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Abstract

We present a new method for planning motion around obstacles for a mobile robot

system configured as a car pulling many trailers with non-standard kingpin hitching.

In our method, we need only plan for the front car and the trailers will follow without

hitting obstacles. We assume there are no back-ups in the trajectory. By setting the

distance between an axle and its neighboring kingpin to be the same for all axles,

by showing exponential convergence of the distance between the path followed by a

trailer and the path followed by the car, and by showing there exists a bound on this

distance, we propose an obstacle avoidance algorithm for a multi-trailer system using

any existing path planner for the front car only. Examples are given for a car pulling

a single trailer and three trailers.

Keywords: obstacle avoidance, wheeled mobile robots.



Chapter 1

Introduction

One application of obstacle avoidance that motivates this research is automatically

controlling a car with many trailers through danger areas such as a nuclear power plant

or a mining site. These areas are unsafe for human operators and are a maze of narrow

corridors and obstacles. In this report, we are interested in obstacle avoidance for

wheeled nonholonomic systems, specifically car-like robots with many trailers [1, 2].

Instead of using axle-to-axle hitching, we consider the more general kingpin hitch

ing where the axles are connected by a kingpin (or kingbolt) between the bodies.

Our method for obstacle avoidance uses a particular case of this in which the lengths

of the links in the kingpin hitching are equal. We then give an algorithm that need

only plan the trajectory for the front car. We give sufficient conditions to guarantee

that the trailers avoid the same obstacles as the car. These conditions depend on

a "deviation bound" for each trailer, which is defined to be the maximal distance

a trailer will swing off the front car's track when the car changes from one path to

another. In addition, we prove exponential convergence of the trailer approaching its

steady-state circular path when the front car is on a circular path.

The outline of the paper is as follows: in Chapter 2, we present some relevant

background information for the obstacle avoidance problem. In Chapter 3, we describe

in detail our obstacle avoidance algorithm. In Chapter 4, we give examples of a car

pulling one trailer and a multi-trailer mobile robot system to illustrate our algorithm.

In Chapter 5, conclusions are made.



Chapter 2

Background

A good recent review of nonholonomic motion planning is [3]. For example, [4]

discusses the problem of planning smooth paths for a mobile robot with a minimum

turning radius. Collision-free subpaths that go between points on the obstacle bound

aries are first computed, then the subpaths are smoothly concatenated into the final

path.

Controllability of an n-body mobile robot system with the standard axle-to-axle

hitching is proven in [5]. Controllability of a two-body mobile robot system with

the non-standard kingpin hitching is shown in [6]. In this same reference, the non

holonomic path planning problem for mobile robots is solved byfirst using a general

geometric planningalgorithmto find a path without accounting for the nonholonomic

constraints of the controllable system. These algorithms are solutions to the classical

Piano Mover problem. In the second step, the system is steered along an admissible

collision-free path as near to the first path, taking into account the nonholonomic

constraints.

In [7], a fast and exact motion planner is presented for a mobile robot with a

bounded turning radius. Again, a general path planning algorithm is used to com

pute a collision-free path. The path is then transformed into one which obeys the

nonholonomic and curvature constraints by using subgoals along the initial path.

The subpaths are concatenated to make the final path, which is then optimized for

near-minimal length.

In general geometric planning algorithms [8] using a configuration space formula

tion, the procedure to plan a path for a car with multiple trailers would be to enclose
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the whole mobile robot in one circle and use this circle to "grow" the obstacles in

the robot's configuration space. The collision-free path for this "point robot" is then

planned in the configuration space. Using this method, the planned trajectory would

be far away from all obstacles since the resulting highway would be wide. As will be

seen in the next chapter, our method greatly reduces this distance, allowing for more

agile maneuverability.

In [9], the shortest paths betweenany two configurations for a two-axle vehicleare

completely characterized. The path is allowed to have cusps, or reversals. We are not

concerned with shortest paths in this paper, however, and only deal with paths that

have no back-ups. This is analogous to the seminal paper by Dubins [10] in which

the shortest obstacle-free paths are derived for a system similar to a car-like robot.

The velocity of the system is held constant and no cusps are allowed in the path; it

is only made up of straight line segments and arcs of circles.



Chapter 3

Obstacle Avoidance Algorithm

The algorithm described in this chapter was inspired from experience we received

using an interactive steering software program that we developed on a SiliconGraphics

workstation. For a detailed description including software code, please refer to [11].

