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1.0 Introduction

Multidimensional dataflow is the term used by Lee [1] to describe an extension to the stan-
dard graphical dataflow model implemented in Ptolemy [2]. The concept involves working with
multidimensional streams of data instead of a single stream. Unlike other interpretations of multi-
dimensional dataflow [9,10] which focus more on data dependecy and linear indexing issues in
textual and functional languages, our focus is primarily on the graphical representation of algo-
rithms, such as those used in multidimensional signal processing and image processing, and
exposing data parallelism for multiprocessor scheduling.

This report discusses some of the issues that arose during the development of a multidi-
mensional synchronous dataflow (MDSDF) domain in Ptolemy. The initial goal was to implement
support for a two-dimensional extension of the synchronous dataflow (SDF) domain that could
simulate MDSDF systems on a single processor system. Therefore, throughout this paper, the
terms MDSDF will most often refer to only a two-dimensional implementation, although we hope
that many of the ideas can be generalized to higher dimensions. In implementing a simulation
environment running on a single processor machine, we made a number of simplifying assump-
tions, which we will explain in this paper. We will also discuss some of the difficulties we foresee
in implementing a full multiprocessor version.

Due to the fact that MDSDF is closely related to single dimension SDF, we will contrast
their differences throughout this report. Chapter 2 will explain the graphical representation used
for SDF in Ptolemy and the terms we use to describe the components of an SDF system. We will
also introduce the graphical notation of MDSDF and explain how the two differ. Chapter 3 will
present the features of MDSDF with a series of example systems. Chapter 4 will discuss in more
detail the attributes of an MDSDF system and the problems in implementing a simulation domain.
Chapter 5 will discuss the low-level implementation issues involved in the creation of the
MDSDF simulation domain in Ptolemy, covering design issues such as data representation, buff-
ering, schedule representation, and writing stars for the MDSDF domain. Chapter 6 will conclude
with a summary of what has been accomplished and the areas that still need to be worked on.

2.0 Dataflow in Ptolemy, SDF and MDSDF

2.1 SDF and Ptolemy Terminology

Since Ptolemy [2] is the environment for our implementation, we will introduce its termi-
nology in this chapter. In many ways, MDSDF is simply an extension of the capabilities of SDF
[3] so we begin with a discussion of the representation of one-dimensional SDF systems in
Ptolemy. Note that the presentation of SDF in this chapter is intended as a summary and not as an
in-depth discussion. Much work has been applied to formalize the concepts of SDF, so we
strongly suggest that the reader refer to the papers on SDF and Ptolemy in the reference section,
especially paper [3], for better understanding.

In SDF and other graphical models of one-dimensional dataflow, the data transferred
between functional blocks (or actors) is of simple form, i.e. a single value that can be a floating-
point number, an integer, a fixed-point number, or a complex number. In Ptolemy, these values are
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held in a container structure called a particle, and these particles are transmitted between Ptolemy
actors. Ptolemy also supports structural hierarchy, so that a collection of actors can be grouped
and represented as a single actor. At the finest level, actors in Ptolemy are called stars, and these
are usually implemented by a C function or C++ class. A collection of stars can be grouped
together to form a galaxy. The overall system, formed by a collection of interconnected stars and
galaxies, is called an universe. Ptolemy also supplies the ability to transfer more complex data
structures, such as vectors and matrices, using a special container structure called a MessageParti-
cle. A simple SDF universe in Ptolemy is pictured below:

Node/actor/star - ==« o 2 Particle 3
@
x A
==~ ~-Portholes - -

FIGURE 1. A simple SDF universe

Actors are connected together by arcs that represent FIFO queues. The arcs are attached to
an actor at a location called a porthole. An actor can have more than one input or output porthole.
The numbers along the arc connecting the two actors specify the number of particles generated or
consumed by each star every time it executes (also called a star firing in Ptolemy). In the above
example, actor A generates two particles at each firing and actor B consumes three particles.

The fact that the number of inputs and outputs for every actor in a SDF system is known at
compile time gives the scheduler of the SDF domain (note that SDF is just one model of computa-
tion supported by Ptolemy, each of which is called a domain) the ability to generate a compile-
time schedule for simulation and code generation purposes. This schedule is called a periodic
admissible sequential schedule (PASS). A PASS is a sequence of actor firings that executes each
actor at least once, does not deadlock, and produces no net change in the number of particles on
each arc. Thus, a PASS can be repeated any number of times with a finite buffer size, and more-
over, the maximum size of the buffer for each arc is a constant that is determined by the exact
sequence of actor firings in the schedule. We call each of these repetitions of the PASS an itera-
tion.

SDF systems also support the concept of feedback and delays. A delay is depicted by a
diamond on an arc, as shown in Figure 2. The delay is specified by an integer whose value is
interpreted as a sample offset between the input and the output. It is implemented simply as an ini-

FIGURE 2. A SDF system with a delay.

tial particle on the arc between the two actors, so that the first particle consumed by actor B when
it fires is the value of the delay (most often this value is zero, but Ptolemy allows the user to give
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delays initial values). The delay allows the system with feedback to work by giving the source
actor A an initial particle to consume on its lower input arc. Note that in [5], delays and the asso-
ciated problem of accessing past samples in SDF are shown to be problematic in that they often
disallow the use of static buffering.

2.2 MDSDF Graphical Notation

Although the graphical notation of MDSDF is closely related to SDF and in many ways
just a simple extension, the added freedom of the multidimensional system introduces numerous
choices of how system specifications can be interpreted. Such flexibility can lead to confusion by
both the user of the system and the person implementing it if they do not agree on what the syntax
means. Examples of such possible areas of confusion are how to interpret two-dimensional delays
and how to define an actor that needs access to data in the “past” or in the “future”. This section
presents the definitions of MDSDF syntax, but some alternative interpretations will be discussed
in Chapter 4.

In MDSDF, the graphical notation is extended by adding an extra dimension to the input/
output specifications of each porthole of a star. A MDSDEF star in our current two-dimensional
implementation has input and output portholes that have two numbers to specify the dimensions
of the data they consume or generate, respectively. These specifications are given as a (row, col-
umn) pair, and we use parenthesis to denote this pair. For example, Figure 3 shows a MDSDF star
that has one output that generates data with dimensions of two rows by one column.

@n

FIGURE 3. A simple MDSDF star.

Unlike the SDF case, which can support two-dimensional data objects using the Mat rix
class, the data generated by a MDSDF star is not a self-contained monolithic structure but is con-
sidered part of a underlying two-dimensional indexed data space. SDF is able to transmit two-
dimensional data objects, such as matrices, using the MatrixParticle construct. However, these
data objects are of fixed size, and all actors working on the data stream must be aware of the size
of the object (usually by specifying some parameters to the star) and can only manipulate each
particle of the stream individually. On the other hand, the input/output specifications of a MDSDF
star simply gives us directions on how to arrange the data consumed/produced by the star. For the
case of an output data block, once the data has been generated, it no longer has a fixed sized struc-
ture, and the system is free to rearrange or combine data generated from multiple firings of the
source star into a differently sized data block.

Another way at looking at the specifications of the dimension of the data generated or con-
sumed by a MDSDEF star is to consider the specifications as the size of a window into an underly-
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ing data space. The origin of the window is determined by the firing index of the star itself. This is
best illustrated by an example.

