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Abstract

In this paper, we extend the results in [Wu and Chua, 1994] and give sufficient conditions for an array
of linearly coupled systems to synchronize. A typical result states that the array will synchronize if the

nonzero eigenvalues of the coupling matrix have real parts that are negative enough. In particular, we

show that the intuitive idea that strong enough mutual diffusive coupling will synchronize an array of

identical cells is true in general. Sufficient conditions for synchronization for several coupling configura

tions will be considered. For coupling which leaves the array decoupled at the synchronized state, the

cells each follow their natural uncoupled dynamics at the synchronized state. We illustrate this with an

array of chaotic oscillators. Extensions of these results to general coupling are discussed.

1 Introduction

Recently, arrays of coupled systems has received much attention as they can exhibit many interesting phenom

ena, such as spatio-temporal chaos [Zhelenyak and Chua, 1994], autowaves [Perez-Munuzuri et a/., 1993b],
and spiral waves [Perez-Munuzuri et a/., 1993a] and are important in modeling populations of interacting
biological systems [Murray, 1989]. In addition, they have also been used in applications such as image pro
cessing [Chua and Yang, 1988b; Perez-Munuzuri et a/., 1993b]. It has been observed that couplingallow cells
to synchronize to each other. For example, fireflies has been known to fire in unison, and this phenomena

has been proved to occur in a group of integrate-and-flre cells [Mirollo and Strogatz, 1990]. In this paper, we
analyze when individual systems in the array are synchronized in a strong sense, i.e. each system's trajectory

tracks the trajectories of all other systems in the array. We give sufficient conditions for an array of identical

cells to asymptotically synchronize. In particular, we extend the theory discussed in [Wu and Chua, 1994]
to arrays of systems which are linearly coupled. It was argued in [Perez-Villar ei a/., 1993] that the role of
diffusive coupling in a one-dimensional array of nonlinear active systems is always to stabilize the system,
and this is proved for the case of a one-dimensional array of Chua's circuits for large enough homogeneous



coupling in [Belykh el a/., 1993]. We prove that this is indeed the case in general for large diffusive coupling.
In particular, we prove that systems with uniformly bounded Jacobians, with symmetric or mutual diffusive

coupling that connects the entire array together, will synchronize for large enough coupling. This supports

the intuitive idea that in a system of individuals, strong enough cooperation between individuals will resuit

in synchronization among them. We illustrate this by means of resistively coupled Chua's oscillators. We

discuss how coupling should be designed such that synchronization is preserved when some of the coupling

are deleted or when the coupling is perturbed. We briefly discuss how these results can be extended to

general additive coupling.

In most cases in the literature, the coupling is such that when the array is synchronized, the cells are

decoupled. For this important subclass, at the synchronized state, the dynamics of the array reduce to

that of a single cell. For example, if the uncoupled cells were chaotic, then after applying coupling which

synchronizes the system, each cell will still be chaotic, although the array is synchronized.

In section 2 the state equations of the array that we will consider and the various notions of synchroniza

tion are defined. In section 3 we define the notations used and give some results from matrix theory which

are useful in our discussions. Some of the classes of matrices that we encounter as coupling matrices are

symmetric matrices, normal matrices, circulant matrices, irreducible matrices, and nonnegative matrices.

In section 4 we state the main results of Lyapunov's direct method which we use to prove synchronization.

In section 5 we consider synchronization of an array of identical systems and give an algorithm for proving

asymptotic synchronization. In section 6 we consider a special case where the algorithm used to prove asymp

totic synchronization in section 5 can be further simplified. This section contains the main results of this

paper. Several coupling configurations are considered and these results are illustrated by means of an array

of resistively coupled Chua's oscillators. In section 7 we simplify the analysis of the array by decomposing it

into irreducible components. In section 8 we briefly discuss simplifications which are possible when the cells

are arranged in a regular lattice with homogeneous coupling. In section 9, we give sufficient conditions for

additive nonlinear coupling to make the synchronized state asymptotically stable.

2 Basic Framework

In this paper, we will denote scalar variables in lower case, matrices in bold type upper case, and vectors (or

vector-valued functions) in bold type lower case. We consider an array of m cells, coupled linearly together,

with each cell being a n-dimensional system. We assume that m > 2. The entire array is a system of nm

ordinary differential equations. In particular, the state equations are:

xi = fi(xi,0 + £{=i Di,<Xj

Xfjj — Im(Xm,tJ4- > ,t-_i Um|,X|

where x, E Mn and D, j are n xii real matrices. We denote

/ Di.i' x, \
X =

V x- /
Then Eq. (1) can be written as

I *,., N
x,- = , D =

( fi(x,,0 \

\ fm(xm,0 j

x =

\ Dm,i

+ Dx

(1)

• Dlm \l,m

(2)

D,

(3)



We also permute the state variables in the following way:

\ xm,i J

/xi \
x, = X = (4)

\*»7

Then Eq. (1) can be written as

x, = fi(x,0 + E?=5iDi,*Xi

(5)

X„ = fn(x,0 + E?=lDn,,X,-

where DtiJ- are m x m real matrices. We will mainly be interested in arrays of identical systems, i.e.
f1=f2=.. = fm.

We use the Euclidean norm on vectors in Rk, although most of the results can be stated for other norms
in K* as well. The norm on kx k real-valued matrices will be the one induced by the norm in Rk. We define
L = {1, ••-,m}. We assume the system of ordinary differential equations under consideration has a unique
solution for all time and for each initial condition. We write x(t,xo,to) for the unique solution at time t
where xo is the initial conditions at time to. This willsometimes be simplified as x(/). Let Sa be the set of
x such that ||x|| < a. In the following, H* will be a positive real number.

We define the system to be synchronized if the trajectories of all the cells approach each other:

Definition 1 The system (1) is uniformly synchronized with respect to H" if for each e > 0 there exists
6(e) > 0 such that if\\xi(t0) - x^o)!! < 6(e) and x,(<0) E SH- for all i, j E L, then ||x,(0 - Xj(0|| < e for
all t > to and all i, j E L.

Definition 2 The system (1) is uniformly asymptotically synchronized with respect to H* if it is uniformly
synchronized with respect to H* and there exists 6 > 0 such that for all e > 0 there exists T(e) > 0 such that

if
\\Mto)-Xj(to)\\<6

and Xi(to) E Sh- for all i, j E L and t > to + T(e), then

IM0-*j(0ll<«

for all i, j E L.

In the above definitions, the difference in the states between the cells goes to zero as t —• oo. In the

next definition, we allow for some synchronization error which can occur, for example, when the cells are
not exactly identical.

Definition 3 The system (J) is uniformly synchronized with respect to H* with error bound e if there exists
6>0 andT>0 such thai if

\\xi(to)-*j(to)\\<6

and Xi(t0) E SH- for all i, j E L, then ||x,(<) - x,-(0|| < c for all t>t0 + T, and all i, j E L.

We will say that the system (1) is uniformly (asymptotically) synchronized (with error bound e) if it is
uniformly (asymptotically) synchronized (with error bound e) with respect to each H* > 0.



3 Mathematical Preliminaries

For a real matrix A, let AT be the transpose of A and let Xa(^) = det(AI —A.) De the characteristic
polynomial of A. The t'J-th entry of A will be denoted A^jy Note the parenthesis which differentiate it
from Ajj which denotes a matrix. We denote by In the n x n real identity matrix. In the following, R
denotes a ring. We denote Mnxm(R) as the set of n x m matrices with entries in R. We will sometime
need to use the subfield ofnxn matrices T* —{ai* : a E K}. Note that T\ = JR. For matrices which
have real-valued matrices as entries, we sometimes "expand" them and consider them as real-valued matrices

depending on context. Circulant matrices will be denoted as:

/ ao cti ••• an \cto

a»

circ(a0,ai,...an) =

<*i

<*i

C =

V

G is the n x (n —1) matrix

G =

and 1 is the multiplicative identity of R.

