

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

NOVEL TYPES OF ANALOGIC CNN ALGORITHMS

FOR RECOGNIZING BANK-NOTES

by

A. Zarandy, F. Werblin, T. Roska, and L. O. Chua

Memorandum No. UCB/ERL M94/29

22 April 1994

NOVEL TYPES OF ANALOGIC CNN ALGORITHMS

FOR RECOGNIZING BANK-NOTES

by

A. Zarandy, F. Werblin, T. Roska, and L. O. Chua

Memorandum No. UCB/ERL M94/29

22 April 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

NOVEL TYPES OF ANALOGIC CNN ALGORITHMS

FOR RECOGNIZING BANK-NOTES

by

A. Zarandy, F. Werblin, T. Roska, and L. O. Chua

Memorandum No. UCB/ERL M94/29

22 April 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Novel Types of Analogic CNN Algorithms for

Recognizing Bank-notes

A. Zarandy* F. Werblin4"4", T. Roska+, and L.O. Chua

Electronics Research Laboratory, U.C. Berkeley
Comp. Aut. Inst. Hungarian Academy of Science

+_f"Molecular Cell Biology, U.C. Berkeley

1 INTRODUCTION

Cellular Nonlinear/Neural Networks (CNN) are regular, multiprocessor, nonlinear dynamic
arrays with mainly local interconnections [1-2]. The invention of the CNN Universal
Machine [3] provides for the application and efficient implementation of analogic CNN
algorithms. In these algorithms the various CNN templates [1-3] are combined according to a
flowchart. In addition to the global logic of the flowchart, the analog dynamics is combined
with logic on the cell level as well.

In this paper we show some novel types of analogic algorithms. These algorithms
make complex decisions in images without reading out the CNN chip. This makes them
extremely time, area, and power effective. Two crucial effects are emphasized: diffusion type
templates are applied during a finite time interval and local logic operates within well defined
parts (patches) in the image plane. Hence, a new type of pattern recognition algorithm is
introduced. The technique is shown by solving an important and useful problem: recognizing
(detecting) color bank-notes.

Recognizing bank-notes became important by the advent of high quality color
copiers. The problem is to make built-in protection against illegal copying. Speed and
reliability is extremely important. Our solution meets both criteria.

In Section 2 we introduce the problem, in Section 3 the general concept of the
algorithms is described, and in Section 4 the necessary new algorithmic elements are
described (citing those which was used from the literature as well). In Section 5 we present
the solutions for recognizing different US and Canadian bank-notes.

2 THE PROBLEM

In the last couple of years the quality of colorcopying increased significantly. Unfortunately,
this very important development also led to the possibility of making very good copies of
bank-notes. Thus it has become very important to equip copiers with a real-time built-in
protection against counterfeiting.
Solving the problem we have two objectives:

• prevent copying bank-notes;

• do not prevent copying anything else.

These two objectives are slightly contradictory in the sense that we cannot expect 100%
reliability for both at the same time. The bank-note can be dirty, scratched, lighter than a
brand new one. So we cannot look for a perfect match, and this might result in false alarms.

The speed of the copiers increased as well. At a speed of 4 or 5 color copies per
second, it means that within 200 or 250 ms a whole letter sized color image (frame) must be
checked. Naturally we have to consider that all of these bank-notes are put on the frame with
arbitrary shifts and rotations. This makes the problem even much harder.

In addition, if a user did not try to copy anything illegal in the frame, he or she should
not notice any slow down in the copying process.

We have reformulated our problem by considering all these aspects. In most cases,
when there is nothing illegal in the frame, we need a very fast decision to allow copying, ur
solution can make this decision within the time limit, while maintaining a low false alarm
rate.

3 GENERAL CONCEPTS OF THE ALGORITHM

Our task is the following. Given a color input image (frame). Make a decision, whether it
contains a bank-note or not. Novel types of analogic algorithms with two new features will
be used.

• When running these algorithms on a CNN Universal Machine, the analogic chip
implements there without reading out the details of the processed image.

• Not just single objects but groups of objects together are processed fully and in parallel.
We called these operations the spatial logic.

