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Abstract

A new, time-domain, non-MonteCarlo method for computer simulation of electrical noise

in nonlinear dynamic circuits with arbitrary excitations is presented. This time-domain

noise simulation method is based on the results from the theory of stochastic differential

equations. The noise simulationmethod is general in the sense that any nonlinear dynamic

circuit with any kind of excitation, which can be simulated by the transientanalysis rou

tine in a circuit simulator, canbe simulated by ournoisesimulator in time-domain to pro

duce the noise variances and covariances of circuit variables as a function of time,

provided that noise models for the devices in the circuit are available. Noise correlations

between circuit variables at different time points can also be calculated. Previous work on

computer simulation of noise in integrated circuits is reviewed with comparisons to our

method. Shot, thermal and flicker noise models for integrated-circuitdevices, in the con

text of our time-domain noise simulation method, are described. This noise simulation

method was implemented in a circuit simulator, namely SPICE. Using this implementa

tion, two examples of noise simulation (a MOSFET ring-oscillator and a BJT active

mixer) are given.
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Chapter 1

Introduction

This paper presents a new, time-domain, non-Monte Carlo method for computer

simulation of electrical noise in nonlinear dynamic circuits with arbitrary excitations.

This time-domain noise simulation methodis based on the results from the theoryof sto

chastic differential equations. The noise phenomena considered in thiswork are caused by

the small current and voltage fluctuations that are generated within the integrated-circuit

devices themselves. Noise caused by the extraneous pickup of man-made signals is

excluded. The existence of noise is basically due to the fact that electrical charge is not

continuous but is carried in discrete amounts equal to the electron charge. Electrical noise

is associated with fundamental processes in integrated-circuit devices [1].

The importance of noisesimulation, probably, does not needelucidation. Noise rep

resents a lower limit to the size of electrical signal thatcan be amplifiedby a circuitwith

out significantdeterioration in signal quantity. It alsoresults in an upper limit to the useful

gain of an amplifier, because if the gain is increased without limit the output stages of the

circuit will eventually begin to cut off or saturate on the amplified noise from the input

stages [1]. The influence of noise on the performance is not limited to amplifier circuits.

For instance, active integrated mixer circuits, which are widely used for down conversion

in UHF and microwave receivers, add noise to their output. It is desirable to beable to pre-



diet the noise performance of a given mixer design [2,3]. Most of the time, amplifier cir

cuits operate in small-signal conditions, that is, the operating point of the circuit does not

change. For analysis and simulation, the amplifier circuit with a fixed operating-point can

be modeled as a linear time-invariant network by making use of the small-signal models

of the integrated-circuit devices. On the other hand, for a mixer circuit, the presence of a

large local-oscillator signal causes substantial change in the active devices' operating

points over time. So, a linear time-invariant network model is not accurate for a mixer cir

cuit. There are many other kinds of circuits which do not operate in small-signal condi

tions, such as a voltage-controlled-oscillator (VCO) composed of delay cells. Noise

simulation of these circuits requires a method which can handle nonlinear dynamic cir

cuits with arbitrary excitations.

The three important types of noise in integrated circuits are shot noise, thermal noise

and flicker noise which will all be considered in this work. Shot noise and thermal noise

are related directly to physical parameters; empirical data are not required for their charac

terization. On the other hand, flicker noise requires empirical data for its prediction.

In Chapter 2 below, previous work on computer simulation of noise in integrated

circuits is reviewed with comparisons to our method. In Chapter 3, shot, thermal and

flicker noise models for integrated-circuit devices, in the context of our time-domain noise

simulation method, are described. Chapter 4 describes our time-domain, non-Monte Carlo

method for computer simulation of electrical noise in nonlinear dynamic circuits with

arbitrary excitations. In Chapter 5, the implementation of the noise simulation method, in

the context of a nodal-analysis circuit simulation program (SPICE), is described. Two

examples of noise simulation, using the implementation described in Chapter 5, are pre

sented in Chapter 6. Conclusions and future work are stated in Chapter 7. Background

material on stochastic differential equations is given in the Appendix.



Chapter 2

Previous Work

Previous work on noise simulation canbe classifiedaccording to two specifications:

• Domain of simulation. (Time domain, frequency domain or a mixture of both)

• The type of circuit the method can handle, (e.g. linear time-invariant circuits)

2.1 Frequency Domain Methods

2.1.1 Noise Analysis and Simulation for Linear Time-Invariant or

Small-Signal Equivalent Circuits

The electrical noise sources in passiveelements and integrated-circuit devices have

been investigated extensively. Small-signal equivalent circuits, including noise, for many

integrated-circuit components have been constructed [1]. The noise performance of a cir

cuitcanbe analyzed in terms of these small-signal equivalent circuits by considering each

of the uncorrelated noise sources in turn and separately computing its contribution at the

output. Consider a noise current source with a one-sided spectral density S (J). In a small

bandwidth A/, the mean-square value of the noise current is given by i2 = S(f)A/.The



noise current in bandwidth A/ can be represented approximately by a sinusoidal current

generator with rms value i = JS (/) A/. If the noise current in bandwidth A/ is now

applied as an input signal to a linear time-invariant circuit, its effect can be calculated by

substituting the sinusoidal generator and performing circuit analysis in frequency domain

in the usual fashion. When the circuit response to the sinusoid is calculated, the mean-

square value of the output sinusoid gives the mean-square value of the output noise in

bandwidth A/. Thus, network noise calculations reduce to familiar sinusoidal circuit anal

ysis calculations. The only difference occurs when multiple noise sources are applied, as is

always the case in practical circuits. Each noise source is then represented by a separate

sinusoidal generator and the output contribution of each one is separately calculated. The

total output noise in bandwidth A/ is calculated as a mean-square value by adding the

individual mean-square contributions from each output sinusoid. This depends, however,

on the original noise sources being independent. This requirement is satisfied when the

noise sources in a device are modeled such that all the noise sources arise from separate

mechanisms (i.e. they are independent). This analysis is done for a range of frequencies.

The contributions from this range of frequencies are summed at the output [1].

For simple circuits the above procedure leads to expressions for total output noise,

which enable the designer to assess the relative importance of the various noise sources,

and thus to optimize noise performance. For a complicated circuit, the large number of

noise sources and circuit complexity completely preclude hand calculation. In fact, even

machine computation of the noise contributions from all sources can be time consuming.

The way to avoid excessive computation in noise simulation is to attempt to isolate only

the most significant noise sources, and to consider only their contribution to the noise out

put. Aside from the obvious loss of accuracy which arises with such an approach, there is

also a reliance on the intuition of the designer, which, for complicated circuits, may not

always be correct [4].

Fortunately, an extremely efficient computational technique based on the interrecip-

rocal adjoint network concept, was proposed [4][5], This technique calculates the noise

contribution from an arbitrarily large number of noise sources at a given frequency with

little more computer time than is normally required for a single noise source. The noise

analysis in SPICE is based on this method.



Unfortunately, this method is only applicable to linear time-invariant circuits (e.g.

the small-signal equivalent circuits corresponding to circuits with fixed operating points).

It is not appropriate for noise simulation of circuits with changing bias conditions (e.g. a

mixer circuit as discussed in Chapter 1), or circuits which are not meant to operate in

small-signal conditions (e.g. a ring-oscillator composed of MOSFET inverter delay cells).

2.1.2 Noise Simulation for Nonlinear Circuits with a Periodic Large

Signal Excitation

[2,3] and [6] present noise analysis techniques for nonlinear circuits with a periodic

large signal excitation (e.g., mixer circuits). The noise analysis for a nonlinear circuit with

a periodic large signal excitation reduces to the analysisofa linearperiodically time-vary

ing circuit with cyclostationary [2,3] [6] noise sources. This is arrivedby a first-order Tay

lor's expansion of the circuit equations around the periodic steady-state solution of the

circuit without the noise sources and the small-signal excitations. This Taylor's approxi

mation is similar to the one we will present in Section 4.1. The noise analysis methods

described in [2,3] and [6] use frequency-domain methods based on Fourier transforms to

analyze the linear periodically time-varying circuit with cyclostationary noise sources

obtained by the Taylor's approximation. Even though the implementations in [2,3] and [6]

are rather different, both of the techniques are based on manipulating impulse responses

and transferfunctions for a linearperiodically time-varying system, and spectral densities

for cyclostationary noise sources. These noise analysis techniques are applicable to only a

limited class of nonlinear circuits with two excitations, where one of the excitations is

large andperiodic andthe otheris small (e.g., mixer circuits, switchedcapacitor circuits).

2.2 Time Domain Methods

2.2.1 Monte Carlo Noise Simulation for Nonlinear Dynamic Circuits

The previous work on noise simulation in time-domain is restricted to techniques

which employ the Monte Carlo method [7]. In this method, current sources, which repre-



sent the equivalent noise sources of the devices, are introduced in each noisy component.

Then the simulator performs many transient simulations of the circuit while the noise

sources generatenoise. Between two transient simulations, parameters of the noise gener

ators are changed in order to get a different trajectory for the circuit A transient simula

tion is alsorun without the noise sources. After all these simulations, at each time step, the

rms noise value is calculated by statistical analysis. The noise current generators are sup

posed to represent the physical noise sources of the devices. There are several schemes to

generate noise, but most of these schemes "disturb" the normal functioning of a simulator.