\ ai ••• an ao /

Definition 4 To each n x n matrix A, we associate a directed graph Tj^, called the matrix graph of A, as
follows: there are n vertices in Tj^, with an edge from vertex j to vertex i if and only i/A(,-j) is nonzero.

To make it easier to visualize the connection between the cells, it is useful to introduce a directed inter

action graph Tj), similar to that used in [Hirsch, 1989], by considering D,-j as entries in the matrixD, i.e.,
the nodes of Tj) will be cells, with an edge from cell j to cell i if and only if Djj ^ 0. Some examples of
T-£) we will consider are shown in Fig. 1.

We define the following classes of matrices which our coupling matrices D will generally fall under.

• Ti(R, K) = {the set of matrices with entries in R such that the sum of the entries in each row is equal

to A', where K E R.}

• T2(e) = {the set of matrices with real entries such that the sum of the entries in each row is equal to
the real number e.}

• Ts(e) —{the set of matrices in Ti(e) such that the off-diagonal elements are nonnegative.}

It's clear that T\ D T2 D Z3. Coupling matrices in T^(0) correspond to diffusive or cooperative coupling. We
need the following lemma for matrices in T\:

Lemma 1 Let A be a nxn matrix in T\(R, K). Then the (n —1) x (n —1) matrix B defined by B = CAG

satisfies CA = BC where C is the (n-l)xn matrix

(\ -1 \
1 -1

1 -\)

/1 1 1 1 \
0 1 1

1

1

1

1

0 0 0 1

\o 0 0 0 0/

(6)

(7)



ProofNote that CA is in Ti(R,0), since A is in T\(R, K). The nxn matrix GC is

/ 1 0 ••• 0 -1 \

GC =

0 1 0

0 o '••

0 0 •••

\ 0 0 •••

: -1

0 -1

1 -1

0 0 /

(8)

Thus the first n — 1 columns of CAGC is the same as those of CA. The n-th column of CAGC is the

negative of the sum of the first n — 1 columns of CA which is the n-th column of CA since CA is in

T\(R,0). So CAGC = CA. The matrix B can be written explicitly as B(fjJ) = $3i=i •^•(•.fc) —-^(i-H,*) f°r
i,ie{l,---,n-l}. •

We denote the map which maps A to B by S} i.e. the map S is defined as

B = S(A) = CAG

For a n x n matrix A and ex E R, S(A + aln) = S(A) + aln-i since CG = In-i.

Definition 5 A realsquare matrix A is called normal if ATA = AAT.

The following lemmas summarize some simple properties of matrices in T2 and T3.

Lemma 2 If A is a matrix in 72(e), then the following holds:

(2.1) e is an eigenvalue of A with eigenvector (1,1, •••, 1)T.

(2.2) IfB = S(A) then Xa(^) = (^ ~ Oxb(^)- ^us *$€ *'s a ei0envflfue °/A of multiplicity 1,
then <r(B) (the spectrum of 3) is a(A)\{e).

If A is in Ts(e), then the following holds:

(2.3) The real parts of all eigenvalues are less than or equal to e and all eigenvalues with real part
equal to e are real.

(2.4) if A is irreducible, then e is an eigenvalue of multiplicity 1.

Proof If A is a matrix in T?(e), (2.1) is clearly true. (2.2) follows from

C J(AI - A)
0 ••• 1

/

V

1
/

AI-B

V w X-eJ

where w is the last row of —AG. If A is in Ts(e), then (2.3) follows from Gerschgorin's circle criterion. If
A E T3(e) is irreducible, let a be such that ai + A is a nonnegative matrix. Then a + e is the maximal
eigenvalue of oI + A (by Gerschgorin's circle criterion), and thus has multiplicity 1 [Mine, 1988, Theorem
4.3]. Thus e is a eigenvalue of A with multiplicity 1. So (2.4) follows. •

Lemma 3 Let A, B be matrices of the same size.

(3.1) IfAeT2(e) andB6T2(6), then A + B E T2(e + 6).



(3.2) If AB = BA and A E T2(e) withe being an eigenvalue ofA of multiplicity 1, thenB E T2(6)
for some 6.

Proof (3.1) is trivial. Let

x =

Then ABx = BAx = eBx. So Bx is eigenvector of A with eigenvalue e. Thus Bx = 6x for some 6. So

B E T2(6). M

Lemma 4 Let A be a real normal matrix. Then the following holds:

(4-1) If A + AT is irreducible then A is irreducible.

(4.2) If A E T2(e) then AT ET2(e).

(4-3) If A + AT is a matrix in T2(e) such that e is an eigenvalue of multiplicity 1, then A and
AT are matrices in T2(^). In particular, if A + AT E T3(e) is irreducible, then A and AT are
irreducible matrices in T2(%).

(4-4) If A £ 73(e) then A is irreducible <=> A + AT 15 irreducible.

Proof Suppose that A is normal and reducible. Then A can be written as

for some permutation matrix P. Normality of A means that

BT° IP- ATA - AAT - PT I BBT + C°TC^C +D^D;F"A A"AA "F ^ DC7
Therefore CCT = BTB —BBT. The diagonal elements of BTB are the inner products of the columns of
B. So the trace of BrB is the sum of the squares of the entries in B. Similarly the trace of BBT is the
sum of the squares of the entries in B. Therefore CCT has zero trace. Since CCT is symmetric positive
semidefinite, this implies that CCT = 0. Since the diagonal elements of CCT are the inner products of the
rows of C, this means that C = 0. So A +AT is reducible, which proves (4.1). Since A is normal, if x is an
eigenvector of A with eigenvalue 6> then x is an eigenvector of AT with eigenvalue 6 [Gantmacher, I960].
Applying this to the eigenvector (1,1,..., 1)T yields (4.2). Now suppose that A + AT is a matrix in T2(e)
with e being an eigenvalue of multiplicity 1. Since (A + AT) commute with both A and AT, by lemma3,
A E T2(6) and AT E T2(fi). By (4.2), it follows that 6 = /i. Then by lemma 3, e = 26, proving (4.3).

It's clear that if A E 73(e), then A being irreducible implies that A + AT is irreducible since A has no
more off-diagonal nonzero entries than A + AT, which proves (4.4). •

We also define the following class of matrices:

• M\(k) are matrices M (not necessarily square) with entries in Tk such that each row of M contains
zeros and exactly one aljt and one —ai* for some nonzero a.

• M2(k) are matrices M in M\(k) such that for any pair of indices i and j there exist indices ii, i2,..., i\
with i\ = i and tj = j such that for all 1 < q < /, M(Pi,-fl) ^ 0 and M(P),-9+1) ^ 0 for some p.



Matrices in M2(k) can be interpreted in the following way. For M E M\(k) construct a graph as follows:
the number of vertices of the graph is the number of columns of M, and the number of edges is the number

of rows of M. There is an edge between vertex j to vertex / if and only if M(jj) ^ 0 and M(,-fj) ^ 0 for some
i. If M E M2(k), then this graph is connected. This also implies that the number of columns of M E M2(k)
is at most one more than the number of rows of M.

The following lemma relates these classes of matrices to the classes of matrices defined earlier.

Lemma 5 //M is in M\(k), then for a positive integerp, (MTM)P is a symmetric matrix in Ti^jt.O). A
symmetric matrix A is in T3(0) if and only if there exists M E M\(\) such that A = —MTM. A symmetric
irreducible matrix A is in T3(0) if and only if there exists M E M2(\) such that A = —MTM.

