Copyright © 1993, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TIMING ISSUES IN SEQUENTIAL CIRCUITS

by

Narendra Vasudeva Shenoy

Memorandum No. UCB/ERL M93/97

15 December 1993

TIMING ISSUES IN SEQUENTIAL CIRCUITS

Copyright © 1993

by

Narendra Vasudeva Shenoy

Memorandum No. UCB/ERL M93/97

15 December 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

Timing Issues in Sequential Circuits

by
Narendra Vasudeva Shenoy

Doctor of Philosophy in
Electrical Engineering and Computer Sciences
University of Califoia at Berkeley
Professor Alberto Sangiovanni-\fmcemelli, Chair

Design automation techniques play amajor role in VLSI design. Growth in the complexity
of circuits and performance requirements has necessitated the use of computer aided design tools.
We examine some of the problems faced in the design of high performance synchronous circuits.
Synchronous circuits use complex clocking schedules and circuit structures to capture and store data
signals. The performance metric is measured by the periodicity of signals in the clocking schedule.

The first aspect of this thesis is devoted to the analysis of synchronous circuits. A clocking
schedule must satisfy constraints that arise from the circuit topology and delay distribution on gates,
wires and memory elements. Analysis to examine if a clock schedule is error-free is first considercd.
Improving the performance metric without changing the circuit topology the next issue considered.
Flexibility in changing the clock signals and borrowing time across level-sensitive memory clements
provides ample freedom for improving the circuit performance and should be exploited.

The second aspect focusses on performance improvement by transforming the circuit
structure. A technique to use existing combinational delay optimizers repeatedly to solve the
sequential performance problem is proposed. The approach uses an innovative notion of “‘perturba-
tion” to extract timing oonstraims. If the difference between the largest and the smallest delays of
paths between a pair of memory elements is significant, the short path can cause erroneous laiching
of data. This is known as the short path problem. We investigate this problcm and proposc a solution
based on active delay insertion.

rotf. Alberto S giovanni-vincentelll
Thesis CoMmittee Chairman

Louayg vaapnsop ‘) Jo Kiowsw ay1 of

iv

Contents

List of Figures vii
List of Tables ix
List of Theorems and Procedures X
Acknowledgments xii
1 Introduction 1
1.1 Synchronouscircuits o ot i i e e e e e e e e 1

12 DeSIgNPIOCESS . « -« v v i i i e e e e e e e e e e e e e e e e e e 5

1.3 Timingissuesin VLSIdesign 6

14 Timingissues:anexample i i ittt e 7

1.5 ThesisOverview i i i i i i it e e e e e e e e e e e 13

2 Prelude 16
2.1 Circuitmodel e e e e 16
2.1.1 Combinationalcircuits 16

2.12 Memoryelementst ii e e e e e e 19

2.1.3 Clocksignals e 21

2.2 Timingin VLSIcircuits: areview 21
221 Timinganalysis 21

222 Timingoptimization 23

23 Definitionso e e e e e e e e 26
23.1 Clockingscheme. i 26

23.2 Combinationalcircuit 27

2.3.3 Memory elements and circuit clocking constraints 28

234 Anexample e e e e e e e e e e, 31

24 DiSCUSSIONt e e e e e e e e e e e e e e e e e, 33

3 Clock Schedule Verification 335
31 Overview e e e e e e e e e e e, 35

32 Theoretical iSSUES . « .« . v v v v v it e e e e e e e e e e e 36

3.2.1 Solvingthelateequationset 38

CONTENTS

322 Solvingtheearlyequationset0 cveeunen...
3.3 Uniquenessofsolutions i it i it tnnnnenn..
3.3.1 Uniqueness condition forlate equationset
3.3.2 Uniqueness conditions for early equationset
333 Resolvingmultiplicity00ttt
34 Results e e e e e e e e e
341 Benchmarks0ttt
342 EXperments c it i it unenete e
35 DisCuSSion e e e e e e e e e e e

Clock Schedule Optimization
41 OVerview i e e e e e e e e e e e e e e
42 Clockingconstraints: anew form v i ittt
4.3 Eliminatingredundantconstraints 0v.uun....
44 Solving the optimizationproblem
44.1 Asimplealgorithm
442 Ageneralalgorithm0......
45 Resulls it e e e e e e e
45.1 Anexample e e e e e e e,
452 EXPEAMENLS ot it ittt et e e e e e e
46 Discussion e e

Resynthesis of Multi-Phase Pipelines
S O Overview . . . L e e e e e e e
52 Definitions e e e e
53 Theoreticalresults e
5S4 Resynthesis
5.5 Theoptimizationproblem
56 Cyclestealing ittt e
ST Resultso e e e e e e e
571 Anexample e
ST2 EXPErimentso vt vttt e e e e e e e e
S8 Discussion e e e e e,

Delay Insertion for Short Paths
6.1 Overview. e e
6.2 Definitions
6.3 Ispaddingalwayspossible?
6.3.1 Amaivealgorithm,
6.4 Alinearprogrammingapproach
6.5 Refinements e
6.5.1 Delaymodel
6.5.2 Discretedelayinsertion L.
6.6 Relationtowavepipelining
6.7 Results vt i i e e e e e e

CONTENTS

68 Discussion 0.0,
Conclusions

A Optimality of the SmM Delay Model
Al Introduction
A.l.1 CmMdelaymodel
A.l2 SmMdelaymodel
A2 Relatingthetwomodels
A2.1 Preliminaries.

B Quadratic Optimization

Bibliography

ooooooooooooooooooooooo

.......................

.......................

ooooooooooooooooooooooo

.......................

vi

129
130

132
132
134
135
136
136
137

141

147

vii

List of Figures

1.1
1.2
13
14
1.5
1.6
1.7
1.8

2.1
22
23
24
2.5
2.6
27
238
29
2.10
2.11
2.12
2.13

3.1
3.2

4.1
4.2
43
44
4.5
4.6
4.7

Asynchronouscircuit vt v i it it e e e e e 2
A synchronous pipeline e e e e e e e e e e e e e e 5
Anexample e e e e 8
High level specification: Anexample 9
Example with 2 phase level-sensitivelatches 11
Alternative implementations: edge-triggerced circuit 12
Altemnative implementations: level-sensitive circuit 12
Performance versus areatrade-off 14
Fixeddelaymodel 18
Simplified min-maxdelaymodel 18
Statisticaldelaymodel 18
Anidealflipflop -20
Anideallatch 20
Two phase clockingscheme 27
Keytowaveforms 29
Data waveformsataflipflop. 29
Datawaveformsatalatch 30
Propagationofdatawaveforms 30
Set-upand holdconstraints 31
Example: videocoder e 32
Latch graph forvideocoder 33
Circuit withmultiple fixedpoints 43
Latch graph with modifiededgeweights 50
Graphical interpretationof thecycleweights 71
Graphical interpretationof optimality 74
Latch graph forvideocoder, 75
Constraint graph forvideocoder 78
Constraint graph with edge weights evaluatedat¢ =120 78
Clocking scheme forvideocoder 79
Constraint graph for video coder with negativecycle 80

LIST OF FIGURES viii

5.1
52
53
54
5.5
5.6
5.7
5.8
59
5.10

6.1
6.2
6.3
6.4

Al
A2

B.1

Multi-phase pipelinecircuit 86
GraphConsStruCtion v v v v v v v it e e e e e e e e e e e e 89
Effect of combinational optimization on long/shortpaths 91
Feasibleregionandcurrentdesign 92
Graph modified forcyclestealing 94
k*P resynthesiSREZION . « « & v v v v v it e e e e e e e e 98
Pipeline example and associatedgraph e e e e e 99
Graphical solutionforexample 100
Example forextendedmodel 0. .. 100
addT3-a3stagepipeline. 0 i i i it i e e e e 104
Graphforasimplecircuit i, 108
Shortand long pathinteractionst 113
Area optimizationduring delayinsertions 123
Wavepipelining it 124
Robustclocking: anexample 136
Skeweffect: anexample e e e e 138

PlotOf LVeISUS @ . & . i i i e i e e e e e e e e e e e e e e e e e e 145

ix

List of Tables

2.1
22
23

3.1
3.2
33
34
35
3.6

4.1
4.2
43
44

5.1
5.2
53
54

6.1
6.2
6.3
6.4

B.1

Variablesatamemoryelementt ittt 28
Clockingconstraints e e e et e e e e e e e e 32
Clockingissues o v i i ittt i e e e e e e e e e 34
Simplified clockingconstraints i e, 36
Table of iterations - lateequationset 49
Table of iterations - earlyequationset 50
Benchmark statistics, 52
Clock verification with unit fanoutdelaymodel 52
Clock verification withlibrarydelaymodel 53
Conservative clockingconstraints0..... 7
Inequalities for correctclocking 58
Optimal clock computation with unit delay fanoutmodel 81
Optimal clock computation withlibrary delaymodel 82
Arrival and required times forresynthesis 102
Area-clock periodtrade-off, 103
Pipeline resynthesis for minimum clock period using unit fanout model 104
Pipeline resynthesisforaddTn 105
Delay insertion using unit delay fanoutmodel 127
Delay insertion using librarydelaymodel 127
Wave pipelining using unit delay fanoutmodel 128
Wave pipelining using librarydelaymodel 128

Iterations for quadratic programming 146

List of Theorems and Procedures

Lemma 3.2l . . it ettt e e e e e e e e e e e e e e et e 37
Corollary 3.2.2 o i i e e e e e e e e e e e e e 37
Lemma3.2.3 ittt e e e e e e e e e e e e e e e e e e 37
Proposition3.2.4t T e e e e 37
Corollary 3.2.5 . & . . . i e, 37
Procedure 3.2.1 . . L e e e e e e e e e e e e e e e e e e e 38
Lemma3.2.6 i it e e e e e e e e e e e e e e e e e e 38
Lemma 3,27 e 39
Theorem 3.2.8 o i i e 39
Procedure 3.2.2 e 40
Lemma3.2.0 . . . i e 41
Lemma3.2.10 e e e e e e e e e e e e e e e e e 41
Theorem 3.2.11 e 42
Lemma3.3.] . . . o e e e e e e e e e e e e e e e e e e e "43
Lemma3.3.2 o e 44
Lemma3.3.3 e e e e e e e e e e e e 44
Lemma3.3.4 o e 45
Theorem 3.3.5 i i i e e e e e e e e e e e e e e 45
Lemma3.3.6 i it e, 46
Lemma3.3.7 . . . ittt e e e e e e e e e e e e e e e e e e 46
Lemma3.3.8 i e e e e e e e e e e e e e 46
Lemma3.3.0 e e e e e e e e e e e e e 47
Theorem 3.3.10 i e e e e e e e e e e 47
Lemma 3,311 e e e e e e e e e e e e e 47
Lemma3.3.12 e e e e e e e e e e, 47
Theorem 3.3.13 e e e e e e e e e e e e e 48
Property 4.2.1 e e e e e e e 58
Lemmad.2.l e e e e e e e e e 58
Corollary 4.2.2 e e e e e 59
Theorem 4.2.3 o e e e e e e e e e e e e e 59
Procedure 4.2.1 e e e s, 61
Theorem 4.4.1 o e e e e e, 67
Theorem4.4.2 e e e 68

Theorem4.4.3 68

LIST OF THEOREMS AND PROCEDURES xi

Lemmadd.d e e e e e e e e e 69
Procedure 4.4.1 e e e, 70
Lemmadd4.5 e e e e e e e 72
Lemmadd4.6 e e e e e e, 72
Lemmad44.7 e e e e e e et et e e e e e e e e 73
Theorem 4.4.8 @ i i e e e e e e e, 73
Corollary 4.4.9 i e e e e e e, 74
Theorem 5.3.1 L i e e e e e e e e, 88
LemmasS.3.2 e e e 20
Theorem 5.5.1ot i e e e e e e e, 93
LemmaS.6.1o e e e e e 95
Proposition5.6.2 98
Lemma6.3.1 e e e e, 110
Theorem 6.3.2 e e e e e 111
Lemma6.3.3 111
Corollary6.34o e e e e e e e e e e 114
Corollary 6.3.5 ¢ . it i e e e e 115
Procedure 6.3.1 115
Lemma6.3.6 oot e e e e e e 116
Corollary 6.3.7 o it e e e 117
Lemma6.3.8 117
Corollary 6.3.9 i e e 117
Corollary 6.3.10 e, 117
Procedure 6.3.2 118
Theorem 6.4.1 119
Theorem 6.5.1 e 120
Theorem 6.5.2 121
LemmaA21 138
Proposition A.2.2 139
LemmaA23 139
Theorem A2.4 e e e 140
Corollary A.2.5 i i e e, 140
LemmaB.1.6 141
LemmaB.1.7 e 141
LemmaB.18 142
LemmaB.1.9 142
LemmaB.1.10 e, 143

Procedure B.1.1 143

xii

Acknowledgments

It has been a long and winding 19 years since I ambitiously embarked on the project of
educating myself. This thesis to a certain extent reflects a culmination of these efforts. It is hoped
that writing this thesis has made me realize what Bacon meant when he said “Reading maketh a full
man, conference a ready man, and writing an exact man”.

Prof. Alberto Sangiovanni-Vincentelli, my advisor, teacher, mentor all rolled into one;
from you I leamnt the art of delivering coherent lectures, the need for meticulousness in research
and the skill of technical writing. Thanks also for the financial and moral support over the years.
Prof. Robert Brayton has been much more than a chairperson on my qualifying committee and
co-advisor. He has guided this research much like his own project, listened patiently to proofs and
gibberish for hours, and encouraged me to find my own bearings. -

Dr. T. G. Szymanski has been an illuminati in the research area of this thesis. His
guiding hand can been seen in Chapters 3 and 4, and Appendix A. Inspiration from your research,
discussions and support certainly jump-started this thesis. Thanks Tom, I wish there was some
way I could repay you for your ever-willingness to guide me. You have been my advisor away
from school. I also wish to thank Prof. J. Rabaey and Prof. S. Oren for agreeing to be committee
members on my qualifying exam. Prof. S. Oren, I also thank you for taking the time to be the
external reader for my thesis.

ToRajesh and Anand; your presence has made the journey of my life much more enjoyable.
There are few things in life that I cherish more than your friendship. I would also like to take a
moment to wish you both jugfulls of felicitations for linking your lots with Bhavana and Shevani.
I also take this opportunity to thank a few teachers from St. Xaviers® High School, Bombay; Ms.
Joannes, Ms. Carvalho, Mrs. Seshan, Ms. Ghadiali, Mrs. Gandhi, Mr. Rafael, and Fr. Aran. I
hope we can live up to what you taught us— "duc in altum"! Certain people at the Indian Institute
of Technology, Bombay did believe that I was cut out for research and encouraged me to that effect.

ACKNOWLEDGMENTS xiii

Thanks to Prof. A. N. Chandorkar, Prof. J. Vasi, and Prof. U. B. Desai. If one man convinced me
to apply to Berkeley it was a Makarand; thanks Mac for your advice and friendship over the years.

The Bay area has been a very hospitable place to live in. But the presence of Madhu,
Niranjan, Diane and Sushil, Savita and Munnu, lil’ Usha, KJ, Paola and Luciano, Rajeev, Asha and
Mots, Sajeena and Sushil has made it even more fun. And yes a extra-special thanks to Pratap;
for the MNF sessions, for willingly volunteering to eat experimental cooking and sipping untested
cocktails and among many many other things being a friend. I also wish to thank Manisha and
Milind, Vidya and Ravi, Sashikala and Narasimha for being wonderful hosts on several occasions.

The Cad-group provides an excellent environment for research and a wonderful support
group. It would be an Herculean effort to thank everyone (past and present), but I cannot but
list Luciano Lavagno, Sharad Malik, Rajeev Murgai, Alexander Saldanha, Ellen Sentovich and
Kanwar Jit Singh. Flora, Elise, Kia, Heather and Genevieve have always been willing to help onthe
organizational side of things. Thanks for their patience and help. Kudos to Brad and Mike for the
excellent support in the Cadgroup. NSF and DARPA are acknowledged for funding this research.
The Cadgroup also had its fair share of visitors. Many thanks and regards to K. Kodandapani, Paul
Gutwin, and Masamichi Kawarabayashi. I also wish to thank Kurt Keutzer for several basketball
games during post-conference hours.

There are numerous “faces™ at the RSF to thank for pick-up basketball games. And-yes
Bill Watterson, for a wonderful pair of cartoon characters; to Calvin for his indespensible advice
and Hobbes for his sense of propriety. To the writers of Superman and Batman series of comics;
you provided the means of escape to a little kid in me that still wants to believe in super heroes and
legends. To Sam and his merry crew (over the years) at Brewed Awakening (Coffeec Connection not
so long ago) who provided wonderful service that made the 4 o’clock coffee break a pleasure.