It is stated in [7] that random characteristics, introduced by the noise signals, are disrup

tive of the integration of differential equations with stochastic terms. To circumvent this

problem, the noise generationmethod that has been used creates"continuous" and "fully

deterministic signals". The generated noise signals are the sum of a fixed number of sinu

soids. Magnitudes, frequencies and phases of the sinusoids are used to control the charac

teristics of the noise sources. Frequencies and magnitudes are selected so as to

approximate a desired power spectral density. Phases are changed to obtain different

"sample paths" for the noise sources. If n is a noise process, then n(t) is a random vari

able for fixed t. A "sample path" of n, denoted by ns(t), is a deterministic function of t

consisting of observation values for n at every t.

This method has several drawbacks. Firstof all, noise generators are only approxi

mations to modeled physicalnoise sources of a device even if the random number genera

tors are assumed to be ideal: Powerspectral densities are approximated with discrete steps

in frequency. Moreover, pseudo-random number generators often do not generate a large

sequence of independent numbers, but reuse old random numbers instead. This becomes a

problem if a circuit with many noise sourcesis simulated. This is usually the case, because

every device has several noise sources associated with its model.

In this method, the same circuit is simulated many times by obtaining "different"

sample paths for each noise source. Then a statistical analysis is carried out to calculate

averages and variances over these many simulations. The noise content in a waveform will

be much smaller when compared with the magnitude of the waveform itself. As a result,

the waveforms obtained for different samplepathsofnoise generators will be very close to

each other. It is known that, in a simulator, these waveforms areonly numerical approxi-



mations to the actual waveforms, therefore they contain numerical noise. The rms value of

noise is calculated by taking a difference of these waveforms. That is, two large numbers,

which have uncertainty in them, are being subtracted from each other. Consequently, the

rms noise calculated with this method, in fact, includes the noise generated by the numeri

cal algorithms. This furthermore degrades the accuracy of the results obtained by this

method.

This method has one advantage when compared with the frequency domain methods

discussed in Section 2.1: It is not restricted to linear time-invariant, or to nonlinear circuits

with a large signal periodic excitation. In theory, it is applicable to the general class of

nonlinear dynamic circuits with any kind of excitation.

2.2.2 Our Method - Time-Domain non-Monte Carlo Noise Simulation

for Nonlinear Dynamic Circuits with Arbitrary Excitations

Our method, unlike the frequency domain methods, is not restricted to linear time-

invariant or nonlinear circuits with a large signal periodic excitation. Our time-domain

noise simulation method is general in the sense that, any nonlinear dynamic circuit with

any kind ofexcitation,which can be simulated by the transientanalysis routine in a circuit

simulator, can be simulated by our noise simulator in time-domain to produce the noise

variances and covariances of circuit variables as a function of time, provided that noise

models for the devices in the circuit are available. The noise models for integrated-circuit

devices, in the context of our noise simulator, are describedin Chapter3.

Ourtime-domain noise simulation method is based on theresults from the theory of

stochastic differential equations. Thereare no pseudo-random numbergenerators involved

in the simulation, therefore the problems associated with them do not exist.

The simulation of the averagewaveforms (without noise in the circuit) and the sim

ulation of noise are separated, even though they are done concurrently. Thus, the numeri

cal noise problem that arises in Monte Carlo methods is avoided.

Our method is capable of calculating variances and covariances (that is, the covari

ance matrix) for the noise content in the node voltages and other circuit variables in a cir-



cuit as sl function of time. Furthermore, correlations between circuit variables at different

time points can also be calculated.

Finally, the implementation of our method fits naturally into a circuit simulator

(such as SPICE) which is capable of doing time-domain transient simulations. Noise sim

ulation is done along with the transient simulation over the time interval specified by the

user.



Chapter 3

Noise Models

The electrical noise sources in passive elements and integrated-circuit devices have

been investigated extensively, and appropriate models have been derived [1][8]. Tradition

ally, these noise models are presented as stationary noise sources in the small-signal

equivalent (at an operating point) circuits of the devices [1]. In this chapter, we describe

the adaptation of these noise models for use in our time-domain noise simulation method.

In ourmethod, the noise sources are inserted in the large-signal models of the integrated-

circuit devices and they are, in general, nonstationary. In Section 3.1, the adaptation of

shot, thermal andflicker noise models forresistors andjunction diodes will be described.

The noise models for these two simple devices are representative of noise models for all

other integrated-circuit devices such as BJTs and MOSFETs, because all kinds of noise we

consider (shot, thermal and flicker noise) exist in these devices. The noise source models

we use in our method are adapted from [1] and [8].

As it will become clear in Chapter 4, our noise simulation method requires that

noise sources are white. The thermal and shot noise sources are modeled as white noise

sources, hence they can be directly includedin the noise simulation. However, the flicker

noise sources can not be included in the noise simulation as they are. The inclusion of

flicker noise sources into the noise simulation method will be described in Section 3.2.
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3.1 Shot, Thermal and Flicker Noise Models

All the noise sources in the devices are modeled as uncorrelated current sources,

because they are to be employed in the noise simulation in the context of an MNA circuit

simulator, namely SPICE.

3.1.1 Resistors

Monolithic and thin-film resistors display thermal noise. The thermal noise in a

resistor can be modeled by a white Gaussian noise current source with intensity

^thermal =f^ (3-D
where k is Boltzmann's constant, T is the absolute temperature in Kelvins and R is the

resistance. The thermal noise source associated with a resistor is a stationary white noise

process, assuming that the resistance value is a constant as a function of time. The inten

sity of a stationary white Gaussian noise process is equal to the square root of the power

spectral density. Fora stationary white Gaussian noise process, the power spectral density

(a function of frequency) is a constant on the entire real axis. This current noise source is

included in the circuit between the positive and negative nodes of the resistor as seen in

Fig. 3.1.

*' ^thermal

Figure 3.1: Resistor Model with Noise Sources

The noise current source symbol in Fig. 3.1 has adouble-ended arrow to represent the fact
that it has no polarity.

3.1.2 Junction Diodes

The series resistance rs, in the model of a junction diode (Fig. 3.2), is a physical

resistor due to the resistivity of silicon, hence it exhibits thermal noise. The thermal noise

in rs canbe modeledby a whiteGaussian noise current source with intensity
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'Kkermal =f^ 0-2)
The p/t-junction exhibits shot noise which is associated with the current flow

through the diode. The intensity of the shot noise current, which is white Gaussian, is

given by

'MLCfl = J«*dV) 0-3)
where q is the electronic charge (1.6xl0~19C), and ID (r) is the noiseless diode current.
Note that, in this case, intensity is a function of time, hence this white noise source is not

stationary. The square of the time-varying intensity for a nonstationary white noise source

as above can be thought to be the time-varying power spectral density, which is a constant

(as a function of frequency) on the entire real axis. During nonlinear operation the current

through the diode shows variations as a function of time, so does the intensity. The noise

less diode current ID (r) is obtained by a transient simulation of the circuit without the

noise sources. ID (r) is calculated using the values of the circuit variables (i.e. the diode

terminal voltages) from this transient simulation.Then, the intensity given by (3.3) is cal

culatedusing the valuesof ID (t). Details will be given in the description of the noise sim

ulation method in Chapter 4.

(3.3) is given in [1] to be valid for a constant current flow. The variations in the

diode current in any practical circuit are much slower when compared with the shot noise

generating mechanisms in a junction, which validates (3.3) for a time-varying current.

This fact is also valid for thermal noise generatingmechanisms. (3.1) can also be used for

a time-varying resistor. In this case, the variations in a resistance in any practical circuit

are much slower when compared with the thermal noise generating mechanisms. This

makes it possible to model shot noise associated with a time-varying current and thermal

noise associated with a time-varying resistance as a nonstationary white Gaussian noise,

as given by (3.1) and (3.3).

