. Further

examining the machine-dependent aspects of contiguous vs. scattered buffering is

an important direction for future work.

Finally, we presented techniques to reduce modulo addressing overhead for

both static and dynamic buffers. These techniques apply whenever modulo buffers

are used, but how much improvementis gained depends on how expensive a mod

ulo addressupdate is in the targetprocessor.
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5

FURTHER WORK

This thesis has presented a formal theory for constructing and manipulating

loops from SDFrepresentations of digital signal processing algorithms, and based

on this theory, techniques have been presented for compiling SDF programs into

efficient code for programmable processors. The techniques have focused on the

minimization of code size, the minimization of the buffer memory requirement,

and the efficiency of buffering. We have defined a class of <xxle-size-minimizing

schedules called single appearance schedules.The central contribution of this the

sis is a uniprocessor scheduling framework that constructs single appearance

schedules whenever they exist, and whensingle appearance schedules do notexist,

guarantees optimal code size for all actors that are notcontained in acertain type

of subgraph called a tightly interdependent subgraph.

This scheduling framework has been implemented in Ptolemy, a design

environment for simulation, prototyping, and software synthesis of heterogeneous

systems [Buck92]. A large part of the implementation in Ptolemy was performed

by Joseph Buck, a graduate student colleague at the time and now with Synopsys

Inc., and Soonhoi Ha, a post-doctoral fellow of U.C. Berkeley atthe timeand now

a lecturer at Seoul National University. The implementation has been tested on
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several practical examples, such as the digital audio tape to compact disc sample

rate conversion system of Figure 1.1, developed by Thomas M. Parks, a fellow

graduate student at U. C. Berkeley; and a QMF filter bank that was developed by

Alan Peevers, who is now at Emu/Creative Systems. Our scheduling framework

has constructed optimally compact schedules for all of these examples. An exam

ple of particular interest is a rake receiver for spread spectrum communications,

developed by Sam Sheng, a fellow graduate student at U. C. Berkeley. For this

example, in the C code generation domain of Ptolemy, our scheduling framework

generated a code file whose size was under 35 kilobytes, while Buck's loop sched

uler [Buck93], discussed in Subsection 3.4.2, generated a 1.3 megabyte code file.

Although, the fast heuristics on which Buck's scheduler is based often succeed in

constructing verycompact schedules, in this particular instance, themorethorough

techniques developed in this thesis outperformed Buck's scheduler by morethan a

factor of 37.

In this remainder of this section, we discuss a number of problems that

remain open in the area of compiling SDF graphs.

5.1 Tightly Interdependent Graphs

Loose interdependence algorithms guarantee optimal code size for each

actor thatdoes not lie in atightly interdependent subgraph, and theyguarantee that

the number of appearances of each actor within a tightly interdependent subgraph

is determined entirely by the tight scheduling algorithm, however, this thesis does

not propose any techniques thatgive guarantees on how compactly a tightly inter

dependent component will be scheduled. Thus, to provide a more complete solu

tion to the problem of generating compact code, it would be useful to study
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techniques for scheduling tightly interdependent graphs compactly. Once devel

oped, such techniques can be incorporated in the tight scheduling algorithm with

out affecting the performance of the other three component algorithms.

One direction of study in the problem of compactly scheduling tightly

interdependent graphs is the application of retiming. Retiming was proposed by

Leiserson et al. [Leis83] as a technique for minimizing the clock period of syn

chronous digital circuits. Extension of the retiming concept to general SDF graphs

was discussed by Leein [Lee86]; and in [Zivo93], Zivojnovic et al. formally ana

lyze properties of retimed SDF graphs and they formulate an integer linear pro

gramming solution to the problem of minimizing the total delay count of an SDF

graph through retiming.

In an SDF graph, retiming can be viewed as rearranging the delays in

accordance with certain constraints. As a simple example of retiming, and how it

can improve the scheduling of tightly interdependent subgraphs, consider the

example of Figure 5.1. Figure 5.1(a) shows a tightly interdependent SDF graph,

and Figure 5.1(b) shows how moving the delay on the edge A -» B to the edge

B -» A results inagraph that has asingle appearance schedule. This application of

Figure 5.1. Anexample of how retiming can lead to more compact sched
ules of SDF graphs.
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retimingcanbe implementedby firing B onceas&preamble to the periodic sched

ule. However, the code to construct this preamble will negate the advantage of

having a more compact periodic schedule. Alternatively, since the transformation

in computation may leadsimply to a transient that diminishes with time, it may be

valid to ignore the preamble and directly implement a periodic schedule for the

retimedgraph. In suchcases, applications of retiming suchas the example of Fig

ure 5.1 can improve code size compactness for tightly interdependent graphs.

Thus, it would be useful if we could efficiently determine when a tightly interde

pendent SDF graph can beretimed into an SDF graph that has a single appearance

schedule, andif we coulddetermine appropriate retimings for suchcases.