.1 (1.3)

FIGURE 4. A MDSDF extension of the universe in Figure 1.

Figure 4 shows a possible MDSDF extension to the SDF system of Figure 1. Actor A still
produces two data values, but they are now considered to be arranged as a block that has dimen-
sions of two rows and one column. Similarly, actor B still consumes at each firing three data val-
ues, but these three values are required to be structured as a block with dimensions of one row and
three columns. The underlying data space for this system would look like:

columns
0 1 ) 3 4 5 ...
0 .._,j-,!Jll,sm 0 i
TOWS | IR | I
i ‘.-.f:li-{.f‘:-.;.‘f]i :

- ad

Ao A Aoz Ap3 Apg Aps -
L . | L I
Iteration 1 Iteration 2
Underlying r=% Data subset Data subset
data space s ! produced by - consumed by
L .2 actor A firings actor B firings

FIGURE §. The data space for the system of Figure 4

Here, the figure shows how the underlying data space has two rows and many columns. First look
at the section marked as Iteration 1. This section of the data space is of size two rows by three col-
umns, which is the lowest common multiple of the row and column dimensions of the two actors
in Figure 4. The first firing of actor A, which we denote with a firing index using square brackets,
is Aqg,0) (note the starting index in each dimension is zero), and is mapped to the data space as a
two row by one column block at location d[0,0] and d[1,0], where d represents the underlying
data space. We notice that since actor B needs data blocks that have three columns, the only way
actor A can fulfill such a demand is by firing two more times along the column dimension. These
two firings are denoted A[g 1y and A[g ), and their associated data space are the two columns next

to that of firing A(g g;. Once the three firings of A have produced the data, now considered as a

Developing a Multidimensional Synchronous Dataflow Domain in Piolemy ‘ 6



two-row by three-column block, star B can fire twice, with the second firing proceeding along the
row dimension. Thus, firings B(g o) and Bj; o) will consume all the data that the three firings of A
produced, and their respective subsets of the data space are portrayed in the diagram as the shaded
regions. These five actor firings can be listed as A[O.O]A[O.I]A[O ,2]B[0.0]B[l.0]' which constitutes an
infinitely repeatable schedule for the MDSDF system.

Note that the firing index of an actor is directly associated with a fixed location in the data
space, but they are not exactly equivalent. We need to know the size of the blocks produced or
consumed by the actor to determine the exact mapping between the firing instance of the actor and
its corresponding data space.

Additionally, an important feature about the above firing sequence is the fact that the two
sets of firings for actor A and actor B could have clearly been scheduled for parallel execution. In
other words, we can see from the data space diagram that the three firings of actor A are indepen-
dent and can be executed in parallel. Similarly, once all three firings of A are complete and the
data they produce are available, the two firings of actor B are also data independent and can be
scheduled for parallel execution. We will give more examples of this important aspect of MDSDF
in the next chapter.

For a second iteration of the schedule, we can see in Figure 5 that the data space of the
second iteration is laid alongside the data space of the first, incremented along the column dimen-
sion. This was a design decision, to increment along the column dimension rather than the row
dimension. We even considered defining a two-dimensional iteration count, so that we could iter-
ate in both dimensions. We do not know if this latter definition is needed, and all the systems we
have implemented thus far have been definable using just the column incrementation definition of
a schedule iteration. One issue that is clear is the fact that if there are no delays in the system and
there are no actors in the system that require access to “past data” (delays and accessing past data
will be described next), then each iteration is self-contained, in the sense that all data produced is
consumed in the same iteration. The next iteration of the schedule can reuse the same buffer space
as the previous iteration, so the buffer can be of constant size. So although the index of the data
increases as the firing indices increase for each iteration, we do not need an ever increasing buffer
to represent the data space. This is essentially a two-dimensional extension of static SDF buffer-
ing (see [5] for a discussion of static one-dimensional SDF buffering). The index space increases
in the column dimension for each iteration, but the actual buffer is from the same memory loca-
tions.

The last two basic features of MDSDF that we must explain deal with dependency of an
actor on data that is “before” or “after” in the two-dimensional data space. In SDF, the model of
interpreting the arcs as FIFO queues implies an ordering of where particles are in time. Therefore,
we could discuss how stars could access data in the “past.” In MDSDF, since one of our main
goals is to take advantage of multiprocessor scheduling, we do not impose a time ordering along
the two dimensions of the data buffer for one iteration (note that there is an ordering between the
data of successive iterations). Therefore, for lack of a better term, we use “before” or “past” and
“after” or “future” in each dimension to refer to data locations with lower or higher index, respec-
tively, in each dimension. So data location d[0,0] is before d[0,1] in the column dimension but not
the row dimension.
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A related concept is the idea of a delay in two dimensions, which can have a number of
interpretations. We have chosen to interpret a two-dimensional delay as if they were boundary
conditions on the data space. For example, Figure 6 shows a MDSDF system with a two-dimen-

(1.1

(2.1) ’ (1.3)

FIGURE 6. A MDSDF system with a two-dimensional delay.

sional delay. The delay, just like the portholes of a MDSDF actor, has a (row, column) specifica-
tion. The specifications for a two-dimensional delay tell us how many initial rows and columns
the input data is offset from the origin d[0,0]. We see that in Figure 7, firing A[q ¢ is now mapped

Shifted data for

firing A[ 0.0] 5 columns

FIGURE 7. A MDSDF system with a two-dimensional delay.

to buffer locations d[1,1], d[1,2], d[2,1], d[2,2]. We will discuss the effects of two-dimensional
delays on scheduling and other complexities that it introduces in Section 4.0. We note that another
possible interpretation of the specifications of a two-dimensional delay is simply as one fixed
sized data block with the given dimensions, instead of an infinite stream along each dimension.
We feel that our interpretation is the proper extension of SDF delays and has some useful advan-
tages over other interpretations, as we shall show in the next chapter.

3.0 Features and Examples of MDSDF

Now that we have presented all the building blocks and definitions of 8 MDSDF system,
this chapter will present the various features and possibilities that the increased capabilities pro-
vide us. Note that these features and examples are just the ones we have been able to identify in
the short time we have worked with the model. We hope that with increased experience, we will
discover many additional uses for this model of dataflow.

3.1 Schedule Expressiveness

The seemingly simple augmentation of the input/output specifications of MDSDF port-
holes by just one additional parameter has made these system very much different from their SDF
cousins. One advantage that MDSDF has over SDF is the ability to express a greater variety of
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dataflow schedules in a more graphically compact way. For example, Figure 8 shows a simple

2 3
(®)

FIGURE 8. A SDF system for scheduling example.

multirate SDF system. In terms of scheduling, it can easily be seen that it actor A needs to fire
three times for every two firings of actor B in order for the production and consumption rates to
balance.

We can formalize this more clearly by looking at the precedence graph and the distribution
of data for the above system. These are shown in Figure 9. Since the arc connecting the two actors

ORI
1 : | | : 11 : L
d0d1d2d3d4d5<..
1 ] 1 ]
By Bll

FIGURE 9. Precedence graph and data distributioh for system of Figure 8.

