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1 Abstract

On the Optimal Blocking Factor for

Blocked, Non-Overlapped Schedules1

Praveen Murthy
Edward.A.Lee

This paper addresses the problem of determining the optimal blocking factor for blocked,

non-overlapped multiprocessor schedules for signal processing programs expressed as synchro

nous dataflow (SDF) graphs. One approach to determining a multiprocessor schedule for an SDF

graph G is to determine a schedule for the J -unfolded graph of G (defined to be the precedence

graph of G over J iterations), where / ^ 1, and repeat that schedule forever. This approach

allows us to exploit some of the inter-iteration parallelism that is usually present in the SDF

graph. A schedule for the J -unfolded graph is called a schedule of blocking factor /. It is of inter

est to determine the value of / that will allow schedules of optimal throughput to be constructed.

It will be shown that the critical path of the J -unfolded graph becomes cyclic as J is increased. It

will be shown that it is possible to determine this cyclicity by analyzing the critical graph of a

matrix that arises in the model that is used. The cyclicityof the critical path implies that we only

have to examine a finite number of blocking factors to determine the optimal one.

This research was supported by ARPA and the United States Air Force, and Star Semiconductor
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Introduction

Synchronous Dataflow (SDF) [1] is a subset of dataflow [8] that has been used as a model

for expressing DSP programs [16][17]. An SDF graph is represented by a directed graph

G = (V,E,f,d) where V is the set of computation nodes, E is the set of directed edges (repre

sentingcommunicationchannels), and f:E->ZxZ is a function on the edges to positive integer

tuples where the first element of the tuple represents the number of tokens produced on the arc

and the second element represents the number of tokens consumed on the arc, and d (e) is the

number of delays (initial tokens) on edge e. In addition, each node v in V has an associated posi

tive integer t (v) representing the execution time of v. An example of an SDF graph is given in

figure 1(a). Here, one token is produced and two tokens consumed on edge AB. EdgeAC has two

delays. The SDF graph can be represented by an m x n topology matrix T where m is the number

of edges andn the numberof nodes. The entry T (ij) represents the number of tokens produced

by node j on arc i. This number is negative by convention if node ; consumes tokens from arc /.

The repetitions vector q is the smallest positive integer vector in the null space of T; it satisfies

the equation Tq = 0. This vector represents the number of times each node must be invoked in

order to returneach buffer (on each of the arcs) in the graph to its starting state. Notice that since

the number of tokens produced and consumed on self-loops has to be the same and does not affect

Introduction

t(A) = l,t(B)=2,t(C) = 3

Fig 1.a) An SDFgraph, b) The associated homogenous graph
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Introduction

the repetitions vector, these numbers are not shown in figure 1(a). The topology matrix and the

repetitions vector for the graph in figure 1(a) are given by

r =

1 -2 0

0 1 -1

_-l 0 2_

T

and q = [2 1 1] .

A homogenous SDF (HSDF) graphis one in which one token is produced and consumed

on each arc. Formally, an HSDF graph G is the triple (V, E, d) with V being the set of nodes, E

the set of arcs, and d the delay function that denotes the number of initial tokens on the arc. The

graph in figure 1(a) is not homogenous because two tokens are produced on edge CA, and two

tokens are consumed on edge AB. However, it is possible to systematically construct an HSDF

graph from any SDF graph [1]; the resulting graph has q (1) copies of a node 1 in the original

graph. The details of the construction procedure can be found in [1]. The homogenous graph cor

responding to the graph in figure 1(a) is shown in figure 1(b).

DSP dataflow programs are non-terminating in nature; they operate on infinite streams of

data and produce infinite streams. It is well known that a fundamental upper bound on the

throughput achievable in an HSDF graph is given by the inverse of the maximum cycle mean [9]:

x=maxi*aI]$1 (EQD
where A is the set of all circuits in the graph, T (/) is the totalcomputation time of circuit /, and

D(l) is the delay count of the circuit /. A loop that achieves this maximum is called a critical

loop. A schedule for an HSDF graph is rate-optimal if the iteration-period for the schedule is

equal to the maximum cycle mean (also called the iteration-period bound). The maximum cycle

mean for the graph in figure 1(b) is 3.5. The quantity A, can be found in time O (|V||£|) using

Karp's dynamic programming algorithm [15].

In this paper, we are going to assume thata graph contains at least onecycle. If this were

not the case, the iteration period bound would be 0 (since there are no loops, the set of loops is

empty and equation 1 is defined to be zero over an empty set), and the achievable throughput

On the Optimal Blocking Factor for Blocked, Non-Overlapped Schedules! 3 of 35



Introduction

Fig 2. Acyclic precedence graph forgraph in figure 1.

would be infinity. We can achieve infinite throughput by scheduling every iteration in parallel

using an infinite number of processors. Hence, the problem of finding a schedule that maximizes

the throughput is interesting only when the throughput bound is greater than zero (that is, the

graph has cycles).

From the HSDF graph, we can construct an acyclic precedence graph (APG) of blocking

factor one. This is the graph obtained by deleting all arcs that have one or more delays on them

from the original graph. The APG for the graph in figure la is shown in figure 2. Notice that the

APG shows only the intra-iteration precedences between the nodes.

Define the weight of a path in the APG to be the sum of the execution times of the constit

uentnodes. Consider now the following strategy for constructing a multiprocessor schedule for an

HSDFgraph. Instead of using the precedence relations specified by the HSDF graph, we will use

only the precedences specified by the APG for constructing the schedule. Each node in APG will

be invoked once in the schedule andwill be assigned to some processor. Onceeachprocessor has

finished its tasks, it waits until all other processors have finished their tasks, and then executes its

tasks again for the next iteration. This implies that we use some form of barrier synchronization

between successive iterations. The first invocation of a node u can only occur if all of its prede

cessornodes in the APG have been invoked once. Hence, the total length of the schedule(defined

asthe maximum of the finishing times for each processor for allof its tasks for oneiteration) must

be at leastequal to the largest-weight path in the APG, the critical path. A multiprocessor sched

ule of this type is called a blocked,non-overlapped schedule of blocking factor 7. It is non-over

lapped because the nth iteration can only occur after every node has been invoked from the

n - 1th iteration.

4 of 35 On theOptimal Blocking Factor for Blocked, Non-Overlapped Schedules!



Introduction

Since a blocked schedule of blocking factor 1 does not exploit inter-iteration parallelism,

it is useful to schedule the graph over severaliterations. A blocked schedule of blockingfactor J

consists of a schedule for the HSDF graph unfolded J times. Unfolding a graph / times means

considering / successive iterations of the graph. The /-unfolded precedence graph consists of /

copies of the APG, and someadditional arcs. A node u in the ith copy of the APG, and a node v

in the jth copy of the APG, where j > i, are connected by an arc in the / -unfolded precedence

graph if there is an arc (m, v) in the original graph having j - i delays. The /-unfolded prece

dence graph can also be referred to as the APG ofblocking factor J. In this paper, we will use the

term"APG" for the APG of blocking factor 1, and the term "/-unfolded graph" interchangeably

with the term "APG of blocking factor /" for the /-unfolded precedence graph. Once a /-block

ing factor schedule is constructed, it is repeated forever to get a /-periodic schedule. Again, bar

rier synchronization is assumed between successive blocks of the /-blocking factor schedule.