To my mother, and brother Vasant; the sacrifices you have made to support me cannot be
described. This thesis is the result of as much effort (if not more) on your parts than mine. I am
also grateful to my uncles Vithal, Umanath and Ramachandra and my aunts who provided comfort
and courage to go on with my studies. A special thanks to Surekha and Surendra and their familics.
And yes the Lord Almi ghty (I agree with the philosophy that it is better to thank God intermittently
than to spend your life as an atheist, only to discover that He does exist!).

Chapter 1

Introduction

The impact of Very Large Scale Integrated (VLSI) circuits in modem life can be seen
in various electronic facilities with which we pamper ourselves. VLSI circuits can be found in
modems, facsimile machines, television sets — to mention a few. Over the years, growth in the
complexity of VLSI designs has enabled designers to include well over a million transistors on each
chip. Designers are faced with the daunting task of packing more functionality into a smaller area
and creating a circuit that operates faster than the previous generation. Design Automation (DA)
techniques play an invaluable role in this complex process.

This thesis deals with some of the problems that arise in synchronous circuit design.
Algorithms for ensuring correct operation of a circuit and for performance optimization of a circuit
are presented. Implementation issues and experience gained through experiments are also described.

Section 1.1 provides an insight to some of the issues that arise in the design of a syn-
chronous circuit. The advantages and disadvantages of a synchronous design style are also described.
The design process is outlined in Section 1.2. Section 1.3 presents some of the timing issues that
arise in VLSI design. The research in this thesis is motivated by an application in Section 1.4.

1.1 Synchronous circuits

VLSI circuits can be broadly classified into two categories depending on their mode of
operation.

¢ A synchronous circuit is characterized by the presence of special periodic signals (called

clock signals or phases) and special circuit components (called memory elements) that are

CHAPTER 1. INTRODUCTION 2

Combinational circuit

Clock

primary inputs —] primary outputs

// ‘\ Memory element
AELudy
/'// e
s g
/ == BN
/ A}
J \
| |
\ i
\ /
\ a
\ /
N s
~ s

e e

acyclic interconnection of gates

Figure 1.1: A synchronous circuit

used to store and regulate the flow of data. There can be one or more clock signals, operating
at the same or different periods (frequencies). A rise or fall of a clock phase constitutes a clock
event. A clock scheduleis aset of clock signals with all clock events specified. A performance
metric for a synchronous circuit is the smallest period common to the clock signals, called the
clock period. Smaller the clock period, higher is the regard for the design. A synchronous
circuit is an interconnection of gates and memory elements. It may be partitioned into regions
of combinational logic separated by memory elements (Figure 1.1). Each combinational
region is an acyclic interconnection of gates. Thus every cycle in the circuit is broken by at
least one memory clement. The flow of data between combinational regions is periodically
regulated by clock signals controlling the intervening memory elements. The ratio of the time
interval that a phase is high to the clock period is called the duty cycle for the phase. If all

the phases have the same duty cycle, the clock schedule is said to have the said duty cycle.

e An asynchronous circuit is an arbitrary interconnection of gates and latching structures. In

contrast to synchronous circuits, cyclic structures of logic gates are permitted and there are

CHAPTER 1. INTRODUCTION 3

no clock signals dedicated for latching data.

A major challenge in synthesizing asynchronous circuits is the susceptibility of designs
10 hazards. A hazard is defined as any transition of a signal that is not prescribed by the designer.
The causes for a hazard can be traced to

1. the distribution of delays on gates in the circuit, or
2. the logic function implemented by the design.

The actual delay of a gate depends on the fabrication process and on factors related to the operating
environment (like temperature, exposure to radiation etc.). This makes it difficult for a designer
to ensure that a circuit is hazard-free. Automated approaches to synthesize hazard-free designs
have been recently proposed [47, 7, 31]. This problem is mitigated in synchronous designs due
of the presence of memory elements. Hazards can appear in a combinational region, but the
clock schedule is designed so that the flow of hazards through memory elements into adjacent
combinational regions, is prevented or carefully controlled.

During the design of a synchronous circuit special attention must be paid to the routing
of clock lines. Clock signals have to be distributed from input pads (sources) to memory elements
(sinks) on a chip. Signal propagation through long metal lines leads to degradation of the signal.
Consequently a signal at a memory element may not have sharp transitions, although the same
signal has sharp transitions at its source. This gives rise to several problems; two prominent issues
are the following.

1. At a single sink, the asymmetry of rise and fall times along the clock distribution path may
lead to a narrowing of the clock pulse at the sink.

2. Now consider two clock lines reaching a pair of sinks, such that data from the output of a
memory element at the first sink propagates to the input of a memory element at the second
sink. Clock signals that are not overlapping at the source pins, may appear overlapping at the
memory elements; This can cause a memory element to permit flow of data, when in fact it
should have impeded it, or vice versa.

These problems are attributed to clock skew. However, recent advances in physical DA have
provided techniques to overcome the clock skew problem [74, 34]. Despite the problems associated
with uncontrolled skew, efforts have been also made to control clock skew to the designer’s advantage

CHAPTER 1. INTRODUCTION ’ 4

(15]). Asynchronous circuits are free from clock skew problems, since there are no clock signals to
be routed across the chip.

An important issue in VLSI design is the power dissipation per unit area of the design.
The pads of a design typically account for more that 50 per percent of the power dissipation. Rest
of the power is dissipated in evaluation of logic in combinational regions, in driving clock lines
high and low and due to leakage cumrents. In an asynchronous circuit, the power is dissipated in
switching of gates and in additional circuitry required to detect signal completion. Power dissipation
can classified as

1. quiescent; caused due to leakage currents, dominant in portable applications, and

2. dynamic; caused due to switching activity, dominant in high performance computation ori-
ented designs.

The power dissipation depends to a large extent on the choice of technology (CMOS, ECL, BiCMOS
etc.) and also on the design style.
The advantages of designing a synchronous circuit are:

o Hazards occurring intemnally in the circuit do not affect the outputs.

o Modularity of combinational regions due to the relative isolation provided by the interver;ing
memory elements.

o Ease of testing. Techniques such as SCAN [14] can be used to test and detect errors in a
fabricated chip.

¢ Relative insensitivity to actual gate delays. If gate delays violate respective bounds, the circuit

may not operate at the desired frequency. However, it may be possible to operate it at a lower
frequency.

The drawbacks of synchronous designs are:
¢ Increase in area, duc to the presence of memory elements and routing of clock signals.
o Care has to be taken in distributing clock signals across the design.

A special class of synchronous designs are pipeline circuits, in which data flows in one
direction. They are also termed as flow-forward circuits. A multi-phase pipeline consists of stages
of combinational logic separated by memory elements (see Figure 1.2). Each stage has inputs from

CHAPTER 1. INTRODUCTION 5

primary outputs

primary inputs

Clock
stage 1 slage 2 \ stage n

Figure 1.2: A synchronous pipeline

the previous stage and perhaps some inputs from the external world. Each stage has outputs feeding
the next stage and perhaps also to the environment. Data path designs are typically pipelines. The
depth or level of a pipeline is the maximum number of memory clements along a path from an input

to an output.

1.2 Design process

Structured VLSI design proceeds through several steps. They are briefly outlined below.

e Design Specification In the first step, a formal behavior of the design is specified. This
translates a conceptual idea into a description that may be verified for various properties that
must be satisfied by the design. A large design may be sub-divided into several modules that
may be independently designed and “glued” together at a later stage. This requires budgeting
of resources (like chip area, power dissipation) and timing constraints on the independent

modules.

¢ Logic Design The formal specification is translated into a set of Boolean equations and
registers. Logic synthesis techniques arc used to optimize the circuit for area, for speed,
or for power. At this stage, since the circuit has no tangible realization associated with it,
it is called an unmapped circuit. Technology mapping is a process by which the circuit is
associated with an interconnection of gates and memory clements from a library, depending

on the technology of implementation. The resulting net-list is called a mapped circuit.

e Physical Design Gates and memory elements in the net-list are given their physical attributes.
The circuit is represented as a set of polygons on several layers. A placement tool is used
to find locations for the polygons on a two dimensional plane. The goal is to minimize the

total area and also to take the criticality of the nets into account, while ensuring that design

CHAPTER 1. INTRODUCTION - 6

rules [43, 79] are observed. Global and detailed routing is done to interconnect the pins of
the gates. Wire length minimization, via minimization and criticality of nets are some of the
issues that need to be considered.

o Design Verification At this stage, the design is ready for a performance evaluation. A timing
verification is done to ensure that the memory elements latch data signals correctly and that
hazards are not permitted to race around the circuit, corrupting computed values. A functional
verification is carried out to ensure correct logical behavior of the circuit under all possible
environment inputs. Circuit simulation may_ also be used to compute the delays of critical
paths. Rectification of an error discovered in this step, may mean repeating one or more of
the previous steps. .

o Performance Issues Chip design often involves a complex trade-off of resources for require-
ments. High performance is typically attained at a penalty in area and power. Atevery level of
the design it is necessary to evaluate various strategies available to meet the goals. Problems
that arise in performance analysis and optimization of synchronous circuits are discussed in
detail in the following Section.

1.3 Timing issues in VLSI design

Due to the physical nature of gates and memory elements, signals undergo a delay when
propagating through them. Consequently, the computation of a Boolean function takes a finite
amount of time. A path in a circuit is called a critical path if delays of gates on the path prevent
the circuit from operating faster. Path length is used to denote the delay incurred by a signal
propagating along the path. For a combinational circuit, with all inputs arriving at the same time,
the longest paths in the circuit form a set of critical paths. The simplest timing problem that arises
in circuit design is known as timing analysis. Informally, timing analysis can be defined as a
procedure which identifies critical paths. Sequential timing analysis is complicated by the fact
that memory elements latch data. A sequential timing analyzer identifies critical paths from one
memory element to another and ensures the stability of data signals when memory elements latch
data. The constraints for correct operation of a circuit are termed as clocking constraints. Timing
analysis procedures operate on a gate level description or a transistor level description of a circuit. A
timing analysis tool is termed as a static analyzer if it does not take the Boolean nature of gates into
account. Results from static timing analysis are always pessimistic. There may exist topological

CHAPTER 1. INTRODUCTION 7

paths in a circuit which are never exercised during operation, and thus can never contribute to the
delay of the circuit. Such a path is termed a false path - a path through which no transition of
signals can propagate. A timing analysis procedure is termed dynamic if it can detect false paths
and identify the delay of true paths. '

Often, the design of a combinational region has to meet constraints on the largest and
smallest delay that any path in the region can have. This is known as the combinational performance
problem. Efforts to solve this problem have used critical path restructuring, gate decomposition,
buffer optimization and transistor sizing. All previous methods have dealt with controlling the
longest delay of the circuit. The problem of ensuring that path delays exceed their respective
lower bound has not been addressed so far. Combinational performance optimization techniques
are important for obtaining fast implementations, but they form only a subset of the techniques
available to the designer. The flexibility provided by the presence of memory elements and clock
signals is exploited by sequential optimization techniques. To evaluate a synchronous circuit for
performance, it is necessary to compute a clock schedule with the smallest clock period that satisfies
all the system constraints and the clocking constraints. This is known as the clock schedule
optimization problem. Retiming is a technique which involves repositioning of memory elements
so that the clock period is decreased, while preserving input-output behavior. It is common for
the designer to have a target clock period as the goal for circuit performance. In such a case, it is
possible to specify timing constraints for each combinational region, in order that the target clock
period be attained. Each combinational region is resynthesized to ensure that its delays are within
the prescribed bounds.

1.4 Timing issues: an example

Consider the design of the following arithmetic circuit; it takes a 3 bit input vector A,
a 2 bit non-zcro input key C, and provides a 2 bit output vector S. The inputs 4 and C are held
constant upto C clock periods. Let us ignore the circuitry which controls the application of the
inputs and instead focus on the data-path. The behavior of a sequential circuit is described by
annotating each input/output vector with a integer subscript; the subscript indicates the clock period
frame with which the vector is to be associated. If the vector is constant over all C — 1 periods, the
subscript is dropped. The output of the circuit is specified in terms of the input and clock period

CHAPTER 1. INTRODUCTION 8

C
adder {2
-~ 3
1 A intS 1s
- int
— -t % _’L..H._..

- 4 5 2
- oldS Modulo

/

/

4 (least significant bits)

Figure 1.3: An example

frame under consideration.
Sk =(kA)%C k=1,---,C—-1 (1.1)

The modulus (%) operation yields the remainder after dividing the term before the operand by the
term after the operand. The circuit is implemented in terms of an adder and some combinational
logic for the modulus operation. Since the maximum value of the input key C is 3 and the value of
A is at most 7, the size of the adder can be restricted to 5 bits at the output. The schematic is shown
in Figure 1.3. As a matter of notation, the memory elements are shown in little rectangles with the
data input as an arrow leading to it and the data output as an arrow leaving it. The phase controlling
it may be omitted if all memory elements are clocked by the same phase (single phase clocking
scheme). The high level description of the circuit in BDS [59] is given in Figure 1.4. The BDS
description is translated to a logic level description and memory elements are inserted. A sequential
logic optimizer SIS[60], is used to obtain a logic circuit which has not been bound to a technology.
At this stage the designer is interested in exploring the design space for a performance versus arca
trade-off. 1

The area of the circuit is measured as the sum of the area of the logic and the memory
elements. The logic is decomposed into 2 input and and or gates, and inverters. The area of the
logic is approximated as the number of such gates. Each gate is assigned a unit delay with 0.2
units per fanout. A memory element has three ports, a data input port, a data output port and a
control input port. There may also be ports for setting and resetting the memory elements, or for

CHAPTER 1. INTRODUCTION

MODEL add-modulo

S<1:0>, intSo<4:0>= ! current sum
A2:0>, ! 2 bit input vector
C<1:0>, ! 2 bit non-zero input vector
01dS<3:0>, ! previous sum
intSi<4:0>;

ROUTINE adder;

intSo = 0ldS + A;
ENDROUTINE;

ROUTINE modulo;
S<1:0>=0;
SELECT C FROM
[1]: BEGIN
S<1:.0>=0; ! modulo 1 is always 0
END;
{2]: BEGIN
S<0> = intSi<0>; ! modulo 2 is the least significant bit
END;
[3]: BEGIN
SELECT intSi<4:0> FROM
(1,4,7,10,13, 16, 19]: BEGIN
S<1:0>=1; ! modulo 3 for this set is 1
END;
{2,5,8,11, 14, 17, 20]: BEGIN
S<1:0>=2; ! modulo 3 for this set is 2
END;
ENDSELECT; ! modulo 3 for rest is 0 (default)
END;
ENDSELECT;
ENDROUTINE;

ENDMODEL;

Figure 1.4: High level specification: An example

CHAPTER 1. INTRODUCTION 10

asynchronous events but we shall ignore these for the time being. Although there are several typés
of memory elements, they can be broadly classified into two categories on the basis of behavior.

1. Edge-triggered memory element (flip-flop): The memory element samples the input port at
the rise (or fall) of the control signal, and provides the value at the output. The output is held
stable until the next rising (or falling) edge of the control signal.

2. Level-sensitive memory element (latch): The memory element transmits the data at the input
to the output, as soon as the control signal goes high (or low) and continues to do so as long
as the control remains high (or low). When the control falls (or rises), the output is “latched”
to the value at the instant of fall (or rise) and is held at that value until the next rise (or fall)
of the control signal.

To summarize, the flip-flops provide better isolation between input and output than latches. Latches
permit combinational regions to borrow (steal) time from adjacent regions during the active intervals.

To begin, consider the circuit with flip-flops triggered‘ on the falling edge. Each flip-flop
is assigned an area equivalent to six 2 input gates. The area is measured in terms of the total number
of 2 input gates in the circuit. The initial area is 159 and a timing analysis yields the best clock to
be 30.6 units. Retiming for minimum delay yields a clock period of 10.8 units and an arca of 243.
Combinational performance optimization techniques on the original circuit result in a circuit \;/ith
clock period 24.0 units and an area of 209.

The design is changed so that the flip-flops at the inputs and outputs are replaced by
level-sensitive (active high) latches on phase ¢1 and level-sensitive latches (active-high) on phase
¢> are introduced at the output of the adder (see Figure 1.5). A level-sensitive latch has an area
equivalent to three 2 input gates. The circuit area is now 147. We force a duty cycle of 0.3 for the
clock. The optimal clock schedule is

riscof phase ¢y = 10.9
fall of phase ¢; = 18.0
riscof phase ¢ = 16.6
fall of phase ¢, = 23.7.

Combinational performance optimization results in the following clock schedule,

riseof phase ¢y = 7.1

CHAPTER 1. INTRODUCTION 11

adder 02 %,2 1

01 "%

Modulo

oldS

4 (least significant bits)
Figure 1.5: Example with 2 phasé level-sensitive latches

fall of phase ¢y = 13.2

riscof phase ¢ = 14.2

fall of phase ¢ = 20.3,
at an area of 136 (the area decreases!).