&

is considered to be a FIFO queue, the order of the data produced by the various firings of actor A
are consumed in order by actor B, as shown in both the precedence graph and the data distribution
diagram. The data distribution diagram is similar to the two-dimensional data space buffer dia-

grams we have shown for MDSDF systems before, but it is only a single dimensional stream. The
left most entry, labeled dy, is the first particle in the stream. Therefore, dy and d; are the first two

particles generated by the first firing of actor A.

Figure 10 shows a possible MDSDF extension of the previous system. Again, actor A pro-
duces two data values each time it fires and actor B consumes three, but the extra information
inherent in the dimensions specified for their portholes results in a much different distribution of
data between the two actors.

(VR 1.3

FIGURE 10. A MDSDF system with a two-dimensional delay.
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Again this is more clearly understood if we take a look at the precedence graph and a dia-
gram of the data space involved, which we show in Figure 11. Here we see that because the data

Aol A A
Bio,0] [0,0] *[0,1] [(:]

Bio,0)

Yo

Bi1,01

FIGURE 11. Precedence graph and data distribution for system of Figure 10.

produced by actor A is arranged as a column of the data space, the two output values of each fir-
ing of actor A is distributed to each firing of actor B. So even though the actors in the SDF and
MDSDF systems both produce and consume the same number of data values, and the schedules
for the two systems are similar in that actor A fires three times and actor B fires twice in both
schedules, the data distribution of the two systems is quite different. Note that the MDSDF model
is more general since it can express the dataflow of the SDF system by varying one of the dimen-
sions and keeping the other dimension fixed at one. We can also express the precedence graph of
Figure 11 in SDF, but we would have to lay out the system exactly as shown, using five nodes and
connecting them up exactly as we showed in Figure 11, which makes it clear that MDSDF is a
more expressive model of dataflow and can express a larger set of systems more compactly than
SDF.

3.2 Nested Resetable Loops and Delays

Besides having greater expressive power than SDF, MDSDF can also support some func-
tionality that SDF cannot. One such functionality is the ability to represent nested resetable loops
using reinitializable delays. This type of functionality is needed when you try to implement a sys-
- tem like a vector inner product. In SDF, an attempt at expressing such a system might look like
the graph in Figure 12. Actors A and B generate four particles per firing, which we can consider

: I—L
| Add

Multiply —-I_T

-
r’l 1
O

FIGURE 12. A SDF system to do vector inner product.
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to be vectors with four entries. Each respective entry of the two vectors is multiplied together and
the sum is accumulated using a recursive structure of an Add star with delayed feedback. C++
code equivalent to the system above is shown in Figure 13. A problem arises when one would like

C=0;
for (counter = 0; counter < iterationCount; counter++) {
for(i=0;i<4;i++) {
C += Ali] * B[i];
}
}

FIGURE 13. C++ code for vector inner product SDF system.

to make this into a module such that each time the system is run, one would like to have it do the
inner product of two four-entry vectors. The problem is that because of the stream orientation of
the system, there is no way to reset the accumulator output C. A second iteration of the system
would have C to accumulate the sum of the inner product of the first pair of vectors with the inner
product of the second pair of vectors.

One possible way to make the system do what we desire is if we could somehow reset the
delay at every iteration. A delay is usually considered to be an initial particle on the arc and we set
its value to be zero. This is how the first iteration computes the inner product correctly because it
essentially sets the initial value of C to be zero. If we could have the delay insert another initial
particle at every iteration, this would achieve the functionality we desire. To do this in SDF, we
often had to resort to various tricks to hardwire a reset to actors or delays in order to implement
this controlled reset of nested loops.

MDSDF can implement such functionality by using the fact that successive iterations are
along a new column in the data space. By using our definition of a delay as an entire row or col-
umn of initial values in the data space, we can implement the inner product function as shown in
Figure 14. Here, all the input/output specifications of the actors in the SDF version have been

4.
Matrix Aj-L A Py
(LD ‘
_—-’ .
Multipl -—J(l.l)
a '1) ultiply (1.1)
Matrix B @0

FIGURE 14. A MDSDF system to do vector inner product.

augmented to a second dimension. The specification of the second dimension in most of these
extensions have been set to one, which implies a trivial use of the second dimension. It is prima-
rily the specification of the two-dimensional delay, and the use of the implicit use of a new col-
umn for each successive iteration that makes this system different. The effect of the two-
dimensional delay is best illustrated by a diagram of the data space buffer for the arc containing
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the delay. We show this is Figure 15. The two-dimensional delay in the system was declared to

columns
DelayS\o 1 2 3 4 3 6 7 g8 ...
0 y
o " K

1

TrOwSs 2
3
4

3 7 8

Iterations
FIGURE 15. A MDSDF system with a two-dimensional delay.

have one row and no columns. This implies that the entire first row of the data space is set to the
initial value of zero. Thus, at every iteration, the Add actor will have its upper input reset, which
is equivalent to resetting the output result C at the beginning of each iteration. This example
shows one of the features of our interpretation of two-dimensional delay specifications as infinite
along a row or column.

3.3 Data Parallelism and Multiprocessor Scheduling

One of the original motivations for the development of MDSDF was the possibilities we
saw inherent in the model for revealing data parallelism in algorithms. Although the implementa-
tion of MDSDF in Ptolemy has only progressed to the stage of supporting simulations under a sin-
gle processor, we hope to soon add support for multiprocessor scheduling using the extra
information provided by the MDSDF model.

In the last chapter, we introduced how MDSDF can reveal data parallelism in a system.
We now present a couple of more interesting examples from field of two-dimensional signal pro-
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cessing. The first, shown in Figure 16, is a simple system that computes the two-dimensional Fast

(256,256) 2-D FFT (256,256) | Image
Image —1 Galaxy 4 Viewer
— - =~ S~
-~ —.
2D FFT Galaxy

1-D FFT 1-D FFT
(256,1; Star (256,1) (1,2561 Star (1,256) >
Column FFTs Row FFTs

FIGURE 16. A two-dimensional FFT system using row-column decomposition.

Fourier Transform (FFT) of an image. One easy way to compute a two-dimensional FFT is by
row-column decomposition, where we apply a 1-D FFT to all the columns of the image and then
to all the rows [7][8]. This simple concept is straightforwardly expressed in MDSDF as we see in
the figure. The diagram shows how we can use the graphical hierarchy of Ptolemy to implement
the 2-D FFT as a module made of the two 1-D FFT components. The 1-D FFT stars of the 2-D
FFT galaxy are identical, except that we have specified the inputs and outputs to work along the
columns and rows of the image, respectively.

