

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

TIMING ISSUES IN SEQUENTIAL CIRCUITS

by

Narendra Vasudeva Shenoy

Memorandum No. UCB/ERL M93/97

15 December 1993

TIMING ISSUES IN SEQUENTIAL CIRCUITS

Copyright © 1993

by

Narendra Vasudeva Shenoy

Memorandum No. UCB/ERL M93/97

15 December 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Timing Issues in Sequential Circuits

by

Narendra VasudevaShenoy

Doctor of Philosophy in

Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Designautomation techniques playa major role in VLSIdesign. Growth in thecomplexity

of circuits and performance requirements has necessitated the use of computer aided design tools.

We examine some of the problems faced in the design of high performance synchronous circuits.

Synchronous circuits use complex clocking schedulesand circuit structures to capture and store data

signals. The performance metric is measured by the periodicityof signals in the clocking schedule.

The firstaspectof this thesis is devoted to the analysisof synchronouscircuits. A clocking

schedule must satisfy constraints that arise from the circuit topology and delay distribution on gates,

wires and memory elements. Analysis to examine if a clock schedule is error-free is first considered.

Improving the performance metric without changing the circuit topology the next issue considered.

Flexibilityin changing the clock signals andborrowingtimeacross level-sensitive memoryelements

provides ample freedom for improvingthe circuit performance and shouldbe exploited.

The second aspect focusses on performance improvement by transforming the circuit

structure. A technique to use existing combinational delay optimizers repeatedly to solve the

sequential performanceproblem is proposed. The approachuses an innovative notion of "perturba

tion" to extract timing constraints. If the difference between the largest and the smallest delaysof

paths between a pair of memory elements is significant, the short path can cause erroneous latching

of data. This is knownas the short path problem. We investigate this problemand proposea solution

based on active delay insertion.

^lovanni-vincentein
Thesis Committee Chairman

Ill

TothememoryofU.VasudevaShenoy

IV

Contents

List of Figures vii

List ofTables ix

List ofTheorems and Procedures x

Acknowledgments xii

1 Introduction 1

1.1 Synchronous circuits 1
1.2 Design process 5
1.3 Timing issues in VLSI design 6
1.4 Timing issues: an example 7
1.5 Thesis overview 13

2 Prelude 16
2.1 Circuit model 16

2.1.1 Combinational circuits 16
2.1.2 Memory elements 19
2.1.3 Clock signals 21

2.2 Timing in VLSI circuits: a review 21
2.2.1 Timing analysis 21
2.2.2 Timing optimization 23

2.3 Definitions 26
2.3.1 Clocking scheme 26
2.3.2 Combinational circuit 27
2.3.3 Memory elements and circuit clocking constraints 28
2.3.4 An example 31

2.4 Discussion 33

3 Clock Schedule Verification 35
3.1 Overview 35
3.2 Theoretical issues 36

3.2.1 Solving the late equation set 38

CONTENTS v

3.2.2 Solving the early equation set 40
3.3 Uniqueness of solutions 42

3.3.1 Uniquenesscondition forlateequationset 43
3.3.2 Uniquenessconditionsforearlyequationset 47
3.3.3 Resolving multiplicity 48

3.4 Results 49
3.4.1 Benchmarks 51
3.4.2 Experiments 52

3.5 Discussion 53

4 Clock Schedule Optimization 55
4.1 Overview 55
4.2 Clocking constraints: a new form 56
4.3 Eliminating redundant constraints 63
4.4 Solving the optimization problem 66

4.4.1 A simple algorithm 66
4.4.2 A general algorithm 70

4.5 Results 75
4.5.1 An example 75
4.5.2 Experiments 80

4.6 Discussion 82

5 Resynthesis of Multi-Phase Pipelines 84
5.1 Overview 84
5.2 Definitions ~85
5.3 Theoretical results 86
5.4 Resynthesis 90
5.5 The optimization problem 93
5.6 Cycle stealing 94
5.7 Results 98

5.7.1 An example 98
5.7.2 Experiments 101

5.8 Discussion 105

6 Delay Insertion for Short Paths 107
6.1 Overview 107
6.2 Definitions 108
6.3 Is padding always possible? 110

6.3.1 A naive algorithm 115
6.4 A linear programming approach 118
6.5 Refinements 120

6.5.1 Delay model 120
6.5.2 Discrete delay insertion 121

6.6 Relation to wave pipelining 124
6.7 Results 125

CONTENTS vi

6.8 Discussion 129

7 Conclusions 130

A Optimality of the SmM Delay Model 132
A.1 Introduction 132

A.1.1 CmM delay model 134
A.1.2 SmM delay model 135

A2 Relating the two models 136
A.2.1 Preliminaries 136

A.2.2 Equivalence of the two models 137

B Quadratic Optimization 141

Bibliography 147

Vll

List of Figures

1.1 A synchronous circuit 2
1.2 A synchronous pipeline 5
1.3 An example 8
1.4 High level specification: An example 9
1.5 Example with 2 phase level-sensitive latches 11
1.6 Alternative implementations: edge-triggered circuit 12
1.7 Altemative implementations: level-sensitive circuit 12
1.8 Performance versus areatrade-off 14

2.1 Fixed delay model 18
2.2 Simplified min-max delay model 18
2.3 Statistical delay model 18
2.4 An ideal flip-flop .20
2.5 An ideal latch 20
2.6 Two phase clocking scheme 27
2.7 Key to waveforms 29
2.8 Data waveforms at a flip-flop 29
2.9 Data waveforms at a latch 30
2.10 Propagation of data waveforms 30
2.11 Set-up and hold constraints 31
2.12 Example: video coder 32
2.13 Latch graph for video coder 33

3.1 Circuit with multiple fixed points 43
3.2 Latch graph with modified edge weights 50

4.1 Graphical interpretationof the cycle weights 71
4.2 Graphical interpretation of optimality 74
4.3 Latch graph for video coder 75
4.4 Constraint graph for video coder 78
4J Constraint graph with edge weights evaluated at c = 120 78
4.6 Clocking scheme for video coder 79
4.7 Constraint graph for video coder with negative cycle 80

LIST OFFIGURES viii

5.1 Multi-phase pipeline circuit 86
5.2 Graph construction 89
5.3 Effect of combinational optimization on long/short paths 91
5.4 Feasible region and current design 92
5.5 Graph modified for cycle stealing 94
5.6 kth resynthesis Region 98
5.7 Pipeline example and associated graph 99
5.8 Graphical solution for example 100
5.9 Example for extended model 100
5.10 addT3-a 3 stage pipeline 104

6.1 Graph for a simple circuit 108
6.2 Short and long path interactions 113
6.3 Area optimization during delay insertions 123
6.4 Wave pipelining 124

A.1 Robust clocking: an example 136
A.2 Skew effect: an example 138

B.l Plot of C versus a 145

IX

List of Tables

2.1 Variables at a memory element 28
2.2 Clocking constraints 32
2.3 Clocking issues 34

3.1 Simplified clocking constraints 36
3.2 Table of iterations-late equation set 49
3.3 Table of iterations-early equation set 50
3.4 Benchmark statistics 52
3.5 Clock verification with unit fanout delay model 52
3.6 Clock verification with library delay model 53

4.1 Conservative clocking constraints 57
4.2 Inequalities for correct clocking 58
4.3 Optimal clock computation with unit delay fanout model 81
4.4 Optimal clock computation with library delay model 82

5.1 Arrival and required times for resynthesis 102
5.2 Area-clock period trade-off 103
5.3 Pipeline resynthesis for minimum clock period using unit fanout model 104
5.4 Pipeline resynthesis for addTn 105

6.1 Delay insertion using unit delay fanout model 127
6.2 Delay insertion using library delay model 127
6.3 Wave pipelining using unit delay fanout model 128
6.4 Wave pipelining using library delay model 128

B.l Iterations for quadratic programming 146

List of Theorems and Procedures

Lemma 3.2.1 37

Corollary 3.2.2 37
Lemma 3.2.3 37

Proposition 3.2.4 '.'•• 37
Corollary 3.2.5 37
Procedure 3.2.1 38

Lemma 3.2.6 38

Lemma 3.2.7 39

Theorem 3.2.8 39

Procedure 3.2.2 40

Lemma 3.2.9 41

Lemma 3.2.10 41

Theorem 3.2.11 42

Lemma 3.3.1 '43

Lemma 3.3.2 44

Lemma 3.3.3 44

Lemma 3.3.4 45

Theorem 3.3.5 45

Lemma 3.3.6 46

Lemma 3.3.7 46

Lemma 3.3.8 46

Lemma 3.3.9 47

Theorem 3.3.10 47

Lemma 3.3.11 47
Lemma 3.3.12 47
Theorem 3.3.13 . 48
Property 4.2.1 58
Lemma 4.2.1 58
Corollary 4.2.2 59
Theorem 4.2.3 59
Procedure 4.2.1 61
Theorem 4.4.1 67
Theorem 4.4.2 68
Theorem 4.4.3 68

LIST OF THEOREMSAND PROCEDURES xi

Lemma 4.4.4 69
Procedure 4.4.1 70
Lemma 4.4.5 72
Lemma 4.4.6 72
Lemma4.4.7 73
Theorem4.4.8 73
Corollary 4.4.9 74
Theorem 5.3.1 88
Lemma5.3.2 90
Theorem 5.5.1 93
Lemma5.6.1 95
Proposition5.6.2 98
Lemma 6.3.1 U0
Theorem 6.3.2 m
Lemma 6.3.3 HI
Corollary 6.3.4 U4
Corollary 6.3.5 U5
Procedure 6.3.1 U5
Lemma 6.3.6 Ug
Corollary 6.3.7 H7
Lemma6.3.8 U7
Corollary 6.3.9 117
Corollary 6.3.10 U7
Procedure 6.3.2 U8
Theorem 6.4.1 U9
Theorem 6.5.1 120
Theorem 6.5.2 121
LemmaA.2.1 138
PropositionA.2.2 139
LemmaA.2.3 139
Theorem A.2.4 140
Corollary A.2.5 140
Lemma B.1.6 141
Lemma B.1.7 141
Lemma B.1.8 142
Lemma B.1.9 142
Lemma B.l.10 143
Procedure B.1.1 143

Xll

Acknowledgments

It has been a long and winding 19 years since I ambitiously embarked on the project of

educating myself. This thesis to a certain extent reflectsa culmination of these efforts. It is hoped

that writing this thesis has made me realize what Bacon meant when he said "Reading maketh a full

man, conference a ready man, and writing an exact man".

Prof. Alberto Sangiovanni-Vincentelli, my advisor, teacher, mentor all rolled into one;

from you I learnt the art of delivering coherent lectures, the need for meticulousness in research

and the skill of technical writing. Thanks also for the financial and moral support over the years.

Prof. Robert Brayton has been much more than a chairperson on my qualifying committee and

co-advisor. He has guidedthis research much like his own project, listened patientlyto proofsand

gibberish for hours, and encouraged me to find my own bearings.

Dr. T. G. Szymanski has been an illuminati in the research area of this thesis. His

guidinghandcanbeen seen in Chapters 3 and 4, and Appendix A. Inspiration from yourresearch,

discussions and support certainly jump-started this thesis. Thanks Tom, I wish there was some

way I could repay you for yourever-willingness to guide me. You have been my advisor away

from school. I also wish to thank Prof. J. Rabaey andProf. S. Oren for agreeing to be committee

members on my qualifying exam. Prof. S. Oren, I also thank you for taking the time to be the

external reader for my thesis.

ToRajesh and Anand; yourpresence has made thejourney ofmy lifemuchmoreenjoyable.

There are few things in life that I cherish more than your friendship. I would also like to take a

moment to wish you both jugfiills of felicitations for linking your lots with Bhavana and Shevani.

I also take thisopportunity to thank a few teachers from St. Xaviers' High School, Bombay; Ms.

Joannes, Ms. Carvalho, Mrs. Seshan, Ms. Ghadiali, Mrs. Gandhi, Mr. Rafael, and Fr. Aran. I

hope we can live upto what youtaught us—"due in altum"! Certain people at the Indian Institute

ofTechnology, Bombay did believe that I was cutout for research and encouraged metothat effect.

ACKNOWLEDGMENTS xiii

Thanks to Prof. A. N. Chandorkar, Prof. J. Vasi, and Prof. U. B. Desai. If one man convinced me

to apply to Berkeley it was aMakarand; thanks Mac for your advice and friendship over theyears.

The Bay area has been a very hospitable placeto live in. But the presence of Madhu,

Niranjan, Diane and Sushil, Savita and Munnu, lil" Usha, KJ, Paola and Luciano, Rajeev, Asha and

Mots, Sajeena and Sushil has made it even more fun. And yes a extra-special thanks to Pratap;
for theMNF sessions, for willingly volunteering toeat experimental cooking and sipping untested

cocktails and among many many otherthings being a friend. I also wish to thank Manisha and

Milind, Vidyaand Ravi,Sashikala and Narasimha for being wonderful hostson several occasions.

The Cad-group provides an excellent environment for research and a wonderful support

group. It would be an Herculean effort to thank everyone (past and present), but I cannot but

list Luciano Lavagno, Shared Malik, Rajeev Murgai, Alexander Saldanha, Ellen Sentovich and

Kanwar Jit Singh. Flora, Elise, Kia, Heather and Genevieve have always been willing tohelp onthe

organizational sideof things. Thanks for their patience and help. Kudos to Brad and Mike for the

excellent support in theCadgroup. NSF and DARPA are acknowledged for funding this research.

The Cadgroup also had its fair share of visitors. Many thanks and regards to K. Kodandapani, Paul

Gutwin, and Masamichi Kawarabayashi. I also wish to thank Kurt Keutzer for several basketball

games during post-conference hours.

There are numerous "faces" at the RSF to thank for pick-up basketball games. And7es

Bill Watterson, for a wonderful pair of cartoon characters; to Calvin for his indespensible advice

and Hobbes for his senseof propriety. To the writers of Superman and Batman series of comics;

you provided the means of escape toalittle kid inmethat still wants tobelieve insuper heroes and

legends. To Sam and hismerry crew (over theyears) atBrewed Awakening (Coffee Connection not

solong ago) who provided wonderful service mat made the4 o'clock coffee break a pleasure.

To my mother, and brother Vasant; thesacrifices youhave made to support me cannot be

described. This thesis is the result of as much effort (if not more) on your parts than mine. I am

also grateful to my uncles Vithal, Umanath and Ramachandra and my aunts whoprovided comfort

and courage to go on with my studies. A special thanks to Surckha and Surendra and their families.

And yestheLord Almighty (I agree withthe philosophy that it isbetter tothank God intermittently

than to spend your life as an atheist,only to discoverthat He does exist!).

Chapter 1

Introduction

The impact of Very Large Scale Integrated (VLSI) circuits in modem life can be seen

in various electronic facilities with which we pamper ourselves. VLSI circuits can be found in

modems, facsimile machines, television sets — to mention a few. Over the years, growth in the

complexity ofVLSI designs has enableddesignersto include well over amillion transistorson each

chip. Designers are faced withthedaunting task of packing more functionality intoa smaller area

and creating a circuit thatoperates faster than the previous generation. Design Automation (DA)

techniques play an invaluable role in this complex process.

This thesis deals with some of the problems that arise in synchronous circuit design.

Algorithms for ensuring correct operation of acircuit and for performance optimization of acircuit

are presented. Implementation issuesand experience gained through experiments are alsodescribed.

Section 1.1 provides an insight to some of the issues that arise in the design of a syn

chronous circuit. The advantages and disadvantages ofasynchronous designstyle are alsodescribed.

The design process is outlined in Section 1.2. Section 1.3 presents some of the timingissues that

arise in VLSI design. The research in this thesisis motivatedby an application in Section 1.4.

1.1 Synchronous circuits

VLSI circuits can be broadly classified into two categories depending on their mode of

operation.

• A synchronous circuit is characterized by the presence of special periodic signals (called

clock signals or phases) and special circuit components (called memory elements) that are

CHAPTER 1. INTRODUCTION 2

Combinational circuit

Clock

primary inputs primary outputs

acyclic interconnection of gates

Figure 1.1: A synchronous circuit

used to store and regulate the flowof data. There can be one or more clock signals, operating

at the same or different periods (frequencies). A rise or fall of a clock phase constitutes a clock

event. A clock schedule is aset of clock signals with all clock events specified. A performance

metric for a synchronous circuit is the smallest period common to the clock signals, called the

clock period. Smaller the clock period, higher is the regard for the design. A synchronous

circuit is an interconnectionof gatesandmemoryelements. It may be partitioned into regions

of combinational logic separated by memory elements (Figure 1.1). Each combinalional

region is an acyclic interconnection of gates. Thus every cycle in the circuit is broken by at

least one memory element. The flow of data between combinational regions is periodically

regulated by clock signals controlling the intervening memory elements. The ratio of the time

interval that a phase is high to theclock period is called the duty cycle for the phase. If all

the phases have the same duty cycle, the clock schedule is said to have the saiddulycycle.

Anasynchronous circuit is an arbitrary interconnection of gates and latching structures. In

contrast to synchronous circuits, cyclic structures of logic gates are permitted and there arc

CHAPTER 1. INTRODUCTION 3

no clock signals dedicated for latchingdata.

A major challenge in synthesizing asynchronous circuits is thesusceptibility of designs

to hazards. A hazardis defined as any transition ofasignal that is notprescribed by thedesigner.

The causes for a hazard can be traced to

1. the distribution ofdelays on gates in the circuit,or

2. the logic functionimplementedby the design.

Theactual delay of agate depends onthe fabrication process and on factors related tothe operating

environment flike temperature, exposure to radiation etc.). This makes it difficult for a designer

to ensure that a circuit is hazard-free. Automated approaches to synthesize hazard-free designs

have been recently proposed [47, 7, 31]. This problem is mitigated in synchronous designs due

of the presence of memory elements. Hazards can appear in a combinational region, but the

clock schedule is designed so that the flow of hazards through memory elements into adjacent

combinational regions, is prevented orcarefully controlled.

During thedesign of a synchronous circuit special attention mustbe paid to the routing

of clock lines. Clock signals have to bedistributed from input pads (sources) to memory elements

(sinks) on achip. Signal propagation through long metal lines leads to degradation of the signal.

Consequently a signal at a memory element may not have sharp transitions, although the same

signal has sharp transitions atits source. Thisgives rise to several problems; twoprominent issues
are the following.

1. At a single sink, the asymmetry of rise and fall timesalong the clock distribution path may

lead to a narrowing of the clock pulse at the sink.

2. Now consider two clock lines reaching a pair of sinks, such that data from the output of a

memory element at the first sink propagates to the input of a memory element at the second

sink. Clock signalsthatare not overlapping at the source pins,may appear overlapping atthe

memory elements. This can cause a memory element to permit flow of data, when in fact it

should have impeded it, or vice versa.

These problems are attributed to clock skew. However, recent advances in physical DA have

provided techniques to overcome the clock skew problem [74,34]. Despite the problems associated

with uncontrolled skew,efforts havebeenalsomadeto controlclock skew to the designer's advantage

CHAPTER J. INTRODUCTION 4

[15]. Asynchronouscircuitsare free from clock skew problems,since there are no clock signalsto

be routed across the chip.

An important issue in VLSI design is the power dissipation perunit area of the design.

The padsof a design typically account formore that50 per percentof the powerdissipation. Rest

of the power is dissipated in evaluationof logic in combinational regions, in driving clock lines

high and low and due to leakage currents. In an asynchronous circuit, the power is dissipated in

switchingofgatesandin additional circuitry required to detectsignalcompletion. Powerdissipation

can classified as

1. quiescent; caused due to leakage currents, dominant in portableapplications,and

2. dynamic; caused due to switching activity, dominant in high performance computation ori

ented designs.

The powerdissipationdepends to alargeextent on the choice oftechnology (CMOS, ECL, BiCMOS

etc.) and also on the design style.

The advantages of designing a synchronous circuit are:

• Hazards occurringinternally in the circuitdo not affect the outputs.

• Modularity ofcombinational regions dueto the relative isolation provided by the intervening

memory elements.

• Ease of testing. Techniques such as SCAN [14] can be used to test and detect errors in a

fabricated chip.

• Relative insensitivity toactual gate delays. If gate delays violaterespective bounds, thecircuit

may not operate at the desired frequency. However, it may be possibleto operate it at a lower

frequency.

The drawbacks of synchronous designs are:

• Increase inarea, due tothe presence of memory elements and routing of clock signals.

• Care has tobetaken in distributing clock signals across thedesign.

A special class of synchronous designs are pipeline circuits, in which data flows in one

direction. They are also termed as flow-forward circuits. Amulti-phase pipeline consists ofstages
ofcombinational logic separated by memory elements (see Figure 1.2). Each stage has inputs from

CHAPTER 1. INTRODUCTION

primary outputs

primary inputs

stage 1 stage 2 stage n

Figure 1.2: A synchronouspipeline

the previous stage and perhaps some inputs from the external world. Each stage has outputs feeding
the next stage and perhaps also to the environment. Data path designs are typically pipelines. The
depth or level ofapipeline is the maximum number ofmemory elements along apath from an input
to an output.

1.2 Design process

Structured VLSI design proceeds through several steps. They are briefly outlined below.

• Design Specification In the first step, a formal behavior of the design is specified. This
translates a conceptual idea into a description that may be verified for various properties that
mustbe satisfied by thedesign. A large design may be sub-divided into several modules that

may be independently designed and "glued" together at a later stage. This requires budgeting
of resources Gike chip area, power dissipation) and timing constraints on the independent
modules.

• Logic Design The formal specification is translated into a set of Boolean equations and
registers. Logic synthesis techniques arc used to optimize the circuit for area, for speed,
or for power. At this stage, since the circuit has no tangible realization associated with it,
it is called an unmapped circuit. Technology mapping is a process by which the circuit is

associated with an interconnection ofgates and memory elements from a library, depending
onthe technology of implementation. The resulting net-list is called amapped circuit.

• Physical Design Gates and memory elements in the net-list are given their physical attributes.
Thecircuit is represented as a set of polygons on several layers. A placement tool is used

to find locations for the polygons on a two dimensional plane. The goal is to minimize the

total area and also to take the criticality of the nets into account, while ensuring that design

CHAFFER 1. INTRODUCTION 6

rules [43,79] are observed. Global and detailed routing is done to interconnect the pins of

the gates. Wire length minimization, via minimization and criticality of nets are some of the

issues that need to be considered.

• DesignVerificationAt thisstage, thedesign is ready fora performance evaluation. A timing

verification is done to ensurethat the memory elements latch datasignalscorrectly andthat

hazardsarenot permittedto racearound the circuit,corruptingcomputed values. A functional

verification is carried out to ensure correct logicalbehaviorof the circuitunder all possible

environment inputs. Circuit simulation may also be used to compute the delays of critical

paths. Rectification of an errordiscovered in this step, may mean repeatingone or more of

the previous steps.

• Performance Issues Chipdesignoften involvesacomplex trade-offof resources forrequire

ments. High performanceis typically attained ata penalty in area and power. At every level of

the design it is necessary to evaluate variousstrategies availableto meet the goals. Problems

that arise in performance analysis and optimization of synchronous circuits are discussed in

detail in the following Section.

1.3 Timing issues in VLSI design

Due to the physical nature of gates and memory elements, signals undergo a delay when

propagating through them. Consequently, the computation of a Boolean function takes a finite

amount of time. A path in a circuit is called a critical path if delays of gates on the path prevent

the circuit from operating faster. Path length is used to denote the delay incurred by a signal

propagating along the path. For a combinational circuit, with all inputsarriving at the same time,

the longest paths in the circuit form a set of critical paths. The simplest timing problem that arises

in circuit design is known as timing analysis. Informally, timing analysis can be defined as a

procedure which identifies critical paths. Sequential timing analysis is complicated by the fact

that memory elements latch data. A sequential timing analyzer identifies critical paths from one

memoryelementto another and ensures the stability of data signals when memoryelements latch

data. The constraints for correct operation of acircuit are termed as clocking constraints. Timing

analysis procedures operate onagate level description oratransistor level description of acircuit. A

timing analysis tool istermed as astatic analyzer if itdoes not take the Boolean nature ofgates into

account. Results from static timing analysis are always pessimistic. There may exist topological

CHAPTER I. INTRODUCTION 7

paths in a circuit which arenever exercised during operation, and thuscan never contribute to the

delay of the circuit. Such a path is termed a false path - a path through which no transition of
signals can propagate. Atiming analysis procedure istermed dynamic if it can detect false paths
and identify the delay of true paths.

Often, the design of a combinational region has to meet constraints on the largest and
smallestdelay that any path inthe region can have. This isknown as the combinationalperformance
problem. Efforts tosolve this problem have used critical path restructuring, gate decomposition,
buffer optimization and transistor sizing. All previous methods have dealt with controlling the
longest delay of the circuit. The problem ofensuring that path delays exceed their respective
lower bound has not been addressed so far. Combinational performance optimization techniques
are important for obtaining fast implementations, but they form only a subset of the techniques
available to the designer. The flexibility provided by the presence ofmemory elements and clock
signals is exploited by sequential optimization techniques. To evaluate a synchronous circuit for

performance, itisnecessary to compute aclock schedule with the smallest clock period that satisfies
all the system constraints and the clocking constraints. This is known as the clock schedule

optimization problem. Retiming isa technique which involves repositioning ofmemory elements
so that the clock period is decreased, while preserving input-output behavior. It is common for

the designer to have a target clock period as the goal for circuit performance. In such a case, it is
possible to specify timing constraints for each combinational region, in order that the target clock
period be attained. Each combinational region is resynthesized to ensure that its delays are within
the prescribed bounds.

1.4 Timing issues: an example

Consider the design of the following arithmetic circuit; it takes a 3 bit input vector A,
a 2 bit non-zero input key C, and provides a 2 bit output vector S. The inputs Aand C are held
constant upto C clock periods. Let us ignore the circuitry which controls the application of the
inputs and instead focus on the data-path. The behavior ofa sequential circuit is described by
annotating each input/outputvector with ainteger subscript; the subscript indicates the clock period
frame with which the vector isto be associated. Ifthe vector isconstant over all C - 1periods, the
subscript isdropped. The output ofthe circuit is specified in terms ofthe input and clock period

CHAPTER!. INTRODUCTION

adder

n 4 >+
intS

t

-t %
S n

2 u

oldS Modulo

frame under consideration.

•/
4 (least significant bits)

Figure 1.3: An example

Sk = (kA)%C ifc=l,...,C-l 0.1)

The modulus(%) operation yieldsthe remainder after dividing the term before the operand by the

term after the operand. The circuit is implemented in terms of an adder and some combinational

logic forthe modulus operation. Since the maximum value of the input key C is 3 andthe value of

A is atmost7, the sizeof the adder canbe restricted to 5 bitsatthe output.The schematic is shown

in Figure 1.3. As amatter of notation, the memory elements are shown in little rectangles withthe

data input as anarrow leading toit and the data output as an arrow leaving it. The phase controlling

it maybe omitted if all memory elements arc clocked by the same phase (single phase clocking

scheme). The high level description of the circuit in BDS [59] is given in Figure 1.4. The BDS

description is translated toalogic level description and memory elements are inserted. A sequential

logic optimizer SIS[60], is used toobtain alogic circuit which has notbeen bound toatechnology.

At thisstage the designer is interested inexploring thedesign space for a performance versus area

trade-off.

The area of the circuit is measured as the sum of the area of the logic and the memory

elements. The logic is decomposed into 2 input andand or gates, and inverters. The area of the

logic is approximated as the number of such gates. Each gate is assigned a unit delay with 0.2
units per fanout. A memory element has three ports, adata input port, adata output port and a
control input port There may also be ports for setting and resetting the memory elements, or for

CHAPTER 1. INTRODUCTION

MODEL add-modulo

S<l:0>,intSo<4:0>=

A<2:0>,

C<1:0>,

oldS<3:0>,

intSi<4:0>;
ROUTINE adder,

intSo = oldS + A;
ENDROUTINE;

! current sum

! 2 bit input vector
! 2 bit non-zero input vector

! previous sum

ROUTINE modulo;

S<1:0> = 0;
SELECT C FROM

[1]: BEGIN

S<1:0> = 0;
END;

[2]: BEGIN

S<0> = intSi<0>;! modulo 2 is the least significant bit
END;

[3]: BEGIN

SELECT intSi<4:0> FROM

[1,4,7,10,13,16,19]: BEGIN
S<1:0> =1; ! modulo 3 for this set is 1

END;

[2,5,8,11,14,17,20]: BEGIN
S<1:0> = 2; ! modulo 3 for this set is 2

END;

ENDSELECT, ! modulo 3 for rest is 0 (default)
END;

ENDSELECT,

ENDROUTINE;

ENDMODEL;

! modulo 1 is always 0

Figure 1.4: High level specification: An example

CHAPTER 1. INTRODUCTION 10

asynchronous events butwe shall ignore these for the time being. Althoughthere are several types

ofmemory elements, they can be broadlyclassifiedinto two categorieson the basis ofbehavior.

1. Edge-triggered memoryelement (flip-flop): The memoryelementsamples the inputport at

the rise(or fall) of the control signal, and provides thevalueatthe output The outputis held

stableuntil the next rising (or falling) edge of the control signal.

2. Level-sensitive memoryelement Qatch): The memoryelementtransmits thedata atthe input

to the output, as soonasthe control signal goes high(orlow) and continues to do so aslong

as the controlremains high (orlow). When the control falls (or rises),the output is "latched"

to the value at the instant of fall (or rise) and is held at that value until the next rise (or fall)

of the control signal.

To summarize, the flip-flops providebetterisolationbetween input andoutput than latches. Latches

permitcombinational regions toborrow (steal) time from adjacent regions duringthe activeintervals.

To begin, consider the circuit with flip-flops triggered on the falling edge. Each flip-flop

is assigned an areaequivalent to six 2 input gates. The areais measured in terms of the total number

of 2 input gates in the circuit. The initial area is 159 and a timing analysis yields the best clock to

be 30.6 units. Retiming for minimum delay yields a clock periodof 10.8 units and an area of 243.

Combinational performance optimization techniqueson the originalcircuit result in a circuit with

clock period 24.0 units and an area of 209.

The design is changed so that the flip-flops at the inputs and outputs are replaced by

level-sensitive (active high) latches on phase <f>\ and level-sensitive latches (active-high) on phase

02 are introduced at the output of the adder (see Figure 1.5). A level-sensitive latch has an area

equivalent to three 2 inputgates. The circuit area is now 147. We force a duty cycleof 0.3 for the

clock. The optimal clock schedule is

rise of phase 0i = 10.9

fall of phase 0i = 18.0

rise of phase 02 = 16.6

fall of phase 02 = 23.7.

Combinational performance optimization results in the following clock schedule,

rise of phase 0i = 7.1

CHAPTER 1. INTRODUCTION 11

adder

4 (least significant bits)

Figure 1.5: Example with 2 phase level-sensitive latches

fall of phase 0i = 13.2

rise of phase 02 = 14.2

fall of phase 02 = 20.3,

at an area of 136 (the area decreases!).

One possibleoptimizationthathas not been explored so far involves using associativity

and commutativity of arithmetic operations. Consider the following function defined recursively

, f (A+ /*_!)%<? fc>l
[A%C k = 1.

We will show fk = Sk, for all k by induction. Recall that Sk = (kA)%C from Equation 1.1. It is

easy toverifythat f\ = Si. Assume /* = Sk for all k < n; it remains to show /n+i = Sn+\. By a

process of simple substitution, we get the result as follows:

/n+i = (A + fn)%C

= (A + Sn)%C

= (A + (nA)%C)%C

= (A%C + ((nA)%C)%C)%C

= (A%C + (nA)%C)%C

= {A + nA)%C

= ((n+\)A)%C

= Sn+\.

