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1.0 Introduction

Multidimensional dataflowis the term used by Lee [1] to describe an extension to the stan
dard graphical dataflow modelimplemented in Ptolemy [2], The concept involves working with
multidimensional streams of data instead of asingle stream. Unlike other interpretations of multi
dimensional dataflow [9,10] which focus more ondata dependecy and linear indexing issues in
textual and functional languages, our focus is primarily onthegraphical representation of algo
rithms, such asthose usedin multidimensional signal processing and image processing, and
exposing data parallelism for multiprocessor scheduling.

This report discusses someof the issues that arose during the development of amultidi
mensional synchronous dataflow (MDSDF) domain inPtolemy. Theinitial goal was toimplement
support for a two-dimensional extension of the synchronous dataflow (SDF) domain thatcould
simulate MDSDF systems on a single processor system. Therefore, throughout this paper, the
terms MDSDF willmostoften refer toonly atwo-dimensional implementation, although wehope
that many of the ideas canbe generalized to higher dimensions. In implementing a simulation
environment running on asingle processor machine, we made anumber of simplifying assump
tions, which we will explain in this paper. We will also discuss some of the difficulties we foresee
in implementing a full multiprocessor version.

Due to the fact that MDSDF is closely related to single dimension SDF, we will contrast
their differences throughout this report. Chapter 2 will explain the graphical representation used
for SDF in Ptolemy and the terms we useto describe thecomponents of an SDF system. We will
also introduce the graphical notation of MDSDF and explain how the two differ. Chapter 3 will
present the features of MDSDF with a series of example systems. Chapter 4 will discuss in more
detail the attributes of anMDSDFsystemand theproblems in implementing asimulation domain.
Chapter5 will discuss the low-level implementation issues involved in the creation of the
MDSDF simulation domain in Ptolemy, covering design issues such as data representation, buff
ering, schedule representation, and writing stars for theMDSDF domain. Chapter 6 will conclude
with a summary of what has been accomplished and the areas that still need to be worked on.

2.0 Dataflow in Ptolemy, SDF and MDSDF

2.1 SDF and Ptolemy Terminology

Since Ptolemy [2] is the environment for ourimplementation, we will introduce its termi
nology in this chapter. In many ways, MDSDF is simply an extension of thecapabilities of SDF
[3] sowe begin with adiscussion of therepresentation of one-dimensional SDF systems in
Ptolemy. Note that thepresentation of SDF inthis chapter is intended as asummary and notas an
in-depth discussion. Much work has been applied to formalize the concepts of SDF, so we
strongly suggestthat the reader referto the papers on SDF and Ptolemy in the reference section,
especially paper [3], for better understanding.

In SDF and other graphical models of one-dimensional dataflow, the data transferred
between functional blocks (or actors) isof simple form, i.e. asingle value that can bea floating
pointnumber, aninteger, a fixed-point number, oracomplexnumber. In Ptolemy, thesevaluesare
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held in a container structure called &particle, and these particles are transmitted between Ptolemy
actors. Ptolemy also supports structural hierarchy, so that a collection of actors can be grouped
and represented as a single actor. At the finest level, actors in Ptolemy arecalled stars, and these
areusually implemented by a C function or C++ class. A collection of stars can be grouped
together to form a galaxy. The overall system, formed by a collection of interconnected stars and
galaxies, is called an universe. Ptolemy also supplies the ability to transfer more complex data
structures, such as vectors and matrices, using a special container structure called a MessageParti-
cle. A simple SDF universe in Ptolemy is pictured below:

Node/actor/star ^/ . \2 Particle--rr>
FIGURE 1. A simple SDF universe

Actors are connected together by arcsthat representFIFO queues. The arcsare attached to
an actor at a locationcalled&porthole. An actor canhave more thanone input or output porthole.
The numbers along the arcconnecting the two actors specify the number of particles generated or
consumed by each star every time it executes (also called a star firing in Ptolemy). In the above
example, actorA generates two particles at each firing andactor B consumes three particles.

The fact that the number of inputs andoutputs forevery actor in a SDF system is known at
compile timegives the scheduler of the SDF domain (note that SDF is just onemodelof computa
tion supported by Ptolemy, eachof which is called adomain) the abilityto generate a compile-
time schedule for simulation and code generation purposes. This schedule is called aperiodic
admissible sequential schedule (PASS). A PASS is a sequence of actor firings that executes each
actor at leastonce, does not deadlock, and produces no net change in the numberof particles on
each arc. Thus, a PASS can be repeated any number of times with a finite buffer size, and more
over, the maximum size of the buffer for each arc is aconstant thatis determined by the exact
sequence of actor firings in the schedule.We call each of these repetitions of the PASS an itera
tion.

SDF systems also support theconcept of feedback and delays. A delay is depicted by a
diamond on an arc, as shown in Figure 2. The delay is specifiedby an integerwhose value is
interpreted as asample offsetbetween theinput and theoutput. It is implemented simplyasan ini-

FIGURE2. A SDFsystemwith a delay.

tial particle on the arc between the two actors, sothat the first particle consumed by actor B when
it fires is thevalue of the delay (most often this value is zero, but Ptolemy allows the user togive
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delaysinitial values). The delay allows the system with feedback to work by giving the source
actor A an initial particleto consume on its lower input arc. Note that in [5], delays and the asso
ciated problem of accessing past samples in SDFare shownto be problematic in thatthey often
disallow the use of static buffering.

2.2 MDSDF Graphical Notation

Although the graphical notation of MDSDFis closely related to SDF andin many ways
just a simple extension, the added freedom of the multidimensional system introduces numerous
choicesof how system specifications canbe interpreted. Such flexibility canleadto confusionby
both theuserof the system andthe person implementing it if theydo not agree onwhatthe syntax
means. Examples of such possible areas of confusion are how to interpret two-dimensional delays
and how to define an actor that needs accessto data in the "past" or in the "future". This section
presents the definitions of MDSDF syntax, but some alternative interpretations will be discussed
in Chapter 4.

In MDSDF, the graphical notation is extended by adding anextra dimension to the input/
output specifications of each porthole of a star. A MDSDF star in our current two-dimensional
implementation has input and output portholes that have two numbers to specify the dimensions
of the data they consume or generate, respectively. These specifications are given as a (row, col
umn) pair, and we use parenthesis to denote this pair. Forexample, Figure 3 shows a MDSDF star
that has one output that generates datawith dimensions of two rows by one column.

FIGURE 3. A simple MDSDF star.

Unlike the SDF case, which can support two-dimensional data objects using the Matrix
class, the data generated by a MDSDF star is not a self-contained monolithic structure but is con
sidered part of a underlying two-dimensional indexed data space. SDF is able to transmit two-
dimensional data objects, such as matrices, using the MatrixParticle construct. However, these
data objects are of fixed size, and all actors working on the data stream must be aware of the size
of the object (usually by specifying some parameters to the star) and canonly manipulate each
particleof the streamindividually. On the otherhand,the input/outputspecifications of a MDSDF
starsimply gives us directions on how to arrange the data consumed/produced by the star. For the
case of an output data block, once the datahas been generated,it no longer has a fixed sized struc
ture, and the systemis free to rearrange orcombine data generated from multiple firings of the
source star into a differently sized data block.

Anotherway at looking at the specifications of the dimension of the data generated orcon
sumed by aMDSDF star is to consider the specifications as the size of awindow into an underly-
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ing data space. The origin of the window is determined by the firing index of the star itself. This is
best illustrated by an example.