The flicker noise source in a diode is modeled by a nonstationary noise process

which has a time-varying power spectral density given by (see Fig. 3.2)

d /DWflVictor V» 0 =^"Lr- (3.4)
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where KF is a constant for a particular device, a is a constant in the range 0.5 to 2 and /

is the frequency. This noise source can not be included in the noise simulation directly,

because it is not white (i.e. the time-varying power spectral density is not a constant as a

function of frequency). A way of synthesizing this source from white noise sources will be

discussed in Section 3.2.

thermal

4
IN^WWWdW QoM: \±)Sflicker (f,t)

T

Figure 3.2: Diode Model with Noise Sources

3.1.3 BJTs

The base resistance rb, the collector resistance rc andthe emitterresistance re in a

BJT model are actual physical resistors and thus have thermal noise. The thermal noise in

these resistors are modeled by white noise current sources with intensities (see Fig. 3.3)

^thermal
1 1= \2kT- /*&_,:= 2kT- lrft\thermal thermal

•V 'b i c l -e

The collector current Ic (t) showsfull shotnoise which is modeled by a white noise

source with time-varying intensity given by (see Fig. 3.3)

7^iorW =MW (3-6)
The base current Ib (r) also showsfull shot noisewhich is uncorrelatedwith the col

lector current shot noise. It is modeled by a white noise sourcewith time-varying intensity

given by (see Fig. 3.3)

™i»e) = fiw 0.7)
Flicker noise in a BJT has been found experimentally to be represented by a current

noise source across the internal base-emitter junction [1]. It is modeled by a nonstationary

noise process which has a time-varying power spectraldensity given by (see Fig. 3.3)

= \2kT- (3.5)
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hit)*
*flicker W =KF (3.8)

Since all these noise sourcesarise from separate, independent physical mechanisms,

they are uncorrelated with each other.

c

/
^thermal® \ TC

nythermal

b *JAAA/V
rb

'*&„,«

^thermal

Figure 3.3: BJT Model with Noise Sources

3.1.4 MOSFETs

«&*<'>©

The drain resistance rd and the source resistance rs in a MOSFET modelare actual

physical resistors and thus have thermal noise. The thermal noise in these resistors are

modeled by white noise currentsources with intensities (see Fig. 3.4)

^thermal =\^^ Itf,\thermal = \2kT- (3.9)

The channel material in a MOSFET is resistive, hence it exhibits thermal noise. This

noise source is modeled by a white noise source with time-varying intensity given by (see

Fig. 3.4) [8]



inSSOSO) =

where

u =

H i

I
J T V

^rp(r) (Vgs(t) -VthW^'^-u) ifinthelinearregion

14

if in the saturation region

(3.10)

v^U)vgAt)%,hU) PW =^0+̂ (0)
gm(t)=V(t)(v<t)-v,h(t))

(3.11)

Cgdo thermal V*.
rd

bd

s%?cL™<f>t)(h <£)'<('>
H<H

g
^ Cgso

™$Z3w®
- b

'fc*

^t
iK'hermalW

T5 H<r-

'$**

Figure 3.4: MOSFET Model with Noise Sources

Flicker noise in a MOSFET is also found experimentally to be represented by a

internal drain-internal source current generator [1]. It is modeled by a nonstationary noise

process which has a time-varying powerspectral density given by (see Fig. 3.4)

MOSFET Id(t)aSflrcLTVO =KF^j (3.12)
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3.2 Inclusion of Flicker Noise Sources into Simulation

In our noise simulation method, only white noise sources are allowed. Flicker noise

sources have a power spectral density which is not a constant as a function of frequency.

The naturalway to include flicker noise sourcesinto simulation is, somehow, to synthesize

them using white noise sources. A promising approach for 1// noise generation is to use

the summation of Lorentzian spectra which is defined by (3.13) [9]. This approach has

been used in instrumentation to generate continuous-time 1//noise over a specifiedrange

of frequencies. It has been shown that a constantdistribution of 1.4 poles perdecade gives

a 1// spectrum with less than 1% error [9]. A sum of N Lorentzian spectrais given by

(3.13)

where (p^s designate the pole-frequencies and / is the frequency. It has been shown in [9]

that N = 20 poles uniformly distributed over 14 decades are sufficient to generate 1//

noise over 10 decades with a maximum error less than 1%.

Each Lorentzian spectrum in the summation in (3.13) can be easily obtained by

using the thermal noise generator of a resistor Rh connected in parallel to a capacitance

Ch = C, and their sum can be achieved by putting, as shown in Fig. 3.5, N of such

Rh-Ch groups in series [9]. For achoice ofN= 15, with C = 32nF, Rx = 5xl08Q
and Rh+i = R^/S we obtain the spectra shown in Fig. 3.6 at the output of the circuit

given in Fig. 3.5. An ideal 1// spectrais also shown in Fig. 3.6.

Ro <i

1//noise

Figure 3.5: 1// Noise Synthesizing Circuit
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Figure 3.6: The Spectraat the Outputof the 1// Noise Synthesizing Circuit

10" 10* 10'°

Frequency (Hz)

Figure3.7: Frequency Range of"Good" Approximation to 1// Noise

In Fig. 3.7, we plot S (f)f as a function of frequency for the 1// noise synthesizing

circuit, in which the frequency range of "good" approximation to 1// noise is seen explic

itly. By adding more poles (Rh - Ch groups) to thecircuit, the"good" approximation fre

quency range can be extended.

In the noise simulation, a flicker noise source in the model of an integrated-circuit

device is built by using the circuit in Fig. 3.5 with an ideal voltage-controlled current

16
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source. This is illustrated in Fig. 3.8. The voltage-controlled current source is connected

between the two nodes of a device where the flicker noise source is modeled.

The spectral density of the 1// noiseobtained from the circuitin Fig. 3.5 is approx

imately (a good approximationin the desired frequencyrange)

S(f) =
2o*l

(3.14)

where a2 = kT/ (2C). This spectral density is time-invariant The flicker noise models
given in Section 3.1 require time-varying spectral densities. This is achieved by having a

time-varying transconductance (g(t)) for the voltage-controlled current source in Fig.

3.8. For instance, for a diode, we require that the flicker noise source spectral density is in

the form given by (3.4). This is assured with

g(t) =
nKFID(t)

2o2
(3.15)

One disadvantage of synthesizing flicker noise sources with this method is the

increased CPU time for noise simulation: Every flicker noise source synthesizing circuit

(Fig. 3.5) introduces extra nodes in the circuit.

1//Noise

Synthesizing

Circuit

+

v

r

g(')vQ)
\

Flicker
Current
Noise
Source

Figure 3.8: Flicker Current Noise Source Synthesis for Simulation
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Chapter 4

Time-Domain non-Monte Carlo

Noise Simulation for

Nonlinear Dynamic Circuits
with Arbitrary Excitations

The noise simulationmethod will be describedassuming that modified nodal analy

sis (MNA) [10] is used for the formulation of circuit equations. MNA is the method for

circuit equation formulation in most of the circuit simulators (such as SPICE) available.

Translation of the noise simulation method into other ways of circuit equation formulation

is straightforward.

4.1 Derivation of the Stochastic Differential Equation for Noise

from MNA Formulation of the Nonlinear Circuit Equations

The MNA equations for any circuit, without the noise sources, can be written com

pactly as

F(x,x,t) =0 x(0) = jc0 (4.1)
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where x is the vector of the circuit variables with dimension n, & is the time derivative of

x, t is time and F is mapping x, & and t into a vector ofreal numbers ofdimension n. It is

obvious that x = x (t) and x = £ (i). The time dependence of x and x will not be writ

ten explicitly for notational simplicity. In MNA, the circuit variables consist of node volt

ages and branch currents for some elements (e.g. inductors and voltage sources). The

circuit equations consist of the node equations (KCL) and branch equations of the ele

ments for which branch currents are included in the circuit variables vector. Under some

rather mild conditions (which are satisfied by well modeled circuits) on the continuity and

differentiability of F, it can be proven that there exists a unique solution to (4.1) assuming

thata fixed initial valuex (0) = x0 is given [10]. Let jc, be the solution to (4.1). The tran

sientanalysis in circuitsimulators solves for xs usingnumerical methods for solvingordi

nary differential equations (ODEs) [10]. The initial value vector x (0) = x0 is obtained

by a dc solution of the circuit before the transient simulation is started. For a circuit, there

may be several different dc solutions.

The first-order Taylor'sexpansion of F around xs is expressed as

F(x,x,t) =F(Xs,xs,t) + *-F(x,x,t) (x-xs)+^f(x,x,t)
x = x. ax

x = xm

(x-xs) (4.2)

x-x.

which will be used later.

If the noise sources are included in the circuit, the MNA formulation of the circuit

equations can be written as

F(x, x, t) +B (x, t) v = 0 x (0) = x0 +xnoiset 0 (4.3)

where B (x, t) is an n x p matrix, the entries of which are a function of x, and v is a vec

tor of p white Gaussian stochastic processes. A one-dimensional Gaussian white noise is a

stationary Gaussian process %(t), for -©© <t < <», with mean e [£ (t) ] =0 and a con

stant spectral density on the entire real axis. The covariance function of § (t) is givenby

e [£ (s) £ (t + s) ] = 5 (t), where 8 is Dirac's delta function [11]. The white Gaussian

noise £ (t) is a very useful mathematical idealization for describing random influences

that fluctuate rapidly and hence are virtually uncorrelated for different instants of time. A

whiteGaussian noise modelis appropriate for thermal and shotnoise in integrated circuits

[1]. Flicker noise sources are taken care of in the way described in Section 3.2. v in (4.3)
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is simply a combination of p independent one-dimensional white Gaussian noise pro

cesses as defined above. These noise processes actually correspond to the noise sources

which are included in the models of integrated-circuit devices. Since the noise models for

the integrated-circuit devices are to be employed here in the context of an MNA circuit

simulator (SPICE), noise sources in the devices are all modeled as uncorrelated current

sources. Details about noise models were given in Chapter 3.

B (x, t), in (4.3), contains the intensities, as described in Chapter 3, for the white

noise sources in v. The intensities for these noise sources are, in general, a function of

time. For instance, in nonlinear operation, the current flowing through a device may show

variations. Shot noise in the device is associated with this direct current flow, and the

intensity of shot noise is a function of this current. In fact, because of intensity variations,

this noise source is not stationary. Thus, the nonstationarity of the noise sources in the cir

cuit are captured in B (x, t). Naturally, every current noise source is connected between

two nodes, one of which may be the ground node. Every column in B (x, t) corresponds

to a noise source in v. Every column has either one or two nonzero entries, depending on

whether, one of the nodes which the corresponding current noise source is connected to, is

ground. The rows of B (x, t) correspond to either a node equation (KCL) or a branch

equation. There are no nonzero entries in the rows which correspond to the branch equa

tions.