One possible optimization that has not been explored so far involves using associativity
and commutativity of arithmetic operations. Consider the following function defined recursively

A ={ (A+ fi1)%C k> 1
A%C k=1.
We will show fi. = Sk, for all k by induction. Recall that S = (kA)%C from Equation 1.1. It is
easy to verify that f; = §y. Assume f; = S forall k < n; it remains to show f,4) = Sp41. By a
process of simple substitution, we get the result as follows:
fart = (A+ fa)%C
= (A+5.)%C
= (A+(nA)%C)%C
= (A%C + ((nA)%C)%C)%C
= (A%C + (nA)%C)%C
= (A4 nA)%C
= ((n+1)A)%C

= Sn+1-

CHAPTER 1. INTRODUCTION 12

C
3 adder ,fz
A
_.[+ 4/ o _D_+>
7 >t /o
2 intS 2 S
oldS Modulo
,I
2
(a)

Figure 1.6: Alternative implementations:'e‘dge-tﬁggercd circuit

C
adder $2 ,1/2
AT o1
[} [o |
01—y % +>2 A
= olﬁs' Modulo

Figure 1.7: Alternative implementations: level-sensitive circuit

Thus we could also choose to implement the circuit using flip-flops as shown in Figure 1.6 or using
level-sensitive latches as shown in Figure 1.7. This has the advantage of reducing the feedback
lines to 2, thus saving area. None of the optimization techniques at the logic level of a circuit are
able to detect this transformation. The transformation takes advantage of the fact that the modulo
operation with respect to an integer C, can be used to construct a group[3] known as the modulo
C group. The mathematical propertics of a group are exploited to obtain a circuit with different
structure but identical behavior. The edge-triggered version has an area of 95 and a clock period of
23.4 units. It can be retimed to yield a clock period of 12.4 units with an area of 107. Optimizing
the combinational regions gives a circuit with an area of 117 and clock period of 12.2 units. The
level-sensitive version of the circuit has an area of 90 and has the following clocking scheme (duty

CHAPTER 1. INTRODUCTION 13

cycle set to 0.3),

riscof phase ¢y = 7.9
fallof phase ¢ = 13.8
riseof phase ¢, = 13.8
fall of phase ¢, = 19.7.

Combinational optimization gives a circuit with area 97 and the following clock schedule (duty
cycle set to 0.3),

riseofphase ¢y = 5.6
fallof phase ¢y = 9.8
riseof phase ¢, = 9.8
fall of phase ¢, = 14.0.

Figure 1.8 summarizes some of the choices that the designer has. Each point on the clock period-
area graph has the figure number of the circuit associated with it. A trailing R or C implies that
the circuit was retimed or underwent combinational optimization. It is quite clear from the above
example, that DA techniques for sequential synthesis must focus on two broad areas, which overlap
considerably. On one hand, tools must be designed to examine a given circuit for correctness and
performance. These are techniques of analysis. The other area must focus on transformations
that provide altemative implementations with the same input-output behavior. These are termed
techniques of synthesis. Thus, the goal is to develop an all powerful sequential optimizer, that
combines the approaches from synthesis and analysis, and is sentient to the various design trade-
offs. This thesis does not promise the “sentient” sequential optimizer, but develops the basic building
blocks that would form comer stones of such a system and abet its development.

1.5 Thesis overview

Four interesting problems in timing analysis and optimization have been sclected to be
included in this thesis. The first three deal with the sequential nature of a circuit. The last problem
arises in the synthesis of combinational circuits that have to operate in a sequential environment.

A major issue in the design and implementation of algorithms for design automation, is
the modeling of circuit behavior. A synchronous circuit has three essential components; logic gates,

CHAPTER 1. INTRODUCTION

Clock period

l: L { 1.3 1
30.00] —
28.00

26.00.

U0 16 1.3C -

15
ol f i
20.00] __1 . 1 50

18.00]_ _
16.00] _
10 Do _
17.ool: 1.6 _
1.6C
1.3
10.00 Eloi)'o mI).oo m‘tlﬁo 750,

Area (number of gates)
Figure 1.8: Performance versus area trade-off

Data point associated with Figure describing circuit
R - result of retiming
C - result of combinational optimization

14

CHAPTER 1. INTRODUCTION 15

memory elements and clocking schemes. The mathematical models for a synchronous circuit form
the bulk of Chapter 2. Chapter 2 also provides a comprehensive review of the previous work in
timing issues.

The thesis can be broadly divided into two parts.

¢ The first part focusses on analyzing a given circuit. Chapter 3 describes the clock verification
problem and presents an algorithm of polynomial complexity to solve it. The clock schedule
optimization problem is solved in Chapter 4.

¢ The second part deals with optimization targeted for sequential behavior. Chapter S is devoted
to pipeline circuits. This Chapter explores the problem of extracting timing constraints for
combinational regions, so that the entire circuit operates at a specified clock period. Chapter 6
poses a problem in combinational logic synthesis that has hitherto been unexplored; namely
the problem of ensuring that lower bounds on paths in combinational circuits are met. This
is relevant for the synthesis of sequential circuits with level-sensitive latches. As an aside, an
application to wave pipeline circuits will also be described.

The optimality of the delay model used for the clock schedule optimization problem is
discussed in appendix A. Appendix B deals with the development of a quadratic programming
algorithm which is used in Chapter 5. ‘

16

Chapter 2

Prelude

It was nearly two decades ago that the necessity of automated timing analysis was felt.
Since then various research efforts have investigated the problem using different delay models
and proposed several techniques. We hasten to point that the efficiency of an algorithm and the
verisimilitude of the model (to reality) are often antipodal. It is important to develop an efficient
algorithm with as realistic a delay model as possible. This Chapter serves three purposes: the first
is to introduce the reader to different models present in literature, the second is to provide a brief
review of various approaches and lastly, to present the model and definitions that will be used irrthe
remainder of this thesis.

Section 2.1 describes the three components of a synchronous circuit. A review of research
efforts in the field of timing issues of synchronous circuits is presented in Section 2.2. Section 2.3
gives the specific model that is used in this thesis.

2.1 Circuit model

A synchronous circuit is modeled as an interconnection of gates and memory elements.
The gates may be partitioned into combinational regions isolated by memory elements. A circuit
model is composed of models for combinational circuits, memory elements and clock signals.

2.1.1 Combinational circuits

The combinational circuit is an acyclic interconnection of gates. An input to a combina-
tional circuit is called a primary input if it is a signal provided by the environment. A combinational

CHAPTER 2. PRELUDE 17

circuit may also have inputs driven by the outputs of memory elements. Similarly, an output of a
combinational region may drive an input of a memory element or be fed to the environment. In the
latter case, it is called a primary output. The delay information of each gate is “composed” to
yield the delay information for input-output pairs.

Gate delays

The delay of a gate is an attribute of the physical process of charging a capacitor. In the
case of CMOS circuits, the capacitance at the output (and the source/drain to substrate capacitances
to a certain extent) prevents the output voltage from switching instantaneously. Similarly in a BJT,
junction capacitances are responsible for the transition delay. We only consider gates with single
outputs in this thesis. The following are popular delay models for gates.

Fixed Delay A gate is assumed to have a constant delay, known a priori, and represented
by a real number. This model has been used in {33, 37]. A simple fixed delay model is the unit
delay model, wherein each gate is assigned a delay of 1 unit. A refinement is the linear delay -
model; the delay of a gate is described by a linear function a + 8+, where « is the intrinsic delay
of the gate, 8 models the load dependent delay and « is the capacitive load at the output of the
gate. A simple example is the unit delay fanout model, where & = 1.0, # = 0.2, and v is the
number of fanouts of the gate. For a library of standard cells, the values for o and 3 are computed
using regression analysis on several simulations (using a circuit simulator like SPICE[{46]). The
linear delay model for a library is also referred to as the library delay model. Most combinational
optimization techniques have relied on the linear delay model. These models are good only when
factors that determine the actual delay of a gate; such as the fabrication process and the operating
environment conditions, can be tightly controlled.

Figure 2.1 shows the waveforms at the inputs to a 2 input and gate and the corresponding
waveform at the output using a fixed delay model with the given parameters.

Min-max delay The delay of each gate is assumed to take on a value between a lower
bound and an upper bound. The simplified min-max delay model, abbreviated to SmM, assumes
that the delay of a gate takes its worst case value. In other words, the interval of uncertainty of the
gate output in response to input transitions is made as wide as possible. This is a conservative albeit
pessimistic approach. The consistent min-max delay model, denoted by CmM for short, assumes
that the delay of a gate is a variable that lies between the upper and lower bounds. Assignment of a
delay value to a gate is deferred until the verification/optimization procedure. The important point

CHAPTER 2. PRELUDE 18
a — c a
o])<< —

] [l [i

[l
! 1 |] 1 | 1 i 1

1
t t+2 44 t+7 49

<XT™R
nnu

Figure 2.1: Fixed delay model

a—30< a | |

b —

] I 1
t t+2 t+4 t+7 t+9

Figure 2.2: Simplified min-max delay model

is that each gate is assigned the same symbolic delay. In Figure 2.2, the input and output waveforms
under the SmM delay model are shown. Note there is an interval of uncertainty of unit length at the
output during the output rise (from ¢ + 4 to ¢t + 5) and output fall (from ¢ + 9to t + 10).
Statistical delay A probability distribution function (pdf) for the delay of a gate is
described. Very often a Gaussian distribution, specified by its mean and its standard deviation, is
used. An example is shown in Figure 2.3. The probability that the output is high at time ¢ + 3 is
0 and as time passes, it increases to 1 at ¢ 4 5. Similarly, the probability that the output is 0 at
time ¢ + 8 is 0 and increases to 1 by time ¢ + 10. This assumes that the delay of each gate is an
independent random variable. In reality, there is a strong correlation between the delays of gates

b |

c I L
[S | R
1 L ! [l ! 1
) T 1 1 1 1) I 1) |
t 1+2 t+4 t+7 t49

Probability distribution function

Figure 2.3: Statistical delay model

CHAPTER 2. PRELUDE 19

in a design. A cause for this fact is that the fabrication process tends to bias all gate delays in the
same direction; e.g. a thin oxide deposition process may be terminated earlier than required —
resulting in all transistors having gate oxides of thickness less than the expected value. To capture
this correlation, the delay of gate is modeled as a sum of two components; the first component is
determined by a random variable that reflects independent variations in the delay of each gate. The
second component is determined by a random variable which is the same for all gates on a chip and
reflects the effect of high correlation.

Although the delay models described above assume behavior independent of input pins
and of the phase of the transitions, it is easy to extend the delay models to reflect

1. input pin to output pin dependencies, and

2. rise and fall transitions at the input and output pins.

2.1.2 Memory elements

A memory element has three ports, an input port, an output port and a control port. In
addition it may have inputs for set/reset and conditional control. The primary function of a memory
element is to provide a means of storing past history of the circuit. It stores a value (logical 1 or 0)
at its output until the control decides to store a fresh value. There are a variety of circuit structures
that can be used as memory elements for data storage (see[23] for a detailed description of various
memory elements). The different memory elements may be classified into two categories based
on their behavior. We restrict attention to two memory elements which are representative of the
two categories; falling edge-triggered D flip-flops (FEDFF) and active-high level-sensitive latches
(AHLSL).

1. Edge-triggered memory element (flip-flop): As briefly explaiﬁed in Chapter 1 (Section 1.4),
an edge-triggered element is sensitive to falling (or rising) edges of the control signal. At
the instant of occurrence of this edge, the input is sampled and the value is presented at the
output. The output then stores this value until the next occurrence of the falling (or rising)
edge.

2. Level-sensitive memory element (latch): For a latch, the data at the input port is transmitted
to the output, throughout the interval that the control signal is high (or low). This is called
an active-high (or active-low) latch. The output stores the input data value at the close of the
interval until the start of the next active interval.

CHAPTER 2. PRELUDE 20

set-up
i B
input output Input 11 L
P P P | } hold
| =
control I ’ I!
control
output |— e
Figure 2.4: Anideal flip-flop
set-up
™~
input output input [
P P P | || hold
| -l

r‘—
control I) | '
ot N/

Figure 2.5: An ideal latch

control

For correct operation the data is required to be stable before the latching edge (the falling
edge for a FEDFF or an AHLSL), by an amount of time called the set-up time — this is known as
the set-up constraint. The data has to remain stable after the latching edge for an amount of time
called the hold time — this is known as the hold constraint. Figure 2.4 shows the behavior of an
ideal FEDFF and Figure 2.5, an ideal AHLSL.

An implementation for a memory element has the following deviations from ideal behav-

ior.

1. The data takes a finite amount of time to propagate from the input port to the output port,
after the clock event (rising for AHLSL and falling for FEDFF) that causes an output change
occurs.

2. The effect of an event at the clock port takes a finite amount of time to be seen at the output
port, assuming that the data input has been ready, prior to the event at the clock port.

3. For correct behavior, there are requirements on the minimum pulse-width that the control

signal can have.

An excellent description of memory element models may be found in [75].

CHAPTER 2. PRELUDE 21

2.1.3 Clock signals

Although there are no restrictions on the input to the control port of a memory element,
the we focusses exclusively on circuits with clock phases connected to these ports. This precludes
circuits with conditional clocking and circuits with data signals driving control ports. A reason for
doing so is that hazards on the control port can cause incorrect behavior (functional and timing).
Since we propose to use static timing analysis techniques, hazard detection/correction is downright
difficult, if not impossible.

The signals in a circuit may be classified into two mutually exclusive sets; data signals
which appear in combinational regions and inputs/outputs of memory elements, and clock signals
which drive control ports of memory elements. A clocking scheme consists of a set of periodic
clock signals (called phases). The rise and fall of the phases constitute the clock events. In this
thesis, all phases are assumed to have the same periodicity, called the clock period.

2.2 Timing in VLSI circuits: a review

We review various research efforts in the area of sequential timing. This review is not
complete (it would take an entire book to do so), but is intended to provide a btfief description of the
evolution of timing issues and to underline salient features that are borrowed in our approach. ~

2.2.1 Timing analysis

An excellent survey by Hitchcock, Sr. [21] describes several early efforts in timing analysis
[50, 80, 58, 27, 30, 42, 22]. These timing analyzers suffer from poor modeling of memory elements
(only flip-flops are assumed present). If a circuit has only FEDFF’s, then it suffices to restrict
attention to the timing analysis of combinational regions. Given arrival times at the inputs, we then
need required to compute arrival times at the outputs. An efficient approach is to levelize the gates
in the circuit; namely starting at the inputs defined as level 0, assign a level to each gate which is
one more that the maximum level of the gates that drive it. Then compute arrival times for a gate at
level i only after all gates at level ¢ — 1 have been processed. We shall have occasion to use this in
the algorithms we develop.

In the early cighties, timing analysis on transistor net-lists was an area of intense research
[48, 26, 68]. The first of these, CRYSTAL [48] uses a switch-level approach (advocated by
a genre of simulators) to detect critical paths in the circuit. The delay model is based on the

CHAPTER 2. PRELUDE 22

RC model (lumped and distributed) described in [43, 52]. CRYSTAL uses a value-independent
approach (unless specified, with the caveat that specifying data values may cause the program to
fail in identifying critical paths eliminated by the specification). A problem inherent with value-
independent analysis is that changes may be propagated oblivious of other conditions in the circuit.
CRYSTAL provides satisfactory results to circuits with simple clocking schemes, since it does not
have a notion of a clock signal (but rather treats them as inputs from the environment) and is unable
to model level-sensitive latches.

TV [26] is a timing analysis program for nMOS circuits. A set of rules are used to
determine sigﬁal flow before timing analysis. It uses breadth-first analysis to speed up the analysis.

The approach in LEADOUT [68] uses the notion of a causality graph and uses compiled
code techniques to analyze the circuit. Multi-phase clocks are permitted and latches are correctly
handled. It constructs a set of equations relating various events in the circuit. The delay information
is stored in a separate database, which pemmits flexibility in analysis. LEADOUT is remarkable for
its power (handling circuits with over 50,000 transistors in a few minutes on a VAX 780).

ATV (Abstract Timing Verifier){77] was developed concurrently with LEADOUT and has
the feature of plug-in delay models. ATV has an abstract notion of the circuit; thus it can be used for
verification of micro-architectures as well as gate level net-lists. It uses loop unfolding to overcome
the cyclic nature of sequential circuits. Hence, the analysis is true for only a user specified number
of clock periods.

HUMMINGBIRD (78] was primarily designed as a timing analyzer operating in a logic
synthesis environment. It incorporates sophisticated models for memory elements and permits
multiple frequency clock signals. The algorithm resorts to an iterative technique, though no
convergence properties are discussed. The motivation is to use timing analysis to provide feedback
to the combinational resynthesis procedures.

Ishii er al.[24] present an algorithm for handling level-clocked circuitry, with arbitrary
clock signals. The fixed delay model is used and only set-up constraints are checked. Sakallah
et al.[54] present an elegant model which handles both kinds of memory elements in a simple
manner. Using this model, they present an iterative approach for timing verification [55] called
CheckT,. Our approach is developed on these models. A formal definition of the models is given
in Section 2.3.