It is of interest to determine what the optimal value of / should be in order to construct

rate-optimal schedules. For example, the critical path in the graph in figure 1(b) is the path

A1 -> A2 -» B, and this path has a weight of 4 (recall that the execution times of nodes A, B, C

were 1,2, and 3 respectively). This is evident when we look at the acyclic precedence graph,

shown in figure 2. Hence, no schedule (of blocking factor 1) for this graph can have an iteration

period of less than 4. The acyclic precedence graph for ablocking factor of 2 (or, equivalently, the

2-unfolded graph) is shown in figure 3(a). It can be verified that theweight of the critical path in

this graph is 7. Hence, a schedule can be constructed that has aniteration period of 7. Since two

iterations of the original graph occur in 7 time units, the iteration period achieved is 7/2=3.5.

Therefore, a blocking factor of 2 is optimal for this graph since it is theoretically possible to con

structa blocked, rate-optimal schedule. A rate-optimal schedule usingtwo processors is shown in

figure 3(b).

When the blockedschedule is implemented, it is notnecessary thatwe actually use barrier

synchronization; the assumption is necessary only for analytical tractability. It has beenshownin

[18] that if the blocked schedule is implemented in aself-timed manner (where theinterprocessor

communication points (sends and receives) are the only points of synchronization), then some

improvement in throughput can result as the schedule unfolds. However, this improvement

On the Optimal Blocking Factor for Blocked, Non-Overlapped Schedulesl 5 of 35
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Fig 3. a) Acyclic precedence graph of blockina factor 2 for
SDF graph in fig. 1. b) A blocKed, rate-optimal 2-processor
schedule.
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One block of the overlapped
schedule

Fig 4.a) An HSDF graph that does not have a rate-optimal blocking
factor, b) A rate-optimal overlapped schedule of blocking factor 2.

depends on the particular schedule that is constructed, and there may not be an improvement for

some schedules. Of course, there is no improvement if the original blocked schedule (assuming

barrier synchronization) is rate-optimal. Assuming barrier synchronization to determine the

throughput achievable (by calculating the critical path) gives a worst-case estimate for the actual

performance of any blocked schedule.

Unfortunately, it is not always possible to find a blocking factor that will allow a rate-opti

mal blocked schedule to be constructed. The graph in figure 4 is an example. As will be shown

6 of 35 On the Optimal Blocking Factor for Blocked, Non-Overlapped Schedulesi



Introduction

later on, no blocking factor for thisgraph is optimal. However, it is always true thatincreasing the

blocking factor by a finite number m will reducethe achievable iteration period, and in the limit

as / goes to infinity, the iteration period will converge to the iteration bound.

There has been considerable work on rate-optimal scheduling in the last five years. Much

of this work has been concerned with blocked, overlapped schedules [2][3][13]. A blocked, over

lapped schedule is one where not only is the graph unfolded / times before it is scheduled but also

where successive blocksare overlapped witheach other. This enables inter-iteration parallelism to

be exploited to the fullest extent, something blocked, non-overlapped schedules only do to a lim

ited extent. Parhi [2] has shown that it is always possible to unfold a graph a certain number of

times to get a perfect-rate graph (a graph where each circuit has only onedelay) and schedule the

resulting perfect-rate graph rate-optimally using an overlapped schedule. The unfolding factor

givenby Parhi is theleast common multiple (1cm) of all thecritical-loop delay counts. Figure 4(b)

shows a rate-optimal overlapped schedule of unfolding factor 2 for the graph in figure 4(a). This

schedule is overlapped because the third invocation of node B begins before the second invoca

tion of node C has been completed. The rate-optimality of the schedule comes from the fact that

in any time window of 70 units, where the window begins at the start of some invocation of node

*, there will be two invocations of node x in that time window. Hence, any node x is executed

once per 35 time units, meeting the iteration throughput bound.

Much of thework onoverlapped scheduling assumes that rate-optimal overlapped sched

ules can be constructed if a large number of processors are available. Parhi gives an upper bound

on the numberof processors required, but thisnumber canbe quitelarge. At this time, few heuris

tics are known for constructing overlapped schedules when thenumber of processors is fixed and

known beforehand. In contrast, there is rich body of work on such heuristics for blocked sched

ules [10][11][12]. In addition, there has been some recent work on taking interprocessor commu

nication (IPC) into account when constructing blocked multiprocessor schedules [7][14].

Therefore, it is of interest to knowtheoretical lower bounds onthe iteration period achievable for

blocked schedules. We cannot hope toknow the optimal blocking factor when the number of pro

cessors is restricted (or when IPC is taken into account) if we do not know it when the number of

processors is unbounded. Therefore, the hope is that our work can beeventually extended (to pro-

On the Optimal Blocking Factor for Blocked, Non-Overlapped Schedules! 7 of 35



Max-Plus Algebra Formulation

vide achievable bounds) to the finite-processor (with IPC) case so that we can use many of the

heuristics present for constructing blocked schedules to construct schedules with optimal block

ing factors.

3 Max-Plus Algebra Formulation

Max-plus algebra is an algebra where maximization is the addition operation and addition

is the multiplication operation [5]. Max-plus addition will be denoted by © and max-plus multi

plication will be denoted by ®. Thus, 5©2 = 5and5®2 = 7. The additive identity in this

algebra is -00, denoted by s, and the multiplicative identity is 0. There is a multiplicative inverse

(subtraction in normal algebra) but no additive inverse: the equation a (& x = b has no solution if

b < a. Hence, the algebra does not constitute a ring.

The reason that this algebra is attractive is that it provides an elegant way of describing

paths in graphs; this is why it is sometimes referred to as "path algebra". Because of this short

hand and elegant way of formulating paths, certain properties about paths become clearer. It

should be emphasized that all of the results derived in this paper have traditional graph-theoretic

proofs, but the ideas have been inspired by the max-algebra formulation.

To see how the algebra is relevant to graphs, consider matrices in max-plus. Let A be an

NxN matrix with entries in 9t U {-<»} . There is an associated graph with N nodes, called the

graph of A, where A (i,j) is the weight of the edge (i,j) in the graph. If A (/,;') = e, then

there is no arc between i and j. Conversely, any weighted, directed graph with real-valued

weights can be represented by a matrix in max-plus. We use the notation GA to denote the graph

of a matrix A .