Proof Let M E M\(k). Clearly (MTM)P is symmetric for all nonnegative integers p. Forp > 0

(MTM)P = 0

V1* /
Since

M

1w
So (MTM)P E Ti(/fc,0) if p > 0. Now (MTM)(,-j) is the inner product of columns i and j of M. Let
M E M\(l). Then the diagonal elements of MTM is greater than or equal to 0. If i ^ j, the only terms in
the inner product of columns i and j of M is either 0 or some negative number, so the off-diagonal elements

of MTM is less than or equal to 0. So -MTM E T3(0).
Let A be a symmetric matrix in T3(0). Construct M as follows. For each nonzero row of A we generate

several rows of M of the same length as follows: for the i-th row of A, if for each i < j such that A(tJ) = a
for some a > 0, we add a row to M with with the i-th element being y/a, and the j-th element —y/a. We
claim that this matrix M will do the trick. Certainly M E M\(l). —A(,i;) is the inner product between the
i-th column and the j'-column of M since by construction, there is only one row of M with nonzero entries

in both the i-th and j-th position, giving the appropriate result. From the construction of M, it's clear that

A is irreducible if and only if M E M2(l). •

The proof of lemma 5 gives another characterization of matrices in M2(k): a matrix M is in M2(k) if
and only if M E M\(k) and MTM is irreducible.

4 Lyapunov's Direct Method

We will mainly use Lyapunov's direct method to prove uniformly asymptotical synchronization of system
(1). We let d(x) be a function which measure the distance between the various cells. In particular, we define
d(x) to have the following form:

= 0

d(x) = ||Mx||2 = xTMTMx, M E M2(n) (9)

where M is a m x m matrix in M2(n) (but considered as an nm x nm real-valued matrix).
Because ofthe assumptions on M, the crucial property ofd(x) is that d(x) —*• 0 ifandonly if ||xt—Xj \\ —• 0

for all i and j.



One possible choice for d(x) is
m-l

rf(x) =^2 l|x.-xi+1|
»=i

which corresponds to

M =

/I -I
I -I

V

Definition 6 ([Vidyasagar, 1978]) A function a : R -

1. a() is continuous and nondecreasing,

2. a(0) = 0,

3. a(p) > 0 whenever p > 0.

We assume that all Lyapunov functions we consider are continuous. For a Lyapunov function V(t,x),
the generalized (Dini) derivative along the trajectories of the system x = fa(x, t) is defined as:

D+V(t,x) =lim sup ]-[V(t +htx +hfa{xtt))- V(t,x)]
A—0+ «

Theorem 1 Suppose thai D is an open set such that ifx{(to) E Sjjm for all i, then x(t,x(to),to) E D for
all t > to- Suppose that a Lyapunov function V(t,x), locally Lipschitzian in x, exists on E x D such that
for all t > to and x E D,

a(d(x))<V(t,x)<b(d(x))

where a(-) and b() are functions in class K. Suppose that there exists fi > 0 such that for all t > to and
d(x) > ft,

D+V{t,x)<-c

for some constant c > 0 where D+V(t,x) is the generalized derivative ofV along the trajectories of (1).
If there exists 6 > 0 such that a(6) > b(pt), then for each x(to) E Sjf there exists t\ > to such thai for

allt > U,

d(x(t,x(t0)ito))<6

Furthermore, ifd(x(to)) < \i then
d(x(t,x(to)M))<6

for all t > to.

Theorem 2 Suppose that D is an open set such that ifxi(to) E Sjjm for all i then x(t,x(to),to) E D for all
t > to. Suppose that a Lyapunov function V(t,x), locally Lipschitzian in x, exists on IK x D such that for

all t>t0,xeD,

a(d(x))<V(t,x)<b(d(x))

where a(-) and b(-) are in class K, and for all t > to,

D+V(t,x)<-c(d(x))

for some function c() in class K where D+V(t,x) is the generalized derivative ofV along the trajectories
of (1). Then the system (1) is uniformly asymptotically stable with respect to H*.

i -i J

is said to belong to class K if

(10)



The proofs of these two theorems are similar to the proofs of theorems 1 and 2 in [Wu and Chua, 1994].
The following theorems concern perturbed systems.

Theorem 3 Consider the system

( fi(x,,0 >

\ £m(xm,t) j
Suppose thai D is an open set such thai if Xi(to) E Sjj* for all i then x(t,x(to),io) E D for all t > to-
Suppose that a Lyapunov function V(t}x), uniformly Lipschitzian in x, exists on ]& x D such that for all
t>to,xeD,

a(d(x))<V(t)x)<b(d(x))

where a() and b() are in class K, and for all t > to,

D+V(t,x)<-c(d(x))

for some function c() in class K where D+V(t,x) is the generalized derivative ofV along the trajectories
of (1). Lei ft >0 be such that there exists e> 0 such thai a(e) > b(fi). 7/||e(f)|| <^^ —6for all t > to and
some 6 > 0, then the system (11) is uniformly synchronized with respect to H* with error bound e, where M
is a Lipschiiz constant ofV. Furthermore, if d(x(to)) < \i, then d(x(t,x(to),to)) < e for all t > to.

Note that Eq. (11) is the state equation (3) with a perturbation term e(t).
ProofThe generalized derivative D+V(i,x) along the trajectories of system Eq. (11) satisfies

D+V(t,x) < -c(d(x)) + M\\e(t)\\

and the result follows from theorem 1. •

Corollary 1 Consider the system (11). Suppose that D is an open set such that i/x,(<o) € Sh* for all i
then x(t,x(to),to) E D for all t > to. Suppose that a Lyapunov function V(<,x), uniformly Lipschitzian in
x, exists onl&x D such thai for allt>to,x€D,

a(d(x))<V(t,x)<b(d(x))

where a() and b(-) are in class K, and for all t > to,

D+V(t,x)<-c(d(x))

for some function c() in class K where D+V(t,x) is the generalized derivative ofV along the trajectories
of (1). 7/||e(<)|| —♦ 0 as t —* oo, then for x,(<0) E Sjj. , d(x(t,x(to),to) —* 0 as t —• oo. If in addition,
e depends on x and supt>Xo ||e(x,<)|| —* 0 as d(x) —• 0, then the system (11) is uniformly asymptotically
synchronized with respect to H*.

In this paper, the Lyapunov function used has a quadratic form. In this case the requirement that V is

uniformly Lipschitzian can be removed.

Definition 7 A array of cells coupled in the form (1) is said to belong to classQ+ if there exists a Lyapunov
function V(t,x) = jxTMTVMx with symmetric positive definite V, such that

D+V(t,x)<-yd(x)

for some constant y > 0, where D+V(t,x) is the derivative of V along the trajectories of (1). The array
belongs to class Q if the term —yd(x) in the above definition is replaced by —c(d(x)) for some function c in
class K.

+ Dx + e(<) (11)



Theorem 4 Consider the system (11). Suppose that (1) belongs to class Q+. Let (i > 0 be such that there

exists e > 0 such that a(e) > &(//). // ||e(OII ^ mVmh —^ for a^ * —'° ana* some °~ > ®> ^en the system
(11) is uniformly synchronized with respect to H* with error bound e. Furthermore, if d(x(to)) < n, then
d(x(t,x(to),to)) < e for all t > to. The constant y > 0 is as defined in definition 7.

ProofThe derivative D+V(t,x) along the trajectories of system Eq. (11) satisfies

D+V(t,x) < -7d(x)+ xTMTVMe(<) < -7d(x)+ ||VM||>/5(x)||e(0|| < >/5(x)(-7>/5(x) + l|VM||||e(0||)

and the result follows from theorem 1. •

Corollary 2 . Consider the system (11). Suppose thai (1) belongs to class Q+. If\\e(t)\\ —» 0 as t —* oo,
then for X{(to) E Sh* , d(x(t,x(to),t0) -* 0 ast —• oo. If in addition, e depends onx and supt>to ||e(x,<)|| —•
0 as d(x) —• 0, then the system (11) is uniformly asymptotically synchronized with respect to H*.

Theorem 5 (Converse Theorem) Consider the system (1). Suppose that the f,- 's are uniformly Lipschiiz
continuous, i.e., ||fi(x,-,*) - f,(y,,OII < M||x,- - y,|| for all x, y and t > to- If system (1) is uniformly
asymptotically synchronized, then given d(x) there exists p > 0 and a continuous function V(x,t) defined for
d(x) < p and t > to and Lipschitzian in x such that

a(d(x))<V(x,t)<b(d(x))

and

D+V(x}t)<-c(d(x))

for d(x) < p and t>to where a(-), b() and c(-) are functions in class K.