3.1 On-chip decision making

We define a set of image features to be tested by analogic CNN algorithms. These features
can be topologic, chromatic,...e.t.c, and may apply to the features directly or tlieir
enlargements. The resulting images from these testing algorithms are always binary. They are
black (+1, true) in those locations, where the sought feature was found, white (-1, false)

everywhere else. If we wish to test for the existence of a known image part (bank-note)
within a frame, we have to do carry out the following steps:

• select several characteristic features of the sought image part;

• test forthe existence of the selected features on the frame;

• combine the results by applying appropriate logic operations on them.

The final result is a binary image. If it is completely white, we can be sure that the sought
image part was not in the frame. This can be tested with the global line function of the CNN
Universal Machine without reading out the image[3].

3.2 The spatial logic

Though the inputs are true color pictures, the algorithms are mostly dealing with binary
images. In these images there are many objects. The new idea in the spatial logic is that the
related objects are collected into groups, and processed together. We consider objects to be
related if they are geometrically close to each other in the frame (Figure 1).

Figure 1

objects: (6)

^ 4, 4, 4^ 4^ 4-'

8 10 135

groups: (3)
$ 4J> ^

8 10 1 35

patches: (3)
4 4 *

9 m b •B

Objects, groups, patches.

The classification of the objects is achived by using a diffusion type template (see
Section 4.2). It creates patches which cover totally all objects belonging to the appropriate
group. Patches covering different groups must be separated. Figure 1 illustrates the meaning
of the objects, the groups, and the patches. To understand why these patches are important,
consider an example.

Given a binary image (Figure 2a), suppose we wish to detect those numbers which
contain more than one digits and some of those digits contain hole(s). First we generate the
patches (Figure 2b). Next we extract the holes (Figure 2c), and restore those patches
contaning these holes (Figure 2d). Then, we identify the groups with more than one digits
(Figure 2e), and restore those patches also (Figure 2f). Finally, we apply a logic AND to the
previous two results, to obtain the final result (Figure 2g). If we need to extract the original
object covered by the selected patch, we have to apply a logic AND to the original image, and
the final result (Figure 2h).

Observe that without the patches we could not apply logic operation on the two
subresults (Figure 2c,e).

8 10 135

(a)

f m

Figure 2

(d) (e) (f)

(8) (h)

The phases ofour algorithm, (a) original image, (b) the patches, (c) theholes,
(d) the patches of the groups contain holes, (e) dots identifying the groups
with more than one digits, (f)patches ofthe groups containing more than one
digits, (g) logic AND applied to (d) and (f): the final result, (h) logic AND
applied to (a) and (g): the detected group of objects having the specified
features.

4 THE MODULES OF THE ALGORITHMS

Next, we describe the main functional modules which will be used later. When describing the
modules we will also give the approximate running times measured in t time constants, x
varies between 10 and 300ns, depending on the chip. Finally, in Section 5, we will show how
the steps can be combined to recognize different bank-notes.

4.1 Recalling

Almost all of the following modules use the recall operation. (Similar recall template was
reported in [6].) Consider a black-and-white image containing arbitrary black objects against
a white background. We want to classify the objects according to their features. Extracting a
feature means that some pixels remain from all objects having the desired feature, and none
from the others. Thus all images we need are identified, and our goal is to restore the whole
object from these signatures. The original image (called base image) is loaded to the input,
and the extracted features (the signatures) to the initial state of the CNN. By using the
RECALL template the assigned objects will be restored. The template is the following:

A =

0.5 0.5 0.5" '0 0 0'

0.5 4 0.5 , B = 0 4 0

0.5 0.5 0.5_ 0 0 0

1 = 2.5

In Figure 3 we can see an example. Given a black-and-white image with two objects (Figure
3a) and the signature image (Figure 3b) which identifies one of the objects. After the
transient settles down the identified object was restored (Figure 3c).

The running time of this template is proportional to the size of the object to be
restored, each layer of pixels requiring lx. In the examples of Section 5 each recall operation
needed approximately 15x.

(a) (b) (c)

Figure 3 The effect of the RECALL template, (a) the original image, (b) the signature,
(c) the restored object.