2
An entry in the matrix A , where the matrix multiplication is done using max-plus opera

tors, represents the longest two-arc path between thecorresponding nodes. For example, let

a =f7 e"
.3 5

This represents the graph

8 of 35 Onthe Optimal Blocking Factor for Blocked, Non-Overlapped Schedulesl
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crrvfrp
We have

^^TsljTel =[i4e'
3 5] L3 5J UO 1Q

The longest two-arc path from node 1 to node 1 has weight max (7 + 7,5 + 3) = 14. The matrix
k

notation A allows us to compactly write down the maximum weight paths of length k between

any two nodes in GA. We can write down an expression for the matrix with maximum weight

paths between any pair of nodes. It is given by the matrix

A+ =A@A2@A3@A*®...®AN~l@... (EQ2)

This series converges only if there are no positive weight cycles in the graph (if there were, we

would get paths of arbitrarily large weight by traversing positive weight cycles). Hence, if there

are no positive weight cycles, the series can be truncated at N - 1, where N is the number of

nodes, since any path of length greater than N has to traverse a cycle, and the cycle cannot

increase the weight. Notice that the implied computation in equation 2 is actually the dynamic

programming algorithm for finding the all-pairs longestpaths in a graph.

It can be shown that the single eigenvalue of A is the maximum cycle mean of the corre

sponding graph if the graph is strongly connected [5]. If GA is not strongly connected, then there

could bemorethan oneeigenvalue. However, for theA above, there is onlyone eigenvalue, given

by X=7,and [40] is an eigenvector.

3.1 Description of HSDF graphs in max-plus

HSDF graphs can have arcs with delays; hence we need a way of modeling this. Recall

that the delay on an arc represents initial tokens on that arc. Also, the nodes in an HSDF graph

have weights that represent execution times; weneed away of modelling this also. Thedelays can

be modeled as follows: let the edge set £ in a homogenous graph G = (V, E) be partitioned as

E= \^J E. where E, is the set of edges having i delays, and M is the maximum number of
ie {0 M)

On the Optimal Blocking Factor for Blocked, Non-Overlapped Schedules! 9 of 35
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Max-Plus Algebra Formulation

delays on any arc. Let M+ 1 matrices AQ, ...,AM be defined where a matrix A. represents the

HSDF graph (V, £,). Notice that (V> EQ), the graph corresponding tothe matrix AQ, is the APG

defined earlier.

The arcs in the graph can be weightedby assigning to each outgoingarc from a node u the

weight t (u) , the execution time of node u. This will fail to model the execution time of sink

nodes; hence, we introduce a dummy sink node 5 that has an execution time of zero. An edge

(w, 5) , having zero delays, is added to the graph forevery node u € V. The number of vertices in

the HSDF graph, N, now includes the dummy sink node.

Matrix products can be used to find largest weight paths of various types. The entry (ij)

in thematrix product AQAX, for instance, represents thelargest weighttwo-arc path between i and

j with the first arc being a zero-delay arc and the second being a one-delay arc. This is evident

when we write down the expression for the entry:

(AqAJ (/,;) = maxlskiN(AQ(i9k) +A1(kJ)) .

Define

A*m =E®A0@A2q®aI®aI<S...®Aq-1 (EQ3)

where E is themax-plus identity matrix with zeros along the diagonal and e elsewhere. An entry

0>j), i*/, in AffQ corresponds to the weight of the largest weight path between nodes i and j

inGA .To see this,recall thatthe series in equation 2 could be truncated at N - 1 if there wereno

cycles in GA. Here, y40 represents theAPG, which is acyclic by definition. Since an entry (ij)
k

in Ao represents the maximum weightoverallpaths of length k between i and j in the APG, the

maximumover l£k£N-l ofthe-4o gives the maximum weight overall paths between / and

j. It follows that the largest element of the matrix AN0 is the critical path in the APG. The inclu

sion ofthe identity matrix E in equation 3means that A^0 (i, i) = 0 Vi. This is done to ensure

that paths where the first arc is a delay arc will berepresentable by appropriate matrix products.

For example, the matrix product ^q^i rePresents maximum weight paths where the last arc in

the path is an arc with one delay. Wecould have acase where the maximum weight path between

10 of 35 On theOptimal Blocking Factor for Blocked, Non-Overlapped Schedulesl
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These represent arcs with
M delays in the original graph

M+]
These represent arcs
with one delay in the

with 2 delays -^^ original graph
Fig 5. The J-unfolded graph of an HSDFgraph G

a pair of nodes consists of onlyone arc, andthatarc is a delay arc. If equation 3 did not have£ in

the maximization, we would not be able to represent this case.

Consider now the /-unfolded graph of G, denoted G W . Recall that G W consists of J

copies of the graph GA = (V, £0) and some additional arcs. We will refer to the /'* copy of a

node w€ GA in G(y> as u'. There is an arc (w', W) in G^, where i</\ if and only if
(m, v) € £. .. Figure 5 makes this notion clearer. The grey arcs between different copies of GA

represent delay arcs having morethanonedelay in theoriginal graph.

Fact 1: A critical path in G^ must have SK,K£J as the terminal node, where SK is the

dummy sink node in the Kth copy of GA .It must have anode from the first copy of GA as the
initial node.

Indeed, it is clear that the terminal node has to be one of the SK since if it were not the

case, we could always extend the path by adding an SKt thus increasing the weight of the path

(recall that every node in GA is connected toS, and every node has positive execution time).

Definition 1: The term max {A} , where A is a matrix, is defined to be the maximum element of

A.

Define C(/) to be an Nx N matrix, where N is the number of nodes in the original

HSDF graph (including thedummy sink node), containing the largest weight paths in GW. This

On the Optimal Blocking Factor for Blocked, Non-Overlapped Schedulesl 11 of 35
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means that an entry {ij) in C (J) is the maximum weight of all paths between nodes / and j

having / - 1 delays or fewer in the originalHSDFgraph.

Fact 2: The maximum weight path p in G^ between a node ul and a node W, J^j>i,
depends only on j - i.

Proof: This is because the existence ofarcs between the ith and kth copies ofGA depends only

on k- i since such anarcexists if there is anarc with k- i delays in the original HSDF graph.

Theorem 1:

MINCM.AO

c(/)=c(/-i)e4®^cy-« v/*2 (EQ4)

where C (1) = ANQt and M> 0, where M is the maximum number of delays on any arc in the
*

m
original HSDF graph. (If M= 0, then C(/) =A*m \fJ)

Proof: The proof is by induction on /. We want to prove that C(/) has the property that it is the

matrix of maximum weight paths (as defined) if the C(J) have the property for j£J - 1.

Assume/ = 2. For any two nodes,considerthe largestweightpath betweenthem in G (2>. This

path can have at most one delay. Hence the path either consists of a subpath in the first copy of

GA , a delay arc to enter the second copy of GA , and a subpath in the second copy of GA , or
just consists ofapath inthe first copy of GA (i.e, has no delay arcs atall). This can be expressed

* * *

asAm ©ANQA {Ano . This satisfies theequation given in the theorem.