All the timing verification techniques described so far are static, namely they are value-
independent. A few of these posses the ability to do some data-dependent analysis, but only on a
case by case basis. For sake of completeness, we briefly review the research in dynamic timing

CHAPTER 2. PRELUDE 23

analysis. The research so far has focussed on combinational logic only. Very often, paths in a circuit
may not be exercised, i.e. no signal transitions propagate along the path. Such a path is termed
a false path. The purpose of dynamic analysis is to disregard such paths and report the delay of
only paths that can propagate transitions. The basic formulation of this problem can be found in
(40, 13]. It involves capturing the sensitization criteria at every gate and solving the set of criteria
efficiently. More recently, efficient techniques [41] based on solving Boolean SATISFIABILITY
[67] have been reported. Although false paths are not encountered frequently in combinational
circuits, they are extremely common in sequential circuits. Gated clocking and unreachable states
in a state machine may contribute to paths that are conditionally active.

2.2.2 Timing optimization

Timing optimization encompasses all techniques that are used to improve the performance
(clock period) of a circuit. This Section examines some techniques that are popular in literature and
practice.

Combinational optimization

The problem of optimizing a combinational circuit has been well studied and numerous
algorithms have been proposed. A representative sample of the optimization approaches may be
classified into the following categories.

1. Circuit restructuring [66, 16, 17, 49): A simple idea to decrease the delay of a circuit is
to move late arriving signals in a cone of logic, closer towards the output. In practice,
sophisticated techniques for selecting these “cones of logic” are required. Algorithms used
for minimizing area, like logic decomposition are modified with a cost function that depends
on some estimate of the final delay of the circuit.

2. Technology mapping and buffer optimization [65, 5, 73, 53, 36]: A critical step in logic
synthesis is the binding of Boolcan equations to an implementation technology. Standard
technology mapping (such as [29]) yields a minimal arca implementation. It can be tailored
to yield circuits with less delay for an arca penalty. Often signals need to be driven to several
termini. The linear delay model reflects the dclay due to the increased load. Buffer trees are
constructed to ensure that signals arrive at destinations in time.

CHAPTER 2. PRELUDE 24

3. Rule based [9, 20): These approaches use a variety of transformations to improve the per-
formance of a circuit. Limitations inherent to all rule based systems are two-fold; the rules
depend on the choice of technology and only local improvement can be gained.

4. Transistor sizing [64, 18, 57, 39]: This is a popular technique for performance optimization.
The pioneering work done in TILOS demonstrated that the area and delay of a transistor net-
list are representable as posynomial functions of transistor sizes. TILOS [18] uses a heuristic
based on sensitivity computations. Shyu ez al. [64] use the method of feasible directions (a
standard non-linear optimization technique [51]) to solve the problem. iCONTRAST [57]
uses a convex optimization technique proposed recently [76]. Marple [39] presents a solution
to the transistor sizing problem based on Lagrarigian multipliers.

Clock schedule optimization

The clock schedule optimization problem involves computing the minimum clock period
and assigning instants of occurrence to the clock events (rise/fall of phases) in some time frame.
The problem of computing the minimum clock period of a circuit with FEDFF’s with a single phase
clock is a relatively easy problem. The difficulty arises in circuits with level-sensitive latches using
multi-phase clocking schemes. Data can stream through the active period of latches; this is called
cycle stealing or retardation. It enables the circuit to operate at a shorter clock period, but also
permits signal transitions to permeate across memory elements (see Figure 2.5). Thus latches are
both a boon and a curse.

Various efforts at examining constraints for correct latch operation have hinted at possible
algorithms 1o solve for the optimal clock problem. Unger et al.[75] provide an approach to solve the
problem for 2 phase circuits. The pioneering work in optimal clocking can be traced to TAMIA [8).
The approach suggests starting with null retardation at a set of latches and successively updating
the values (of retardation) as the iterations proceed. The iterations are used to “shave” time off
in the different intervals that combine to yield the clocking scheme. Ishii er al. [25] present a
polynomial algorithm to deal with 2 phase level-clocked circuitry, using the fixed delay model and
considering only set-up constraints. Sakallah et al. [54, 55] propose an elegant model and use
linear programming techniques to solve for the clock schedule. The optimality of the procedure
[55] remains unanswered (most probably the algorithm is sub-optimal). The problem formulation
in [55] is valid only in the steady state of circuit operation and leads to a non-convex solution set.

A major contribution made by Szymanski [69] is to modify the constraints to ensure correct circuit

CHAPTER 2. PRELUDE 25

behavior from quiescence. This provides a formulation with a convex solution set. A drawback
of the formulation in [S5] is that several constraints in the linear programming formulation are
redundant. Detecting a redundant constraint amongst a set of constraints is as hard as solving the
linear program itself. Consequently general linear programming techniques are unable to eliminate
constraints efficiently. Szymanski exploits the underlying graph structure of a circuit to obtain a
reduced set of constraints that are necessary for the problem.

Sequential optimization: retiming

Retiming is a process of re-distributing memory elements in a circuit, to obtain a faster
circuit with the same input-output behavior. The structure of logic gates remains unchanged.
Leiserson et al. [33] were the first to provide an efficient algorithm to solve the retiming problem
for single phase circuits with FEDFF’s. Efforts have been made to extend retiming to deal with
AHLSL’s [25, 35], although the delay model (fixed delay) leaves something to be desired.

Sequential optimization: resynthesis

The constraints for a circuit to operate at a target clock period translate to a set of
performance constraints on one or more *“pieces” of combinational logic. In the single phase ec!ge-
triggered case, the pipeline performance optimization problem is cquivaleht to a combinational
“spcedup” problem [38). The approach in [2] approximates level-sensitive latches by edge triggered
flip-flops and handles arbitrary multi-phase circuits. Slack is used to direct logic resynthesis
and logic movement across memory elements repeatedly, to find the best clock period at which
the circuit can operate. The slack based approach is myopic in its optimization. To overcome
this, simulated annealing is used to guide the optimization. However this may result in much
larger circuits than necessary, especially when a target clock period is given. In order to help the
combinational optimizers achieve their goal, it is important to expose large regions of combinational
logic. Techniques described in [37, 11) make an effort to do so. The problem explored in [12]
is to identify and eliminate circuit structures that prevent retiming from yielding a faster circuit.
DeMicheli [10] uses the notion of synchronous logic operations, and combines combinational
synthesis techniques with register movement to optimize the performance of single phase edge-
triggered designs.

CHAPTER 2. PRELUDE 26

2.3 Definitions

This Section presents the mathematical models that form a basis for the rest of the thesis.
These models were first proposed by Sakallah et al. in [55].

23.1 Clocking scheme

A clocking scheme, @ is a collection of ! periodic signals, ¢, - - - ¢, each with a common
period ¢, and is represented by @ = (¢1,¢2,---, ;). Associated with each phase ¢; are two real
numbers s; and e; (short for start and end of the high interval of a phase), the time of occurrence of
the rising and falling edges of ¢; (0 < (s;, ;) < ¢). Also associated with each phase ¢; is its local
time frame, an interval of time of length ¢, such that the end of the active phase coincides with the
end of the local time frame. A global time frame is chosen to coincide with the local time frame of
a phase, henceforth called phase /. The phases are ordered so that0 < e; < e2--- < ¢; = ¢. We
define a precedence relation (<) on phases as follows—

éi < ¢; ife; <e;. .1
The precedence relation is
1. anti-reflexive ¢; £ ¢;,
2. anti-symmetric ¢; < ¢; implies ¢; £ ¢;, and
3. transitive ¢; < ¢j, @; < ¢ imply ¢; < Px.

The phase shift operator E;; introduced in [55] is used to translate all measurements of time from
the local frame of phase ¢; to the local frame of ¢;. The phase shift operator is defined for a
combinational path between latches. For a path from a memory element clocked using phase ¢; to
a memory element clocked using phase ¢;, the phase shift operator is defined as

Ey= { ej—e ifd; < 22)

c+ej —e; otherwise
The clocking scheme in Figure 2.6 shows a 2 phase clocking scheme. The values for
E)2 and E3; are also shown. Let an event be an upward or downward transition of a data signal.
Consider an event at a ¢; memory element occurring at time ¢, given in terms of the local time
frame for ¢;. If this event causes another event at a ¢; memory element with a delay say d, i.e.

CHAPTER 2. PRELUDE 27

| | \
e-6 | |
Brore, I 1

local frame of phasg 1
é1 i i ! [
62 [T 1
focal frame of phase
[
9 & 19P
0 global time lrame:l

E2‘- Ce O'- 02

Figure 2.6: Two phase clocking scheme

time {; + d in the local frame of ¢;; then Ej3 is the shift that must be subtracted from ¢; + d to
convert the event to the local time frame of ¢,. To distinguish between variables in the local time
frame from the global frame we use a superscript L. Thus in the local time frame of ¢;,

el =c. (23)
The local rise of a phase is
st=site—e=s;+Ey ifs;<e : (24)
and)
sf‘ =s;—e; =8+ FEy—¢ ifs; > e 2.5)

Consequently, a priori information is needed on the relative occurrence of the rise and fall of each
phase in the global frame and the relative occurrence of the fall of each of the phases for correct
translation of events. This is specified by the clocking scheme, If all the valuesto s;,e;, i =1,---,1
are known, the set @ is called a clock schedule. Thus a clock schedule is an assignment to the
variables that conforms to the clocking scheme. Note that an s; or e; without the superscript L
refers to the instant of occurrence of the rise or fall of phase ¢ in the global time frame (local time
frame of ¢;). For the rest of the thesis we shall assume that s; < e; for all the phases.

2.3.2 Combinational circuit

The thesis assumes all timing events are value-independent. In other words, the data
signal can only be stable or changing at any instant. The actual stable value (high or low) is of no
concem, nor is the direction of change (high to low or low to high). This simplifies the problems to
make them tractable, albeit pessimistic.

CHAPTER 2. PRELUDE 28

AL = latest that the signal is valid at the input of memory element i,
aF = earliest that the signal is valid at the input of memory element ,
Rf’ = latest that the signal is valid at the output of memory element i,
rF = earliest that the signal is valid at the output of memory element i.

Table 2.1: Variables at a memory element

The simplified min-max delay model is used for each gate. The circuit C is modeled as a
finite, edge-bi-weighted, directed graph G = (V, E, D, d). For every memory element ¢ € C there
is a vertex ¢ € V; thus we use ¢ for a memory element and the vertex representing it in G. G is
called the latch graph. In addition for every primary input and primary output of the circuit there is
avertex in V. If there is a path of combinational logic from a memory element (or primary input),
say 1, to a memory element (or primary output), say j, we create an edge e;; : ¢ — j (directed
from i to j), e;; € E. The weight D;; (d;;) is the maximum (minimum) sum of the gate delays
along any combinational path from 7 to j. This is computed as explained in Section 2.2.1. We
say i is a fanin of j (j is a fanout of i) if there is a directed edge from i to j in the graph. "We
denote the fanin set of i by FI(%), the fanout set by FO(z). A path ij~1i, is a sequence of vertices
{%1,42,+ -+, 1p}, such that every pair of successive vertices in the sequence have an edge between
them, namely 3 e;,i,, : tk — tk41, fork = 1,---,p~ 1. A cycleis a path i; ~ i,41 whose
first and last vertices coincide (i1 = ip41). A cycle i) ~ ip,; is a simple cycle if iy, - - -, are all
distinct and ¢; = ip4. For the rest of the thesis we will be concemned with simple cycles only. We
denote the phase controlling latch ¢, as ¢(¢).

The symbol 1 is overloaded to mean a memory element ¢ € V or a phase i € {1,---1}.
The rise (fall) of the phase to memory element ¢ is denoted by s4(;) (e4(:))-

2.3.3 Memory elements and circuit clocking constraints

Four variables are associated with each memory element in the circuit; they are defincd
in Table 2.1. These variables are measurcd with respect to the local time frame of the phase of
the latch. This subsection describes the constraints that model the circuit and the meaning of each
constraint will be elucidated using signal waveforms. A word about the notation used in displaying

CHAPTER 2. PRELUDE

Old stable value New stable value

signal k\\\\\\\\\\&

e e]
Signal undergoes transitions

time

Figure 2.7: Key to waveforms

flip-flop i

input output input

controll—J—L
control

r =R:-

Figure 2.8: Data waveforms at a flip-flop

29

waveforms; a signal at the input/output of a memory element or a gate takes on 3 possible states

during a clock period, displayed by different shades in a figure. Figure 2.7 provides a key to-the

signal waveforms. The signal has an old stable value to begin with, then some early event/s force a

transition. This commences the signal changing interval. After the last possible transition has taken

place the signal assumes the new stable value. The signals to the control ports of memory elements

(i.e. the clock phases) are assumed to be clean (free of unexpected transitions).

The behavior of a flip-flop ¢ can be represented by
Rf’ = Cg(l') =2c,

and

rk

1

L
= C’é(t) = C.

The significance of these equations can be seen in Figure 2.8.

The equations for a latch are
L _ I L
Rf = max(Ai ’Sqﬁ(i))’

and

rE = max(al, 55(;‘))-

(2.6)

@2.7)

(2.8)

(2.9)

CHAPTER 2. PRELUDE 30

local time zone of ¢

Figure 2.10: Propagation of data waveforms

Figure 2.9 portrays the implications of these equations.

The equations for propagation through combinational regions are

s Ll e = e

A = max (R + Dij = Eyia(i) (2.10)
and

af = iggi]?j)(ff‘ + dij = Eg(i)a(s))- 2.11)

A pictorial interpretation of these constraints for an edge ¢ — j in the latch graph is shown in
Figure 2.10. Let the early (late) arrival at memory element 7 be 4.5 (5.5). Ej2 = e —e; =
7 —3.5 = 3.5 for the clocking scheme in Figure 2.10. The minimum (maximum) delay along i — j
is 3 (4). Thus the carly (late) arrival at memory element jis4.54+3-3.5=4.0(5.5+4 -3.5 = 6).

The constraints for correct data latching are

Af <ejy— S, (2.12)

CHAPTER 2. PRELUDE 31

N
SO /

Input required to be stable
in these intervals

Figure 2.11: Set-up and hold constraints

and
af > I (2.13)

Equation 2.12 is the set-up constraint. It ensures that there is sufficient time for computation
between (minimum separation) clock events. The constant S is known as the set-up time for
memory element :. Equation 2.13 is known as the hold constraint. Its purpose is to prevent
early signals from corrupting inputs to memory elements. The constant H is called the hold time
of memory element 7. Although the set-up and hold times can be different for different memory
elements we assume (for sake of simplifying notation) that all memory elements have the same
set-up and the same hold values. Figure 2.11 shows these constraints at a memory element. -

Constraints 2.2-2.11 model the behavior of the circuit; constraints 2.12 and 2.13 enforce
data stability during latching — together they are known as circuit clocking constraints. They are
summarized in Table 2.2.

234 Anexample

Chapter 3 and Chapter 4 solve two closely related problems. We describe an example
which will be used to clarify some aspects of the algorithms as we proceed. Consider the circuit
shown in Figure 2.12. The circuit using flip-flops was first described in [82). It has been modified
so that level-sensitive latches are used instead. The circuit is a data-path of a video compression
system and uses a dclta PCM compression algorithm. The compression is achicved by a non-linear
quantization operation Q. Its inverse D is used to maintain the prediction value. The rest of the
components are adders (+) and a subtractor (-). The delays of each component are shown alongside
([max, min] delays). The input signal is 9 bits and the compressed value is 6 bits. All 9 bit lines
are shown as dark lines and the 6 bit lines are light. The circuit uses a 2-phase clocking scheme.
For sake of analysis, assume that there is no delay through the memory elements and that the clock

CHAPTER 2. PRELUDE

32

| Nature of constraint | Formulation

Data propagation fori=1,...[V]

Long path A{'L =, g}%)(Rf + Dji — Ey(iye(s))
| Shortpath o = min (7 +dji = Ey(iye)
[Memory elements fori=1,---|V|

Late departure (latch) Rf = max(AF, sk)

Late departure (flip-flop) Rf =c

Early departure (latch) rf = max(af, st’(;))

Early departure (flip-flop) Ty =¢
[Correct latching fori=1,---[V|

Set-up Af<c-S

Hold o> H

9

Table 2.2: Clocking constraints

Figure 2.12: Example: video coder

lr_1put| a 140,0]
signa D |
(15,5}
> - Q Output
Signal
(15, 5)
b
Q
(40, 0]
(15, 5]
delay
£
predicled value
in next clock cycle

CHAPTER 2. PRELUDE 33

Edge weights
(D, d)

Figure 2.13: Latch graph for video coder

signals arrive at the memory elements without any skew. The set-up and hold times for all latches
are assumed to be 0. The corresponding latch graph is shown in Figure 2.13. Each edge 7 — j has
2 weights, namely D;; and d;;.