0

rows

0

I

I

I
BI0,0]

Ba,o]
I J

(2,1) (1.3) f^\

FIGURE 4. A MDSDF extension of the universe in Figure 1.

Figure 4 shows a possibleMDSDFextensionto the SDF system of Figure 1. Actor A still
produces two data values, but they arenow consideredto be arranged as a block that has dimen
sions of two rows and one column. Similarly, actor B stillconsumes ateach firing three data val
ues, but these three values arerequired to be structuredas a block with dimensions ofone row and
three columns. The underlying data space for this system would look like:

columns

2 3

mm wmmJ

|a«n* MM 4MB

\BM) j
I i

JBCUJ I
I J

ff=
I

A[0,0] A[0,l] A[0,2] A[0,3] A[0,4] A[0t5] ...

I . 1 I . I

Iteration 1 Iteration 2

Underlying
data space

'"•; Data subset
! [ produced by
L.j actor A firings

C

FIGURE 5. The data space for the system of Figure 4

^\ Data subset
-^ consumed by

actor B firings

Here, the figure shows how the underlying data space hastwo rows andmany columns. First look
atthesection marked as Iteration 1. This section of thedata space is of size tworows by three col
umns, which is the lowest common multiple of the row and column dimensions of the two actors
in Figure 4.The first firing of actor A, which we denote with a firing index using square brackets,
is A[q o] (note the starting index in each dimension is zero), and ismapped to the data space as a
two row by one column block at location d[0,0] and d[l,0], where d represents the underlying
data space. We notice that since actor B needs data blocks that have three columns, the only way
actor A can fulfill such a demand is by firing two more times along the column dimension. These
two firings are denoted A[o,i] and A[0t2]» and their associated data space are the two columns next
to thatof firing A[0,o]- Oncethe three firings of A have produced the data, now considered as a
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two-row by three-column block,star B can firetwice, with thesecondfiring proceeding alongthe
row dimension. Thus, firings B[0>o] and B[10] will consume all thedata thatthe three firings ofA
produced, and theirrespective subsets of thedataspace areportrayed in thediagram as theshaded
regions. These five actor firings can be listed as A[0 0]A[0tl]A[0^]B[0 ofi^0], which constitutes an
infinitely repeatable schedule for the MDSDFsystem.

Note that the firing index of an actor is directlyassociatedwith a fixed location in the data
space, but theyare notexactly equivalent. We need toknow thesizeof theblocks produced or
consumed by theactorto determine theexact mapping between thefiring instance of theactorand
its corresponding data space.

Additionally, an important feature aboutthe above firing sequence is the fact that the two
sets of firings for actor A andactor B could have clearly been scheduled forparallel execution. In
other words, wecanseefrom thedata space diagram that the three firings of actor A areindepen
dentandcan be executed in parallel. Similarly, once all three firings of A arecomplete andthe
data theyproduce are available, the two firings of actorB are alsodata independent and can be
scheduled for parallelexecution. Wewillgivemore examples of thisimportant aspectof MDSDF
in the next chapter.

For a second iteration of the schedule, wecanseein Figure 5 that the dataspace of the
second iteration is laid alongside the dataspace of thefirst, incremented along thecolumn dimen
sion. This was a design decision, to increment along the columndimension rather than the row
dimension. We even considered defining a two-dimensional iteration count, so that we could iter
ate in bothdimensions. Wedo notknow if this latter definition is needed, andall thesystems we
have implemented thus far have been definable usingjust the column incrementationdefinitionof
a schedule iteration. Oneissuethatis clear is thefact that if there areno delays in thesystem and
there are no actors in the system thatrequire access to "pastdata" (delays andaccessing pastdata
will be described next), then eachiteration is self-contained, in thesense thatall data produced is
consumed in the same iteration. Thenext iteration ofthe schedule canreuse the same buffer space
as the previous iteration,so the buffercan be of constant size. So although the index of the data
increases as the firing indices increase for each iteration, we donot need anever increasing buffer
to represent the data space. This is essentially a two-dimensional extension of static SDF buffer
ing(see [5] for a discussion of static one-dimensional SDF buffering). The index space increases
in the column dimension foreach iteration, but the actual buffer is from the same memory loca
tions.

Thelast twobasic features ofMDSDF that wemust explain dealwith dependency of an
actor on data that is "before" or "after" in the two-dimensional data space. In SDF,the model of
interpreting the arcsasFIFOqueues implies anordering ofwhere particles arein time. Therefore,
we could discuss how stars could access data in the "past." In MDSDF, since one of our main
goals is totake advantage ofmultiprocessor scheduling, we do not impose a time ordering along
the two dimensions of the data buffer for one iteration (note that there is anordering between the
data of successive iterations). Therefore, for lack ofa better term, weuse "before" or"past" and
"after" or"future" ineach dimension torefer todata locations with lower orhigher index, respec
tively, in each dimension. So data location d[0,0] is before d[0,l] in the column dimension but not
the row dimension.
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A related concept is the idea of a delay in two dimensions, which can have a number of
interpretations. We have chosen to interpret a two-dimensional delay as if they were boundary
conditions on the data space. For example, Figure 6 shows a MDSDF system with a two-dimen-

FIGURE 6. A MDSDF system with a two-dimensional delay.

sional delay. The delay, just like the portholes of a MDSDF actor, has a (row, column) specifica
tion. The specifications for a two-dimensional delay tell us how many initial rows and columns
the input data is offset from the origin d[0,0]. We see that in Figure 7,firing A[q o] isnow mapped

Shifted data for
firing A[0 0]

FIGURE 7. A MDSDFsystem with a two-dimensional delay.

to buffer locations d[l,l], d[l,2], d[2,l], d[2,2]. We will discuss the effects of two-dimensional
delays on scheduling and other complexities that it introduces in Section 4.0. We note that another
possible interpretation of the specifications of a two-dimensional delay is simply as one fixed
sized data block with the given dimensions, instead of an infinite stream along each dimension.
We feel that our interpretation is the proper extension of SDF delays and has some useful advan
tages over other interpretations, as we shall show in the next chapter.

3.0 Features and Examples of MDSDF

Now that we have presented all the building blocks and definitions of a MDSDFsystem,
this chapter will present the various features and possibilities that the increased capabilities pro
vide us. Note that these features and examples are just the ones we have been able to identify in
the short time we have worked with the model. We hope that with increased experience, we will
discover many additional uses for this model of dataflow.

3.1 Schedule Expressiveness

The seemingly simple augmentation of the input/output specifications ofMDSDF port
holes by just one additional parameter has made these system very much different from their SDF
cousins. One advantage that MDSDF has over SDF is the ability toexpress a greater variety of
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dataflow schedules in a more graphically compact way. Forexample, Figure8 shows a simple

o
FIGURE 8. A SDF system for scheduling example.

multirate SDF system. In terms of scheduling, it can easily be seen that it actorA needs to fire
three times for every two firings of actorB in order for the production and consumption rates to
balance.

We can formalize this more clearlyby looking at the precedencegraph and the distribution
ofdata for the above system. These are shownin Figure 9. Since the arc connecting the two actors

l r

<«o I
J L

B 0 B

FIGURE 9. Precedencegraph and data distribution for system of Figure8.

is considered to be a FIFO queue, the order of the data produced by the various firings of actorA
are consumed in order by actor B, as shown in both the precedence graph and the data distribution
diagram. The data distribution diagram is similar to the two-dimensionaldata spacebuffer dia
grams we have shown for MDSDF systems before, but it is only a single dimensional stream.The
left most entry, labeled do, is the first particle in the stream. Therefore, do and dj are the first two
particles generated by the first firing of actor A.

