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Let us now consider a more general class of controllers: dynamic controllers which may

even depend on 5, i. e. a gainschedulingdynamic controllerof the form

u = h (x, xc),

xc=f(xtxc,s).

with xc e /?"c. Consider the closed loop system

z = A{s)z + B(s)p(z,s),

where

zT= [xTx^A(s) =

Lemma 2.

A (s) 0

0 0
.B(j) =

B(s) 0

0 /
, andp(z,s) =

h(x,xc)
f(x,xc,s)

Suppose we are given 1>1, and there exist an integer nc £ 0, continuous functions

(6)

(7)

~n + tir + n.f: R'^"c^"s-*R"candh: Rn +nc-»/T, and apositive definite matrix Pe Rn+nc*»+»c
such that

-r 7*r,«L(z,r): = z{A (s)P + PA(s))z + 2z'PB(s)p(z,s)<-a\\x (8)

n + n,
for some ot>0, Vse 5 and V(z, t) e R cx/?+,then x(t) -»0

Proof.

It is clear that IkII is bounded. The fact that x (t)

theorem [27].

Definition 2.

0 follows from LaSalle's Invariance

We say that Zj is robustly quadratically stabilizable by dynamic controller (RQSDC), if

Xj satisfies condition (8) of Lemma 2.

Note that RQSDC as defined here is slightly more relaxed than quadratic stabilizability
introduced in [19] in two ways: ourcompensator maydepend on parameters, and the

Lyapunov derivative L(z, t) is bounded by the norm of the state of the plant rather than

the full state, which also includes the state of the controller. However in next sectionwe



will show RQSDC is equivalent to RQSSC,hence is equivalent to the earlier definition in
[19].

The following definition is natural and does not necessarily require the existenceof
parameter-independent Lyapunov function.

Definition 3.

X1 is said to berobustly stabilizable bylinear control (RSLC) if there exists a state feed

back of the form u = Kx such that Re (o (A (s) + B (s) K)) < 0 Vs e S. Where a

denotes spectrum, and Re denotes real part

2.2 Adaptive stabilization

Before we proceed to adaptive stabilization let us first introduce the relevant notions of

pointwise stabilizability,controllability invariance, and control Lyapunov function.

Definition 4.

I j is said to bepointwise stabilizable if there exist continuous mappings

P(•): R"5 -> Rnxn and un: Rn+ns -> /^suchthat P(s) is positive definite V* e Sand
we have the following property

L(x,s,t)=xT(AT(s)P(s)+P(s)A(s))x +xTP(s)B(s)un(x,s)<-a\\x\\2 (9)

forsome a>0.IfP(s) =P = const wesay that Lj admits control Lyapunov function

(CLF) V= xTPx [25,29].

Note the difference between admitting CLF and RQSSC, in the latter case, the control law

does not depend on the parameter s.

Definition 5 [20,28].

£j is said to becontrollability invariant if the pair (A(s)yB(s)) iscontrollable for any

fixed value s € 5.

Again, note the difference between RSLC andcontrollability invariance, wherethe latter

implies theexistence ofaparameter-dependent control u = K{s)x which stabilizes the

system Vs e S.



We now consider adaptive stabilization, starting with adaptive quadratic stabilization.
Then we describe certainty equivalence adaptive stabilization [12].

Definition 6.

Ej is said to be adaptively quadratically stabilizable (AQS) if there exist C1 functions

d: Rn+ns-> R*s and un: /?"+5 -» tf", and aconstant positive definite matrix Pe /?" xn,

such that the augmented Lyapunov function W (xf S) = x Px + (S - s) (s- s) under

the adaptive control law u = un (x, s) and parameter estimator s = d(x, s) satisfies

W(x,s) = xT(AT(s)P +PA(s))x +xTPB(s)un(x,s)+2s (s-s) <-a||jc||2. (10)

From LaSalle's Theorem, it is clear that with the above adaptive control, we have

x(t) -» 0 and ||3|| is bounded.

Finally, there is the well known certainty equivalence adaptive control. In [11,12] it was

shown that as long as model (1) is pointwise stabilizable, then it can be stabilized by cer

tainty equivalence adaptive controller using suitable identifier.

3. RQSDC = RQSSC s RQS

In this section we establish the equivalence between robust quadratic stabilization by

dynamic controller and robust quadratic stabilization by static control. While it is clear

that RQSDC implies RQSSC, the fact that the reverse is true is somewhat surprising. The
following theorem is an extension of Theorem 3.2 of [25].