We could describe something similar in SDF, but we would be limited to either working
with the entire image (as in Figure 17) or adding a series of matrix-vector conversions and trans-

1 Particle holding 1 Particle holding
a 256x256 matrix a 256x256 matrix
% 2D FFT é Image
Image o 1 Star ® ™ Viewer

FIGURE 17. A SDF implementation of 2D FFT as one star.

positions to manipulate the 1-D vectors to the correct orientation (as shown in Figure 18). The
first alternative is not very attractive because we would not be able to take advantage of the data
parallelism in the algorithm for multiprocessor scheduling, especially the data parallelism that the
MDSDF system reveals. The second alternative is also unattractive because it is quite cumber-
some and awkward to have all the data manipulation stars that do not really contribute to under-
standing the algorithm. The two-dimensional image, considered in SDF as a single monolithic
matrix, needs to be converted to a series of vectors so that we can apply the 1-D FFT star on the
rows. Then, the vectors must be collected again into a large data block and then transposed and
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converted to vectors so that we can apply the 1-D FFT star on the columns. Finally, the vectors
must be collected again, and then transposed again to undo the previous transposition. The
MDSDF representation is much clearer and reveals both the data parallelism and automatically
handles the computations along either dimension.

a 256x2§6 matrix 1x256 1x256 256x256 256x256

¥ |Image to| *. 1D FFT ‘ Vectors t Transpose
Inmge'*.ﬂ.\@nms Suu tohn”w
256}(:256 256x256 1x256 1x256
Image ¥ | Transpose 1D FFT

Vectors Image to
Viewer i M Image Star [+ ®Vectors

FIGURE 18. A SDF implementation of 2D FFT revealing the data parallelism awkwardly.

Once a multiprocessor scheduler is developed to take advantage of the data parallelism
revealed by the MDSDF representation, we see that there is also the potential to prototype the sys-
tem targeted to different numbers of multiprocessors. This is essentially the ability to scale the
amount of parallelism that the system designer wishes to exploit in the final implementation. The
MDSDF simulation should be able to give the designer information about when the communica-
tions costs outweigh the benefits of increasing the number of processors in the system.

For example, Figure 19 shows a MDSDF system that implements a two-dimensional FIR

(8.8) 2*2% | FIR (2%,2%) (8,8) | Image
®1 Filter Viewer

Image

FIGURE 19. A two-dimensional FIR system.

filtering system [7][8]. We use a very small image size so that we can show the data space dia-
gram more easily in Figure 20. Here, we show that the designer can have the ability to choose dif-

x = 0: 64 processors working on (1,1) data blocks —T T . 1.1 T
X = 2: 16 processors working on (2,2) data blocks ——# ] :1 - 1 :._:
(R 9

x = 4: 4 processors working on (4,4) data blocks —p -a-rer- -q-F-F-
L) : 1 '{'L'L'
PJ-J-L-:--I-J.-:.-

x = 6: 1 processor working on an (8,8) data block —} -E- aobohdoalt]
(equivalent to SDF) O LE T Ty e

FIGURE 20. Different subsets of the buffer for a two-dimensional FIR system.
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ferent levels of granularity for the parallelism he wishes to exploit in the system. Although we can
specify systems that have actors that access past and future data along the two dimensions, the
current implementation is quite limited and such flexible scaling as shown above is not yet possi-
ble. One limitation is that a star that desires to access past or future blocks of data can only access
blocks that have the same dimension as the current block. In the case of having four processors
working on (4,4) blocks of data for the FIR system, those four actors only need one column in the
past or future (assuming an FIR filter that is specified by taps that only access one index back or
forward in either dimension), but our current specification would only allow those actors to access
(4,4) blocks in the past or future. Nevertheless, it should be clear that once we have the ability to
do multiprocessor scheduling, MDSDF will allow the user some degree of flexibility to control
the amount of parallelism in the system by allowing him/her to tune the ratios of the dimensions
of the inputs and outputs of the actors in the system.

3.4 Natural Syntax for 2-D System Specifications

The examples we saw in the previous section on two-dimensional FIR filtering and two-
dimensional FFT implementation show that the syntax used in MDSDF is a natural one for
describing two-dimensional systems. We feel that even without the multiprocessor scheduling
attribute, the MDSDF model will be useful for developing two-dimensional systems, such as
image processing systems, in Ptolemy.

4.0 Scheduling and Related Problems

This section discusses in greater detail some of the theoretical problems we have encoun-
tered in defining a workable MDSDF system. We have solutions for many of these problems
when dealing with a single processor simulation system for MDSDF, but many of the problems
for a true multiprocessor system are still unresolved. We will present the problems we encoun-
tered, some potential solutions (when we have identified more than one) and our solution for
those problems, and a discussion of the problems remaining to be solved.

Many of the problems in developing a workable MDSDF specification are concerned with
the task of scheduling a MDSDF system. Part of the complexity of implementing MDSDF is the
fact that so many of the issues are interrelated, and a design decision in one area will have major
impact in many others.

We will present the discussion by scheduling topic, first summarizing how the problem is
defined and solved in SDF, and then presenting the MDSDF definition and solution. This discus-
sion will be more formal than what we presented in Section 2.0. The reader is referred to
[31,[4],[5] for a more complete presentation of SDF topics.

4.1 Calculating Repetitions

The first step in computing a schedule in SDF is to calculate the number of times each
actor needs to be repeated during one iteration period. This is accomplished by solving the bal-
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ance equations. The balance equations for a SDF system are a set of equations relating the num-
ber of samples consumed and produced by each pair of stars associated with an arc.

In Figure 21, the system has only one arc, so there is only the single balance equation.

N, Np

A

TNy = rgNg

FIGURE 21. A simple SDF system and its balance equation.

The unknowns r4 and rp are the minimum repetitions of each actor that are required to maintain
balance on each arc. N4 and Np are the number of output and input particles produced and con-

sumed by actors A and B respectively. The scheduler first calculates the smallest non-zero integer
solutions for the unknowns, which we saw to be r4 =3 and rp = 2 for the universe of Figure 8.

The MDSDF extended universe differs because we no longer consider the arcs connecting
the actors to be a FIFO queue but rather a two-dimensional data space. We adopt a similar defini-
tion of an iteration for the MDSDF case such that at the end of one iteration, the consumption of
data should be balanced with the production so that all buffers are returned to the same state as at
the beginning of the iteration. In terms of repetitions, this definition involves a simple extension
so that there are now two sets of balance equations, one for each dimension:;

A (NA. row NA, col) (NB, row NB. col)

Ta, rowN Arow = T, rowN B, row
r A, colN A, col = rB. coIN B, col

FIGURE 22. A simple MDSDF system and its balance equations.

Each equation can be solved independently to find the row repetitions and column repeti-
tions for each actor. We consider this two-dimensional repetition specification to represent the
number of row firings and the number of column firings for that actor in one iteration. We use the
curly brace notation {row firings, column firings} to denote the repetitions of 8 MDSDF actor.
The product rowfirings x columnfirings gives us the total number of repetitions of that actor
in one iteration period.
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4.1.1 Sample Rate Inconsistency and Deadlock

In SDF, it is possible to specify a system such that its balance equations have no integer
repetition solutions. This situation is called sample rate inconsistency [4). An example of such a
system is shown in Figure 23. Since actor A has a one-to-one production/consumption ratio with

FIGURE 23. A SDF system with sample rate inconsistency.

actors B and C, they should have the same number of repetitions in one iteration period. Unfortu-
nately, actor B produces twice as many particles per firing as actor C consumes, which implies
that actor C should fire twice as often as actor B in one iteration. Thus, there is an inconsistency in
the number of repetitions for each actor in one iteration.

It is also possible to specify MDSDF systems with sample rate inconsistencies. The user
needs to be even more careful when specifying MDSDF systems because it is possible for same
rate inconsistencies to occur on both dimensions. An example of an MDSDF system with sample
rate inconsistencies is shown in Figure 24.