Figure 10shows apossible MDSDF extension of theprevious system. Again, actor A pro
duces two data values each time it fires and actor B consumes three, but the extra information
inherent in the dimensions specified for their portholes results in a much different distribution of
data between the two actors.

(2.1) (1,3) f^\

FIGURE 10.A MDSDF system with a two-dimensional delay.
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Again this is more clearly understood if we take alook at the precedence graph and adia
gram of the data space involved, which we show inFigure 11. Here we see that because the data

A[0,0] A[0,l] A[0,2]

[0,0]

[1,0]

FIGURE 11. Precedence graph and data distribution for system ofFigure 10.

produced by actor A isarranged as acolumn ofthe data space, the two output values ofeach fir
ing of actor A is distributed to each firing ofactor B. So even though the actors in the SDF and
MDSDF systems both produce and consume the same number of data values, and the schedules
for thetwo systems are similar in that actor A fires three times and actor B fires twice in both
schedules, the data distribution of the two systems isquite different. Note that the MDSDF model
is more general since itcan express the dataflow ofthe SDF system by varying one ofthe dimen
sions and keeping the other dimension fixed at one. We can also express the precedence graph of
Figure 11 in SDF, but we would have to lay out the system exactly as shown, using five nodes and
connecting them upexactly as we showed inFigure 11, which makes it clear that MDSDF is a
more expressive model of dataflow and can express alarger setof systems more compactlv than
SDF. J

3.2 Nested Resetable Loops and Delays

Besides having greater expressive power than SDF, MDSDF can also support some func
tionality that SDF cannot. One such functionality is the ability to represent nested resetable loops
using reinitializable delays. This type of functionality is needed when you try to implement asys
tem like avector inner product. In SDF, an attempt at expressing such asystem might look like
the graph inFigure 12. Actors A and Bgenerate four particles per firing, which we can consider

1

FIGURE 12. A SDF system todo vector inner product.
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to be vectors with four entries. Eachrespective entry of the two vectors is multiplied together and
the sum is accumulated using a recursive structure of an Add starwith delayed feedback. C++
code equivalent to the system above is shown in Figure 13. A problem ariseswhen one would like

C = 0;

for (counter = 0; counter <iterationCount; counter++) {
for (i = 0; i < 4; i++) {

C+=A[i]*B[i];

}
}

FIGURE 13. C++ code for vector inner product SDF system.

to make this into a module such that each time the system is run, one would like to have it do the
inner product of two four-entry vectors. The problemis that becauseof the stream orientation of
the system, there is no way to reset the accumulator outputC. A seconditeration of the system
would have C to accumulate the sum of the inner productof the first pairof vectors with die inner
product of the second pair of vectors.

One possible way to make the system do what we desire is if we could somehow reset the
delay at every iteration. A delay is usually consideredto be aninitial particleon the arcandwe set
its value to be zero.This is how the first iteration computes the inner product correctly because it
essentially sets the initial value of C to be zero. If we could have the delay insert another initial
particle at every iteration, this would achieve the functionality we desire. To do this in SDF, we
often had to resort to various tricks to hardwire aresetto actors or delays in order to implement
this controlled reset of nested loops.

MDSDF can implement such functionality by using the fact that successive iterations are
along a new column in the data space. By using our definition of a delay as an entire row or col
umn of initial values in the data space, we can implement the inner product function as shown in
Figure 14. Here, all the input/output specifications of the actors in the SDF version have been

(1.0)

Matrix A
(4,1) (U) *~*&1*1)

Add
(1.1) (l.DyrV

(1.1)

Multiply
1 • V A

Matrix Ci—^-
1(1.1) ^"-^LlV-*-

Matrix B
(l.D

(1.1) ' ' (1.1)

(4.1)

FIGURE 14. A MDSDFsystem to do vector inner product.

augmented to a second dimension. The specification of the second dimension in most of these
extensions havebeen set to one,which implies a trivial useof the second dimension. It is prima
rily the specificationof the two-dimensionaldelay, andthe use of the implicit use of a new col
umn for each successive iteration that makes this system different. The effect of the two-
dimensional delay is best illustrated by adiagram of thedata space buffer for the arc containing
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the delay. We show this is Figure 15. The two-dimensional delay in the system was declared to

Delays
0 1

0

rows

0 1

columns

2 3 4 5 6

3 4 5

Iterations

7

FIGURE 15. A MDSDF system with a two-dimensional delay.

have one row and no columns. This implies that the entire first row of the data space is set to the
initial value of zero. Thus, at every iteration, the Add actor will have its upper input reset, which
is equivalent to resetting the output result C at the beginning of eachiteration. This example
shows one of the features of our interpretation of two-dimensional delay specifications as infinite
along a row or column.

3.3 Data Parallelism and Multiprocessor Scheduling

One of the original motivations for the development of MDSDF was the possibilities we
sawinherent in the model for revealing dataparallelism in algorithms. Although the implementa
tion of MDSDFin Ptolemy has onlyprogressed to thestageof supporting simulations under a sin
gle processor, we hope to soon add support for multiprocessor scheduling using the extra
information provided by the MDSDF model.

In the last chapter, we introduced how MDSDF canreveal dataparallelism in a system.
We now present a couple of more interesting examples from field of two-dimensional signal pro-
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cessing. The first, shown in Figure 16, is a simple system that computes the two-dimensional Fast

(256,256) 2-DFFT
Galaxy

(256,256)

2D FFT Galaxy

(256,1) 1-D FFT
Star

(256,1) (1,256)
•

Column FFTs

1-D FFT
Star

(1,256)

RowFFTs

FIGURE 16. A two-dimensional FFT system using row-column decomposition.

Fourier Transform (FFT) of animage. One easyway to compute a two-dimensional FFTis by
row-column decomposition, where we apply a 1-DFFT to all the columns of the image and then
to all the rows [7] [8]. This simple concept is straightforwardly expressed in MDSDF as we see in
the figure. The diagram shows how we can use thegraphical hierarchy of Ptolemy to implement
the 2-D FFT as a module made of the two 1-DFFT components. The 1-D FFT stars of the 2-D
FFTgalaxy are identical, except thatwe have specified die inputs andoutputs to work along the
columns and rows of the image, respectively.

We could describe something similar in SDF, butwe would be limited to either working
with the entire image (as in Figure 17) or adding a series of matrix-vector conversions and trans-

1 Particle holding
a 256x256 matrix

I

1 Particle holding
a 256x256 matrix

Image
2D FFT
Star

Image
Viewer

FIGURE 17. A SDF implementation of2D FFT as one star.

positions to manipulatethe 1-Dvectors to the correct orientation (as shown in Figure 18). The
first alternative is not very attractive because we wouldnot be able to take advantage of the data
parallelism in the algorithm for multiprocessor scheduling, especially the data parallelism thatthe
MDSDF system reveals. The second alternative is alsounattractive becauseit is quite cumber
some and awkward to have all the datamanipulation stars that do not really contribute to under
standing the algorithm. The two-dimensionalimage, considered in SDF as a single monolithic
matrix, needs to be converted to a series of vectors so that we can apply the 1-D FFT staron the
rows. Then, the vectors must be collected again into a large data block and then transposed and
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converted to vectors so that we can apply the 1-DFFT staron the columns. Finally, the vectors
must be collected again, and then transposed again to undo the previous transposition. The
MDSDF representation is much clearer andreveals both the dataparallelism and automatically
handles the computations along either dimension.

a 256x256 matrix 256x256

Transpose

FIGURE18.A SDF implementation of 2DFFTrevealing the data parallelism awkwardly.