2.4 Discussion

We shall ignore clock skew during the development of algorithms for ease of presentation.
At the end of each Chapter, a brief note describes how clock skew is easily incorporated. To model
clock skew, we partition the circuit into two sub-circuits; the first part consists of gates in the clock
distribution circuitry and is called the skew network. The rest of the circuit forms the second part
and is termed the data network. The data network is modeled using the latch graph described
in Section 2.3.2. The skew network consists of paths from the clock signal pins to the memory
elements. Let the phase signal to the control input of latch ¢ undergo a skew along path P;. P;
consists of buffers/inverters and is disjoint from the data network. A buffer/inverter k on P; has
maximum delay B, * (bf‘).

A natural approach to systematic investigation of a research area is to solve a series of
related problems that are increasingly difficult. At the time of writing this thesis, a summary of the
various problems in sequential clocking is given in Table 2.3 (in increasing order of difficulty). Of

CHAPTER 2. PRELUDE

| Problem [Comments
Clock Verification GivenC, cand s;,e;i=1,---1,

-

does circuit operate correctly ?
See {24, 55).

Clock Optimization GivenC,

find smallest ¢ and s;,e; i = 1,-- -1 so that
circuit operates correctly.
See [55, 69, 25].

Retiming

Given C,
reposition memory elements for smallest c.
See (33, 25, 35].

Resynthesis

Given C,
resynthesize circuit for smallest c.
See [38, 2].

these, we shall focus on the clock verification, clock optimization and pipeline resynthesis problems.

The intricate link relating them will

Table 2.3: Clocking issues

become clear over the next few Chapters.

35

Chapter 3

Clock Schedule Vefiﬁcation

Current VLSI designs have several thousand gates and memory elements. Ensuring that
a clock schedule adheres to the clocking constraints is a difficult problem for the human designer;
especially in the presence of level-sensitive memory elements. Another reason for investigating this
problem is that previous approaches [55, 78] fail to provide an analysis on the complexity of their
procedures. Lastly the development of sophisticated algorithms to solve other clocking issues is
hampered without the ability to verify the resulting solution.

3.1 Overview

The clocking constraints (Table 2.2) are summarized in the Table 3.1. Since the clock
period and clock events are known, the equations are simplified by combining the constant terms
(column 3, Table 3.1). An important fact to note is that the AL and R variables appear only in the
long path propagation and late departure constraints (called the late equation set). Similarly the o
and the rL variables occur only in the short path propagation and early departure constraints (called
the early equation set). The set-up and hold constraints impose bounds on AL and aZ. The clock
verification problem may be posed as:

Given a circuft G(V, E, D, d) and a clock schedule, does the clock schedule satisfy the
clocking constraints.

Note that the clocking constraints introduce auxiliary variables (AL, aZ, RL and L),
Hence the verification procedure (if we are to use the clocking constraints in the form described
so far) must ensure that the set-up and hold constraints are satisfied for all possible values of the
auxiliary variables that are solutionsto the set of constraints. Itis this fact that leads to complications,

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 36

{ Nature of constraint | Formulation] Simplification |

fort=1,.--|V|
Long path propagation AF = jg}?aﬁo(Rf-‘ + Dji — Eyiiyei)) | AF = ; gzg:(cﬂ(Rf’ +A4j)
Short path propagation al = ; ‘?Filxz'_)(rf' +dji — Egiye()) | aF = ; g}ilni)(rf + 6;)
Memory element fori=1,---|V|
Late departure (latch) RE = max(Af, s3;) same
Late departure (flip-flop) RF=¢ same
Early departure (latch) rF = max(aF, $4(3)) same
Early departure (flip-flop) f=c same
Correct latching fori=1,---|V]
Set-up AF<c-§ same
Hold ak>H same

Table 3.1: Simplified clocking constraints

hitherto unreported by previous approaches.

The current Chapter is organized as follows. Section 3.2 describes the theoretical results
concerning the clock schedule verification problem. The existence of multiple solutions and condi-
tions for unique solutions to exist form the contents of Section 3.3. Application of the algorithrn on
an example and the results on a set of benchmarks are provided in Section 3.4.

3.2 Theoretical issues

One method to solve the clocking constraints is to use iteration. The constraints form a
map M : X — X, where X is a set containing the solutions. Since the variables appear on both
sides of the max and min equations, a solution z* € X must be a fixed point of the map M, namely

z* = M(z"). 3.1

An iterative method starts out with an initial guess z° for the solution to the problem and produces
a sequence of iterates, such that z*+! = M(z). The methods succeeds in finding a solution if it
can be shown that z*+! = z* after a number of iterations. Note that this method yields one possible
solution and is useful only when a unique solution is guaranteed to exist in X. In the case of the
clocking constraints, uniqueness of a solution is guaranteed only in a restricted case. The solution
in gencral will depend on the choice of z%. We shall henceforth drop the superscript L on the local

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 37

variables associated with each memory element. A superscript m will instead refer to the variable
in the m*® iteration. We denote a solution to the clocking constraints as (4, R,a,7).
We begin by presenting a few lemmas that will be invoked repeatedly.

Lemma 3.2.1 If iy ~ iy is a path in the circuit graph, then A;, > Ri, + Y071 Biyiy 0y

Proof For each iy, R;, > A;, and for each edge ik — ix41. Aiyyy > Riy + Biiy,,. Summing

overk =1,---p— 1, weobtain A;, > R, + T02] Aisii - n

Corollary 3.2.2 If i; ~ i, is a path in the circuit graph, then R,-, 2> R;, + ZZ;: A

LRI

Lemma 3.2.3 Let (A, R, &,) beasolutionto the clocking constraints. Thenfor anycycle C : iy ~»
ip+1 in the circuit graph, 3} _; Aiyi,,, < 0.

Proof From Lemma 3.2.2, we obtain for a cycle f?.;p 2 R + ket Aigiyy,- Since Ry = 1?;, 1
the result follows.]
Expanding Ai iy gy = Digiryy — Eo(ix)e(ix,) and using the definition of Ey(;,4(i,,,) (from Equa-
tion2.2), we see that -0) Eg(i,)é(ixy) telescopes to Koc; where K¢ is an integer which indicates
the number of clock periods available for computation and depends on the cycle C. Hence, for all
cycles C : i1 ~» ip4 : -
zp: D,'k,'k“ < Kee. (3.2)
k=1
A cycle for which 3"%_, Aq,;,,, = 0is called a zero weight cycle in the latch graph. A cycle is
said to be a positive weight cycle /negative weight cycle depending on the sign (positive/negative)
of Y_%—; Aisi.,,- Observe that the contrapositive to the statement of Lemma 3.2.3 implies that late
equation set has no solution if there is a positive weight cycle.

Proposition 3.2.4 For any edge i — j, §;; < A;j.
This is a consequence of the fact that by definition d;; < D;; and yields the following Corollary.

Corollary 3.2.5 Let (A, R, &,#) be a solution to the clocking constraints. Then for any cycle

i) ~+ ip41 in the circuit graph, 35, 6ii,,, <O.

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 38

3.2.1 Solving the late equation set

An iterative scheme for finding a solution to the late equation set is given in Proce-
dure 3.2.1.

Procedure 3.2.1

1. Initialization- for all memory elements i
A? = —00
= ¢ ifiisaflip-flop
' sgqy iisalach
2. Iteration-form = 1,---,n {
e for each memory element i {
- AP = max;ep(RT +45)
{ c if i is a flip-flop
- Rr=

- max(AT, s5;)) ifiisalatch

}

Lemma 3.2.6 AT and RT* are monotonically increasing with m at every memory element

Proof Using induction.

1. Basecase: m =1
Quite clearly for all i, A} > A?. Moreover,

Rl > s, =R] ifmemoryelement iisalatch, and
= ¢=R? ifmemory element i is a flip-flop.
Thus R! > RY.

2. Inductive case: Assume A" > A™'and R™ > RP~'. We nced to show, AT+! > A
and R™' > RP. Now AT*! = maxjepp)(R® + Aji). For each term j € FI(i),
RT +Aji > RT™ +4;i. Consequently max;ep () (RT +45:) > max;epy)(R7 ™ +45),
implying AT+ > AP,

If iisaflip-flopthe R™+! = R™ = ¢. If iisalatch, A™*' > A™ hence max(A7*!, sh) >
max(AT, s§;). Thus R"*! > RT", for both cases.

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 39

‘'n

For the sake of convergence it suffices to to restrict all memory elements to latches. If

any flip-flops are present, they can only abet the convergence of the algorithm. This will be clear
after the following lemma.

Lemma 3.2.7 Procedure 3.2.1 converges to a solution, if one exists in n(= |V|) iterations.

Proof The proof proceeds by contradiction. Assume that there exists a solution to the late equation
set. Let A?, > AP™! for some latch i,. A¥ and R are monotonically increasing with & (for
all i,). By definition (Equation 2.10) of A? , there must exist some i,—; € FI(i,), such that
AP, = RP7) + Ay, i, The fact that A7, > AT, yields two key results.

tn—1

L R* 4 A i > A?.._l > R}‘n'_zl + 4, _,i,: in other words R}‘n'_’ > R}2

tn—1 1 thel”

2. RI\ > RIS 2 sk,). gives us the additional information that (Equation 2.8) RF™! =
Al

tn—1"

As a consequence, A7} > R > A772,ie. AXT! > AT72. Continuing this procedure, we
trace a path in the latch graph with n (= |V|) edges and |V| + 1 vertices. Hence some vertex
must have been repeated more that once, implying that a cycle is contained in this path. Now for
iterations p, ¢ (p > ¢), and iy, i, on the path, A? = R{ + T°2) Ay, ,,. Now pick a vertex that
has been repeated such that i, = i,. This results in

Al > Al
p-1
=>R?q+ZAik.'k+, > A:-'q
k=q

p—1
=) By > AL - RI.
k=q
. -1 . o - .
Since, R > R!™ > sg(iq), we conclude R} = A{, implying EL; Aiiy,, > 0. Since by
assumption the late equation set has a solution, we obtain a contradiction to Corollary 3.2.3. n
The presence ofa flip-flop ensures that the early and late departures from it are fixed for
all iterations. Thus no flip-flop can occur on the path that prevents convergence in n iterations.
The proof of convergence is identical to the proof of convergence for the longest path algorithm in
a graph with no positive cycles [1].

Theorem 3.2.8 The iterative procedure to obtain a solution to the late equation set runs in
O(IVIIEI).

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 40 -

Proof Each iteration requires O(| E|) evaluations. (A", R™) can be computed in O(n|E|).]

3.2.2 Solving the early equation set

There are several choices of initial values to start the iterations for the early equation set.
The two natural choices for a memory element ¢ are-

1-
a? = A?
r? = R? and
2-
d = A?
= RP.

Of these only the first leads to an algorithm that converges in polynomial time. The second choice
for the initial guess can

e lead to an erroneous solution (this will be clarified in Section 3.3.3),
¢ take an arbitrary long time to converge.

The details of convergence of the iterations with the second choice of initial guess may be found
in [61]. We shall focus only on the algorithm with the first choice of initial guess.
An algorithm to compute a solution to the early equation set is given in Procedure 3.2.2.

Procedure 3.2.2

1. Initialization- for all memory elements i

0
a;

0_ { ¢ ifiisaflip-flop
t

T
35;(:') ifiisalatch

= —00

2. Iteration-form = 1,--+,n {

e for all memory elements i {

- a;n = minjepl(,-)(r;-“" + 61)

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 41

m
L

{ c if i is a flip-flop

max(a],s},)) ifiisalatch

Lemma 3.2.9 a" and r[* are monotonically increasing with m at every memory element i

Proof Using induction.

1. Basecase: m =1
Quite clearly for all £, a} > a9. Moreover,

1
Ti

v

L - .0 . .
$g) =i if memory element is a latch

¢=r? ifmemory element is a flip-flop.

Thus 7} > 79,

2. Inductive case: Assume a* > a*~'and r* > r*~!. Weshow, a**! > o™ and r**! > 11,
Now ¢"+! = minje pri)(r7 + 65i). Foreachterm j € FI (@] +65 2 r;"“ +6;;. Hence
minjer1) (T + 85:) 2 miinjeps)(rP! + 65), implying a*! > o, -

If i is a flip-flop the r™*! = #™ = ¢, If i is alatch, a™*! > a™, hence max (a1, sg(,-)) >
max(af*, s7;)- Thus r**! > r™, for both cases.

Once again, for the sake of convergence it suffices to to restrict all memory elements to latches.

Lemma 3.2.10 Procedure 3.2.2 converges to a solution, if one exists in n(= |V|) iterations.

Proof The proof proceeds by contradiction. Assume that there exists a solution to the early
equation set. Let a? > a}'n" for some latch i,. Recall a,’-‘n and r{‘n are monotonically increasing
with & (for all i,,). By definition (Equation 2.11) there must exist some tn—1 € FI(i,), such that
a7l = 772 + 6, _yi,. Knowing that a?, > a~", results in two interesting facts.

tn tn-1

Lo 46y yin 2 0l > af =122 16 . inother words r=! > pn2

1 n-1 tho1’®

2. Ti7L > i3 2 sg;.) gives us the additional information that (Equation 2.9) 2! =

tn-1 fn-] = 1
n-1
th—-1"

a

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 42

As a consequence, o, > r 7 > af 7, e, ¢}, > ol

2 . Continuing this procedure, we trace
a path in the latch graph with n (= |V|) edges and |V'| + 1 vertices. Hence some vertex must have
been repeated more that once, implying that a cycle is contained in this path. Now for iterations p, ¢
(@ > g), and iy, i; on the path, a?, < r%, + Y52

such that ¢, = ¢,. This results in

: 8iyir41- Now pick a vertex that has been repeated

-1

.. P _ a9
Z 6‘k3k+l > a‘-p T:'q .
k=q

Butsince, r{ > r;-';l > 33(;,,)’ we conclude r{ = af , implying

p-1
.. oP q
Z 6,‘!,*_“ > aip - a"q.
k=q
Since af = af is monotonically increasing with &, it follows a? — a? > 0, for p > ¢. Thus
P q P q
p-1
> biiy > O
k=q
This contradicts Corollary 3.2.5. u

From Proposition 3.2.4 and Corollary 3.2.3, we conclude that if the early equation set fails
to have a solution, the late equation set must also fail to have a solution. Thus the early equation set

-

converges to a solution only if the late equation set converges to a solution. -

Theorem 3.2.11 The iterative procedure to obtain a solution to the early equation set runs in
O(IVIIE]).

Proof Similar to the proof of Theorem 3.2.8. [

3.3 Uniqueness of solutions

The algorithms in Procedure 3.2.1 and Procedure 3.2.2 present an iterative approach to
find a solution to the late and early equation sets if one exists. An example where multiple solutions
exist is shown in Figure 3.1. The delays of the combinational regions (a and b) are given by the
pair of numbers in brackets ([max, min]) adjacent to it. The set of feasible solutions (all instants
are given in the local time zone of phase 2) to the late equation set, parameterized by a € [0, 1] is
given by -

A= Rij= 3+a

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 53

name read-in | time
(sec.) | (sec.)
2planet 1299 | 0.01
251423 16.75 | 0.07
255378 32.04 | 0.06
259234 4828 | 0.13
2513207 64.15| 0.26
2538584 | 367293 | 1.77
2538417 | 1014.82 | 4.17
2535932 | 65039 | 0.78

Table 3.6: Clock verification with library delay model

are devoid of any latching errors. Latching errors can arise due to one or more of the following

reasons —

1. the clock period is so critical that at every itcration of the late equation set there exists some
latch for which the late arrival does not converge, or

2. the late equation set converges and there is a set-up violation, or
3. the early equation set converges and there is a hold violation.

The first case may force all n(= |V]) iterations in Procedure 3.2.1. The procedure, as described,
cannot predict that a proposed clock schedule has too small a clock period a priori to completing
the n iterations. A heuristic based on maintaining predecessor pointers can be used to detect a
critical clock period during the relaxation of the long path equations. Although it cannot guarantee
less than = iterations, in practice it is very efficient. This will be presented in Chapter 4 (close of
Section 4.5.2) in a different context.

3.5 Discussion

Although the circuit model has ignored skew along the clock lines, it is easy to extend
the algorithm to incorporate them. Note that the complexity of the algorithm is independent of the
number of phases in the circuit. We can conceptually extend the number of phases in the circuit to
include one phase for each latch. The opening and closing of a latch needs to be recomputed using
the worst case skew. Since the computation of the late and early arrival times is de-coupled, the

CHAPTER 3. CLOCK SCHEDULE VERIFICATION 54

clock events in the two equations can be independent. First, consider all clock events in the global
time frame. Translate the clock events at a latch (early clock rise, late clock rise, early clock fall
and late clock fall), to yield a separate phase for each latch. Order the |V| phases according to the
late clock falls. The phase shift operator is calculated for each pair.

The opening of a latch i will take on the early clock rise value in the early equation set
and the late clock rise value in the late equation set. Similarly the closing of a latch will assume the
early clock fall value in the late equation set and late clock fall value in the early equation set. The
set-up is measured with respect to the early clock fall and the hold with respect to the late clock fall.