4.2 Creating patches

In this section we show how to create the patches we described in Section 3.2. The
PATCHMAKER template is as follows:

A =

"0 1 0' "0 0 o"

1 2 1 , B = 0 2 0

0 1 0_ 0 0 0_

1 = 4.5

This is a diffusion type template which enlarges each object by growing a layer of pixels in
all directions in every x. So the transient must be stopped after several x time, otherwise it
will drive all pixels to black. The exact number of x can be calculated from the preliminary

information we know/assume about the image, i.e. how far the components of a group are
from each other. In our examples (see Section 5) it usually took approximately lOx. The
process can be seen in Figure 4 with lOx.

(a) (b)

Figure 4 The effect ofthe PATCHMAKER template, (a) the objects, (b) the objectgroups
(patches)

4.3 Extracting objects with a given color shade

The first step of the bank-note recognition algorithm is color filtering. Suppose that we know
in advance the color shade of some specific features, e.g. the color of the numbers on the
bank-note. Filtering out all other colors already eliminates lot of objects.

Color images are represented by Red, Green, and Blue (RGB) monochromatic maps.
Using CNN, we can handle a monochromatic map as any other grey-scale image. It means
that in each map there are continues values between -1 and +1, representing the strength of
each color component in the actual pixel. In this case a -1 means that the actual color
component is missing at that pixel, while a +1 means that it is represented in full power.

The color shade to be extracted is defined by its range in the RGB representation. For
example, if we are searching for orange colored objects we can say: a certain color is orange
if its red component is between 0.75 and 0.85, the green is between -0.55 and -0.45, and the
blue is between -0.95 and -0.85. (These final exact values should of course be tuned to the
optoelectronic device we are using.) In the original image all color coordinates can take any
value from the (-1,+1) interval, resulting in a color "cube" with a 2*2*2 = 8 volume. After
the above filtering, the volume of the color cube is reduced to 0.1*0.1*0.1 = 0.001. This

represents only the ——th of the original volume, therby greatly reducing the search space.

The color shade extraction algorithm consist of the following steps:

• extract the required interval from the red component;

• extract the required interval from the green component;

• extract the required interval from the blue component;

• apply logic ANDto the results of the three previous steps.

The smaller the color cube, the more objects will be eliminated. But due to usage, the color
of the patterns on on a used bank-note may fade slightly and some parts of it might fall
outside of a narrow color cube, thus missing from the output of the AND operation. To
overcome this problem and restore the whole object, we recall them from a reference image.
The reference image is a black-and-white image. It must contain all the searched objects
separated from the other objects and the background. In our example, we have generated it
from one of the monochromatic maps by using the Average template [1].

Our algorithm for extracting the required interval from a color component contains
four steps:

• extract pixels having a value greater than the lower limit of the prescribed interval, using
the template

A =

"0 0 0" "0 0 0"

0 2 0 , B = 0 0 0

0 0 0_ 0 0 0_

, I = 2*T

(This template drives to black all the pixels having a value greater than Limit and drives
to white the others.)

extract pixels having a value greater than the upper limit of the prescribed interval, using
the above template;

apply logic XOR to the results of the above two steps;

discard small (less than 4 pixels) objects using the SMALL KILLER template:

A =

"1 1 f "0 0 0'

1 2 1 , B = 0 0 0

1 1 1_ 0 0 0_

1=0

(This diffusion type template drives to white all those black pixels which have more than
four white direct neighbors, and reverse: drives to black all those white pixels which
have more than four black direct neighbors.)

Extracting the color cube defined above requires approximately 60x time. The flow-chart of
this algorithm is given in Figure 14.

4.4 Extracting objects with small holes

This function can be realized in three steps. The first is fill in the holes. Next, extract just the
holes by applying a logic XOR operation to the filled image and the original image and
finally, recall the appropriate patches associated with the holes.

For hole filling we use a two-step algorithm which is much faster than the original
HOLE FILLER template [5]. In the first step we start to fill in the local concavities with the
Hollow template:

A = , 1 = 3.5

0.5 0.5 0.5 "0 0 0"

0.5 2 0.5 , B = 0 2 0

0.5 0.5 0.5 0 0 0_

This diffusion type template drives to black all those white pixels which have at least four
black direct neighbors.
We call concave places those white locations which are surrounded by black pixels from at
least four of the eight orientations, but still connected to the white background.