In this chapter, we consider in detail a car with one trailer with the non-standard

kingpin hitching as shown in Figure 3.1. The body angles of the car and trailer are

denoted by and ^i, respectively. We denote the distance from the center of the

car's (trailer's) axle to the kingpin as Li {L2).

The main idea of the algorithm is to grow the obstacles in the configuration space

of the mobile robot using a circle around the front car (assuming it has the largest

body) increased by a "trailer correction factor," which depends on bounds that will

be computed in this chapter. The resulting circle is represented as a "point robot"

for which an obstacle-free trajectory can be planned using an existing path planner.

We make one assumption for our algorithm: no back-ups are allowed. At this

time, our algorithm does not handle trajectories with back-ups; we only consider

paths made of straight line segments and arcs of circles as in [10]. We will show that

Figure 3.1: A car with one trailer with kingpin hitching.
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the trailers do not stray too far away from the path of the front car and eventually

converge to this path. Below we will prove three theorems that quantify this idea

for the case of a car pulling one trailer (a two-axle system). The theorems can be

easily extended for a car with more than one trailer by making all of the subsequent

calculations for the last trailer in the convoy. Exponential convergence to a circle (for

straight line, we consider the radius to be infinity) is proven and bounds are found

on the amount the trailer strays away from the car's path for two special cases:

1. The transition from a straight line to an arc of a circle of radius r.

2. The transition from an arc of a circle of radius r to a straight line.

In the following, we use "path of the car" or "path of the trailer" to mean the

trajectory of the center of the axle.

Theorem 1 If the front car in a twO'Oxle systemfollows a circular path (a straight

line is considered a circle with an infinite radius), then the trailer approaches a circular

path. These circular paths have the same center. Furthermore, the convergence of the

trailer to its steady-state circular path is exponential in distance traveled.

Proof. The proofrefers to Figure3.2and is onlyconcerned with axle-to-axle hitching.

We will show that f, defined as the distance of the segment from B to C, converges

to some fixed value which we will denote f. This will show that the path of the trailer

does indeed converge to a circle. We begin by giving an expression for f. To do this

we assign coordinates to the system as shown in Figure 3.2. We assign the origin to

A, the location of the center of the car's axle, and let the positive x axis run along

the line from A to some point Z), such that ADC is a right triangle as in the figure.

Then we see that the Cartesian coordinates of the points B and C are

B = {i.2 cos (j>, I2sin 4>)

C = (Zi,-r) .

Using the normal Euclidean distance function we get

r = (Z2cos+ (Z2 sin^-frf . (3.1)
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Figure 3.2: For axle-to-axle hitching, the front car is traveling along a circle of radius

R. The trailer is shown to converge to a circle of radius r.

We take the partial derivative with respect to ^2» since that is the direction in which

the back trcdler moves. Sinceour original choice of placing point D was arbitrary, we

can let Ir := = £2 to get

dr LOr L 1 ^

By using law of cosines on the triangle ABC^ we see that

cos {0 (l>) =

Since ADC is a right triangle we have

2LR

cos ^ = —
R

sintf = ^ ,

and by using the cosine addition formula we have

L2 +
L cos —r sin ^ =

Substituting (3.3) into (3.2) we get

dr

%

2L

L L^-^R^-r^\
r\ 2L2 J '

(3.2)

(3.3)
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and simplifying we have

df

di2~\ 2Lf ) '
By using the fact that we see

dr / \

% " \ 2Lr) '
which makes it clear that f does indeed tend to r. Therefore, f = r. To see the rate

of convergence more clearly, we let y = f —r so that

and simplify to get

dy _ ^
% ~ ~ \ 2Lr ) '

^ =i yl . (3.4)
% L 2L(r + y) ^ ^

As we are assuming that the cars are being driven forward, let s be the distance

traveled by the back trailer. Since a positive ds implies a negative we have

^ _ y. y' /,
ds L 2L(r + y)'

Let yo be the initial condition for y, i.e., the value for y just as the front car begins

to move on the given circle. To bound y as a function of s, we notice that if yo < 0

then the second term of equation (3.5) can be dropped to yield

y{s) < yoe'i . (3.6)

If yo > 0, we can substitute yo for y in the second term of equation (3.5) and thus

show that

y(3) <yo exp (- (2!^) • (3-7)
With these two inequalities, we can conclude exponential convergence of the back

trailer to a circle of radius r where

r = VR'' - (3.8)

as long as R> L.