Once a multiprocessor scheduler is developed to take advantage of the dataparallelism
revealed by the MDSDF representation, we seethat there is also thepotential to prototype the sys
tem targeted to differentnumbers of multiprocessors. This is essentially the abilityto scale the
amount of parallelism thatthe systemdesigner wishes to exploitin the final implementation. The
MDSDF simulation should be able to give the designer information about when the communica
tions costsoutweigh the benefits of increasing thenumber of processors in the system.

For example, Figure 19 shows a MDSDF system that implements a two-dimensional FIR

(8,8) (2X,2*) FIR
Filter

(2X,2X) (8,8) Image
Viewer

FIGURE 19. A two-dimensional FTJR system.

filtering system [7] [8]. We useavery small image sizesothat we can show thedata space dia
gram more easily in Figure 20. Here, we show that thedesigner can havethe ability to choose dif-

x = 0: 64 processors working on (1,1) data blocks
x = 2: 16 processors working on (2,2) data blocks

x = 4: 4 processors working on (4,4) data blocks

x = 6: 1 processor working on an (8,8) data block
(equivalent to SDF)
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î

i i i

n-r -r -1
i i i

I

- j -

-^ -

i

"1-
-1-

. • i , ,

|.J-J-L.»..i.
II"

-.4-4-1.-

i r^
L-U.

• i

r-r •

i i

r-r1
L.i.
I I

J- L.

I I

t- r«

i-r-

1 '

I

i-r-,--|.

till

FIGURE 20.Different subsets of the buffer for a two-dimensional FIR system.
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ferent levels of granularity for theparallelism hewishes toexploit in thesystem. Although we can
specify systems that haveactors that access past and future data along thetwo dimensions, the
current implementation is quitelimited and such flexible scaling as shown above is not yet possi
ble. Onelimitation is that a star that desires to access past or future blocks of data can onlyaccess
blocks that have the same dimension as thecurrent block. In thecase of having four processors
working on (4,4) blocks of data for theFIR system, those four actors onlyneed onecolumn in the
past or future (assuming anFIR filter that is specified by taps that only access oneindex backor
forward in either dimension), butourcurrent specification would onlyallow those actors to access
(4,4) blocks in the past or future. Nevertheless, it should beclear that once wehave the ability to
do multiprocessor scheduling, MDSDF will allow the user some degree of flexibility tocontrol
the amount of parallelism in the system by allowing him/herto tune the ratios of the dimensions
of the inputs and outputs of the actors in die system.

3.4 Natural Syntax for 2-D System Specifications

The examples we saw in the previous section on two-dimensional FIR filtering and two-
dimensionalFFT implementation show that the syntax used in MDSDFis a natural one for
describing two-dimensional systems. We feel that even without the multiprocessor scheduling
attribute, theMDSDF model will beuseful for developing two-dimensional systems, such as
image processing systems, in Ptolemy.

4.0 Scheduling and Related Problems

This section discusses in greater detail some of the theoretical problems we have encoun
tered in defining a workable MDSDF system. We have solutions for many of these problems
when dealing with a single processor simulation system for MDSDF, butmany of the problems
for a true multiprocessor system are stillunresolved. We will present the problems we encoun
tered, some potential solutions (when we have identified more than one) and our solution for
those problems, and a discussion of the problems remaining to be solved.

Many of the problems in developinga workable MDSDFspecification are concerned with
the task of scheduling a MDSDF system. Part of thecomplexity of implementing MDSDF is the
fact that so many of the issues are interrelated, and adesign decision inone area will have major
impact in many others.

We will present thediscussion by scheduling topic, first summarizing howtheproblem is
defined and solved in SDF, and then presenting the MDSDF definition and solution. This discus
sion will be more formal than what we presented in Section 2.0. The readeris referred to
[3],[4],[5] for a more complete presentation of SDFtopics.

4.1 Calculating Repetitions

The first step in computing a schedule in SDF is to calculate the number of times each
actor needs to berepeated during one iteration period. This is accomplished by solving the bal-

Developing aMultidimensional Synchronous Dataflow Domain inPtolemy 15



ance equations. The balance equations for a SDF system are a set of equations relating the num
ber of samples consumed and producedby each pairof stars associated with an arc.

In Figure 21, the systemhas onlyonearc, so there is only the single balance equation.

<•)
rANA = rBNB

FIGURE21. A simpleSDF system andits balance equation.

The unknowns rA and rB are the minimum repetitions of each actor that are required to maintain
balance on each arc. NA and NB are thenumber of output and input particles produced and con
sumed by actors A and B respectively. The scheduler first calculates thesmallest non-zero integer
solutions for theunknowns, which we saw tobe rA =3 and rB =2 for the universe of Figure 8.

TheMDSDF extended universe differs because wenolonger consider the arcs connecting
the actors to be aFIFO queue butrather a two-dimensional data space. We adopt a similar defini
tion of an iteration for theMDSDF case such that at the end of one iteration, theconsumption of
data should be balanced with the production so that all buffers are returned to the same state as at
thebeginning of the iteration. In terms of repetitions, this definition involves asimple extension
so that there are now two sets of balance equations, one for each dimension:

<NA. row NA. coD (Nb, row tyj, coD f \-*=*^)
A,row A,row Btrow^B,row

rA,colNA,col = rB,copB,col

FIGURE22. A simple MDSDF systemand its balance equations.

Each equation can be solved independently to find the row repetitions and column repeti
tions for each actor. We consider this two-dimensional repetition specification torepresent the
number of rowfirings and the numberof column firings for thatactor in one iteration. We use the
curly brace notation {rowfirings, column firings] to denote therepetitions of a MDSDF actor.
The product rowfirings x columnfirings gives us the total number of repetitions of thatactor
in one iteration period.
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4.1.1 Sample Rate Inconsistency and Deadlock

In SDF, itis possible to specify asystem such that its balance equations have no integer
repetition solutions. This situation is called sample rate inconsistency [4]. An example of such a
system is shown in Figure 23. Since actor Ahas aone-to-one production/consumption ratio with

FIGURE 23. ASDF system with sample rate inconsistency.

actors Band C, they should have the same number of repetitions in one iteration period. Unfortu
nately, actor Bproduces twice as many particles per firing as actor Cconsumes, which implies
that actor Cshould fire twice as often as actor Bin one iteration. Thus, there is an inconsistency in
the number of repetitions for each actor in one iteration.

It is also possible to specify MDSDF systems with sample rate inconsistencies. The user
needs to be even more careful when specifying MDSDF systems because itis possible for same
rate inconsistencies to occur on both dimensions. An example of an MDSDF system with sample
rate inconsistencies is shownin Figure24.

FIGURE 24. AMDSDF system with sample rate inconsistency.