CHAPTER J. INTRODUCTION

HM
adder

nJoiai

4

+
intS

Tf"

(a)

c

,'2

%

Modulo

fl -/•
2 S

Figure 1.6: Altemative implementations: edge-triggered circuit

adder

2 S

Figure 1.7: Altemative implementations: level-sensitive circuit

12

Thus wecould also choose toimplement the circuit using flip-flops as shown inFigure 1.6 orusing

level-sensitive latches as shown in Figure 1.7. This has the advantage of reducing the feedback

lines to 2, thussaving area. None of theoptimization techniques at the logic level of a circuit are

able to detect this transformation. The transformation takes advantage of the fact that the modulo

operation with respect to an integer C, can be used to construct a group[3] known as the modulo

C group. The mathematical properties of a group are exploited to obtain a circuit with different

structure butidentical behavior. Theedge-triggered version has an area of 95and aclock period of

23.4 units. Itcan be retimed to yield aclock period of 12.4 units with an area of 107. Optimizing

the combinational regions gives a circuit withan area of 117 and clock period of 12.2 units. The

level-sensitive version of the circuit has an area of90and has the following clocking scheme (duty

CHAPTER 1. INTRODUCTION 13

cycle set to 0.3),

rise of phase 0i = 7.9

fall of phase 0i = 13.8

rise of phase 02 = 13.8

fall of phase 02 = 19.7.

Combinational optimization gives acircuit with area 97 and the following clock schedule (duty
cycle set to 0.3),

rise of phase 0i = 5.6

fall of phase 0i = 9.8

rise of phase 02 = 9.8

fall of phase 02 = 14.0.

Figure 1.8 summarizes some ofthe choices that the designer has. Each point on the clock period-
area graph has the figure number of the circuit associated with it. A trailing R or Cimplies that
the circuit was retimed or underwent combinational optimization. It isquite clear from the above
example, that DA techniques for sequential synthesis must focus on two broad areas, which overlap
considerably. On one hand, tools must bedesigned toexamine agiven circuit for correctness and

performance. These are techniques of analysis. The other area must focus on transformations

that provide altemative implementations with the same input-output behavior. These are termed

techniques of synthesis. Thus, the goal is to develop an all powerful sequential optimizer, that
combines the approaches from synthesis and analysis, and is sentient to the various design trade
offs. This thesis does not promise the"sentient" sequential optimizer, butdevelops the basic building
blocks that would form comer stones of such asystem and abet its development.

1.5 Thesis overview

Fourinteresting problems in timing analysis and optimization have been selected to be

included inthis thesis. The first three deal with the sequential nature of acircuit. The last problem
arises inthe synthesis of combinational circuits that have tooperate inasequential environment.

A major issuein the design and implementation of algorithms for design automation, is

the modeling of circuit behavior. A synchronous circuit has three essential components; logic gates,

CHAPTER J. INTRODUCTION

100.00 150.00 200.00

Area (number of gates)

Figure 1.8: Performance versus area trade-off

Datapoint associated with Figure describingcircuit

R - result of retiming

C - resultof combinational optimization

14

250.00

CHAPTER!. INTRODUCTION 15

memory elements andclocking schemes. The mathematical models fora synchronouscircuit form

the bulk of Chapter2. Chapter 2 also provides a comprehensive review of the previous work in

timing issues.

The thesis canbe broadlydividedinto two parts.

• The first partfocusses on analyzing agivencircuit. Chapter 3 describes the clockverification

problemand presents analgorithm of polynomial complexity to solve it The clock schedule

optimization problem is solved in Chapter4.

• The second part deals withoptimizationtargeted forsequential behavior. Chapter 5 is devoted

to pipeline circuits. This Chapter explores the problem of extracting timing constraints for

combinational regions, sothat theentire circuit operates ataspecified clockperiod. Chapter 6

poses a problem in combinational logic synthesis that has hitherto beenunexplored; namely

the problem of ensuringthat lower boundson paths in combinational circuits are met. This

is relevant forthe synthesisof sequential circuits with level-sensitivelatches. As an aside, an

application to wave pipeline circuits will also be described.

The optimality of the delay model used for the clock schedule optimization problem is

discussed in appendix A. Appendix B deals with the development of a quadratic programming

algorithm which is used in Chapter5.

16

Chapter 2

Prelude

It was nearly two decades ago that the necessity of automated timing analysis was felt.

Since then various research efforts have investigated the problem using different delay models

and proposed several techniques. We hasten to point that the efficiency of an algorithm and the

verisimilitude of the model (to reality) are often antipodal. It is important to develop an efficient

algorithm with as realistic a delay model as possible. This Chapter serves three purposes: the first

is to introduce the reader to different models present in literature, the second is to provide a brief

review ofvarious approaches and lastly, to present the model and definitions that will be used inthe

remainder of this thesis.

Section 2.1 describes the three components ofa synchronous circuit. A review of research

efforts in the field of timing issues of synchronous circuits is presented in Section 2.2. Section 2.3

gives the specific model that is used in this thesis.

2.1 Circuit model

A synchronous circuit is modeled as an interconnection of gates and memory elements.

The gates may be partitioned into combinational regions isolated by memory elements. A circuit

model is composed of models forcombinational circuits, memory elements and clock signals.

2.1.1 Combinational circuits

The combinational circuit is anacyclic interconnection of gates. An input to a combina

tional circuit iscalled a primaryinput ifit isasignal provided bytheenvironment. Acombinational

CHAPTER 2. PRELUDE 17

circuit may also have inputs driven by the outputs of memory elements. Similarly, an output of a

combinational region may drive an input of a memory element or be fed to the environment. In the

latter case, it is called a primary output The delay information of each gate is "composed" to

yield the delay information for input-output pairs.

Gate delays

The delay of a gate is an attributeof the physical process of charging a capacitor. In the

case ofCMOS circuits, the capacitance at the output (and the source/drain to substrate capacitances

to a certain extent) prevents the output voltage from switching instantaneously. Similarly in a BJT,

junction capacitances are responsible for the transition delay. We only consider gates with single

outputs in this thesis. The following are popular delay models for gates.

Fixed Delay A gate is assumed to havea constantdelay,knowna priori,and represented

by a real number. This model has been used in [33, 37]. A simple fixed delay model is the unit

delay model, wherein each gate is assigned a delay of 1 unit. A refinement is the linear delay

model; the delay of a gate is described by a linear function a + £7, where a is the intrinsicdelay

of the gate, p models the load dependent delay and 7 is the capacitive load at the output of the

gate. A simple example is the unit delay fanout model, where a = 1.0, fi = 0.2, and 7 is the

numberof fanouts of the gate. For a library of standard cells,the values for a and /3 are computed

using regression analysis on several simulations (using a circuit simulator like SPICE[46]). The

linear delay model for a library is also referred to as the library delay model. Most combinational

optimization techniques have reliedon the lineardelay model. These modelsare good only when

factors that determine the actual delay of a gate; suchas the fabrication process and the operating

environment conditions, can be tightly controlled.

Figure 2.1 shows the waveforms at theinputs to a 2 inputandgateandthe corresponding

waveform at the output using a fixed delaymodel with the givenparameters.

Min-max delay The delay of each gate is assumed to take on a value between a lower

bound and an upper bound. The simplified min-max delay model, abbreviated to SmM, assumes

that thedelay of a gate takes its worst case value. Inother words, theinterval of uncertainty of the

gate output in responseto input transitions is madeas wideas possible. This is a conservative albeit

pessimistic approach. The consistentmin-max delay model, denoted by CmM forshort, assumes

that the delay ofa gate is a variable that lies between the upper and lower bounds. Assignment ofa

delay value toa gate isdeferred until the verification/optimization procedure. The important point

CHAPTER 2. PRELUDE

a-

b—I

a =1.2
p = 0.4
Y=2

[2,3]

i—i—i—i—i—

t t+2 t+4

Figure 2.1: Fixed delay model

a

b

m

I—i—l—i—l—r

t t+2 t+4

l_

t+7 t+9

m
m

-i—I—i—

t+7 t+9

18

Figure 2.2: Simplified min-max delay model

is that each gate isassigned thesame symbolic delay. In Figure 2.2, theinput and output waveforms

under the SmM delay model are shown. Note there is an interval of uncertainty of unitlength atthe

outputduring the output rise(from t + 4 to t + 5) and output fall (from t + 9 to t + 10).

Statistical delay A probability distribution function (pdf) for the delay of a gate is

described. Very often a Gaussian distribution, specified by its mean and its standard deviation, is

used. An example is shown in Figure 2.3. The probability that the output is high at time t + 3 is

0 and as time passes, it increases to 1 at *+ 5. Similarly, the probability that the output is 0 at

time t + 8 is 0 and increases to 1by time t + 10. This assumes that the delay of each gate is an

independent random variable. In reality, there is a strong correlation between the delays of gates

a -

b—I

u, = 2
a = 0.3

1 3
Probability distribution function

-i 1

^ i i r

t+2 t+4

Figure2.3: Statistical delay model

i L

t+7 t+9

CHAPTER 2. PRELUDE 19

in a design. A cause for this fact is that the fabrication process tends to bias all gate delays in the

same direction; e.g. a thin oxide deposition process may be terminated earlier than required —

resulting in all transistors having gate oxides of thickness less than the expected value. To capture

this correlation, the delay of gate is modeled as a sum of two components; the first component is

determined by a random variable that reflects independent variations in the delay ofeach gate. The

second component is determined by a randomvariablewhich is the same for all gates on a chip and

reflects the effect ofhigh correlation.

Although the delay models described above assume behavior independent of input pins

and of the phase of the transitions, it is easy to extend the delay models to reflect

1. input pin to output pin dependencies, and

2. rise and fall transitions at the input and output pins.

2.1.2 Memory elements

A memory element has three ports, an input port, an output port and a control port. In

addition it may haveinputsfor set/reset and conditional control. The primary function ofamemory

element is to providea meansof storing pasthistoryofthe circuit. It stores a value (logical 1or 0)

at its output until the control decides to store a fresh value. There are a variety of circuit structures

that can be used as memory elements fordata storage (see[23] fora detailed description of various

memory elements). The different memory elements may be classified into two categories based

on their behavior. We restrict attention to two memory elements which are representative of the

two categories; falling edge-triggered D flip-flops (FEDFF) and active-high level-sensitive latches

(AHLSL).

1. Edge-triggered memory element (flip-flop): As briefly explained in Chapter 1 (Section 1.4),

an edge-triggered element is sensitive to falling (or rising) edges of the control signal. At

the instant of occurrence of this edge, the input is sampled and thevalue is presented atthe

output. The output then stores this value until the next occurrence of the falling (or rising)
edge.

2. Level-sensitive memory element Oaten): For alatch, the data at the input port is transmitted

to the output, throughout the interval that the control signal is high (or low). This is called

an active-high (or active-low) latch. The output stores theinput data value attheclose of the
interval until the start of the next active interval.

CHAPTER 2. PRELUDE

input-

T
control

set-up

—output input nn Nl/

control

output.

I hold

Figure 2.4: An ideal flip-flop

input-

T
control

set-up

—output Input __]~[jl_|{l/r

control

output W

hold

IL

20

Figure 2.5: An ideal latch

For correct operation the data is required tobestable before the latching edge (the falling
edge fora FEDFF or an AHLSL), byanamount of time called theset-up time — thisis known as

theset-up constraint. Thedata has to remain stable after thelatching edge foran amount of time

called the hold time — thisis known as theholdconstraint. Figure 2.4shows the behavior of an

ideal FEDFF and Figure 2.5, an ideal AHLSL.

Animplementation fora memory element hasthe following deviations from ideal behav
ior.

1. The data takes a finite amount of time to propagate from the input port to the output port,
after the clock event (rising for AHLSL and falling for FEDFF) that causes anoutput change
occurs.

2. Theeffect of anevent at theclock port takes a finite amount of time to be seen at theoutput

port,assuming thatthedata input hasbeen ready, priorto theevent at theclockport.

3. For correct behavior, there are requirements on the minimum pulse-width that the control

signal can have.

An excellent description of memory element models may be found in [75].

CHAPTER 2. PRELUDE 21

2.13 Clock signals

Although there are no restrictions on the input to the control port of a memory element,

the we focusses exclusively on circuits with clock phases connected to these ports. This precludes

circuits with conditional clocking and circuits with data signals driving control ports. A reason for

doing so is that hazards on the control port can cause incorrect behavior (functional and timing).

Since we propose to use static timing analysis techniques, hazard detection/correction is downright

difficult, if not impossible.

The signals in a circuit may be classified into two mutually exclusive sets; data signals

which appear in combinational regions and inputs/outputs of memory elements, and clock signals

which drive control ports of memory elements. A clocking scheme consists of a set of periodic

clock signals (called phases). The rise and fall of the phases constitute the clock events. In this

thesis, all phases are assumed to have the same periodicity, called the clock period.

2.2 Timing in VLSI circuits: a review

We review various research efforts in the area of sequential timing. This review is not

complete Ot would take an entire book to do so), but is intended to provide a briefdescription of the

evolution of timing issues and to underline salient features that are borrowed in our approach.~

2.2.1 Timing analysis

An excellent survey by Hitchcock,Sr.[21] describes severalearly efforts in timing analysis

[50,80,58,27,30,42,22]. These timinganalyzers sufferfrom poormodelingof memory elements

(only flip-flops are assumed present). If a circuit has only FEDFF's, then it suffices to restrict

attention to the timinganalysis of combinational regions. Given arrival timesat the inputs, wethen

need required to compute arrival times at theoutputs. Anefficient approach is to levelize thegates

in the circuit; namely starting at the inputs defined as level 0, assign a level to each gate which is

onemore thatthemaximum level of the gates that drive it. Then compute arrival times fora gate at

level i only after all gates at level i - 1 have been processed. Weshall have occasion to use this in

the algorithms we develop.

In the early eighties, timing analysis on transistor net-lists was an area of intense research

[48, 26, 68]. The first of these, CRYSTAL [48] uses a switch-level approach (advocated by
a genre of simulators) to detect critical paths in the circuit. The delay model is based on the

CHAPTER 2. PRELUDE 22

RC model (lumped and distributed) described in [43, 52]. CRYSTAL uses a value-independent

approach (unless specified, with the caveat that specifying data values may cause the program to

fail in identifying critical paths eliminated by the specification). A problem inherent with value-

independent analysis is that changes may be propagatedoblivious ofother conditions in the circuit.

CRYSTAL provides satisfactory results to circuits with simple clocking schemes, since it does not

have a notion ofa clock signal (but rathertreats them as inputs from the environment) and is unable

to model level-sensitive latches.

TV [26] is a timing analysis program for nMOS circuits. A set of rules are used to

determine signal flow before timing analysis. It uses breadth-first analysis to speed up the analysis.

The approachin LEADOUT [68] uses the notion of a causality graph and uses compiled

code techniques to analyze the circuit. Multi-phase clocks are permitted and latches are correctly

handled. It constructs a set ofequations relatingvarious events in the circuit. The delay information

is stored in a separate database, which permits flexibility in analysis. LEADOUT is remarkable for

its power (handling circuits with over 50,000 transistors in a few minutes on a VAX 780).

ATV (Abstract Timing Verifier)[77] was developed concurrently with LEADOUT and has

the feature of plug-in delay models. ATV has an abstract notion of the circuit; thus it can be used for

verification ofmicro-architectures as well as gate level net-lists. It uses loop unfolding to overcome

the cyclic nature of sequential circuits. Hence, the analysis is true for only a user specified number

of clock periods.

HUMMINGBIRD [78] was primarily designed as a timing analyzer operating in a logic

synthesis environment. It incorporates sophisticated models for memory elements and permits

multiple frequency clock signals. The algorithm resorts to an iterative technique, though no

convergence properties arc discussed. The motivation is to use timing analysis to provide feedback

to the combinational resynthesis procedures.

Ishii et a/.[24] present an algorithm for handling level-clocked circuitry, with arbitrary

clock signals. The fixed delay model is used and only set-up constraints arc checked. Sakallah

et a/.[54] present an elegant model which handles both kinds of memory elements in a simple

manner. Using this model, they present an iterative approach for timing verification [55] called

CheckTc. Our approach is developed on these models. A formal definition of the models is given

in Section 2.3.

All the timing verification techniques described so far are static, namely they are value-

independent. A few of these posses the ability to do some data-dependent analysis, but only on a

case by case basis. For sake of completeness, we briefly review the research in dynamic timing

CHAPTER 2. PRELUDE 23

analysis. The research so farhas focussedon combinational logic only. Very often, pathsin acircuit

may not be exercised, i.e. no signal transitions propagate along the path. Such a path is termed

a false path. The purpose of dynamic analysis is to disregard such paths and report the delay of

only paths that can propagate transitions. The basic formulation of this problem can be found in

[40,13]. It involves capturingthe sensitizationcriteria at every gate and solving the set of criteria

efficiently. More recently, efficient techniques [41] based on solving Boolean SATISFIABILITY

[67] have been reported. Although false paths are not encountered frequently in combinational

circuits, they areextremely common in sequential circuits. Gated clocking and unreachable states

in a state machine may contribute to pathsthat areconditionally active.

2.2.2 Timing optimization

Timing optimizationencompasses alltechniques thatare used to improvethe performance

(clock period) ofacircuit. This Sectionexamines some techniques thatare popular in literature and

practice.

Combinational optimization

The problem of optimizing a combinational circuit has been well studied and numerous

algorithms have been proposed. A representative sample of the optimization approaches may be

classified into the following categories.

1. Circuit restructuring [66, 16, 17, 49]: A simple idea to decrease the delay of a circuit is

to move late arriving signals in a cone of logic, closer towards the output. In practice,

sophisticated techniques for selecting these "cones of logic" arc required. Algorithms used

for minimizing area, like logic decomposition are modified with acost function that depends
on some estimate of the final delay of the circuit.

2. Technology mapping and buffer optimization [65, 5, 73, 53, 36]: A critical step in logic
synthesis is the binding of Boolean equations to an implementation technology. Standard
technology mapping (such as [29]) yields aminimal area implementation. It can be tailored

to yield circuits withless delay for an area penalty. Often signals need to bedriven to several

termini. The linear delay model reflects thedelay due to the increased load. Buffer trees are

constructed to ensure that signals arriveat destinations in time.

CHAPTER 2. PRELUDE 24

3. Rule based [9, 20]: These approaches use avariety of transformations to improve the per

formance of a circuit Limitations inherent to all rule based systemsare two-fold; the rules

depend onthechoice of technology and onlylocal improvement can be gained.

4. Transistor sizing [64,18,57,39]: Thisisa popular technique for performance optimization.

The pioneering workdone inTBLOS demonstrated that the area and delay ofa transistor net-

list are representable as posynomial functions oftransistor sizes. TDLOS [18] usesaheuristic

based on sensitivity computations. Shyu etal. [64] usethemethod of feasible directions (a

standard non-linear optimization technique [51]) to solve the problem. iCONTRAST [57]

uses aconvex optimizationtechnique proposed recently [76]. Marple [39] presents asolution

to the transistor sizing problem based on Lagrangian multipliers.

Clock schedule optimization

Theclock schedule optimization problem involves computing theminimum clock period

and assigning instants of occurrence to the clockevents (rise/fall of phases) in some time frame.

The problem ofcomputing the minimum clock period of acircuit with FEDFF's with asingle phase

clock isarelatively easy problem. The difficulty arises incircuits with level-sensitive latches using
multi-phase clocking schemes. Data canstream through the active period of latches; this is called

cycle stealing orretardation. It enables thecircuit to operate ata shorter clock period, but also

permits signal transitions to permeate across memory elements (see Figure 2.5). Thus latches are

both a boon and a curse.

Various efforts atexamining constraints for correct latch operation have hinted atpossible

algorithms to solve for theoptimal clock problem. Unger etal.[75] provide an approach tosolve the

problem for 2 phase circuits. The pioneering work inoptimal clocking can betraced toTAMIA [8].

The approach suggests starting with null retardation ata setof latches and successively updating

the values (of retardation) as the iterations proceed. The iterations are used to "shave" time off

in the different intervals that combine to yield the clocking scheme. Ishii et al. [25] present a

polynomial algorithm to deal with2 phase level-clocked circuitry, using the fixed delay model and

considering only set-up constraints. Sakallah et al. [54, 55] propose an elegant model and use

linear programming techniques to solve for the clock schedule. The optimality of the procedure

[55] remains unanswered (most probably the algorithm is sub-optimal). The problem formulation

in [55] is valid only in the steady state of circuit operationand leads to a non-convex solution set.

A major contributionmade by Szymanski [69] is to modify the constraintsto ensure correct circuit

CHAPTER 2. PRELUDE 25

behavior from quiescence. This provides a formulation with a convex solution set A drawback

of the formulation in [55] is that several constraints in the linear programming formulation are

redundant. Detecting a redundant constraint amongst a set of constraints is as hard as solving the

linear program itself. Consequently general linear programming techniques are unable to eliminate

constraints efficiently. Szymanski exploitsthe underlyinggraph structure of a circuit to obtain a

reduced set of constraints that are necessary for the problem.

Sequential optimization: retiming

Retiming is a process of re-distributingmemory elements in a circuit, to obtain a faster

circuit with the same input-output behavior. The structure of logic gates remains unchanged.

Leisersonet al. [33] were the first to provide an efficient algorithm to solve the retimingproblem

for single phase circuits with FEDFF's. Efforts have been made to extend retiming to deal with

AHLSL's [25,35], althoughthe delaymodel (fixed delay) leaves somethingto be desired.

Sequential optimization: resynthesis

The constraints for a circuit to operate at a target clock period translate to a set of

performance constraints ononeor more "pieces" of combinational logic. In the singlephaseedge-

triggered case, the pipeline performance optimization problem is equivalent to a combinational

"speedup" problem [38]. Theapproach in [2] approximates level-sensitive latches byedgetriggered

flip-flops and handles arbitrary multi-phase circuits. Slack is used to direct logic resynthesis

and logic movement across memory elements repeatedly, to find the best clock period at which

the circuit can operate. The slack based approach is myopic in its optimization. To overcome

this, simulated annealing is used to guide the optimization. However this may result in much

larger circuits than necessary, especially when a target clock period is given. Inorder to help the

combinational optimizers achieve their goal, it isimportant toexpose large regions ofcombinational

logic. Techniques described in [37, 11] make an effort to do so. The problem explored in [12]

is to identify and eliminate circuit structures that prevent retiming from yielding a faster circuit.
DeMicheli [10] uses the notion of synchronous logic operations, and combines combinational

synthesis techniques with register movement to optimize the performance of single phase edge-
triggered designs.

CHAPTER 2. PRELUDE 26

2.3 Definitions

This Section presents the mathematicalmodels that form a basis for the rest of the thesis.

These models were first proposed by Sakallah etal. in [55].

23.1 Clocking scheme

A clocking scheme, <D is a collection of / periodicsignals,fa, •••fa, eachwitha common

period c, and is represented by & = (fa, fa, •••, fa). Associated witheachphase fa are two real

numberss,- and ct- (shortfor start andendof the highinterval of a phase), the time of occurrence of

the rising andfalling edges of fa (0 < (s;, e,-) < c). Also associated with eachphase fa is its local

timeframe, an interval of timeof length c, suchthattheendof the active phasecoincides withthe

end of the local time frame. A global time frame is chosen to coincide with the local time frame of

a phase, henceforth called phase /. The phases are ordered so that 0 < e\ < e% ••• < e/ = c. We

define a precedence relation (-<) on phases as follows—

fa -< fa if c- < ej. (2.1)

The precedence relation is

1. anti-reflexive </>, ^ fa,

2. anti-symmetric fa •< fa implies fa •£ fa, and

3. transitive fa < fa, fa •< <f>k imply fa •< fa.

The phase shift operator Eij introduced in [55] is used to translateall measurements of time from

the local frame of phase fa to the local frame of <f>j. The phase shift operator is defined for a

combinational path between latches. For a path from a memory element clocked using phase fa to

a memory element clocked using phase fa, the phase shift operator is defined as

r «,-« if*** (22)
[c + ej - e,- otherwise

The clocking scheme in Figure 2.6 shows a 2 phase clocking scheme. The values for

E\2 and Eh.\ are also shown. Let an event be an upward or downward transition of a datasignal.

Consider an event at a fa memory element occurring at time t\, given in terms of the local time

frame for fa. If this event causes anothereventat a fa memory element with a delay say d, i.e.

CHAPTER 2. PRELUDE 27

o global time frame c

i 2

Figure 2.6: Two phase clocking scheme

time t\ + d in the local frame of fa\ then En is the shift that must be subtracted from <i -f d to

convert the event to the local time frame of fa. To distinguish between variables in the local time

frame from the global frame we use a superscript L. Thus in the local time frame of fa,

ef = c. (2.3)

The local rise of a phase is

*l -sf = si + ei - et- = Si + En if Si < et- (2.4)

and

s^ = Si - ei = Si + En - et if Si > ei. (2.5)

Consequently, a priori information is needed on the relative occurrence of the rise and fall of each

phase in the global frame and the relative occurrence of the fall of each of the phases for correct

translation ofevents. This is specified by the clocking scheme. If all the values to Si, e,-, i = 1, •• •, /

are known, the set <I> is called a clock schedule. Thus a clock schedule is an assignment to the

variables that conforms to the clocking scheme. Note that an Si or et- without the superscript L

refers to the instant of occurrence of the rise or fall of phase i in the global time frame Gocal time

frame of fa). For the restof the thesis weshallassume thatSi < ei for all the phases.

2.3.2 Combinational circuit

The thesis assumes all timing events are value-independent. In other words, the data

signal canonlybe stable orchanging at any instant. Theactual stable value (high or low) is of no

concern, noris thedirection of change (high to low orlow to high). Thissimplifies theproblems to

make them tractable, albeit pessimistic.

CHAPTER 2. PRELUDE 28

A\ = latest that thesignal isvalid at the input ofmemory element t,
a\ - earliest that the signal isvalid at theinput ofmemory element i,
R\ = latest that thesignal isvalid attheoutput ofmemory element i,
rf = earliest that the signal isvalid atthe output ofmemory element t.

Table 2.1: Variables at a memory element

The simplified min-max delay model is used for each gate. The circuit C is modeled as a

finite, edge-bi-weighted, directedgraph G = (V,E, D, d). For every memory element i eC there

is a vertex i e V; thus we use t for a memory element and the vertex representing it in G. G is

called the latch graph. In addition for every primary input and primary output of the circuit there is

a vertex in V. If there is a path of combinational logic from a memory element (or primary input),

say i, to a memory element (or primary output), say j, we create an edge etJ- : i -* j (directed

from i to j), etj e E. The weight Dij (d^) is the maximum (minimum)sum of the gate delays

along any combinational path from i to j: This is computed as explained in Section 2.2.1. We

say i is a fanin of j (j is a fanout of i) if there is a directed edge from i to j in the graph. "We

denote thefanin setof i by FI(i), thefanout setby FO(i). A path iy^ip is a sequence of vertices

{t'i, t2,•••, «p}, such that every pairof successive vertices in the sequence have an edge between

them, namely 3 etfctfc+1 : t* -*• tjt+i, for k = 1,« •-,p - 1. A cycle is a path n -^ ip+\ whose

first and last vertices coincide (i"i = tp+i). A cycle t'i -^ i^+i is a simple cycle if t'i, ••-ip are all

distinct and t'i = ip+i. For the rest of the thesis we will be concerned with simple cycles only. We

denote the phase controlling latch i, 2&<f>(i).

The symbol i is overloaded to mean a memoryelement i € V or a phase i e {1, •••/}.

Therise (fall) of thephase tomemory element t isdenoted bys^ (e^).

2.3.3 Memory elements and circuit clocking constraints

Four variables are associated with each memory element in the circuit; they are defined

in Table 2.1. These variables arc measured with respect to the local time frame of the phase of

the latch. This subsection describes the constraints that model the circuit and the meaning of each

constraint will be elucidated using signal waveforms. A word about the notation used in displaying

CHAPTER 2. PRELUDE

signal

input-

Old stable value New stable value

Signal undergoes transitions

Figure 2.7: Key to waveforms

flip-flop i

output input [_

f
control

control

0 s

output! ,,•

time

rL-RL

29

Figure 2.8: Data waveforms at a flip-flop

waveforms; a signal at the input/output of a memory elementor a gate takes on 3 possible states

during a clock period, displayed by different shades in a figure. Figure 2.7 provides a key to-the

signal waveforms. The signal has an old stable value to begin with, then some early event/s force a

transition. This commences the signal changing interval. After the last possible transition has taken

place the signal assumes the newstablevalue. The signals to the control portsof memory elements

(i.e. the clock phases) are assumed to be clean (free of unexpected transitions).

The behavior of a flip-flop i can be represented by

Rf = 4{i) = c>

and

•f =<i = c.

The significance of these equations can be seen in Figure 2.8.

The equations for a latch arc

and

Rf =max(Af,5£(0),

rf =max(af,^(0).

(2.6)

(2.7)

(2.8)

(2.9)

CHAPTER 2. PRELUDE

input- output input

T
control

control

output

Figure 2.9: Data waveforms at a latch

4,3 J
o <

aV =4.5
i

aL=4
j

AV =5.5 4-6
E 12=3.5

Figure 2.10: Propagation of data waveforms

0 5

I ' ' ' ' I '

<?1

' H

J~~l
l__Jr

local time zoneof<j>j

local time zone of <Jh

Figure 2.9 portrays the implications of these equations.

The equations for propagation through combinational regions are

and

30

(2.10)

(2.11)

A pictorial interpretation of these constraints for an edge i -+ j in the latch graph is shown in

Figure 2.10. Let the early Gate) arrival at memory element i be 4.5 (5.5). En = ei — e\ =

7-3.5 = 3.5 for the clocking scheme in Figure 2.10. The minimum (maximum) delay along i -* j

is 3 (4). Thus the early (late) arrival at memory element j is 4.5 + 3 -3.5 = 4.0(5.5+4-3.5 = 6).

The constraints for correct data latching are

Af <efc0 - 5, (2.12)

CHAPTER 2. PRELUDE

input- -*- output

T
control

input

control

/IjH UWoIdH

Input required to be stable
in these intervals

Figure 2.11: Set-up and hold constraints

and

af > II.

31

(2.13)

Equation 2.12 is the set-up constraint. It ensures that there is sufficient time for computation

between (minimum separation) clock events. The constant S is known as the set-up time for

memory element i. Equation 2.13 is known as the hold constraint. Its purpose is to prevent

early signals from corrupting inputs to memory elements. The constant H is called the hold time

of memory element i. Although the set-up and hold times can be different for different memory

elements we assume (for sake of simplifying notation) that all memory elements have the same

set-up and the same hold values. Figure 2.11 shows these constraints at a memory element.

Constraints 2.2-2.11 model the behavior of the circuit; constraints 2.12 and 2.13 enforce

data stability during latching — together they are known as circuit clocking constraints. They are

summarized in Table 2.2.

2.3.4 An example

Chapter 3 and Chapter 4 solve two closely related problems. We describe an example

which will be used to clarify some aspects of the algorithms as we proceed. Consider the circuit

shown in Figure 2.12. The circuit using flip-flops was first described in [82]. It has been modified

so that level-sensitive latches are used instead. The circuit is a data-path of a video compression

system and uses a delta PCM compression algorithm. The compression is achieved by a non-linear

quantization operation Q. Its inverse D is used to maintain the prediction value. The rest of the

components are adders (+) and a subtractor (-). The delays of each componentare shown alongside

([max, min] delays). The input signal is 9 bits and the compressed value is 6 bits. All 9 bit lines

are shown as dark lines and the 6 bit lines are light. The circuit uses a 2-phase clocking scheme.