We now consider the case of a two-axle system with kingpin hitching as shown in

Figure 3.1. By the above arguments the we can state the following corollary which

shows us what is special about the case Li = L2.
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Figure 3.3: For kingpin hitching, the front car is traveling along a circle of radius ri.

The trailer is shown to converge to a circle of radius r2.

Corollary 1 Consider a two-axle system with kingpin hitching of lengths Li and L2.

If the front car travels along a path of radius ri, then the trailer will converge to a

circle of radius of r2 where

r2 = y/ri^ + Li^ -

provided that the expression in (3.9) is well defined.

(3.9)

Proof. We use the result from the previous theorem. We are concerned with the

trajectories of the three points: the centers of the axles and the kingpin hitch. Since

the front car moves along a circle of radius ri, the kingpin hitch travels along a circle

of some radius ra as shown in Figure 3.3. We know by the Pythagorean theorem that

rs = .

We note that the system of the kingpin hitch and the trailer is the same as the system

in Theorem 1. Therefore, setting R = ra, by equation (3.8) we have

r2 = \/rl-L:
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These two equations combined give us equation (3.9).

In particular, when Li = L2 we see by equation (3.9) that the trailer converges to

the same circle as the car.

We now assume that L := Li = L2 and compute bounds on the distance the

trailer is away from the trajectory of the car when it changes from a straight line to

an arc of a circle with radius r. We know by (3.9) that ri = r2 = r and so we expect

the deviation to be small.

Theorem 2 Consider a two-axle system with L := Li = L2. If the front car moves

from a straight line path to one which is an arc of a circle of radius r, then an upper

bound on the distance between the path followed by the trailer and the path followed

by the car, z, is

yo exp (- (ilfSb) «)+»•- \/(2L-sf +r^ forO<s<2L
z(s) < i (3.10)

, fo ®=^p(-(2r^)^) fors>tL
where j/o Is the initial distance of the trailer from the car and is given by

yo = —r , (3-11)

and s is the distance traveled by the trailer from when the car switched onto the new

circle.

Proof. The proof refers to Figure 3.4. We assume the car travels from point A to

point D along a straight line, then at D, switches to the arc of a circle of radius r.

By simple trigonometry, we see that yo as defined in (3.11) is correct.

We first want to find a bound on the distance z of the path of the trailer from the

straight line segment AD (of length 2L) that connects to the circle that the car moves

on. To get the top expression in equation (3.10) for 0 < s < 2L, we approximate z

by noting that (look at the zoom-up in Figure 3.4)

^(s) < y{s)-g(s) , (3.12)

where ^(s) is defined as the distance from the circle to point G and 3/(5) is from

equation (3.7). Point G approximates the projection of B onto the line and has

Cartesiaji coordinates given by

G=(-{2L-s),r)
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Figure 3.4: Bounds on the trailer when the front car changes its path from a straight

line {A to D) to an arc of a circle of radius r. The vehicle is traveling left to right.

with the origin at point C. To get an expression for ff(s) we use the normal Euclidean

distance function to obtain

ff(s) = y/(2L —sf + r2 - r . (3.13)

Thus, by combining equation (3.7) with (3.12) and (3.13), we end up with the top

equation in (3.10).

When the trailer has passed point D, we know that z = y, the distance of the

trailer from the circle that the car is moving along. Thus, we use equation (3.7) to

bound 2: for s > 2L. This completes the upper bound (3.10).

We continue assuming that L := Li = L2 and compute bounds on the distance

the trailer is away from the trajectory of the car when it changes from an arc of a

circle with radius r to a straight line.

Theorem 3 Consider a two-axle system with L := Li = L2. If the car moves from

a path which is an arc of a circle of radius r to a straight line, then an upper hound
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Figure 3.5: Bounds on the trailer when front car changes its path from an arc of a

circle of radius r to a straight line. The vehicle is traveling left to right.

on the distance between the path followed by the trailer and the path followed by the

car, z, ts

yo exp (—f) + —{L-\- Lq —s)^ —r for 0<s<LLq
z(s) < i (3.14)

yo exp (-1;) fors>L-\-Lo

where s is the distance traveled by the trailer from when the car switched to a straight

line, yo is the initial distance of the trailer from the line the car is moving on at

distance 5 = 0 (line segment AB in Figure 3.5) and is given by

2Pr

r^-\-L^ '

and Lq is as shown in Figure 3.5 (line segment BE) and is such that

(3.15)

2Lr2
L Lq —

+12 •

Proof. The proof refers to Figure 3.5. We assume the car travels along the arc of

the circle then switches to the straight line at D. We will use a method analogous to

the one we used for the previous theorem.