Arelated problem is when a user defines anon-executable system due toinsufficient data
on an input for the first iteration. This situation, which we term adeadlock condition, can occur in
systems with feedback, as shown in the SDF system ofFigure 25. For the first firing of actor A, it

—KSk^
FIGURE25. A SDFsystem with a deadlock condition.
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cannot fire becausethere is a dependency on its lower arc for data from a non-existent previous
firing of A. The solution to this problemwould be to add a delay on the lower arc, which would
supply an initial particle for the first firing. MDSDF systemscanalso be specified to have feed
back, so they are vulnerable to the samedeadlock conditions and MDSDF delays applied simi
larly to remove these deadlock situations.

4.2 Generating a Schedule

The above discussion only gives us the number of times each actor of the universe needs
to fire in one iteration. There is still the full scheduling problem of determining wheneach actor
should fire, i.e. we need to generate anactual schedule. For the SDFsystem in Figure 8, allwe
know from therepetitions calculation is that actor A fires three times and actor B twiceperitera
tion. There is actually more than one possible schedule for the iteration. One such schedule would
be to have actor A fire three times consecutively, and then have actor B fire twice. Another sched
ule would have actor A fire twice first, producing four data values for the FIFO queue. Actor B
wouldthen fire onceto consume three of those data values, leaving onevalue left in the queue.
Then actorA could fire its third time to updatethe queue storage to three values, and actorB
could then fire its last time to empty the queue. In a short hand notation, the first schedule can be
written as AAABB and the second schedule can be written as AABAB.

The difference between the two SDF schedules has to do with the fact that the second
schedule defers the last firing of actor A when it realizes that actor B was runnable after the first
two firings of actor A. This "smarter" schedule has the advantage of beingableto use a smaller
bufferbetween the two actors. For the example above, the first schedule requires a buffer of size
six, while the second schedule requires abuffer of size four. There is a cost in usingthe second
schedule that has to do with the fact that the first schedule can be written so that is uses less mem
ory for thecodethan thesecond schedule. This is because the first schedule can be expressed asa
loop schedule 3A2B, whichmeans that thecode for actor A is simply placed inside aloop that
executes three times and the code for actor B is placed inside aloop that executes twice. If we try
to loop the second schedule, the bestwe can do is A2(AB), which requires us to repeat the code
for actor A an extra time (note that in real DSP systems, code for modules are often repeated
rather than called as functions since function calls are slower and take stack memory as well).
Considerable work has been done on how to schedule SDF graphs to minimize the two often
opposing criteria of code size and buffer size [5,6].

In an attempt to make asimple scheduler for MDSDF, we have chosen to implement an
extension to the first type of schedule, in which we schedule all the firings of an actor that are run
nableas soon as possible, rather thandeferring any for future scheduling.

The critical problem to solve in generating any schedule is knowing when the destination
actorhas enough data to fire. This is not too difficult a problem to solve in the SDF case where all
buffers are modeled as FIFO queues. A simple scheduler for SDF graphs simply keeps track of
thenumber of particles attheinput to an actor. If an actor has noinputs, then it is always runnable
and can be added to the schedule. So, source actors are always runnable. Otherwise, theonlycon
dition for an SDF actor with inputs to be runnable is that there are enough particles on eachof its
input buffers to satisfy the number required. Thus, an SDF scheduler can determine when an actor
is runnable simply by keeping track of the number of particles on the buffer.
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The MDSDF case is much more complex if we allow the most general multiprocessor
scheduling. First, let us look at some simplifications that we can make when we are limited to a
single processorscheduler. On a single processor machine, since only one firing of an actor can
run at any time, we felt it best to have the schedulerfollow a deterministic orderingwhen schedul
ing an actor that can run multiple times in one iteration.That is, if an actor can be fired more than
once in one iteration period, the scheduler will follow a fixed rule of what order to schedule the
variousrow and column firings. We have adopted arow-by-row approach in scheduling, so that
we schedule all firings from the first row of a star before proceeding to the second row of firings.
Each row is scheduled in increasing order from lowest to highest. The second rule we use is that
we schedule a runnable actoras many times as it needs to be repeatedin the iterationimmediately
and do not attempt to defer any to be scheduled later.

—°Ji(7)
FIGURE 26. A MDSDF universe for scheduling.

For example, consider the universe of Figure 26.Using the techniques from the previous
section on calculating the row and column repetitions, it is easy to determine that actor A needs to
be fired {3,3} times and actor B {2,2} times for one complete iteration. Since actor A can fire a
total of nine times, we will schedule it to do so immediately, beforethe four firings of actor B.
Using the row-by-row scheduling rule we mentioned above, we schedule the first three row fir
ingsof actor A, starting from firing A^q.o] and incrementing in thecolumn dimension, and then
proceed to the next two rows. At completion of scheduling, the schedule thatour simple single
processor MDSDF scheduler generates is

A[0.0]A[0.11A[0.2]A[1.0]A[1.11A[1.2]A[2.0]A[2.1]A[2^]B[0,0]B[0.1]B[1.01B[1.1]-
From the experience of using our MDSDF scheduleron systems with largetwo-dimensional rate
changes, it became clear that a shorthand notation for such a schedule is needed because there are
oftenmany firings of each actor per iteration (especially for systems like image processing). For
the single processor case, when we know thatthere is a specific order of firings, we canuse the
shorthand notation A[o,o]-[2.2]B[0.0]-[l,l]t0 represent the above schedule.We still have theproblem
of determining when the destination actor can fire. In the one-dimensional SDF case, the solution
was to simplycountthe number of particles onthebuffer between the actors. In the previous
example, actor B was runnable when the buffer had enough particles, and when it fired, it would
remove the first NB particles from the buffer. The seemingly simple extension toworking ona
two-dimensional data stream actually results inaquite complex problem. We cannot simply talk
about "when is star B runnable?" We need to talk about a specific instance of the firing of star B,
like"when is theinstance of Bm,o] runnable?" This is because of the fact that thebuffers between
MDSDF actors can no longer berepresented as simple FIFO queues and each firing of aMDSDF
star has a fixed blockof data that it needs to produce orconsume, depending onits firing index.
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To illustrate this point, let's return to theexample of Figure 26. Figure 27 shows a repre
sentation of the two-dimensional data buffer between actors A and B for that system. We can see

FIGURE 27.Two-dimensional data buffer for system in Figure 26

that firing A[0,o] produces data that correspond to bufferlocations d[0,0], d[0,l], d[l,0], d[l,l],
where d represents the two-dimensional buffer. Similarly, firing B[10] requires that buffer loca
tions d[0,3], d[0,4], d[0,5], d[l,3], d[l,4], d[l,5], d[2,3], d[2,4], d[2,5] all have valid data before
itcan fire. We can also tell that firing Brj 0] requires firings A[0j], A[0,2]» A[i,i]» and A^ 2] to pre
cede it.The problem is howto determine such dependencies quickly, without resorting to atwo-
dimensional state-space search to verify that the required data buffer entries are available. In a
single processor scheduler, given the simplifications we mentioned before based on the fixed row-
by-row execution order of firings, theproblem is solved by simply keeping a pointer to the loca
tionof the last"valid" row and column in thebuffer. Any rows above the lastvalidrow (lvr) is
assumed to have data filled by the source staralready, and any column to the left of the last valid
column (lvc) is similarly assumed to be valid.