(4.3) is a system of nonlinear stochastic differential equations (SDEs). The solution

processes for this kind of SDEs, where the forcing is an irregular stochastic process such

as white noise, have nondifferentiable sample paths [12]. They require fundamentally dif

ferent and complex methods of analysis and numerical solution [12]. (Background mate

rial on stochasticdifferential equations can be found in the Appendix). Fortunately, some

characteristics of our problem help us simplify the numerical solution of (4.3): The noise

content in the signals in any useful circuitis, almostalways, much smallerwhen compared

with the signal itself.

Let xsn be the solution of (4.3). xsn is not deterministic, sinceit is the solution of the

circuit equations with the noise sources included, and satisfies

P (*,* *sn> 0 +* (xsn, 0 v = 0 xsn (0) = x0 +xnoiset 0 (4.4)
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where x0 is deterministic, and x^^ 0 is a vector of n zero-meanrandom variables. We

use (4.2) in (4.4) to approximate F (xsn, xsn, t), andwe obtain

F(xs,xstt)+±F(x,x,t) (xsn-xs)+4jf(x,x,t) (xsn-xs)+B(xsn,t)v = 0

Defining

x = xs

x = xt

xsnW -x0 + xnoise,0

x = xt

x-x.
(4.5)

X = X —X
•*noise "^sn *s (4.6)

is, actually, the difference between the solutions of the circuit equations, with and

without thenoisesources. In other words, xnoise is thenoise content in xsn. xnoise is much

smallerwhen compared with xs, which validates the above approximation.

For notational simplicity, define

"noise

A(t) =JLF(x,x,t)
x = xg

x-x.

C(t) =^F(x,x,t)
x = x,

where A (t) and C(t) are n x n matrices with time-dependent entries.

Furthermore, we approximate

B(xsn,t)=B(xs,t)

and define

B(t) =B(xs,t)

If (4.6), (4.7), (4.8) and (4.9) are substituted in (4.5) we obtain

F(i5,^0+A(0^/5C +C(OJfn^+B(r)vsO

xnoise (°) =*0 +xnoise, 0~ xs «»
Since xs is the solution of (4.1) we have

F(xs,xs,t) =0 xs(0) =x0

and if we substitute (4.11) in (4.10), we obtain

AM Xnoise +CM xnoise +B(0 V= 0 Xnoise (0) = X^ 0

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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(4.12) is a linearSDE[11] in Jfno/5C with time-varying coefficients. A (t), B (t) and

C (t) are functions of xs, andthey do not depend on JCnoi5e. The solution of this equation

will be discussed in the next four sections. An intuitive explanation for (4.12) follows.

The numerical solution of (4.1), transient analysis of a circuit in time-domain, can

be viewed as solving for the changing operating point of the circuit as a function of time.

With this perspective, the approximations made (the first-order Taylor's expansion of

F (£sn, xsn, t) around xs in (4.4), andthe approximation expressedby (4.8)), in the deriva

tion of (4.12), can be interpreted as linearizing the nonlinear circuit at its current time

operating point and inserting the noise current sources into this linear network. Lineariza

tion of the nonlinear circuit at every time point can, alternatively, be expressed as chang

ing the parameters of the linearized circuit at every time point, thus obtaining a linear

time-varying network. The intensities for the noise current sources arecalculatedusing the

information in the current operating point of the circuit.

4.2 Transformation of the Stochastic Differential Equation for

Noise into State-Equation Form

To make use of some of the results from the theory of SDEs, (4.12) will be put into

the form

3> = E(t)y + F(t)v y(0) = y0 (4.13)

If C (t) is a full-rank matrix, this can be easily done by premultiplying both sides of

(4.12) by the inverse of C (0. However, this is not true in general; C (t) may have zero

columns. For instance, if a circuit variable is a node voltage, and if this node does not have

any capacitors connected to it in the circuit, then all of the entries in the column of C (t)

corresponding to this circuit variable will be zero for all t. At this point, we should note

that the zero-nonzero structure of A (t), B (t) and C (t) is independent of t. This can be

easily seen by considering the interpretation given at the end of the last section. At every

time point, the structure of the linearized circuit doesnot change, but the parameters of the

circuit (e.g. resistor, capacitor values) do change, creating a linear time-varying network.

So, asexplained above,someof thecolumns of C (t) are structurally zero, independent of
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t. If we reorder the variables in x •e in such a way that the zero columns of C (t) are

grouped at the right-hand side of the matrix, (4.12) becomes

[AjCOAjM] "noise

X2 .
"*notse

x1

[c, w o] i1.•"noise

£ •""noise

(0) y1
""noise, 0

_ noise, 0

+ B(t)v = 0

(4.14)

where Ax (r) and Cx (r) are nxm, A2 (f) is /z xA:, jcJ^^ is an m-dimensional vector,
xnoise *s a fc-dimensional vector, m is the number of nonzero columns in C (t) and it is

the number of zero columns. Naturally, n = m + k. If we expand (4.14), we obtain

*1 <*> Xnoise +A2 W4*.+Cl « *Ln +BW V=°

Xnoise >^' "" xnoiset 0 xnoise VW "~ Xnoiset 0

Next, we apply elementary operations to (4.15) such that Cx (f) is replacedby its

reduced row echelon form. Any of the following operations on the set of n equations in

(4.15) is called an elementary operation

1. Interchanging the order of any two equations.

2. Multiplying the both sides of an equation by a nonzero scalar.

3. Adding a multiple of any equation to another equation.

After these operations, (4.15) turns into

Al(t)XLise +A2WXnoise+C\ «*LM+* «V =0

^noise ^' Xnoise, 0 2 . (0) = X2 •
noise V*7/ *iwi.noise noise, 0

where Cx (f) is in its reduced row echelonform

Ci (0 =

(4.15)

(4.16)

(4.17)

/m is the m-dimensional identity matrix. Now, we partition the equations in (4.16) as

shown below



An (0

A12(t)
x1 • +""noise

A2i(t)

A22(t)
JC*

noise ""noise T

Bi(t)

B2(t)
v = 0
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(4.18)

xnoise V"' xnoise, 0 "*nowc v**/ xnoise, 0

into two groups, consisting of m and &equations. If the two groups of equations are writ

ten separately, we obtain

Ai\it)xlnoise+All(t)x2"noise

r1 . (C\\ - ^1
noise (0) = xL,,noise, 0

A
noise ^ ""noise +B1(r)v = 0

- v-2
Viofre v^' Xnoise, 0

^12(0^L«C +^22(0^C+52(0V = 0
We solve for x?_,. in(4.20) to get

(4.19)

(4.20)

-1. T*L« =- ^22(0 M12 (0*L5C - 0*22 (t)" )2?2 (0V (4.21)
The above step assumes that A22(r) (kxk) is nonsingular. Nonsingularity of A22(r)

means that the variables in xnoise which appear without time-derivatives in the equations

can be expressed in terms of the variables which appear with derivatives. In other words,

for every variable appearing in the equations without a derivative, there exists at least one

equation, without time-derivatives, containing this variable. This condition is always satis

fied if the variable is a node voltage. If a node voltage appears without time-derivatives in

the equations, this means that there are no capacitors connected to this node. Then the

KCL equation for this node, which does not contain derivatives, is the equation which is

used to express this node voltage in terms of the other variables. On the other hand, this

conditionis not always satisfied for voltage source currents, which always appear without

derivatives in the equations. The only equations a voltage source current canappear in, are

the equations corresponding to the nodes the voltage source is connected to. If capacitors

areconnected to these nodes, then the only equations containingthe voltage sourcecurrent

have derivatives in them, hence they cannot be used to expressthe voltage source current

in terms of the other variables, which means that A22 (t) is singular. Note that this prob

lem arises only if both nodes of the voltage source are connected to capacitors, or one of

them is connected to a capacitor andthe otheris ground. This problemcan be taken careof

by eliminating thevoltage source current variable and substituting the branch equation for
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this voltage source in the circuit equations in (4.12). At this point, we will assume that

^22(0 is nonsingular.

Define

D1 (t) =- 6*22 (0"S^i2 (0 £>2 M =- (^22 (t)"l)B2 (t) (4.22)
Equation (4.21) also suggests that the initial values xnoise0 and xnoise0 can notbe inde

pendent of each other. Indeed, we require

*L«. 0=*>i (0) *lise. 0+D2 (0) v(0) (4.23)
where we have used (4.22) in (4.21) with r = 0.