Now suppose that the equation holds for all ; £ / - 1 < M+ 1. Consider the maximum

weight path between any two nodes w, v in GW. If the maximum weight path between u and v

goes through fewer than / - 1 delays, then this weight will bereflected in C(/ - 1) because of

fact 2 and the induction hypothesis. If the maximum-weight path does have / - 1 delays, then the

first delay arc on the path is an i - delay arc for some 1£ i £ S- 1. This i-delay arc is between a

node in thefirst copy of GA and a node in the/ + 1 copy of G, . From here, wewant to reach

the Jth copy of GAq. An entry (/>, q) in the matrix C(/- i) corresponds to the maximum
weight J-l- /-delay path between p and q (by the induction hypothesis). Hence, the matrix

product AN0A.C(J- i) will give us the maximum weight path containing an /-delay arc fol-

12of 35 On theOptimal Blocking Factor for Blocked, Non-Overlapped Schedulesl
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lowed by a path with /-1-/ delays. The maximum over 1£ / <>J ofall such matrix products,
along with the matrix C(/ - 1) gives us the maximum-weight 7-1 -delay path.

The argument is similar if / £ M+ 1. The difference is that now, the i-delay arc used to
leave the first copy of GA canonly bein therange 1£ i £ M.

Corollary 1: IfM = l,then

cW=®Ko^iJ^o '*1 (EQ5)
JteO

Proof: First off, we have MIN (J- 1,1) = 1, for J 7> 2. Equation 4can now be written as

C(/) =C(J- 1) e^o^CC/- l),/£2

We can continue by substituting for C(/ - 1) :

C(J) =C(/-2) ®A*NQAlC(J-2) ®A*NQAlC(J-2) ®^i^iC(/-2)

=c(/-2)e^0/i1c(/-2)e(/i^1)2c(/-2).
The second equality follows from the idempotency ofthe addition operator in max algebra (i.e,
a © a = a). We continue theprocess of substitution togetequation 5.

Unfortunately, equation 4 isdifficult toanalyze any further (despite its similarity toconvo

lution). Equation 5 is easier with a few restrictions that will be described below. Therefore, we

would like to modify the original HSDF graph to have arcs with onedelay at most. This can be

done using the following technique ofgraph expansion: for an arc («, v) that has m> 1 delays,
1 m — 1

create m- 1 dummy nodes, u ,..., u , withzeroexecution times, and replace the arc (w, v)

with the path ^u, u,.... um' ,vj .Each edge in the path has one delay. By this technique, we
can represent an arbitrary graph as a graph containing arcs having at most one delay.

We are interested in criticalpaths in the /-unfolded graph. The maximalelementof C (/)

in equation 5 (the critical path in the /-unfolded graph),for / largeenough,is going to traversea

cycle in the dataflow graph many times. In other words, the critical path is going to be the one that

copy of GA ; apath that does not reach the / copy can only be critical for the
first few /. This is because a path that does not reach the Jth copy must be an acyclic path inthe

On the Optimal Blocking Factor for Blocked, Non-Overlapped Schedules! 13 of 35
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original graph. More formally, consider the graph obtained by deleting all of the strongly con

nected components from the HSDF graph. Let the maximum weight path be a in the resulting

graph. Then, the path a can be critical for at most weight (a) /X unfoldings. Therefore, the

weight of any cycle unfolded enough times will be greater than the weight of any acyclic path.

If the original graph (without the dummy sink node) is strongly connected, then there is

copy of GA for all values of /. To see this, suppose

copy of GA . Let SK be the dummy sink node that terminates

some such path for some K <J in G^ (by fact 1). Consider the node immediately before SK in

thepath, say v*. Since theoriginal graph G is strongly connected, v cannot be asinknode in G.

Hence, v must be the predecessor to another node u, u*S, and the arc (v, u) has either 1 or 0

delays. In either case, we can extend the path in G^ by including either uK+l or/, thus

increasing the weight (or keeping it the same). We will be unable to extend the path only when

K = / and every arc leaving v is a delay arc.

Hence, we can ignore all of the lower order terms in the summation in equation 5 if / is

large enough (for a non-strongly connected graph), or if the graph is strongly connected. To sim

plify things, we will assume that the originalHSDF graphis strongly connected. The results of the

analysis for the strongly connected case canbe usedto analyze the general case. With this simpli

fication, we get that

( * V-i *C{J) =[a^) ANl•jvd (EQ6)

Define

b=anoai (EQ7)

We are interested in the asymptotic behaviour of B as / goes to infinity because we are

interested in the maximum element of C(/), the critical path. Note that the matrix B, defined in

equation 7, corresponds to agraph GB = (V, £') where V is the set ofnodes from the original
graph, and (w, v) € E iff there is apath in the original graph G from u to v with the last arc in

the path being aunit delay arc. The weight ofthe edge is the maximum ofthe weights ofall such
paths.
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If the original graph is strongly connected, then we do not need to add the dummy sink

node since there are no sink nodes in the graph. The following lemma shows that if the original
/ 7-1 *graph is strongly connected, then it suffices to analyze B and not B AN0.

Lemma 1: Suppose that the original HSDF graph is strongly connected. Suppose also that we
*J J-1 *have not added the dummy sink node to the graph. Then, max {B } = max{B AN()} .

Proof: Consider the critical path in the GW graph (without the dummy sink). It must bethe case

that the terminal node of the critical path has only outgoing unit-delay arcs as pointed out before.

Therefore, if we multiply the right hand side ofequation 6with A1, then the maximum element of

the right handside will be the weightof a pathwhere thelast arc is a delay arc. The weight of the

last delay arc is equal to the execution timeof the last node. Hence, this is equal to the weight of

the critical path.

Therefore the results of analyzing the asymptotic properties of B can be used directly

without having toconsider the multiplication by i4^0 inequation 6.

3.2 Properties of the GB graph

We denote themaximum cycle mean in a graph GB = (V, £) (ortheeigenvalue its asso

ciated matrix representation B) by XG (or XB). The symbol" =*' is used to denote paths and the

symbol"—»" denotes arcs.

Definition 2: We define the maximum cycle mean for GB as

X^MAX,^^} (EQ8)
where A is thesetofcircuits, T(/) is thesum ofthe weights of thearcs oncircuit /, and |/| is the

number of nodes in circuit /.

Definition 3:Amaximal strongly connected subgraph (m.s.c.s) S of G isa strongly connected

subgraph of G such that there is no other strongly connected component that properly contains

S .
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Max-Plus Algebra Formulation

Lemma 2:If G is strongly connected, then GB isconnected.