In cbnclusion, we have introduced the clock schedule verification problem and presented
the mathematical framework for solving it efficiently. This leads us to be optimistic in our search for
an algorithm to compute the clock schedule with a minimum clock period that meets the clocking
constraints. We have demonstrated that there can be multiple solutions to the clocking constraints
for the given model. An interpretation to the multiple solutions has also been provided. It was
the paper by Sakallah et al. [S5] that evoked our interest in this problem. Our first result was a
pseudo-polynomial algorithm for clock schedule verification [61). This approach recognized that
the long path equation set was equivalent to a Bellman-Ford relaxation (a technique commonly used
to solve the problem of computing the shortest path in a graph). However it ignored the possibility
of multiple solutions and had a drawback that could lead to incorrect results for the short path
equations if the clock period was optimal. This was duly pointed out by Szymanski [70]. In order
to correct the deficiencies of the pseudo-polynomial algorithm, we came up with the a sufficient
condition for uniqueness of the late and early equation set. Szymanski had reached the same
conclusions independently. In addition he demonstrated that the sufficient condition for uniqueness
of the late equation set is also a necessary condition for the late equation set. More importantly if
this condition was met, there would be at least one solution to the late equation set that violated
a set-up constraint (Lemma 3.3.3 to Lemma 3.3.11 including Theorem 3.3.10). At the same time,
Burks et al. [6] provided a detailed analysis of the reasons for clock schedule verification failure
and explored efficient approaches to examine circuits with potential errors.

55

Chapter 4

Clock Schedule Optimization

We tumn our attention to the problem of optimizing the clock period of a synchronous
circuit. The goal is to compute the smallest clock period and assign instants of time to the clock
events (rise and fall of phases) in the global time frame. This problem bridges the gap between -
analysis and synthesis of sequential circuits.

4.1 Overview

The optimal clock period problem for a single phase circuit with edge-triggered memory
elements is the easiest case. The clock period is determined by the longest path consisting of
combinational logic gates between a pair of flip-flops. In the case of multi-phase circuits with level-
sensitive memory elements, the problem is complicated by the fact that data can stream through
during the active intervals. In addition, the designer may choose to provide constraints on the duty
cycle of the phases and/or require clock events to be separated. These are called external clocking
constraints. The optimal clock schedule computation problem may be stated as:

Given a circuit G(V, E, D, d), find the minimum clock period c and rise and fall times for
each of the phases, so that the clock schedule meets all circuit clocking constraints and external
clocking constraints.

The formulation in Table 2.2 involves max and min operators, which interact with one
another. The approach suggested by Sakallah et al. [55] is to relax the min and max operators to
a set of inequalities. The clock period optimization problem reduces to a linear program whose
objective is to minimize c. A solution to the linear program is a lower bound on the clock period.
The solution to the linear program is perturbed to obtain a solution to the original problem.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 56

Szymanksi presents two major contributions in [69]. Note that the formulationin Table 2.2
involves auxiliary variables; more precisely 4|V| variables (namely A;, R;, a;,; at each vertex 7)
are used, in addition to the 2! variables (s;, ¢; fori = 1,-- -, and ¢; = ¢) that represent the clocking
scheme. The presence of auxiliary variables A;, R;, a; and r; serves little purpose, since they have
to be assigned columns in a tableau (assuming the simplex {45] method is used to solve the linear
program). The first cut is to eliminate these variables and pose the optimal clock formulation only in
terms of the variables arising from the clocking scheme. A further refinement is to use the structure
of the constraints to efficiently eliminate redundant constraints.

The organization of Chapter 4 is as follows. The clocking constraints are presented in
an alternative form in Section 4.2. A compact representation for the constraints is the goal of
Section 4.3. Section 4.4 presents two approaches to solve the clock schcdulé optimization problem.
An example is given in Section 4.5 to illustrates the proposed techniques. Results on a set of
benchmarks are also provided in the same Section.

4.2 Clocking constraints: a new form

Szymanski terms the original constraints in [S4] as aggressive. He suggests modifying
the early equation set by letting r; = 35(;) for a level-sensitive memory element. This is called the
conservative set of constraints. The motivation is two-fold. First, it has the effect of resulting in a
feasible space that is convex, thus making it easier to minimize the clock period. The constraints can
be reduced to a set of linear inequalities avoiding any need for perturbation of the linear program
solution. Secondly, note that equations in Table 2.2 are true only in the steady state of circuit
operation. A clocking scheme must be correct even in the start-up phase. The early arrivals at a
memory element monotonically increase to the steady state values (see discussion in Section 3.3.3).
Hold constraints enforce a lower bound on the early arrivals. Thus to ensure that the hold constraints
are satisfied at all times it suffices to ensure that the early arrivals in the first period of operation
meet the bounds. It is possible that the aggressive constraints lead to a smaller clock period but
result in a clocking scheme with an error during the start-up period.

The idea of eliminating the auxiliary variables is conceptually elegant but leads to the
question of formulating the clocking constraints without having to explicitly generate equations in
Table 2.2. The conservative constraints described in [69] are shown in Table 4.1.

Denote a flip-flop by F and a latch by L. There are 4 types of paths in a latch graph G. A
path p : i ~ i, canbe

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 57

| Nature of constraint Formulation |
Data propagation fori=1,---|V|
Long path Af = max (R + Dji — Eg(je(0)
Short path af = min, (5 + dji — Eg(5)e())
Memory element fori=1,---|V]
Late departure (latch) Rf = max(Af, si;)
Late departure (flip-flop) RfF=¢
Early departure (latch) k= sf;(,-)
Early departure (flip-flop) k=c¢
Correct latching fori=1,---|V|
Set-up AF<c-S§
Hold k> H

Table 4.1: Conservative clocking constraints

1. from alatch ¢, to a latch ¢, (LL)

2. from a latch ¢; to a flip-flop i, (LF)

3. from a flip-flop ¢; to alatch iy (FL) or . -
4. from a flip-flop ¢, to a flip-flop ¢, (FF).

A path necessarily terminates if it encounters a flip-flop. Consequently a flip-flop can only occur at

the start or end of a path. Let the set of all such paths be denoted by P(G). A path is allowed to

have repeated vertices; hence the set P(G) can be infinite. P(G) captures all possible paths along

which data can (possibly) propagate unhindered by the opening and closing of memory elements.
For each edge e;; : ¢ — j define,

0 if ¢(2) < (4
K= ¢(2) < ¢(4) @
1 otherwise.
Note that from Equation 2.2, we obtain
E;; = e; — ei + Kjjc. “.2)

For apath p : ¢} ~ 1, define,

g-1
KR =3 Ky, (4.3)
k=1

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 58

and
g-1

D?u', = Z Diyipya- 4.4)
k=1
Equation 4.2 and Equation 4.3 yield the following fact.

Property 4.2.1 Let p : i) ~ i, be a path in the latch graph, then 2}’;‘, Eg(in)é(ine) = Co(ig) T+
K? -qc - 645(,").

Y

For a path consisting of a single edge ¢; — 42, we drop the superscript p on K7, .

Pt~ in, K ,?; i keeps track of the number of clock periods available for computation along p.
Let path p € P(G), p : 1 ~ ;. We introduce one inequality per path that depends on

the nature of the path, and one inequality per edge (note that each edge is a valid path in P(G))

as shown in Table 4.2. Constraints 1-2 are called the set-up (or long path) constraints and 3-4

For a path

Path type Constraint

1: LL/LF €4(iq) > S¢(i1) + Dgiq - I{‘-’:iqc +S
2: FL/FF €4(iy) = €o(in) T Dz'-q - I(ziqc +S5
Edge type Constraint

3: LL/LF €4(i) < Se(i) + diyi, + (1 = Kyi)e— H
4: FL/FF €4(i2) < €a(i) + dixt'z + (l - K,-,;z)c -H

Table 4.2: Inequalities for correct clocking

are called the hold (or short path) constraints. The rest of the section is devoted to proving the
equivalence of the sets of constraints in Table 4.1 and Table 4.2.

The following Lemma has been has been used by several researchers [24, 25, 69, 62]; the
proof is borrowed from [69].

Lemma 4.2.1 Let c be a feasible value of the clock period to constraints 1 and 2 in Table 4.2

over all paths p € P(G). Let C : iy ~ ipy1, (01 = ipq1) be a cycle in the latch graph, then
Df. < KE ¢

f1tpgl — t1ip4l 7

Proof If there are any flip-flops lying on the cycle, a repeated application of constraint 2 in Table 4.2,

will ensure Df;',-p oK ,-Cl',.P 11¢ < 0. Soletus assume that C contains only level-sensitive latches. Let

us construct a set of cycles, which are valid paths in P(G); define C” to be a path which loops around

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 59

the cycle C, r times. Inequality 1 in Table 4.2 requires, e(;;) > Sg(i) + 7 D5 ,, —1KS; | ¢+ 5.
In other words,

Se(ir) — €a(a) + S +rDE
c> = . @5)
TK‘-“'P_“
DE.
Letting r — 00, e see ¢ > =ik, m

‘.l '.p-}l
Corollary 4.2.2 Let c be a feasible value of the clock period to the constraint 1 and 2 in Table 4.2
over all paths p € P(G), then the latch graph has no positive weight cycles.

Proof Let C : iy ~ ip41, (i1 = ip41) be a cycle in the latch graph, then 3}_; Aiyipy, =
Th=1(Dirins — Eg(in)eing) = k=t Diviesn — kot Boi)otinn) = Dicxip+1 - K€£p+lc <0
]

The ensuing theorem relates the clocking constraints in Table 4.1 to the inequalities in
Table 4.2. Szymanski demonstrated[69] that the inequalities in Table 4.1 implied the inequalities in
Table 4.2. We will provide a proof for the converse too. .

Theorem 4.2.3 Theconstraints inTable4.1 have a solution if and only if the inequalities in Table 4.2

have a solution.

Proof The proof consists of two parts.

o =) Let (AL, RL,al, L) and (51, €1,- - - 51, €1) be a solution to Table 4.1. We show that for
all p : 43 ~ i, the constraints in Table 4.2 are satisfied.

- pisoftype LL orLF

Since the late equation set is unchanged, we use Lemma 3.2.1 to obtain

g-1
L
A"v 2 R"I; + "Z:I(kafux - E¢(ik)¢(ik+1))' (4.6)

Together with ef.;(,-q) -5> AL RE> sf;(,.l). Property 4.2.1, Equation 2.3 and Equa-
tion 2.4, we get

edi) =5 2 g+ Dhi, — eaig) = Khic+ ey
=> ¢+ ey, 2 sé‘(il) +eg(iy) + Db, — Kb e+ S§
> e+ ey > sf;(,-l) + eg(iy) + Dﬁiq - Kf:,-qc + 5
=> e4i,) (sf{(il) —e+eyi)+ DE; — KE e+ S
= €oia) 2 So(a) + Diyy = Kij e+ S.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 60

This equivalent to constraint 1 in Table 4.2.

- pisof type FL or FF. Once again using Lemma 3.2.1

AL

q-1
iq 2 R{; + kz:l(Dik"kn - Eé(t’k)¢("k+:))' @7

and Equation 2.3 we get

v

g = S

L
eg) + Dhi, — es(iq) — K ¢ + eg(iy)

= cteyi) 2 c+eyuy+ Di; — KB c+ S

= €4(iy) 2

f11q 11

€4(i) + D?. — KP i€ +S

g 0t

This is equivalent to constraint 2 in Table 4.2.

It remains to prove the hold inequalities in Table 4.2 for each path consisting of a single edge

1] — ta.

— LL or LF: For any edge ¢; — i we know the following constraints are true:

L
a,-z

L
ril

L
a,-z

Hence

H
=>H

IN A

IA

= €4(i)

IN

= €4(i)

<

2

rh + dii = Eg(inyetia) - .

L
Sé(ir)
H.

s§(a) + diiz — (aia) — €o(iy) + Kiyinc)
(35(&) + €4(i) — €4(ia)) F digi, — Kiyirc
(sfb’(i,) +eg(i) —) + diyi, + &1 — Kyyic— H
Se(ir) + diyi + (1 = Kijqp)e - H.

This is equivalent to constraint 3 in Table 4.2.

— FL or FF: For any edge i; — i3 we know the following constraints are true:

L
a,-z

L
T"l

L
a,-z

<

>

rE + dii, = Egtinyatin)

L
€4(ir)
H.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 61

Hence
H
=>H
= €4(iz)

= €4(iz)

IN IA A IA

eg(,-,) + diyiy — (€4(in) — €a(ir) + Kiria€)
(e + €o(in)) + diria — €4(iz) — Kiniz®
(85'(,',) + eg(iy) — @) + diyi, + &1 — Kiyipe — H
eg(ir) + diniz + (1 — Kijip)e — H.

This is equivalent to constraint 4 in Table 4.2.

e <) Conversely let (s, er, - -, i,) be a solution to the inequalities in Table 4.2. We show

that there exists a solution to the constraints in Table 4.1 by constructing an algorithm to

calculate a set of values that satisfy them. The proof proceeds along similar lines to the proof

of convergence of Procedure 3.2.1. An additional burden of demonstrating that the converged

iterates indeed satisfy set-up and hold constraints lies with us.

Consider the iterative algorithm in Procedure 4.2.1. For notational convenience, we shall drop ,

the superscript L on the local variables at a memory element and instead let the superscript

m on each variable reflect the iteration number.

Procedure 4.2.1

1. Initialization- for all memory elements i

A?:—oo

R = { ¢ ifiisaflip-flop

gy ifiisalach

2. Iteration-form = 1,--+,n {

— for all memory elements i {

* AT = maxjerr)(RT™ +4j:)

c if tis a flip-flop

* R =
| max(A}",sf;(,-)) ifiis alatch

}
}

3. Initialization- for all memory elements i

r.={ ¢ ifiisaflip-flop

35({) iftisalatch

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 62

4. for all memory elements i {
- a; = minjeps)(rj + 85:)

}

Steps 1 and 2 in Procedure 4.2.1 are identical to Procedure 3.2.1, and hence must converge in
n(= [V]) iterations, as long as there are no positive weight cycles in the latch graph (a true
fact by virtue of corollary 4.2.2).

Steps 3 and 4 define the early arrivals and early departures at the memory elments. Note that
the only iterations are in step 2. Let us denote the solution obtained from Procedure 4.2.1
by (A™, R", a,r). It remains to check if (A", R", a, 7) meets the set-up and hold constraints
(inequalities 2.12 and 2.13).

— Assume for sake for contradiction that there exists some memory element i; which has
a set-up violation, A} > eﬁ(il) — S. Trace a supporting path to 4; as follows. Find
iz € FI(ir), suchthat A} = RE™ + Apiy. I R = 5Ly orif RE! = ¢, terminate
the path, else continue tracing the path. Since the iterations are guranteed to converge
in |V] iterations, a supporting path p : i, ~ #; must be found, with ¢ < |V|. If ipisa

~q+1 -1 —g+1 A,
latch we have A}, = Ri™** 4+ T17) Ay, i, and R = 850,y Gf ig is ﬂlp-ﬁop- we
obtain R}:“’“ = c and the proof proceeds along similar lines). 'So we have a path for

sf{(iq) +DP. — I{i’;ilc + €4(ig) — €4(ir) > eg(,-l) -S

igi1
= (sf;(,-q) - e+ ey(,)) + D:-;,-l - K}:,-lc > (eg(,-‘) —eteyiy)—S
= s4i) + DEiy — Kl > egy = S,
thus contradicting constraint 1 in Table 4.2. If ¢, is a flip-flop, a contradiction to
constraint 2 in Table 4.2 is obtained.
- Assume for sake for contradiction that there exists some memory element #; which
has a hold violation, a;, < H. Then from step 4, we conclude that there exists some
i3 € FI(4y), such that a;, = 1, + 6;,;,. Assume 73 is a latch (the argument if #; is a

flip-flop is similar). This implies
H > rip+6ii
= H > si)+ 6

=>H > sg("z) + dizil - eé(ﬁ) + e¢({2) - Kt’zixc'

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 63

Rearranging terms, we obtain

esir) > (S5 + €o(in) —) + (1 — Kigiy Yo+ digiy — H
= eg(i) > Se(in) t (l - K;,;,)c + d,'z," - H.

Contradicting constraint 3 in Table 4.2. If ¢, is a flip-flop, a contradiction to constraint
4 in Table 4.2 is found.