For sake of analysis, assume that there is no delay through the memory elements and that the clock

CHAPTER 2. PRELUDE

Nature ofconstraint Formulation

Data propagation
Long path

Short path

fort = l,...|V|

^ =i3%)(J^ +Dji" ^'W))

Memory elements
Late departure Gatch)

Late departure (flip-flop)
Early departure Gatch)

Early departure (flip-flop)

fort = l,...|V|
J2f =max(ilf,^0)

i2f = c
if =max(af,^0)

if = c
Correct latching
Set-up
Hold

fort = l,...|V|
Af < c - S

a[>H

Table 2.2: Clocking constraints

Input a
signalri

4

Set-up = 0
Hold = 0

e< <: e,

Output
\ +1 []_Signal

[40,0]

predicted value
in next clock cycle

Figure 2.12: Example: video coder

32

CHAPTER 2. PRELUDE 33

Edge weights
(D,d)

Figure 2.13: Latch graph for video coder

signals arrive at the memory elements without any skew. The set-up and hold times for all latches

are assumed to be 0. The corresponding latch graphis shown in Figure 2.13. Each edge i -* j has

2 weights, namely Dij and d,j.

2.4 Discussion

We shall ignoreclock skew duringthe development ofalgorithms for easeof presentation.

At the end ofeach Chapter, a brief note describes how clock skew is easily incorporated. To model

clock skew, we partitionthe circuit into two sub-circuits; the first partconsists of gates in the clock

distribution circuitry and is called the skew network. The restof the circuit forms the second part

and is termed the data network. The data network is modeled using the latch graph described

in Section 2.3.2. The skew network consists of paths from the clock signal pins to the memory

elements. Let the phase signal to the control input of latch i undergo a skew along path P,-. P,

consists of buffers/inverters and is disjoint from the data network. A buffer/inverter k on P, has

maximum delay 2?f" (6J^).
A natural approach to systematic investigation of a research area is to solve a series of

related problems thatare increasingly difficult. At the time of writingthis thesis,a summary of the

various problems in sequential clocking is given in Table 2.3 (in increasing order ofdifficulty). Of

CHAPTER 2. PRELUDE

Problem Comments

Clock Verification Given C, c and «,-, e,-1 = 1, • • •/,
does circuit operate correctly ?

See [24,55].
Clock Optimization Given C,

find smallest c and ^, e,-1 = 1, • • •/ so that
circuit operates correctly.

See [55,69,25].
Retiming Given Cf

reposition memory elements for smallest c.
See [33,25,35].

Resynthesis Given C,

resynthesize circuit for smallest c.
See [38,2].

Table 2.3: Clocking issues

34

these, weshall focus ontheclockverification, clock optimization and pipeline resynthesis problems.

The intricate link relating themwillbecome clear overthenext few Chapters.

35

Chapter 3

Clock Schedule Verification

Current VLSI designs have several thousand gates and memory elements. Ensuring that

a clock schedule adheres to the clocking constraints is a difficult problem for thehuman designer,

especially in thepresence oflevel-sensitive memory elements. Another reason forinvestigating this

problem is thatprevious approaches [55,78] fail to provide an analysis on the complexity of their

procedures. Lastly the development of sophisticated algorithms to solve otherclocking issues is

hampered without the ability to verifythe resulting solution.

3.1 Overview

The clocking constraints (Table 2.2) are summarized in the Table 3.1. Since the clock

period and clock events are known, the equations are simplified bycombining the constant terms

(column 3,Table 3.1). An important fact to note is that the AL and RL variables appear only inthe
long path propagation and late departure constraints (called the late equation set). Similarly the aL
and the rL variables occur only in the short path propagation and early departure constraints (called
the early equation set). The set-up andhold constraints impose bounds on AL and aL. The clock

verification problem may be posed as:

Given a circuit G(V, E, D, d) and a clock schedule, does the clock schedule satisfy the
clocking constraints.

Note that the clocking constraints introduce auxiliary variables (AL,aL, RL and rL).

Hence the verification procedure (if we are to use theclocking constraints in the form described

so far) must ensure that the set-up and hold constraints are satisfied for all possible values of the

auxiliary variables that are solutionsto thesetofconstraints. Itis this fact that leads to complications,

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 36

Nature ofconstraint Formulation Simplification

Long path propagation

Short path propagation

fori=l,.--|F|

A* =JSt!®1** +Dji ~^WO)
a* =swift+dji" ^wo)

A? = max (Rf +A,-,-)

of = min (if + fy)

Memory element

Late departure Gatch)

Late departure (flip-flop)
Early departure Gatch)

Early departure (flip-flop)

for« = l,...|V|
flf =max(i4f,^0)

if =max(af,«{|0)

same

same

same

same

Correct latching
Set-up
Hold

fort = l,...|7|
A\ < c - S

at>H
same

same

Table 3.1: Simplified clocking constraints

hitherto unreported by previous approaches.

The current Chapter is organized as follows. Section 3.2 describes the theoretical results

concerning the clock schedule verificationproblem. The existence ofmultiple solutions and condi

tions forunique solutionsto exist form the contents of Section3.3. Applicationof the algorithm on

an example and the results on a set ofbenchmarks are provided in Section 3.4.

3.2 Theoretical issues

One method to solve the clocking constraints is to use iteration. The constraints form a

map M : X -»• X, where X is a set containing the solutions. Since the variables appear on both

sidesof themaxand minequations, asolution x* € X mustbe a fixed pointof themapM, namely

x* = M(xm). (3.1)

Aniterative method starts out with an initial guess s° for the solution to the problem and produces
a sequence of iterates, such that xt+l = M(x%). The methods succeeds in finding asolution if it
can beshown that xt+l —x{ after anumberofiterations. Note that this method yields one possible

solution and is useful only when a unique solution is guaranteed to exist in X. In the case of the

clocking constraints,uniqueness of a solution is guaranteed only in a restricted case. The solution

ingeneral will depend on the choice of x°. We shall henceforth drop the superscript Lon the local

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 37

variables associated with each memory element. A superscript m will instead refer to the variable

inthe mth iteration. We denote asolution to the clocking constraints as (A, k, a, f).
We begin by presenting a few lemmas that will be invoked repeatedly.

Lemma 3.2.1 Ifi\ ~^ ip is apath in the circuit graph, then Aip > k^ + HJ=1 A,fcJfc+1.

Proof For each i*. kik > Alfc and for each edge tjt -• t*+i, A{k+l > Rik + A,-fctfc+1. Summing
over fe = 1, ••-p - 1, we obtain Aip > k^ + ££"} Alfctfc+1. •

Corollary 322 Ifi\ -^ ip is apath in the circuit graph, then kip > A,-, +£*=! Atfc,fc+i-

Lemma 323 Let (A, k, a, f) beasolution to the clocking constraints. Thenfor any cycle C: i\~~>
ip+i in the circuit graph, ££=1 Atfctit+, < 0.

Proof From Lemma 3.2.2, we obtain for acycle #,p+1 > R{l + ££=1 A«V*+i- Since A'i = Ap+i»
the result follows. •

Expanding Atfctfc+1 = Av*+i - £*(,•*)*(•»+!) and using the definition of £*(,-fc)*(ifc+1) (from Equa
tion 2.2), we see that ££=1 ^(,fc)^(,fc+l) telescopes to Kcc; where Kc isan integer which indicates
the number of clock periods available for computation and depends on the cycle C. Hence, for all

cycles C : t"i ^* ip+\
v

£Av«,+, <^cc. (3.2)
Jt=i

A cycle for which £J=1 A«fc«'fc+i = 0 is called a zero weight cycle in the latch graph. A cycle is
saidto be a positive weightcycle /negative weight cycle depending on thesign(positive/negative)

of HLi Affctfc+i • Observe that the contrapositive to the statement ofLemma 3.2.3 implies that late
equation set has no solution if there is a positive weight cycle.

Proposition 3.2.4 For anyedgei -»• j, 6ij < A,j.

This is a consequence of the fact thatbydefinition dy < D.j andyields the following Corollary.

Corollary 3.2.5 Let (A, R,a, r) be a solution to the clocking constraints. Then for any cycle
i\ ~* VH in the circuit graph, £J_, 6Ifctfc+1 < 0.

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 38

3.2.1 Solving the late equation set

An iterative scheme for finding a solution to the late equation set is given in Proce

dure 3.2.1.

Procedure 3.2.1

I. Initialization-for all memory elements i

A? = -oo

iflip-flop

latch

$=l c ifiisafiii-

2. Iteration-for m —1, •••, n {

• for eachmemoryelement%{

- A?=maxjeFI{i)(R?-1 +Ait)

_Rm _(c ifi is aflip-flop
\ max(47\5J(t)) ifi is alatch

>

}

Lemma 3.2.6 A™ and R™ are monotonically increasing with m at every memory element i

Proof Using induction.

1. Base case: m = 1

Quite clearly for all itA] > A®. Moreover,

R] > <sj(j) = R*i ifmemory element i is alatch, and
= c=Rf- ifmemory element ais a flip-flop.

Thus R\ > R°i.

2. Inductive case: Assume A? > Af~l and R? > R?~l. We need to show, A?+l > A?
and R?+1 > R?. Now A?+l = maxjeFI{{)(Rf + Aj{). For each term j e FI(i),
Rf+Aji > R?-1 +Aj{. Consequendymaxjgp^.^^+Aj,) >m2ixjeFI{i)(Rf-1 +Ait-).
implying A?+l > A?.

If tis aflip-flop the R?+l =Rf =c. If tis alatch, AJ"+1 >Af, hence max^*1^^) >
maxfA?1, s£(f)). Thus R™+1 >#[", for both cases.

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 39

For the sake of convergence it suffices to to restrict all memory elements to latches. If

any flip-flops are present, they can only abet the convergence of the algorithm. This will be clear

after the following lemma.

Lemma 32.7 Procedure 32.1 converges toa solution, ifoneexists in n(= |V|) iterations.

Proof The proofproceeds by contradiction. Assumethatthere existsasolution to thelateequation

set Let A?n > A""1 for some latch t„. A*n and R*n are monotonically increasing with k (for
all in). By definition (Equation 2.10) of A?n, there must exist some i„_i € FI(in), such that

A?n = Rin-i +A«'n-i»V The fact that A?n > A£"\ yields two key results.

!• JCi +*..„•. >A?"1 >R£* +A,n_ltn; in other words R^ > RT*.

2. R"-^ > jRJ|^ >sfo^y gives us the additional information that (Equation 2.8) #?"* =
ATl-\

As aconsequence, A^"* > JE?"* > A?"*, i.e. A?"* > A?"2. Continuing this procedure, we
trace a path in the latch graph with n (= \V\) edges and \V\ + 1 vertices. Hence some vertex

must have been repeated morethat once, implying that a cycle is contained in this path. Now for

iterations p,q(j>> <?), and ip, iq on the path, A?p = J^ +EJlJ Alfctfc+1. Now pick avertex jhat
hasbeen repeated such that ip = iq. This results in

A? > A]

^, +E^W > A]q

P-l

Since, iE?9 > fl?"1 >«J^)f we conclude R]q = Ajq, implying ££lj A,Vfc+1 >0. Since by
assumption the late equation sethas a solution, weobtain acontradiction to Corollary 3.2.3. •

The presence of a flip-flop ensures that the early and late departures from it are fixed for

all iterations. Thus no flip-flop can occur on the path that prevents convergence in n iterations.

The proofof convergence is identical totheproofof convergence for thelongest path algorithm in

a graph with no positive cycles [1].

Theorem 3.2.8 The iterative procedure to obtain a solution to the late equation set runs in
0(\V\\E\).

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 40

Proof Eachiteration requires 0(|f7|) evaluations. (An,Rn) canbe computed in 0{n\E\). m

3.2.2 Solving the early equation set

There are severalchoices of initial values to start the iterations for the early equation set.

The two natural choices for a memory element i are-

1-

«? = A?
r? = 1$ and

2-

a? = A?

Of tfiese only the first leads to an algorithm that converges in polynomial time. The second choice

for the initial guess can

• lead to an erroneoussolution (this will be clarified in Section 3.3.3),

• take an arbitrary long time to converge.

The details of convergence of the iterations with the second choice of initial guess may be found

in [61]. We shall focus only on the algorithmwith the firstchoice of initial guess.

An algorithm to compute a solution to the early equation set is given in Procedure 3.2.2.

Procedure 3.2.2

1. Initialization-for all memory elements i

a? = -co

o_ J c if*is aflip-fiop
I s*(i) ifUs alatch

2. Iteration-for m = 1,•••, n {

• for all memory elements i {

- a? = minjeFI{i)(r?-1 +fy)

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 41

- rp =i c ifiis a flip-flop

max(af*, sfa) ifi is alatch

Lemma 323 a™ and r™ aremonotonically increasing with m at every memory element i

Proof Using induction.

1. Base case: m = 1

Quite clearly forall i, a\ > a?. Moreover,

rl ^ 5£(i) = r? ifmemory element is alatch
= c = r° ifmemory element isa flip-flop.

Thus r] > r?.

2. Inductive case: Assume a? > af~x andrf1 > rj"-1. We show, af1**"1 > a^andr;71"1"1 > rf.
Nowap+1 =mini6F/{0(rf +^t). For each term j e FI(i)trT +6Si >r?-l+6j{. Hence
™™jeFi(i)(r? + Sj{) > minjeFI{i)(rf-1 +fy). implying a^+1 >of1.

If i is aflip-flop the if+1 =rj" =c. If tis alatch, a?+l >a?, hence max(ap+l, s%{i)) >
max(ajn,5^({)). Thus r?+l > r*1, for both cases.

•

Once again, for the sake ofconvergence itsuffices totorestrict all memory elements tolatches.

Lemma 3.2.10 Procedure 3.22 converges to asolution, ifone exists in n(=\V\) iterations.

Proof The proof proceeds by contradiction. Assume that there exists a solution to the early
equation set Let a? > a?-1 for some latch in. Recall akin and r£ are monotonically increasing
with k(for all in). By definition (Equation 2.11) there must exist some f„_i e FI(in), such that
a"n~l = ^l* +*»»-nV Knowing that a?n >a?-1, results in two interesting facts.

1- C-! +6in-iin >«?„ >C1 =rl~i +t.u; ^ other words r?-J >r£|.

2- ^n"! > ^ ^ s£(tn_,)' gives us me additional information that (Equation 2.9) rj1-1 =
ay .

«n-l

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 42

As aconsequence, a*"* > t?~* > a£j|,/.e. a*"* >a?"*. Continuing this procedure, we trace
a path in the latch graph with n (= |V|) edgesand \V\ + 1 vertices. Hence some vertex must have

been repeated morethat once, implyingthat acycle is contained in thispath. Now for iterations p,q

(p > q), and ip, iq on the path, avip < rqiq -f- YX^q sikik+i- Now Pick avertex that has been repeated
such that ip = iq. This results in

p-\

X)*«Vfc+1 > aPip-rl-

But since, r^ >rj"1 >sfoy we conclude r^ =a?^ implying
p-1

fc=9

Since afw = a£ is monotonically increasing with /:, it follows a? - a] > 0, for p > o. Thus

P-1

k=q

This contradicts Corollary 3.2.5. •

From Proposition 3.2.4and Corollary 3.2.3,we concludethatifthe earlyequationset fails

to have asolution, thelate equation setmustalso fail tohave asolution. Thus theearly equation set

converges to a solution only if the lateequationset converges to a solution.

Theorem 3.2.11 The iterative procedure to obtain a solution to the early equation set runs in

0(\V\\E\).

Proof Similar to the proofofTheorem 3.2.8. •

3.3 Uniqueness of solutions

The algorithms in Procedure 3.2.1 and Procedure 3.2.2 present an iterative approach to

find asolution to thelate and early equation sets if oneexists. An example where multiple solutions

exist is shown in Figure 3.1. The delays of the combinational regions (a and b) are given by the

pair of numbers in brackets ([max, min]) adjacent to it. The set of feasible solutions (all instants

are given in the local time zone of phase 2)tothe late equation set, parameterized by a € [0,1] is
given by -

A\ = Rx = 3 +a

A2 = R2 = 8 + a.

CHAPTER 3. CLOCK SCHEDULE VERIFICATION

name read-in time

(sec.) (sec.)

2planet 12.99 0.01

2sl423 16.75 0.07

2s5378 32.04 0.06

2s9234 48.28 0.13

2sl3207 64.15 0.26

2s38584 3672.93 1.77

2s38417 1014.82 4.17

2s35932 650.39 0.78

53

Table 3.6: Clock verification with library delay model

are devoid of any latching errors. Latching errors can arise due to one or more of the following

reasons —

1. the clock period is so critical that at every iterationof the late equation set there exists some

latch for which the late arrival does not converge, or

2. the late equation set converges and there is a set-up violation, or

3. the early equation set converges and there is a hold violation.

The first case may force all n(= |V|) iterations in Procedure 3.2.1. The procedure, as described,

cannot predict that a proposed clock schedule has too small a clock period a priori to completing

the n iterations. A heuristic based on maintaining predecessor pointers can be used to detect a

critical clock period during the relaxation of the long path equations. Although it cannotguarantee

less than n iterations, in practice it is very efficient. This will be presented in Chapter 4 (close of

Section 4.5.2) in a different context.

3.5 Discussion

Although the circuit model has ignored skew along the clock lines, it is easy to extend

the algorithm toincorporate them. Note that the complexity of the algorithm isindependent of the
number of phases inthe circuit. We can conceptually extend the number of phases inthe circuit to
include one phase for each latch. The opening and closing ofalatch needs to be recomputed using
the worst case skew. Since the computation ofthe late and early arrival times is de-coupled, the

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 54

clock events in the two equations can be independent. First, consider all clock events in the global
time frame. Translate the clock events at alatch (early clock rise, late clock rise, early clock fall
and late clock fall), to yield aseparate phase for each latch. Order the |V\ phases according to the
late clock falls. The phase shift operator iscalculated for each pair.

The opening of alatch t will take on the early clock rise value inthe early equation set
and the late clock rise value inthe late equation set Similarly the closing ofalatch will assume the
early clock fall value inthe late equation set and late clock fall value inthe early equation set The
set-up ismeasured with respect tothe early clock fall and the hold with respect tothe late clock fall.

In conclusion, we have introduced the clock schedule verification problem and presented
the mathematical framework for solvingitefficiently. This leads ustobeoptimisticinoursearch for

an algorithm to compute the clock schedule with aminimum clock period that meets the clocking
constraints. We have demonstrated that there can be multiple solutions to the clocking constraints
for the given model. An interpretation to the multiple solutions has also been provided. It was
the paper by Sakallah et al. [55] that evoked our interest in this problem. Our first result was a
pseudo-polynomial algorithm for clock schedule verification [61]. This approach recognized that
the long path equation set was equivalent to aBellman-Ford relaxation (a technique commonlyused
to solve the problem ofcomputing the shortest path in agraph). However itignored the possibility
of multiple solutions and had adrawback that could lead to incorrect results for the short path
equations if the clock period was optimal. This was duly pointed out by Szymanski [70]. In order

to correct the deficiencies of the pseudo-polynomial algorithm, we came up with the a sufficient

condition for uniqueness of the late and early equation set. Szymanski had reached the same

conclusions independently. In addition hedemonstrated that the sufficient condition for uniqueness

of the late equation set is also anecessary condition for the late equation set. More importantly if

this condition was met, there would be at least onesolution to the late equation set that violated

a set-up constraint(Lemma 3.3.3 to Lemma 3.3.11 includingTheorem 3.3.10). At the same time,

Burks et al. [6] provided a detailed analysis of the reasons for clock schedule verification failure

and explored efficient approaches to examine circuits with potential errors.

55

Chapter 4

Clock Schedule Optimization

We turn ourattention to the problem of optimizing the clock period of a synchronous
circuit. The goal is to compute the smallest clock period and assign instants of time to the clock

events (rise and fall of phases) in the global time frame. This problem bridges the gap between
analysis and synthesis of sequential circuits.

4.1 Overview

Theoptimal clock period problem fora single phase circuit with edge-triggered memory

elements is the easiest case. The clock period is determined by the longest path consisting of

combinational logicgatesbetweenapairof flip-flops. In thecase of multi-phase circuitswithlevel-

sensitive memory elements, the problem is complicated by the fact that data can stream through

during the active intervals. In addition, thedesigner maychoose to provide constraints on theduty

cycle of the phases and/orrequire clock events to be separated. Theseare called external clocking

constraints. The optimal clock schedule computation problem may be stated as:

Given a circuit G(V,E, D, d),find the minimum clock period c and rise andfall timesfor

each of the phases, so that the clock schedule meets all circuit clocking constraints and external

clocking constraints.

The formulation in Table 2.2 involves max and min operators, which interact with one

another. The approach suggested by Sakallah et al. [55] is to relax the min and max operators to

a set of inequalities. The clock period optimization problem reduces to a linear program whose

objective is to minimize c. A solution to the linear program is a lower bound on the clock period.

The solution to the linear program is perturbed to obtain a solution to the original problem.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 56

Szymanksi presents twomajorcontributions in [69]. Notethatthe formulation inTable 2.2

involves auxiliary variables; more precisely 4|V| variables (namely A,-, #,-, a,-, r; at each vertex i)

areused, in addition to the 2/ variables (s;, e,- for t = 1,•••,/ and ei = c) that representthe clocking

scheme. The presence of auxiliary variables A» i£„a* and rt- serves little purpose, since theyhave

to be assigned columns in a tableau (assuming the simplex [45] method is used to solvethe linear

program). The first cutistoeliminate these variables and pose theoptimal clock formulation only in

termsofthe variables arising from the clockingscheme. A further refinement is to use the structure

of the constraints to efficiently eliminate redundant constraints.

The organization of Chapter 4 is as follows. The clockingconstraints are presented in

an altemative form in Section 4.2. A compact representation for the constraints is the goal of

Section4.3. Section4.4 presents two approaches to solvetheclock schedule optimization problem.

An example is given in Section 4.5 to illustrates the proposed techniques. Results on a set of

benchmarks are also provided in the same Section.

4.2 Clocking constraints: a new form

Szymanski terms the original constraints in [54] as aggressive. He suggests modifying

the early equation set by letting r,- = sb* for alevel-sensitive memory element. This iscalled the

conservative set of constraints. The motivation is two-fold. First, it has the effect of resulting in a

feasible space that is convex, thus making it easierto minimize the clock period. The constraints can

be reduced to a set of linear inequalities avoiding any need for perturbation of the linear program

solution. Secondly, note that equations in Table 2.2 are true only in the steady state of circuit

operation. A clocking scheme must be correct even in the start-up phase. The early arrivals at a

memory element monotonically increase to the steady state values (see discussion in Section 3.3.3).

Hold constraints enforce a lower bound on the early arrivals. Thus to ensure that the hold constraints

are satisfied at all times it suffices to ensure that the early arrivals in the first period of operation

meet the bounds. It is possible that the aggressive constraints lead to a smaller clock period but

result in a clocking scheme with an errorduring the start-up period.

The idea of eliminating the auxiliary variables is conceptually elegant but leads to the

questionof formulating the clocking constraints withouthavingto explicitly generate equations in

Table 2.2. The conservative constraintsdescribed in [69] are shown in Table 4.1.

Denote a flip-flop by Fand alatch by L.There are 4 types of paths in alatch graph G. A
path p : i\ ~»iq can be

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION

Nature ofconstraint Formulation

Data propagation
Long path

Short path

fort = l,.-.|F|

Memory element
Late departure Gatch)

Late departure (flip-flop)
Early departure Gatch)

Early departure (flip-flop)

fort = l,.-.|V|
itf =max(Af,s£(0)

#f = c

if = c
Correct latching
Set-up
Hold

fort = l,...|V|
Af < c- 5

Table 4.1: Conservative clocking constraints

57

1. from a latch i\ to a latch t, (LL)

2. from a latch i\ to a flip-flop iq (LF)

3. from a flip-flop i\ to a latch iq (FL) or

4. from a flip-flop i'i to a flip-flop iq (FF).

A path necessarily terminates if it encounters a flip-flop. Consequently a flip-flop can only occur at

the start or end of a path. Let the set of all such paths be denoted by V{G). A path is allowed to

have repeated vertices; hence the set V(G) canbe infinite. V(G) captures all possible paths along

which data can (possibly) propagate unhindered by the opening and closing ofmemory elements.

Foreach edge e1<7-: i—> j define,

Kij =
o if#tH#i)

1 otherwise.

Note that from Equation 2.2, we obtain

EH ~ e3 ~ ei + Kijc-

Fora path p: i\ ^ iq define,
9-1

"k«i«« = 2-? 'Vfc+l
fc=l

(4.1)

(4.2)

(4.3)

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 58

and
9-1

(4.4)
*=1

Equation 4.2 and Equation 4.3 yield the following fact

Property 4.2.1 Let p: ii ^ iq be apath in the latch graph, then J^JlJ En*k)Wk+.) = e*(t«) +

KiiUc ~ e*iii)'

For a path consisting of a single edge t*i -*• t'2, we drop the superscript p on Kfliz. For a path
p: i\ *n* fn, iif?lln keeps track of the number ofclock periods available for computation along p.

Let path p £ V(G), p:i\^ iq. We introduce one inequality perpath thatdepends on

the nature of the path, and one inequality per edge (note that each edge is a valid path in V(G))

as shown in Table 4.2. Constraints 1-2 are called the set-up (or long path) constraints and 3-4

Path type Constraint

1: LL/LF

2: FL/FF

e*(;,) > sHil) + D*liq - K?liqc +S

Edge type Constraint

3: LL/LF

4: FL/FF

e^(t-2) < 5^(il) + dilh + (1 - iifilt-2)c - if
e*(«2) < <^(in + rft,t2 + (1 ~ -K"i|i2)c - H

Table 4.2: Inequalities for correct clocking

are called the hold (or short path) constraints. The rest of the section is devoted to proving the

equivalence of the sets of constraints in Table 4.1 and Table 4.2.

The following Lemma has been has been used by several researchers [24,25,69,62]; the

proof is borrowed from [69].

Lemma 4.2.1 Let c be a feasible value of the clock period to constraints 1 and 2 in Table 42

over all paths p € V(G). Let C : i\ ~* tp+i, (i\ = ip+i) be a cycle in the latch graph, then

D<?. < K?- c

Proof If there areany flip-flops lying on the cycle, a repeated application ofconstraint 2 in Table 4.2,

willensure D?: - I<2i ., c < 0. Soletusassume that C contains onlylevel-sensitive latches. Let

us constructasetofcycles, which are validpaths in V(G)\ define Cr to be apathwhich loops around

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 59

the cycle C, r times. Inequality 1inTable 4.2 requires, e^) >s^ + rD?lip+1 - rK^ip+le + S.
In other words,

>*«n)-g**i) +5+r'P&,+,> (4 5)
tK?-

D?iLetting r —• oo, we seec > 'g p+1. •
•Vp+i

Corollary 4.2.2 Le/ c 6e afeasible value oftheclockperiodto theconstraint I and2 in Table 4.2

overall pathsp € V{G), then the latch graph hasnopositive weight cycles.

Proof Let C : i\ ^* tp+i, (t'i = tp+i) be a cycle in the latch graph, then Efc=iA«*fc**+i =

•

The ensuing theorem relates the clocking constraints in Table 4.1 to the inequalities in

Table 4.2. Szymanski demonstrated[69] that the inequalitiesin Table 4.1 implied the inequalitiesin

Table 4.2. We will provide a proof for the converse too.

Theorem 4.23 Theconstraintsin Table4.1 havea solution ifand only iftheinequalities in Table42

have a solution.

Proof The proof consists of two parts.

• =>-)Let (AL,i2L,aL,rL) and (si,ci,-- •$/, c/) be a solution toTable 4.1. We show that for

all p : i\ ~> iq the constraints in Table 4.2 are satisfied.

- pisoftypeLLorLF.

Since the late equation set is unchanged, we use Lemma 3.2.1 to obtain

q-l

At ^Rh + £(Av*+1 - £*(.•*)*(.•*+,))• (4-6)
Jfc=i

Together with e%{iq) - 5 >A£, R[x > s^{hy Property 4.2.1, Equation 2.3 and Equa
tion 2.4, we get

=>' +«*.•,) > 4)+%, +^,-^+^
=* «! +«*.•,) > 'm+em + D?liq-KflUe + S

CHAPTER* CLOCK SCHEDULE OPTIMIZATION 60

This equivalent to constraint 1 in Table 42.

- p is of type FL or FF. Once again using Lemma 3.2.1

Jfc=i

Together with ej^, - 5>Aj^,,R${il) =e£(.i} (since ti is aflip-flop), Property 4.2.1
and Equation 2.3 we get

€*(i,)-S ^ ehi) +Dh^€4>(i<l)-Kixi<lc + e<f>(ii)
=»« +«*&) > c+^ + ^-Kf^c + S

This is equivalent to constraint 2 in Table 4.2.

Itremains to prove the hold inequalities inTable 4.2 for each path consisting of asingle edge
M -+ i2.

- LL or LF: Foranyedge t'i —• 12 we know the followingconstraints are true:

a,-2 < % + dili2 - ^(tl)^(t2)

rf = si

4 > H.

Hence

H < s<j,(ix) + diti2 - (e^(ia) - e6(ll) + Kili2c)

=*# < (*5(,-1) +^(l-1)-c^(l-2)) +d,-ll-a-JCvjC
=> ^(,-2) < (s£(tl) +e^(tl) - €/) +rftll-2 +et - Kilhc - H
=*• e^i2) < s^ix) + dili2 + (1 - A'tlt-2)c - //.

This is equivalent to constraint 3 in Table 4.2.

- FL or FF: For any edge i\ -* t'2 we know the following constraints are true:

a,-2 < rh + dili2 - ^(,j)^(i2)
rL _ _L

a£ > //.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 61

Hence

H < €j(ll) +rf»,«2-(c^(i2)-^(ll) +/0lt-2c)
=>H < (eJ(fl) +e^(tl)) +d,ll-2-c^(t-2)-/rtlt-2c

=* e0(t-2) < (cj(il) -fe^(il) - et) +dtll-2 + et- Kili2c - JT

=> C*(«2) < c^(n) + rffiia + (1 - #fita)c - #.

This is equivalentto constraint 4 in Table4.2.

• <=) Conversely let (si, e\, •••,sj,e/)beasolution to the inequalities inTable 4.2. We show

that there exists a solution to the constraints in Table 4.1 by constructing an algorithm to

calculate asetofvalues that satisfy them. The proof proceeds along similarlinesto theproof

of convergence of Procedure 3.2.1. Anadditional burden of demonstrating that theconverged

iterates indeed satisfy set-up andhold constraints lies with us.

Consider the iterative algorithm inProcedure 4.2.1. For notational convenience, we shall drop

the superscript L on thelocal variables atamemory element and instead let the superscript

m on each variable reflect the iteration number.

Procedure 4.2.1

1. Initialization-for all memory elements i

A? = -oo

Rq=i c ifi is aflip-flop
I 5£(0 ifi is alatch

2. Iteration-for m = 1, •••, n {

- for all memoryelements i {

* A?=m*xj(:FI{i)(R]1-1 +Aj{)

+Rm =(c ifi is aflip-flop
\ max(Afl,5^tj) ifi is alatch

}

}

3. Initialization-for all memory elements i

a,- = -co

{c if i is a flip-flop

s%(i) ifi is alatch

CHAPTER4. CLOCK SCHEDULE OPTIMIZATION 62

4. for all memory elements i {

- ai = minieF/(.)(»7 + Sjt)

}

Steps 1and 2 inProcedure 4.2.1 are identical toProcedure 3.2.1, and hence must converge in

n(= \v\) iterations, as long as there arc no positive weight cycles inthe latch graph (a true
fact by virtue of corollary4.2.2).

Steps3 and 4 define theearly arrivals and early departures atthe memory elments. Notethat

the only iterations are in step 2. Let us denote the solution obtained from Procedure 4.2.1

by (An, Rn, a, r). It remains tocheck if (An, Rn, a,r) meets theset-up and hold constraints
Gnequalities 2.12 and 2.13).