5.2 Buffering

In Section 4.6, we discussed some directions for further study to develop

systematic methods to choose optimally between static vs. dynamic, linear vs.

modulo, and contiguous vs. scattered buffers. Also, more powerful techniques are

desirable for minimizing the buffer memory requirement of a schedule. We have

presented a technique to construct the single appearance schedule that minimizes

the buffer memory requirement for a chain-structured SDF graph. Techniques to

address this problem for general acyclic graphs would be useful for incorporation

into the acyclic scheduling algorithm. Similarly, a technique for constructing sub-

independent partitions thatleads to minimum buffer memoryrequirement is desir

able.

Systematic assessment of scheduling trade-offs between the code size and

the buffer memoryrequirement is another area for further study. For example, if a

single appearance schedulehas been constructed, and the resulting code does not
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fully occupy the available program memory, then we would like to know how the

remaining program memory can be utilized to expand the schedule in such a way

that the buffer memory requirement is minimized. Alternatively, one can attempt

to develop a scheduling algorithm thatis notrestricted to single appearance sched

ules and attempts to jointly minimize the code size and buffer memory require

ment. A further stepin this scheduling problem is incorporating considerations that

relate to buffer overlaying.

5.3 Parallel Computation

A number of scheduling techniques have been developed for compiling

SDF graphs into efficient code for multiprocessor systems, for example [Sih91,

Prin91, Iiao93]. However these techniques do not consider code size constraints.

Thus, it would be useful to extend the loose interdependence scheduling frame

work to address parallelism aswell as memory requirements. An interesting prob

lem that arises in this domain is the construction of optimal single appearance

parallel schedules.

One restricted class of single appearance parallel schedules that would be

useful toconsider is that in which each schedule loop is either a serial loop, whose

iterations are to beexecuted in succession as in the uniprocessor scheduling case,

or a doall loop —a loop in which all iterations can execute simultaneously with

out any synchronization between them [Zima90]. Given a schedule loop in this

model, it is executed serially if for some invocation / of the loop, data produced

by some iteration of / is consumed by another iteration of /. If all iterations of a

given invocation of a schedule loop are independent, then all iterations are exe

cuted in parallel. The execution "mode" of each loop can be represented by
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appending a letter s to the iteration countif it is to be executedserially and a letter

p if it is to be executed as a doall loop. Thus, for example the schedule

(2p (2sA) (4pB)) corresponds to the processor-time execution profile in Figure

5.2.

The basic problem to address in constructing thistype of single appearance

parallel schedule is determining the schedule that maximizes the throughput.

Unlike the problem of minimizing code size, the solution to an instance of this

problem depends in general on the execution time of each actor invocation, and

thus a solution cannot be obtained from atopological analysis alone. This compli

cation applies even to homogeneous SDF graphs. As a simple example, consider

thehomogeneous graph in Figure 5.3, and consider the single appearance parallel

schedules Sx a (6$(3s (5pA)) (5s (3pB))) (90pC),

52s (5s(4s(5pA)) (10s(2pB))) (lOOpC) ,and

Pi P2 P3 P4 P5 P6 P7 P8

Figure 5.2. The processor-time execution profile for thesingle appearance par
allel schedule (2p (2sA) (4pB)). The vertical axis corresponds to time and

the horizontal co-ordinate identifies one of eight available processors Pl-Pg.
It is assumed that each actor invocation takes one time unit. A shaded region
indicates that no operationis performed.
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53s (Ss(3s(4pA)) (4s(3pB))) (96pC) .

If we denote the execution times of actors A, B and C by tA, tB% tc,

respectively, then we can measure the throughput of Sj as

throughput (S{) = 90/(6(3^ +5^) +tc) niinimal schedule periods per unit

time. Similar expressions can easily be derived for the throughput of S2 and 53.

The table below lists the throughput of each schedule for three different sets of

execution times.

'a h *c throughput (Sj) throughput (S2) throughput (53)

500 150 1 0.00667 0.00571 0.00571

50 1 950 0.0479 0.0500 0.0440

1 950 950 0.00305 0.00206 0.00306

In this table, we see that each set of execution times corresponds to a different

throughput-minimizing schedule from among the three schedules considered.

Thus, we see that even for homogeneous SDF graphs, the construction of optimal

20D

i®

Figure 5.3. An example used to illustrate the problem of constructing sin
gle appearance parallel schedules.
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single appearance parallel schedules (with regards to throughput) cannot be based

solely on topological considerations.

When constructing single appearance parallel schedules or more general

looped schedules for parallel computation, it would be useful to consider the time

required for interprocessor communication. Scheduling techniques for SDF graphs

that take interprocessor communication into account have been developed by Liao

et al. [Liao93] and Sin [Sih91]; however these techniques do not attempt to con

struct loops in the target code.
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