Proof See [Lakshmikantham and Liu, 1993, Corollary 1.4.1]. •

5 Synchronizing Arrays of Identical Dynamical Systems

In [Wu and Chua, 1994], asymptotical synchronization is related to asymptotical stability of related systems.
In this section we extend this idea to arrays of cells by relating synchronization of the array to the amount

of linear feedback required to asymptotically stabilize a cell.
In particular, for the results in this paper concerning arrays of identical dynamical systems (cells) which

synchronize, the main requirement is that for a cell xi = fi(xi,f), there exists a matrix T such that
xi = fi(xi,0 —Txi + T)(t) is uniformly asymptotically stable for all rj(t). In [Wu and Chua, 1994] it was
shown that for systems with a uniformly bounded Jacobian, it is possible to find such T. In particular, the

following holds:

Lemma 6 If fi is continuously differentiate and the Jacobian Dxi*i(xi,<) is uniformly bounded, i.e. there
exists a constant M such thai ||Dxfi(xi,OII ^ M for allx\ and t, then there exists a diagonal matrix T
such that for V(xi,yi) = |||xi -yi||2, V < —c(||xi -yi||), where c(-) is in class K and V is the derivative
of V along the trajectories of

xi = fi(x,,0-Txi+i;(0

yi = fi(yi,0-T5ri + i?(0

for r)(t) continuous.

10



In many systems studied, the linear coupling is such that when the states of the cells are identical to

each other, the cells are decoupled. This implies that the matrix D satisfies YlT=i ^*>J = ^ *°r eacn *^ ^'
This motivates us to define the classes of matrices in section 3. Throughout this paper we will assume that

J2T=1Dij = 0 or if we consider D;j as entries of D,

Dgr^JIfnxnORj.O) (12)

For this case, it means that at the synchronized state, the dynamics of the cells are the same as those of

an individual uncoupled cell.

Consider the case of an array of identical systems, i.e., fi = f for all i. Assume that there exists n x n

matrices V and T such that V is symmetric positive definite, and for all t

(x - y)TV(f(x, 0 - Tx - f(y, t) + Ty) < -c(||x - y||) (13)

for c() a function in class K. This implies that x = f(x, t) —Tx is uniformly asymptotically stable (see
[Wu and Chua, 1994]), with V(x,y) = ^(x —y)TV(x —y) being the corresponding Lyapunov function. As
lemma 6 indicates, for f with uniformly bounded Jacobian, diagonal V and T can be found.

For a matrix M E M2(n), we consider the Lyapunov function candidate

/ V

V(x) =ixTMT

V

where

/V

U = MT

V V/

M =

/ V

V

1 t
Mx = -x Ux

MTM

V/

(14)

since the entries of M E M\(n) has the form aln.
Clearly a(d(x)) < V(x) < b(d(x)) for some functions a() and b() in class K since d(x) = xTMTMx

and V > 0. The derivative of V along the trajectories of (1) is

V(x) = xTU

/ fXx^O-Txj \
f(x2,0-Tx2

V f(xm,0-Txm /

+ xTU D +

/T \

(15)

T/J

The first term is less than —c(d(x)) for some function c in class K by our assumptions. If M is as defined
in Eq. (10), then by lemma 1, the second term can be written as

/ V \

xTM^ BMx

V/

for the matrix B defined as

11



/T

B = 5 D + (16)

T/

/T

So the conditions of theorem 2 are satisfied if the matrix U D + or the matrix

/v
T/J

V
B is negative semidefinite.

\ y)
Thus the general algorithm for proving that an array of identical system (Eq. (1)) is uniformly asymp

totically synchronized is as follows:

Step 1: Find n x n matrices T and V with V symmetric positive definite such that condition (13) is
satisfied and thus x = f(x,t) —Tx is asymptotically stable with Lyapunov function K(x,y) =

J(x-y)TV(x-y).

Step 2: If the matrix

H, =U

H2 =

/T

D +

V T/j

is negative semidefinite, then system (1) is uniformly asymptotically synchronized.

By choosing M as in Eq. (10) step 2 can be replaced by:

Step 2a: Use lemma 1 to construct B from T and D as in Eq. (16). If the matrix

/V \

\

B

\ vy

is negative semidefinite, then system (1) is uniformly asymptotically synchronized.

Note that this is a sufficient condition for synchronization; failure of the test (i.e. the matrix in step 2 is
not negative semidefinite) does not imply that the system will not synchronize.

6 V, T and D,j are diagonal

We consider this case since we can make some more simplifications to the above algorithm. Furthermore,
by lemma 6, a diagonal V and T can always be found for systems with uniformly bounded Jacobians.

12



The condition of D;,j being diagonal implies that in Eq. (5) i)ij = 0 for i ^ j. Note that since D E
7i(Afnxn(]R),0), Dti,- E 7^(0) for all i. We rearrange the state equations as in Eqs. (4), (5). Let us write

/'•, \ fti
V = , T =

V vn ) \ tn

Note that since V is positive definite, v,- > 0 for all i. We denote M as the real-valued matrix obtained from

M by replacing I by 1 (i.e. by identifying Tn with R).
Then the second term in Eq. (15) can be written as

xTU

-T
= X

/T

D +

V
/ MTvi1M

\

T/J

Mrv2IM

n

=^vixTMTM(pi,i-rtil)xi
1=1

/ t>i,i+til
D2>2 + <2l

MTt>nIM / Dn>n + tnI 7

If M is as in Eq. (10), then since D,,, -I- <,T E T2(U), this term can be written as Ya=i vtxTMTB,Mx,-
where B,- = 5(0,-,,- +UI). Thus the conditions of theorem 2 is satisfied if these quadratic forms are negative
semidefinite.

Theorem 6 Given the matrices are defined above, system (1) is uniformly asymptotically synchronized if
for some MEM2(l), MTM (D,,,- +<,lj is negative semidefinite for all i, or i/B,- = 5(D,it)+<tI is negative
semidefinite for all i.

6.1 Normal £>,,,

When D,,,- is normal (definition 5) and of the same form, we have the following result which prove synchro
nization by only considering the eigenvalues of D,,. Two important subclass of normal matrices are the

symmetric matrices and the circulant matrices. Symmetric coupling matrices correspond to mutual coupling

while circulant coupling matrices correspond to homogeneous or space-invariant coupling when the cells are

arranged in a ring.

Theorem 7 Suppose that Dt|l- is either zero ora normal matrix such that Dti,+Dj't- is an irreducible matrix
in T3(0). Assume also that all the D,(f- + D^ are of the same form, i.e. there exists aj(J- for each i, j such
that otij(Diti + D^) = "Djj -f- Djj. Then the system (1) is uniformly asymptotically synchronized if

• the real parts of the eigenvalues o/D,,,- which do not lie on the imaginary axis are less than or equal
to-U\

1Or equivalently, since D,,i +D£, G?3(0) is irreducible, the least negative real part of thenonzero eigenvalues of Dt>, is
less than or equal to —t,.

13



• ForD,,t = 0, U < 0.

Proof For nonzero D,(t-, by lemma5, there exists M in M2(n) such that MrM = —aj(D,-|t- + Dj\) for
some Qi > 0, where M can be chosen to be independent of i. This M will be the matrix used in defining d(x)
(Eq. (9)). Let us denote G,,,- = (Dj(,+D£,). Areal matrix A isnegative semidefinite ifand only if(A+Ar)
is negative semidefinite. So to test whether MTM (D,,; + Ulj isnegative semidefinite we construct

MTM (d,,,- +*,l) +(MTM (DM +<tl))
which is equal to

= (MTMD,it- + D^MTM) -I- 2t,MTM
= -«*((DM + DT.)Dt„- + DT.(Dt,, + Dft)) + 2*tMTM
= -at(Di(l + D^)2 + 2<,MTM
= -a,((GM)2 + 2UGiti) = -ctiGiti(Giti + 2t,I)

using the normality of Dt|,-.