- Assume for sake forcontradiction thatthere exists some memoryelement i'i whichhas

aset-up violation, A? > ej^j - S. Trace asupporting path to i\ as follows. Find
h € F/(m), such that A\ = R?-1 +AlVl. If JZg"1 =sfa or ifR?~l =c, terminate
the path, elsecontinue tracing the path. Since the iterations are guranteed to converge

in \V\ iterations, asupporting path p : iq ^* i\ must be found, with q < \V\. If iq isa
latch we have A? =R^"*1 +ZkZ\ Aifc+l,-fc and R^1 =sfa Of iq is flip-flop we
obtain #?~9+1 =cand the proof proceeds along similar lines). So we have apath for
which, 3fa +££} Aik+lik >efa - S. In other words,

^sHi,) + Diqii-Kiic > e«ii)-s'
thus contradicting constraint 1 in Table 4.2. If iq is a flip-flop, a contradiction to

constraint 2 in Table 4.2 is obtained.

- Assume for sake for contradiction that there exists some memory element ii which

has a hold violation, atl < H. Then from step 4, we conclude that there exists some

%2 6 FI{i\), such that a,-, = r,-2 + £,-2tI. Assume ii is a latch (the argument if %i is a

flip-flop is similar). This implies

H > ri2 + 6i2ix

=>H > 5J(«2) +rf«2U -etf(M) +e*(t'2)- A'«2MC-

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 63

Rearranging terms, we obtain

e*(u) > (5£(»2) +c*(*) - «) +0 - **n)c +d«Vi - J5T
=*• e^(ll) > s^(,-2) + (1 - Ki2ii)c + d,-2ll - H.

Contradicting constraint 3 in Table 4.2. If t*2 is a flip-flop, a contradiction to constraint

4 in Table 4.2 is found.

4.3 Eliminating redundant constraints

This section is basically a reproduction of the theorems from [69], that are used to reduce

the number ofconstraints in Table4.2. Constraints 3 and4 totalup to |E | constraints(one inequality

per edge). Constraints 1 and 2, on the other hand,must hold for all paths, and possibly are infinite

in number. Hence we must find a more compact representation. Consider constraints 1 and 2 in

Table 4.2 fora path p: u\ ~> uq, (<j>(u\) = j, <t>(uq) = t). These canbe represented in the form

where a* is defined asUfUq

and

X{ xj > <*UlUq PulUqcy

9-1

Quju, —2-f ^«*u*+l + S
Jk=i

(4.8)

(4.9)

«,«, = Ku,' (4-10)

xj represents a clock event associated with the late departure from u\ and xt- represents a clock

event associated with the latching at uq. Note K*u > 0.

Upto now, thedependence ofconstraints layonapath from memory element wi tomemory

element uq. However we are interested in the greatest lower bound on the difference a:,- - xj. To
compute thiswe modifythis dependence to include all paths that usethesame clock events as p for

late departure and latching. Let

Ut.m. = max<tjj.,
(ap _ QP c)

p: u\~~* w9,

xj triggersdeparture from u\

xi latches signal at uq.

(4.11)

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 64

For a given clock period c, U£.x. is therelevant bound ontheminimum value «,- - xj can take.

Let T bethesetofcycles inV(G). Recall that there mustbe atleast onememoryelement

in every cycle in the circuit Consequently for any cycle C : t*i -v* up+u KSlUp+l >0. A weak
lower bound on the clock period c (from Lemma 4.2.1) is

»ife)-(c>^max #t . (4.12)

Let p': u\ ~~> uq bea path that contains a simple cycle C : uk ~~> uk+v (1 < A: < k + v < q, and

v-k —«jt+w)t and c > V- Let us decompose j/ into three paths:

1. p1 : u\ ~~* Uk

2. C :uk~~> ttk+v

3. p2 : uk+v(= uk) ^ uq

The contribution of p' to the term VI^ x,^ x is

«„, - <^c) = (OS',ul - /f?;ujlc) +(JJO ^ - K^c) +(^+t,„, - A'4„»,<0 +5.

Rearranging terms we get

(<u, - <„/) = [PSU " *£.,«) +(<♦„-, - A'£+„u,c)] +«Ui+„ - A'£„^c) +5.

Since (D°„u„. - /fS,„t+„c) <0(from Lemma4.2.1),

„2

C.

Thusthebound given by thecycle-disjoint path p1 Up2 dominates thebound provided by p'. So a

simple way to compute U% x. is

Ut,s. = max <

p : u\ ->-+ uqip is cycle-disjoint

(aSi«, - #U,C)| *> triggers departure from u\
Xi latches signal at uq.

(4.13)

Intuitively, if we encounter any cycle on apath from u\ to uq, we can only decrease U£^u)X<Ku .
Also note that as c increases, U£.Xi decreases. Thus any bound that is present at a clock period

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 65

c > if) must also be a bound at c = V- Using the lower bound i> for the clock period, we obtain a

sufficient set of constraints that need to be considered.

For a given clock period c, the relevant constraints may be obtained as follows. Each

edge i -*• j in the graph G is weighted with Aj - Kijc Solve an all pairs longestpath problem

(with the constraint that a path cannot continue if it encounters a flip-flop), given that the graph

has no positive cycles. The length of the longest path from a memoryelement on phase j to a

memory elementon phase t givesus the constant on the right handside of the inequality, denoted

by UXjXi. Since we have / phases, we can have at most 2/ variables (rise and fall times). The

value of IQXUq, for acycle disjoint path u\ -^ uqt can range from 0 to \V\ - 1. Hence there can

be at most (\V\ - 1)2/(2/ - 1) ~ 0(\V\l2) relevant constraints for the circuit. If weare given a

clock period cthis reduces to0(l2) constraints. To compute all relevant long path constraints for
allvalid clock periods, we use the approach suggested by Szymanski [69], This has a complexity

of 0(/|£||V|). This approach also requires the computation of ip (the algorithm to do so has a

complexity of 0(|V||£|6), where b is the number of bits of accuracy required in computing V0-

Henceforth, the set of relevant long path constraints will bedenoted by X{ - xj > aJt- - fijic since

the dependence on paths in the graphhasbeen captured.

The constraint 3 and 4 in Table 4.2 can be written as

where

and

xi xj S 7t*iu2 4" *?uiu2C,

Tt*itx2 = "Ulll2 «

TJu\U2 — *• ^u\U2'

(4.14)

(4.15)

(4.16)

Once again we modify this dependence to include all edges that use the same clock events as

u\ -* m for departure and latching. Recall that for an edge {u\ -+ u2) € E, KUlU2 € {0,1},

implying 7?U,U2 € {0,1}. Let

L%.x = min<

(u\ -> u2) € E,

(7u!u2 +Tiuxuzc\ xj triggers departure from u\
xi latches signal at uq.

(4.17)

LXjX. decreases with decreasing c, since t)UIU2 > 0. With alower bound onc, we get Lx > IJ

for all feasible clock periods. There are E constraints and 0(/2) variables. Eliminating redundant

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 66

constraints will yield a setof 0(/2) constraints. The setof relevant short path constraints willbe

denoted by x,- - xj < 7Jt- + q^c, since the dependence on edges in the graph has been captured. In

all there are 0(\V\l2) set-up and hold constraints, that are germane tothe clock period optimization
problem.

4.4 Solving the optimization problem

The problem formulation forelock periodoptimizationmay be posed in severalequivalent

forms. The linear program formulation is conceptually the simplest.

P: min(c)

such that xj - xi < -aJt- + /3,-,-c 0(|V|/2)long path constraints

Xi - xj < fji +6j(c 0(2/2)short path constraints

upper and lower bounds
tf

0 < Xii< c 1

<*o(= ej) =c J

In this section we show that the linear program for clock period optimization has a special structure

that makes it possible to solve it efficiendy. The linear program formulation will be denoted by P.

We could solve this as a linearprogrammingproblem;instead we proposetwo approaches

based on graph algorithms to solve the problem. If we fix the clock period to a value say c = 7r,

then the size of the constraint set reduces to 0(/2). This can be done by just evaluating the right

hand sides with c = ir and picking the dominating bound for each inequality. This takes 0(\V|/2).
The constraints are then of the form

%i - xj < kj{ 0(l2) long and short path constraints

Xi - Xq < 0

0 <Xi \ upper and lower bounds
V> < *o(= e/) = z

Note that xo is a specialvariablerepresenting the end of the global time frame, namely e/ = c.

4.4.1 A simple algorithm

We append the clock event separation constraints and ordering restrictions (if any) at this

time. It should be pointed out thatduty cycle constraints arc of the form mc < xt- - xj < Mc,

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 67

where0 < m < M < 1. Only constraints of the form »,- - xj < pc, where p. is non-negative are

permitted. The reasonforexcluding the negativep will be cleartowardsthe end ofthis section. Thus

only a restricted set of duty cycle constraints (maximum duty cycle) are permitted. A feasibility

check at c = 7r can be done in polynomial time asexplainedbelow.

Theorem4.4.1 Given a clock period ir > V. it is possible to check if there is a valid clocking

scheme, and ifso tofind valuesforthe rise andfall times ofthe Iphases in 0(l3) time.

Proof It is well known that the feasibility ofaset ofconstraints ofthe form x{ - Xj < fc£, k]{ e R,
can be related to the shortest path on a graph problem. To check for feasibility we construct a

constraint graph Gp(Vpj Ep) as follows. For each variable xi construct a vertex vPi. For each

constraint Xi - xj < k]{, construct an edge from vPj tovPi with weight k]{. Henceforth when we say
"add an edge of weight w'\ wemean thefollowing—if aprevious edge exists wesimply change its

weight tobetheminimum oftheoriginal weight and w. Ifnosuch edge exists wecreate anew edge

of weight w inthe graph. Add edges to all vertices vPi(i ^ 0), from v^ with weight 0 (representing

constraint xt- < x0). Construct azero vertex vz (not tobeconfused with v^) which has edges from

all vertices other than v^ with weight zero (reflecting x{ > 0). Weigh the edge from v^ to vz with
(-7r). Addan edge from vz to v^ of weight tt; thus ensuring x0 = n. Thisconstruction makes the

graph Gp strongly connected. From every vertex there is an edge to vz. There is an edge from vz
to Vpo, andthereis an edge from v^ to allothervertices.

Initialize the potential of vz to 0 andthe potentials of all other nodes to +oo. Now do a

Bellman-Ford iteration for the shortest paths. If there isanegative cycle in Gp, it will be detected
and such acycle implies aset ofinconsistent inequalities, implying infeasibility. Else, the algorithm
will terminate with aset of consistent potentials for all vertices. The complexity is 0(/3). If there
are any upper bounds on variables, we initialize the potential of the vertex that represents that
variable to the upper bound instead of +co.

If there is anegative cycle in the graph Gp, it implies that theconstraints are infeasible.

Let C- beanegative cycle with weight -W through, vertex vPi. This implies we have aconstraint
(after elimination from the set) x{ < xi - W, i.e. 0 < -W; clearly infeasible. •

In order to do guarantee that binary search will find the optimum clock period, weneed
to prove two facts:

1. Convexity ofthe problem: Ifx», xT are feasible solutions to the problem Pwith clock periods
qand r(q > r) respectively, then there exists asolution to all clock periods between r and q.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 68

2. There is a tight upper bound on the clock period. Note that this implies that the upper bound

is actually attained. So we have to show the existence of an upper bound II and a feasible

solution xn for c = FL

Theorem 4.4.2 Let xq, xr be feasible solutions to the constraints in P with clock periods q and r

respectively (q > r). Letc = Xq + (1 - A)r (X G[0,11). Then x = Xx* + (1 - X)xr is afeasible

solution to the constraints in P with clockperiod c.

Proof Consider any constraint of the form xt- - xj < a + 6c, where a, 6 are real constants. We

know

x\ —xqj < a+ bq and

xTi —xrj < a + br.

This implies, AxJ- Axj < Xa + Xbq and

(1 - X)xri - (I - X)xrj < (1-A)a+(1-A)6r.

Adding the last two inequalities we get,

(AaJ + (1 - A)*f) - (A*J + (1 - A)a?5) < a+ 6(Ag + (l-A)r)

Hence x = Xxq -f (1 - A)xr is feasible forelock period c (= Xq + (1 - A)r). •

Theorem 4.43 II = \V\2l max {DUIU2}, is a tightupper bound on theclock period.
ui—•u2€£

Proof We will give an algorithm to find n. The short path constraints have a non-negative right

handsidealways. The long pathconstraints havearighthandsideofthe form -a,,- + /?Jtc with /?Jt-,

possibly equal to zero. We will firstshow that for every cycle in the constraint graph, the sum ofthe

coefficients of c along the cycle must be a stricdy positive value. We know that there areno negative

coefficients of c on any of the edge weights. For sake of contradiction assume that there exists a

cycle C : v\ ~~> vn+i in the constraintgraph with zero coefficient sum for c. Let e,- : u,- -* ut+i

,t = 1, • • •, n - 1, denote the set of edges in C. Since the sum of coefficients of c, each of which

is non-negative is zero, each edge must have a zero coefficient. Let phase(v{) denote the phase

associated with the variable represented by vertex v,- (e.g. if vertex vr represents the rise of phase

kt namely s*, then phase(vT) = fa). Now consider the nature ofconstraints that give riseto edges

in Gp with zerocoefficients of c.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 69

• A long path constraint with azero coefficient for cgives rise toan edge intheconstraint graph

d suchthat phase(vi+\) -< phasefa) (Equations 1and 2 inTable 4.2).

• A short path constraint with a zero coefficient for c gives rise to an edge in the constraint

graph ei such that phasefa+i) -< phase{vi) (Equations 3 and 4 inTable 4.2).

This implies that as we traverse the cycle phase(vn) •< phase(vn-\) ♦ •-phased) < phase(v\),
irrespective of the nature of the constraint. Since the relation -< (Chapter 2, Equation 2.1) is
transitive, we conclude phase(vn) -< phase(vi). But there is an edge from t>„ to ui, implying

phase(vi) -< phase(yn). Also recall from definition that •< is anti-reflexive, thus yielding a

contradiction to the assumption.

The smallest value for the sum ofcoefficientsof c in any cycle is 1. The largestvalue a,,-

can have for an edge is (|V| max {DUlU2}). A cycle can have atmost2/ edges. So for aclock

period II > 2l\V\ max {DUIU2} there will be no negative cycles inthe graph Gp. Now carry out
ui—»u2€JS

the Bellman-Ford iteration for c = II. Since there areno negative cycles, we are guaranteed that

the algorithm will converge to a validsolution. •

Note that we never have to compute n, only justify the existence of II that depends on the delays

of the gates in the circuit.

Lemma 4.4.4 The complexity ofbinary search is0((\V\l2 + /3)logII) ~ 0(|V|/2log \V\)

Proof The first term (0(\V\l2)) is the complexity of selecting the minimum value of the right

hand side kj{ for agiven clock period jr. The second term (0(/3)) is due to the Bellman-Ford
iteration in Theorem 4.4.1. If we normalize all numbers by max DU1U2, then for |V| > / we

getlogn = log(2/|F|) - 0(log|V|). Hence 0((\V\l2 + /3)logII) - 0(\V\l2log\V\). m
A minimum duty cycle constraint will cause the coefficient for c (in the < inequality) to

be negative, i.e. (-m). Theorem 4.4.3 excludes the presence of such constraints. Consequently

the bound in Lemma 4.4.4 does not hold in the presence of minimum phase separation constraints.

In fact, the addition of these constraints may render the problem infeasible. Intuitively, a long path

may force the clock period c to be of at leastvalue tt\\ this forces the on-time of a phase to be at

least mwi, and a short path may cause a violation.

We are guaranteed that thebinary search will workonlyif there is no cycle for which the

sum ofthe coefficients ofcis negative. A simple case iswhen m e [0, jjzt)- T^ next section will
present a generalized algorithm whichwillhandle arbitrary duty cycle constraints.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 70

4.4.2 A general algorithm

This algorithm is motivated by a technique used in linear programming which adds a
constraint to the active set only when needed. We take advantage of the special structure of the
constraints to find afeasible solution for agiven clock period, ifone exists. The general problem
(denoted by GP) is of the form

GP: min(c)

such that xi - Xj < minfc=1,...iN(a^ +bfc)

ij> <c.

The variables a*, and &),. are real numbers. We construct aconstraint graph. Gp(Vpi Ep) as
described inTheorem 4.4.1. The general algorithm isgiven inProcedure 4.4.1.

Procedure 4.4.1

c = clock period

i/> = lower bound on c

Gp(Vpi Ep) = constraint graph

co = ij>

k = 0

• while (TRUE) {

1. c = ck

flag = check.constraints(Gpt c)

2. if(flag == ALL POSITIVE CYCLES) return TRUE (c isthe optimum clock period)

3. if(flag == NEGATIVE CYCLE)

k —k + 1, cjt = newJowerJbound

4. if(flag == INFEASIBLE) return FALSE (problem is infeasible)

}

The routine check.constraints() for a given clock period can return one of three values:

1. ALL POSITIVE CYCLES: The set of constraints for the current clock period is feasible.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 71

Figure4.1: Graphical interpretation of the cycle weights

2. NEGATIVE CYCLE: The set of constraints for the current clock period is infeasible because

atleastonenegative cycleexistsin Gp. If anegative cycleis found, the routine also computes

the value for the clock period in the next iteration.

3. INFEASIBLE: The problem is infeasible.

The search starts atthe lower bound of theclock period. The routine check-constraints()

evaluates the dominating constraint for each edge in Ep i.e. it computes min*=if...Ar(a£- +b^c)
and sets it as the edge weight Floyd-Warshall [32] is used to detect the shortest path from xp to
xqt keeping track of the sumof the6t/s for theshortest path. During the Floyd-Warshall iterations,

we keep track of the diagonal entries of the Floyd-Warshall matrix. As soon as one of these entries

becomes negative, we analyze all the cycles detected so far for each vertex. Let Wg denote the

minimum weight of a cycle if one exists from x,- to xt- at this time. Let Bu denote the sum of the

bij's for thesame cycle. There arise four cases as shown in Figure 4.1.

1. W* <0and Ba >0: Feasible clock periods must be greater than orequal to cfc+^^. =Cjfe+1
(= newJowerJ?ound)(cycleC\ in figure).

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 72

2. Wfi < 0 andBu < 0: The problem is infeasible because, foreveryclock period greater than

c this cycle will have a negative value (cycle C2 in figure).

3. W?{ > 0 and Bu > 0: c is possibly feasible if W£ > 0 holds for all vertices 3 and the
Floyd-Warshall algorithm terminates with no negative cycles (cycle C3 in figure).

4. W^ >0and Bu < 0: Feasible clock periods must be less than or equal to Ck +^gr = cu
(cycle C4 in figure).

Note that the clock period being tested (c) is monotonically increasing. If we encounter a vertex i

satisfying case 1, then we get a lower bound on the clock period. If vertex i satisfies case 2 then

the problem is infeasible. Cases 3 and 4 do not give us any information regarding infeasibility

because we areexamining just one of the cycles in the graph (possibly priorto termination of the

Floyd-Warshall iterations). The last casegives an upperbound on the clock period, which can be

used to detect infeasibilityearly. The ensuinglemmas provideinsight into the problem.

Lemma 4.4.5 The number ofcycles isoforder 0((N + l)'£pl)

Proof Consider the different possibilities that anedgecan partake in acycle. Each edgeis

1. not in the cycle,

2. or is in the cycle with one of the N possible weights on it;

N + 1choices inall. Thus wehave 0((N + 1)Iep') cycles. •

For theoptimal clocking problem, |Vp\ = 2/ + 1, \EP\ < 2/(2/ + 1), N < \V\ - 1; thusthenumber

of cycles is 0(|V|4'2+2/). For the rest of the section we use the notation £c a£ to represent the
sum ofthe a;/s along acycle C € Gp,obtained from somevalue of k foreachedgealong C. Note

that each edge can have adifferent value of k\ 1 < k < N. Similarly, J2c bij represents the sum of
the&,-j'sforacycle.

Lemma 4.4.6 Iffor any c(> $) there is a negative cycle through vertex i, such that Wf{ < 0, and

Bu < 0 (forthat cycle), thenfor all cf > c, there is a negative cycle through i.

Proof Let us denote the negative cycle through i at clock period c as C_. Let k be the dominating

constraint for each edge i -*• j in C_ at clock period c(i.e. a^ +6^-c = min (afj +&£c)). Then

min (0& +6&0 < <•+&?/

CHAPTER 4. CLOCK. SCHEDULE OPTIMIZATION 73

£(.™n (4.+t?,c')) < E(4+6k)

< E(4+*&c)+*&(^-«).£ i t£ -\ • ut; (J

cl
< Wfi + Bu(c'-c)

< 0

Thus the weight of C_ for a clock period d is negative. •

Lemma 4.4.7 Ifthe problem GP is infeasible then 3 a cycle C inGp, such that

!• 12c(Pij) isstrictly negative, or

2. Zc(^j)<OandZc(^j) = 0.

Proof Bycontradiction. Suppose the above conditiondoes not hold i.e., for all cycles ifYlc(a*) <
0, then J2c(bij) > 0, else Ec(bij) > 0. Then for asufficiently large c, it is possible to make all
cycles in the graph have stricdy positive weight and a feasible solution to P can be found using
Theorem 4.4.1. a

Theorem 4.4.8 The algorithm in Procedure 4.4.1 is complete, i.e. itfinds an optimum solution if
one exists, else it reports the problem as infeasible.

Proof The proof isgiven graphically. We break the proof into two parts; in the first part we prove

that the algorithm converges to asolution ina finite number of iterations, second weprove that the
clock period is optimum.

Let ck denote the value of the c in the Arth iteration, k > 0, cq = ip. The proof relies
on the fact that the number of cycles in the constraint graph is finite, though exponential in the

numberofconstraints (see Lemma 4.4.5). Without loss of generality, assume that there are negative

cycles (Co, Ci, •••Ck) in the constraint graph for clock periods co, clt •••,ck. Note that cycle Cp
is negative for all values of c e [cp, cp+l). When the algorithm reports the existence of anegative

cycle initeration fc, iteither gives avalue for cjk+i inthe next iteration, orreports the problem to be

infeasible. The proof for infeasibility isprovided byaset of cycles such that the minimum weight
of these cycles forall c > ipis strictlynegative.

To show that the clock period reported initeration n(ifthe problem is feasible) is optimum,
we note that for all c € [ip, c*), we have aproofofinfeasibility, namely aset ofnegative cycles. For
c = cfc, there are no negative cycles, hence there isasolution tothe x.'s from Theorem 2. Intuitively

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION

Cycle
Weights

0,

,V

Feasible region

Optimal value of c

74

Figure 4.2: Graphical interpretation of optimality

the feasible region is the interval defined by the cycles determining the new upper and lower bounds

on c (G and C2 in Figure 4.2). •

Corollary 4.4.9 Procedure 4.4.1 has acomplexity ofO((l2\V\4l2+2t+l)

Proof In each iteration there are two steps.

• Evaluating the dominating constraint of each edge (complexity 0(|jE7p|At) ~ 0(\V\l2)).

• Floyd-Warshall onthe resulting graph requires 0(/3) time.

Assuming |V| > /.the first process dominates the computation. In the worst case we examine

every cycle in Gp leading to a complexity of 0(\Ep\N(N + 1)'ep') ~ 0((/2|V|4/2+2/+1) (see
Lemma 3.2.9). •

So for circuits with fixed number of phases, the complexity is polynomial in the size of the circuit.

The value of TV* (/^ u in Equation 4.8)reflects thedepth of cyclestealing along paths in thecircuit.

For most circuits, N < |V\ (typically N ~ 5), leading to a fast algorithm for the linear program.

Megiddo [44] presents an interesting approach to solve a similar problem. Note that we permit

only those external constraints that can be put in the form required by GP. For example constraints

of the form e,- - st- = ej - sj, for all i ^ j, i, j € {1, •••/}, cannot be expressed in the required

manner. This constrains all phases to have active intervals of identical duration. Such constraints

may require using a general linear program for the optimal clock schedule computation.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION

Edge weights
(D, d, K)

4.5 Results

. 55, 5, 0 A
T 1(S) >/c\

Figure 4.3: Latch graph for video coder

75

Let us focus on the implications of the theoretical results obtained so far. In this section,

we will discuss an example from[82] in detail and present the results of an implementation"the

benchmarks described in Chapter 3 (Section 3.4.1).

4.5.1 An example

Consider the video coder circuitdescribed in Section 2.3.4. The latch graph for the circuit

is shown in Rgure 4.3. There are two cycles in the latch graph, which yield the following lower

bound on the clock period;

Z65+55 15 + 40\
ip = max — r-,-r——)

V 1+0 ' 0+1 /
= 120.

Let us first enumerate the long path constraints(for all cycle disjoint paths):

e2 —*i > 55 path a —* c

> 55 path 6 -*• c

> 15 path 6 -• d

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 76

> 15 pathft-*/

> 135 - c path a-> c-*b-> d

> 135 - c path a -* c -• 6 -• /

e\ —s\ > 120 - c path a-»c-+6

> 85 —c patha—*c—*e

> 85 —c pathb-* c—> e

> 45 - c path b-* d-+ e

> 165 - 2c path a -» c —• 6 —• d -• e

«i —S2 > 65 —c path c -+ 6

> 40 - c path / -+ b

> 30-c pathd-»e

> 30 - c path c -* e

> 110-2c pathc-*6-x*-> e

e2 - <S2 > 80 - c path c —• 6 -* d

> 80 - c path c -+ 6 -»• /.

Quite clearly some paths dominate others, e.g. path o-+c provides a bound (55) on the right hand

side to the difference t2 —s\ that exceeds the bound provided by 6 —• d (15). Eliminating such

dominant constraints we get

€2 —^1 > 55 path a —*• c

> 55 path b -• c

> 135 - c path o-*c->6->d

> 135 - c path a —• c —• 6 -* f

e\ —si > 120 - c path a —• c -* b

> 165-2c path a -*• c —»• b —• d -* e

€i-52 > 65 - c path c -* b

> 110-2c pathc^>b-+ d-> e

e2 - 52 > 80 - c path c -*• b -+ d

> 80-c path c-•&-•/.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 77

Together with the constraint c > ip = 120, we are able to eliminate some more constraints, e.g.

c > 120 =>• 135 - c < 15 for all feasible c. Hence path a -*• c, which provides a bound of 55

dominates o-»c-»6-k/ which gives a bound that has value no greater than 15. Keeping only

the paths (a path when several provide the same bound) that dominate, the long path constraints are

«2 - 51 > 55

ei - 5l > 120 - c

ci —52 > 65 —c

€2-52 > 80 - C.

The short path constraints are defined for each edge in the graph. They are

€2 —5i < 5 + c paths a-* c, b —k/, b —>/, b —> c

€i—52 < 0 paths c —• e, d—*e, f -> b

< 5 path c -» 6.

The dominating paths are

€2~5l < 5 + c

€l~52 < 0.

In addition let us assume that the minimum pulse width requirement on each clock phase is 20 units;

yielding

ei > 5i + 20

e2 > 52 + 20.

Furthermore, the designer requires that at least 60 units of time elapse after the fall of phase 1 and

before the fall of phase 2. This gives

e2 > ex + 60.

The model constraints require

ei, 5i ,52 >0.

Consider the procedure described in Section 4.4.1 (the simple algorithm). The constraint

graph is shownin Figure4.4. Figure4.5 showsthe constraintgraph with edge-weightsevaluated at

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 78

Figure 4.4: Constraint graph for video coder

Figure 4.5: Constraint graph withedge weightsevaluated at c = 120

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 79

L_
i i i i i i i i •+- time

50 100

Figure 4.6: Clocking scheme for video coder

c = ip= 120. Note that an edge can have more than one weight, in particular edge e\ -+ 5i inthe

figure has 2 weights — the minimum weight is used for the shortest path algorithm. Initializing

the zero vertex to 0 potential, theshortest path algorithm yields asolution (see Figure 4.6)

5i = 40

ei = 60

52 = 100

e2 = 120.

To portray the complication caused by minimum duty cycle constraints, let us enforce a

minimum active intervalwidth for each phase to be 0.6c. The constraints to do so are

5i - ei < -0.6c

52 - €2 < -0.6c.

Now consider the following set of constraints

5i —ci < —0.6c minimum duty cycle for phase 1

52 —€2 < —0.6c minimum duty cycle for phase2

€2-5i < 5 + c short path constraint for edge a -*• c

€1-52 < 0 short pathconstraint for edge c-+e.

Summing up, we get 0 < 5 - 0.2c; in other words c < 25. This is inconsistent with the lower

bound ip. To see how the general algorithm (presented in Section 4.4.2) would detect this, consider

theconstraint graph modified to include theminimum duty cycle in Figure 4.7. A negative cycle is

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 80

40 ^ ^ 100

Figure 4.7: Constraint graph for video coder with negative cycle

encircled in bolddashes; its weightis (-72 + 125 - 72 + 0) = -19. The sum of the 6tJ's is -0.2.

Thus we have encountered the case where Wf{ < 0 and Bu < 0 (see Section 4.4.2, Para. 3).

4.5.2 Experiments

The construction of the benchmark circuits is outlined in Chapter 3 (Section 3.4.1). The

results of the optimal clocking algorithms on the benchmarks arecomputed using two delay models.

The first set of experiments is done using the unit delay fanout model (Table 4.3). Column 2 gives

the time taken for reading the circuit and setting up the data structures. The lower bound on the

clock period (ip) and the time required for its computation (together with constraint generation)

form the contents ofcolumns 3 and 4. The optimum clock period is given in column 5 and the time

taken for minimizing the linear program are shown in column 6 (using the simplified algorithm

in Section 4.4.1) and column 7 (using the general algorithm in Section 4.4.2). The last column

gives the total time taken by the implementation described by Szymanski [69], using a unit delay

model. The first entry in the column is the time taken to process the circuit and the second entry

reports the time for computing ip, extracting the constraints and the best lime required for solving

the resulting linear program (amongst 3 linear program solvers). Szymanski[69] reports that no

one linear program solver (of the 3) was uniformly the fastest; and that for occasional instances

there was a factor of five between the best and worst linear program solvers. The circuits used

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 81

by Szymanski differ slightly (in terms of latch and gate count) since we choose to eliminate some

redundantlatchesusing a sequentialoptimizer.These resultsare for animplementation on a Silicon

Graphics 4D/440 machine using a single processor(the specmark rating for the 4D/440 is 31.5 and

for the DEC5000/125 is around 17). A "-" indicates that the results are not available.

name read-in tf time optimal
clock

time time

Szymanski [69](sec.) (sec.) Al (sec.) A2 (sec.)
2planet 1.29 56.00 0.01 56.00 0.01 0.01 -

2sl423 4.19 129.40 0.42 129.40 0.13 0.14 -

2s5378 5.25 32.60 0.51 32.60 0.12 0.14 -

2s9234 9.87 55.20 1.30 55.20 0.25 0.30 -

2sl3207 14.31 54.60 1.94 54.60 0.61 0.65 _

2s38584 115.96 861.80 15.47 861.80 2.81 2.9 15.5 + 6.0

2S38417 148.90 240.40 24.27 240.40 5.80 5.93 8.6 + 4.1

2s35932 72.64 641.80 1.00 641.80 0.65 0.68 -

Table 4.3: Optimal clock computationwith unit delay fanoutmodel

Al - simple algorithm

A2 - general algorithm

The second set of experiments uses the linear delay model prescribed by an industrial

library (Table 4.4). The library has realistic gate delays and set-up hold times for the memory

elements. The run times are similar to the results in Table 4.3. The duty cycle of each phase was

constrained to lie between 0.3 and 0.5. Note that entries of column 2 includes the time taken to bind

the circuit to the library.