Figure 5

(a)

(c)

Objects with small holes, (a) originalimage, (b) filled holes, (c) result ofXoR,
(d) recalled remainingpatches.

8

The transient must be stopped after 10 - 15i depending on the size of the largest holes
to be filled in. During this time, these holes are definitely filled in. In the second step, we
have to get rid of the black pixels that are located not in a hole but in other concavities. By
putting the original image on the input, and the filled one on the initial state, the following
template discards those newly appeared connected groups of pixels which have at least one
white neighbor (this means: not surrounded by black pixels, i.e. they are concavities not
holes):

A =

0.5 0.5 0.5 0 0 0

0.5 4 0.5 , B = 0 4 0

0.5 0.5 0.5_ 0 0 0_

I = -2.5

Though both of these templates are of a diffusion type, the total transient time is much
shorter than that using the traditional HOLE FILLER template, because the filling time depends
only on the diameter of the identified holes but not on the size of the frame. The speed of this
two-step algorithm is independent of the size of the CNN cell array, it depends only on the
size of the holes. In our examples this step required approximately 35x time. Figure 5 gives
an example how this module works.

4.5 Extracting concavities of objects

Extracting concavities of objects is a three step algorithm. In the first step, we drive black the
pixels located at concave places, with the help of the HOLLOW template (Figure 6a,b).

The second step is applying logic XOR to extract the newly generated black parts of
the objects. As it can be seen in Figure 6c, some new pixels appear not just at the real
concave places, but also along the convex edges. We can discard the undesired black pixels
by using the Small KILLER template, and get the final result (Figure 6d). The whole process,
shown in Figure 6 requires 25x time.

(a)

Figure 6

(b) (c) (d)

Extracting concave locations, (a) original image, (b) concavities, (c) logic
XOR of(a) and (b), (d) eliminating small dots on thepheriphery.

4.6 Size classification

Our size measuring is based on peeling. In each step we erase all boundary pixels of the
objects. We define the size (measure) of an object as an integer number equal to how many
such peeling steps can be made before the last pixel disappears.

For example, we will extract objects larger than size n but smaller than size m with
the following analogic algorithm:

• Erase n layers from all objects by using the PEELING template (see below) n times).

• Recall those images that still have some remaining pixels (RECALL template, Section
4.1). This image will contain the desired objects as well as than which are too large.

• Do 777-/7 more peelings on the previously peeled image.

• Recall again. In this image only the objects which are too large will remain.

• Apply logic XOR to the two recalled images. The difference between them is the set of
the desired objects.

Figure 7

(a) (b) (c)

(d) (e) (f)

The size classification algorithm, (a) original image, (b) peeling off n layers,
(c) recalling theresult, (d)peel the result of'(b) for m-n more steps, (e) recall
the result, (e) result: logic XOR of'(c) and (e).

The PEELING template is as follows:

10

A =

'0 0 0" "0 1 0"

0 2 0 , B = 1 0 1

0 0 0_ 0 1 0_
I = -4.5

This template drives to white all those black pixels which have at least one white direct
neighbor.
The algorithm is demonstrated in Figure 7. The time demands of this procedure depends on
the size of the objects. In our example it took 50t time.

4.7 Skeletonization

Some modules of our algorithm are based on the skeleton of the objects. By the skeleton of
the objects we mean a figure which preserve the connectivity and the topology of the input
objects having containing only-one pixel wide lines except for the junctions. The
skeletonization algorithm is detailed elsewhere [4].

4.8 Extracting objects containing more than one hole

This algorithm starts from the skeletonized objects. The skeleton of an object with more than
one hole must contain junctions. With the following JUNCTION template, we can extract these
points:

A =

0 0 0 0.5 0.5 0.5

0 2 0 , B = 0.5 2 0.5

0 0 0 0.5 0.5 0.5

I = -1.5

This template drives to white all those black pixels which have at less than three black direct
neighbors.
After extracting the junctions we can easily restore the extracted objects with the RECALL
template.