The matrix —ft,-G,-i,-(Gf>,-+2<,T) being negativesemidefinite is equivalent to G,-(,-(G,-i;+2t,-I) being positive
semidefinite. Since G^^G,,,- -I- 2<,I) is symmetric, this is equivalent to all the eigenvalues of G^^G,^- + 2<,T)
being nonnegative. By lemma 2, all eigenvalues of G,,,- are nonpositive, so by the spectral mapping theorem,
the eigenvalues are G,(t(Gfil- + 2<fT) are nonnegative if and only if —2<t- > largest nonzero eigenvalue of G,,.
Since D,-,,- is normal, the eigenvalues of ^G,-,t- are just the real parts of the eigenvalues of D,(,[Gantmacher,
I960]. Note that since G,it- is a m x m irreducible matrix in 73(0), where m > 2, there exists by lemma 2 a
nonzero eigenvalue of Gt(,-. If D,,,- = 0 then MTM(Dj|t- + UI) = i,-MTM is negative semidefinite if U < 0.
Thus the result follows from theorem 6. •

It follows from lemma 4 that to satisfy the conditions of theorem 7, the nonzero D,-ft- should be irreducible
and in T2(0) such that D^t- is also in 72(0). There are examples where D,|t- + D^,- is irreducible, but D,it- is
reducible such that the array is not synchronized. For example, the coupling matrix

DM =

is reducible. The first and third cell does not receive coupling from other cells and thus operates au

tonomously. Therefore they will not synchronize to each other, when the cells are chaotic systems exhibiting
sensitive dependence on initial conditions.

For symmetric matrices theorem 7 reduces to

Corollary 3 Suppose that Dj>t- is either zero or a symmetric irreducible matrix in T3(0) and of the same
form, i.e. there exists ctij for each i, j such that a,-i;-Djit- = "Djj. Then the system (1) is uniformly
asymptotically synchronized if

• The largest non-zero eigenvalue2 of nonzero D,(t- is less than or equal to —/,-,

• For f)ii = 0,U<0.

For circulant matrices theorem 7 reduces to

2Which is the nonzero eigenvalue smallest in magnitude since Dl(1 £ Tz(0) is irreducible.
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Corollary 4 Suppose thai D, , is either zero or a circulant matrix such that D, , + D^, is an irreducible
matrix in T3(Q) and of the same form, i.e. there exists octj for each i, j such that aij(D,',j + t>]\) =
Djj -f- Dj\-. Then the system (1) is uniformly asymptotically synchronized if

• For nonzero D, , = circ(a0,a\, • ••,an), the nonzero elements of the Discrete Fourier Transform of
(ao, aj, • • •, an) has real parts less than or equal to —/,-,

• For D, , = 0, U < 0.

Proof Follows from the fact that the eigenvalues of circulant matrices is just the Discrete Fourier Transform
of the first row [Davis, 1979]. •

The condition that D,,, are of the same form implies that the coupling patterns between the i-th state
variables of the cells are the same regardless of i (unless D,it = 0). Note that Da does not have to be in
T3(0). We only require that D,, + D^, is in T3(0). However, when D,., is irreducible and in T3(0), there
exists a nonzero eigenvalue of D,pI, and we can show the following general result:

Corollary 5 Suppose f is continuously differentiable and the Jacobian Dxf(x,£) is uniformly bounded.
Suppose that D' is a normal matrix such that D' + D'T is an irreducible matrix in T](^"n,0) with the off-
diagonal entries being ol,, for a > 0. Then there exists (3' > 0 such that the system (1) is uniformly
asymptotically synchronized i/D = /?D' for (3 > (3m.

This corollary applied to symmetric coupling matrices says that in general, mutual diffusive coupling
which connects the whole array together will synchronize the array if the coupling is large enough. The

property that off-diagonal elements of D,,,- are positive can be considered as a form of cooperative coupling.

So we can also say that strong enough mutual cooperation results in synchronization among cells. For

circulant coupling matrices this means that strong enough homogeneous diffusive coupling of cells arranged
in a ring will synchronize the array.

6.2 Various coupling configurations

Next we will consider various coupling configurations. Depending on the coupling configuration, different

methods will be used to prove synchronization. In most cases, theorem 7 and corollary 3 will be used. In

other cases, theorem 6 is used and B, = S(D,-it- + *,T) is constructed and checked for negative semidefiniteness.

To be able to use theorem 7, we will assume that the form of Dt|J- is independent of i.
Recall that D,-,- is an m x m matrix in T2(0). For the case of diffusive coupling, the matrices D,-,- belongs

to the class 73(0). We show the matrix graphs of the various Dt|t- we consider in Fig. 1. The matrix graph
of D,-,- can be considered as the directed interaction graph between the i-th state of each cell.

6.2.1 Tridiagonal coupling, periodic boundary condition

Consider the coupling matrix D,,,- being equal to

/ -a-b a b \

Diti = di
b -a-b a

\ a b —a —b j

15



(a) 0>) (c)

(d) (0

(g)

Figure 1: Matrix graphs for several coupling configurations, (a) Bidiagonal unidirectional coupling, (b)
Bidiagonal coupling, periodic boundary condition, (c) Tridiagonal coupling, (d) Tridiagonal coupling, pe
riodic boundary condition, (e) Star formation coupling (f) Fully connected coupling, (g) Matrix coupling
corresponding to coupling matrix (26).

16



for all i. The matrixD,(t- is circulant and therefore normal. The real parts of the eigenvalues of Df>t- is equal
to the eigenvalues of

l-(i>i,i +i>T.) =di
( -a-b ±(a + b)

\(a + b) -a-b ±(a + b)
h(a + b)\

\ $(a+ b) l(a + b) -a-b J

which is equal to the Discrete Fourier Transform of the first row:

Re(<r(DM)) =<r(i(DM +Dfr)) =|-2rf,(a+6)sin2 (^V *=0,.. .,m-l}
For di(a + 6) > 0, the largest (least negative) nonzero eigenvalue is —2d,(a + 6)sin2(£). So by theorem 7
the array will uniformly asymptotically synchronize if rf,(a -f b) > 0 and

2di(a + b)sm'(%)>ti (17)

for all i. Note that as the number of cells m increases, sin2(^) decreases to zero, so presumably more
coupling is required to synchronize the system.

Two special cases are given below:

1. (Tridiagonal symmetric coupling, periodic boundary condition) Let D,)t- be

/ "2 1
1 -2 1

1 \

DM = di

\ 1

1 -2 1

1 -2/

for all i. The array will uniformly asymptotically synchronize if di > 0 and

4d,-sin2(£)>*,-

for all i.

2. (Bidiagonal coupling, periodic boundary condition) Let Dt), be

/-l 1
-1 1

Dt>t- = di

[ 1 -1/
The array will uniformly asymptotically synchronize if rf,- > 0 and

for all i.

2d»sin2(£)>*,-

17

\

(18)
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6.2.2 Bidiagonal Unidirectional Coupling

Consider the coupling matrix Dt|j being equal to

D,„ = dt

/0
1 -1

\ 1 -I)

for all i. Because the coupling is unidirectorial, the case for an array of three cells will generalize to the

general case. The system state equations for three cells are

X! = f(xi,<)

x2 = f(x2,0 + D2>2X2 + D2,iXi =f(x2,0
x3 = f (x3, t) + D3i3x3+ D3(2x2

Now suppose that rf,- > U for all i. Then there exists 7 > 0 such that

/ /* \ \
(x-y)TV f(x,0-f(y,0- (x-y) <-7l|x-y||:

V V dn /

(20)

Then x2—*x\ as t —»• 00 since cell 1 and cell 2 are synchronized. Thus f (X2, t) —f(x2,t) —• 0 as t —• 00 and

by corollary 2 x3 —• X2 as t —* 00.