Theorem 1.

The following statements are equivalent for the uncertain system Xj.

(i)Ij is RQSSC;

(ii)Ij is RQSDC.

The following lemma is needed for the proof of the theorem.



Lemma 3.

Consider the uncertain system lt, and the closed loop system (7), and suppose condition

(8) of Lemma 2 is satisfied with some positivedefinite matrix P. Then thereexists a con

trol such that condition (8) of Lemma 2 is satisfied with ablock diagonal P =

with Px e Rnxn and P2 € Rncxnc.

Pi o

0 P2

ProofofLemma 3.

Let/> =
^3

PT3P2
m±PleRn*\P2e R"c x"c and P3 e *" x"c. Now consider alinear

transformation z = Tz of (7) with T = , where /_ and /„ are n x n and
2 r 3 '„,

nc x tic identity matrices respectively, hen it is obvious that the matrix

p = r^ris positive definite, and by choice of T it is easy to verifythat P is block diag-
T

onal. Finally, let us consider the transformed system with state z = \XT £r1 ,and let
»-ir»rM = P2 P 3, then the transformed system will be described by

x = A (s) x + B (s)h (x, -Mx + xc),

xc = Mx+ xc = MA(s)x + B(s)h(x,-Mx + xc)+f(x,-Mx + xc) =f(x,xc,s).
(11)

with u = h(xt xc) = Ji (jc, - Af* +itc) = h (jc, irc). Now letusconsider Lyapunov func

tion V = zPz = zTPz then

I(£,r) =L(z,0^-a||jc||z, (i2)

and hence condition (8) of Lemma 2 is satisfied with the block diagonal matrix P. Q



ProofofTheorem 1.

It is trivial that (i) implies (ii). Also (ii) implies (i) for the case when the dimension of con

troller is equal to zero. So we need only to show that (ii) implies (i) for the case when the
dimension of the dynamic controller is greater than zero.

In a view of Lemma 3 we need to consider only the case when the matrix P in definition of
RQSDC is block diagonal.

Suppose Zj is RQSDC with P =
Px 0

0 P,
, i. e.,

T

zT(A {s)P +PA{s))z +2zTPB(s)p(z,s) £-a|UI|2,

where all terms are as in (7).

Let S = P"1 =
Sx 0

0 Sn
and z = Sw, then (13) will become

~r

w1 (SA (s)+A(s)S)w + 2wM B(s) 0

0 /

h (x, xc)

f(x, xc, s)
<-a||xir,

(13)

(14)

wT( A(s) 0

0 0

Sx 0

0 5,

Si 0

0 5,

AT(s) 0
0 0

u> + 2vv
B(s)h(x,xc)

f(x, xc, s)
<-a||x||2. (15)

This must hold for all w. Let w = , then (15) will become

rT(A(s)Sl+SlAT(s))r +rTB(s)h(x,0)<-a\\x\\2.

Setting Sxr = x gives us

xT(AT{s)P +PA{s))x+2xTPB(s)h(x,0)<-a\]x\\2,

which shows that Xj is RQSSC. D

In the sequel, we will refer both RQSSC and RQSDC simply as RQS.

(16)

(17)



4. Robust Quadratic Stabilization, Adaptive Quadratic
Stabilization and the Existence of Control Lyapunov
Function

In this section we examine the inter-relationships among robust quadratic stabilizability
(RQS), adaptive quadratic stabilizability (AQS) and the existence of control Lyapunov
function (CLF).

First, we establish relationship between the existence of CLF and AQS. We show that for

£j they are equivalent given that Zj is linearly parametrized. This result is given in the

following theorem.

Theorem 2.

Consider linearly parametrized uncertain system Xj. Then the following statements are

equivalent:

(i) Xj admits CLF;

(ii) Ij is AQS.

ProofofTheorem 2.

First, weshow byconstruction, following [1], that for linearly parametrized Zj, the exist

ence of control Lyapunov function implies AQS.

Let us define the following augmented Lyapunov function W,

W{x,s) = V(x) + (s-s)T(s-s) =xTPx+(s-s)T(s-s), (18)

where s (t) will be the "estimate" of s.

The time derivative of W along (1) with control un (x, s) is

.7*

W=xT{AT(s)P +PA(s))x +xTPB(s)un(x,s)+2s (s-s) =

xT(AT(s)P +PA{s))x +xTPB(s)un(x,s) + (19)

xT(AT(s-s)P +PA(s-s))x +xTPB(s)un(x,s) +25 (s-s).