Proof: Let m, v be any two nodes in G. Then u can reach v and vice-versa. Since the cycle

u => v => u must have at least one delay, there is at leastone nodereachable by both u and v in

GB. Hence, u, v are in the sameconnected component.

Lemma 3: Let Vd £ VG bethe set ofnodes having at least one input delay arc. If G is strongly

connected, then GB has only one m.s.c.s, and the node set ofthe m.s.c.s is Vd.

Proof: Let u, ve Vd. Then 3w\ v' € VQ s.t. (u\u), (v\ v) are delay arcs by the definition of

Vd. Since G is strongly connected, there is a path in G of the form u => v' -> v =* m' -» «.

Therefore, u^v^u is a path in GB. Anode not in Vd cannot be reachable in GB and hence
cannot be any m.s.c.s. Since GB is connected (from lemma 2), the only m.s.c.s has the node set

Lemma 4: XB = XG, where G is the HSDF graph.

Proof: Let C = ux -»u2 -» ... -> un -> ux be acritical cycle in G. Then, 3uiV ..., uim € FG in
the cycle C such that the incoming arc to each node u^ is a delay arc in the cycle. Therefore,
C = ux -> un -» ui2 -»...-» ux is a cycle in GB with we/g/i/ (C) £ we/g/if (C) because the

weight ofan arc u{j -> u(^+ ^ in GB is at least as big as the weight ofthe corresponding path in

G. Also, the number ofnodes in C is equal to the number of delays in C.Therefore, XB £ XG.

Let us now prove that XB£XG. Let the C above be a critical cycle in GB. Then
3v1} v2,..., vn e VG such that P = ux =* vx -»u2 =» v2 -» m3 =>...=> vn -» ux is a path in G.

Eachof the arcs (v,., ui+x) in P is a delay arc. If P is a simple cycle, thenwe are donesinceits

weight is the same as the weight of the cycle in GB. If P is not a simple cycle, then it contains

many sub-cycles. Consider thefollowing algorithm for"pruning" P of its sub-cycles. We scan P

from the left until we find a node sx that repeats. The section of thepath in P between the two

instances of sx is removed from P. This is equivalent to "merging" the two instances of sx and
deleting the path in between. This process is continued until P is free of subcycles. Let «' be the

number of delays in the simple cycle F obtained by pruning P. Then there are n- n' delays in
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the deleted sub-cycles si => si. Assume that each of these is a simple cycle. Denoting the number

of these sub-cycles by S we have S<,n - n' because each cycle must have at least one delay. If

m, is the number of delays in cycle s. => s., we get that
s s

weight(C) = weight(P) = weight(P) + V weight(^=>^) <n'XG + Tmfa = nXQ
/ = 1 / = 1

We also have weight (C) = nXB. Hence, XB<,XG. If some of the cycles s{ => s. are not

simple, then they too can be pruned of sub-cycles and we can use similar arguments as above to

bound the sums.

Lemma 5: If C is a critical cycle in G, then the cycle constructed from C in GB, as shown in
the first part of the proof in lemma 4, is also critical.

Proof: Letting C = ul-*u2->... ->un-*ux as before, we know that the arcs in

C = Wj —> uiX —> ui2 —> ... —> u{ have weights larger than or equal to the weights of the corre

sponding paths in C. If the weights were larger, C would have a larger weight. By lemma 4, we

know that this cannot be the case; hence C isa critical cycle in GB .

4 Cyclicity of B

We are interested in the asymptotic properties of B as J goes to infinity. Since B has

positiveweightcycles, this will be ill-defined since every entry goes to infinity in the limit. There

fore, we normalize B by subtracting X from each entry. In max-plus notation, this is represented

as X B (recall that max-algebra has a multiplicative inverse, namely subtraction). The actual

weight in B can be gotten from the formula XIX~ BJ .Hence, every cycle in X~ Bhas non-
positive weight with the critical cycles having 0 weights.

Since we are interested in the critical path of the /-unfolded graph, we are interested in

the quantity

CP{J) =max{C(J)}= max{XJ[x~lB)J} =JX +max {[x~lB)} , (EQ 9)
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where we have abused notation by combining normal algebra and max-algebra; the term JX uses

normal multiplication while the second term uses max-algebraicoperations. Define

MB(J) =max{[\~lB)J} (EQ10)
If MB(J) * 0, then / is nota rate-optimal blocking factor since CP{J)/J>X.

For graphs that are not stronglyconnected, we have to use equation5 to compute C (J)

(assuming that / is largeenough so thatrestof the terms in the summation dropout). In this case,

the critical path is given by

CP{J) =max{C(J)} =max{XJ-\x-1B)J~1A*N0} (EQ11)

= JX-X +max{yX~ Bj A^0}

For non strongly connected graphs, redefine

MB(J) =max^r1*/ \4*0} (EQ12)
If MB (J) * X in equation 12,then / is not a rate-optimal blocking factor since CP(J) /J>X.

The following definitions apply to generic, weighted digraphs:

G

Definition 4: The critical graph ofa graph G, denoted G , is a graph consisting of those nodes

and arcs of G that belong tosome critical circuit of G. This graph pays a key role in the asymp

totic analysis of B .

Definition 5: Similarly, the non-critical graph ofagraph G,denoted GNC, is agraph consisting
of those nodes and arcs of G that belong to some non-critical circuit of G.

Forexample, figure 6 shows a graph, its critical graph, anditsnon-critical graph.

Definition 6:The cyclicity ofan m.s.c.s isthe greatest common divisor (gcd) ofthe lengths ofall

itscircuits. The cyclicity ofa graph G is the least common multiple Gem) of the cyclicities of all

its m.s.c.s's.
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Cyclicity of B

-2
i

Fig6. A graph, its critical graph, and its non-critical graph

The cyclicity of the m.s.c.s containingnodesA and B in the criticalgraph of figure 6 is 2, and the

cyclicityfor the m.s.c.s containing nodeC is 1.Thecyclicity of the criticalgraph is lcm(l,2)=2.

Definition 7: [6] A matrix A is said to be cyclic if there exist d and T such that

Vm> 7, A = A . The least such d is called the cyclicityof matrix A and A is said to be d -

cyclic.

For the graph in figure 6, the matrix A is given by A =

few powers of A, we get

-2 1 e

-1 £-1

-1 e 0

, and by calculating the first

A2 =
0-10

-2 0 -1 M3 =
-1 1 0

-1 -1 -1 ,/ =
0 0 0

-2 0-1 M5-
-1 1 0

-1 -1 -1

_-l 0 0_ -1 0 0_ _-l 0 0_ _-l 0 0_

,/n + 2 ,m m + d
and we see that Vm > 2, A = A .Of course, it is also true that Vm > 2, A = A where

d = 2k, k = 1, 2,3,...; we pick the leastsuch d, which is 2, and A is 2-cyclic.