The optimum clock period achieves the lower bound in all cases with the unit fanout

delay model; whereas under the library delay model, there is a gap between the lower bound and

the optimum clock period. The Floyd-Warshall skeleton (in column A2) detects a negative cycle

early, if one exists. Consequendy the iterations arc never completed for lower (i.e. infeasible)

clock periods. As a side-note, the implementation to compute the lower bound ip makes use of a

cycle-detection heuristic proposed by Szymanski[71]. The detailed procedure to compute ip may

be found in [69]. Briefly, a guess ip' for the value of ip is made and each edge in the latch graph

is assigned a weight Z>,j - Kijip'. A positive cycle in the latch graph implies that the guess was

an under-estimate for the bound. If all cycles are negative, the guess over-estimated the bound. A

binary search will yield the value of ip, whose accuracy is controlled by the number of searches,

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION

name read-in * time optimal
clock

time

(sec.) (sec.) Al (sec.) A2 (sec.)

2planet 12.99 32.67 0.03 35.77 0.01 0.01

2sl423 16.75 53.24 0.48 60.34 0.17 0.15

2s5378 32.04 19.21 0.75 27.86 0.20 0.17

2s9234 48.28 28.24 1.51 31.71 0.31 0.25

2sl3207 64.15 29.26 0.22 34.74 0.77 0.67

2s38584 3672.93 210.76 16.23 218.41 3.29 3.21

2s38417 1014.82 97.78 2.25 97.79 6.11 5.93

2s35932 650.39 132.92 16.28 140.01 0.84 0.79

82

Table 4.4: Optimal clock computation with library delay model

that we arewilling to undertake. If the value of ip'is much largerthan ip, the longest path algorithm

converges rapidly. At each iteration for the longest path, a priority queue is used to keep track of

vertices that were affected in the previous iteration. A priority queue gives an improvement of a

factorof 2 over the naive implementation. The problem arises when ip* is smaller that ip\ the failure

to converge implies a positive cycle and this will require all iterations to be performed. Instead a

predecessor pointer is maintained at every vertex, i.e. a parent of the vertex which caused an update

of the vertex potential. By repeated traversal of the predecessor pointers, it is possible to detect

a positive cycle cheaply. This heuristic alone yielded a speed-up of an order of magnitude on the

large examples.

4.6 Discussion

So farthe discussionhasignoredthe effect ofclock skew on the clock schedule optimiza

tion problem. To incorporate clock skew, recall that the maximum (minimum) delay along a skew

path Pi to latch t is given by Ejtep, #£' (EkePi *£*) The clocking constraints translate as-

1. long path constraints

(a) Vp: ii ^* t.

e*(.,) +(E ^f') >««« +(E Bk') +(EPh-+1 - HTL+ic) +S. (4.18)
9-1

*=1

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 83

(b) V cycles C : t'i -* iq+l
J2k=i ^kk+i
Ejk=i Kkk+i

2. shortpath constraintsVp: t*i -*•t*2

c*Z!r Jc (4.19)

.Pi.
««*) +(£ V) +H< s^x) +(Y, V)+4m) +(1 " Khh)c (4.20)

*eP,2 jtePi,

These constraints canbe put in the form described by GP.

This Chapter has focussed on computing the optimal clock schedule. Its fundamental

contribution is the unraveling of the structure underlying the linear programming formulation of

the problem. This enables us to develop an algorithm which is insensitive to the problem instance,

e.g. we do not experience thenon-uniform run timesas reported by Szymanski. The mathematical

relation between the complexity of solving the linear program and the size of circuit evolves as

an artifact of understanding the problem structure. As we shall see (in the next Chapter), this

also provides an insight intoa technique to optimize a special class of sequential circuits (called

pipelines) for high performance.

Several discussions with Szymanski on the clock schedule verification problem led to

an exposure to the optimal clocking problem; in particular ourcuriosity was aroused by the non-

convexity of theoriginal model proposed by Sakallah etal. [55]. Wechose theeffort by Szymanski

[72] that provides thelinear programming formulation (whose merits have beensummarized earlier),

as the basis for ourapproach. By a curious co-incidence, a paper by Megiddo[44] triggered some

ideas that led to exploring the structure of the linear program for the optimal clock schedule

computation problem. Ishii et al. had reached similar conclusions for two-phase level-clocked

circuits [25] independentiy. In contrast, our approach does not restrict the circuits to have a two-

phase clocking methodology withonly AHLSLs. In addition, we permit user defined duty cycle

constraints and clock event separation constraints to be introduced in the formulation.

84

Chapter 5

Resynthesis of Multi-Phase Pipelines

The thesis has so far focused on analyzing a synchronous sequential circuit Techniques of

analysis are limited to drawing a designer's attention to potential violations ofcircuit specifications.

The next logical question that begs to be answered is, whether synthesis techniques can be used to

correct the design to meet specifications. A consequence of designing in the sequential domain is

that constraints on clock period, duty cycle, and clock event separation specified by the user need to

be satisfied. We call them external timing constraints; in contrast to the clocking constraints which

arise from the circuit.

5.1 Overview

The external timing constraints translateto aset ofperformance constraints on one or more

"pieces" of combinational logic. For circuits with singlephase edge-triggered memory elements, it

hasbeenshownby Maliketal. [38] thatthepipeline performance optimizationproblemis equivalent

to acombinational performance problem; namely, the first problem has a solutionif andonly if the

second problem has a solution. Bartlett et al. [2] propose an approach based on approximating

level-sensitive latches by edgetriggered flip-flops. This algorithm canhandle arbitrary multi-phase

circuits. A slack based algorithm is used todirect resynthesis and logic movement across memory

elements repeatedly to find the bestclock period atwhich the circuit canoperate. The slackbased

approach algorithm is myopicin itsoptimization. Toovercome this,simulated annealing is used to

direct the optimization. However this may result inmuch larger circuits than necessary, especially
when a target clock period is given.

Ourapproach differs from [2] in several ways.

CHAPTER 5. RESYNTHESIS OFMULTI-PHASE PIPELINES 85

1. We focus on the problem ofsatisfying atarget clock period.

2. Only combinational regions are optimized, with no movement of logic across memory ele
ments.

3. Flip-flops and latches are handled without anyapproximations.

4. We restrict the algorithm to acyclic pipeline circuits.

Section 5.2 provides some definitions that are specific to pipelines. In Section 5.3, we

examine necessary and sufficient conditions for acircuit to operate at aspecified clock period. An
underlying theme ofthis research isto provide ameans ofdirecting traditional combinational delay
optimizers toachieve the required performance. This isalso termed combinational resynthesis since

the circuit structure is changed without affecting the functionality. The effects of combinational

resynthesis are studied in Section 5.4. Inorder to provide maximum flexibility for acombinational

delay optimizer, steps arc taken to obtain a minimum "perturbation" solution. This forms the,
contents of Section 5.5. We demonstrate how cycle stealing may be achieved in Section5.6. The

results of ourdiscussion are presented in Section 5.7; the proposed algorithm is demonstrated on

two simple examples in Section 5.7.1, and theimplementation details are given in Section 5.7.2.

5.2 Definitions

We characterize agate inourcircuit with delays from an input pin toan output pin. This is

a fixed delay model (see Section 2.1.1 for details). A multi-phase pipeline (P) consists of n stages

of combinational logic separated by latches (see Figurc 5.1). Each stage of combinational block

has inputs from theprevious stage (i.e. from thelatches) and perhaps some inputs from theexternal

world (called primary inputs). Ithas outputs feeding thenextstage and outputs to theexternal world

(called primary outputs). To simplify thediscussion wemake the following restrictions:

1. Stage Si has primary inputs throughlatches.

2. Stage 5„ provides primary outputs from latches.

3. All other stages to have no primary inputs/outputs. The extension to handle primary in

puts/outputs at intermediatestages is straightforward.

The wth stage denoted by Su has its inputs latched by abank oflatches denoted by uand its outputs
latched by a bankof latches denoted by u + 1. The delay of each stage Su is characterized by two

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 86

Figure 5.1: Multi-phase pipeline circuit

parameters, the longest delay CDuu+i is themaximum sum of gate delays along a path from an

input of stage u to an output of stage u)and theshortest delay (dttu+i is theminimum sumof gate

delays along a path from an input of stage u to an output of stage u) from an inputto anoutput.

We assume animplicit map IM : {1,2, •••, n} -> {1,2, •••/} whichmapsaninputof stage Sk to

the phase that the input is latched. Similarly OM : {1,2, •••, n} -• {1,2, •••/} maps theoutput

of stage Sk to the phase that the outputis latched. All inputs(outputs) of a stage are latched on the

same phase. Also note OM(k) = IM(k +1).

The pipeline resynthesis problem for a targetclock periodcan be stated as:

Given a pipeline P with n stages,using a clocking scheme with Iphases,find an imple

mentation that meets a given clock period constraint c.

The problem implicidy expects the rise and fall times for the phases to be determined consistent

with the clocking constraintsand the externaltiming constraints.

5.3 Theoretical results

We are interested in necessary and sufficient conditions for correct clocking ofan arbitrary

multi-phase circuit. The topological structure of a circuit and the distribution of delays within it

give rise to the clocking constraints. A more detailed discussion on these constraints can be found

in Chapter 4 (Section 4.2). The clocking constraints may be classified into two categories.

1. Long path constraints: Let p: u\ ** uq be a path with distinctlatches u\, •• -uq on it. Then
9-1

we require e^Uq) - s^Ul) >^(Aifcufc+, - KUkuk+xc) +S. These are also called the set-up
k=\

constraints.

2. Short pathconstraints: Foreverypathp: u\ —• U2, with latchesu\, U2 andonly combinational

elements inbetween, werequire e^U2) - s^ui) < dulU2 + (1 - A'ui„2)c - H. These are also

called the hold constraints.

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 87

The set ofconstraints can be put in the form (see Section 4.4)

" " xj - xi < -atji + fijic

Xi - xj < -yji + Sjic

0<Xi<c

ip < xo(= e/) = c.

These constraints can be represented as a constraint graph, which leads to an efficient algorithm

to computethe optimumclock period (c), given values to ctji, fa, jji and $,-,-. In this chapter we

focus on the dual problem. We are given a target value of c; the problem is to determine bounds on

a's (note that a bound on the a's relates to bounds on D's and d's) for which the inequalities have

a solution. There is an implicit constraint hiddenin this formulation, namely Dkk+i > dkk+i.

Let us make the following assumptions for ease of presentation:

1. The longest path from an input of stage 5t- to an output of stage Sj-\, j > i, has a delay'
i-i

fc=t'

2. All gates have identical rise and fall times.

3. The clock skew is negligible andallmemory elements have identical set-up and identicalhold

times.

4. The shortest path from an input of stage to an output of the same stage (say Sk) is larger

than the hold time II, i.e. dkk+i > H. This is true because the hold time for most of the

latches in present day technology is 0. Arguably, even if the hold time is a finite value, the

combinational regions in most designs have short paths that satisfy this constraint.

5. The target clock period is greaterthan S + H.

The first assumption will be relaxed in section 5.6. The extension to include clock skew and different

set-up/hold times is easy and will not be detailed.

We now present a graph structure that combines the circuit structure and the clock events.

Recall that the latch graph G (Section 2.3.2) represents the paths between latches in a circuit. The

constraint graph Gp (Section4.4.2)captures the relevant constraints betweenclock eventsthatarise

from the latch graph. To compute bounds on path delays, a graph that has properties of both— the

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 88

latch graph and the constraint graph, is needed. The construction of this graph, denoted by Q, is

now outlined.

The graph Qis a finite, edge-weighted, directedmulti-graphQ— (V,E). For everyphase

i, there are two vertices s», c» € V. Henceforth, whenever we say "add an edge of weight w from

u to v ", we mean the following: if no edge exists from u to v create an edge with weight w, if

such an edge exists, append w to the list of weights on the edge. An edge weight can be either a

constantor a linear function of theclockperiod c. Stage Sk is split into two verticesO(k) and I(k)

and an edge from the former to the latter (called a long path edge) with weight -Dkk+i + Kkk+i c,

is added. There is an edge from e^oM(k)) to 0(k) with weight -5 and an edge from I(k) to

s<f>(iM(k)) withweight 0. Place an edge (called a short path edge) from s^IM^ to e^0M^k))
withweightdjtjt+i -# + (1 - A'h-+i)c In addition placeedgesof 0 weightfrom7(fc+l) to O(k)

(k = 1, • • •, n - 1). To force the rise and fall times to be consistent with the clocking scheme, we

construct a zero vertex (z). An edge from z to e\ (with weight c) and an edge from e/ to z (with

weight -c) arc added. Also edges from s,(i = 1, •••/ - 1) and e,-(t = 1.••-,/—1) to 2; (with

weight 0) are added. Edges from et- to s,- (t = 1, •••, /) and from ef+i to e,- (*= 1,•••,/- 1) with

weight 0 areadded. Aportion of the graph for the fcth stage is shown in Figure 5.2.

Theorem 53.1 Thespecifiedclockperiod c isfeasible ifand only ifthere is no negativecycle in Q.

Proof The proof is similar to the proof of Theorem 4.4.1. The weight of an edge is defined as the

minimum of its list of weights evaluated at c.

1. •«=) The if part relics on the manner in which Q was constructed. Each path from e,(or

si) to sj(ot ej) represents a separation constraint. If there are no negative cycles, then the

Bellman-Fordshortest path algorithm (with z initialized to 0), is guaranteed to converge to a

solution. The values assignedby the Bellman-Ford algorithm to the e,'s and Vs will yield a

solution for the clocking scheme.

2. =>) Conversely, if there is a negative cycle (of weight -HO in Q, say through vertex i. This

implies wehave aconstraint oftheform 0 < -W, implyinganinconsistentsetof inequalities.

•

The condition for the non-existence ofnegative cycles leads toasetoflinear inequalities

between the D's, d's and c. In fact this is equivalent to eliminating the z.-'s (i.e. e,-, 5,) from the

system of inequalities that need tobe satisfied for correct clocking. Define a cycle tobea relevant

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES

D12d12

IM(k)

from e: and s:

/ D.. «d.. « \ D 4 d/ kk+1 kk+1 \ nn+1 nn+1

Q

dkk+i-H +(1-Kkk+i)c

toe i

Zero vertex

9,*M

OM(n)

6< 6<
ji+i

Figure 5.2: Graph construction

89

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 90

if its weight can be negative. An edge is called a candidate if it has a negative weight in its list of

weights. Every relevant cycle must contain at least one candidate edge. Note that a shortpath edge

cannever be a candidate edge1.

Lemma 5.3.2 For an n stage pipeline, there are 0(n2) relevant cycles.

Proof The key to counting the number of cycles is realizing that there are two kinds of candidate

edges ; from 0(u) to I(u) and from e^u) to 0(u). But any path containing a latter edge must

pass through one or more edges of the former type. Since there is a zero weight path from I(v) to

0(v - 1), allnegativecycles must contain a path from 0(u) to I(v) (u > v). Since we canchoose

u, v in n(n+l) ways there are 0(n2) cycles that need to be considered. •

5.4 Resynthesis

To understand the implications of resynthesis on regions of the pipeline, we model the

algorithm for combinational delay optimization as follows. Let 1Z denote the abstract algorithm

which operates as follows.

1. 1Z takes as input, a piece of combinational logic C, with arrival times specifiedat the inputs

and required times specified at the outputs. The slack at each output is the difference between

the required and the arrival time. If the slack is positive for all outputs then C satisfies the

performance constraint. If the slack is negative for an output then it is a critical output.

2. The output of 71, denoted by 11(C), is a combinational circuit, logicallyequivalent to C. 11

will never cause an output with positive slack in C to have a negative slack in 1Z(C), i.e. it

does a careful restructuring to guarantee that non-critical paths do not become critical.

Assuming equal rise and fall times for gates in the library, we seek to understand the

effect of H on long and short paths of a combinational region. Let D and d be the long and short

paths in C. We denote the long and short paths after resynthesis by primes (refer to Figure 5.3).

The algorithm 1Z ensures that D' < D. If d! > d, there is no cause for concern because all the

short path lengths appear as positive weights in Q, soincreasing d can onlyhelpeliminate negative

cycles. On the other hand if d' < d, we could possibly be introducing negative cycles. We make the

assumption that delay insertion (by discrete amounts) is permitted so that the shortest path inC(C)

'Assumption 4 in section 53

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES

pad delay of (d - d")
to short path.

logic affecting late output

logic affecting early output

logic affecting early output
and late output

Figure 5.3: Effect of combinational optimization on long/short paths

91

is just greater than d. The problem of delay insertion to satisfy lower bounds on paths is the topic

of concern in Chapter 6. However, this requires d < D1to be consistent with our model. Note that

this requirement only simplifies the discussion, i.e. we assume that the d for each stage is fixed to

the value of the current implementation. We need to append the above constraint (D'kk+l > dkk+l

for each stage Sk) 2 to the setofconstraints that force all cycles in Qto have non-negative weight.

This implies that the target clock is never so small as to require speeding up short paths (if so we

must let the short path delays be variables).

We have the following set of constraints

1. those arising from cycles in Q, and

2. D'kk+l > dkk+U for k = 1, •••n.

This gives a polytope P in Rn, which lies in the positive orthant, and represents all feasible

delay assignments that meet the target period. The given design is represented by the point

p = (D[2, D22, •••5D'nn+\) (scc Figurc 5.4). If the design is feasible, then the point;; € P\ and

there is no resynthesis to be done. Since c > 5 + 77, we find that setting D'{i+l = du+\ is a

feasible solution. This is a consequence of the fact that the feasible region is a cone with its vertex

2We can choose to let d'kk+l be a variable rather than fix it to dkk+1, and add the constraint d'kk+l > 11. After
combinational optimization weneed to paddelays so that allshortpaths aregreater thand'kk +i and less than D'kk+l.

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES

d23

d]2

Level sets ol objective
function (B - Identity matrix).

Area Optimal leasblo design

Feasible Region for given c

D12

92

Figure 5.4: Feasible region and current design

at (rfn, ^23, • • •, dnn+i). Let us assume that there is an area penalty associated with each speedup,

which is directly proportional to the deviation from the current point /;.

This suggests the formulation of the problem as an optimization problem. Let D =

(jDi2,-- •, Dnn+i) be a vector of known delays of the n stages. Let D' = {D'u,- • ',D'nn+l) be the

vector of unknown target delays. We choose to find a D' which is a solution to

mm{D' -D)T(D' -D)

subject to D' € P

This is an example of constrained optimization with a positive definite (convex) objective function

over a convex region P. There are well known algorithms to solve this problem. We develop an

algorithm tailored for our problem in Appendix B. Note that we could have chosen some other

objective function like —

1.

min max \D'kk,x-Dkk+\)\

2.

n-\

}inp£i0**+i-£**+i i-min
D'eP

k=\

The reasons for choosing a quadraticobjective function are twofold; such an objective function is

easy to minimize and a uniqueoptimumis guaranteed if the problem is feasible. If wehad chosen to

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 93

let dkk+l *s be variables thenthey toomustbeentered in theobjective function in a manner similar

to the Din.,*.

5.5 The optimization problem

The optimization problem that we need to solve is of the form

QOPT: min(s - xq)1B(x - x0)

Ax<b.

The matrix B in the simplest form is the identity matrix. We may choose to weigh the combinational

resynthesis of each stage Sk with a positive factor 6*. In such a case B is a diagonal matrix with

[B]kk = 6jt- We point out that if the set P is feasible, then the problemhas a unique optimum.

Theorem 5.5.1 Any optimumsolutionto QOPT will have x% < x^for i —1, • • •, n.

Proof By contradiction. Assume that there exists an optimum solution such that for some i, that

x' > x{0, i.e. i?Jt+i > At+i- All constraints arising from the set of cycles in Qare of the form

Hs&C-(%+i) ^ wc-(c), where C_ isacycle inQthat could have negative weight, and wc-(c)
is a linear function of c with positive slope. Since Du+\ > du+\, decreasing -D£i+1 to A.+i will

decrease the objective function, while maintaining feasibility. •

Once the optimization problem has been solved, we have a:1 < xlQ or xl = xl0. We need

to rcsynthesize the the stages Si for which D'ii+l < Du+i- We set the arrival times at the inputs

to stage Si to be 0, and the required times at all the outputs to be D'ii+l. After combinational

resynthesis, we pad delays if there are any short path violations. We can have n such resynthesis

steps (one for each stage). The resynthesized regions are mutually disjoint.

The simplest choice for B is the identity matrix. However, we may choose to weigh

different stages of the pipeline depending on their resynthesis "potential". Wc define the potential

of a stage as a figure which represents the ease of resynthesizing a stage to meet an arbitrary target

delay. This number is computed as a heuristic function of the following.

1. The difference between the longest and shortest paths of the stage. For a stage with small

difference, resynthesis for a targetdelay of the stage may cause all outputs to be critical.

2. The size of the stage. If the stage has a large size then the resynthesis algorithm has a better

chance of identifying nodes on critical cuts [66].

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 94

/ Dkk*1d kk+1 \

iK5>irt-iK5HHr-<5)^
OM{k) ' \ n-1 TOM(n)

TolQforalJ _ /_
test than k with *" 1~

I

/«*) -°kk+1+Kkk*1c
o ' r^

woight-D^ +K-c /

FromOfl) forallJ
greater man k with
weight -0.. ♦ K.c

Figure5.5: Graph modified for cycle stealing

The actual function used to compute this figure will dependto a large extent on the algorithm used

for combinational resynthesis, and the factors that aid the particular algorithm. The resynthesis

algorithmin our implementation is the pathrestructuring approach presented in [66].

5.6 Cycle stealing

So far it was assumed that the longest path in the circuit from (an input of) stage Si to

(an outputof) stage Sj-\ 0' > 0. was the sum of the longestpaths in eachof the stages. This need

not be true, and in fact relaxing this assumption will permit resynthesis to take account of cycle

stealing across several latches. However, we mustbe willingto undertake acomplicated resynthesis

procedure. Let Dij denote the longest path from an input of stage Si to an output of stage Sj-\.

Let d^ denote the shortest path from an input of stage Si to an output of stage Sj-\. Note

i-i

^2<lkk+i < d^
k=i

The construction of the graph Qis modified as follows (Figurc 5.5). Note that the edges

from I(k) to 0(k - 1) are deleted. Instead of n variables previously, we now have n(w2+1^
variables. The objective function also changes appropriately, i.e., the vector x in QOPT is

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 95

(D[2, D[3, •••, Djk1 •••, D'nn+l), where j < k. We have additional constraints of the form

t= l,---,n

£>;, <A'fc +D'kj \ i+2<j<n+l (5.1)
i+l<k<j-l

The number of edges in the graph increasesbut the number ofcycles remains unchanged.

i-i

Lemma 5.6.1 D\j < ^D'kk+\>3 > *+ 1.
k=i

Proof By induction on j.

1. Base case: j = t + 2. Quite clearly Dji+2 < Z)Jt+1 -f D'i+u+2, from Equation 5.1.

p-1

2. Induction case: Assume the statement to be true for j = p, i.e. D'ip < ^ D'kk+\- Now from
k=i

Equation 5.1 we have

D'ip+i < ^P + ^P+i
p-1

=*£Ui < E^+i+^;P+i
k=i

=>t>iP+i < E^+i-
k=i

In order to guarantee that short path delays remain consistent after padding delays if any,

we need to add the constraints

D'ij>D'ik + dkj<
i= l,---,n

i + 2 < j < n + 1

i + 1 < k < j - 1

•%+i > du+i i = !,-••, n

(5.2)

(5.3)

The feasible region is a polytope in the positive orthant of the .DJ/s, but it isnolonger a cone, e.g.
consider the set of constraints—

dn = ^23 = 0.2

D'n > D[2 + 0.2,D[2 + 0.2

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 96

D\3 < D'l2 + D[3

^12^23 > 0.2

dis = 0.6

D[3 > 0.6.

If thelast2 constraints are ignored, wehave acone withthevertex at (D'X2 = 0.2, D^ = 0.2, D{3 =

0.4). In orderto make the feasibility checkeasier we expandthe feasible regionas follows. Let

3 _ J <**+! ifi = i + l{ *j-i£i=; <***+i otherwise

and replace the constraints in 5.2 by

D'ij > D'ik + dkj.

Note that d^ < d^, so we have enlarged the feasible region to be a cone, with its vertex defined by

the point (Jn,&>..., dnn+\). This serves the purpose as D'kk+l > dkk+i in the simplified model.
As before, we could choose to let d;/s be variables and add the constraints

d^ > (j-i)H

The resynthesis is now done for eachstagewith arrival and required times placed on its

inputs and outputs. The resynthesis is done in a "forward" manner, i.e. stage Sk is resynthesized

before stage Sjt+i. Let D"j denote thelongest path from an input of stage Si to an output of stage

Sj-i, after stage Sj-i (and all stages Si, i < j) has been resynthesized. We set the arrival times at

the inputs to stage Sk to

ax = 0 Vx e I(k) (5.5)

Assumethat stage Sk has a single output y. The extension to multiple outputs is easy and will be

shownat the end of this section. We shall specify a pair of required times foreachoutput; a hard

required time (rJ) and asoft (rj) required time. The latter is less than the former. If the circuit is
to operate correctly itmust meetthehard required time. However we would like thecurrent output

of stage Sk to attain thesoft required time, inorder to help the resynthesis of stages that follow it.

The required times at the output of stage k are set to

r£ = min(Z)^+1,min(^+1 -£>£.)) (5.6)
j'-i

^ = j>k+i{DV- £ Ttim(Du+uD'ii+l))) (5.7)

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 97

The hard required time is a function of

1. the maximum delay permitted through stage k (first term), and

2. the effect of the stages that have been resynthesized (second term)

The soft required time uses an asfast as possible heuristic to ease the resynthesis of future stages.

The required time to the delay optimizer is r*. The output of the optimizer is accepted if the hard

constraint ismet. For thelast stage Sn, rJisundefined, since there isno j > n+1 and consequentiy,

there areonly hard constraints. This guarantees the following after resynthesis:

1. From the first term for rj we get Dkk+1 < D'kk+l.

2. The second term in the required time constraint for rJ yields

*D?k+l < D'ik+l.

3. The intuitive reason for defining rj is nowexplained. This term distributes slacks overthe

regions that have not yet been resynthesized and hence is a heuristic.

j-\

Dik+i < (D'kj- J2 min(D«+1,JDj|.+1)), Vj > k+1
i=Jt+l

i-1

=*0Zfc+i+ £ min(A-,-+i,^i+i) < D'kj.
t=Jk+i

The term Du+i in the min constraint is the longest path in stage 5, for any path from an input of

stage Sk toanoutput of stage 5,-_i. If A-i+i < D'u+\ mentnis staSe *s notcritical for theconstraint

during the resynthesis of stage S*. We assume (optimistically) that resynthesis of stage Si will not

make it critical. Should it become critical later, the second term will reflect it. If .Djt+1 < A'i+i
then the first term during resynthesis of stage Si will guarantee that its final delay is lessthan I>Jt+1.

D'lj < D'tj.

We get the following proposition—

CHAPTERS. RESYNTHESIS OF MULTI-PHASE PIPELINES 98

rM(k) TOM(k)

Arrival times set to 0-~(S„W?^^ •£"•s WW*.back from
— ,.k+1and propagated forward

,.J(-1

i —•.(S ._ unrequired tlm
V k/^nTn-l,...k+
^—' from 1.2.J

Figure 5.6: kth resynthesis Region

Proposition 5.6.2 If the requiredtime constraints (Equation 5.6 and Equation5.7) are metfor all

stages, then Djy < Dkj and D"k+l < D'ik+l,forall k,j>k+l and i < k.

The resulting circuit (after resynthesis) will have a feasible clock period c. As a side

note, shouldthe combinational re-synthesis fail atanystage,say Sj, we can repeat the optimization

problem, giving the cost of resyndiesizing stage Sj a large weight. This ability to restart may be

used repeatedly to find a good final solution.

To extend the discussion above to stages with multiple outputs, we must take care to

ensure that D"k only includes the delay along paths from an inputof previous stages S; that reach

the outputof Sk in question. Similarly Du+i mustbe interpreted as the longest path in stage 5,

from the output of Sk to an outputof Sj-\.

5.7 Results

5.7.1 An example

Let us consideran exampleshownin Figure 5.7. Set-up and hold times are assumed to

be zero. Letx and y be bounds for stage 1 and stage 2 respectively. All un-weighted edges have

a weight of 0 by default. Let the target clock period be 3. Enumerating all cycles thatcould have

negative weight we obtain

x < 3

x + y < 6

y < 6

x < 4

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 99

stage 1 stage 2

K5HKSH

ZERO vertex

Figure 5.7: Pipeline example and associated graph

The constraint D'{ > d,- leads to

y < 4.

x > 1

y > 1.

The objective function ismin((s - 3)2 + (y - 4)2). This problem can be graphically solved (see
Figure5.8) to obtain a solution of x = 2.5, y = 3.5. If stage 1 has a cost which is twice the cost of

stage 2, the objective function gets modified to min(2(x - 3)2 + (y - A)2). The minimum of this

function if obtained at x = |, y = y.
To see the need forthe extendedmodel,considerthe pipelinewith multiple outputs(Lines

1 and 2) for each stage as shown in Figurc 5.9. We introduce a new variable z (longestdelay from

stage 1 to stage 2) and the constraint graph gets modified as shown in Figurc 5.9. Note that D23

has a value 4 if we are along Line 2 and value 2 if we are along Line 1. Though we need to use

the value of4 for the quadratic optimization, we must take care to use the correct value (of 2) when

we compute the required time at the output of Stage 1 in Line 1. If the current longest path from

stage 1 to stage 2 is 5 (instead of7, as in the simplified model), the constraints for a clock periodof

3 become,

x < 3

z < 6

CHAPTERS. RESYNTHESIS OFMULTI-PHASE PIPELINES 100

feasible region

y = 1

(a)

j (3,4) current design

x=1 x=3

\
\

(2.5,3.5) target point for resynthesis
2 2

formin(x-3) +(y-4)

(2.66,3.33) target point for resynthesis
2 2

formin2(x-3) + (y-4)

.M.
\

\

^ x +y =6

Figure 5.8: Graphical solution for example

Uriel

Line 2

•«r~i
3J I

-f-O-H
lO~Hff-CH4

1. 1 | 4.1 I

Figure 5.9: Example for extended model

ZERO
vertex

CHAPTERS. RESYNTHESIS OF MULTI-PHASE PIPELINES 101

y < 6

x < 4

y < 4

z—x—y < 0

x > 1

2/ > 1

z > x + l.

The objective function is min((x - 3)2 + (y - 4)2 + (z - 5)2). The optimum value is0 and the

solution point is (3,4,5), i.e. thecurrent design is feasible. Foracircuit with thelongest delay from

stage 1 to stage2 less thanthe sum of the longest individual stagedelays in the simplified model,

thetarget delays would have been unnecessarily computed. Letus usea target clock period of2.5;

the constraints become

x < 2.5

z < 5

y < 5

x < 3.5

y < 3.5

z —x —y < 0

x > 1

y > l

z > x + l.

The optimum value is attained at x = 2.5, y = 3.5, z = 5. The arrival and required times for die

stagesare shownin Table 5.1. So only the regions in Line 1 - Stage 1 and Line2 - Stage2 need to

be resynthesized. In addition theregions in Line 1- Stage 2 andLine2 - Stage 1canbeoptimized

for area since they can each be slowed by 0.5 units.

5.7.2 Experiments

The results ofthe resynthesis approach proposed in Section 5.6 are now described. Since

there are no pipeline benchmark circuits we designed a set of circuits described in Section 5.7.2.