10



Hence,

W<-a\\xf+2(s-s)TbA (x)Px+2xTPAB(utt(x,s)) (s-$) +2$ ($-s)<
T (20)

- allx\\2+2(xTPAA (x) +xTPAB (un (x, s)) - i ) (s - s).

So W£-a||*||2ifweset

J = (VPAA (x) +x'PAfl (un (x, 5))) . (21)

Sowecan see that for linearly parametrized Xj, the existence of CLF is asufficient condi

tion for AQS.

Letusshow now that (ii) implies (i). Suppose £j is AQS, then when 5 = s we get that

W(x,s) = xTPx+ (s-s)T(s-s) = xTPx = V(x), (22)

and

T

W=xT(AT(s)P +PA(s))x +xTPB(s)un(x,s)+2i (s-s) =

/(Ar(5)P +PA(5))x +/P5(j)«nU,^)<-a||x||2,
(23)

which shows that Lj admits CLF. D

We now compare the set of uncertain systems which is RQS and the set which admits

CLF. In general the latter is larger than the former. However we show that for uncertain

system 12 with independent uncertain parameters in matrices A and B, the two are actu

ally equivalent under some compactness and convexity conditions. The same issue is con

sidered when control is restricted to be linear.

Theorem 3.

Consider theuncertain system I2 defined in (2). Letthe sets n and Q becompact, and

p: = {B(q): qe Q] be convex. Then the following statements areequivalent:

(i) S2 admits CLF;

(ii) Z- is RQS.

u



The following lemma due to Barmish [15] is needed for the proof of Theorem 2.

Lemma 4.

An uncertain system £2 with compact uncertainty parameter sets n and Q is RQS if and

only if there exists annxn positive definite matrix S such that

xT(A(p)S +SAT(p))x<0, (24)

for all pairs (x,p) e NxU with x * 0 where

N: = {x€ FT : bFx =0 for some B€ conv {B (q):qe Q}} and conv stands for
convex hull.

ProofofTheorem 3.

It is clear that (ii) implies (i).

In order to show that (i) implies (ii), we will show that (i) implies (24), since (24) is a nec

essary and sufficient condition for RQS.

Suppose that Z2 admits CLF, and let Ptun(x,ptq), and a satisfy (9). We nowshow (24)

is satisfied with S = P~ . Suppose not, i.e., suppose that thereexists a pair

(jc,p) eAfxIl, such that x * 0 and

f(A(p)S +SAT(p))x>0. (25)

Let J = P *Jc, then

f(AT(p)P +PA(p))9>0. (26)

Note that y€ Npy where Np is the null space of jfp for some

B e conv {B(q):qe Q) . Since P is convex, p = conv {B(q):qe Q} . Therefore,

there is aqe Q, such that B(q) = Band BT(q) P$ = 0. Hence for parameters (p, q),

we have L($,p,Q,t) = f (AT (p) P+PA (p)) $, which is non-negative by (25). This
contradicts (9). D

Based on Theorem 2 and Theorem 3 we can state the following result.

12



Theorem 4.

Consider linearly parametrized uncertain system L2 defined in (2). Letthe sets II and Q

be compact, and P: = {B(q): qe Q) be convex. Then the following statements are

equivalent:

(i) I2 admits CLF;

(ii) Z2 is RQS;

(iii) 12 is AQS.

Yet another class of uncertain systems for which AQS and RQS are equivalent under non

linear as well as linear control has been shown by Rotea and Khargonekar [25]. However,

the connection between AQS and the existence of control Lyapunov function is not recog

nized there.

Consider the following uncertain linear system I.nb with norm bounded uncertainty

2nfc: x(t) =Ax(t)+Bu(t)+DA(t)[ElX(t)+E2u(t))t (27)

where the real matrices AyB,D,Ev and £2, are known and of appropriate dimensions.

The real uncertainty matrix A is assumed to belong to the norm bounded set,

U: = {Ae/?*X/,:||A||<1}, (28)

where || • II is the spectral norm.

Recognizing the equivalence between AQS and the existence of control Lyapunov func
tion, we have the following theorem from [25].

Theorem 5.

Consider system Znb. Then the following statements are equivalent:

(i)2nfcisAQS;

OOI^isRQS;

(iii) Znb is RQS via linear control.