As xi —* x2, supt>i0 ||f(x2,<) —f(x2,Oil —* 0> so by corollary 2 the array will uniformly asymptotically
synchronize if

' ' (21)di > U

for all i. Note that this condition does not depend on m.

6.2.3 Tridiagonal Coupling

Consider the coupling matrix Djit- being equal to

Dtil = di

I —a a

b —a — b a

\
b —a — b a

b -b J

for all i.

The mxm matrix ^(5(D,)t) + 5(Dt(t)T) is

di

/ -0-6 J(a+ 6)
i(a + 6) -a-b i(« + 6)

i(a + 6) _a_6 i(a + 6)

i(a + 6) -a-b I

18



which is Toeplitz and has eigenvalues [Trench, 1985]

<di f-a-&+|a +6|cos( —JJ:Jfe =l,...,m-ll

The largest eigenvalue is —a - b+ \a + b\ cos (^), so by theorem 6 the array will uniformly asymptotically
synchronize if

di (-a - b+ \a + 6| cos (£)) < -t{

for all i. Note that when di and U are positive, 0 + 6 need to be positive for this condition to be satisfied.

When a = 0 and b = 1, we obtain the coupling of Sec. 6.2.2. But the condition obtain here is more
conservative than that obtained in Sec. 6.2.2.

When a —b —1, we obtain the coupling

D,,t = di

/ -1 1
1 -2 1

\

1 -2 1

1 -1 /

\

for all i.

This case was studied in [Fujisaka and Yamada, 1983; Perez-Villar el a/., 1993; Belykh et a/., 1993]. By
the result above, the array will uniformly asymptotically synchronize if

4rf,sin2(^r)><t- (22)

for all i. Note that as m increases, sin2(^) decreases to zero, so more coupling is required to synchronize
the system.

6.2.4 Fully Connected Coupling

Consider the coupling matrix D^,- being equal to

DM = di

/ -m+ 1

1

1

-m+1

1

1

1 \

1

I
1

1

1

1

... -m+1

1

1

-m+1 /

for all i.

We calculate the corresponding matrices B,- = S(D;(t- + <il), which is

/ -m +
di

"m+*
Bt- = di

-m + i
di

\ -m +£/
Thus B,- is negative semidefinite if dim > /,-. By theorem 6 the array will uniformly asymptotically synchro
nize if

dim > U (23)
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for all i.

Note that for d,- > 0, as m get larger this condition will surely be satisfied for fixed /.,- and c/;, in contrast

to cases 6.2.1, 6.2.3 where for fixed t{, di needs to be increased for large m for the matrix to be negative

semidefinite. This makes sense as for fixed d,-, there is more coupling as m gets larger.

6.2.5 Star Formation

Consider the coupling matrix D,-,- being equal to

/ -(m- 1) 1
1 -1

D, ,• = di

\ 1

1 \

-1 /

for all i. The m eigenvalues of DI|t are {0, —md,-, —d,-,..., —d,}, so that the system will uniformly asymp

totically synchronize if di > 0 and

2d,- > tj, if m = 2

dj > ii, if m > 2
(24)

for all i. Note that as in case 6.2.2 this condition does not depend on m (except when 7?i = 2), as contrasted

to 6.2.1,6.2.3 and 6.2.4.

6.2.6 Another formation

From the proof of theorem 7 we see that if we choose D,, = —d,(M7 M)p, then we can also prove synchro
nization if d,- is large enough. For example, let us choose

Di,,- = d{

( -6 4 -1 0

4-6 4-1

\ 4 -1 0

-1 4 \
... _i

-1 4 -6 /

for all i.

Then D,,- = —d,(MTM)2 where M is defined as Eq. (6). Using a similar argument as in the proof of
theorem 7, the array will uniformly asymptotically synchronize if

16disin4(£)>*i (25)

for all i.

The cases 6.2.1 (special case 1), 6.2.3, and 6.2.4 were considered in [Fujisaka and Yamada, 1983]. For
the cases 6.2.3 and 6.2.4, B,- is symmetric, so negative semidefiniteness of B, follows if all its eigenvalues

are nonpositive. If B, is normal, then B, is negative semidefinite if and only if all the eigenvalues has

nonpositive real parts [Gantmacher, I960]. By lemma 2, the eigenvalues of B, are the nonzero eigenvalues of

Dt|, incremented by £,-, assuming that 0 is an eigenvalue of multiplicity 1 of D,,. As all nonzero eigenvalues
of D,i have negative real parts, there exists a positive nonzero & such that B, is negative semidefinite.

These observations can be summarized as follows:

Theorem 8 Let Dti,- £ 3*2(0) and S(Dt|i) is normal for all i. The system (1) is uniformly asymptotically
synchronized if
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• ForDt|i such thai 0 is an eigenvalue of multiplicity k > 2, all eigenvalues o/D,-,, has real parts less
than or equal to —U.

• Otherwise, all non-zero eigenvalues of D,-,,- has real part less than or equal to —U

Corollary 6 Suppose f(x, t) is continuously differentiate and has a uniformly bounded Jacobian. Given a
coupling configuration D' in 7i(MnXn(lR),0) such that the entries are diagonal matrices. Suppose that the
corresponding D,,, are such thai D,,i GT3(0) and irreducible for all i and S(D,-,,) is normal for all i. Then
there exists 0 > 0 such that Eq. (1) with coupling matrix D = /?D' is uniformly asymptotically synchronized
for 0>0.

Note that in these two results, in contrast to theorem 7, we do not require that all D,-,,- be of the same
form and in theorem 8 we do not require that D,-,,- + D^t- € 73(0).

This proposition roughly says that for coupling configurations with results in normal S(Di,,)'s, strong
enough dissipative coupling will synchronize the array.

For example, consider the following rather contrived coupling configuration:

DM = di

I -1+6 1-f 1
1 + e -2 1-e

e 1 -2 1-e

\ -l+2f 1-e 1

for all i. The corresponding matrix graph is shown in Fig. 1(g).

S(i>t,i) = di

( -2
1

1-e

-2 1-e

-1 \

-1-e J

1 \

1 -2)

which is circulant. Its eigenvalues are

{*[-^-.)^(5)-.-*.-(?)]:*-0...
For d,(2 —e) > 0, the real parts of all the eigenvalues are less than —die. So system (1) will uniformly
asymptotically synchronize if

edi > U and d,(2 - e) > 0

(26)

-}

for all i.

Given these theorems, wecan design coupling matriceswhich will guarantee asymptoticalsynchronization.
A possible design criteria would be robustness of synchronization. For example, synchronization should be
preserved if some of the coupling is deleted or if the coupling matrix is perturbed. Theorem 6 only puts a
constraint on the eigenvalues of5(D,i,) + 5(Dj),-)T. Thus we can design robust coupling matrices by placing
the eigenvalues of 5(D,it) + 5(D,it)T far to the left of the -tit so that a small perturbation of D,,,- which
keeps D,-,,- in T2 will not destroy synchronization of the array3.

3The requirement that Di,,- € T* might seem toostrict, but it isvery natural inresistively coupled circuits because Kirchhoff
Current Law garantees that the coupling matrices will be in T2(0). See Sec. 6.2.7.
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For example, consider the case of fully connected coupling (Sec. 6.2.4). Suppose one of the coupling is

removed, i.e., the resulting coupling matrix is:

Dt,i = di

/ -m + 2 0 1
1 -m + 1 1

\ 1

1 \
1

-m+1 1

1 -m+1/

Calculating5(Dtii) we find that to ensuresynchronization when one coupling weight is removed from a fully
connected configuration, we need

rf,(m-!)>*,-

for all i. If the symmetric coupling weight is also removed, i.e.

Di,,- = di

then

/ -m + 2 0 1
0 -m + 2 1

V 1

di(m - 2) > U

1 \

-m + 1 1

1 -m+1/

for all i is required to ensure synchronization.