@

@n

FIGURE 24. A MDSDF system with sample rate inconsistency.

A related problem is when a user defines a non-executable system due to insufficient data
on an input for the first iteration. This situation, which we term a deadlock condition, can occur in
systems with feedback, as shown in the SDF system of Figure 25. For the first firing of actor A, it

FIGURE 25. A SDF system with a deadlock condition.
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cannot fire because there is a dependency on its lower arc for data from a non-existent previous
firing of A. The solution to this problem would be to add a delay on the lower arc, which would
supply an initial particle for the first firing. MDSDF systems can also be specified to have feed-
back, so they are vulnerable to the same deadlock conditions and MDSDF delays applied simi-

larly to remove these deadlock situations.

4.2 Generating a Schedule

The above discussion only gives us the number of times each actor of the universe needs
to fire in one iteration. There is still the full scheduling problem of determining when each actor
should fire, i.e. we need to generate an actual schedule. For the SDF system in Figure 8, all we
know from the repetitions calculation is that actor A fires three times and actor B twice per itera-
tion. There is actually more than one possible schedule for the iteration. One such schedule would
be to have actor A fire three times consecutively, and then have actor B fire twice. Another sched-
ule would have actor A fire twice first, producing four data values for the FIFO queue. Actor B
would then fire once to consume three of those data values, leaving one value left in the queue.
Then actor A could fire its third time to update the queue storage to three values, and actor B
could then fire its last time to empty the queue. In a short hand notation, the first schedule can be
written as AAABB and the second schedule can be written as AABAB.

The difference between the two SDF schedules has to do with the fact that the second
schedule defers the last firing of actor A when it realizes that actor B was runnable after the first
two firings of actor A. This “smarter” schedule has the advantage of being able to use a smaller
buffer between the two actors. For the example above, the first schedule requires a buffer of size
six, while the second schedule requires a buffer of size four. There is a cost in using the second
schedule that has to do with the fact that the first schedule can be written so that is uses less mem-
ory for the code than the second schedule. This is because the first schedule can be expressed as a
loop schedule 3A2B, which means that the code for actor A is simply placed inside a loop that
executes three times and the code for actor B is placed inside a loop that executes twice. If we try
to loop the second schedule, the best we can do is A2(AB), which requires us to repeat the code
for actor A an extra time (note that in real DSP systems, code for modules are often repeated
rather than called as functions since function calls are slower and take stack memory as well).
Considerable work has been done on how to schedule SDF graphs to minimize the two often
opposing criteria of code size and buffer size [5,6].

In an attempt to make a simple scheduler for MDSDF, we have chosen to implement an
extension to the first type of schedule, in which we schedule all the firings of an actor that are run-
nable as soon as possible, rather than deferring any for future scheduling.

The critical problem to solve in generating any schedule is knowing when the destination
actor has enough data to fire. This is not too difficult a problem to solve in the SDF case where all
buffers are modeled as FIFO queues. A simple scheduler for SDF graphs simply keeps track of
the number of particles at the input to an actor. If an actor has no inputs, then it is always runnable
and can be added to the schedule. So, source actors are always runnable. Otherwise, the only con-
dition for an SDF actor with inputs to be runnable is that there are enough particles on each of its
input buffers to satisfy the number required. Thus, an SDF scheduler can determine when an actor
is runnable simply by keeping track of the number of particles on the buffer.
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The MDSDF case is much more complex if we allow the most general multiprocessor
scheduling. First, let us look at some simplifications that we can make when we are limited to a
single processor scheduler. On a single processor machine, since only one firing of an actor can
run at any time, we felt it best to have the scheduler follow a deterministic ordering when schedul-
ing an actor that can run multiple times in one iteration. That is, if an actor can be fired more than
once in one iteration period, the scheduler will follow a fixed rule of what order to schedule the
various row and column firings. We have adopted a row-by-row approach in scheduling, so that
we schedule all firings from the first row of a star before proceeding to the second row of firings.
Each row is scheduled in increasing order from lowest to highest. The second rule we use is that
we schedule a runnable actor as many times as it needs to be repeated in the iteration immediately
and do not attempt to defer any to be scheduled later.

G33)

FIGURE 26. A MDSDF universe for scheduling.

For example, consider the universe of Figure 26. Using the techniques from the previous
section on calculating the row and column repetitions, it is easy to determine that actor A needs to
be fired {3,3} times and actor B {2,2} times for one complete iteration. Since actor A can fire a
total of nine times, we will schedule it to do so immediately, before the four firings of actor B.
Using the row-by-row scheduling rule we mentioned above, we schedule the first three row fir-
ings of actor A, starting from firing A[q ; and incrementing in the column dimension, and then

proceed to the next two rows. At completion of scheduling, the schedule that our simple single
processor MDSDF scheduler generates is
Af0.01A10.1141021A11,0/A11,.11A11.2)A02.01A12.11A12.21B10.01B10,11B11,0B1 1,13
From the experience of using our MDSDF scheduler on systems with large two-dimensional rate
changes, it became clear that a shorthand notation for such a schedule is needed because there are
often many firings of each actor per iteration (especially for systems like image processing). For
the single processor case, when we know that there is a specific order of firings, we can use the
shorthand notation A[g 0j.(2.21B[0,0)-[1,1] t0 represent the above schedule. We still have the problem
of determining when the destination actor can fire. In the one-dimensional SDF case, the solution
was to simply count the number of particles on the buffer between the actors. In the previous
example, actor B was runnable when the buffer had enough particles, and when it fired, it would
remove the first Np particles from the buffer. The seemingly simple extension to working on a
two-dimensional data stream actually results in a quite complex problem. We cannot simply talk
about “when is star B runnable?” We need to talk about a specific instance of the firing of star B,
like “when is the instance of B g runnable?” This is because of the fact that the buffers between

MDSDF actors can no longer be represented as simple FIFO queues and each firing of a MDSDF
star has a fixed block of data that it needs to produce or consume, depending on its firing index.
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To illustrate this point, let’s return to the example of Figure 26. Figure 27 shows a repre-
sentation of the two-dimensional data buffer between actors A and B for that system. We can see

2 B

NN
N

---.q

q

S SN RN | Y O Y |

FIGURE 27. Two-dimensional data buffer for system in Figure 26

that firing Ag o) produces data that correspond to buffer locations d[0,0], d[0,1], d[1,0], d[1,1],
where d represents the two-dimensional buffer. Similarly, firing By o) requires that buffer loca-
tions d[0,3], d[0,4], d[0,5], d[1,3], d[1,4], d[1,5], d[2,3], d[2,4], d[2,5] all have valid data before
it can fire. We can also tell that firing By; g) requires firings A 13, Afo.2)» Af1.1), and Ay 2 to pre-
cede it. The problem is how to determine such dependencies quickly, without resorting to a two-
dimensional state-space search to verify that the required data buffer entries are available. In a
single processor scheduler, given the simplifications we mentioned before based on the fixed row-
by-row execution order of firings, the problem is solved by simply keeping a pointer to the loca-
tion of the last “valid” row and column in the buffer. Any rows above the last valid row (Ivr) is

assumed to have data filled by the source star already, and any column to the left of the last valid
column (lvc) is similarly assumed to be valid.