13



When control is restricted to be linear, we have the following theorem

Theorem 6.

Let ZB denote £2 in the case when B is aconstant matrix of full column rank. Then the

following statements areequivalent.

(i) Xfl admits CLFwithcontrol un (x, s) being alinear function of x, i.e.

un(x,s) = K(s)x;

(ii) ZB is robustly quadratically stabilizable (RQS) by linear control.

The following lemmadue to Barmish and Hollot [24] is needed forthe proofof the above
theorem.

Lemma 5.

Consider an uncertain system 2fi. Let II be compact, and 0 beany nx (n-m)

orthonormal matrix whose range space equals the null space of BT. Then the system ZB is
RQS via linear control if and only if there exist a positive definite matrix S, such that

eT(A(P)s+SAT(p))e<o, V/?e n. (29)

ProofofTheorem 6.

Again, it is trivial that (ii) implies (i).

In order to show that (i) implies (ii), we will show that (i) implies (29) with S = P~l. Let
us prove by contradiction. Suppose there is a y and p such that

yTeT(A (P)S +SAT(j» )6y £0. (30)

Let* = P_1ey, then/(PA (£)+Ar(£)P)*£0.

Since By e N(BT), BTPx = iF&y = 0. Hence

L(x, p, r) = / (PA (p) +AT(p)P)x>0, (31)

contradicting (9). D

u



In this section we have shown the equivalenceof AQS, RQS and the existence of CLF

function for uncertain system Z2. For more general uncertain system Xj, it is found that

the equivalence of AQS and RQS does not hold in general. However, AQS and the exist

ence ofCLF remain equivalent for linearly parametrized XL. This gives AQS an open loop

characterization.

5. A Necessary and Sufficient Condition for Adaptive
Stabilization Based on Parameter-Dependent Lyapunov
Function

In this section we develope necessaryand sufficient condition for adaptive stabilization
based on parameter-dependent Lyapunov function. This section builds on [1] which gives
sufficient condition for such design to be possible.

Consider linearly parametrized system 1{ and assume it is pointwise stabilizable. Con

sider the augmented Lyapunov function

W= xTP(s)x+ (s-s)T(s-s), (32)

where s is the parameterestimate to be specified later. Let us compute the time derivative

of (32) along Ir

W=xT(AT(s)P(s)+P(s)A(s))x +xTP(s)B(s)u +2(s-s)Ti +
+/|- [P (s) x)i =2xTATQP (s) x+2/P (s) AA (x) s+

+2xTP(s)B0u +2xTP(s)AB(u)s +2(s-s)Ti +xT$-[P(s)x]i =

=2xTAJP (s) x+2/P (s) AA (x) s+2/P (s) B0u +2*rP (s) AB(u)$+ (33)

2xTP(s)AA(x) (s-s)+2xTP(s)AB(u)(s-s)+2(s-s)Ti +xTJL[P($)x]i =
as

=xT(AT(s)P(s)+P(s)A(s))x+xTP(s)B(s)u +xT^[P(s)x)s: +

+2[xTP(s)AA(x) +xTP(s)AB(u) -i ](s-s).

Since parameter s is unknown, the only way to eliminate the last term above is by choos

ing the parameterestimator to be

15



i= [xTP(s)AA(x)+xTP(s)AB(u)] =AA (x)P(s)x +ABT(u)P(s)x. (34)

Then (33) becomes

W= xi(AT(s)P($)+P(3)A($))x+xiP($)B($)u +
~T -T

rp^\rii A+xT§-[P(s)x][aA (x)P($)x+AB (u)P(S)x] =

= /(Ar(5)P($) +P(s)A(s))x+xt4L[P(3)x]AA (x)P(s)x +

+2xtP(s)[B($)u +AB(u) (/Jj [*>(»*]>] =

=xT(AT(3)P(s)+P(s)A(s))x+xT^[P(3)x]AAT(x)P(s)x+
+2xTP(s)[B0u +AB(u)s +AB(u)(xTJL[P(s)x])~].

Using (3) we get

W=xT(AT(s)P(s)+P(s)A(s))x+xT^[P(s)x]AA(x)P(s)x+
+2xTP (s) B(s +/#- [P (s) x]) u.

OS

Let

B(xJ) =B(s+xT^[P(S)x]).
Therefore we can see that we can not influence the sign of (36) if

(35)

(36)

(37)

xTP (s) B(s +xT$-s [P (s)x]) =0. (38)

When this happens, the following lemma shows that it is necessary to have both

/(Ar(J)P(J)+P(J)A(J))x<0and/^[P(5)x]AArU)P(J)jc<0,for^tobe
negative.