Unfortunately, the skeleton of an object can contain junctions without containing
more than one hole (e.g., the skeleton of the letter P). So before extracting the junctions, we
have to get rid of the branches not forming closed loops. This can be done in two steps. The
following template erases the pixels forming unclosed lines except the nearest ones to the
junction:

A =

0.5 0.5 0.5' "0 0 0'

0.5 2 0.5 , B = 0 0 0

0.5 0.5 0.5_ 0 0 0_

11

1=1.5

This diffusion type template drives to white all those black pixels which have less than two
black direct neighbors.

Figure 8

-^BL
(a) (b)

(c) (d)

Identifying objects containing more than one hole, (a) original image, (b)
skeletonized image, (c) eliminatingunclosedlines, (d) extractedjunctions.

(f)

Figure 9 Identifying objects containing more than one concavities, (a) original image,
(b) concave locations, (c) blowing up concave locations until they melt
together, (d) subtiact (b) from (c), (e) skeletonization, (f) extractedjunctions.

After eliminating almost the entire unclosed line, the remaining pixels can be erased by a
single loop of the skeletonization algorithm. The steps of the algorithm are shown on Figure

12

8. The running time of the procedure depends on the image, in our examples it required
approximately lOOx time.

4.9 Extracting objects containing more than one concavity

This algorithm contains four major steps. First, the concave locations are extracted (see
Section 4.5), then they are blown up until the ones belonging to die same object melt
together, using the PATCHMAKER template. The third step is to subtract the original
concavities from the blown up ones by applying the logic XOR, to obtain objects with one or
more holes. The last step extracts the objects containing more than one hole, as described in
Section 4.7. The steps are shown in Figure 9. This algorithm needs approximately 135x time.

5 EXAMPLES

Here we will demonstrate how the algorithms described above work on 3 differentexamples.
In all examples, we only indicate the steps which result in elimination of some objects. For
example, in the case of the US dollar bill recognition, we eliminated the too small objects,
but as there are no too large objects, we did not include the step testing this feature in the
flow-chart.

Figure 10

rOriginal color image]
» *

color scanning

> '

f Colormaps J
> *

extracting color cube

f Color cube J
> *

eliminating concave objects

s *

f Convex objects J

> *

size classification

N *

[Resuit }

The flow-chart of the US dollar bill recognition algorithm. The entire flow
charts can be inplemented in less tlian 60\xs.

13

5.1 Recognizing US dollar bills

The US dollar bills have the rare but very useful property of having simple characteristic
common patterns. Such characteristic patterns are the black and green circles on the left and
right side of the bank-note, respectively. These circles have the same size on all
denominations. A single algorithm capable of detecting them will work on all US dollar bills.
The algorithm contains two phases: first we extract the green circles having the correct size.
Next, we run the same procedure for the black circle. If there were no US dollar bill in the
frame, in most cases, the algorithms stops at this point. If it found both type of circles the
image is read out, and the digital unit of the CNN chip environment measures their distance.
If a green and a black circle are extracted and have the appropriate distance from each other,
we decide for a bank-note and prevent copying. The flow-chart of the algorithm is shown on
Figure 10, while the different steps are illustrated in Figure ll(a)-(d), showing the extraction
of the black circle. The same procedure is used for the green circle, followed by measuring
the distance between pairs of black and green circles.
The whole process takes approximately 200x time. This is between 60f.is and 2|.is. depending
on the appropriate CNN chip realization.

(a) (b)

14

(c) (d)

Figure 11 US dollar recognition: (a) Input image, (b) Color cube, (c) Convex objects, (d)
Size classification

5.2 Recognizing Canadian $50 notes

In this section we will demonstrate how Canadian $50 notes can be recognized. In this case
we extract the number 50. If anything remains on the screen after the final step, we prevent
copying. This idea, that is, extracting numbers works well for several currencies. We have
tested it on many other bank-notes including Italian, Dutch, Hungarian notes, etc.

To be able to show several steps, we present the algorithm with two different
backgrounds. The first being the color cover page of a journal, proving that with "normal"
images the algorithm terminates after just a few steps. In the second example we use an
artificial background containing objects of similar color and shape as the digits, but even that
could not fool our algorithm.