For example, after firing A[2ti], lvr=5 and lvc =3 (see Figure 28). To checkwhether fir
ing B[0,0] is runnable, we simply check the location oflvr and lvc. We know that actor B expects
(3,3) blocks of data, and since this is the [0,0]th firing, weneed lvr >= 2 and lvc >= 2. Similarly,
firing B[l,l] would not be runnable in this example since we need lvr >= 5 and lvc >= 5.

last valid row = 5
last valid column = 3

FIGURE 28. Valid buffer locations after firing A[21].
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This method of using a pointer to the last valid row andcolumnis suitableonlyfor the sin
gle processor case, but is not flexible enough for multiprocessorscheduling since it is based on
the strict firing order assumption. In a multiprocessorsystem, the various firings of actor A might
be executed in parallel, and so firing A[2,2] might complete before firing A[0,0]. We have not yet
implemented a multiprocessor scheduler, so we are uncertain whether there is an easier solution to
this problem than a full two-dimensional search for all the valid input data values needed for a
destination star to be runnable. We hope that there exists a simpler systematic solution because a
two-dimensional search can be quite costly and would make extensions to higher dimensions
unattractive and possibly unfeasible.

4.3 Delays

Delays are a common feature in one-dimensional signal processing system, but their
extension to multiple dimensions is not trivial and can cause many problems for both scheduling
and buffer management. In one-dimensional SDF, delays on an arc are usually implemented as
initial particles in the buffer associated with that arc. The initial particles act as offsets in the data
stream between the source and destination actor, as showin Figure 29. Effectively, the output of
actor A has been offset by the number of particles set by the delay.

Output stream from actor
A*s perspective

Delays

Input stream from actor
B's perspective

A ♦

fflll
, ...

mm

B0 Bj

FIGURE 29. Delays in SDF.

B-

Unfortunately, the extension to more than one dimension is not sosimple. In ourattempts
at implementing multidimensional delays, we were at first uncertain how to even define them. We
see at least two ways to interpret the meaning of a delay on a multidimensional arc, and we have
adopted the definition that seems more logical and attractive to us, but we still had to limit its
functionality to aid us in implementation. It is not yet clear to us whether our definition is the
"correct" one, but more experience in using MDSDF to model real problems should settle the
matter. For now, we will present the various alternative definitions and go into more detail about
the definition wehave adopted. We will explain some ofthe problems we found in implementing
our definition and the restrictions we had to place on it to simplify our implementation.
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4.3.1 Alternative Definitions of Two-Dimensional Delays

The notation we use for specifying atwo-dimensional delay is similar to how we specify
the portholes ofaMDSDF actor. This is seen in Figure 30, in which we have specified the delay

FIGURE 30. A MDSDF system with a two-dimensional delay.

to have dimension (1,1). Since MDSDF actors work on an underlying data space, one possible
interpretation ofthe delay is as a finite block with the dimensions given by the delay arguments.
This isdepicted inFigure 31. The delay block isthe first (1,1) block inthe space. Notice how it

columns
3 4 5 6

B Clear blocks are f 1 Alternative locations for
delay values. L J tne ^ata °f actor A firings

FIGURE 31. A finite block interpretation ofatwo-dimensional delay.

distorts the data space so that it is even unclear how the data from subsequent firings ofactor A
should be placed in thedata space. Although alimited definition (where we limitthe dimensions
ofthe delay to be some multiple ofthe input dimensions) ofsuch finite block delays might be use
ful in some cases, we do not think this is the "correct" definition ofmultidimensional delays.

Another possible way to define 2-D delays is to be multiples of the input dimensions. In
SDF, delays were acount ofhow many initial particles, so ifwe consider MDSDF actors to pro
duce arrays, we might consider delays to be acount ofthe number ofinitial arrays. This definition
would be similar to the previous one when we limit the delay dimensions to be multiples ofthe
input dimension. For the previous system, the data space would look like the diagram in
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Figure 32. Notice how there is one less firing ofactor Aneeded for the first iteration, so this delay
columns
4 5

Clear blocks are

delay values.

Iteration 1

] Shaded blocks are
data blocks for
actor A firings.II •

Dashed boxes cover
the data locations for
actor B firings.

FIGURE 32. An interpretation ofdelays as multiples ofinputblocks.

interpretation actually changes the schedule generated for the system. Again, this definition may
be useful in some cases, but we felt that itwas not the "correct" extension of SDF delays since
SDF delays do not change the number of times an actor is repeated in each iteration period
(although delays might cause some data generated by an actor to be unused and left on the queue).

4.3.2 The MDSDF Definition of Two-Dimensional Delays

The last definition we present is the one presented in [1] and is the one we have adopted in
our implementation. This interpretation of two-dimensional delays is one in which the delay
dimensions cause a two-dimensional offset ofthe data generated by the source actor relative to
the data that is consumed by the destination actor. This is similar to considering the two-dimen
sional delay specifications as boundary conditions on the data space. The two-dimensional speci
fication of the delay, (Nrow delays, Ncolumn delays), is interpreted such that Nrow delays is the number
of rows of initial delay values and Ncolumttdelays is the number of columns of initial delays values.
Although it is possible in SDF to specify non-zero initial values for delays, in the current imple-
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mentation of MDSDF, delays are fixed to have zero initial values. We illustrate the dataspace dia
gram for this interpretation of the system in Figure 30 below.

Delay block

rows

Clear blocks are

delay values.

Iteration 1

columns
4 5

i Shaded blocks are
~ data blocks for
a actor A firings. rj

Dashed boxes cover
the data locations for
actor B firings.

FIGURE 33. An interpretation of delaysas multiplesof input blocks.

We notice that similar to what happens with delays in SDF, there is left-over data on the
buffer that will never be consumed, and the buffer size must be large enough to accommodate this
extra data. In the row dimension, the delay hascaused the last row of data produced by the source
actor to be never consumed. Currently, we simply enlarge thebuffer by thenumber of row delays,
to give the producer a place to put the data generated. We could discard the data after this, or it
might even be possible to discard it immediately when it is created so we do not have to buffer the
data, but this would require the submatrix of the producer to be smart enough to know that the
data being generated should be discarded. We feel the cost of this modification is not worth the
savings at this time. The extra column data that is left unconsumed in the first iteration by column
delays cannot be so discarded because subsequent iterations would consume it.

As we just showed, the column delays also increase the number of columns needed in the
buffer, but this increase in column size results in much more complex problems than the increase
in row size caused by the row delays. The problemshave to do with determining how much to
increase the column size of the buffer. If we simply increase the number of columns of the buffer
by an amount equal to the number of column delays (the method used for the row delays), we
encounter a problem that has to do with the implementation of the submatrices used to access sub-
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sets of the buffer. For example, if we used a buffer size of seven rows by seven columns for the
system of Figure 30, we get the following:

rows

columns

12 3 4 5

Iteration 1

Clear blocks are
delay values.

rows

Shaded blocks are
data blocks for

actor A firings.

columns

12 3 4 5

•

Iteration 2

Dashed boxes cover
the data locations for
actor B firings.

FIGURE 34. Buffer usage in two iterations of a MDSDF system with delays.

Notice how in thesecond iteration, the submatrices for firings Bm 21 and Bm 2i are no
longer proper subsets of the buffer space. Similarly, firing Ajq g] will produce data into a subma-
trix that wraps around the boundary of the buffer space. In order to support such modulo address
ing in the submatrices, their design would need to be much more complex, and the methods to
access each entry of the submatrices would be much slower. These problems also exist in the first
finite block definition we gave previously, but not in the second definitiongiven above where the
delay block size was a multiple of the input block size.