Lemma 6.

When (38) holds, the necessary and sufficientconditions for (36) to be negative Vx * 0

are the following:

(i)xT(AT(s)P(s)+P(s)A(s))x<0-

16



(h) xT^-s[P(s)x)AA (x)P(s)x<0.

ProofofLemma 6.

The sufficiency of the above statement is trivial.

To prove necessity we notice that the first term is quadratic in x, and the second is of

fourth power of x, since AA (•) is linearin x. Now suppose the necessity is false, i. e.

xT(AT(s)P(s)+P(s)A(s))x =a>0, xrJ^[P(S)x]AAT(x)P(s)x =fc<0,

and a + b < 0. Then for x = ax, x * 0 (38) still holds and (36) will become

W(i) = a2a + a4b = a2(a+a2b).

Clearly for sufficiently small a, W(x) > 0, hence contradiction. D

Based on this observation we can now prove the following theorem, which is the main

result of this section.

Theorem 7.

Consider linearly parametrized uncertain system Zp then it can be adaptively stabilized

using parameter-dependent Lyapunov function (32) if and only if there exist continuous

mappings P(•): R"s -»Pn x" and un: Rn+"* -> FT, such that P(s) is positive definite
VS e S and we have following properties

xT(AT(s)P(s) +P(s)A(s))x+2xTP(s)B(s +xT4L[P(s)x])un(x,s) <>
(i) d*

<-all*||2

for some a>0;

and

(ii) xT4- [P (s) x] AA (x)P(s)x<0, for VS € Sand Vx *0 such that
OS

17



xTP(s)B(s +xT4L[P(s)x]) =0.

ProofofTheorem 7.

Necessity.

The necessity of (ii) follows from Lemma 6. Condition (i) implies when

xTP(s)B(s +xT4L[P(s)x]) =0,wehavexr(Ar($)P(j)+P(S)A(5))x<0,hence

the necessity of (i).

Sufficiency.

Since the case when xTP (s) B(s +xT4J- [P (s) x]) =0is already taken care of in aview

ofconditions (i) and (ii). We consider the case when xTP (s) B(s +xT$- [P (s) x]) * 0.
OS

A control which achieves condition (i) can be chosen to be the minimum effort control i.e.

ii =miii {||«J \xTP(s)B(s+xTlj-s[P(s)x])un =-a||x||2-
T (39)

-xT(AT(s)P(s)+P(s)A(s))x-xT$-s[P(s)x]AA (x)P(s)x}.

Hence we have that W< -a||x||2, Vx and so by LaSalle's Invariance Theorem [27],
x(t) -* 0, and lisII isbounded. So Zj isadaptively stabilized based on parameter-depen

dent Lyapunov function (32). D

Note that (i) implies pointwise stabilizability condition (9).

6. Uncertainty Structures

In this section we explore in greater detail the uncertainty structures allowed by various
robust and adaptive designs outlined in Section 2. We apply the robust stabilization results

of [16,17,20,26] to adaptive stabilizability and pointout interesting hierarchy of uncer

tainty structures. Welimit ourselves tosingle input systems whose entries of (A, bl)
matricesvary independently. As shown in [16,17,20,26], the class of this type of uncer
tain systems which possesses controllability invariance, and yet has the minimal number

1. We use lower case to emphasize the single input case.

18



of sign invariant entries is asubset of the so-called standard form, denoted by I5 is
defined below.

Definition 7.

A single input uncertain linear system {A (s), b(s)} issaid to be in standard form 2C if

the entries of{A (s), b(s) } are independent ofone another and the nx (n +1) associ
ated matrix M (s) defined as

M(s) = [A (s) b(s)~] = {mu(s)} (40)

has the following property: mii+ x(s) isasign-invariant function of s for each

i, 1 </</!.

Definition 8.

An uncertain structure in Z5 is aset of uncertain systems in ls whose uncertain entries
have the same locations.

Definition 9.

An uncertainty structure is said to be RQS (or AQS etc.) if and only ifevery uncertain sys
tem in the set is RQS (or AQS etc.).

In X5, the class ofthe systems which satisfies the antisymmetric stepwise configuration

[16] (denoted by ZAS) or the generalized antisymmetric stepwise (GAS) configuration

&gas) is ofspec*31 interest. For ease of reference, we define 1AS below. The definition of
ZGAS is somewhat involved and we refer to [17,20, 26].