6.2.7 Example: Chua's Oscillator

We illustrate the above results using Chua's oscillator [Chua et a/., 1993] as a cell. Chua's oscillator is a
system which for some parameter values exhibits chaotic behavior. The circuit diagram of Chua's oscillator
is shown in Fig. 2.

The state equations for Chua's oscillator are:

where G= ^ and

fW

dv,
dt

dv-y
dt

din
dt

= A-[G(v2-v1)-f(v1)}

= £[G(t>i-«2) + ta]
= -i(»2 + #0*3)

= Ghvi +^(Ga-Gh){\vi +E\^\vl-E\}

(27)

(28)

It wasshown in [Wu and Chua, 1994] that a diagonal V and T exists when C\, C2i Ro, R, L are positive. In
this case t\ can be chosen be any number strictly larger than ^- max(—Ga, —Gi). The values t2 and t3 can
be chosen to be 0. This means that only the variables vi between the cells needs to be coupled to achieve

synchronization. Translating corollary 5 to an array of Chua's oscillators we obtain the following result:

Theorem 9 Let C\, C2, Ro, R, L be positive. Let m Chua's oscillators be coupled via linear resistors by
connecting nodes 1 (see Fig. 2) of two Chua's oscillators with a linear resistor of conductance G > 0. If all
the Chua's oscillators are coupled to each other, either directly or indirectly, then for large enough G, the
array of Chua's oscillators will uniformly asymptotically synchronize.
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N

Figure 2: Chua's oscillator

ProofWe have D2.2 = D3|3 = 0 and t2 = t3 = 0. By Kirchhoff's Current Law, the coupling matrix Dji
is a symmetric matrix in T2(0), and lies in T3(0) if G > 0. The result then follows from corollary 3 and
lemma 2. We have assumed that the datum nodes of the Chua's oscillators are chosen to be the same node

and are connected together. •

Note that the coupling configuration can be arbitrary. The only requirement is that it connects the whole

array together. This theorem extends the result in [Belykh et ai, 1993] which only considers the case of
tridiagonal coupling (sec. 6.2.3).

Let us now consider 7 Chua's oscillators coupled as in Fig. 3. The Chua's oscillators are arranged in a
random manner to illustrate that they do not have to be arranged in a regular grid with regular coupling.
The value G,- indicates the conductance of the corresponding linear coupling resistor. The couplingmatrices
are D2.2 = 63,3 = 0 and

D...-JJ-

/ -c, -a4-os
a.

V

—G, — Gj — Gg
Ga

°4
a2

-Q4 - G2 - G3 - G7 - G8

G3
O7
0

G.

OS
-G3 -G10

-Gg - G7 - G9

0

0

0

0

\
<3«

-G8 - G9 /

The parameter values of Chua's oscillator are chosenas C\ = 5.56nF, C2 = 50nF, R = 1428Q,L = 7.1mH,
Ro = lfi, Ga = —0.8mS, Gb = —0.5mS, and E = IV. For these parameter values, the uncoupled circuit
operates in the chaotic region. For the conductances values G\ = 0.71mS, G2 = 0.69mS, G3 = 1.04mS,
G4 = 0.81mS, G5 = 0.67mS, G6 = 0.65mS, G7 = 0.63mS, G8 = 0.98mS, G9 = 1.02mS, G10 = 0.98mS, the
eigenvalues of D 1,1 are

10-3

x {0,-0.819,-1.606, -2.456, -2.811,-3.480, -5.188}

The least negative nonzero eigenvalue is strictly less than nnni^sj£tl ân<j tne array will thus uniformly
asymptotically synchronize by corollary 3.

Let us consider another set of coupling conductance values. For the conductance values Gi = —0.31mS,
G2 = 2.49mS, G3 = 3.74mS, G4 = 3.21mS, G5 = -0.27mS, G6 = -0.23mS, G7 = 1.53mS, G8 = 1.48mS,
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Figure 3: An array of 7 linearly coupled Chua's oscillators. The values G,'s indicate the conductances of the
corresponding linear coupling resistors. The parameter values of Chua's oscillator are chosen as C\ = 5.56nF,

C2 = 50nF, R = 14280, L = 7.1mH, R0 = 1Q, Ga = -0.8mS, Gh - -0.5mS, and E = IV.
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Gg = 0.62mS, Gio = 2.18mS, the matrix D,-,i contains negative off-diagonal elements and thus we cannot
use corollary 3. We calculate Bi and use theorem 6 instead. The eigenvalues of^(S(D\t\) + 5(Di,i)T) are

10-3

x {-0.845, -0.931,-2.198, -2.558, -5.980, -16.367}

All the eigenvalues are strictly less than m'n(G«'G0. This implies that Bi is negative semidefinite, and the
array will uniformly asymptotically synchronize by theorem 6 (note that B2 = B3 = 0).

Recall that as the cells are synchronized, they are decoupled. Therefore each Chua's oscillator will

oscillate chaotically if the synchronized state is in the basin of attraction of the chaotic attractor. But the

chaotic attractor in Chua's oscillator for this set of parameter values is not a global attractor. In fact, for

large enough initial conditions, the trajectories will become unbounded. Therefore it is possible that in the

array the trajectories of the cells still become unbounded, even though the differences between the cells go
toO.

7 Decomposing Reducible Coupling Matrices

Any reducible matrix can be permuted (i.e. is similar to via a permutation matrix) to a block triangular
matrix such that the diagonal blocks are irreducible. This corresponds to a cascade of irreducible components.

We say a directed graph is strongly connected if for all i and j there is a directed path from vertex i to

vertex j. In terms of the matrix graph, we can decompose any directed graph into subgraphs forming the

vertices of an acyclic graph. These subgraphs are the strongly connected components or maximally strongly

connected subgraphs of the graph. The vertices of the acyclic graph with indegree 0 are strongly connected

components whose cells are not influenced by the cells in other strongly connected components. Thus we

can analyze these components along with the strongly connected components they influence, while ignoring

the rest of the system. Then if these components have been shown to synchronize, we can "collapse" the

dynamics of the synchronized cells into that of one cell. In the irreducible components that they influence,

their dependence is deleted from the state equations and replaced by coupling of a single cell. This is made

more precise in the following theorems. We will only state the theorems for the case of 3 strongly connected

components, but the general case follows easily from this case.

Lemma 7 If (1) is in class Q+, then

X! = fi^O + E^iDi.iXi+g^)

Xm = fm(xm, t) + YZLl Dm.tXi + g(t)

is also in class Q+.

Proof Use the same Lyapunov function.

Theorem 10 Let x in (1) be partitioned as

=1 \ / Xfl+i \ ( Xfc+l

Ci = ,C2 = ,C3 =

Xa / V * J
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where c,- 's are irreducible components which are coupled in a cascade as follows

I D,,! ... Dlifl \
Ci = fCl(ci,<) + Cl

\^ Dfl)l ' •• Da,fl /
Da+1,1 '•• Da+i,a ' 'o+l,a+l Da+l,t

C2 = fc2(C2,0 +

\ Dj.i ••• D6,a /

(Dfc+1,1 ••• Dfc+i,a *

: •

Dm.l **' &m,a J
j Dj+i,j+i -• • Dfc+iim i

+ : : c3

\ Dm,6+i ••• Dm,m J

Suppose thai system (29) is in class Q+, and the following two systems

Ci +

'b,a+l

/D,Hl,a+1

\ Dm,a+i

D&6

Dj,+i,j

Xl

C2

Xl

C3

f(x,,0

fc2(C2,0

f(xi,0

fc3(c3,0

ci +

( . °
I2,=l^a+1.» Da+i.a+1

/ o
!Ci=l ^6+l.i Dfc+1,6+1

\ ]£i=l D™.«* Dm,6+1

0 \
Da+i,&

0 \
Dt+i,m

*Jm,m /

C2

Dm,6 J

C2

Xi

C2

Xl

C3

(29)

(30)

(31)

(32)

(33)

are also in Q+, then system (1) in the form of Eqs. (29-31) is uniformly asymptotically synchronized.