For example, after firing A(; 13, Ivr =5 and lvc = 3 (see Figure 28). To check whether fir-
ing B[0,0] is runnable, we simply check the location of Ivr and lvc. We know that actor B expects
(3,3) blocks of data, and since this is the [0,0]th firing, we need lvr >= 2 and lvc >= 2. Similarly,
firing B[1,1] would not be runnable in this example since we need Ivr >= 5 and lvc >= 5.

b oy g e o ] oot valid row = 5
diprei e Jast valid column = 3

FIGURE 28. Valid buffer locations after firing A(3 1}.
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This method of using a pointer to the last valid row and column is suitable only for the sin-
gle processor case, but is not flexible enough for multiprocessor scheduling since it is based on
the strict firing order assumption. In a multiprocessor system, the various firings of actor A might
be executed in parallel, and so firing A[2,2] might complete before firing A[0,0]. We have not yet
implemented a multiprocessor scheduler, so we are uncertain whether there is an easier solution to
this problem than a full two-dimensional search for all the valid input data values needed for a
destination star to be runnable. We hope that there exists a simpler systematic solution because a
two-dimensional search can be quite costly and would make extensions to higher dimensions
unattractive and possibly unfeasible.

4.3 Delays

Delays are a common feature in one-dimensional signal processing system, but their
extension to multiple dimensions is not trivial and can cause many problems for both scheduling
and buffer management. In one-dimensional SDF, delays on an arc are usually implemented as
initial particles in the buffer associated with that arc. The initial particles act as offsets in the data
stream between the source and destination actor, as show in Figure 29. Effectively, the output of
actor A has been offset by the number of particles set by the delay.

2

A 2 ’ 3

Qutput stream from actor

A's perspective
P \\A
Input stream from actor % N
B'’s perspective k
L JL

FIGURE 29. Delays in SDF.

Unfortunately, the extension to more than one dimension is not so simple. In our attempts
at implementing multidimensional delays, we were at first uncertain how to even define them. We
see at least two ways to interpret the meaning of a delay on a multidimensional arc, and we have
adopted the definition that seems more logical and attractive to us, but we still had to limit its
functionality to aid us in implementation. It is not yet clear to us whether our definition is the
“correct” one, but more experience in using MDSDF to model real problems should settle the
matter. For now, we will present the various alternative definitions and go into more detail about
the definition we have adopted. We will explain some of the problems we found in implementing
our definition and the restrictions we had to place on it to simplify our implementation.
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4.3.1 Alternative Definitions of Two-Dimensional Delays

The notation we use for specifying a two-dimensional delay is similar to how we specify
the portholes of a MDSDF actor. This is seen in Figure 30, in which we have specified the delay

22 (LD 33)
A 4

FIGURE 30. A MDSDF system with a two-dimensional delay.

to have dimension (1,1). Since MDSDF actors work on an underlying data space, one possible
interpretation of the delay is as a finite block with the dimensions given by the delay arguments.
This is depicted in Figure 31. The delay block is the first (1,1) block in the space. Notice how it

columns
Delayblock o 1 5, 3 Q75 ¢ 4 g

rows

NN R

Clear blocks are =] Alternative locations for
B delay values. L g thedata of actor A firings
FIGURE 31. A finite block interpretation of a two-dimensional delay.

distorts the data space so that it is even unclear how the data from subsequent firings of actor A
should be placed in the data space. Although a limited definition (where we limit the dimensions
of the delay to be some multiple of the input dimensions) of such finite block delays might be use-
ful in some cases, we do not think this is the “correct” definition of multidimensional delays.

Another possible way to define 2-D delays is to be multiples of the input dimensions. In
SDF, delays were a count of how many initial particles, so if we consider MDSDF actors to pro-
duce arrays, we might consider delays to be a count of the number of initial arrays. This definition
would be similar to the previous one when we limit the delay dimensions to be multiples of the
input dimension. For the previous system, the data space would look like the diagram in
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Figure 32. Notice how there is one less firing of actor A needed for the first iteration, so this delay

columns
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data blocks for | "1 the data Iocations for

actor A firings. actor B firings.
FIGURE 32. An interpretation of delays as multiples of input blocks.

interpretation actually changes the schedule generated for the system. Again, this definition may
be useful in some cases, but we felt that it was not the “correct” extension of SDF delays since
SDF delays do not change the number of times an actor is repeated in each iteration period
(although delays might cause some data generated by an actor to be unused and left on the queue).

4.3.2 The MDSDF Definition of Two-Dimensional Delays

The last definition we present is the one presented in [1] and is the one we have adopted in
our implementation. This interpretation of two-dimensional delays is one in which the delay
dimensions cause a two-dimensional offset of the data generated by the source actor relative to
the data that is consumed by the destination actor. This is similar to considering the two-dimen-
sional delay specifications as boundary conditions on the data space. The two-dimensional speci-
fication of the delay, (N, delays» Ncolumn delays)» 1s interpreted such that Nrow delays 1s the number
of rows of initial delay values and N}, delays 18 the number of columns of initial delays values.

Although it is possible in SDF to specify non-zero initial values for delays, in the current imple-

Developing a Multidimensional Synchronous Dataflow Domain in Ptolemy 23



mentation of MDSDF, delays are fixed to have zero initial values. We illustrate the data space dia-
gram for this interpretation of the system in Figure 30 below.

Delayblock o = romiamss S gt UIE 6= 7B, 95 ...
0 '-__7:_"_“1}'_ Sl i y/

rows

Iteration 1

Clear blocks are

{1 Shaded blocks are - Dashed boxes cover
delay values.

1 data blocks for L the data locations for
“ actor A firings. actor B firings.

FIGURE 33. An interpretation of delays as multiples of input blocks.

We notice that similar to what happens with delays in SDF, there is left-over data on the
buffer that will never be consumed, and the buffer size must be large enough to accommodate this
extra data. In the row dimension, the delay has caused the last row of data produced by the source
actor to be never consumed. Currently, we simply enlarge the buffer by the number of row delays,
to give the producer a place to put the data generated. We could discard the data after this, or it
might even be possible to discard it immediately when it is created so we do not have to buffer the
data, but this would require the submatrix of the producer to be smart enough to know that the
data being generated should be discarded. We feel the cost of this modification is not worth the
savings at this time. The extra column data that is left unconsumed in the first iteration by column
delays cannot be so discarded because subsequent iterations would consume it.

As we just showed, the column delays also increase the number of columns needed in the
buffer, but this increase in column size results in much more complex problems than the increase
in row size caused by the row delays. The problems have to do with determining how much to
increase the column size of the buffer. If we simply increase the number of columns of the buffer
by an amount equal to the number of column delays (the method used for the row delays), we
encounter a problem that has to do with the implementation of the submatrices used to access sub-
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sets of the buffer. For example, if we used a buffer size of seven rows by seven columns for the
system of Figure 30, we get the following:

columns
0. 3 2. 3. 4% 55716
oifr-
=
21L&
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Iteration 1 Iteration 2

Clear blocks are
delay values.

Shaded blocks are -] Dashed boxes cover
data blocks for L the data locations for
actor A firings. -l actor B firings.