Now we prove the mainresult in the paper, namely, the cyclicity of B. First we need the

following number-theoretic lemma, stated withoutproof:

Lemma 6: [21] Given n integers 0<ax< a2<...<an, suppose that Q = k-gcd{ax an}
Then, for each k£k*, where k* = (ax - 1) (an - 1), the Diophantine equation

n

i = i

always has a solution in non-negative integers jcf. The value given for k* is not tight for n>2;

the problem of finding the least k* such that the lemma holds is still open [20]. Better bounds are
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given by Erdds and Graham in [23], andan algorithm for computing the bound in time O(na2)

is given by Wilf in [22].

Theorem 2: If G is stronglyconnected, then B is p -cyclic, where p is the cyclicityof G (5) .

Proof: We wish to show that for any / large enough, B = B +p. That is, the maximum weight
over J length paths between any pair of nodes u, v, in the graph GB, is equal to the maximum

weight over J+p length paths between the same pair w, v in the graph GB. Recall that GB is

connected and has one m.s.c.s, denoted G (B). There are two cases to consider:

C
Case 1: One of the nodes u, v belongs to G (B).

c
Case 2: Neither of the nodes belongs to G (B).

For case 1, assume without loss in generality that v G G (B) . Considera path between u

and v. In general, this path consists of an acyclicpath between u and v, denoted p ( m, v) , some

number of non-critical circuits, and some number of critical circuits. Consider an acyclic path

p*(u,v) of maximum weight between u and v. Consider values of J of the form

J - Ip*I +*P» for * large enough, where the notation \p\ denotes the length of the path p. By
lemma 6, weknowthat thereis a critical circuit of length kp if k is large enough, in them.s.c.s of

C
G (B) that v belongs to (note that the critical graph can have more than one m.s.c.s). Actually,

Q
we know that there are critical circuits of length kp' in the m.s.c.s of G (B) that v belongs to,

where p' is the cyclicity of that m.s.c.s (defined as the gcd of the lengths of all circuits in the

m.s.c.s). However, we do not want our results to dependon the particularm.s.c.s of G (B) that

v belongs to (sincewe want to prove cyclicity for paths between all pairs of nodes); hence, it suf

fices for criticalcircuitsof length kp to exist, where p is the 1cm of the cyclicities of each m.s.c.s

in G (5) (as per definition 6). Therefore, apath of length J = |p*| + jfcp has the same weight as
the path p*, and this is the maximum possible weight. Apath oflength J+p = |p*|+ (£+l)p

also has the same maximum weight. Hence, for / length paths of the form / = \p*\ + kp, the

maximum weight between u and v is p cyclic.

Consider now the possibility that the / length path is not expressible as / = |p*| + kp in

case 1. In general, if a J length path exists at all, it can be expressed as
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J = \p\+kxpNC + k2p, (EQ13)

where p^c is the cyclicity of the non-critical graph of B, kx and k2 are large integers, and p is

some acyclic path between u and v. We claim that for any J expressible as in equation 13, the

integer kx lies in the range k*x £ kx £ k\ +p- 1, where k*x is the smallest integer such that for

all kx ^ k*x , there is anon-critical circuit oflength kxpNC (in lemma 6). The implication of this

claim is that as / increases, even if we have to use non-critical circuits in the / length path, we

need to only use a bounded number of them. To prove the claim, suppose that there is a / length

path where J = \p\ + kxpNC +k2p, with kx and k2 arbitrary but large enough (for lemma 6 to

apply). We want to show that we can construct another / length path with fewer non-critical

cycles and a larger number of critical cycles. That is, we want to replace some of the non-critical

circuits with critical circuits. If we are able to do this, then we will produce a J length path of

larger weight. Note that we have the same acyclic path in both paths. We want to solve the equa

tion kxpNC = k'xpNC + k?2p where k*x <,k'x£k\ +p- 1. This equation represents the parti

tioning ofanon-critical circuit oflength kxpNC into anon-critical circuit of length k'xpNC, and a

critical circuit of length k'2p. It can be verified that if we set

*2 = ~"7T" ^ l " l ""C' *

where c = (kx - k*x )mod p,then k\ = k*x +c and we get k*x £k\ £ k*x +p- 1.This proves

the claim. Thus, if we have a/ length path with J = \p\ +kxpNC +k2p, then we can construct a

J + p length path by traversing acritical circuit of length (k2 + 1)p, and this path has the same

weight as the / length path. Moreover, we claim that this is the maximum weight J + p length

path. Suppose, to the contrary, that this is not the case, and the /+p length path has larger

weight. If the maximum weight J + p length path consists of a non-critical cycle of length

*lPnc*wnere *i ^ **i +P" 1 (to*8 nas t0 De me c^e by me above claim), and acritical cycle of
length k2p, then we canconstruct a / length path that hasthe sameweightby traversing a critical

cycleof length (k2 - 1) p. This contradicts thepremise that the / length path had smaller weight.

Hence, for J as in equation 13, the maximum weight pathis p cyclic.
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Cyclicity of B

Fig 7. The case where two nodes are not on any
critical cycle.

The last possibility for case 1 is if there is no path of length / between u and v. If it turns

out that &J + kp length path does exist for some k, then the situation of not having a J length

path is transitory since we have already shown that if a path of some length / + kp exists, then so

does a path of length /+ (/: + 1) p. If there is no path of length J + kp for any value of k, then

every /+ kp length path has a value of e. This completes the proof that the maximum weight

path between nodes u and v is cyclic.

For case 2, there is the possibility that for certain values of /, every path between the two

nodes consists of nodes not on any critical cycle. In this case, we cannot apply our arguments

above since when we increase / by p, we cannot traverse a critical circuit of a larger length (by

p) since in order to do so, we have to have a node from some critical circuit in the path. Hence,

for these values of /, we might be able to traverse only non-critical circuits, and this will drive the

weight of the path to e. However, we show that this situation cannot exist. Let u and v be two
c s

nodes not in G (B) . However, assume that they do belong to G (B) . Since we are concerned

about the case where these nodes can reach each other via arbitrarily long paths having no nodes
Q

from G (5), assume that there is a non-critical cycle between u and v having no nodes from
C

G (B) . Figure 7 shows the situation. The paths px and p3 form the non-critical cycle without
c S

any nodes from G (B). The node w is some node on some critical circuit, andbecause G (B)

is strongly connected, there is a path from u to w and from w to v. These two paths arecollec

tively denoted p2.Therefore, there are paths of length kx (bJ +bJ) +bJ between u and v for

all positive kx, and the weight of these paths goes to e as kx increases. We want to show that we

can construct another path, that goes through w, of the same length as these paths. Let
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p' = gcd (|pj| +|p3|, |p2| +|p3|). Then there is apath ofthe same length through w if the fol
lowing equation has a non-trivial solution in k2 and £3 (that is, k2 > 0):

*i<N+N>+ M =*2p+*3p'+N • <EQ 14>

The right hand side of the equation represents the length of a path that goes through some number

of critical cycles (from w), some number of the two non-critical cycles, and the acyclic path p2.