CHAPTERS. RESYNTHESIS OF MULTI-PHASE PIPELINES

stage # Line input
arrival

output

required
1

2

1

2

1

2

0

0

0

0

min(2.5,5-2) = 2.5
min(2.5,5-3.5) = 1.5
min(3.5,5 - 2.5) = 25

min(3.5,5- 1) = 3.5

Table 5.1: Arrival and required times for resynthesis

102

The results of the experiments are summarized in Section 5.7.2

Benchmarks

All circuits use level-sensitive memory elements clocked using 2 phases. The outputs of

successive stages are clocked on alternate phases. The five pipeline circuits are

1. adder A 10 bit adder with 1 stage.

2. mcnc: This is a 2 stage cascade of 2 benchmarks from the MCNC suite of examples. The

first stage is alu2 and the second stage is cml38.

3. parity: Computes the parityof a 8 bit input, the parity of the even inputs and the parity of the

odd inputs. It has 2 stages.

4. addTi: Described later in this section.

5. population: Counts the number of ones in a 32 bit input using 4 stages.

The table below summarizes some results of the algorithm to the pipeline circuits described above.

The circuit is first decomposed into 2 input and/orgates. The unit delay fanout model is used. The

optimal clock forthesecircuits (column 2 inTable 5.2)iscomputed usingthe algorithms described

in Chapter 4.

Experiments

The implementation is studied from three differingviewpoints. The area of eachcircuit

is measured in termsof the numberof2 inputand and or gates and inverters.

CHAPTERS. RESYNTHESIS OF MULTI-PHASE PIPELINES 103

1. In the first set of experiments, we seek to examine the effectiveness of the algorithm for

area-clock periodtrade-off. InTable5.2 we resynthesisize each circuit forupto 4 targetclock

periods (in decreasing order), until the resynthesis algorithm is unable to produce a faster

clock. Options to the combinational resynthesis algorithm are set to the default settings.

Column 1 lists the examples. The optimum clock period to the initial circuit and the area of

the initial circuit formthe contentsofcolumn 2. Column 3 to 6 give the targetclock periodand

area for the corresponding circuit. A "-" means that the combinationalresynthesis algorithm

failed to produce any improvement for lower target clock periods with the default settings.

The table demonstrates that the area overhead can be controlledby specifying a targetclock

period. The only anomaly in the table is the circuitnamed parity (row 7), where setting a

faster target clock resulted in an area saving. We attribute this to the fact that decreasing

the target clock period increases the €critical network (see [66] for details) which allows the

optimizer to explore a large space for delay optimization.

name initial target

(clock/area) (clock/area)
adder 21.4/103 20/104 19/104 18/123 17/127
addTl 10.0/26 9/28 8/29 - -

addT2 12.1/89 11/95 10/101 9/101 -

addT3 21.3/226 20/238 - - -

addT4 26.2/511 25/551 24/563 22/569 -

mcnc 54.6/384 52/391 50/413 48/412 -

parity 16.0/39 15/54 14/45 - -

population 27.3/249 26/252 - - -

Table 5.2: Area-clock period trade-off

2. It is possibleto minimize theclock period by repeatedly decreasing the clock periodandusing

different options to the combinational resynthesis algorithm. These results are summarized

in Table 5.3. The target clock period given in column 3 is the best result after a few iterations.

Column 4 gives the resultsofusing the optimalclock algorithmon the resynthesized pipeline.

Columns 5 and 6 give the initial and final area. Column 7 gives the total time taken by the

procedure to compute the best clock period. The last column gives the number of memory

elements in the circuit. Forthe first 6 circuits the algorithm is able to take advantage of cycle

stealinganda substantial reduction in the clock period is observed fora small area penalty.

CHAPTERS. RESYNTHESIS OF MULTI-PHASE PIPELINES

name clock area time

(sec.)
latches

initial target final initial final
adder 21.4 15.3 15.2 103 135 6.0 45

addTl 10.0 12 7.2 26 29 1.1 10

addT2 12.1 %2 8.0 89 106 20.5 25

addT3 21.3 19.2 19.2 226 240 10.9 56

addT4 26.2 22.0 22.0 511 535 43.0 119

mcnc 54.6 47.7 47.6 384 412 12.8 24

parity 16.0 13 122 39 54 6.7 11

population 27.3 25.4 25.4 249 320 44.1 59

Table 5.3: Pipeline resynthesis for minimum clock period using unit fanout model

+

Figure 5.10: addT3- a 3 stage pipeline

104

3. The complexity of the quadratic program grows as the number of stages. Recall that the

number of variables and the number of constraints for a pipeline grow as the square of the

number of stages. In order to study the efficiency of the quadratic program we constructed a

pipeline (addTn) with n stagesas follows: the pipeline computes the sum of 2n inputs (each

of width 3 bits). Stage Si has 2n",+1 inputs and 2n~* outputs. Each stage has 2n~{ adders

which compute the sum in parallel. A 3 stage pipeline is shown in Figure5.10.

The time taken by the algorithm to analyze the circuit and come up with the stage delays

(Dkk+l) is summarized in the table below. The second and third columns give the initial

and final clock periods. The next two columns givethe time required to solve the quadratic

program (QP) and the time taken for resynthesis (RSY). The size of the quadratic program,

i.e. number of variables and number of constraints is shown alongside the entry in column

CHAPTERS. RESYNTHESIS OF MULTI-PHASE PIPELINES

n clock fime(sec.)
initial target QP RSY

1

2

3

4

10.00

12.10

21.30

26.20

7.2

8.72

192

22.0

0.44 (3,8)

1.15(6,20)
2.87(10,43)
11.44(15,76)

0.6

7.8

8.0

31

Table 5.4: Pipeline resynthesis foraddTn

105

QP in brackets. The quadratic program seems to display a behavior which is nearly cubic in

the number of stages.

5.8 Discussion

Phase separation and duty cycle constraints may be expressed in the form x,- - xj <

aij + Sijc, where the x's may be the rise or fall of phases: cry is a real numberrepresenting a fixed

separation and £y is areal e (-1,1) representing the separation as aratio of the target clock period.

The addition of edges representing these constraints increases the number of constraints that force

all cycles in Q to have non-negative weight.

When we consider cyclic circuits, we need to add the following condition for all cycles

in the circuit. Let C be any simple cycle in the circuit. We need

£a><£av,
pec pec

(5.8)

where p is acombinationalpath from alatchto another, and Dp is the maximum delay alongp. If we

have an exponential set of cycles in the circuit, we will have an exponential number of constraints.

If we are willing to restrict the regions to be resynthesized, the problem becomes more amenable

and the size of the constraint matrix A can be pruned. However the result is a set of constraints on

several interacting path lengths. The resynthesis algorithm will have to optimize these paths so that

they simultaneously meet all the path constraints. The delay optimizer, in use currendy, uses block

oriented constraints on arrival and required times and is unable to handle path based constraints

efficiently. Techniques that use path based delay optimization are still an issue of research.

The results obtained by Malik et al. [38] for pipeline circuits with FEDFFs, prompted

us to investigate pipelines with AHLSLs and multi-phase clocking schemes. The goal was to

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 106

relatethe clock periodconstraints for a target clock period to performance constraintson regions

of combinational logic. The proposed approach gives a set of sufficientconditions for resynthesis,

which if satisfied guarantee the target clock periodto be achievable.

107

Chapter 6

Delay Insertion for Short Paths

Sequential synthesis of circuits requires thatoutputsignals arrive in a specified interval.

During resynthesis of pipelines for a target clock period (see Chapter 5) it is required that every

combinational path have a delay that lies between a maximum and a minimum value. Traditional

delay optimization approaches consider only apart of the problem; namely toensure that the delay

of each path is less than the upper bound. This Chapter considers the problem of delaying outputs

to meet the lower bound without violating upperbounds that have been satisfied.

6.1 Overview

For the rest ofthis Chapter, we shall restrict attention to combinational circuits. Providing

acircuit that achieves the upper bound constraints at all outputs, given primary input arrival times,

has longbeena focus of research. Singh etal. [66] present analgorithm that uses themovement of

critical signals closer tothe output ofacone of logic tospeed upcircuits. Fishbum presents [16] an

approach to decrease thedepth of acircuit and in [17] presents an iterative algorithm that combines

several known methods in a heuristic manner. We are concerned with the problem of satisfying

lower bounds ondelays of paths. De Micheli etal. [81] inan effort concerning wave pipelining of

circuits, solve a problem which is related tothe problem wedescribe in this Chapter.

The definitions of terms used in this Chapter are described in Section 6.2. Section 6.3

introduces the "padding" problem and presents associated theoretical results (including a naive

approach to solve the problem). A linear programming technique for anoptimum solution to the

problem is given in Section 6.4. Section 6.5 describes two extensions to the formulation. Section 6.6

deals with an application to wave pipelining of circuits. Experimental results form the contentsof

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 108

a Ck^ e

d Or'

Figure 6.1: Graph for a simple circuit

Section 6.7.

6.2 Definitions

A combinational circuit C is represented as a directed acyclic graph. The terms circuit

and graph are used interchangeably. A circuit is an interconnection of gates. Each gate has one

output pin and one or more input pins. For every pin in the circuit there is a vertex in C. The set

of vertices is denoted by V. There are two kinds of edges, internal and external. The edge sets

are denoted by E1 and EB respectively. An internal edge is directed from an input pin ofa gate
to its output pin. The external edges represent interconnections or wiring in the circuit. Every

connection from an output of a gate to an input of another gate is represented by an external edge.

Figure 6.1 shows a simple and-or circuit with external edges shown in bold and internal edges

shown in dashes. The circuit reads data through leads termed as primary inputs and provides data

on primary outputs. The set of primary inputs/outputs is denoted by PIfPO. There is a vertex for

every primary input and every primary output

An edge ey from t to j is denoted by i -*• j; i is called a fanin of j and j is called a

fanout of i. We use the notation FI(i) to denote the set of fanins of i and FO(i) to denote the

set of fanouts of i. A vertex representing a primary input has no fanins and a vertex representing a

primaryoutputhas no fanouts. A weight wy is associated witheach edge ey —

1. if ey € E1, then the weight is the delay incurred by a signal propagating from the input
represented by i to the output of the gate, or

2. if ey € EE, then the weight isavariable whose value is to bedetermined.

Delays can be inserted only on external edges.

There are two arrival times associated with each vertex i —

CHAPTER 6". DELAY INSERTION FOR SHORT PATHS 109

1. an early arrival time at, and

2. a late arrival time At-.

The arrival times at vertex i are computed as follows—

1. if i is a primary input, then at- and A,- are specified by the user or an algorithm at the higher

level (often a, = Ai = 0), or

2. if i is an input/output pin ofa gate,

<*.' = ^n (o,-+ ioit-), (6.1)
Ai = max YAj + «;Jt). (6.2)

A path p in the graph is a sequence ofvertices i'i, 12,..., tn such that each vertex is a fanin

to the next vertex in the sequence. It is denoted by p: i\ *v* i„. The delay of a path p : t*i ** tn is

H"=/ ^*>«i+i ^d is denoted by d(p).
At every primary output i, data is required to be available no earlier than rt- and no later

than Ri, namely r,- < a,- < A,- < Ri. All previous delay optimization techniques try to guarantee

Ai < Ri on termination of the algorithm. However no attempt is made to ensure a,- > r,- for each

primary output i. It is unclear whether a naive insertion of delays will suffice to meet this constraint,

because paths can interact one another. Consequendy, inserting delay on a sub-path to slow an

early arriving signal can also slow some late arriving signals, offsetting any gain made by the delay

optimizer.

We say that a path p : t'i ^ in, n € PI, in € PO is a critical long path if V edges

e«'fc«fc+i e P» we nave -^tfc+i = Mk + Wt*«fc+i. where k = 1,.. .n - 1. Theset of long paths P is
the set of all critical long paths which have Atn = i2tn. We say that p is a critical short path if

a,-, + d(p) < rin. The shortpathset S is thesetof all critical shortpaths.

We make the following assumptions —

1. Gates have a unique direction of signal propagation,namely from inputs to outputs.

2. The amount of delay that can be padded is continuous. In reality, only discrete amounts of

delay can be padded. We use the continuous padding problem as an approximation to the

discrete padding problem. We find anoptimum solution to the relaxed problem, andderive a

discrete solution from the continuous solution.

3. We also assume that all gates provide the same input load.

CHAPTER 6\ DELAY INSERTION FOR SHORT PATHS 110

6.3 Is padding always possible?

The problem definition for the delay insertion problem is as follows:

Given a circuit C(V, EE [j E1), edge-weights on the internal edges, arrival times (early and late)

at all primary inputs and the requiredbounds(early and late) at all primary outputs (Ri and ri at

primaryoutputi) assigna set ofdelays(realnumbers) to the external edgesso that all paths meet

the required upper and lower bounds.

We shall call this the padding problem. We assume that all paths from a primary input to

a primary output respect (are <) the upperboundat the output Weshall insert delay on the external

edges to satisfy the lower bounds. The first issue we need to examine is whether it is possible Of

at all) to always insert delays to meet lower bounds, without affecting upper bounds of paths. The

goal of this Section is to demonstrate that it is always possible to do so under mild conditions on

arrival and required times at the inputs and outputs.

The following Lemma gives simple bounds on early and late arrival times at a vertex.

Lemma 6.3.1 Let p: i\ ~~» inbe a path in the graph. Then

• Ain > Aix + d(p), and

• ai„ < «.', + d(p).

Proof By induction on the path.

• Base case: The path has one edge p: i\ ** 1*2. From 6.1 we get

Ai2 > Aix + t»,-lt-2

=* Ai2 > Aix + d(p).

• Inductioncase: Let p : ii *v* ik+\ and assume that Aik > A,-, + d(i\ ^ i*). We need to

show thatAffc+1 > A,-, + d(i\ ~»ik+\). We have from Equation 6.2

^ifc+, > -A;* + Wikik+l

=» Aik+l > Aix + d(h s+ ik) + ti;tVfc+1

=*• Aik+l > Aix + d(i\ -^ ik+l)

=>Aik+l > Ah+d(p).

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 111

The proof for atn < a,-, -f d(p) proceeds alongsimilarlines. •

The ensuing theorem gives necessary and sufficient conditions for the padding problem

to have a solution.

Theorem 632 In anycircuit, let i'i € PI, in € PO, such that3 a path p:ii~~> t„. The padding

problemhasafeasible solution ifandonlyif Aix - a,-, < Rin - rln,V such p.

Proof The proof is divided into two parts.

• =>) We will first show the necessityof the condition. Let p be any path from n € PI to

tn € PO. If the padding problem has a solution then we know that,

- the upper bound on path p is met, hence from Lemma 6.3.1

Aix + d(p) < Rin, (6.3)

- the lower bound on path p is met, hence from Lemma 6.3.1

«i,+<*(p) >*•,•„. (6.4)

Subtracting Equation 6.4 from Equation6.3, we get Atl - atl < i£fn - r,n.

• <$=) The sufficiency of the condition will be provedby a constructive argument. This will in

turn provide insight to a naive algorithm for paddingdelays. Let 5be acritical short path, i.e.

s € S and $ violates the lower bound on the path delay. Recall that P is the set of critical

long paths. The following Lemma provides a property of a critical short path that is crucial

for the proof.

Lemma 633 Let s : i'i ^ tn be a critical short path, namely s € S, and let Atl - a^ <

Rin—rtfl then 3 an edge eons, suchthat e does not lie on any critical longpath (e g q,Vq € P).

Proof For sake of contradiction assume that each edge ctfcjfc+1 (denoted by e* for brevity ')
of 6 is a part of some long path in P. Consider the construction described below.

1fc = l,...,n-l

CHAPTER 6. DELAYINSERTION FOR SHORT PATHS 112

- Construction C: Restrict attention to only those paths in P that contain an edge of s.

Without loss ofgenerality replace P by this subset Several edges of s (not necessarily

consecutive) may lie on the same q e P. In addition each edge e* of s may lie on

several long paths in P — denote this set by Qk. Each edge ek is given a label /*, and

every such label is assigned a path from P (denoted by Qik) as follows:

»

1, Q\ = q,q € Q\ if k = 1 (initialization)

h=\ lk-u ifcjfeGQ/^ (6.5)
/fc—i +1, Qik = q,q € Qk otherwise.

Let L be the largest label so assigned. We now break s into a set of L disjoint sub-paths.

Each sub-path, denoted by sk, k = 1,...,£, is a set of successive edges with the same

label. Let h(sk) be the vertex where sk starts and t(sk) be the vertex where Sk ends.

Note that h(sk+\) = t(sk). Note that all vertices representing input pins of gates have

a single fanin and a single fanout Consequently an internal edge (a fanout edge from

an input pin) must have the same label as the fanin edge to the input pin. A change of

labelson s can take placeonly on anextemal edge. Each h(sk) (and t(sk)) can only be

an output pin of a gate. Let us divide each Qk into 3 parts

1. Q\ - from aprimary input to h(sk) (inclusive)

2. Q2 - sknotincluding h(sk) but including t(sk) and

3. C?|-restof<2/:.

The constructionprocessyields a covering of the edges of the short path s with at most

L longpaths from P. Let A(Qk)denote the latearrival atthe primary input on the path

Qk. Let R(Qk) denote theupper bound on the delayto the primary outputon path Qk.

Now consider the following paths in the graph

- Q*and

- the path obtained bythe concatenation of Q\ and Q_i

fork = 2,... L - 1. Since Qk € P (thesetof long paths) we know (see Figurc 6.2)

A{Qk)+ d{Qk) = R(Qk),

implying

A(Qk) + d(Q\) +d(Ql) +d(Q\) = R(Qk). (6.6)

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS

*«V

prtnaiy Input

Figure 6.2: Short and long path interactions

Consider the second path (Q\Q_X):

A(Qk) + d(Q\)+ d(Q_x) < R(Qk-i).

Subtracting Equation 6.7 from Equation 6.6 we get

d(Q\)+ d(Q\) - d(Q_x) > R(Qk) - R(Qk-i).

The terminal cases are now described.

- k = 1: Since Q\ isempty and A(Q\) = A,-,

Ait+diQt) = R(QX),

implying

Ail+d(Q2) + d(Ql) = R(Ql).

113

(6.7)

(6.8U

(6.9)

- k = L: In this case Q\ isempty and R(Ql) = Rin. Consider the path QL and the path
obtained by concatenating QlL and Q_\. For the first path weobtain

A(QL) + d(QlL) + d(Q2L) = Rin,

and for the second path we obtain

A(QL) + d(QlL) + d(Ql_x) < R(QL.X).

Subtracting Equation 6.11 from Equation 6.10 yields

d{Q\)-d(Ql_x)>Rin-RQL_x.

(6.10)

(6.11)

(6.12)

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 114

Summing Equation 6.8 for k = 2,..., L - 1 and Equations 6.9 and 6.12 we obtain

L

^i +£<*W*)>*.V (6.13)
Jt=i

Note that the second term on the left hand side is nothing but d(s). But we know that s e S

implying

aix+d(s)<rin. (6.14)

Subtracting 6.14 from 6.13 yields

Aix-aix >Rin-rin. (6.15)

Contradiction!!

It is easy to obtain an extemal edge that satisfies the criterion once such an e is found. If e

is an extemal edge then we are done. Suppose not, then e is an internal edge and the source

of e is an input pin of a gate. Consequently the source of c has only one fanin and any path

containing the fanin edge must also contain c and vice versa. Hence the fanin edge does

not belong to any q € P. An edge e that satisfies the criterion in Lemma 6.3.3 is called a

candidate edge. •

Corollary 6.3.4 In any circuit, iffor every pair i\ € PI and in € PO, such that 3 a path

P • i\ ^ »n if Isknown that A,-, - atl < iZtn - rtn, thenthepaddingproblem can be solved.

Proof The proof is constructive and is the last piece to the sufficiency condition of the

Theorem. Start with any s € S. By lemma 6.3.3 3 e € s such that e g q,\/q € P.

Consequently adding some delay on e does not affect the paths in P. However this might

lead to some paths containing e becoming critical long paths. As soon as this happens, we

add these new critical long paths to the set P and repeat the procedure to find a new candidate

edge. This is done until s meets the lower bound constraint. The procedure is repeated for

each path in 5 after updating the early arrival times. •

Let us briefly summarize the proof for sufficiency. We first show that for any short path s € 5, if

the sufficiency condition is met, then 3 an edge which can be padded with somedelay. Note that

the sufficiency condition is independent of thedelays of thegates and the padding. Corollary 6.3.4

gives a procedure for delay insertion, usingLemma6.3.3 repeatedly and updating the set P. u

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 115

An intuitive explanation for the condition A,-, - at-, < ifc,n - rtn is as follows. Interpret

the term A,-, —a,-, as the uncertainty intervalofarrival (of the signal) at primary input t'i. i2,n - r,n

is the required uncertainty at output t„. Since the circuit is causal, it cannot make the uncertainty

interval at theoutput anynarrower thantheuncertainty interval at its input2.

Corollary 63J5 If Aix = aix then thepaddingproblem alwayshas afeasible solution.

Proof By observing the fact that r,-B < Rin for paths p : i\ —• t„. Thus meeting the sufficiency

condition ofTheorem 6.3.2. •

6.3.1 A naive algorithm

Let us examine the feasibilityproblem. Since we need to check A,-, —a,-, < Rin - r,n,

Vp : t'i ***• in, such that t'i € PI, in € PO, it is equivalent to a reachability analysis of the

graph. Thecomplexity of this is 0(\EE \J Er\). The complexity of computing the arrival times is

0(\EE\JE*\log\V\).
Given below is the pseudo-code for an algorithm to pad delays, described in Corol

lary 6.3.4.

Procedure 63.1

Let

C = combinational circuit

P = set oflong paths in C

S = set ofshort paths in C

whileS ^ 0 {

• Pick s e S

—while (s does notmeetlowerbound) {

* Finda candidate edge e € s\e satisfiesLemma 63.3

Insert delay on e until one ofthefollowing is true

1. some path p containing e becomes a critical long path

P = P\JP

continue

2This is akin to the fact that a passive network cannot produce anoutput voltage that is larger than the source that
drives it

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 116

2. s meets lower bound

break (success in padding)

>

Delete sfrom S

}

There are several issues that need to be addressed.

• Enumeration of paths mustbe avoided since it canbe exponential. In particular we needto

implicitly maintain P and S.

• Finding an e € s that meets theconditions of Lemma 6.3.3 has also to be done implicitly.

• Detecting the amount of delay that can be inserted on a candidate edge before some other

path containing it becomes a critical longpath is another issue.

We resort to the notion of slack. For each vertex i, define the required times as follows —

1. if t is a primary output then r; and Ri are specified by the useror an algorithm at the higher

level, or

2. if i is an input/output pin of a gate

r.- = max (r,- — ru,-.), (6.16)
j€FO(t)v J •"

Ri = min (Rj-Wij). (6.17)

The slacks at each vertex i are defined as

6i = ri-aiy (6.18)

A,- = Ri-Ai. (6.19)

A primary output i hasa short path containing it, if Si > 0. This solvesthe problem of maintaining

a set of short paths. We simply keep trackof the primaryoutputs which have strictly positive S's at

any instant of the algorithm. Note that forall primary outputs A,- > 0.

Lemma 63.6 Let i be a vertex such thatSi > 0, then 3j e FO(i), such thatSj > £, > 0

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 117

Proof Since Si > 0, =*- r,- > a,-. From the definition of the required time at t in Equation 6.16, we

know3j € FO(i), suchthat tj - tuy = r,-. Nowa,- < at- + iuy. Subtracting this from the previous

equality we get Tj —aj > r,- —a,-. •

Corollary 63.7 Let ibea vertex such that Si > 0, then i belongs to some shortpath in S.

Proof By inductionusingLemma6.3.6repeatedly. We know, 3j e FO(i), such that Sj > Si > 0.

Continue thisprocess until we hit a primary output / with Si > 0. Thisgives a path, saypl. Next

find a path p2 : i\ ~* t, t'i € PI such that a,- = atl + ^(p2). The path p2p1 isa short path. •

Lemma 63& For all vertices i, Ri > Ai (Ai > 0).

Proof For sake of contradiction assume not, so 3z, such that Ri < Ai. From Equation 6.17,

3j € FO(i), suchthat Rj - Wij = Ri. Also Aj > A,- + iuy. Consequently Rj - Aj < Ri - Ai.

Hence Aj < At- < 0. Continue this process until we hit a primary output / with A/ < 0. Contradicts

the fact that all paths satisfy the upper bound. •

Corollary6.3.9 Let i bea vertex such thatAi = 0, then 3j 6 FO(i), such that Aj = 0.

Proof As a part of the proofto Lemma 6.3.8 weshowed that 3j e FO(i), such that A;- < A,- = 0.

Also since Aj > 0 for all j, we conclude that Aj =0. •

Corollary 63.10 Let i be a vertexsuch that A,- = 0, then i belongs to somelongpath in P.

Proof By induction usingCorollary 6.3.9 repeatedly. We know, 3j e FO(i), such thatAj = A,- =

0. Continue thisprocess untilwehita primary output / withA/ = 0. Thisgives a path, sayp1. Next

find a path p2 : i\ ^* i,;t e PI such that At- = Atl + d(j?). The path p2pl isa long path. •

To maintain the set of long paths we keep track of all primary outputs i such that At- = 0.

To find a candidate edge that meets the conditions of Lemma 6.3.3, we maintain a list of extemal

edges ey satisfying the following conditions:

1. aj —ai + Wij, rj > aj and

2. Aj > Ai + Wij.

The maximum amount of delay thatcanbe inserted on suchan edgeis Rj - Ai - w^. Any more,

willresult in some pathpcontaining ey becoming a critical longpath. If rj - aj < Rj - A,- - tuy

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 118

then padding morethan rj —aj does not aid the shortpath. So we insertan amount of delay dij

equal to

dij = min(Rj - A,- - iyy, rj - aj) (6.20)

The implicit procedure may be described as follows:

Procedure 63.2

Let

C = combinational circuit

C = list ofpossible candidateedgesfor inserting delay

7rj = list ofprimary outputsk reachablefrom vertex j such that Sk>0

while (3k € PO suchthatSk >0){

• Findeij, ey € C with k € flj

Insertdelay = cfy

Update a, A, r, i£, S^Aandlists w in the graph

Update C

}

The choice of e is done in aheuristic manner, so asto minimizethe amount ofdelay that

needs to be inserted. We assume thatthe area penalty is direcdy proportional to the delay inserted.

Hence we are seeking an area optimal solution. As a heuristic, with each vertex j we maintain a

list 7Tj of primary outputs thatare reachable from j and violate the short path bounds. We choose

an edge ey with the least value ofy^; i.e. we choose the edge with the best delay gain per critical
output. A refinement to theabove procedure is to find a cutset ofextemal edges so that delays can

be inserted indepcndendy on each edge. A min-cut found using a flow algorithm as described in

[66] canbe used to insert delays simultaneously on several edges withoutupdating the values for

the slacks.

6.4 A linear programming approach

In this section we show that the minimum padding problem is equivalent to a linear

program obtained by relaxing Equations 6.1 and 6.2. Lettheearly (late) arrivals ata primary input

i be denoted by A,- (A,). Consider the following optimization problem (OPTl):

OPTl: min(Eeo-€E«wy)

CHAPTERS DELAY INSERTION FOR SHORT PATHS 119

Aj = max,€F/(j)(Ai + wy)

aj = mm;€Fj(j)(at- + wy)

At < Ri ViePO

ai > n Vi € PO

Ai = Af- Vt€PJ

a, = At- Vi€P7.

Consider therelaxed linearprogram (PI) obtained byreplacing theminand maxoperators

by appropriate inequalities:

PI : min(Ee$>€EJs wy)

Aj > Ai + wij VieFI(j)

aj < a{ + wij Vi e FI(j)

Ai < Ri ViePO

a{ > n Vi e PO

Ai = At- Vi € P/

a,- = At- Vie PI.

Theorem 6.4.1 Let(w",Am, a*)beanoptimum solution to PI, then anoptimum solution to OPTl

can be constructedwith the edge weights w*.

Proof The objective functions in the two optimization problems are the same. Since the feasible

region of PI containsthe feasible region of OPTl the followingstatements are true—

• if PI is infeasible then so is OPTl, and

• the value of the objective function in PI at optimality is a lower bound on the value of the

objective function in OPTl.

Given (w*. A*, a"), an optimum solutionto PI, it is possible to construct a feasible solution to

OPTl with the same costas theoptimum solution to PI. This impliesthatthevalues of wm are also

optimum to OPTl. Recall that thevalues of At- and a, for all i e PI, are fixed in both problems

to the same values. Let us construct a solutionA, a to OPTl recursively as follows:

Ai = A,- Vie PI

a{ = Af Vie PI

Aj - max (A,- +toy) otherwise
ieFI(j)

aj = min (a,- + «&•) otherwise.
3 f€F/(j)V tJt

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 120

These equations need to be evaluated in topological order from the inputs. Since the circuit is

acyclic, this ensures that Aj (aj) for each j iscomputed before being computing the late (early)
arrival at its fanouts. Note that for all i

1. Af < A?, and

2. a, > a*.

Since for i e PO, we have

1. A*i < Ri and

2. a* > ri,

we conclude Af < Ri and a,- > rt-; implying that (wm, A, a) is a feasible solution to OPTl. Since

the value of the objective function of OPTl at (wm, A, a) isequal to the lower bound given bythe

minimum value of the objective function of PI, (w*, A, a) isapoint ofoptimality for OPTl. •

6.5 Refinements

6.5.1 Delay model

A maindrawback of thedelay model used so far is that thedelay from aninputpinto an

output pinof a gate is assigned asingle value. However thedelay maydiffer for an output rise and

for an output fall. Consequently eachinternal edgemust be assigned a minimum and a maximum

delay (denoted byw?jax and w*in). For apath p: ii ~> i„, let us define

d(p) = X>5K..

If we assume that the buffers are specially designed to have equal rise and fall times,

Theorem 6.3.2 can be modified to read

Theorem 6.5.1 In any circuit, let t'i e PI, in e PO,such that 3 apath p : i\ ^ in. The padding

problem has afeasible solution ifand only if Aix - aix + D(p) - d(p) < Rin - rin,Vsuch p.

Notethat thestructure of thepath isnow relevant because of theterm D(p) - d(p).

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 121

6.5.2 Discrete delay insertion

An issue of concern is that delay insertion in reality can only be done in discrete steps.

So far, we have assumed that an arbitrary amount ofdelay can be inserted on each edge. Instead let

B be the minimumdelay that can be inserted. A problem arises if, for a short path s e S, and for

every edge ey € s satisfying the requirementsof Lemma 6.3.3, we have

Rj - Ai - w^ < B. (6.21)

We say an output has a short path violation if due to the discrete nature of gate delays,

we are unable to meet the lower bound on the output. We will now determine a bound on the short

pathviolationas a function of B. Onceagain, wewillnot tolerate anychangein criticallongpaths.

Theorem 6J52 Let s e S,s: i\~** in and thefollowing statements are true;

1. A,-, - a,-, < Rin - rinand

2. Ve e s, eikik+x : ik -* ik+\, fc = l,---,n-l, such that e,fcfk+1 &q.Vq e P. we have

R*k+i ~ Aik —Wtfctfc+i < B,

then aix + d(p) > r,n - mB, where 0 < m < |V| - 1.

Proof Forevery edge effclJt+1 : t* -• ik+i (henceforth denoted by e* for brevity), k = 1, •••n - 1

one of the following is true -

1. ek belongs to one or more long paths (denoted by {qk})or

2. ek is a candidate edge and i2Ifc+1 - Alfc - w,\ffc+l < B. In this case, there must be oneor

morepaths ({qk}) containing ek such that A(qk) + d(qk) > R(qk) - B, i.e. the addition of

B units ofdelay on ek forces a violation of the upper bound requirement on qk.