FIGURE 34. Buffer usage in two iterations of a MDSDF system with delays.

Notice how in the second iteration, the submatrices for firings B[g ;) and B[; 5 are no
longer proper subsets of the buffer space. Similarly, firing Ag g will produce data into a subma-

trix that wraps around the boundary of the buffer space. In order to support such modulo address-
ing in the submatrices, their design would need to be much more complex, and the methods to
access each entry of the submatrices would be much slower. These problems also exist in the first
finite block definition we gave previously, but not in the second definition given above where the
delay block size was a multiple of the input block size.

In an attempt to simplify the system and especially to keep the implementation of the sub-
matrices as fast and efficient as possible, we chose not to support modulo addressing. We wanted
submatrices to always access proper subsets of the buffer space. In order to do this, we had to
adopt a constraint such that the number of column delays specified must always be a multiple of
the column dimension of the input to the arc with the delay. This causes the column delays to
behave like initial firings of the source actor onto the buffer space, and results in the submatrices
used by the source actor to always fit as proper subsets of the buffer space. Unfortunately, this
constraint is not sufficient to guarantee that the destination actor will use a submatrix that is a
proper subset of the buffer space.

An additional constraint was needed, such that the number of columns in the buffer with
delays is always a multiple of the number of columns of the original buffer with no delays. This is
because there are instances where the source or destination actor works on the entire original
buffer space, thus increasing the number of columns in the buffer only by the number of column
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delays still results in a submatrix being an improper subset of the buffer space. This can be seen in
the example system and buffer diagram of Figure 35.
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delay values. data blocks for L the data locations for
actor B firings.

actor A firings.
FIGURE 35. Buffer usage in two iterations of a MDSDF system with constrained delays.

We can see that the source actor produces submatrices that are always subsets of the buffer
space. If the column size of the buffer is increased by a multiple of the original column size of the
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buffer without delays, then the submatrices of both the source and destination actors will always
be proper subset of the buffer space, as shown in Figure 36.
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FIGURE 36. Buffer usage for two iterations of a MDSDF system with constrained delays and where the
column size of the buffer is a multiple of the column size of the buffer if there were no delays.

4.4 Extended Scheduling Example

Let us go through an example of using the above rules and definitions to generate a single
processor schedule for a larger MDSDF system. We will revisit the problem of generating the
schedule for the vector inner product system, which we reproduce below:

(1.0)
1

Matrix AR i

(1.1

— g 2

1 1_](1.1)

(ﬂ; Multiply an Matrix C

Matrix B @D

FIGURE 37. A MDSDF system to do vector inner product.

First, the balance equations for the system are:
4*rparow=1%r mult_input] row
1*raca=1%r mult_inputl col
4*rgrow=1%r mult_input2,row
1% 7B cot = 1 * F'mult_inpur2 col

1™ Imult_outputrow =1 * 7 add_input2, row
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1 * roult_outputcolt =1 % 7, add_input2,col
1*r add_outputrow = 1 * T fork_input.row
1*r add_outputcol = 1 ¥ T fork_input,col
1 * Fork_outputlrow =1 *7, add_inputl row
1* Ifork_outputl,col = 1 * Tedd_input1 col
1* Iork_output2.row = 1 * 7'C row
1 * Iéorkc_outputz.col = 1* 7'Ccol

We can solve these equations to generate the repetitions count for each actor, which are
A1) Bya,1p Multyq 1}, Addyq 1), Forkyg 1}, Ci4.1}- Thus, for one iteration period, actors A and
B fire one time each and the other actors all fire four times. The actors that fire four times each
consume data down the rows of one column.

Using the scheduling rules we presented previously, the schedule for the vector inner
product system is A[Q'OJB [O.O]MUIt[O.O]-[3.0](AddF°fk)[o.0]-[3,0]C[0,0]-[3,0]- The schedule uses a
short-hand notation to group the pair of sequential firings of the Add actor followed by the Fork
actor. That sequence is executed four times, from index [0,0] to [3,0]. The Add actor can fire the
first time because it has a initial data block provided by the delay on its upper input. After its first
firing, it needs the output of the Fork actor to continue. Thus, the pair Add and Fork must fire
together in series. After one iteration, the Add gets reset because its first input comes from a new
column, which again has an initial delay value. The final result is that for each iteration, the sys-
tem computes the inner product of the two vectors provided by actors A and B. We could make
the system into a galaxy, and provide a different pair of input vectors for each call of this galaxy.

5.0 Ptolemy Implementation Details

This chapter discusses the details of the implementation of MDSDF in Ptolemy. The ideas
do not necessarily require the reader to be a Ptolemy “hacker,” but a good understanding of C++
and how the Ptolemy kernel operates would be beneficial.

5.1 Two-dimensional data structures - matrices and submatrices

Since MDSDF uses a model in which actors produce data that are part of a two-dimen-
sional data space, the data structure used to represent both the buffers and the subsets of the buffer
that the stars can actually work with is very important. Currently, the primary data structure used
for the buffer is the PMatrix (the ‘P’ is silent) class from Ptolemy’s kernel (please refer to the
Ptolemy 0.5 Programmer’s Manual for a complete description of the PMat rix class and its deriv-
atives). A subclass of the PMatrix class was developed to act as the primary structure used by
stars to access data from the buffer. There are four SubMatrix classes: ComplexSubMatrix,
FixSubMatrix, FloatSubMatrix, and IntSubMatrix, to match the four corresponding
types of PMatrix classes.
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some multiple of the original column size in order to guarantee that we have room to retain
enough samples.
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FIGURE 40. Buffer evolution of a MDSDF system with delay.

5.5 ANYSIZE Inputs and Outputs

There are situations where we would like an actor to be able to receive inputs that are of
any dimensions. That actor could be a sink star, such as a star which displays the input and does

not care about the type or size of the input, or the actor could be a fork star which simply gives
copies of the input to multiple outputs.

We have implemented the ability to support stars which have portholes with specifications
that are (ANYSIZE, ANYSIZE). The rules for resolving the size that the porthole uses is as follows:

1) No star can have more than one input porthole with ANYSIZE rows or columns.

2) A star with ANYSIZE rows or columns on an output porthole must have an input port-
hole that also has ANYSIZE rows or columns.
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3) All portholes of a star that have ANYSIZE rows or columns will use the same resolved
values for the dimensions.

4) ANYSIZE rows or columns are resolved by following the input porthole with ANY-
SIZE rows or columns and assigning the ANYSIZE row or ANYSIZE column dimension to the
corresponding row or column dimension of the output porthole connected to it. If that output port-
hole itself has ANYSIZE rows or columns (as in the case of cascaded fork stars), then that star is
resolved first, following the rules given here, until we find an output porthole which has determi-
nate row and column dimensions.