Next, we use (4.21) and (4.22) in (4.19) to get

An {')xl,ise+A~i\ (')£>! (0*L«+*l*+5i (0v+^21 WC2Wv=0
Xnoise \V) "- xnoise, 0

and hence

*noi5«'^' = Xnoise, 0

Defining

£*.— Wh W +Aa<0J>i«>*;*«- (*i W +A21(»)£>2(f))v

£(0 = -Mn(0 +^2i W^ito) ^(0 = -GM0 +A21(0£>2(0) (4'26)

and using (4.26) in (4.25) results in

x\oise = E(0'Li*+ F(r) v *™"(0) =*i** 0 (4-27)

4.3 Solution of the Stochastic Differential Equation for Noise

The SDE for noise, which was derived in the last two sections, is given by

xnoise = E(t)Xnoise + F(»V Xnoise«» = Xnoise,0 <4-28)
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*L«.0 =^i (°)*L«.o+J>2 (0) v(0)

x1 •

""noise

= *«™fi(reoraered) (4.30)

(4.28) is a linear differential equation where the forcing is an irregular stochastic

process which is white noise. A mathematically rigorous treatment of equations of this

type requires a new theory. In 1951, Ito defined the Ito or stochastic integral and in doing

so put the theory of SDEs on a solid foundation [11]. (4.28) is written symbolically as a

linear SDE, but it is interpreted as an integral equation with Ito or Stratonovich stochastic

integrals [11]. The solution of (4.28) obtained by the Stratonovich interpretation is equal

to the one obtained by the Ito interpretation, because it is a linear SDE in the narrow sense

[11]. A detailed explanation of Ito and Stratonovich stochastic integrals and stochastic dif

ferential equations can be found in [11], [12] and [13]. Some background material on

SDEs can also be found in the Appendix. In the Appendix, a short introduction to SDEs is

given, and moreover, some results from the theory of SDEs, which will be used in the

development of the noise simulation method, are summarized. In the following develop

ment, we state and use these results from the theory of SDEs.

(4.28) is often written in the form

Koise =E(t)x\oisedt+F(t)dw xnoise(0) =xloiset0 (4.31)
where w is a vector of p independent one-dimensional Wiener processes. A p -dimen

sional Wiener process can be defined as a process with independent and stationary,

N(0, (tx -12)Ip)-distributed increments w(tx) -w (t2), with initial value w(0) =0.
Here, N (Mean, Cov) denotes the p-dimensional normal distribution with expectation

vector Mean and covariancematrix Cov [11]. A Wiener process can be thought to be the

"integral" of a white noise, or, alternatively, white noise is the "derivative" of a Wiener

process in the sense of coincidence of the covariance functional [11]. In our case, we

have
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w(t) =jv(z)dx v(t) =w(t) (4.32)
o

As with ordinary differential equations, the general solution of a linear SDE can be

found explicitly. The method of solution also involves an integrating factor or, equiva-

lently, a fundamental solution of an associated homogeneous differential equation. The

solution of (4.28) is given by

t

xLise (0 =*(', t0)xlfr. (tQ) +J<|> (t, X) F(x) dw (x) (4.33)
'o

where <|> (t, x) is the matrix determined as a function of t by the homogeneous differential

equation

d<b-j? = E(t)<b <|>(x,x) =/m (4.34)

(4.33) involves an Ito integral as opposed to a Riemann integral [11]. The integral in

(4.33) can not be interpreted as an ordinary Riemann integral, because almost all sample

functions of w (t) are of unbounded variation. Ito's definition of the stochastic integral

includes the ordinary Riemann integral as a special case [11]. If the functions E (t) and

F (t) are "measurable" andbounded on the time interval of interest, there exists a unique

solution for every initial value xnoise (t0) [11]. We are interested in the casewhere

Xnoise (0) =XnoisetQ (4.35)

Inour problem, it is sufficient to find the probabilistic characteristics of xnoise as a
function of t. In other words, we would like to determine the mean and the covariance

matrix of xnoise as a function of time in the time interval desired. If xnoise is a Gaussian
stochastic process, then it is completely characterizedby its mean and covariance function

as a function of time. Furtherexplanation on this topic will be given in Section 4.5. If we

substitute (4.35) in (4.33) with t0 = 0 we obtain

t

xLise « =4> ('»0) x\oise, o+J* (r, x) F(x) dw (X) (4.36)
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If we take the expectation of both sides of (4.36) we get the mean of**ol^ which is a
function of t. Considering that e [v (t) ] =0 and e [x^^ 0] = 0,we get

ml(t) =e[^/5C(0] =0 (4.37)
Next, we would like to determine the covariance matrixof the components of xnoise

as a function of t, which is given by

K1 (t) = tlx\oise(t)x\oise(t)T] (4.38)
since mean is zero as given by (4.37). Consider

^noisAoisI =x\oisedx\oiJ+ (dxnoise) x\oiJ+F (t) F(t) Tdt (4.39)
Notice that there is an extra term in (4.39) which would not be there if we were using ordi

nary calculus instead of stochastic, or Ito calculus. This equation is obtained from Ito's

Theorem [11] using (4.31). We use (4.31) to expand (4.39) and obtain

dxLisAo'J = (^(o^L^L/+^L^L/^(or+^(OF(r)r)A
(4.40)

+xLse (F Mdw) T+(F(t) dw) x\oiJ
If we take the expectation of both sides of this equation, noting that xnoise and dw are

uncorrelated and using (4.38), we get

K1 (t) = E(t)Kl (t) +K1 (t)E(t)T +F(t)F(t)T (4.41)
where K1 (t) is the unique symmetric nonnegative-definite solution of the matrix equa
tion (4.41) with the initial value K1 (0) =e[xnois6t 0(x\oisCt 0)T] = tf£. Calculation of
the initial value Kq will be described in Section 4.4. The differential equation for

K1 (t) = K1 (t) , (4.41), satisfies the Lipschitz and boundedness conditions in the time
intervalof interest, so that a unique solution exists [11]. (4.41)represents (in view of sym

metry of K1 (t)) a system of m(m +1) /2 linear differential equations. (4.41) can be
solved for Kl (t) using anumerical method (such as Backward Euler) for the solution of
ODEs.

K1 (t) represents the noise covariance matrix of circuit variables as a function of
time. So, the information about the noise variances of circuit variables, or the noise corre

lations between circuit variables at a given time point are contained in K1 (t). In some
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problems, one might be interested in the noise correlations of circuit variables at different

time points, which can be expressed as

Kl (/„ t2) =e[xliM (r,)*L« C2)r] <*42)
In a similar way to the derivation of (4.41), one can derive

^K1 (tv t2) =K1 (tv t2) E(t2) T (4.43)
with the initial condition K1 (tvt1) = K1 (fx) [13]. Integrating (4.43) at various values
of t1, one can obtain anumber ofsections ofthe covariance function K1 (tv t2) at t2>t1.
Then, K1 (tv t2) at t2 <r1 is determined by

Kl(tvt2) =AT1(r2,r1)T (4.44)

4.4 Calculation of the Initial Value for the Linear ODE for the

Covariance Matrix ofthe Components ofx\oise

In the last section, we have derived a linear ODE, (4.41), for the covariance matrix

ofxnoise. In order to be able to solve (4.41), we need to know the initial value K^. We set
Kq to the solution of the following matrixequation in P

E(0)P + PE (0)T+F (0)F (0)T = 0 (4.45)

The matrix equation (4.45) has a symmetric nonnegative-definite solution P, if the equa

tion z = E (0) z is asymptotically stable (that is, if all the eigenvaluesof E (0) have neg

ative real parts) [11]. (4.45) represents (in view of symmetry of P) a system of

m (m + 1) /2 linear equations.

4.4.1 Comparison of the Initial Value Calculation with SPICE Noise

Simulation for Linear Time-Invariant Circuits

In general, for a nonlinear dynamic circuit with arbitrary excitations, E (t) and

F(t) have time-varying entries. On the other hand, for the special class of linear time-
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invariant circuits, or for nonlinear dynamic circuits with dc excitations, E(t) and F(t)

do not change with t, that is,

E(t)=E(0) F(t)=F(0) for r2>0 (4.46)

In this case, with the initial value Kq being set to the solution of (4.45), the solution of

(4.41) is given by

K*(t) =*£ for r2>0 (4.47)
From (4.47), we conclude that noise in a linear time-invariant, or a nonlinear dynamic cir

cuit with dc excitations, is stationary (in the wide sense), that is, the covariance matrix

K1 (t) for noise variables is a constant function of time. Note that themean of the noise

variables is always zero for all kinds of circuits, as given by (4.37).

As shown above, the time-domain noise simulation for a linear time-invariant, or a

nonlinear dynamic circuit with dc excitations, reduces to solving the linear equation sys

tem (4.45). This can be compared with the frequency domain noise simulation currently

implemented in SPICE which works for small-signal equivalent, that is, linear time-

invariant circuits. Solving (4.45) is equivalent to calculating the total integrated noisefor

all the circuit variables over thefrequency range from 0 to «> (that is, the noise variances

for all the circuit variables) in SPICE noise simulation. In fact, the solution of (4.45) pro

vides more information than the total integrated noise for all the circuit variables over the

frequency range from 0 to °°. By solving (4.45) we also obtain the noise covariances of

all circuit variables. Calculating the noise covariance between two circuit variables in

SPICE noise simulation requires the calculation of total integrated noise over the fre

quency range from 0 to ©° for the difference of the two circuit variables. This needs to be

done for every circuit variable pair to calculate all covariances.