Use Constmction C(as described inproof to Lemma 6.3.3) with the set P1 = U£=} {qk} instead of
the set P. Let Q\, Q2, •••Ql be the covering of 5 found by the construction process. We can see

that for Af = 2,--X- 1,

<HQ\) +d(Q\)-d(QU){^ *««-*«>*-.) ifO, belongs to along pam ^
[> R(Qk) - R{Qk-\) - B \IQk contains candidate edges.

The terminal cases are

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 122

• *=1:

k = L:

*,+<<«??)+W" W0 if«>bel0"gs'°?1°ngpa«h (fi23)
R(Qi) - B ifQi contains candidate edges.{>

if Ql contains candidate edges.1"i;\> ft.-2? if

Summing up, we get A^ + d(s) > Rin - mB, where m is the number of paths covering s

that have candidate edges. But Af, - a,-, < Rin - rln, namely Rin - Aix > rln - atl. Since

d(s) + m-B > iEfn —Atl, we conclude d(s) + mB > r,n - a,*t, implying atl + d(s) > rln —mjB.

So as B is decreased, we will be able to control the amount of short path violation. A naive upper

bound on m is \V\ - 1. •

To solve the padding problem with discrete delay, we first solve the problem with the

continuous delay relaxation. We use the optimum solution to the continuous problem as a heuristic

to solving the discrete padding problem. Let B = {&i, • • -6*} be a set of buffers available in the

library. Let d(6,) be the delay and a(6,-) be the area of buffer 6,-. Two problems arise in discrete

padding.

• Each edge e requires a delay of We to be inserted on it. We need to find a set ofbuffers from

B that best approximates We. We want the delay inserted to be as close as possible to We

without exceeding it. Mathematically, we find a set Be consisting of elements from B, such

that (We - J2ieBe d(bi))is minimized, subject to EieBe <*(&«) < We- Any ties are broken

by comparing the respective area penalties (Siefl. a(&»'))- W** <*(&«') € z+ for a111*» a^

We a positive number, the problem is equivalent to the subset-sum problem [19], which is

NP-complete.

• The problem above concentrates only on the best solution for an edge. A difficulty arises

when (see Figure6.3) multiple fanouts from a gate require delay insertions. Dramatic area

gains are to be made if instead of buffering each fanout separately, a buffer tree is built. In

Figure 6.3, quite clearly the second buffer tree is superior in terms of area to the first buffer

tree. If we assume that elements from B can be always combined to give a delay of We

exactly, the buffer treeconstmctionis needed forarea recovery. Let s be a gatewith fanouts

{/i> hi' ••>/n}- Let the iih fanout edge from s to /,-, require adelay of iut- to be inserted.

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS

Library

area

delay

buffed

->-

buffer2 buffer3

1.5 1

2 3

-0^-0
c

Troo 1

Aroa

5.5

Figure 6.3: Area optimization during delay insertions

123

The problem is to construct a tree rooted at the output of s, whose vertices are elements of

B. The leaves of the tree are inputs of the fanout gates of s. The constraint is that for each

root-to-jth leaf path , say pj : s ^* /,-, X^,ePj d(bi) = wj and the objective is to minimize
53a(bi). Quite clearly, if we can solve this problem,we can also solve the previous problem

by setting n = 1.

Thus finding the best approximation for delay insertion for a single fanout and the buffer

tree constmction are difficult problems. It is known that the problem of inserting buffers to meet

upper bounds on arrival times with an area constraint and taking fanout loads into account, is

NP-complete [5,73]. To solve the discrete delay problem, we first find the best approximation for

each fanout edge independently by a branch and bound procedure that enumerates the different sets

Be. Area recovery is then done by extracting buffers common to fanouts, in a greedy manner. Note

that buffer tree constmction is further complicated by the fact that the delays of buffers change as

the fanouts change. During the greedy tree constmction, attempts arc made to take the load into

account. We recognize that this approach can be far from optimal, but as a first cut the heuristic

works fine. A reason for permitting a rough approximation at this stage of the design is that fine

delay tuning can be often achieved successfully by transistorsizing in MOS (resistor sizing in ECL)

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS

Flip-flops<t

Clock

circuits.

Primary
inputs \

Primary
\ outputs •—|

-» Flip-flops

Figure 6.4: Wave pipelining

124

6.6 Relation to wave pipelining

Wave pipelining is a design technique that allows multiple streams of data to flow in a

combinational region at a given instant of time. The clock period in a circuit (using flip-flops) is

determined by the longest combinational path in the circuit. In the case of wave pipelining, the

system is clocked at a faster rate. Consider the structure used for wave-pipelining as shown in

Figure 6.4. The flip-flops at the inputs and outputs are clocked at a rate faster than the standard rate

determined by the longest path. The primary inputs have equal early and late arrival times. Let T

denote the clock period. The clock period depends[81] on —

• the maximum difference between the longest and shortest delay (to any gate) from the inputs

(Tls),

• the maximum clock skew (Takew)* and

• set-up and hold times for the memory elements (Tsh).

A first order approximation for T is T/a + 2 * Tskew + Tsh. Wong et al. [81] focus on minimizing

the first term. We shall focus on inserting minimum delays to meet a target T/5. In the terminology

of Wong et al. [81] this is called rough tuning. In order to prevent data from one wave colliding

with (corrupting) data in the previous wave we require

ai + Th > Ai (6.25)

CHAPTER 6*. DELAY INSERTION FOR SHORT PATHS 125

at every vertex t. So given T/a, the minimum padding problem may be phrased as:

OPT2: min(Ee,i€^^i)

Aj = maxf€F/(j)(Af + iyy)

aj = mirif€F/(j)(af + ™ij)
Ai < Ri Vi e po

O-i > Ai-Tu Viev

Ai = 0 Vie pi

a{ = 0 Vi e pi.

We still enforce A,- < Ri at each primary input This is necessary because the number of"waves"

that simultaneously exist in the combinational circuit depend on Tu and the length of the longest

path. Removing this constrainthelps the optimization problem but can result in a largenumber of

data "waves" in the circuit. Consider the relaxed LP:

P2 : min(£eo€E£ toy)

Aj > Ai + wv VieFI(j)

aj < ai + w^ Vi e Fl(j)

Ai < Ri ViePO

a,- > Ai-Th VieV

Ai =0 Vi e PI

a{ = 0 Vie PI.

It is easy to show (along similar lines to the proof of Theorem 6.4.1) that if (wm, Am, a") is an

optimum solution to P2, then we can construct an optimum solution to satisfy OPT2. Since the

feasible region of P2 contains the feasible region of OPT2, if P2 is infeasible then OPT2 is also

infeasible. However, we are no longer guaranteed to have a feasible solution even if the discrete

padding requirement is waived. If we set Tia - 0 in OPT2, we obtain a,- = A, for all i. If we force

all primary outputs i to have A,- = DMAX (where DMAX is a predefined value), it is equivalent

to the Balancing Problem defined by Wong et al. in [81].

6.7 Results

We present the results on a set of combinational multi-level examples. The first set of

experiments dealswith die greedy algorithm (Procedure 6.3.2)andthe linearprogramming approach

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 126

(Section 6.4). We use the linear program solver Ipjsolve - a sparse matrix implementation of the

simplex algorithm due to M. Berkelaar [4]. We hasten to point out that it is not known if these

combinational circuits were designed to operate in a sequential environment Consequently the

delay inserted and the area penalty is quite large. The purpose of these experiments is to examine

the violation of the early arrivalconstraints due to the discrete nature of gates.

• Experiment 1: The circuits areunmapped and we use a unit delay fanout model. The circuits

are optimized using scriptrugged provided with the SIS distribution. The early and late

arrivals at each primary input are set to 0. The late required time at each output is the longest

path from an input to the output in question. The early required time at each output is set

to be a fraction (0.3) of the longest path to it The results are shown in Table 6.1. The area

of the circuit is given in column 2. The area is measured in terms of the number of 2 input

and/or gates and inverters. The area of an and/or gate is assigned to be unity and the area of

an inverter is assigned to be 0.5 units. Columns 3 and 4 give the amount of delay that needs

to be inserted to meet the delay constraints. A circuit with 200 gates typically gives rise to

a linear program with 500 variables and a thousand constraints. Columns 5 and 6 show the

time taken by the algorithms and columns 7 and 8 give the area penalty (area of the inserted

buffers). The last two columns give ameasure of violation3 of the short path bounds due to

the discretenature ofdelay insertion. We compute the percentage of violation at eachoutput

to the earlyrequired time at the output.The worst violationamongst all outputs is reported.

• Experiment2: The second setofexperiments are carried out on the same examples described

above, but using an industrial standard cell library (see Table 6.2). The libraryhas a set of 4

buffers with different areas and delays. The second column lists the initial area of the circuit.

Columns 3 and4 give the delay to be inserted for the relaxedproblem. The next two columns

give the time taken andcolumns7 and8 give area penaltyafter packing. The last two columns

give a measure of violation.

• Experiment 3: This experiment deals with wave pipelining of circuits. Table 6.3 gives the

data on unmapped circuits, while table 6.4 presents the data for mappedcircuits. Column2

gives the value of T/5 without any delay insertion. We decrease the target T/5 by a factor of

0.3 in column 3. The time taken by the procedureis the content ofcolumn 4. The last column

gives the area penalty.

3See section 65.2

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS

name Initial

Area

delay padded time(sec) Area Penalty % Violation
G LP G LP G LP G LP

9symml 221.00 0.00 0.00 0.3 9.0 0.00 0.00 0.00 0.00
C432 287.50 971.58 187.92 10.2 19.5 224.50 65.00 6.71 2.82
C499 398.00 323.84 323.84 5.7 34.4 64.00 64.00 3.07 3.07

x4 305.00 882.02 430.78 18.9 31.1 197.00 145.50 12.53 12.53
i3 310.00 6.00 3.00 0.9 12.4 2.00 1.00 11.11 11.11

count 128.00 232.58 92.02 1.6 4.7 46.50 28.00 13.67 13.67
frgl 196.00 30.68 8.24 0.5 5.7 7.50 2.50 16.67 22.62
b9 132.50 44.28 26.40 0.8 4.1 9.00 7.00 35.19 16.67
xl 319.00 101.92 74.88 4.5 24.9 25.00 20.50 12.09 12.09

apex7 200.00 272.84 150.16 5.3 11.6 51.00 45.00 6.43 6.43
adder 145.00 907.80 271.72 2.8 7.0 | 237.00 94.00 4.42 6.81

G = Greedy procedure

LP = Linear Programmingapproach

Table 6.1: Delay insertionusing unit delay fanout model

name Initial

Area

delay padded time(sec) Area Penalty % Violation
G LP G LP G LP G LP

9symml 278.00 102.28 25.48 1.0 2.8 109.00 34.00 1.48 IAS
C432 290.00 749.34 175.08 4.8 5.0 1039.00 276.00 1.20 2.59
C499 689.00 310.54 309.64 4.4 16.9 425.00 395.00 0.17 0.17

x4 518.00 1169.11 530.27 19.0 25.1 1573.00 879.00 0.78 0.78

i3 178.00 0.00 0.00 0.2 0.9 0.00 0.00 0.00 0.00

count 225.00 804.62 315.26 3.4 3.5 1129.00 452.00 0.68 0.68

frgl 209.00 16.00 12.00 0.3 1.4 19.00 10.00 4.96 4.96

b9 182.00 46.04 29.04 0.8 2.2 29.00 22.00 2.78 2.78

xl 447.00 203.66 116.45 4.4 12.8 213.00 157.00 0.43 3.32

apex7 328.00 584.26 240.20 6.7 8.5 631.00 337.00 0.79 0.79

adder 285.00 765.49 254.53 4.4 7.3 1191.00 371.00 1.11 1.11

G = Greedy procedure

LP = Linear Programming approach

Table 6.2: Delay insertion using library delay model

127

o* O
N

4
X I C
D f s! 3 O
P C £2

.
5

'
O

P c
r

3 <
3 a
.

o ST «
< 3 o Q

.
O

N
O

X i
—
»

o
*

v
o

8 c 3
C
o

5L
2 V
O

2 LO
3

|
-
»

-
»
J

N
O

t
o
3

o
>

e
n

t
o

>
—

»
i
—
«

_
e
n

L
O

L
O

0
\
L
O

5"
I
O

N
O

-
J

L
O

N
O

L
O

o
L
O

O
n

«
o

e
n

t
o

-
J

L
O

4
*
.
^
J

O
O

^
"
5
N
O

e
n

O
N

e
n

to
K
.

o
o

O
o

o
o

°
O

o
o

o

L
O

t
o

t—
»

H
-

C
O

t
o

t
o

4
*

t
o

^
O
N

o
t
o

N
O

C
O

-
o

O
u
>

e
n

^
1

-
u

L
n

*
o

•
—
•
l
o

^
J

O
N

O
-
J

L
O

L
O

O
O

jy
£

4
*
.
N
O

>
—
1
O
O

N
O

O
N

O
l
o

e
n

t
o

e
n

-
t
n

•
_
.

•
—
«
t
o

P
2

L
n

O
N

>
—
»
t
o

»
—
»

t
o

i
—
»

4
*
.

i
—
»
e
n

L
O

-
J

O
L
n

^
-
»
-
o

O
O

4
*
>
t
o

N
O

L
O

e
n

H
^

K
>

e
n

L
O

Areapenalty

L
A

t
O

L
O

H
^

H
-
»
O
O

e
n

t
o
2

O
n

-
J

O
n

1
—
»
t
o

e
n

N
O

O
t
o

«
o

N
O

8
8

o
o

o
O

O
o

o
o

O
O

o
o

o
O

o
o

o
O

*
—

>

o O
N

L
O i o f 3
.

3 Q
rq c t/
s. 3
'

O
Q e 3
.

o o c 3 o o
.

o

V
O

C
L

O
X

X 1
—
»

count
frgl

b9

C
o

a

symmlC432
C499

«
>

e
n

o
V
O

e
o

I
-
*
H
-

I
O

M
U
l

A
^
*
K

4
*

*
k

O
O

•
*
•

a
.

O
N

O
O

t
o

4
*
.
t
O

t
O

O
N

8
b
o

*4
x
4
*
,
H

o
o

O
o

o
o

O
O

O
O

t
o

t
o

1
—
»

•
-
*

f
-
*

1
-
^

N
-

4
»

»
-

e
n

L
O

b
o

N
O

i
o

6.94
0.64

7.98

1
—
»

e
n

s
j
y
i
t
o

C
o
o

b
o

•
s

t
o

O
n

4
*

t
o

O
O
N

O
O

O
O

t
o

h
-
«
t
o

N
-
*

t
o

i
—
•

4
*

t
o

h
-

^
n

e
n

o
^
j

A
O

A
0
0

V
O

e
n

•
-
»
4
*

n
S
"

-
j

»
-
*
N
O

4
>

e
n

v
o

O
-
J

O
O
O

•
—

<
*

"<
3

e
n

L
O

0
0

e
n

t
O

O
N

O
O

o
-
J

v
o

*
J

*
-

o
n

e
o

e
o

|
8

L
n

o
e
n

o
o o

8
8

8
8

8
8

8
8

t
o

O
O

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 129

It was observed that constructing a buffer tree (albeit a greedy tree) leads to savings of area by a

factor of 2 to 3 in all the cases.

The experiments (1 and 2) show that the percentage violation depends to a large extent on

the nature of the circuit. It is important to come up with circuit restructuring techniques that prepare

the circuit for delay insertion. The large area penalties are due to outputs that have a small delay

from the inputs. In order to meet an early required time constraint, set to a fraction of the longest

delay, these outputs need to be buffered by a significant amount.

6.8 Discussion

The main motivation for this Chapter lies in the synthesis ofsequential circuits (with level-

sensitive memory elements) to meet a target clock period [63]. We have introduced the minimum

padding problem in circuit synthesis. Under the pip-to-pin delay model, we give a theorem that

prescribes necessary and sufficient conditions to solve the padding problem. We present two

algorithms to solve the relaxed problem. For practical application ofthese algorithms, the approach

is extended to handle gates with discrete delays. We show how a solution to the continuous problem

can be used to approximate a solution to the discrete problem. We derive bounds on the amount of

violation possible.

130

Chapter 7

Conclusions

This thesis has sought to explore problems in VLSI design that arise due to the sequential

nature of synchronous circuits. As VLSI designs increase in size and complexity, it becomes

impossible for the human mind to trace signals though wires and gates to ensure that memory

elements "latch" correct values. Synthesis for improved performance is complicated by the fact that

changing regions of a circuit can affect behavior in rest of the circuit

We start out by examining the constraints for correct clocking of synchronous circuits.

Chapter 3 presents a polynomial time algorithm for the verification of clock schedules. As a

consequence to clock schedule verification, the optimization of clock schedules is considered in

Chapter 4. An algorithm with complexity polynomial in the size of the circuit (exponential in

the number of phases) is described. Proposed algorithms for clock schedule verification and

optimization assume a pessimistic approach fordatapropagation; namely every path in the circuit is

deemed capable ofpropagating anevent. We feel that the existence offalsepaths (due to unreachable

states) is more likely in sequential circuits than in purely combinational circuits. Using paths that

actually propagate events for purposes of clock schedule verification and optimization is the next

logical step. Efforts[56] are currently underway to approximate the optimum clock schedule which

includes only sensitizable paths. The problemof clock schedule analysis with multiple frequency

clock signals is anotherissue thatmerits investigation. Lastly, permitting arbitrary signalsto control

memory elements remains largely unsolved. We havemade some progress in this direction using a

restricted form ofqualified clocks[28].

Chapter 5 investigates the resynthesis ofmulti-phase pipelinecircuitsto meet target clock

periods. A novel approach using the notion of "minimal perturbation" is presented to solve the

problem. The problem of extending resynthesis to general cyclic circuitsremains complicated. A

CHAPTER7. CONCLUSIONS 131

reason is the lackof efficient path based delay optimization techniques.

Ensuring that short paths do not cause erroneous latching in sequential circuits leads to

the problem of satisfying minimum delay requirements on combinational paths. In Chapter 6 we

offer a technique to solve this problem usingactive delay insertion.

The effectiveness of the proposed algorithms has been demonstrated by experiments on

somebenchmarks. The implementations mirror thetheoretical efficiency indicated by theoutlined
analyses.

All electronic designs, due to their sequential nature, require attention to some or all of

the problems that are described in thisthesis. It is sincerely hoped that designers are able to take

advantage ofthe proposed automated synthesis and analysis techniques to speed the design process.

132

Appendix A

Optimality of the SmM Delay Model

In this Appendix, we seek to justify the use of the simplified min-max (SmM for short)

delay model for a gate in the optimal clock schedule computation. We re-formulate the optimal

clock schedule computatipn problem using the consistent min-max (CmM for short) delay model.

Conditions are described when the two models are equivalent and when they differ. We describe

a property which is a desired feature of clocking schemes in most designs, called the robustness

property. Under this requirement, we show the simplified model to be equivalent to the consistent

model.

A.l Introduction

This section briefly reviews the clocking constraints in Chapter 2. Let us focus on the

constraints forcorrectclocking using the SmM delay model and the CmM delay model. The min-max

delay model may be used in two styles—

1. simplified min-max delay model (SmM): A circuit operates correctly if the sum of thedelays

along various paths satisfy certain linear inequalities. The delay of a gate in each inequality

is determined by aworstcase assignment. A gate delay is assigned the upper flower) bound

if it appears on the left (right) hand side of an < inequality with positive coefficients. So

the same gate may be assigned different delays in different inequalities and sometimes in

the same inequality. This has been the model of choice for all the previous work on optimal
clocking [55, 69, 62].

APPENDIXA. OPTIMALITY OF THE SMM DELAY MODEL 133

2. consistent min-max delay model (CmM): In this case, the delay is determined as apart ofthe
optimization step for the clock period. The delay ofagate is permitted to take on any value
between the upper and lower bounds. The important thing isthat each gate is forced to have
the same delay in all equations. It is akin to assuming auniform probability distribution for
each gate and computing the minimum clock period at which the circuit will operate with
unit probability.

For ease of presentation, only level-sensitive memory elements (latches) are assumed to
bepresent inacircuit The circuit isassumed to consist of two networks; adata network used for
computations and a clock distribution network (skew network) that is used for thedistribution of

clock signals to the control inputs ofmemory elements. The data networic is modeled by adirected
graph G(V, E), where each vertex i represents alatch i in the circuit. Every vertex i has aphase
<f>(i) associated with it Let Pi bethe path associated with the skew to latch i. A combinational

path in the circuit consists ofasequence ofgates, such that the output ofeach gate is an input to the
gate following it. A combinational cycle isapath whose first and last gates are the same. There are
no combinational cycles in asynchronous sequential circuit. Let p{j be acombinational path from
the output oflatch i to the input oflatch j. Each edge i -• j in Gdenotes the existence ofapath
Pij. Apath in the graph is an alternating sequence ofvertices and edges, beginning and terminating
at avertex; each edge being directed from the vertex preceding it to the vertex succeeding it inthe

sequence. A cycle inthe graph isapath whose first and last vertices coincide. Each edge i -• j in
the graph has avalue for A',-, as defined in Equation 4.1. Ifpisapath inthe circuit, then |p| denotes
the sum ofthe A"s along the path (Equation 4.3). Let 7>£- denote the set of paths from vertex i to
vertex j with exacdy |p| = k and containing no cycles. V$j denotes the set ofcombinational paths
from i to j. Vij is used for the set (Jp,*.

k

Each gate #t- has two real numbers associated with it, D{ and rf,-f the upper and lower

bounds on the delay of the gate. The actual delay of a gate 5; is a variable £,-, which lies in the

interval [</,-, Di\. For sake of simplicity, we assume that the propagation delay through alatch in
zero1. The phase signal to each latch i undergoes askew along path P{. Pi is part of the clock
distribution network of buffers/inverters and is disjoint from the data network. A clocking scheme

is said to be robust if thecircuit willoperate widiout any latching errors under the given clocking

schemewheneverygate delay is within itsspecified bounds. Sincegate delays cannot beaccurately

'Anydelay associated with the mcmoiy elements can be abstracted out and modeledbybuffers at the data input/output
and clock input ports.

APPENDIX A. OPTIMALITY OF THE SMM DELAY MODEL 134

predicted a priori to fabrication, most designs require a robustclocking scheme.

A.l.l CmM delay model

There are three types of constraints that arise in optimal clocking:

1. internalconstraints— arising from the topological structure of the circuit and the distribution

of delays on gates,

2. model constraints— arising from the clock model, forcing the solution to obey certain as

sumptions on the clock,

3. external constraints— arising due to environment constraints. The designer may constrain

the duty cycle or enforce the clock events to be separated by a specific amount of time.

For the time being, we shall ignore the extemal timing constraints. The internal clocking constraints

may be divided into two categories:

1. long path constraints— these force a minimum separation between clock events and arise due

to the set-up constraint.

(a) ViJdndVpeVij

e*U) + (£ **) ^ *«>) + (£**) + (£ h) - W + S. (A.1)
kePj teP, keP

(b) Vcycles C : j -* j, for correct operation we require (see Lemma 4.2.1)

c>£^. (A.2)
2. short path constraints— these force a maximum separation between clock events and arise

due to the hold constraint.

Vp€7>§

«*(i)'+ (£**) +#< **(0 + (E '*)+ (£'*) + (1 - IpI)c (A.3)
kePj kePi kep

Note that for all pe Vfj, \p\ e {0,1}.

Webriefly mentionthe model constraints. We require

ei >si>0 (A.4)

APPENDDCA. OPTIMALITY OFTHE SMM DELAY MODEL 135

and

Ci+i > fit t = 1,• • -,/ - 1 and c/ = c (A.5)

To find the optimum clockperiod fora givenassignment of gatedelays, wesolvea linear

program withthe objective function min(c) and theconstraints described above. Letus represent

the linearconstraints as Ax > b(6), where 6 is a vector of gate delay assignments and x is a

vectorconsisting of clockevents (variables) andb is a vector consisting of linearfunctions of 6. A

clocking scheme thus computed,is not necessarily robust

A.1.2 SmM delay model

This formulation wassuggested by Sakallah [55] and has beenusedby Szymanski [69]

and Shenoy [62]. This is a conservativeapproach. The internal constraints translate as:

1. long path constraints-

(a) ViJdndVpeVij

e*U) + (£ <W £ ««0 +(£ Dk) +(£ Dk) - \p\c + S. (A.6)
kePj kePi keP

(b) Vcycles C : j -> j in the graph

- |C| {AJ)
2. shortpath constraints- We need Vp e Vfj

€*U) + (£ Dk) + H< sHi) +(£ 4) +(£ 4) + (1 - \p\)c (A.8)
k€Pj kePi k£p

To find the optimumclock periodusing the SmM model, we solve a linear program. The

objective function of this linear program is to minimize the clock period c, subject to the clocking

constraints described above. Let usrepresent these constraints as Ax > 6. Note that the right hand

side of the inequalities is a vector of constants (as opposed to a vector of linear functions of 6 in the

CmM case). Paths Pi and Pj may have a common sub-path. Gates on the common sub-path will be

assigned different delays in the same equation, e.g. in constraint A.6, a gate k common to P,- and

Pj is assigned a delay of dk on the left hand side and a delay of Dk on the right hand side of the

inequality. In the CmM model, the gate k is assigned the same delay on both sides and the constraint

is unaffected by the choice of the delay 6k. Due to the conservative estimate, a clocking scheme

found using the SmM model is robust. We seek to examine whether assigning delays inconsistently

to the gates can cause an artificial increase of the clock period.

APPENDIX A. OPTIMALITY OF THE SMM DELAY MODEL 136

1,4*

<I>1 <t>2
set-up = 0 set-up = 0
hold =0 hold = 2

Figure A.1: Robust clocking: an example

A.2 Relating the two models
••>•

A.2.1 Preliminaries

Consider now, the optimal clocking problem using the CmM delay model. A lower bound

on the clock period is found for the worst possible delay assignment to the gates. This leads to a

min-max formulation described below. Intuitively, we consider the optimal clock computation to

be a game played by two players, A and B respectively. A chooses a delay assignment to the gates

consistent with the bounds,namelyfor each gate i he picks a Si e [d,-, Di], His sole objectiveis to

obtain as large a clock period as possible. A is called the maximizing player (or the adversary). The

assignments to the gate delays are then made known to B, who uses a LP (using the constraints for

the CmM model) to find the minimum clock period at which the circuit will operate. B is calle&the

minimizing player (and represents the algorithm). If there are g gates, A picks a point in a subspace

of Rg defined by n?=i [^> Di] = ^- Mathematically, we are interested in solving the following

problem: minmaxc, subject to Ax > b(6).

Let us briefly examine the notion of a robustclocking scheme in the context of the two

delay models. Consider the exampleshownin Figure A.l. The gate has a max-delay of 4 and a

min-delay of 1. The constraints are (assuming e\ < ei)

• SmM model:

al: C2 <

a2: €2 >

a3: ei <

a4: si <

a5: S2 <

a6: C2 =

a7, a8: s\ ,52 >

s\ + (1 —2) -f c shortpathconstraint
5i+4 long path constraint
e2 model constraint

e\ model constraint

«2 model constraint

c model constraint

0. model constraint

Constraints al and a2 imply, c > 5. So aclocking scheme with si = l,ei = 2,s2 = 3,^2 = 5.
will work forallpossible delays of the gate within thebound [1,4].

APPENDIX A. OPTIMALITY OF THE SMM DELAY MODEL 137

• CmM model: Let 6 be the delayof the gate.

$1 + (6 —2) + c short path constraint
si + 6 longpath constraint
£2 model constraint

£1 model constraint

£2 model constraint

c model constraint

0. model constraint

From bl and b6 we conclude s\ > 2- S. Together with b7, we obtain sx > max(0,2 - 6). This
leads toc > max(£, 2). Let us concentrate on the values for s\ and e2. They are

s\ = max(0,2-£)

€2 = max(2,6).

The values of the rise/fall times ofphases depend on the actual delay ofthe gate. The worst case

delay assignment using the CmM model gives aclock period of4, but with the caveat that as the gate
delay changes, weare permitted toshift therise ofphase 1. This is a drawback, since wewould like

a clocking scheme that is robust. Intuitively, it is clear that there can be a gap between the clock
periods found using the two models. The central question is whether the imposition of robustness
still maintains the gap.

A.2.2 Equivalence of the two models

For the restof thediscussion wewillignorethemodel constraints andextemalconstraints

since they are thesame in both models and affect the feasible regions in thesame manner. Gates in
circuits can be dividedinto two groups;

1. Data: these are gatesthatappear on combinational paths from a latchto another latch, and

2. Skew: these arc inverters/buffers that are used in the clock distribution.

Thetwogroups are disjoint, hence nogate can ever appear along a datapath, say p (p: i —• j) and

along a skew path, namely P, or Pj. This implies that the delay of each data gate can appear as

a variable only once in eachconstraint. Before proceeding further, we need to modify the manner

in which SmM constraints are obtained. We know that each data gate can appear only once in

each constraint. The skew paths P, and Pj may have a some gate/wires in common. Since the

delays will appear on oppositesides of the inequality, the commondelay shouldbe ignoredin both

bl C2 <

b2 €2 >

b3 €l <

b4 «i <

b5 S2 <

b6 ei =

b7,b8 Si,S2 >

APPENDIX A. OPTIMALITY OF THE SMM DELAY MODEL 138

Figure A.2: Skew effect: an example

models. However the SmM model assigns each such gate, different delays in the same constraint.

We make a modification which ignores such gates. Henceforth each gate can appearonly once in

each inequality in both models.

To observe the effect of assigning inconsistent delays to skew gates, consider the circuit

shown in Figure A.2. Let P\, P2be the paths from the clock to latches L\, Li. Let the clock rise at

s and fall at c. The control signal to L\ rises in the interval [s + 1,s + 2] and falls in the interval

([c + 1,c + 2]modc). Similarly the control signal to £2 rises in ([c + 2, c + 4]modc) and falls in

[5 + 2,5 + 4]^ If the longest and shortest paths from clock to latch are constructed in a simple

manner as described in the SmM model, then the constraints (only long path)are
c > 6 long pathcycle constraint

c + 5 + 2 > 5 + 2 + 2 long path Lx -> L2
c + 1 > c + 4 + 4-c long path la —> L\.

The constraints imply c > 7. If we make use of the fact that Pi and P2 have a common

gate G\, the constraints become
c > 6 long pathcycle constraint

c + 3 + 1 > 5 + 2 long path L\ -* L2
c > c + 2 + 4-c long path L\ -> L2,

implying c > 6. Thus the latter set gives a smaller clock period. Henceforth the SmM

model constraints will mean the constraints with nogate (data gate orskew gate) appearing more

thatonce ineach constraint. This restriction forces the gate delay to be consistent in each constraint

but not necessarily consistent in all the constraints.

Let X(6) denote the set of feasible clock schedules, under the CmM delay model, for a
delay assignment 6 e CI. Hence A'(6) = {x|Ax > b(6)}.

Lemma A.2.1 The set A'(6) is closed.