Definition 10.Antisymmetric stepwise configuration [16].

We say I5 has antisymmetric stepwise (AS) configuration if its associated matrix M(s)
satisfies following condition.

If k£ h+2 and mhk (s) isnot identically zero, then muv (s) s 0 for all

m£v, it £ &- 1, and v < h + 1.

The following results shown in [16,17,20,26] arerelevant.

19



Theorem 8.

(i) Anuncertainty structure with bounded uncertainties in£5 isRQS if and only if it is in

(ii) Anuncertainty structure with bounded uncertainties in£5isrobustly stabilizable by

linear control if and only if it is in %GAS.

(iii) An uncertainty structure in L5 possesses controllability invariance if and only if it is

m ZGAS'

It is particularly revealing to note that for uncertain systems in standard form, the follow
ing interesting hierarchy is true.

Strict matching condition [23] c extended matching condition [9] c

pure feedback form [3] c AS configuration [16] c GAS configuration [17, 26].

This hierarchy is illustrated for third order systems in terms of their associated matrices M

in Figure 1.

Since AQS isequivalent to RQS when restricted to Z2 and when linear parametrization

and some compactness and convexity conditions hold, as shown in Section 4 we have the

following theorem.

Theorem 9.

An uncertainty structure with bounded uncertainties in £5 is AQS if and only if it is in

*«•

ProofofTheorem 9.

We first note that £5 c £2 and linear parametrization and the convexity condition holds

automatically. Hence every uncertainty structure in Z,s which is AQS (therefore RQS by

Theorem 4) has to bein ZAS byTheorem 8. Conversely every uncertain system with

bounded uncertainties in ZAS isRQS, hence AQS. D

20



o e o o

0 0 6 0
* * * e

Strict matching condition structure.

0 6 0 0

* * 6 0

* * * e

Extended matching condition structure.

♦600

* * 6 0

* + + e

Pure feedback form structure.

* 6 0 ol
* * e 0
* * * ej

0 6 * *

0 0 6 *

0 0 0 ej
0 e * ol
0 0 6 0

* * * 6J

0 6**

0 0 6 0
0 0*6

* 6 0 ol
* * 6 0
* * * ej

Antisymmetric stepwise configuration structures.

0 6 * *

0 0 6 *

0 0 0 ej
0 6 * ol
0 0 6 0
* * * ej

0 6 * *

0 0 6 0

0 0 * ej

0 6 0*

0*60

0 0 0 6

Generalized antisymmetric stepwise configuration structures.

Here 6 denotes sign invariant entry and "*"denotes "donotcare" entry.

FIGURE 1. Uncertainty structures for third order system.

As shown in [12], for certaintyequivalence adaptivecontrol to stabilize an uncertainsys
tem, it is enough to have pointwise stabilizability, hence we have the following theorem.
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Theorem 10.

Every uncertain system in ^CAS can be stabilized by certainty equivalence adaptive con

trol.

7. Concluding Remarks

In this paper, we have attempted to give a full picture of the inter-relationships among
several approaches to robust and adaptive stabilization for uncertain continuous time lin

ear time invariantsystems using state feedback. In this process,we have noted a revealing
hierarchy of uncertainty structures.

The inter-relationships and the hierarchy are summarized in Figure 2. It is interesting to
note that adaptive stabilization based on parameter-independent Lyapunov function can

accommodateuncertaintystructures larger thanthe pure feedback form.This suggests that
it may be possible to adaptively stabilize nonlinear systems with uncertainty structures
broader than the pure feedback form considered in [2, 3].

Besides differences in allowable uncertainty structures, other differences between robust

and adaptive stabilization include that the robust approaches may require larger control

gains, and that on the other hand robustquadratic stabilization allows arbitrarily time

varying parameters.

It is worthwhile pointing out that many results here can not be extended to discrete time

systems. It is not too difficult to see that unlike continuous time systems, the set of discrete

time uncertain systems which areRQS or AQS or RQLC aresubstantially smaller than the
sets which possesses controllability invariance or which can be stabilized by certainty
equivalence adaptive control. This is the reason why results of [1-10,13-25] can not be

easily extended to the discrete time systems.

Much further worksremain along the direction of this paper. These includes tracking and
disturbance rejection problems, output feedback and nonlinear systems.
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