4.5 The Condition for x\oise to be aGaussian Process

It is important to determine whether the noise in the circuit (solution of the SDE

given by (4.28)) is a Gaussian noise process or not, because a Gaussian process is com

pletely characterized by its mean and covariance function as a function of time, and we

have a means of calculating the mean and covariance function for the solution of (4.28).
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The solution of (4.28) is a Gaussian stochastic process if and only if the initial value

xnoise o *s normally distributed or constant [11]. Up to this point, we have characterized

the initial value xnoise 0 asbeing an m-dimensional vectorof zero-meanrandom variables

with the covariance matrix given by the solution of(4.45). Here, we restrict xj^ oto be
a vector of zero-mean normally distributed random variables with the covariance matrix

given by the solution of(4.45). So, x]^^ 0is completely characterized by its covariance
matrix. With this restriction on the initial value x]^^ 0, x]^^ (solution of (4.28)) is a
Gaussian stochastic process, nonstationary in general, and it is completely characterized

by its mean (given by (4.37)) and covariance function (given as the solution of (4.41) and

(4.43) as a function of time). For linear time-invariant, or nonlinear dynamic circuits with

dc excitations, xnoise is a stationary (in the strict sense) Gaussian process, completely

characterized by the covariance matrix which is a constant function of time as given by the

solution of (4.45).
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Implementation of the Noise
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The noise simulation method described in Chapter 4, along with the noise models

described in Chapter 3, was implemented inside the circuit simulator SPICE3 (version

3f4) [14]. Time-domain noise simulation is done along with the transient simulation in

SPICE3 in the time interval specified by the user. A detailed explanation of the numerical

methods employed in the simulator will not be given here, since they all have been dis

cussed extensively in the literature.

The transient simulation in SPICE3 solves for xs, which is the solution of (4.1),

using numerical methods for solving ordinary algebraic-differential equations (e.g., trape

zoidal method, backward differentiation methods). (4.1) is repeated below

F(x,x,t) =0 x(0) = jc0 (5.1)

The initial value vector x(0) = x0 in (5.1) is obtained by a dc solution of the circuit

before the transient simulation is started. The numerical methods for solving (5.1) subdi
vide the time interval [0,T], in which the transient simulation is to be performed, into a
finite set of distinct points:
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'0 = °>tR = r»rr+l = 'r + ^r+l ' = 0, 1, ...,/?. (5.2)

where hr+xs are the time steps. At each time point tr, the numerical methods compute an

"approximation" xs [r] of the exact solution jc, (tr) [10].

The noise simulation (solution of (4.41)) is done concurrently with the transient

simulation. (4.41) represents a system of m (m + 1) /2 linear differential equations, which

is repeated below

k\t) = E(t)K1(t)+K1(t)E(t)T+F(t)F(t)T
1 _ 1 1 T _ ! <5'3>^ (0) -e[xno/jet0(xno|.w0) ] ~K0

We currently use the Backward Euler scheme to discretize these equations in time. The

time steps (given by (5.2)) chosen by the transient simulation routines in SPICE3 are also

used to discretize (5.3).

At each time point tr, after the transient simulation routines havecalculated xs [r],

the matrices A [r] = A (tr), C [r] = C (tr) and B [r] =B (tr) , as defined by (4.7) and

(4.9), arecalculatedusing the values in xs [r]. These matrices are stored in sparse matrix

data structures. The routines for loading these matrices have been written for each device.

The routines for loading B [r] contain the noise models for the devices, which are

described in Chapter 3. Then all the operations described in Section 4.2 are performed to

calculate E [r] = E (tr) and F [r] = F (tr) from A[r],C [r] and B [r]. The numerical

operations actually done somewhat differ from what has been described in Section 4.2

because of efficiency reasons. All of these operations are performed using sparse matrix

data structures and routines. Then, E[r] and F[r] are used to calculate K1 [r] =Kl (tr)
in the discretized solution of (5.3) with the Backward Euler scheme. This last operation

requires the solution of m (m +1) /2 simultaneous linear equations, because Backward

Euler is an implicit method [10]. Here, m is, roughly, the number of nodes in a circuit, to

which a capacitor is connected. Simulations have shown that, for larger circuits, the CPU

time spent for this last operation at a time point heavily dominates the CPU time required

by the otheroperations. Most of the CPU time is used for solving systems of linear equa

tions. We currently use a general-purpose direct sparse matrix solver to solve systems of

linear equations. The computational cost of noise simulation is still high for large-scale
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circuits, which will be reduced by using a more efficient sparse matrix solver that is tuned

for our problem.

The operations described in the above paragraph are performed at every time point

from r = 0 to r = R. Upon completion, xs[r] =xs(tr),r = 0,...,R contains the mean

waveforms for the circuit variables as a function of time, which is the usual SPICE tran

sient simulation output. And Kl[r] =Kl (tr), r=0, ...,R contains the waveforms for
the covariance matrix of the noise contents in the circuit variables, as defined by (4.38) as

a function of time, which is the noise simulation output.
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Chapter 6

Noise Simulation Examples

In this chapter, we present two examples of noise simulation using the implementa

tion discussed in Chapter 5. In particular, noise simulations for a MOSFET ring-oscillator

circuit and a BJT active mixer circuit will be presented. For both of these circuits, we have

included only the shot and thermal noise sources in the simulation. One reason for this is

that flicker noise has little effect on the noise performance of these circuits. Secondly,

including the flicker noise sources into simulation increases the simulation time because

of the extra nodes created for flicker noise source synthesis.

6.1 MOSFET Ring-Oscillator
dd

H I
v.

in

out

HC T
=1= lpF

Figure 6.1: MOSFET Inverter
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Three of the MOSFET inverters shown in Fig. 6.1 were connected in a ring-oscilla

tor configuration and a noise simulation was done. In Fig. 6.2, the mean and noise vari

ance of one of the taps of this ring-oscillator can be seen. As seen in Fig. 6.2, the noise at

one of the taps of the ring-oscillator is nonstationary, that is, the noise variance is not a

constant as a function of time. The noise variance is highest during low-to-high and high-

to-low transitions of the tap voltage.
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Figure 6.2: Noise Simulation for the MOSFET Ring-oscillator - Tap Voltage

Ring-oscillator based VCOs and delay-lines are used in many phase/delay-locked

systems such as clock generators, data synchronization and clock recovery circuits. Phase

noise/jitter is a major concern in the design of such systems. Behavioral models which
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capture noise effects, and behavioral simulation is used to predict phase noise/jitter in the

design of these systems [15]. Behavioral phase noise simulation requires noise parameter

extraction techniques which are used to extract behavioral model noise parameters from a

transistor-level description of the circuit Our transistor-level noise simulator can be used

for simulating ring-oscillator VCOs and delay-lines to obtain the timing jitter at the output

of a delay cell as well as the correlations between the jitters at the outputs of the delay

cells. This information is then used in behavioral simulation to predict the phase noise per

formance of phase/delay-locked systems [15].

6.2 BJT Active Mixer

The BJT active mixer circuit was obtained from industry sources. It contains 14

BJTs, 21 resistors, 5 capacitors, and 18 parasitic capacitors connected between some of the

nodes and ground. The LO (local oscillator) input is a sine-wave at 1.75 GHz with an

amplitude of 178 mV. The RF input is a sine-wave at 2 GHz with an amplitude of 31.6

mV. Thus, the IF frequency is 250 MHz. Power supply voltage is Vcc = 5V. Flicker

noise sources are not included in the simulation, because flicker noise is rarely a factor at

RF and microwave frequencies [2].

This circuit was simulated to calculate the noise variance at the output, and the result

is shown in Fig. 6.3, where the noise variance is shown as a function of time. This wave

form is periodic with a period of4 nsecs. (IF frequency is 250 MHz.)

The noise at the output of this circuit is not stationary, because the signals applied to

the circuit are largeenough to change the operatingpoint. The noise analysis of this circuit

by assuminga small-signal equivalentcircuitaround a fixed operating point does not give

correct results. Such an analysis would predict the noise at the output as stationary, i.e. a

constant noise variance as a function of time.

The noise performance of a mixer circuitis commonly characterized by its noisefig

ure which can be defined by [1]

N„ _ total outputnoise
that partofthe outputnoise due to the source resistance
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Figure 6.3: BJT Active Mixer - Noise Variance at the Output

This definition is intended for circuits in small-signal operation. For such circuits, noise

figure is a scalar quantity. In ourcase, the noise at the output of the mixer circuit changes

as a function of time over one period. We can generalize the noise figure definition such

that noise figure is a quantity that is a function of time. For the mixer circuit we have sim

ulated, the noise figure turns out to be a periodic function of time. To calculate the noise

figure as defined, we simulate the mixer circuit again to calculate the noise variance at the

output with all the noise sources turned off except the noise source for the source resis

tance RSRF = 50Q at the RF port. In thiscase, the noisevariance at the outputcomes out

to be as shown in Fig. 6.4. This waveformis alsoperiodic with a periodof 4 nsec.

Then we cancalculate the noise figure as below, andthe result is shown in Fig. 6.5.

( Total Noise Variance Vnut (t) \NF(t) = lOlogL- . -. . T/ ,, . . outKJ :
^NoiseVariance Vout (t) due tothe sourceresistance J (6.2)

As observed in Fig. 6.5, the maximum and minimumvalue of the noise figure over one
period differs by over 4 dB.