4.3 Eliminating redundant constraints

This section is basically a reproduction of the theorems from {69], that are used to reduce
the number of constraints in Table 4.2. Constraints 3 and 4 total up to | E| constraints (one inequality
per edge). Constraints 1 and 2, on the other hand, must hold for all paths, and possibly are infinite .,
in number. Hence we must find a more compact representation. Consider constraints 1 and 2 in

Table 4.2 for a path p : u; ~ ug, (@(u1) = J, $(ug) = 7). These can be represented in the form

Ti— 25 2 @f g, — Bl O “.8)
where of ,_ is defined as
-1
al iy, = :Z; Dypuy + 5 4.9)
and)
g = Kiu,- 4.10)

z; represents a clock event associated with the late departure from u; and z; represents a clock
event associated with the latching at u,. Note &' L uq 2 0-

Upto now, the dependence of constraints lay on a path from memory element u; to memory
element u,. However we are interested in the greatest lower bound on the difference z; — z;. To
compute this we modify this dependence to include all paths that use the same clock events as p for

late departure and latching. Let

P Uy~ Uy,
Uz,eo = max{ (ef ,, — B, c) z; triggers departure from u, @4.11)

z; latches signal at u,.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 64

For a given clock period ¢, U,‘j,.. is the relevant bound on the minimum value z; — z; can take.
Let I" be the set of cycles in P(G'). Recall that there must be at least one memory element

in every cycle in the circuit. Consequently for any cycle C : u; ~ up41, Ku,u o > 0. A weak
lower bound on the clock period ¢ (from Lemma 4.2.1) is
D 5’; Zurupyr
c2YP= max - |- “4.12)
K U Up41

Let p' : u; ~ u, be a path that contains a simple cycle C : ug ~ upy, (1 < k < k+ v < g, and
Up = Uk4o), and ¢ > 1. Let us decompose p’ into three paths:

1. p‘:ul—wuk
2. C:ug~ ugyy

3. P tpgo(= wk) ~

. . ' c
The contribution of p’ to the term U$)T «"q)

(au] Uq ﬂtpz:uqc) = (Dulu;, I(zl‘uk C) + (Dukuk.ﬂ, Iftiuk+ C) + (DuH.,,uq I(Pz C) + S'

Uk4olUq

Rearranging terms we get

(auluq ﬁ:uq) [(Duluk Ks,ukc) + (Duk+.,uq - \’5k+uqu)] + (Dukuk+., I UkUktv C) + S

Since (DS - KC . . ¢)<0(from Lemma4.2.1),

UkUk4o UkUkyoy

(auluq - uluq) [(I)ulu,= I{zlukc) + (Duk.._‘,uq - I(5k+.,uqc)] +S
< o U _ o Up

S Quyug u g

Thus the bound given by the cycle-disjoint path p! |J p? dominates the bound provided by 7. So a
simple way to compute U7 . is

P : u; ~ ug, pis cycle-disjoint
Uz, = max{ (af,,, — BY,.) =; triggers departure from u 4.13)

z; latches signal at u,.

Intuitively, if we encounter any cycle on a path from u; to u,, we can only decrease Uz, s, -

Also note that as c increases, Uz, decreases. Thus any bound that is present at a clock period

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 65

¢ > 9 must also be a bound at ¢ = ¢. Using the lower bound 1 for the clock period, we obtain a
sufficient set of constraints that need to be considered.

For a given clock period ¢, the relevant constraints may be obtained as follows. Each
edge ¢ — j in the graph G is weighted with D;; — K;jc. Solve an all pairs longest path problem
(with the constraint that a path cannot continue if it encounters a flip-flop), given that the graph
has no positive cycles. The length of the longest path from a memory element on phase j to a
memory element on phase : gives us the constant on the right hand side of the inequality, denoted
by Uz,.;. Since we have ! phases, we can have at most 2! variables (rise and fall times). The
value of szq. for a cycle disjoint path u; ~+ u,, can range from O to |V| — 1. Hence there can
be at most (|V| — 1)21(2 — 1) ~ O(|V|{2) relevant constraints for the circuit. If we are given a
clock period ¢ this reduces to O({2) constraints. To compute all relevant long path constraints for
all valid clock periods, we use the approach suggested by Szymanski [69]. This has a complexity
of O(I|E||V]). This approach also requires the computation of 1 (the algorithm to do so has a
complexity of O(|V|| E|b), where b is the number of bits of accuracy required in computing).
Henceforth, the set of relevant long path constraints will be denoted by z; — z i 2 aji — Pjic, since
the dependence on paths in the graph has been captured.

The constraint 3 and 4 in Table 4.2 can be written as

Zi— zj S '7u1uz + nuxuzci (4-14)

where

Tz = Quyuy — H (4.15)
and

Tuuy = 1 = Kyjo,. 4.16)

Once again we modify this dependence to include all edges that use the same clock events as
uy — up for departure and latching. Recall that for an edge (u; — u2) € E, K., € {0,1},
implying 7,4, € {0,1}. Let

(w1 —» w) € E,
Lz 2, = min ¢ (Yuyu, + Muyu,c) z; triggers departure from “4.17)

z; latches signal at u,.

Lz -, decreases with decreasing ¢, since 7,4, > 0. With alower bound on ¢, we get LS .. > LY

zjzi = Lryz;

for all feasible clock periods. There are E constraints and O(i2) variables. Eliminating redundant

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 66

constraints will yield a set of O({2) constraints. The set of relevant short path constraints will be
denoted by z; — z; < ;i + 5jic, since the dependence on edges in the graph has been captured. In
all there are O(|V'|{?) set-up and hold constraints, that are germane to the clock period optimization
problem.

4.4 Solving the optimization problem

The problem formulation for clock period optimization may be posed in several equivalent
forms. The linear program formulation is conceptually the simplest.

P min(c)
such that z; — z; < —aji + Bjic O(|V|1?)long path constraints
z; — £; < 75i + §jic O(2lz)short path constraints

0<z;<¢ }

upper and lower bounds
v<zo(=e&)=c)

In this section we show that the linear program for clock period optimization has a special structure
that makes it possible to solve it efficiently. The linear program formulation will be denoted by P.

We could solve this as a linear programming problem; instead we propose two approaches
based on graph algorithms to solve the problem. If we fix the clock period to a value say ¢ = ,
then the size of the constraint set reduces to O({%). This can be done by just evaluating the right
hand sides with ¢ = 7 and picking the dominating bound for each inequality. This takes O(|V|{?).
The constraints are then of the form

zi — 2 < kT, O(1?) long and short path constraints
z;—-29<0
0< z upper and lower bounds

Yp<zo(=e)=m

Note that zo is a special variable representing the end of the global time frame, namely e; = c.

44.1 A simple algorithm

We append the clock event separation constraints and ordering restrictions (if any) at this
time. It should be pointed out that duty cycle constraints are of the form mc < z; — z; < Me,

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 67

where 0 < m < M < 1. Only constraints of the form z; — z; < uc, where z is non-negative are
permitted. The reason for excluding the negative u will be clear towards the end of this section. Thus
only a restricted set of duty cycle constraints (maximum duty cycle) are permitted. A feasibility
check at ¢ = 7 can be done in polynomial time as explained below. |

Theorem 4.4.1 Given a clock period = > 4, it is possible to check if there is a valid clocking
scheme, and if 50 to find values for the rise andfall times of the l phases in O(I*) time.

Proof It is well known that the feasibility of a set of constraints of the form z; — z 5 S kji k}; € R,
can be related to the shortest path on a graph problem. To check for feasibility we construct a
constraint graph G,(Vj, E;) as follows. For each variable z; construct a vertex v,,. For each
constraint z; — z; < k7, construct an edge from v, ; 10 vp, with weight k7;. Henceforth when we say
“add an edge of weight w”, we mean the following— if a previous edge exists we simply change its
weight to be the minimum of the original weight and w. If no such edge exists we create a new edge
of weight w in the graph. Add edges to all vertices vy, (i # 0), from v,, with weight O (representing
constraint z; < xp). Construct a zero vertex v, (not to be confused with vp,) Which has edges from
all vertices other than v, with weight zero (reflecting z; > 0). Weigh the edge from vy, to v, with
(—7). Add an edge from v, 10 v, of weight x; thus ensuring zo = . This construction makes the
graph G strongly connected. From every vertex there is an edge to v,. There is an edge from v,
10 vy, and there is an edge from vy, to all other vertices.

Initialize the potential of v, to 0 and the potentials of all other nodes to +oco0. Now do a
Bellman-Ford iteration for the shortest paths. If there is a negative cycle in Gp, it will be detected
and such a cycle implies a set of inconsistent inequalities, implying infeasibility. Else, the algorithm
will terminate with a set of consistent potentials for all vertices. The complexity is O(P). If there
are any upper bounds on variables, we initialize the potential of the vertex that represents that
variable to the upper bound instead of +oo.

If there is a negative cycle in the graph G,, it implies that the constraints are infeasible.
Let C-. be a negative cycle with weight —W through, vertex vp,. This implies we have a constraint
(after elimination from the set) z; < z; — W, i.e. 0 < —W; clearly infeasible. n

In order to do guarantee that binary search will find the optimum clock period, we need
to prove two facts:

1. Convexity of the problem: If 27, z are feasible solutions to the problem P with clock periods
gand r(g > r) respectively, then there exists a solution to all clock periods between r and q.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 68

2. There is a tight upper bound on the clock period. Note that this implies that the upper bound
is actually attained. So we have to show the existence of an upper bound IT and a feasible
solution z™ for ¢ = IT.

Theorem 4.4.2 Let 29, z" be feasible solutions to the constraints in P with clock periods q and r
respectively (g > r). Letc = Ag+ (1 — A)r (X € [0,1)). Then z = Az9 + (1 — A)z" is a feasible
solution to the constraints in P with clock period c.

Proof Consider any constraint of the form z; — z; < a + bc, where a, b are real constants. We
know

z{ -z} < a+bg and
zi—z; < a+br.
This implies, Az] —Az] < Aa+ Abg and
(I1=Azi=(1=-A)z; < (1-Aa+(1=2A)r.

Adding the last two inequalities we get,

(Azf + (1= N)zf) = Az?+ (1= N)2]) < a+b(Ag+ (1 - M)

Hence z = Az9 + (1 — X)z" is feasible for clock period ¢ (= Ag + (1 = A)r).]

Theorem 4.43 I1 = |V|2] max E{D"‘ s }+ IS a tight upper bound on the clock period.

up—u2€

Proof We will give an algorithm to find I1. The short path constraints have a non-negative right
hand side always. The long path constraints have a right hand side of the form —a;; + f;ic with §j;,
possibly equal to zero. We will first show that for every cycle in the constraint graph, the sum of the

| coefficients of ¢ along the cycle must be a strictly positive value. We know that there are no negative
coefficients of ¢ on any of the edge weights. For sake of contradiction assume that there exists a
cycle C : v ~ v,4; in the constraint graph with zero coefficient sum for c. Let e; : v; — w4y
i =1,---,n— 1, denote the set of edges in C. Since the sum of coefficients of ¢, each of which
is non-negative is zero, cach edge must have a zero coefficient. Let phase(v;) denote the phase
associated with the variable represented by vertex v; (e.g. if vertex v, represents the rise of phase
k, namely s, then phase(v,) = ¢x). Now consider the nature of constraints that give rise to edges
in G, with zero coefficients of c.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 69

e Along path constraint with a zero coefficient for ¢ gives rise to an edge in the constraint graph
e; such that phase(vi41) < phase(v;) (Equations 1 and 2 in Table 4.2).

e A short path constraint with a zero coefficient for ¢ gives rise to an edge in the constraint
graph e; such that phase(v;+1) < phase(v;) (Equations 3 and 4 in Table 4.2).

This implies that as we traverse the cycle phase(vs) < phase(va—1) - - - phase(v2) < phase(v),
irrespective of the nature of the constraint. Since the relation < (Chapter 2, Equation 2.1) is
transitive, we conclude phase(v,) < phase(v;). But there is an edge from v, to v;, implying
phase(v)) < phase(v,). Also recall from definition that < is anti-reflexive, thus yielding a
contradiction to the assumption.

The smallest value for the sum of coefficients of ¢ in any cycle is 1. The largest value a;;
can have for an edge is (lVlm EgeE{Dum}). A cycle can have at most 2/ edges. So for a clock
period IT > 21|V|u1§3§5 E{D“""} there will be no negative cycles in the graph G,. Now carry out
the Bellman-Ford iteration for ¢ = I1. Since there are no negative cycles, we are guaranteed that
the algorithm will converge to a valid solution. n
Note that we never have to compute IT, only justify the existence of IT that depends on the dclays
of the gates in the circuit.

-

Lemma 4.4.4 The complexity of binary search is O((|V|12 + 13)1ogIT) ~ O(|V|1og |V])

Proof The first term (O(|V|?)) is the complexity of selecting the minimum value of the right
hand side k7; for a given clock period . The second term (O(*)) is due to the Bellman-Ford
iteration in Theorem 4.4.1. If we normalize all numbers by " T& E Dy, u,, then for |V]| > [we
getlogIT = log(2!|V|) ~ O(log |V|). Hence O((|V|12 + 1) logI) ~ O(|V|log |V]). u

A minimum duty cycle constraint will cause the coefficient for ¢ (in the < inequality) to
be negative, i.e. (—m). Theorem 4.4.3 excludes the presence of such constraints. Consequently
the bound in Lemma 4.4.4 does not hold in the presence of minimum phase separation constraints.
In fact, the addition of these constraints may render the problem infeasible. Intuitively, a long path
may force the clock period ¢ to be of at least value 7y; this forces the on-time of a phase to be at
least mm;, and a short path may cause a violation.

We are guaranteed that the binary search will work only if there is no cycle for which the
sum of the coefficients of c is negative. A simple case is when m € [0, 2,—'_1-). The next section will
present a generalized algorithm which will handle arbitrary duty cycle constraints.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 70

44.2 A general algorithm

This algorithm is motivated by a technique used in linear programming which adds a
constraint to the active set only when needed. We take advantage of the special structure of the
constraints to find a feasible solution for a given clock period, if one exists. The general problem
(denoted by G P) is of the form

GP: min(c)
suchthat z; —z; < mink=1,...,N(a§,- + b_',f,-c)
Yp<e

The variables af; and b%; are real numbers. We construct a constraint graph. Gp(Vp, Ep) as
described in Theorem 4.4.1. The general algorithm is given in Procedure 4.4.1.

Procedure 4.4.1
¢ = clock period
% = lower bound on ¢
Gp(Vp, E,) = constraint graph
=1
k=0
o while (TRUE) {

1. c=¢
flag = check_constraints(G,, c)

2. if (flag == ALL POSITIVE CYCLES) return TRUE (c is the optimum clock period)
3. if (flag == NEGATIVE CYCLE)

k=Fk+1,ck = new.lower_bound

4. if (lag == INFEASIBLE) return FALSE (problem is infeasible)

The routine check_constraints() for a given clock period can return one of three values:

1. ALL POSITIVE CYCLES: The set of constraints for the current clock period is feasible.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 7
_ |

C, 4
we | C3

Cycle |,
Feights/

0 S

s}/
=
A

g
-_\\\\\g\j

w‘:l/)

Figure 4.1: Graphical interpretation of the cycle weights

2. NEGATIVE CYCLE: The set of constraints for the current clock period is infeasible because
at least one negative cycle exists in G,. If a negative cycle is found, the routine also compﬁtes
the value for the clock period in the next iteration.

3. INFEASIBLE: The problem is infeasible.

The search starts at the lower bound of the clock period. The routine check-constraints()
evaluates the dominating constraint for each edge in E, i.e. it computes ming=y,..n(a¥; + b;c)
and sets it as the edge weight. Floyd-Warshall [32] is used to detect the shortest path from Zp t0
Zq, keeping track of the sum of the b;;'s for the shortest path. During the Floyd-Warshall iterations,
we keep track of the diagonal entries of the Floyd-Warshall matrix. As soon as one of these entrics
becomes negative, we analyze all the cycles detected so far for each vertex. Let W denote the
minimum weight of a cycle if one exists from z; to z; at this time. Let B;; denote the sum of the

bi;'s for the same cycle. There arise four cases as shown in Figure 4.1.

1. W§ < 0and B;; > 0: Feasible clock periods must be greater than orequal to ck-l-Z[:%ici = Cktl
(= new_lower_bound)(cycle C) in figure).

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 72

2. W§ < 0and B;; < 0: The problem is infeasible because, for every clock period greater than
c this cycle will have a negative value (cycle C; in figure).

3. W5 2 0and B;; > 0: cis possibly feasible if WJ‘-’J- 2 0 holds for all vertices j and the
Floyd-Warshall algorithm terminates with no negative cycles (cycle Cj in figure).

4. W§ > 0 and B;; < 0: Feasible clock periods must be less than or equal to ¢ + _lvgc: =cy
(cycle C4 in figure).

Note that the clock period being tested (c) is monotonically increasing. If we encounter a vertex 4
satisfying case 1, then we get a lower bound on the clock period. If vertex i satisfies case 2 then
the problem is infeasible. Cases 3 and 4 do not give us any information regarding infeasibility
because we are examining just one of the cycles in the graph (possibly prior to termination of the
Floyd-Warshall iterations). The last case gives an upper bound on the clock period, which can be
used to detect infeasibility early. The ensuing lemmas provide insight into the problem.

Lemma 4.4.5 The number of cycles is of order O((N + 1)!E#!)