(3.16)
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To get the top expression of equation (3.14), wefirst consider the part of the path

which lies to the left of point D. Let y be the distance of the trailer from the line

that the car is moving along. Our first step is to verify that yo as defined in (3.15)

and L-\- Lo as defined in (3.16) are correct. To see this we note that

yo = Lsin^. (3.17)

To compute cos <j> we use the fact that

sin (f> = sin ZDEA.

Since

ZDEA = IDEC + ICEA = 2ADEC ,

we have

sin <^ =2sin (ZDEC) cos (ZDEC) =̂ ^2^ 2* (3.18)
Combining (3.17) and (3.18), givesus (3.15) as above. Analogous arguments involving

cos <j> lead us to

• (3.19)

Applying (3.19) to L-\- Lq and simplifying yields (3.16) as above. To get a bound on

z we notice that (refer to Figure 3.5)

^(«) < »(«) - g{s) (3.20)

where </(s) is defined as the distance from the line BD to the point G. To get an

expression for p(s) we use the Pythagorean theorem and subtract off r to obtain

^(s) = r - (LLq - s)^ . (3.21)

Thus, by combining equation (3.6) with (3.20) and (3.21), we end up with the top

equation in (3.14).

To get the bound for s > L + Lq, we just use equation (3.6) to get a bound on

the distance of the trailer from the straight line that the car moves on. The theorem

is proved.
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We now use the two bounds given by (3.10) and (3.14) to define the "trailer

correction factor", r. This factor is used to grow the obstacles in the configuration

space to guarantee that the trailers will not hit any obstacles.

For a two-axle system with minimum turning radius r, hitching set up with Li =

L2 = Lf we have

r = max(y, H) , (3.22)

where H represents the deviation of the kingpin hitch from the path of the car when

it makes a turn of radius r and is given by (see Figure 3.3)

H = Vr^ + L^-r ,

The bound Y is derived by taking the larger of the maximums of the expressions given

in (3.10) and (3.14) by setting r to be the minimum turning radius for the front car.

Thus Y represents the worst possible deviation of the trailer from the path of the front

car over all permissible paths. By defining Y in this way (i.e. not taking into account

the time varying nature of the deviation), we choose a reasonably conservative bound

for r.

To compute r for a car pulling N trailers, we compute the bounds by (3.22) and

add in a correction for more than one trailer. We do this by simply multiplying Y by

the number of additional trailers, N —I:

T = (AT - 1) •y -f max(y, H) . (3.23)

This linear scaling is justified since the convergence is exponential and we can prop

agate the bounds backwards in the trailer system.

Our method for obstacle avoidance for a car with multiple trailers can be summa

rized in the following algorithm. We are assuming equal kingpin hitching.

Algorithm

1. Construct the smallest circle which can enclose the front car (we are assuming

that the front car has the widest body; if it does not, we would use the widest

trailer's body).

2. Increase this circle by the trailer correction factor, r, to take into account the

fact that there are multiple trailers attached.
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3. Grow the obstacles using this new circle so that we can treat the lead car as a

point robot.

4. Plan the trajectory (with no back-ups and bounded turning radius) within the

resulting highway through the obstacles using your favorite path planner.

By the above discussion, the trailers will also avoid the obstacles encountered by

the front car. Simulations of a car pulling one and three trailers will be presented in

the next chapter.
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Using the interactivesteering software package that we developed in [11], we were

able to get experimental data that supports our theorems. In this chapter, we will

illustrate our obstacle avoidance methodology for two different vehicles: a car pulling

one trailer and a car pulling three trailers.

We first consider the case of a car with one trailer, which is attached by means of

a kingpin hitch with lengths L\ and as shown in Figure 3.1. To investigate what

happens under different hitching configurations, these lengths will be varied for the

three test cases: (a) Li > L2, (b) Li = L2, and (c) Li = 0. We drive the vehicle

on a trajectory consisting of a sharp right turn of radius r = 2.0. The trajectories

of the centers of the axles of the car and trailer are plotted. In addition, we plot

the deviation of the trailer from the car's path versus the distance traveled by the

trailer for each case. We will show that our calculated bounds for case (b) with the

symmetric kingpin hitching configuration closely resemble the experimental data.