In measuring noise figure for actual mixer circuits, the measurement equipment

gives a single number instead of a periodic waveform as a function of time for noise fig

ure. In the above discussion, we have designated noise figure to be a quantity which is a
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periodic function of time. We can calculate an average for noise figure which will corre

spond to the measurement noise figure:

*«+r

AverageNF - - j NF (x) dx (6.3)

where T is the period of the noise figure waveform. For the mixer circuit we have simu

lated, the average noise figure is calculated to be 20.14 dB, which was obtained by calcu

lating the average over the waveform in Fig. 6.5.
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This BJT mixer circuit has 65 nodes (including the internal nodes for BJTs) which

are connected to capacitors. The noise simulation requires the solution of 2145

(65 x 66/2) simultaneous linear equations at every time point, as it was explained in

Chapter 5. The simulation (with 250 time points) took approximately a day and a half

(human time) on a DECstation 5000/125 with our current implementation. We are in the

process ofmaking modifications in the numericalalgorithms which areexpected to reduce

the computational cost of noise simulation.
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Chapter 7

Conclusions and Future Work

We have presented a new, time-domain, non-Monte Carlo method for computer sim

ulation of electrical noise in nonlinear dynamic circuits with arbitrary excitations. Previ

ous work on computer simulation of noise in integrated circuits was reviewed with

comparisons to our method. Shot, thermal and flicker noise models for integrated-circuit

devices, in the context of our noise simulation method, were presented. This noise simula

tion method was implemented in a circuit simulator (SPICE). Using this implementation,

two examples of noise simulation (a MOSFET ring-oscillator and a BJT active mixer)

were given.

We plan to compare the results from this noise simulator with noise measurements

on actual circuits as part of the future work. We will include other device models in the

noise simulation. We also plan to work on the numerical methods used in the noise simula

tor to make it more efficient. We will be using our transistor-level noise simulator in the

top-down constraint-driven design of a clock generator circuit for a RAMDAC. The noise

simulator will be used to extract noise parameters in the behavioral modeling of phase/

delay-locked loops [15].
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A detailed theoretical and practical treatment of stochastic integrals and stochastic

differential equations can be found in [11], [12] and [13]. In this Appendix, only a short

introduction to SDEs is given. The results from the theory of SDEs, which were used in

the development of the noise simulation method in Chapter 4, are also summarized. Most

of the material to be presented in this Appendix is summarized from [11].

A.1 Introduction

Differential equations for random functions (stochastic processes) arise in the inves

tigation of numerous physics and engineering problems. They are usually of one of the

following two fundamentally different types.

On the one hand, certain functions, coefficients, parameters, and boundary or initial

values in classical differential equation problems can be random. Simple examples are

Xt = A(t)Xt+B(t) XtQ = c (A.1)

with random functions A (t) and B (t) as coefficients and with random initial value c, or

X, =/(*,*„ Tl,) Xt=c (A.2)
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with the random function r\r the random initial value c, and the fixed function / (all the

functions are scalar). If these random functions have certain regularity properties, one can

consider the above-mentioned problems simply as a family of classical problems for the

individual sample functions and treat them with the classical methods of the theory of dif

ferential equations.

The situation is quite different if random "functions" of the so-called "white noise'*

type appear in what is written formally as an ordinary differential equation, for example,

the "function" £r in the equation

Xt =f(t, Xt) +G(t, Xt) %t Xto = c (A3)
This "white noise" is conceived as a stationary Gaussian stochastic process with mean

value zero and a constant spectral density on the entire real axis. Such a process does not

exist in the conventional sense, since it would have to have the Dirac delta function as

covariance function, and hence an infinite variance (and independent values at all points).

Nonetheless, the "white noise" £r isavery useful mathematical idealization for describing
random influences that fluctuate rapidly and hence virtually uncorrelated for different

instants of time.

Such equations were first treated in 1908 by Langevin in the study of the Brownian

motion of a particle in a fluid. If X, is acomponent of the velocity, at an instant t, of a free

particle that performs a Brownian motion, Langevin's equation is

Xt = - aXt+a£r a >0, a constants (A.4)

Here, —aXt is the systematic part of the influence of the surrounding medium due to

dynamic friction. The constant a is found from Stoke's law to be a = 6Kar\/m, where a

is the radius of the (spherical) particle, m is its mass, and rj is the viscosity of the sur

rounding fluid. On the otherhand, the term a% represents the force exertedon the particle

by the molecular collisions. Since under normal conditions the particle uniformly under

goes about 1021 molecular collisions per second from all directions, a^ is indeed arap
idly varying fluctuational term, which can be idealized as "white noise." If we normalize

5, so that its covariance is the delta function, then a2 = 2akT/m (where k is Boltz-
mann's constant and T is the absolute temperature of the surrounding fluid). The same

equation (A.4) arises formally for the current inan electric circuit. This time, ^ represents
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the thermal noise. Of course, (A.4) is a special case of equation (A.3), the right-hand

member of which is decomposed as the sum of asystematic part / and a fluctuation^ Gb>r
In model (A.4) of Brownian motion, one can calculate explicitly the probability dis

tributions of Xt even though § is not arandom function in the usual sense. As a matterof

fact, every process Xt with these distributions (Ornstein-Uhlenbeck process) has sample

functions that, with probability 1, are nondifferentiable, so that (A.4) and, more generally,

(A.3) cannot be regarded as ordinary differential equations.

For a mathematically rigorous treatment of equations of type (A.3), a new theory is

necessary. It turns out that, whereas "white noise" is only a generalized stochastic process,

the indefinite integral

t

Wt =feds (A.5)
o

can nonetheless be identified with the Wiener process. This is a Gaussian stochastic pro

cess with continuous (but nowhere differentiable) sample functions, with mean

£ [Wt] = 0 andwith covariance e [WtWg] = min (t, s).

If we write (A.5) symbolically as

dWt = \tdt (A.6)

(A.3) can be put in the differential form

dXt = f(t, Xt) dt+G(t, Xt) dWt XtQ = c (A.1)

This is a stochastic differential equation (Ito's) for the process Xt. It shouldbe understood

as an abbreviation for the integral equation

t

Xt =c+Jf(s, Xs) ds +JG (s, Xs) dWs (A.8)

Since the sample functions of Wt are with probability 1 continuous though not of

unbounded variation in any interval, the second integral in (A.8) cannot, even for smooth

G, be regarded in general as an ordinary Riemann-Stieltjes integral with respect to the

sample functions of Wt, because the value depends on the intermediate points in the

approximating sums. In 1951, Ito defined integrals of the form
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Yt = JG(s)dWs (A.9)
'o

for a broad class of so-called nonanticipating functional G of theWienerprocess Wt and

in doing so put the theory of stochastic differential equations on a solid foundation. This

theory has its peculiarities. For example, the solution of the equation

w
is not e ', but

dXt = XtdWt X0 = 1 (A.10)

W -t/7.Xt = ew' (A.ll)
which does not derive by purely formal calculation according to the classical rules. It turns

out that the solution of a stochasticdifferentialequationof the form (A.7) is a Markov pro

cess with continuous sample functions-in fact, a diffusion process. Conversely, every

(smooth) diffusion process is the solution of a stochastic differential equation of the form

(A.7) where / and G2 are respectively the coefficients ofdrift and diffusion.

For diffusion processes, there exist effective methods for calculating transitional and

finite-dimensional distributions and distributions of many functionals. These methods

belong to the so-called analytical or indirect of probability methods which deal not with

the timewise developmentof the state Xt, but, forexamplewith the timewise development

of transition probabilities P (Xt e B\ Xs = x).

In contrast, the calculus of stochastic differential equations belongs to the probabi

listic ordirect methods, since with them, weare concerned wit therandom variable Xt and

its variation. An equation of the form (A.7) or (A.8) represents a construction rule (albeit

in general a complicated one)with which onecan construct the trajectories of Xt from the

trajectories of aWiener process Wt andaninitial value c.

In the development of the theory for SDEs, first, the definition of the stochastic inte

gral, or Ito's integral is developed for integrals of the form given by (A.9). Then, stochas

tic differentials (as given by (A.7)) are defined based on the definition of the stochastic

integral. The theory for stochastic differential equations (existence and uniqueness of

solutions, propertiesof the solutions, etc.) is developed based on Ito's Theorem conceming

stochastic differentials. We will give the statement of Ito's Theorem and an example of its
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application in Section A.2. The development of the definition of stochastic integral and

stochastic differentials, as well as the proofs for theorems, will be omitted here, because

we are interested in the practical results obtained from the theory rather than the technical

ities of the development and proofs.

The functions / and G in the stochastic differential equation given by (A.7) are in

general nonlinear functions of the stateXtof the system. Just as with ordinarydifferential

equations, a much more complete theory can be developed in the stochastic case when the

coefficient functions f(t, x) and G (t, x) are linear functions of x, especially when G is

independent of x. If f(t, x) is a linear function of x and G is independent of x, then the

stochastic differential equation given by (A.7) is said to be linear in the narrow sense. For

tunately, the stochastic differential equation for noise, which was derived in Chapter 4 and

given by (4.28), is an SDE which is linear in the narrow sense. Actually, (4.28) is a special

case of a linear SDE in the narrow sense: For (4.28), f(t,x) is an homogeneous linear

function of x. In Section (A.3), we concentrate on linear stochastic differential equations

in the narrow sense, and summarize the practical results of the theory which were stated

and used in the development of the noise simulation method in Chapter 4.