In an attempt to simplify the system and especially to keep the implementation of the sub-
matrices as fast andefficient as possible, wechose not to support modulo addressing. We wanted
submatrices to always access proper subsets of the buffer space. In order to do this, we had to
adopt a constraint such that the number of column delays specified mustalways be a multiple of
the column dimension of the input to the arc with the delay. This causes the columndelays to
behave like initial firings of the source actor onto the buffer space, and results in the submatrices
used by the source actor to always fit as propersubsets of the bufferspace. Unfortunately, this
constraint is not sufficient to guarantee that the destination actor will use a submatrix that is a
proper subset of the buffer space.

An additional constraint was needed, such that the number of columns in the buffer with
delays is always a multiple of thenumber of columns of theoriginal buffer with no delays. This is
because there are instances where the source or destination actor works on the entire original
buffer space, thus increasing the number of columns in the buffer only by the number of column
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delays still results in a submatrix beinganimproper subset of the bufferspace. This canbe seen in
the example system and buffer diagram of Figure 35.

columns

Iteration 1

Clear blocks are

delay values. M data blocks for
•^ actorA firings.

columns

2 3 4 5

Iteration 2

HI Shaded blocks are i—-i Dashed boxes cover
. j the data locations for
L- —I actor B firings.

FIGURE 35.Buffer usage in two iterations of a MDSDF system with constrained delays.

We can see that the source actor produces submatrices thatare always subsetsof the buffer
space. If the column size of the buffer is increased by amultiple of the original column size of the
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buffer without delays, then the submatrices of both the source and destination actors will always
be proper subset of the buffer space, as shown in Figure 36.
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FIGURE 36.Bufferusage for twoiterations ofa MDSDF system with constrained delays and wherethe
column sizeof the buffer is a multipleof the column sizeof the buffer if there wereno delays.

4.4 Extended Scheduling Example

Let usgo through anexample of using the above rules and definitions togenerate a single
processor schedule for a larger MDSDF system. We will revisit the problem of generating the
schedule for the vector inner product system, which we reproduce below:

(1.0)

Matrix A
(4.1) (14) ^-J14)

(1.1)
Add d4) (uiry

Multiply 1(14) x A
Matrix Cv—fiV-^

Matrix B
(1,1)

(14) •—' (1,1)

(4.1)

FIGURE 37.A MDSDF system to do vector inner product.

First, the balance equations for the system are:

^ rAjow ~ 1 '"mult_.inputl.row

A rA.col —*• '"mult_.inputl.col

4 rB jow = 1 rmult_input2jow

*• rB.col= * rmult_input2,col
i ji. 1*1-

•* rmult_outputjow ~~ * 'add_input2,row

Developing a Multidimensional Synchronous Dataflow Domain in Ptolemy 27



1 sk 1 sk

1 rmult_output,col ~ * radd_input2,col
1 sk 1 sk

A radd__outpuU©w ""A rfaifc_jnput.row

* radd_output,col= * rfork_input,col

1 rfork_outputl jow = 1 raddJnputljrow

* rfork_outputl,col= * radd_inputl.col

* rfark_output2jow = * rCjow

* rfork_output2.col= ** rC,col

We can solve these equations to generate the repetitionscount for each actor, which are
Afi.ij. B{i_}, Mult{41 j, Add{4j), Fork{41 j, C{4jj. Thus, for one iteration period, actors A and
B fire one time each and the other actors all fire four times. The actors that fire four times each
consume data down the rows of one column.

Using the scheduling rules we presented previously, the schedule for the vector inner
product system is A[0,o]B[o,o]Mult[0.0]-[3.0](AddFork)[0.0]-[3.0]c[0.0]-[3,0]- The schedule uses a
short-hand notation to group the pair of sequential firings of the Add actor followed by the Fork
actor.That sequence is executed four times, from index [0,0] to [3,0]. The Add actor can fire the
first time because it has a imtialdata block provided by the delay on its upper input. After its first
firing, it needs the output of the Fork actor to continue. Thus, the pairAdd and Fork must fire
together in series. After one iteration, the Add gets resetbecause its first input comes from a new
column, which again has an initial delay value. The final result is that for each iteration, the sys
tem computes the inner productof the two vectors providedby actors A and B. We could make
the system into agalaxy, and provide adifferent pair of input vectors for each call of this galaxy.

5.0 Ptolemy Implementation Details

This chapter discusses thedetails of theimplementation of MDSDF in Ptolemy. The ideas
do not necessarily require thereader to be aPtolemy "hacker," butagood understanding of C++
and how the Ptolemy kernel operates would be beneficial.

5.1 Two-dimensional data structures - matrices and submatrices

Since MDSDFuses a model in whichactors produce data thatare part of a two-dimen
sional data space, the data structure used to representboth the buffers and the subsets of the buffer
that the stars can actually workwith is very important. Currently, the primary data structure used
for thebufferis the PMatrix (the 'P' is silent) class from Ptolemy's kernel (please refer to the
Ptolemy 0.5 Programmer's Manual for a complete description of the PMatrix class and its deriv
atives). A subclass of the PMatrix class was developed toact as the primary structure used by
stars to access data from the buffer. There are four SubMatrix classes: ComplexSubMatrix,
FixSubMatrix, FloatSubMatrix, and IntSubMatrix, tomatch the four corresponding
types of PMatrix classes.
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some multiple of the original column size in order to guarantee that we have room to retain
enough samples.

(1.1)(2.1) VA (2.2)

♦ M B

The buffer after Iteration 1. The buffer after Iteration 2.

0 12 3 B[(U]

A[0.0] A[0.1]

rows 1

k[0.3]

The buffer after Iteration 3.

A[0.4] A[0.5]

FIGURE 40. Bufferevolution ofa MDSDF system with delay.

[0,2]

5.5 ANYSIZE Inputs and Outputs

There are situationswhere we would like an actor to be able to receive inputs that are of
any dimensions. That actorcould be a sink star, such as a star which displays the input anddoes
not care about the type orsize of the input, or the actor could bea fork star which simply gives
copies of the input to multiple outputs.

We have implemented the ability tosupport stars which have portholes with specifications
that are (ANYSIZE, ANYSIZE). The rules for resolving the size that the porthole uses is as follows:

1) No star can have more than one input porthole with ANYSIZE rows or columns.

2) A star with ANYSIZE rows or columns on an output porthole must have an input port
hole that also has ANYSIZE rows or columns.
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3) All portholes of a star that have ANYSIZE rows or columns will use the same resolved
values for the dimensions.

4) ANYSIZE rowsorcolumns are resolved by following the inputporthole with ANY
SIZE rows or columns and assigning the ANYSIZE row or ANYSIZE column dimension to the
corresponding roworcolumn dimension of theoutput porthole connected to it. If thatoutput port
hole itself has ANYSIZE rows or columns (as in the case of cascaded fork stars), then that star is
resolved first, following the rulesgiven here, untilwe find an output porthole which hasdetermi
nate row and column dimensions.