Since p' divides |/?1| +|/?3| and |p2| +1/^3|, it divides their difference, IbJ - bJI. Therefore,
equation 14 can be written as k2p = (kxlx -/2-*3)p\ where lx = (bJ +b3|)/p\ and

h ~ ()pd[ " |^iP ^P •^e can cnoose ^3 sucn mat ^2 *s 3° mteSer- As in the previous case, we
can only generate paths of this kind if *3 and k2 are big enough for lemma 6 toapply; therefore,

if we set k3 =£3 +c, c =I fcj/j -l2-kz Jmod p, then £3 ££3££3 +p where £3 is the
smallest integer such that non-critical circuits of length k^p% can begenerated for all k3 ^ £3 . Of-

course, all thisrequires that kx be bigenough.

Therefore, for two nodes not on any critical cycle, we can still construct paths between

them (if they exist) that include nodes on critical cycles. This means that a / + p length path will

have the same weight since we can traverse a critical circuitof larger length (by p).

A final possibility in the casewhereneither of the nodes is on any critical cycle is if one of
s

the nodes is not in G (B) . This possibility is similar to the above since there is always a path
5 c

from such a node to some node in G (B) .If both of the nodes are not in G (B) , then neither

node is reachableand there is no path between them of any length. QED.

Theorem 2 tells us that it is enough to consider T+p blocking factors in order to deter

mine whetherthere is a rate-optimal blocking factor, where T is the lengthof the transient before

B becomes cyclic. A blocking factor / greater than T+p will result in MB (J) = MB (J- p) ,
allowing us to determine MB (J) for all /.

Letus now consider the case where G is not strongly connected. In this case, B may not

be connected and may have more than one m.s.cs, with some m.s.c.s's having strictly negative

weight cycles. If these m.s.c.s's have no access to critical cycles, then certain weights in BJ will
go to -00 as / -» 00. Therefore B will not be cyclic in general. However, the critical path is
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always going to be cyclic because the critical path is eventually going to consist of many travers

al of a critical circuit. Hence, the starting node in any critical path is going to be a node that can

reach an m.s.c.s in B having at least one critical cycle. Formally, we have the following theorem:

Theorem 3: The critical path is p -cyclic, where p is the cyclicity of G (B) .

Proof: The previous results on the cyclicity of B have illustrated that a maximum weight path

between two nodes that happens to traverse a critical cycle is cyclic. The critical path in a J -

unfolded graph has to consist of several traversals of some critical cycle if J is large enough.

Hence, the cyclicity of such a path is equal to p .

We use the preceding results to find the optimal blocking factors, when they exist, for sev

eral graphs in the next section. Unfortunately, it will be shown that the transient T can be quite

large sometimes. It will also be shown the cyclicity of MB {J) is sometimes less than p; this
c

occurs if there is more than one m.s.c.s in G (B) and the critical path always traverses critical
c

cycles from a subset of the total number of m.s.c.s's in G (B) . Then, the cyclicity of the critical

path will be the 1cm of the cyclicities of that subset of the m.s.c.s's and this might be smaller than

the cyclicity of B. We note that even if an optimal blocking factor does not exist, we can still

chooseblocking factors for which MB (J) is the smallest.

Examples

Example 1: Consider the graph in figure 1, reproduced in figure 8. Since the graph has arcs with

at most one delay, we do not need to do any graph expansion. The relevant matrices are:

^0 =

e 1 1 e 1

e e 1 e 1

e e e e 2

8 8 8 6 3

8 8 8 8 8

,and Ax =

8 6 8 6 8

1 6 6 6 6

8 8 2 2 8

3 3 8 3 6

6 8 8 6 8

. We calculate A
NO

0 1 2 8 4

e 0 1 6 3

6 8 0 6 2

6 6 6 0 3

6 6 6 e q
-l

Similarly, we can calculate B . The graphfor X B is shown in figure 9(a) and its criticalgraph is

shown in figure 9(b). From the critical graph, it is seen that the cyclicity is 2. By simulation (i.e,

by evaluating successive powers of B and stopping when we see the periodic regime), we find
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Fig 8. HSDF graph from figure 1.

-1.5 -1.5

b)

-0.5

Fig 9. a) The graph of the normalized B-matrix. b) The critical
graph of graph in a)

/+2 /
that T = 3. Hence, B = B \IJ£ 3. By calculating the first four powers of B, we get the fol

lowing values for MB (J) :

MB{\) = 0.5, MB (2) = 0.0, MB (3) = 0.5, MB (4) = 0.0.

Therefore, for this graph, even blocking factors are rate-optimal while odd blocking fac

tors arenot. The iterationperiod, as a function of /, is given by

T(J) = CP{J)/J = (XJ +MB{J))/J = X+MB{J)/Jt (EQ15)
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Fig 10.A graph with a 2-delay and 3-delay critical cycles

T(J) =

( 05X+y /= 1,3,5,

X+̂ y =X J=2,4,6,

Notice that although X~ B has a transient of two before it becomes periodic, the critical path is

cyclic immediately. This will not be true in general. However, we have observed that the transient

for the critical path is usually less than the transient for the matrix.

Example 2: This is an interesting example where the cyclicity is one even though there are no

critical cycles withonedelay in theHSDF graph. Thegraph for this example appears in figure 10.

This graph has X = 2. The graph GB is shown in figure 11(a), and the critical graph in figure

11(b). There are two critical cycles in the HSDF graph and three critical cycles in GB of lengths

2,3, and 5. Hence the cyclicity is gcd (2,3,5) = 1. By simulation, we find that T = 8. How

ever, there is no transient for MB (J) and it is equal to2 for every /. Theiteration period is given

by T(J) =X+j.
Example3: This example illustrates a case wherethe cyclicity of the critical pathis smaller than

the cyclicity of the matrix. The graph is depicted in figure 12.The maximum cycle mean for this

graph is 6.The graph GB is givenin figure 13, and thecritical graph in figure 14. From thecritical

graph, we seethat thecyclicity is 6.Through simulation, T turns outtobe8.Thecritical path has

no transient and is cyclic with cyclicity 3 as shown by

MB(l) =8,Mfl(2) =5,MB(3) = 4,MB(4) = S,MB(5) =5,MB(6) =4
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Fig 11. a) Graph of the B-matrix for graph in fig. 10. b) Critical
graph of graph in a).

Fig 12.The graph for example 3.

Fig 13.The graph of the B-matrix for graph in fig. 12
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The iteration period is thus

28 of 35

Examples

Fig 14. Critical graph forgraph in fig. 13.

a.}
T(J) = X.J

u.j

/= 1,4,7,...

/ = 2,5,8,...