APPENDIX A. OPTIMALITY OFTHE SMM DELAYMODEL 139

Proof Letthe {xn} denote aconvergent sequence in X(6). The measure of distance (metric) we
shall use is the max metric. For any two points xt- and xj, define thedistance between them as

p(xi, xj) = max |[xt-]jk - [xj]k\, (A.9)
*=i,—,2/

where [xi]k is the kth component ofxf. Let {x„} converge to x*. We need to show x* € X(8).
Assume x* £ X(6). Then there must be some constraint in Ax > b(6) which isviolated at x*
by an amount rj. Letthe constraint bedenoted by ax > b(6), where a is the vector of coefficients

and b(6) isthe corresponding component of b(6). We know ax* = b(6) - tj, with rj > 0. Let a
bethe coefficient with largest magnitude in a. Now {xn} -* x*, implying Vc > 0,3N, such that

/>(xn,x*) <e, Vn > N. Setc =^.. Thus there mustbe some Nfor which p(xn,x*) <^.forall
n> N. Butaxn =a(x* +xn-x*) =ax* +a(xn-x'). Implyingaxn =&(£)-i7+a(xn-x*).
The largest positive value a(x* - xn) can take is less than §. Thus axn <b(6) - f =» axn <b(6)
and xn isnot a feasible clock schedule. Contradiction tothe fact xn e X(6). m

Proposition A.2^ Ifaclock schedule xis robust, then x e f) X(6).
sen

The above proposition follows from the definition of robustness given in Section A.l. Note that

since each set X(6) is closed, theintersection of a family of closed sets is closed and welldefined.

Lemma A.23 Let X(6) = {x|Ax > b(tf)}, then f| X(6) = {x|Ax >maxb(^)}, where the max
sea 6ea

on a vectorfunction b(6) is thevectorof thecomponent-wise maxima.

Proof The proof is divided into two parts.

• fl XW c WAx >m^b(^)}- Let y e p| X{6). Consider any constraint, say ax >
sen 6ea sea
b(6). Now since y6 f| X{6), we conclude ay > b(6) for all 6 e CI, implying ay >

sea

max 6(^). As this is true for each constraint, the resultholds for all the constraints.
sea

• {x|Ax > max b(£)} C f) X(6): If y isasolution to Ax > max b(£), then Ay > b(6) for
sea • * sea ~ v '

all 6 e CI. Thus y is feasible to the constraints of the CmM delay model. Hence it must be in

the intersectionof all the X(6)'s.

u

Let y denote the set of feasible clock schedules under the SmM delay model. By definition

3> = {x|Ax > 6}.

APPENDIX A. OPTIMALITY OF THE SMM DELAY MODEL 140

Theorem A.2.4 y = f| X(6).
sea

Proof By virtue ofprevious lemma (Lemma A.2.3), we know f] X(6) = {x|Ax > max b(6)}.
sea 6€C1

Since y = {x|Ax > £}. It remains toshow that f> = max b(6). Consider constraint A.1:

W = £** +£**- £** +$
*€/>< *€p *€P,

^max6(tf) = Y,Dk+ J2Dk- £ <** + S
Jk€P. Jk€p fceP,

=»max6(£) = S

The same is true for constraints A.2 and A.3. •

Corollary A.2J T/ie optimum robust clock schedules under the CmM delay model are identical to

the optimum clock schedules under the SmM delay model.

Proof Theorem A.2.4 proves that the feasible regions for the two problems are identical. So the

infimum of X2i in the feasible region for the two problems will be identical. Moreover, since the

feasible regions are closed, the infimum will be attained, so we can replace the infimum by the more

common minimum. Hence the set of clock schedules x with minimum value of X21 = c (the crock

period) must also be the same. •

As a consequence, we conclude that if the clock period of a circuit is less than the value

given by the SmM model, then there must exist a consistent assignment ofdelays to gates (within their

respective bounds), for which at least one of the clocking constraints is violated. Said otherwise,

the adversary A can always select a consistentassignment to make the clock period be no less than

the value predicted by the SmM model.

141

Appendix B

Quadratic Optimization

A quadratic optimization problem (henceforth referred to as QOPT) is of the form

QOPT: mm[(x-x0)TB(x-xo) =/(*)]

Ax <b.

The matrix B is positive definite. A naive approach is to usea constrained quadratic optimization

algorithm. This requires projecting the gradient onto tangent planes defined by the inequalities

with zero slack. Solving the primal problem in this manner would also require an initial feasible

point. Instead we use avariant of thegradient projection algorithm on the dual problem to QOPT.

The advantages of thisapproach are twofold; computational tractability, and choice of an arbitrary

starting point.

We shall first consider detecting infeasibility of the constraints. Note that the feasible

region is acone in the positive orthant with its vertex at cl (or at the point A = (#,2#, ••«(n -
1)//, H, ••-(n - 2)H, ••-H) obtained by substituting dii+i = H in Equation 5.4 in the general

case).

Lemma B.1.6 If the constraint region P is not empty then de P.

Proof True by inspection of the constraints. •

If the region is infeasible then we need to extend the constraints with the d's as variables.

The lemma now becomes:

Lemma B.1.7 Ifthe extended constraint region is not empty then ft e P.

APPENDIX B. QUADRATIC OPTIMIZATION 142

Lemmas similar to Lemma B.1.6 and Lemma B.1.7 can be proven easily for the case

when assumption 1 in Section 5.3 is relaxed (Section 5.6). Hence we can detect infeasibility by

setting the variables to the appropriate values and checking if the constraints are satisfied. We shall

henceforth assume that P ^ 0.

Lemma B.1.8 Every local minimum off(x) is a globalminimum.

Proof A consequenceof the fact that /(x) is a convexfunction ofx and the feasible region Ax < b

is a convex set. •

Let the Lagrangian £(A) be definedas the unconstrained problem

£(A) = -AT6 + min(-(x - x0)TB(x - x0) + ArAx) (B.l)
* 2

for all x e Rn and A > 0. The variables denoted by Aare known as the Lagrange multipliers.

Quite clearly

£(A) < min -(x - xq)tB(x —xo)
Ax<b 2

=*max£(A) < min;-(x - x0)TB(x - x0)
A>0 Ax<b JL

This is a restatementof the fact that the primalproblem QOPT, has an optimum value greater than

or equal to the optimumof the dual {maxA>o £(A)}. Given any Adefine

xx = x0- B~lAT\. (B.2)

. 1
un-
x 2

It should be noted that given a A, the problem {min-(x - xq)tB(x - xq) + AAx} has a unique
solution given by xa. So we can write £(A) as

1

C(X) = -Ar6 +I(xA-xo)T5(xA-x0) +ATAxA

£(A) = -Ar& + min(-(x-xo)T£(x-x0) + ATAx)

=>£(A) = -A^ +^-^A^^-.B^A^ +A^xo-^A^A).
2

Simplifying results in

f.(\\ = -XTb-

Lemma B.1.9 £(A) is concave andcontinuous.

£(A) =-XTb - \\TAB-X ATX +XTAx0. (B.3)

APPENDIX B. QUADRATIC OPTIMIZATION 143

Proof The Lagrangian is concave because its Hessian (- AB~l AT) is negative definite. It is clearly
continuous. a

The Kuhn-Tticker conditions for optimality of theprimal problem are

B(xm-x0) + \mA = 0 KT1

A* > 0 KT2

A'(Ax*-6) = 0 KT3

Ax* < b. KT4

We now show that it ispossible to construct an ascent algorithm tocompute the maximum

of £(A). Let Xbe the optimum to the dual then, it is easy to show (x$, X) satisfy the Kuhn-Tucker
conditions for optimality of the primal problem.

Lemma B.1.10 At anypoint Xk the dual has an ascent direction given by Ax\k - b.

Proof

£(A) = -\Tb-±\TAB-lAT\ +\TAx0
=>V£(A) = -b-AB-xATX + AxQ

=> V£(A) = -b + A(x0 - B~l ATX)

=*V£(A) = -6 + AxA.

•

We now present the algorithm inProcedure B.l.l, which isbased ongradient projection.

The advantage of this procedure is that the gradient projection for the dual problem is a trivial

operation because of the non-negativity constraints. In the primal problem, the constraint matrix

canbe fairly complex requiring a complicated projection operation.

Procedure B.l.l

Ao = initial guess (typically 0)

(i)xk = x0-B-1lATXk
f[V£(Afc)],- if[Xk]i>0
{ max{0,[V£(Ajt)]t} if[Xk]i =0

(iii)ifhk?0{

APPENDIX B. QUADRATIC OPTIMIZATION 144

• a\ = max{a : A* + ahk > 0 }

Ajk+i = argmaxo^a^axWAjk + ahk))

increment k, go to (i)

} else {

• x = xjt, A = Ajk return

}

The vector h is called the gradient of the Lagrangian £ for a reason that will soon be clear. To find

a in each iteration we resort to a line search algorithm in the direction given by the gradient of £.

We need to show that X, x% are optimum to the primal problem. Note the following

• a\ > 0: Assume A* > 0. To ensure A&+i > Owe need a = max jr-jr. If hk > 0,
i\hk\i<0[hk\i

a\ = +oo. If [hk]i < 0 then [Xk]i > 0, by definition. Hence a\ > 0. This requires thatthe

initial guess Ao > 0.

• If hk # 0,3a : ai > a > 0 : C(Xk+ahk) > C(Xk). Firstnotethat V2£(Ajk) = -AB-lAT,

a negative definite matrix. Since the Lagrangian is continuous, we can expand using the

Taylor's series to obtain

C(Xk + ahk) = C(Xk) + ahkVC(Xk) + a2hk(-AB-]AT)hk

Note that if hk ^ 0, then hkVC(Xk) > 0 from the definitionof hk. Since the last term arises

from the Hessian (the matrix of second derivatives of the objective function) — a negative

definite matrix, we conclude that for a sufficiently small a, hk is a direction of increase (and

hence /i* is called the gradient).

• The objective function £(A) is monotone increasing

• hk = 0 implies the following musthold for each row of A, say i:

- [V£(A)]f- = 0 i.e. [Ax - b]t = 0 and [X]{ > 0 or

- (VA*)]» <0 i.e. [Ax - b]i <0and [X]{ =0.

This implies Ax < 6, so x is feasible. In addition we find E,t^]t[V£(A)],- = 0, hence we
conclude A(Ax - 6) = 0. The first Kuhn-1\icker condition (KT1) is satisfied ateach iteration

in step (i) of Procedure B.l.l. The second condition (KT2) is implicitly satisfied by the

APPENDIX B. QUADRATIC OPTIMIZATION 145

definition ofori. The third (KT3) and fourth (KT4) conditions are met by (x, A), and thus x
is optimum to the primal problem.

As an example, consider the following quadratic problem taken from Section 5.7.1:

min(x - 3)2 + (y - 4)2

x < 3 constraint 1

x + y < 6 constraint 2

y < 4 constraint 3.

Let A= (Ai,A2, A3) be the Lagrangemultipliers associated with the constraints. From Equation B.2,
the following equations for x and y are obtained.

x = 3 — Ai — A2

y = 4 - A2- A3.

The Lagrangian function from Equation B.3 is

2
*W = A2 - ^ - A,A2 - Xl - A2A3 - ^

The gradient of theLagrangian from Lemma B.l.10 is given by

V£(A) = (x-3,x+ j,-6,y-4).

Aj
2

(B.4)

(B.5)

(B.6)

(B.7)

Figure B.l: Plot of £ versus a

The values of x, y and the Lagrangemultipliers for each iteration are shown in Table B.l.

The optimum solution isobtained intwoiterations. Inthe first iteration A = (0,0,0) and thevalues

APPENDIX'S. QUADRATIC OPTIMIZATION

iteration X 2/ A h <*i a

1

2

3

2.5

4

3.5

(0,0,0)
(0,0.5,0)

(0,1,0)
(0,0,0)

OO 0.5

Table B.l: Iterations for quadratic programming

146

of x and y are calculated using Equation B.4 and Equation B.5 respectively. The gradient of the

Lagrangian (from Equation B.7) is computed to be (0,1,0). A feasible direction of ascent for the

dual (h) is (0,1,0). It is easyto seethata\ = oo. SubstitutingA+ ah = (0, a, 0) in Equation B.6,

we find £(A+ah) = a-a2. A plotof £ versus a (Figure B.1) shows that the maximum isattained

at a = 0.5. The Lagrange multipliers for the second iteration are (0,0.5,0). After updatingthe

values of x and y, we find thatthe new gradient of the Lagrangian is (-0.5,0, -0.5). Consequendy

there is no feasible direction ofascent for the dual at x = 2.5, y = 3.5 — the point ofoptimality to

the problem.

147

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures andAlgorithms. Addison-Wesley,
Reading, MA, 1983.

[2] K. A. Bartlett, G. Boriello, and S. Raju. Timing optimization ofmulti-phase sequential logic.
IEEE Transactions onComputer-Aided Design, pages 51-62,1991.

[3] H. Behnke et al., editor. Fundamentals ofMathematics, volume 1, The Real Number System
and Algebra. MIT Press, 1987.

[4] M.R.C.M. Berkelaar and J. A. G. Jess. Private communication. June, 1993.

[5] C. L. Berman, J. L. Carter, and K. F. Day. The Fanout Problem: From Theory toPractice? In

Advanced Research in VLSI: Proceedings ofthe 1989 Decennial Caltech Conference, pages
69-99,1989.

[6] T. M. Burks, K. Sakallah, and T. N. Mudge. Identification of Critical Paths in Circuits with

level-Sensitive Latches. In Proceedings of the International Conference on Computer-Aided
Design, pages 137-141. IEEE, 1992.

[7] T.-A. Chu. SynthesisofHazard-free Control Circuits from Asynchronous Finite StateMachine

Specifications. In Tau 92,1992.

[8] M. R. Dagenais and N. C. Rumin. Automatic Determination of Optimal Clocking Parameters

inMOS VLSI Circuits. In Advanced Research inVLSI.Proc. ofthe 5thMIT Conference, pages

19-33,1988.

[9] J. D. Darringer, D. Brand, W. H. Joyner, and L. Trevillyan. LSS: A System for Production

Logic Syntehsis. Technical report, IBM Journal of Researchand Development, 1984.

BIBLIOGRAPHY 148

[10] G. De Micheli. Synchronous logic synthesis: Algorithms for cycle-time minimization. In

IEEE Transactions on Computer-Aided Design, pages63-73,1991.

[11] S. Dey, F. Brglez, and G. Kedem. Partitioning Sequential Circuits for Logic Optimization. In

Proceedings ofthe InternationalWorkshop on Logic Synthesis, 1991.

[12] S. Dey, M. Potkonjak, and S. G. Rothweiler. PerformanceOptimization ofSequential Circuits

by Eliminating Retiming Bottlenecks. In Proceedings of the International Conference on

Computer-Aided Design, pages 504-509,1992.

[13] D. H. C. Du, S. H. C. Yen, and S. Ghanta. On the General False Path Problem in Timing

Analysis. In ProceedingsoftheDesignAutomation Conference, pages 555-560. IEEE/ACM,

1989.

[14] E. B. Eichelberger and T. W. Williams. A Logic Design Structure for LSI Testability. In

Proceedings ofthe Design Automation Conference, pages 462-468,1977.

[15] J. Fishbum. Clock Skew Optimization.AT&TBellLaboratories,MurrayHillNJ07974,1981.

[16] J. P. Fishbum. A Depth-Decreasing Heuristic for Combinational Logic. InProceedings ofthe

Design Automation Conference, pages 361-364,1990.

[17] J. P. Fishbum. LATTIS: AnIterative Speedup Heuristic for Mapped Logic. InProceedings of
the DesignAutomation Conference, pages 488-491,1992.

[18] J. P. Fishbum and A. E. Dunlop. TILOS: A Posynomial Programming Approach toTransistor

Sizing. In Proceedings ofthe International Conference on Computer-Aided Design, pages
326-328,1985.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability A Guide to the Theory of
NP-Completeness. W H.Freeman and Company, 1979.

[20] D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel. SOCRATES: ASystem for Automatically
Synthesizing and Optimizing Combinational Logic. In Proceedings ofthe Design Automation
Conference, pages 79-85. IEEE/ACM, 1986.

[21] R. B. Hitchcock. Timing Verification and Timing Analysis Program. In 25 Years ofElectronic
Design Automation. IEEE/ACM, 1988.

BIBLIOGRAPHY 149

[22] R. B. Hitchcock, G. L. Smith, and D. D. Cheng. Timing Analysis of Computer Hardware.

Technical report, IBM, 1982.

[23] D. A. Hodges and H. G. Jackson. Analysis andDesign ofDigital Integrated Circuits. McGraw-

Hill Book Co., 2 edition, 1988.

[24] A. Ishii and C. E. Leiserson. A Timing Analysis of Level-Clocked Circuitry. In Advanced

Research in VLSI:Proc. ofthe 7th MIT Conference, 1990.

[25] A. Ishii, C. E. Leiserson, and M. C. Papaefthymiou. Optimizing Two-Phase Level-Clocked

Circuitry. In Advanced Research in VLSI, 1992.

[26] N. P. Jouppi. Timing Verification and Performance ImprovementofMOS VLSIDesigns. PhD

thesis, Stanford University, Stanford CA-94305, October 1984.

[27] R. Kamikawai, M. Yamada, T. Chiba, K. Furumaya, and Y. Tsuchiya. A Critical Path

Delay Check System. In Proceedings of the Design Automation Conference, pages 118-

123. IEEE/ACM, 1981.

[28] M. Kawarabayashi, N. Shenoy, andA. Sangiovanni-Vincentelli. A Verification Technique for

Gated Clock. In Proceedings ofthe Design Automation Conference. IEEE/ACM, 1993.

[29] K. Keutzer. DAGON: Technology Binding and Local Optimization by DAG Matching. In

Proceedings ofthe Design Automation Conference, pages 341-347. ACM/IEEE, 1987.

[30] T. I. Kirkpatrick and N. R. Clark. PERT as an Aid to Logic Design. Technical report, IBM

Journal of Research and Development, 1966.

[31] L. Lavagno, N. Shenoy, and A. Sangiovanni-Vincentelli. Linear Programming for Hazard

Eliminationin AsynchronousCircuits. InJournal of VLSI SignalProcessing, 1993.

[32] E. L. Lawlcr. Combinatorial Optimization: networks and Matroids. Holt, Rinehart and

Winston, 1976.

[33] C. E. Leiserson and J. B. Saxe. Optimizing Synchronous Systems. In Journal of VLSI and

Computer Systems, pages 41-67,1983.

[34] Y-M. Li and M. A. Jabri. A Zero-Skew Clock Routing Scheme for VLSI Circuits. In

Proceedings of the International Conference on Computer-Aided Design, pages 458-463,

1992.

BIBLIOGRAPHY 150

[35] B. Lockyear and C. Ebeling. Optimal Retiming of Multi-Phase Level-Clocked Circuits. In

Advanced Research in VLSI, 1992.

[36] F. Mailhot andG. De Micheli. Technology Mappingusing BooleanMatching and Don't care

Sets. InProceedings ofthe European Design AutomationConference, 1990.

[37] S. Malik, E. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli. Retiming and Resyn

thesis: Optimization of Sequential Networks withCombinational Techniques. InProceedings

oftheHawaiiInternational Conference onSystem Sciences, pages 397-406, January 1990.

[38] S. Malik, K. J. Singh,R. K. Brayton, and A. Sangiovanni-Vincentelli. Performance optimiza

tion of pipelined circuits. In Proceedings of theInternational Conference on Computer-Aided

Design, pages 410-413. IEEE, 1990.

[39] D.Marple. Performance OptimizationofDigitalVLSI design. PhD thesis, Stanford University,

1986.

[40] P. C. McGeer. On the Interaction of Functional and Timing Behavior of Combinational

Circuits. PhD thesis, University of California, Berkeley, 1989.

[41] P.C. Mcgeer, A. Saldanha, P. R. Stephan, R. K. Brayton, andA. Sangiovanni-Vincentelli. Tim

ingAnalysis and Delay-FaultTestGeneration using Path-Recursive Functions. InProceedings

ofthe International Conference onComputer-Aided Design, pages 180-183. IEEE, 1991.

[42] T. M. McWilliams and L. C. Widdoes Jr. SCALD: Structured Computer-Aided Logic Design.

In Proceedings ofthe DesignAutomation Conference, pages 271-277. IEEE/ACM, 1978.

[43] C. A. Mead and L. A. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.

[44] N. Megiddo. Towards aGenuinely Polynomial Algorithm for Linear Programming. In Society
for Industrialand AppliedMathematics, pages 347-353,1983.

[45] K. G. Murty. LinearProgramming. John Wiley andSons, 1983.

[46] LNagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. Memorandum

No. UCB/ERL M85/90, Electronics Research Laboratory, College of Engineering, University
of California, Berkeley, CA 94720, November 1985.

BIBLIOGRAPHY 151

[47] S. M. Nowick and D. L. Dill. Exact Two-level Minimization of Hazard-free Logic with

Multiple-input Changes. In Proceedings ofthe International Conference on Computer-Aided
Design, pages 626-630. IEEE, 1992.

[48] J. K. Ousterhout A Switch-Level Timing Verifier for Digital MOS VLSI. IEEE Transactions
onComputer-Aided Design, CAD-4(3):336-349, July 1985.

[49] P. G. Paulin and E Poirot Logic Decomposition Algorithms for the Timing Optimization
of Multi-Level Logic. In Proceedings ofthe International Conference on Computer Design,
pages 329-33,1989.

[50] D. J. Pilling and H. B. Sun. Computer-Aided Prediction of Delays inLSI Logic Systems. In

Proceedings of the Design Automation Conference, pages 182-186. IEEE/ACM, 1973.

[51] E. Polak, R. Trahan, and D. Q. Mayne. Combined phase I - phase II Methods of Feasible

Directions. Mathematical Programming, 17(l):61-73,1971.

[52] J. Rubinstein, P. Penfield, and M. A. Horowitz. Signal Delay in RCTree Networks. In IEEE
Transactions onCAD, pages 119-127, July 1983.

[53] R. Rudell. Logic Synthesis for VLSI Design. PhD thesis, University ofCalifornia, Berkeley,
1989.

[54] K. Sakallah, T. Mudge, and O. A. Olukotun. Analysis and Design of Latch-Controlled

Synchronous Circuits. In Proceedings ofthe Design Automation Conference, pages 111-117.
IEEE/ACM, 1990.

[55] K. Sakallah, T. N. Mudge, and 0. A. Olukotun. CheckTc and minTc: Timing Verification
and Optimal Clocking of Synchronous Digital Circuits. In Proceedings ofthe International
Conference on Computer-Aided Design, pages 552-555. IEEE, 1990.

[56] A. Saldanha, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Approximating
Optimum Functional Clock Schedules, inpreparation, July 1992.

[57] S. Sapatnekar. A Convex Programming Approach to Problems in VLSI Design. PhD thesis,
Universityof Illinois, Urbana-Champaign, 1992.

BIBLIOGRAPHY 152

[58] T. Sasaki, A. Yamada, T. Aoyama, K. Hasegawa, S. Kato, and S. Sato. Hierarchical Design

Verification for Large Digital Systems. In Proceedings ofthe Design Automation Conference,

pages 105-112. IEEE/ACM, 1981.

[59] R. B. Segal. BDSYN: Logic DescriptionTranslator, BDSIM: Switch Level Simulator. Master's

thesis, University ofCalifornia, Berkeley, May 1987. ERL Memo. M87/33.

[60] E. Sentovich etal. Sequential Circuit Design Using Synthesis and Optimization. In Proceed

ings ofthe International Conference on Computer Design, 1992.

[61] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. A Pseudo-Polynomial Algorithm

for Verification ofClocking Schemes. In Tau92,1992.

[62] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Graph Algorithms for Efficient

Clock Schedule Optimization. In Proceedingsofthe InternationalConferenceon Computer-

Aided Design, 1992.

[63] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Resynthesis of Multi-Phase

Pipelines. In Proceedings of the Design Automation Conference, 1993.

[64] J. Shyu, J. P. Fishbum, A. E. Dunlop, and A. Sangiovanni-Vincentelli. Optimization-based

Transistor Sizing. IEEEJournal ofSolid-State Circuits, pages 100-409,1988.

[65] K. J. Singh and A. Sangiovanni-Vincentelli. A Heuristic Algorithm for the Fanout Problem.

In Proceedings ofthe Design AutomationConference, pages 357-360,1990.

[66] K. J. Singh, A. R. Wang, R. K. Brayton,andA. Sangiovanni-Vincentelli. Timing Optimization

of Combinational Logic. In Proceedings ofthe International Conference on Computer-Aided

Design, pages 282-285,1988.

[67] P.R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. Combinational Test Generation

using Satisfiability. Memo. No. UCB/ERL M92/12,1992.

[68] T. G. Szymanski. LEADOUT: A Static Timing Analyzer for MOS Circuits. In Proceedings

ofthe InternationalConference on Computer-AidedDesign, pages 130-133. IEEE, 1986.

[69] T. G. Szymanski. Computing Optimal Clock Schedules. In Proceedings of the Design

Automation Conference, 1992.

BIBLIOGRAPHY 153

[70] T. G. Szymanski. Private communication. January, 1992.

[71] T. G. Szymanski. Private communication. February, 1993.

[72] T. G. Szymanski and N. V. Shenoy. Verifying Qock Schedules. In Proceedings of the

International Conferenceon Computer-Aided Design, 1992.

[73] H. Tbuati. Performance-Oriented Technology mapping. PhD thesis, University of California,

Berkeley, 1990.

[74] R. S. Tsay. Exact Zero Skew. In Proceedings ofthe InternationalConference on Computer-

Aided Design, 1991.

[75] S. H. Unger and C. J. Tan. Clocking Schemes for High-Speed Digital Systems. IEEE

Transactions on Computers, C-35(10):880-895, October 1986.

[76] P. M. Vaidya. A New Algorithm for Minimizing Convex Functions over Convex Sets. Pro

ceedings ofthe IEEE FoundationsofComputer Science, 1989.

[77] D. Wallace and C. H. Sequin. ATV: An AbstractTiming Verifier. In ProceedingsoftheDesign

Automation Conference, pages 154-159. IEEE/ACM, 1988.

[78] N. Weinerand A. Sangiovanni-Vincentelli. Timing Analysis in aLogic Synthesis Environment.

In Proceedings ofthe Design Automation Conference, pages 655-661. IEEE/ACM, 1989.

[79] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, 1985.

[80] M. A. Wold. Design verification and Performance Analysis. In Proceedings of the Design

Automation Conference, pages 264-270. IEEE/ACM, 1978.

[81] D. Wong, G. De Micheli, and M. Flynn. Inserting Active Delay Elements to Achieve Wave

Pipelining. In Proceedingsof theInternational Conference on Computer-Aided Design, pages

270-273. IEEE, 1989.

[82] R. Zahir. Controller Synthesis for Application Specific Integrated Circuits. Hartung-Gorrc

Vcrlag, Konstanz, Germany, 1991.

Index

active-high, 19

active-high level-sensitive latch, 19

acyclic graph

graph, 108

advantages of

synchronous circuit, 4

aggressive

clocking constraints, 56

AHLSL, see active-high level-sensitive latch

arrival at a memory element

early, 30

late, 30

arrival time, 21

arrival time at a gate

early, 109

late, 109

asynchronous circuit, 2

candidate

edge, 90,114

circuit model, 16

clock

clock event, 2

clock verification problem, 35

optimal clock schedule computation, 55

pipeline resynthesis problem, 86

signal, 21

clock distribution

network, 133

clock event, 21

clock, 2

clock period, 2

lower bound, 64

clock schedule, 2,27

clock skew, 3

clock verification problem

clock, 35

multiple solutions, 36,42

unique solution, 43

unique solutions, 36

clocking constraints, 6,31

aggressive, 56

conservative, 56

dominating, 71

extemal, 55,134

internal, 134

model, 134

clocking scheme, 26

precedence, 26

robust, 133

CmM, see consistent min-maxdelay

combinational

path, 133

conservative

154

INDEX

clocking constraints, 56

consistent min-max delay

Min-max delay, 17,133

constraint graph, 67,87

graph, 70

Constmction C:, 112

continuous

padding, 109

covering, 112

critical long path

path, 109

critical path, 6

critical short path

path, 109

cycle, 28

negative weight cycle, 37

positive weight cycle, 37

relevant, 88

simple, 28

zero weight cycle, 37

cycle stealing, 24,94

data

network, 133

signal, 21

delay

gate, 17

path, 109

delay insertion problem, 110

linear program, 118

depth

pipeline, 5

discrete

padding, 109,121

dominating

clocking constraints, 71

drawbacks

synchronous circuit, 4

dual, 142

duty cycle, 2,55

maximum, 67

minimum, 69

dynamic

power dissipation, 4

timing analysis, 7,22

early

arrival at a memory element, 30

arrival time at a gate, 109

equation set, 35

edge

candidate, 90,114

extemal, 108

internal, 108

weight, 28,108

Edge-triggered memory element, 10,19

equation set

early, 35

late, 35

external

clocking constraints, 55,134

edge, 108

extemal timing constraints, 84

falling edge-triggered D flip-flop, 19

false path, 7,23

fanin, 28,108

155

INDEX

set, 28,108

fanout, 28,108

set, 28,108

FEDFF, see Falling edge-triggeredDflip-flop

Fixed Delay, 17

fixed point, 36

flip-flop, 10,19

gate

delay, 17

gradient projection, 141

graph, 88

acyclic graph, 108

constraint graph, 70

latch graph, 28

modified, 94

hard

required time, 96

hazard, 3

hazard-free, 3

hold, 58, 86

hold constraint, 20,31

hold time, 20

internal

clocking constraints, 134

edge, 108

Kuhn-Tucker conditions, 143

Lagrange multipliers, 142

Lagrangian, 142,143,144

latch, 10,19

latch graph

156

graph, 28

late

arrival at a memory element, 30

arrival time at a gate, 109

equation set, 35

length

path, 6

level

pipeline, 5

Level-sensitive memory element, 10,19

library delay, 17

linear delay, 17

linear program, 55

delay insertion problem, 118

optimal clock schedule computation, 66

long path, 58,134

long path edge, 88

lower bound

clock period, 64

mapped, 5

matrix

positive definite, 92,141

maximum

duty cycle, 67

Min-max delay, 17

consistent min-max delay, 17,133

simplifiedmin-maxdelay, 17,132

minimum

duty cycle, 69

model

clocking constraints, 134

modified

INDEX

graph, 94

multiple solutions

clock verification problem, 36,42

negative weight cycle

cycle, 37

network

clock distribution, 133

data, 133

skew, 133

optimal clock schedule computation

clock, 55

linear program, 66

padding, 110

continuous, 109

discrete, 109,121

path, 28,109

combinational, 133

critical long path, 109

critical short path, 109

delay, 109

length, 6

skew, 133

supporting path, 44

types, 56

phase shift operator, 26

phases, 1,21

pipeline, 4,85

depth, 5

level, 5

pipeline resynthesis problem

clock, 86

positive definite

matrix, y2, i41

positive weight cycle

cycle, 37

power dissipation, 4

dynamic, 4

quiescent, 4

precedence

clocking scheme, 26

primal, 142

primary input, 16,108

primary output, 17,108

quiescent

power dissipation, 4

relevant

cycle, 88

required time, 96

hard, 96

soft, 96

resynthesis, 90

retardation, 24

PAti'minrr 7f 25

robust, 135,136

clocking scheme, 133

set

fanin, 28,108

fanout, 28,108

set-up, 58, 86

set-up constraint, 20,31

set-up time, 20

short path, 58,134

157

INDEX

short path edge, 88

shon path violation, 121

signal, 21

clock, 21

data, 21

simple

cycle, 28

simplified min-max delay

Min-max delay, 17,132

skew

network, 133.

path. 133

skew network, 33

slack, 23,84,90

slacks. 1.16

SmM, see simplified min-max delay

soft

inquired time, 96

static

timing analysis, 6,22

Statistical delay, 18

supporting path

path, 44

synchronous circuit, 1

advantages of, 4

drawbacks, 4

Technology mapping, 5

timing analysis, 6

dynamic, 7,22

static, 6,22

types

path, 56

unique solution

clock verification problem, 43

unique solutions

clock verification problem, 36

unit delay, 17

unit delay tanout, 17

unmapped, 5

wave pipelining, 124

weight

edge. 28,108

zero weight cycle

cycle, 37

158

	Copyright notice 1993
	ERL-93-97 (1 of 2)
	ERL-93-97 (2 of 2)