Proof Follows from corollary 2, and noting that when the array is synchronized, the cells are decoupled.

Theorem 11 In Eqs. (29-31), assume that ]£?=iD<H-i,« = Ya=i ^a+2,i = ••• = J2i=i D&,i an^ *^a*
]Ci=i Dt+i,,- = 52i=i Dj+2,i = ••• = ^2i-\ Dm,i, then system (29-31) is uniformly asymptotically synchro
nized if (29) and the following two subarrays ofsystems are in class Q+ :

C2 = fc2(C2,<) +

C3 = fc3(c3,0 +

and the following three cell array

xi = f(xi,/)

Da+l,a+l ••• D a+1,6

Dfc+i,m *

Dm,m y

\ Dft.a+l

' Dj+1,6+1 ••

^ Dm,fc+i
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is in class Q+.

Xa+i = f(xa+i,*) +^Da+i,iXi + ^ Da+l.tXa+l
i=l t=a+l

b m

X6+i = f(x6+i,<) +^D6+i,iXi + ^T D6+1,,X6+i
t'=l »=6+l

Proof From lemma 7, all the cells in partition c2 are synchronized to each other. Similarly for partition C3.

The result then follows from theorem 10 and corollary 2. •

Note that in this case the irreducible components are analyzed separately, and when within these compo

nents the cells synchronize, then these components are "collapsed" into single cells and the resulting system

has a signed interaction graph which is the acyclic graph mentioned earlier. This is then analyzed further

by collapsing synchronized cells into a single cell. At this stage we only need to consider two cell arrays

in master-slave (i.e. reducible coupling) configuration. We can collapse synchronized cells into a single cell

because at the synchronized state, the cells are decoupled, so that the dynamics is reduced to that of one

(uncoupled) cell.

8 Linear Coupling in Regular Arrays

Recall that in order to apply theorem 7, we require that the coupling matrix D,,,- be irreducible, and we
need to calculate its eigenvalues. In some applications the cells are arranged in a regular grid as in a

Cellular Neural Network (CNN) [Chua and Yang, 1988a; Chua and Yang, 1988b] with space-invariant (or
homogeneous) coupling templates, also called cloning templates. Several coupling configurations in Sec. 6.2

are of this type. In cases where the boundary conditions are Toeplitz, irreducibility of the coupling matrix

can be determined using the irreducibility tests in [Chua and Wu, 1992]. If the boundary conditions are
periodic, then the eigenvalues can be calculated as multidimensional discrete fourier transforms of the cloning

template [Shi, 1994].
The vector field of Chua's oscillator is odd-symmetric. Therefore the vector field is invariant under the

transformation x,- —* —x,-. For certain cloning templates which contains negative off center elements, state
transformations in [Chua and Wu, 1992] can be used to transform the cloning templates to templates with
nonnegative off center elements. Synchronization for these transformed templates implies that the cells are

also synchronized in the original system, although some of the cells are synchronized to the negative of other

cells.

9 General Additive Coupling

So far, wehave only considered linear coupling among cells. In this section, wegive a brief analysis of general
nonlinear additive coupling, i.e. coupling terms which are added to the vector fields. Again we consider an
array of m cells, coupled together with additive coupling, with each cell being a n-dimensional system. The
entire array is a system of nm ordinary differential equations:

xi = fi(xi,t) + gi(xi,...,xm,<)

: = : (34)

Xm = fm(xm,*) + gm(Xi,...,Xm,*)
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where Xi GRn. We write D,-,j = ^r. Thus D,-,j = D,j(x, t) is a n x n matrix which in this case depends
on both x and t. We denote

/ Di,i D l,m

D(x,0 =

\ Dm,i ••• Dm,m J
Using the notation of Sec. 2, Eq. (34) can be written as

( fito.o + gitx.t) >
X = ;

\ fm(xm,0 + gm(x,0 /

Definition 8 A function g(x\,.. .,Xk,t) is separable with respect to x\,. ..,Xk if it can be written as

g(xi, . . ., Xfc, 0 = gl(Xi, t) + •••+ gjfc(Xfc, t)

Definition 9 A function g(xi,..., xjt, t) belong to class S ifg(xe,..., xc, t) = 0 for all xc and all t.

Note that a separable function g(xi,. ..,Xk,t) = gi(xi,<)-| hgjfc(xjb,<) belong to class S if and only

if gi + • •+ g* = 0.

Lemma 8 //g(xi,..., xjt,t) is in class S and differentiable, then $2,_i ax" = ^ for a^^ wnen Xi = •••= x*.

Proof Define h(x) = (x,.. .,x)T. Then g(h(x),t) = 0 for all x and all t. Thus for fixed t, Dg(h(x),t) •
Dh(x) = 0. Since Dh(x) = (1,..., 1)T, the result follows. •

Let us assume that we have identical cells, (fi = •-• = fm). Let us also assume that the subspace
M = {x : Xi = Xj for all i and j) = {x : d(x) = 0} is invariant; i.e. synchronization is possible. This
implies that gi(x, t) = ••• = gm(x,t) for all x G M. If we also assume that the cells are decoupled in M,
then this means that g,- is in class 5. We also assume that gi is differentiable. Then by lemma 8 this means
that D(x, t) as defined above is in T2(0) for x € M and all t. We want to find conditions for which the
invariant subspace M is asymptotically stable. Assume that V and T are as defined in Sec. 5. For the

Lyapunov function V(x) as in Eq. (14), with M as in Eq. (10), the derivative along the trajectories of (34)
is

V(x) = xTU

/ f(x!,0-Txi \
f(x2,0-Tx2

Vf(xm,0-Txm J

+ xTU

/ Si(x,0 \
g2(x,0

L\gm(x,0 /

\

/T \
(35)

V T/ J

Using arguments as in Sec. 5, the subspace M is asymptotically stable if the second term of Eq. (35)
is less than or equal to zero for all x such that d(x) < e, i.e. initial states located near the subspace M
will converge towards M. Given x, we define x' = (x\,...,X\)T £ M. By the Mean Value Theorem,
g.(x,0 = g,(x',t) + /J Dg,(x' + s(x - x'), t)ds(x - x'). Therefore

g.(x,0-gi(x,0= / (Dgi-Dgj)(x' +s(x-x')}t)ds(x-x')
Jo

and

M

/ gi(x,0 \
g2(x,<)

V gm(x,0 J

= / MD(x' +s(x-x'),0<fc(x-x')
Jo
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Noting that (x —x')7M7 = x7 M7 , the second term of Eq. (35) can be written as

/ V

'\T-K/rT(x - x'y M

V

\

v/

M

(T

/ D(x' + s(x-x'),t)ds +
Jo

So if for all t and for all x such that d(x) < e,

/T

U D(x,*) +

V T/J

(x-x')

T/J

(37)

is negative semidefinite then we have uniform asymptotical synchronization for initial states close enough to

M.

Let us now assume that D(x,/) € 7i(Mnxn(lR),.rY) for all t and for all x such that d(x) < e. Then Eq.
(36) can be written as

/ MD(x/ +s(x-x/),Orf*(x-x')= / S(D(xf-rs(x-x'),t))dsM(x-x')
Jo Jo

Let B(x,l) be defined as

/ /T

B(x,t) = S D(x,<) +

V t/7

if

/ V

B(x,0 (38)

\ v/
is negative semidefinite for for all t and all x such that d(x) < e then we have asymptotical synchronization
for initial states close enough to M. Thus Eqs. (37-38) give sufficient conditions for the synchronized state
to be locally asymptotically stable. Similarsimplification as in Sec. 6 can be made when V, T, and D,j
are diagonal.

10 Conclusions

In this paper we givesufficient conditions for which an array of identical dynamical systems, linearly coupled,
will synchronize. This allows us to prove the intuitive idea that strong enough cooperative coupling will
synchronize an array of identical cells in general. Because the coupling pattern does not need to be regular,
we can design robust coupling matrices that ensure synchronization under perturbation of the coupling.
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