The following examples should be considered as the first steps of bank-note detecting
algorithms. In a real application, we would test much more features before deciding to stop
the copying process. We can afford to do this because the CNN chip is so fast we have much
unused time to spare.

15

5.2.1 Normal background image

Here we show the recognition of the Canadian $50 note against a natural background image.
This demonstrates that in most cases only a very few steps are sufficient to eliminate
everything, so we have time to compare the input with many different bank-notes. The flow
chart of the algorithm is shown in Figure 12, while the result of each step is illustrated in
Figure 13(a)-(c). These steps need about 150t time. This is between 45lis and 1.5^is.
depending on the appropriate CNN chip realization. In this case we have detected just the
correct size of objects with the prescribed color shade.

Figure 12

Original color imageJ

color scanning

fColor maps]
* *

extracting color cube

\ >

Color cube
v.)

\ i

size classification

> '

Result
* 1

The flow-chart of the Canadian $50 recognition algorithm with normal
background

5.2.2 Artificial background

In this example we created an artificial background having objects similar both in color and
form to the numbers on the bank-note. The flow-chart of the algorithm is given in Figure 14.
To illustrate the complexity of the algorithm, a single step is given in detail as well as on the
upper right hand side. This is an analogic subroutine implementing the given step. Then we
show the results of steps of the procedures (Figure 15(a)-(e)). This algorithm needs
approximately 500x time running on a CNN Universal Machine. This is between 150us and
5jis, depending on the appropriate CNN chip realization.

16

(a) (b)

(c)
Figure 13 Canadian $50 recognition with normal background: (a) Input image, (b) Color

cube, (c) Final result: Size classification. (Only these objects having the
prescribed size are extracted.)

17

Original color image]

color scanning

[Color maps

extracting color cube

Color cube

size classification

Objects with right size

eliminating objects with

no holes

Objects with at least
one holet

eliminating objects with

more than one holes

Objects with exectly

one hole

eliminating objects with
less than two concavity

Result

cut out

red interval

Pixels in the

red intervalD

(Green map) (Blue map)

cut out

green interval

Pixels in the

green interval

logic and

Pixels in the

.color cube,

recall

template

Objects with
the desired

color shade

cutout

blue Interval

(Pixels in the^
blue Interval

Figure 14 The flow-chart of the Canadian $50 recognition algorithm with artificial
background. One step (extracting color cube) is given in detail.

18

61

(P)C)

(q)oo

Figure 15

(e)

Canadian $50 recognition with artificial background: (a) Input image, (b)
Color cube, (c) Objects with holes, (d) Objects with exactly one hole, (e) Final
result: Objects with at least two concavities

6 ACKNOWLEDGEMENT

The support of the grant INT 90-01336 of the National Science Foundation incooperation
with the Hungarian Academy of Sciences, is acknowledged. Thanks are due to Peter
Venetianer for useful discussions and helps.

REFERENCES

[i]

[2]
[3]
[41

[5]

[6]

L.O.Chua and L.Yang, "Cellular neural networks: Theory and Applications", IEEE Transactions on
Circuits and Systems, Vol.35, pp.1257-1290,1988.
L.O.Chua, T.Roska, "CNN Paradigm" IEEE. CAS-I 1993 (March)
T.Roska, L.O.Chua, "CNN Universal Machine" IEEE. CAS-II, 1993 (March)
P.Venetianer, F.Werblin, T.Roska, and L.O.Chua, "Analogic CNN algorithms for some image
compression, decompression, and restoration tasks". Memo UCB/ERI, Electronics Research Laboratory,
University of California at Berkeley, 1994
T.Matsumoto, T.Yokohama, H.Suzuki, R.Furukawa, E.Oshimoto, T.Shimmi, Y.Matsushita, T.Seo,
L.O.Chua, "Several Image Processing Example by CNN" IEEE International Workshop on Cellular
Neural Networks and their Application, Proceedings.
K.Slot, T.Roska, L.O.Chua,"Optically Realized Feedforward-Only Cellular Neural Networks" AEU,
Vol.46, (1992) No.3

20

	Copyright notice 1994
	ERL-94-29