5.6 Writing MDSDF Stars

MDSDF stars are written muchdifferendy than the standard dataflow stars in Ptolemy.
First, every star should havein its setup () method acall to setMDSDFParams () for every
portholeto declare its dimensions to the MDSDF scheduler. Secondly, since MDSDF stars access
their data using submatrices instead of particles, these submatrices are acquired from theinput
and output portholes using the get Input () and getOutput () methods, respectively, instead of
the %operator usedby theother Ptolemy dataflow stars to access particles. The reason we adopted
new methods for accessing the submatrices instead of overloading the %operator was because the
%operator is limited to a single argument and in thecases where we wish to access past or future
submatrix blocks in two dimensions, weneed methods that can take two arguments. An example
demonstrating these two points is shown below:

defstar {

name { MatrixAdd }

domain { MDSDF }

desc {

Matrix addition of two input matrices A and B to produce matrix C.
All matrices must have the same dimensions.

}

version { %W% %G% }

author { Mike J. Chen }

copyright { 1994 The Regents of the University of California }
location { MDSDF library }

input {

name

type

}

input {

name

type

}

output {
name

type

}

defstate {

name

type

Ainput }

FLOAT MATRIX }

Binput }

FLOAT MATRIX }

output }

FLOAT MATRIX }

numRows }

int }

default { 8 }

desc { The number of rows in the input/output matricies. }
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>

defstate {

name { numCols }

type { int }

default { 8 }

desc { The number of columns in the input/output matricies. }
}

ccinclude { "SubMatrix.h" }

setup {
Ainput. setMDSDFParams (int(numRows), int (numCols)) ;
Binput.setMDSDFParams (int(numRows), int (numCols)) ;
output. setMDSDFParams (int (numRows), int (numCols)) ;

}

go {

// get a SubMatrix from the buffer
FloatSubMatrixs inputl =

*(FloatSubMatrix*)(Ainput.getInput());
FloatSubMatrixs input2 =

*(FloatSubMatrix*)(Binput.getInput());
FloatSubMatrixs result =

*(FloatSubMatrix*)(output.getOutput 0);

// compute product, putting result into output
result = inputl + input2;

delete &inputl;
delete &input2;

delete &result;

Notice howwe have declared thetypes of each porthole. The MDSDF stars usethetypes
COMPLEX_matrix, fix_matrix, float_matrix, and int_matrix, in contrast to the SDF
stars that acton the PMatrix class objects, which have portholes declared to be of type
complex_matrix_env, fix_matrix_env, float_matrix_env, and int_matrix_env. The
SDF matrix types have theENV extension because the matrix particles in SDF use the Envelope
structures to hold the matrices being transferred. The MDSDF star uses states that allow the user
to change the dimensions of the inputs and outputs for the staras needed. The dimensions are
declared in the setup () method, aswe mentioned before. It is important to note how the calls to
getinputo and getOutput () have been cast to theappropriate return type needed. Type
checking is performed by the system during scheduling, so these casts should match the ones
declared for the porthole types orelseunexpected results willoccur. The last thing tonote is how
we delete the submatricesused to access the data buffers at the end of the go () method. This is
because the submatrices are currently allocated by the getinputo and getOutput () methods
whenever they are called and no pointers to those submatrices are ever stored (unlike particles).
Thus, to prevent memory leaks, the submatrices mustbe deleted by the stars that created them.
The memory for the data actually referenced by the submatrices is not changed sincethe subma
trices are simply access structures and do not allocated any memory of their own for storage pur
poses.
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Oftenin image processing systems, the stars written will need to access data atthe single
pixel level. A pixel or any scalar can be accessed by declaring the portholes to provide orrequire
(1,1) matrices, but the submatrix method of accessing these scalar information is inefficient.
Therefore, we have providedtwo simpler functions getFloatlnput () and getFloatOut-
put () to improve the performance when accessing single entrylocations of the mothermatrixin
thegeodesic. These functions return adouble and areference to a double, respectively, so no sub-
matrices are created or need to be deleted. We currently only provide these methods for the
Float data type,but support maybeextended to theother data types supported by Ptolemy in the
future. The use of these functions is illustrated in the following code fragment from the go ()
method of the mdsdffir star:

setup {

input.setMDSDFParams(1,1);

output.setMDSDFParams(1,1);

}

go {

// get a scalar entry from the buffer
doubles out = output.getFloatOutput() ;

out = 0;

int tap = 0;

for(int row=int(firstRowIndex); row <= int(lastRowIndex); row++) {
for(int col=int (firstColIndex); col <= int(lastColIndex); col++) {

out += input.getFloatlnput(row, col) * taps[tap++];
}

}

}

Currently, MDSDF supports a limited method of accessing data with indices to thepast
and future of the "current" data block. As wementioned before, ever star firing is mapped to a
specific block in the data space. If the star also desires to access data that is outside thatblock, it
cando so, with some limitations. The limitations are thatthe star can only access data blocks
within the current buffer. Data outside the current buffer isconsidered zero. We do not support
dependency along the iterations such that a star that was firing at the last column of the current
iteration buffer size would not force a subsequent iteration firing to produce the data for the for
ward reference. Similarly, a star that is the first firing of an iteration cannot access data from the
buffer of the previous iteration. The syntax for making such references is shown in the code frag
ment for the mdsdffir star below:

defstate {

name { firstRowIndex }

type { int }

default { "-1" }

desc { The index of the first row of tap values }
}

defstate {

name { lastRowIndex }

type { int }

default { 1 }
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desc { The index of the last row of tap values }

}

defstate {

name { firstColIndex }

type { int }

default { "-1" }

desc { The index of the first column of tap values }

}

defstate {

name { lastColIndex }

type { int }

default { 1 }

desc { The index of the last column of tap values }

}

defstate {

name { taps }

type { floatarray }

default { ".1 .1 .1 .1 .2 .1 .1 .1 .1" }

desc { The taps of the 2-D FIR filter. }

}

go {

}

// get a SubMatrix from the buffer

doubles out = output.getFloatOutput();

out = 0;

int tap = 0;

for (int row = int(firstRowIndex); row <= int(lastRowIndex); row++) {
for(int col=int(firstColIndex); col <= int(lastColIndex); col++) {

out += input.getFloatlnput(row,col) * taps[tap++];

}

}

The syntax is very similar to the normal ones used to access the block directly assigned to
the firing except we can use negative and positive arguments to getFloatlnput () and get-
Input () to access data backwards or forwards in the data space, respectively.

5.7 Efficient forking of multidimensional data

For a puredataflow interpretation ofone-dimensional SDF, forking amounts tocopying of
the input particle into two output particles. In our code generation implementation of SDF, we can
optimize the fork case because the data does not really need to be copied. In dataflow, the destina
tion stars are not allowed to modify their inputs. So, two destinations ofa fork star could simply
have a reference to the same input.

This concept is equally valid in the multidimensional case. Although currently notimple
mented this way, we should be able to have destination portholes of a fork shareone geodesic, so
that we do not have to have multiplecopies of thedata in separate geodesies for each output arc of
the fork.
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6.0 Conclusion

This paper has discussed various issues that arose whileattempting to implement a
MDSDF domain in Ptolemy. There are alternative models for data representation andnumerous
challenges in efficiendy managing thelarge amounts of data that a typical MDSDF system would
generate. We havepresented the formal specifications of a workable MDSDF model, and pre
sented someexamples of its features. We have also presented adiscussion of thecomplexities
involved in implementing a simulation environment for MDSDF and thedesign decisions we
choseto simplify the problems we encountered. Currentiy, aMDSDF single-processor simulation
domain has been implemented in Ptolemy. It has been tested on small simple systems. Future
workinclude implementing amultiprocessor scheduling target and examining possible extensions
of the system to greater than two dimensions.
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