A.2 Ito's Theorem on Stochastic Differentials

Ito's Theorem in its most general form:

Ito's Theorem

Let u = u(t, x) denote a continuous function defined on [r0, T] xRd with values
in Rk and with the continuous partial derivatives (^-vectors)

^-u(t,x) =ut
^•u(t,x) =uX( x= (xx,...,xd)'

^£-u(t,x)=ux^ UJ**
(A.12)

If the rf-dimensional stochastic process Xt is defined on [t0, T] by thestochastic differen

tial
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dXt = f(t) dt + G (t) dWt Wt-*m- dimensional (A.13)

then the /:-dimensional process

Yt = u(t,Xt) (A.14)

definedon [f0,71 with initial value Yt = u (0, Xt) also possesses a stochastic differen

tial with respect to the same Wienerprocess Wt, and we have

dY =[»te>*t) +«*e.*,>/« +JIIuXtXju,xt)(g(t)g(t)-)^dt (Ai5)
+ux(t,Xt)G(t)dWt

Here, wx = (wx,..., ux ) is a kx d matrix and u is a &-dimensional column vector.

The double summation in (A.15) can also be written as follows:

d d

I I V; <GG'> U= tr <M~GG'> = " <GG'M«> (A.16)
»=ly=l

where k^ = (kxjc ) is a d x d matrix whose elements are it-vectors. Then, (A.15) takes

the form

dYt = utdt +uxdXt +hr (GG'u^) dt (A.17)
The noteworthy is the extra differential term in (A.17) which is formed from the second

derivatives ur r.

Example using Ito's Theorem

A special case of Ito's Theorem for k = m = 1 yields in the case

u = xxx2 (A.18)

the following result: If

«1M=/1«A+G1M<fli'f
dX2(t) =f2(t)dt+G2(t)dWt

then

d(XY(t)X2(t)) =X1(t)dX2(t)+X2(t)dX1(t) +G1(t)G2(t)dt

= (X1f2 + X2fl + G1G2)dt+ (X1G2+X2G1)dWt

(A.19)

(A.20)
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This is the rule for integration of stochastic integrals by parts. In comparison with the cor

responding formulas for ordinary integrals or differentials, there is the extra term

GXG2 (dW)2 = GxG2dt (A.21)

A.3 Linear Stochastic Differential Equations

in the Narrow Sense

In this section, we shall investigate those equations that are obtained from a deter

ministic linear system

it = A(t)Xt + a(t) (A.22)

(where A(t) is a d xd matrix, and Xt and a(t) are vectors with components in Rd) by
the addition of a fluctuation^ term

B(t)\t (A.23)

(where B (t) is dxm matrix and %t is an m-dimensional white noise) that is independent
of the state of the system; that is we shall investigate equations of the form

dXt= (A(t)Xt + a(t))dt+B(t)dWt (A.24)

If the functions A (t), a(t), and B (t) are measurable and bounded on [r0, T] (as we

shallassumeto be the case in what follows), there exists, for every initialvalue Xt = c a

unique solution.

Now, we review a few familiar items regarding deterministic linear systems

(B(t) =0).

The matrix O (t) = O (t, t0) of solutions of the homogeneous equation

Xt=A(t)Xt (A.25)

with unit vectors c = e-t in the jc-direction asinitial value, in other words, the solution of

the matrix equation

4>(t) = A(t)O(t) O(t0) =/ (A.26)
is called thefundamental matrix of the system
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Xt = A(t)Xt + a(t) (A.27)

The solution with initial value Xt = c can be represented with the aid of O (t) in the fol

lowing form:

Xt =O(t) (c +Jo (5) "la (5) <fel (A.28)

If, for example, A (t) = A is independent of r, then

oo

O(r) = eM'~to) = lAn(r-r0)n/n! (A.29)
n = 0

Therefore,

Xt =/(/-,o)c +JeA('-j)fl(5)^ (A.30)

With this knowledge, we can now easily determine the solution of the "nonhomogeneous"

equation (A.24):

Theorem A.3.1. The linear (in the narrow sense) stochastic differential equation

dXt = (A (t) Xt +a(t))dt +B(t) dWt X,o = c (A.31)

has on [t0,T] the solution

Xt =O(r) (c+JO (s) "la (s) ds +Jo (s) ~lB (s) dWs^\ (A.32)

Here, O (t) is the fundamental matrixof the deterministic equationXt = A (t) Xt.

Proof A.3.1. Proof is based on Ito's Theorem.

We mention in particular the following special cases:

Corollary A.3.2. If the matrix A (t) = A in (A.24) is independent of t, then

t

Xt =eAU~to)c +jeAit~s) (a(s)ds +B(s)dWs) (A.33)

Corollary A.3.3. For d = 1 (but m arbitrary),
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0(0 =expfjA ($)<*/) (A.34)

and hence

Xt =exp MA(s)ds)(c +Jexp (-JA(u)du)(a(s)ds+B(s)dWs) 1 (A.35)

The solution Xt has moments of second order if e [|c|2] <©°. In the case of linear
SDEs in the narrow sense, the first two moments of Xt can easily be calculated from the

explicit form of the solution:

Theorem A.3.4. For the solution Xt of the linear stochasticdifferential equation

dXt = (A (t)Xt + a(t))dt+B(t)dWt Xt = c

we have, under the assumption e [|c| ] < <»,

mt =E[Xt] =O(r) fe[c] +Jo(s)~1a(s)ds)

Therefore, mt is the solutionof the deterministic linear differential equation

Next,

mt = A(t)mt + a(t) mt = e[c]

K(s,t) =e[(X,-epy)(X,-e[X,])']

( e[(c-e[c])(c-e[c])'] +
min (s, t)

J O(u) ~lB (u) B(u)' (O (u) -l) 'duK(s,t) =0(s)

\ tn

In particular, the covariance matrixof the components of X,

0(0'

Kit) =K(t,t) =e[(X/-e[XJ)(Xr-e[X/])/]

is the unique symmetric nonnegative-definite solution of the matrix equation

K(t) =A(t)K(t)+K(t)A(t)' + B(t)B(t)'

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(AM)
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with theinitial value K(f0) = e [ (c - e [c]) (c - e [c])']. Thedifferential equation for

K(t) = K(t)', (A.41), satisfies the Lipschitz and boundedness conditions on [r0,7], so

that a unique solution exists. (A.41) therefore represents (in view of symmetry of K) a

system of d (d + 1) /2 linear ordinary differential equations.

Now, we present an important special case:

Theorem A.3.5. The solution (A.32) of the linear equation

dXt = (A (0 X, +a (t) )dt+B (t) dWt X,o = c (A.42)

is a Gaussian stochastic process Xt if and only if c is normally distributed or constant.

Themean value mt and thecovariance matrix e [ (X5 - ms) (Xt - mt)'] are given in The

orem A.3.4. The process Xt has independent increments if and only if c is a constant or

A(0 = 0 (that is, O(0 =/).

Now that we know the process is Gaussian in the case of normally distributed c, the

question arises as to when it is stationary. A necessary and sufficient condition for this is

mt = const
(A.43)

K (s,t) =K(s-t)

These conditions are certainly satisfied if

e [c] = 0

(in this case, mt = 0) and

«(r)=0 (A44)

Alt) =A
n / x n (A.45)
B(t) =B

(that is, the originalequation is autonomous and the solution Xt exists on [f0> °°) )• Fur

thermore, by virtue of (A.39),

AK (0) + K (0) A' = -BB' (A.46)

and

£(0) = e[cc'] (A.47)

The matrix equation (A.46) has a nonnegative-definite solution K (0), namely,
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0

if the deterministic equation Xt = AX, is asymptotically stable (that is, if all the eigenval

ues of A have negative real parts). Furthermore, from formula (A.39) we get fort = s

K(0) =jet'BB'e^'dt (A.48)

e~A{t~^K(0)e~A'{t~t,;> =£(0) +je:Ai'~t*BB'e*'i'~h:>ds (A.49)

Therefore, for general t,s^t0,

\eA{s~t)K(0) s>tK(s-t) =K(s,t) = \_ ; ' (A.50)
[K(0)eA(t-s) s<t

We write this result as

Theorem A.3.6. The solution of the equation

dXt = (A (t)X, +a (0) dt+B(t) dWt X,o = c (A.51)

is a stationary Gaussian process if A (t) = A, a(t) = 0, B (t) = B, the eigenvalues of

A have negative real parts, and c is N (0, K) -distributed, where K is the solution

0

of the equation AK + KA' = -££'. Then, for the process Xt,

K=\eAtBB'eA'ldt (A.52)

e [X,] = 0 (A.53)

and

e[X,X,'] = \
feMs-t}K sZtZt0
KeA'{t~s) tZsZt0

(A.54)

Obviously, under the aboveconditions, the process Xt is stationary in the wide sensewith

the above first and second moments even when c is not normally distributed but

e[c] = 0 and e[cc'] = K.
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