5.6 Writing MDSDF Stars

MDSDF stars are written much differently than the standard dataflow stars in Ptolemy.
First, every star should have in its setup () method a call to setMDSDFParams () for every
porthole to declare its dimensions to the MDSDF scheduler. Secondly, since MDSDF stars access
their data using submatrices instead of particles, these submatrices are acquired from the input
and output portholes using the get Input () and getOutput () methods, respectively, instead of
the % operator used by the other Ptolemy dataflow stars to access particles. The reason we adopted
new methods for accessing the submatrices instead of overloading the $ operator was because the
% operator is limited to a single argument and in the cases where we wish to access past or future
submatrix blocks in two dimensions, we need methods that can take two arguments. An example
demonstrating these two points is shown below:

defstar {
name { MatrixAdd }
domain { MDSDF }
desc {
Matrix addition of two input matrices A and B to produce matrix C.
All matrices must have the same dimensions. '
}
version { %W% %G% }
author { Mike J. Chen }
copyright { 1994 The Regents of the University of California }
location { MDSDF library }
input {
name { Ainput }
type { FLOAT_MATRIX }
}
input {
name { Binput }
type { FLOAT MATRIX }
}
output {
name { output }
type { FLOAT MATRIX }
}
defstate {
name { numRows }
type { int }
default { 8 }
desc { The number of rows in the input/output matricies. }
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}
defstate {
name { numCols }
type { int }
default { 8 }
desc { The number of columns in the input/output matricies. }

}

ccinclude { “SubMatrix.h” }

setup {
Ainput.setMDSDFParams (int (numRows), int (numCols));
Binput .setMDSDFParams (int (numRows), int (numCols));
output.setMDSDFParams (int (numRows), int (numCols));

go {
// get a SubMatrix from the buffer
FloatSubMatrixé& inputl =
*(FloatSubMatrix*) (Ainput.getInput ());
FloatSubMatrix& input2 =
*(FloatSubMatrix*) (Binput.getInput());
FloatSubMatrix& result =
*(FloatSubMatrix*) (output.getOutput());

// compute product, putting result into output
result = inputl + input2;

delete &inputl;
delete &input2;
delete &result;

Notice how we have declared the types of each porthole. The MDSDF stars use the types
COMPLEX MATRIX, FIX MATRIX, FLOAT MATRIX, and INT MATRIX, in contrast to the SDF
stars that act on the PMatrix class objecm which have portholes declared to be of type
COMPLEX MATRIX ENV,FIX MATRIX_ENV, FLOAT MATRIX ENV, and INT MATRIX ENV.The
SDF matrix types have the ENV extension because the matrix partxcles in SDF use the Envelope
structures to hold the matrices being transferred. The MDSDF star uses states that allow the user
to change the dimensions of the inputs and outputs for the star as needed. The dimensions are
declared in the setup () method, as we mentioned before. It is important to note how the calls to
getInput () and getOutput () have been cast to the appropriate return type needed. Type
checking is performed by the system during scheduling, so these casts should match the ones
declared for the porthole types or else unexpected results will occur. The last thing to note is how
we delete the submatrices used to access the data buffers at the end of the go () method. This is
because the submatrices are currently allocated by the get Input () and getOutput () methods
whenever they are called and no pointers to those submatrices are ever stored (unlike particles).
Thus, to prevent memory leaks, the submatrices must be deleted by the stars that created them.
The memory for the data actually referenced by the submatrices is not changed since the subma-
trices are simply access structures and do not allocated any memory of their own for storage pur-
poses.
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Often in image processing systems, the stars written will need to access data at the single
pixel level. A pixel or any scalar can be accessed by declaring the portholes to provide or require
(1,1) matrices, but the submatrix method of accessing these scalar information is inefficient.
Therefore, we have provided two simpler functions getFloatInput () and getFloatOut-
put () to improve the performance when accessing single entry locations of the mother matrix in
the geodesic. These functions return a double and a reference to a double, respectively, so no sub-
matrices are created or need to be deleted. We currently only provide these methods for the
Float data type, but support may be extended to the other data types supported by Ptolemy in the
future. The use of these functions is illustrated in the following code fragment from the go ()
method of the MDSDFFIR star:

setup {
input.setMDSDFParams (1,1);
output .setMDSDFParams (1, 1);

go {
// get a scalar entry from the buffer
doubles out = output.getFloatQutput();

out = 0;
int tap = 0;

for (int row=int (firstRowlIndex); row <= int (lastRowIndex); row++) {
for (int col=int (firstColIndex); col <= int (lastColIndex); col++) {
out += input.getFloatInput (row,col) * taps[tap++];
}

Currently, MDSDF supports a limited method of accessing data with indices to the past
and future of the “current” data block. As we mentioned before, ever star firing is mapped to a
specific block in the data space. If the star also desires to access data that is outside that block, it
can do so, with some limitations. The limitations are that the star can only access data blocks
within the current buffer. Data outside the current buffer is considered zero. We do not support
dependency along the iterations such that a star that was firing at the last column of the current
iteration buffer size would not force a subsequent iteration firing to produce the data for the for-
ward reference. Similarly, a star that is the first firing of an iteration cannot access data from the
buffer of the previous iteration. The syntax for making such references is shown in the code frag-
ment for the MDSDFF IR star below:

defstate {

name { firstRowlIndex }

type { int }

default { “-1" }

desc { The index of the first row of tap values }
}
defstate {

name { lastRowIndex }

type { int }

default { 1 }
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desc { The index of the last row of tap values }
}
defstate {

name { firstColIndex }

type { int }

default { “-1" }

desc { The index of the first column of tap values }
}
defstate {

name { lastColIndex }

type { int }

default { 1 }

desc { The index of the last column of tap values }
}
defstate {

name { taps }

type { floatarray }

gdefaule. { Yol w1 51 4 2 T .1 .1 3" )

desc { The taps of the 2-D FIR filter. }

go {
// get a SubMatrix from the buffer
double& out = output.getFloatOutput ();

out = 0;
int tap = 0;

for(int row = int (firstRowIndex); row <= int (lastRowIndex); row++) {
for(int col=int (firstColIndex); col <= int (lastColIndex); col++) {
out += input.getFloatInput (row,col) * taps([tap++];
}

The syntax is very similar to the normal ones used to access the block directly assigned to
the firing except we can use negative and positive arguments to getFloat Input () and get-
Input () to access data backwards or forwards in the data space, respectively.

5.7 Efficient forking of multidimensional data

For a pure dataflow interpretation of one-dimensional SDF, forking amounts to copying of
the input particle into two output particles. In our code generation implementation of SDF, we can
optimize the fork case because the data does not really need to be copied. In dataflow, the destina-
tion stars are not allowed to modify their inputs. So, two destinations of a fork star could simply
have a reference to the same input.

This concept is equally valid in the multidimensional case. Although currently not imple-
mented this way, we should be able to have destination portholes of a fork share one geodesic, so
that we do not have to have multiple copies of the data in separate geodesics for each output arc of
the fork.
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6.0 Conclusion

This paper has discussed various issues that arose while attempting to implement a
MDSDF domain in Ptolemy. There are alternative models for data representation and numerous
challenges in efficiently managing the large amounts of data that a typical MDSDF system would
generate. We have presented the formal specifications of a workable MDSDF model, and pre-
sented some examples of its features. We have also presented a discussion of the complexities
involved in implementing a simulation environment for MDSDF and the design decisions we
chose to simplify the problems we encountered. Currently, a MDSDF single-processor simulation
domain has been implemented in Ptolemy. It has been tested on small simple systems. Future
work include implementing a multiprocessor scheduling target and examining possible extensions
of the system to greater than two dimensions.
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