J = 3,6,9,...

From the above equation, we can see that we will get the best performanceif we choose a block

ing factor that is a multiple of 3.

Example 4: There has been no transient in thecritical path in all of the previous examples. This

example shows that the transient can exist and can be quite large. The HSDF graph, the graph of

5, and the critical graph appear in figures 15(a,b,c). We have X=maxl 100, —, 99 J=100.
The cyclicity is 1. Simulationgives us T = 146 but the transient for the critical path turns out to

be 50. Thus, blocking factors greater than 50 are rate-optimal. The reason for the long transient is

that we have two interacting loops, one of which has a cycle mean very close to the maximum

cycle mean. It takes a long time for the effect of the critical cycle to start dominating.

Example5: The next two examples show the effect of retiming [19] on the blocking factor. Con

sider theHSDF graphs, their B-graphs, and critical graphs depicted in figure 16(a,b). Both graphs

have X = 35. The onein figure 16(b) is aretimed version of the graph in figure 16(a). Using the

same methods as in the previous examples, we find that theiteration period for each of thegraphs

is given by
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Examples

a)

GK^KG-KD

.0 0:

c)

Fig 15. a) An HSDF graph where the transient is large, b) The
graph of the B-matrix. c) The critical graph of b)

Ta(J) =

Th(J) =

**? J = 2,4,6,

»♦? / = 1,3,5,

hJ / = 2,4,6,

H / = 1,3,5,
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Examples

HSDF graph G

0^0

Fig 16. a) An HSDF graph thatdoes nothave a rate-opti
mal blocking factor, b) A retimed version of graph in a)
that does have a rate-optimal blocking factor.

It is seen that even blocking factors arerate-optimal in the retimed graph.

Example 6: The example in figure 17, taken from [2], shows that sometimes, no retiming results

in arate-optimal blocking factor. Every retiming of the graph results in an MB (J) that is greater

thanthe one for the original graph. Since the graph is perfect-rate (every loop hasone delay), the

cyclicity is one and we find that

T(J) =X+- V/^l
«/

If every node in the graph has unit execution time, then it has been shown in [4] that there is a

retiming that gives a rate-optimal blocking factor.
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Examples

Fig 17. No retiming results in a rate-optimal blocking fac
tor for this graph.

Example 7: The next example illustrates the analysis for a non-strongly connected HSDF graph

(figure 18). This graph hasa sinknode, H, and hence thedummy sinknode5 is shown explicidy.

In graphs that are not strongly connected, we speak of two transients. The first transient is due to

the fact that a path that does not intersect anycycle in the graph may be critical for a few unfold-

ings. As has been discussed before, this situation can only remain true for the first few unfoldings.

As the number of unfoldings increases, the critical path will be one that traverses some critical

cycles. Hence, the first transient is the number of unfoldings required for some path that does

intersect a cycle to become critical. As canbe seen from the figure, the path FGHS is not acces

sible in its entirety by anym.s.c.s of thegraph. Since this path has one delay, its length stays con

stant for all blocking factors greater than two. The length of the transient is therefore the number

of unfoldings needed for the weight of FGHS tobecome non-critical. By evaluating equation 5

for the first two blocking factors, we determine the weight of this path to be40; hence an upper

bound on the transient is 40/X = 40/5 = 8 unfoldings. The second transientis the same as the

transient encountered for strongly-connected graphs; namely, that arising from the interaction of

non-critical cycles with critical cycles as inexample 4. Of-course, the second transient may over

lap the first transient so that the length of the overall transient (i.e., the number of unfoldings

before the periodic regime is reached) need notbe equal to the sum of the two. In general, we

wouldneedto find the strongly connected components of thegraph and identifynodes that neither
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Examples

0K^0
Fig 18. A non-strongly-connected HSDF graph.

reach nor are reachable by any of the strongly connected components. We would then use equa

tion 5 to calculate C (J) for successive unfolding factors. If the maximal element in this matrix

(the critical path), at some unfolding factor, is for some node that can reach or is reachable by a

strongly connected component, then we know that we have finished the first transient. We then

continue until we see cyclic behaviour. The advent of cyclic behaviour in the maximum weight

signals the end of the second transient.

Continuing with the example, we determine the B graph (figure 19(a)). B is connected,

but the critical graph of B has two strongly connected components (figure 19(b)). These have

/ i *

cyclicities of 1 and 2; hence the cyclicity of the critical path is two. We compute B ~ ANCS for

JZ3 and find that

M (J) =( / odd

J even
(this is MB (J) from equation 12).

Therefore, we conclude that even blocking factors greater than 8 arerate-optimal.

In summary, for a non-strongly connected HSDF graph, we first find the strongly con

nected components of the graph and delete them. The resulting graph is acyclic, and we compute

the path that has the largest weight. Then, an upper bound on the first transient is the weight of

this path divided by the maximum cycle mean.We compute C (J) using equation5 for values of

/ past the bound we have until we see the maximum element reach the periodicregime.
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Fig 19. a) The graph of the B-matrix for fig. 18. b) The crit
ical graph of a).

Conclusion

In this paper, we have developed a formulation for the problem of finding rate-optimal

blocking factors for blocked, non-overlapped schedules. We have used a max-algebra formulation

to show that the critical path in a /-unfolded HSDF graph becomes cyclic as / becomes large

enough. We have shown that it is possible to determine this cyclicity by analyzing the critical

graph of the B -matrix, a matrix that arises out of the model. The cyclicity of the critical path

implies that we have to examine only a finite number of unfoldings to determine whether a rate-

optimal unfolding exists. This number is equal to the sum of the cyclicity and a transient. Unfortu

nately, the transient can be quite large sometimes.

While this paper has contributed to our theoretical understanding of the dynamics of

increasing the blocking factor, construction of rate-optimal blocked schedules for multiprocessors

is still a difficult problem. In addition, we often have a fixed, finite number of processors avail

able; finding the best blocking factor when we are processor constrained is an open problem of

more practical interest. The results in this paper certainly provide us with a upper bound on the

performance we can expect with a finite number of processors.

The issueof algorithmic efficiency has not been dealt with in this paper. Clearly, the tech

nique ofgraph expansion alone can cause an exponential blow-up in the size of the actual graphs

that are dealtwith if a large number of delays arepresent on any arc. While some algorithms that
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we use have running times that are polynomial in the size of the input graph (finding the maxi

mum cycle mean, finding strongly connected components), the algorithm that finds the periodic

regime (by evaluating successive powers of the B -matrix) is not polynomial time since the tran

sient can be exponentially long in certain instances. A possiblepolynomial-time algorithm might

make use of repeated-squaring to converge to the periodic-regime in polynomial time.

Possible future work includes studying efficiency issues in detail, in addition to finding

achievable optimal blocking factors when the number of processors is fixed and there is a cost

associated with interprocessor communication.
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