For case (a) with Li > L2 as shown in Figure 4.1, we notice that the path of the

trailer swings out and rapidly settles into being a constant distance away from the

path of the caj. We can compute this distance by first computing the final radius

for the trailer using equation (3.9). We find that r2 comes out to be y/6. Thus the
distance is (\/6 —2) w0.449.

For case (b) with the hitch lengths are equal (Li = L2) as shown in Figure 4.2, the

trailer closely follows the path of the front car. For this case, we were able to compare

the experimental data shown on the right in Figure 4.2 with the bounds predicted by

Theorems 2 and 3. Figure 4.3 compares the experimental and predicted deviation of
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Figure 4.1: Case (a): Li = 1.5, L2 = 0.5. The car (solid line) pulling one trailer

(dashed line) with unequal hitch lengths making a right hand turn.
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X —y plot of trajectory.

£0.4

OtetinM TravaM by Rtar Trrtw

Trailer's deviation from car's track.

Figure 4.2: Case (b): Li = 1.0, L2 = 1.0. The car (solid line) pulling one trailer

(dashed line) with equal hitch lengths making a right hand turn.
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Figure 4.3: Comparison of experimental convergence data with calculated bounds.

The trailer system (with Li = L2 = I) is executing the maneuver shown in Figure

4.2.

the trailer from the path of the car. The left hump corresponds to the car changing

from a straight line to an arc of a circle. This bound is calculated from equation

(3.10). The right hump corresponds to the car changing from an arc of a circle to a

straight line and this bound is calculated using equation (3.14). We observe that the

second calculated bound is more conservative than the first.

In the third case, shown in Figure 4.4, the first hitch has zero length (Li = 0).

This axle-to-axle hitching configuration is what has been used widely in the literature.

We see that the trailer swings in and cuts the corner as compared to the car.

In comparison, we see from these results that with the equal hitching method

L\ = L2, the trailer follows more closely to the lead car's path than with the other

two hitching methods.

We next used the interactive software package to drive a car pulling three trailers

as shown in Figure 4.5. Figure 4.6 shows the trajectories of the centers of the four

axles as the vehicle is driven through an obstacle field. The lengths of all of the

hitches were equal and set to 1.0. As the figure indicates, the path swept out by the

car and its trailers during motion is not much larger than that of a single car. This
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Figure 4.4: Case (c): Li = 0.0, L2 = 2.0. The car (solid line) pulling one trailer

(dashed line) with axle-to-axle hitching making a right hand turn.

Figure 4.5: Configuration of a car pulling three trailers with kingpin hitching
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Figure 4.7: The actual deviation of the first (dotted line) and third (solid line) trailers

from the path of the front car for the trajectory shown in Figure 4.6. The third trailer

lags the first trailer by 4 units.

allows the system to travel quite easily through narrow passageways. The algorithm

presented in this paper takes advantage of this fact and allows paths to be planned,

treating a multiple-trailered vehicle as an object whose extent is very close to that of

a single car.

In Figure 4.7, we show the actual deviation from the front car's trajectory for

the first and third trailers for the four-axle system trajectory shown in Figure 4.6. A

conservative bound for the first trailer is F = 0.16. We see from this figure that the

deviation of the third trailer was less than three times this bound, 0.48 (horizontal

line in the figure). This illustrates that linearly adding on a fixed deviation, Y, for

each trailer to the trailer correction factor in equation (3.23) is conservative.
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We have presented a new method for obstacle avoidance for a car with many

trailers. By starting with the smallest circle around the front car only, increasing

this circle by the "trailer correction factor" defined in this report, and growing the

obstacles in the configuration space using this new circle, any existing path planner

that avoids back-ups can be used for the resulting point robot. This methodology

guarantees that the trailers will also avoid the obstacles. We have thus reduced a

difficult problem to a simple methodology.

One inexpensive and practical application of this research is to install flexible

"feelers" to the sides of the front car in an multi-trailer system. By adjusting the

length of the feelers, if the front car avoids obstacles, the trailers will also avoid the

same obstacles. The length of the feelers would be a function of the number of trailers,

the radius of curvature of the circle the front car is currently traveling on, and the

deviation bounds on the straying of the trailers. Such a set up could then be used to

train drivers of cars with many trailers.

Future work includes implementing an existing path planning algorithm using our

methodology. We are also interested in exploring the concept of making the trailer

correction factor time varying, which would produce more agile trajectories. We plan

to extend this research to obstacle avoidance for vehicles with more than one steerable

axle such as a fire truck [12] and a multi-steering, multi-trailer vehicle [13, 14].
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