Proof Consider the different possibilities that an edge can partake in a cycle. Each edge is
1. not in the cycle, . -
2. oris in the cycle with one of the N possible weights on it;

N + 1 choices in all. Thus we have O((N + 1)I#!) cycles. n
For the optimal clocking problem, [Vp| = 2141, |E,| < 2I(21 + 1), N < |V| — 1; thus the number
of cycles is O(|V/[*"+2!). For the rest of the section we use the notation ¥ af; to represent the
sum of the a;;'s along a cycle C' € G, obtained from some value of k for each edge along C. Note
that each edge can have a different value of k; 1 < & < N. Similarly, ¥ ¢ bf-‘j represents the sum of
the b;;'s for a cycle.

Lemma 4.4.6 If for any c(>) there is a negative cycle through vertex i, such that W§ < 0, and
B;; < 0 (for that cycle), then for all ¢’ > c, there is a negative cycle through i.

Proof Let us denote the negative cycle through i at clock period c as C_. Let k be the dominating
constraint for each edge ¢ — jin C_ at clock period ¢ (i.e. afj + bf’jc = k_r}ﬁn N(af‘j + bf‘jc)). Then

. k k k ks
WG) S al ok be

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 73

;(k;{l'ln' N(a?j + b:"jc’)) < ;(a{‘j + b{-‘j ¢

< Z(a;‘j + b,&jc) + bfj(c' -¢)
Cc-

< Wi+ Bi(c' - o)
< 0

Thus the weight of C_ for a clock period ¢’ is negative.]

Lemma 4.4.7 If the problem G P is infeasible then 3 a cycle C in Gy, such that
1. (%) is strictly negative, or
2. Yolaf) <0and T (b)) = 0.

Proof By contradiction. Suppose the above condition does not hold i.e., for all cycles if >l af‘,-) <
0, then 3-c(b%) > 0, else c(b%;) > 0. Then for a sufficiently large c, it is possible to make all
cycles in the graph have strictly positive weight and a feasible solution to P can be found using
Theorem 4.4.1.]

Theorem 4.4.8 The algorithm in Procedure 4.4.1 is complete, i.e. it finds an optimum solution if
one exists, else it reports the problem as infeasible.

Proof The proof is given graphically. We break the proof into two parts; in the first part we prove
that the algorithm converges to a solution in a finite number of iterations, second we prove that the
clock period is optimum.

Let ¢, denote the value of the ¢ in the k! iteration, &k 2 0, co = 3. The proof relies
on the fact that the number of cycles in the constraint graph is finite, though exponential in the
number of constraints (see Lemma 4.4.5). Without loss of generality, assume that there are negative
cycles (Co, C1, - - - Ci) in the constraint graph for clock periods cg, ¢y, - - -, c¢x. Note that cycle Cp
is negative for all values of ¢ € [c,, cp+1). When the algorithm reports the existence of a negative
cycle in iteration k, it either gives a value for Ck+1 in the next iteration, or reports the problem to be
infeasible. The proof for infeasibility is provided by a set of cycles such that the minimum wei ght
of these cycles for all ¢ > v is strictly negative.

To show that the clock period reported in itcration = (if the problem is feasible) is optimum,
we note that for all ¢ € [%, cx), we have a proof of infeasibility, namely a set of negative cycles. For
¢ = cy, there are no negative cycles, hence there is a solution to the z;’s from Theorem 2. Intuitivel y

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 74

W n-1
33
]
r |
v ' !
Cycle |, I
W
eights| , ; S
4 |
)
(|
g |
1
o‘u ¢ HIPSEEEEEEY Y £ Lo
LY :cn-l n ‘\eub c
|
f | Feasible region
2
L, : Optimal value of ¢
4 |
|
4 Won-1 |
v 11

Figure 4.2: Graphical interpretation of optimality

the feasible region is the interval defined by the cycles determining the new upper and lower bounds
on ¢ (C) and C; in Figure 4.2). n

Corollary 4.4.9 Procedure 4.4.1 has a complexity of O((2|V|*F+21+1)

Proof In each iteration there are two steps.
o Evaluating the dominating constraint of each edge (complexity O(|E,|N) ~ O(|V|i2)).
e Floyd-Warshall on the resulting graph requires O(#*) time.

Assuming |V| > [, the first process dominates the computation. In the worst case we examine
every cycle in G, leading to a complexity of O(|Ep|N(N + 1)IBel) ~ O((Z2|V[#P+2H41) (sec
Lemma 3.2.9). n
So for circuits with fixed number of phases, the complexity is polynomial in the size of the circuit.
The value of N (85, u in Equation 4.8) reflects the depth of cycle stealing along paths in the circuit.
For most circuits, N < |V] (typically N ~ 5), leading to a fast algorithm for the linear program.
Megiddo [44] presents an interesting approach to solve a similar problem. Note that we permit
only those external constraints that can be put in the form required by G P. For example constraints
of the form ¢; — s; = e; — s, forall i # 7, 4,5 € {1,---1}, cannot be expressed in the requircd
manner. This constrains all phases to have active intervals of identical duration. Such constraints
may require using a general lincar program for the optimal clock schedule computation.

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 75

55, 5, 0 ¢,

? 1

Edge weights
D, d, K)

Figure 4.3: Latch graph for video coder

4.5 Results

Let us focus on the implications of the theoretical results obtained so far. In this section,
we will discuss an example from([82] in detail and present the results of an implementation the
benchmarks described in Chapter 3 (Section 3.4.1).

4.5.1 An example

Consider the video coder circuit described in Section 2.3.4. The latch graph for the circuit
is shown in Figure 4.3. There are two cycles in the latch graph, which yield the following lower
bound on the clock period;

(65 +55 15+40>
140’ 0+1
= 120.

Let us first enumerate the long path constraints (for all cycle disjoint paths);

e2—s 2 55 patha—c
> 55 pathb—ec
> 15 pathb—d

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 76

€ — s
€1 — S2
€2 — %

vV IV IV IV IV IV IV IV IV IV IV IV IV IV

v

1S pathd— f
135-¢
135 -¢
120 -¢
8 -c¢

patha —»c—b—d
pathea - c—b— f
patha —c— b

patha - c— e

85—~c pathb—c—e

45—-c pathb—d—e

165—-2¢ patha—c—b—d—e
65—c pathc—b

40—c pathf—b

30—-c pathd—e

30-c pathc— e

110-2¢ pathc—b—d—e
80—-c pathece—b—d

80-c¢ pathc—b— f.

-

Quite clearly some paths dominate others, e.g. path a — ¢ provides a bound (55) on the right hand

side to the difference e; — s that exceeds the bound provided by b — d (15). Eliminating such

dominant constraints we get

€2 — 81
€] — 81
€ — 82
€ — 82

vV IV IV IV IV IV IV IV IV

v

55 patha— ¢
55 pathb—e
135-¢
135-¢
120 —¢
165 - 2¢
65-c¢

110 - 2¢
80-c¢

80 -¢

pathea - c—=b—d
patha—c—-b— f
patha - ¢c— b
ptha—c—b—d—e
pathc — b
pithc—b—d—e
pathc—b—d
pathec — b — f.

v

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 77

Together with the constraint ¢ > ¥ = 120, we are able to eliminate some more constraints, e.g.
¢ > 120 = 135 — ¢ < 15 for all feasible ¢. Hence path @ — ¢, which provides a bound of 55
dominates @ — ¢ — b — d which gives a bound that has value no greater than 15. Keeping only
the paths (a path when several provide the same bound) that dominate, the long path constraints are

e2—38 2> 55

eg—s; 2 120-¢
eg—8% 2 65-c
e2—5 2> 80-c.

The short path constraints are defined for each edge in the graph. They are

e2—8 < S5+4c¢ pathsa—c,b—d,b—> f,b—c
eg—s2 < 0 pathsc—e,d—e, f—b
5 pathc—b

IN

The dominating paths are

e2—s5 < S5+4c

e1—sy < 0.

In addition let us assume that the minimum pulse width requirement on each clock phase is 20 units;
yielding

(4] 2 3|+20

e2 > s+ 20.

Furthermore, the designer requires that at least 60 units of time elapse after the fall of phase 1 and
before the fall of phase 2. This gives

e > e +60.
The model constraints require
e, s1 ,8220.

Consider the procedure described in Section 4.4.1 (the simple algorithm). The constraint
graph is shown in Figure 4.4. Figure 4.5 shows the constraint graph with edge-weights evaluated at

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION

Figurc 4.5: Constraint graph with edge weights evaluated at ¢ = 120

78

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 79

3
0,

Figure 4.6: Clocking scheme for video coder

¢ = ¥ = 120. Note that an edge can have more than one weight, in particular edge e; — s, in the
figure has 2 weights — the minimum weight is used for the shortest path algorithm. Initializing
the zero vertex to 0 potential, the shortest path algorithm yields a solution (see Figure 4.6)

s1 = 40

eg = 60

s = 100

e = 120. . .

To portray the complication caused by minimum duty cycle constraints, let us enforce a
minimum active interval width for each phase to be 0.6¢. The constraints to do so are
s1—e < -0.6¢

s2—e < =0.6c

Now consider the following set of constraints

s1—ep < -0.6c minimum duty cycle for phase 1
s —e€ < =0.6c minimum duty cycle for phase 2
e - sy < 5+c short path constraint foredge a — ¢
ep —s2 < 0 short path constraint for edge ¢ — e.

Summing up, we get 0 < 5 — 0.2¢; in other words ¢ < 25. This is inconsistent with the lower
bound . To see how the general algorithm (presented in Section 4.4.2) would detect this, consider
the constraint graph modified to include the minimum duty cycle in Figure 4.7. A negative cycle is

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 80

Figure 4.7: Constraint graph for video coder with negative cycle

encircled in bold dashes; its weight is (=72 + 125 — 72 + 0) = —19. The sum of the b;;’s is —0.2.
Thus we have encountered the case where Wi < 0 and B;; < 0 (see Scction 4.4.2, Para. 3).

4.5.2 Experiments

The construction of the benchmark circuits is outlined in Chapter 3 (Section 3.4.1). The
results of the optimal clocking algorithms on the benchmarks are computed using two dclay models.
The first set of experiments is done using the unit delay fanout model (Table 4.3). Column 2 gives
the time taken for reading the circuit and setting up the data structures. The lower bound on the
clock period (%) and the time required for its computation (together with constraint generation)
form the contents of columns 3 and 4. The optimum clock period is given in column § and the time
taken for minimizing the linear program are shown in column 6 (using the simplificd algorithm
in Section 4.4.1) and column 7 (using the general algorithm in Section 4.4.2). The last column
gives the total time taken by the implementation described by Szymanski [69], using a unit delay
modcl. The first entry in the column is the time taken to process the circuit and the second entry
reports the time for computing 1, extracting the constraints and the best time required for solving
the resulting linear program (amongst 3 linear program solvers). Szymanski[69] reports that no
one linear program solver (of the 3) was uniformly the fastest; and that for occasional instances
therc was a factor of five between the best and worst linear program solvers. The circuits used

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 81

by Szymanski differ slightly (in terms of latch and gate count) since we choose to eliminate some
redundant latches using a sequential optimizer. These results are for an implementation on a Silicon
Graphics 4D/440 machine using a single processor (the specmark rating for the 4D/440 is 31.5 and
for the DECS5000/125 is around 17). A “-” indicates that the results are not available.

name read-in P | time | optimal time time

(sec.) (sec.) clock | Al (sec.) | A2 (sec.) || Szymanski [69]
2planet 129 | 56.00| 001 | 56.00 0.01 0.01 -
251423 419112940} 042] 129.40 0.13 0.14 -
255378 525 | 32.60| 0.51 32.60 0.12 0.14 -
259234 987 | 5520 | 130] 55.20 0.25 0.30 -
2513207 | 1431 | 5460 194 | 54.60 0.61 0.65 -
2538584 | 115.96 | 861.80 | 1547 | 861.80 2.81 29 155+6.0
2538417 | 148.90 | 24040 | 24.27 | 24040 5.80 593 8.6 +4.1
2535932 | 72.64 | 641.80 | 1.00 | 641.80 0.65 0.68 || -

Table 4.3: Optimal clock computation with unit delay fanout model
Al - simple algorithm
A2 - general algorithm

The second set of experiments uses the linear delay model prescribed by an industrial
library (Table 4.4). The library has realistic gate delays and set-up hold times for the memory
elements. The run times are similar to the results in Table 4.3. The duty cycle of each phase was
constrained to lie between 0.3 and 0.5S. Note that entries of column 2 includes the time taken to bind
the circuit to the library.

The optimum clock period achieves the lower bound in all cases with the unit fanout
delay model; whereas under the library delay model, there is a gap between the lower bound and
the optimum clock period. The Floyd-Warshall skeleton (in column A2) detects a negative cycle
early, if one exists. Consequently the iterations are never completed for lower (i.e. infeasible)
clock periods. As a side-note, the implementation to compute the lower bound 3 makes use of a
cycle-detection heuristic proposed by Szymanski[71]. The detailed procedure to compute ¥ may
be found in [69]. Briefly, a guess ¢’ for the value of ¥ is made and each edge in the latch graph
is assigned a weight D;; — I(;;9'. A positive cycle in the latch graph implies that the guess was
an under-estimate for the bound. If all cycles are negative, the guess over-estimated the bound. A
binary search will yield the value of 1, whose accuracy is controlled by the number of searches,

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 82

name read-in ¥ | time | optimal time
(sec.) (sec.) clock | Al (sec.) | A2 (sec.)
2planet 1299 | 3267 | 003 | 35.77 0.01 0.01

251423 1675 | 5324 | 048 | 60.34 0.17 0.15
255378 32.04 | 1921 | 075 | 27.86 0.20 0.17

259234 48.28 | 2824 | 151 | 3171 0.31 0.25
2513207 64.15| 2926 | 022 | 34.74 0.77 0.67
2538584 | 3672.93 | 210.76 | 16.23 | 21841 3.29 3.21
2538417 | 1014.82 | 97.78 | 225 | 97.79 6.11 5.93

2535932 | 650.39 | 132.92 | 16.28 | 140.01 0.84 0.79

Table 4.4: Optimal clock computation with library delay model

that we are willing to undertake. If the value of 4 is much larger than 1, the longest path algorithm
converges rapidly. At each iteration for the longest path, a priority queue is used to keep track of
vertices that were affected in the previous iteration. A priority queue gives an improvement of a
factor of 2 over the naive implementation, The problem arises when 1’ is smaller that 1; the failure
to converge implies a positive cycle and this will require all iterations to be performed. Instead a
predecessor bointer is maintained at every vertex, i.e. a parent of the vertex which caused an update
of the vertex potential. By repeated traversal of the predecéssor pointers, it is possible to detect
a positive cycle cheaply. This heuristic alone yielded a sbeed-up of an order of magnitude on the
large examples.

4.6 Discussion

So far the discussion has ignored the effect of clock skew on the clock schedule optimiza-
tion problem. To incorporate clock skew, recall that the maximum (minimum) delay along a skew
path P; to latch 7 is given by 3" rep, B (Cre P. b£*) The clocking constraints translate as-

1. long path constraints

@ Vp:i~ i

P Py, 22)
eiq) + (Z b") 2 s4(iy) + (Z B.")+ (Z(DZH-I - Kf 00+ 5. (4.18)
keP;, kep;, k=1

CHAPTER 4. CLOCK SCHEDULE OPTIMIZATION 83

(b) Vcycles C : 4y — ig4q

9 pC
o> 2=t Diint

2 “4.19)
Yia Kgn

2. short path constraintsNp : i; — 3

eo@) + (2 Be2)+ H S o4y + (X 0p0) 4 diiy) + (1 - Kaige. (420)
keP,, kePy
These constraints can be put in the form described by G P.

This Chapter has focussed on computing the optimal clock schedule. Its fundamental
contribution is the unraveling of the structure underlying the linear programming formulation of
the problem. This enables us to develop an algorithm which is insensitive to the problem instance,
e.g. we do not experience the non-uniform run times as reported by Szymanski. The mathematical
relation between the complexity of solving the linear program and the size of circuit evolves as
an artifact of understanding the problem structure. As we shall see (in the next Chapter), this
also provides an insight into a technique to optimize a special class of sequential circuits (called i
pipelines) for high performance.

Several discussions with Szymanski on the clock schedule verification problem led to
an exposure to the optimal clocking problem; in particular our curiosity was aroused by the non-
convexity of the original model proposed by Sakallah et al. [55]. We chose tﬁe effort by Szymanski
[72] that provides the linear programming formulation (whose merits have been summarized earlier),
as the basis for our approach. By a curious co-incidence, a paper by Megiddo[44] triggered some
ideas that led to exploring the structure of the linear program for the optimal clock schedule
computation problem. Ishii et al. had reached similar conclusions for two-phase level-clocked
circuits [25] independently. In contrast, our approach does not restrict the circuits to have a two-
phase clocking methodology with only AHLSLs. In addition, we permit user defined duty cycle
constraints and clock event separation constraints to be introduced in the formulation.

84 .

Chapter 5

Resynthesis of Multi-Phase Pipelines

The thesis has so far focused on analyzing a synchronous sequential circuit. Techniques of
analysis are limited to drawing a designer’s attention to potential violations of circuit specifications.
The next logical question that begs to be answered is, whether synthesis techniques can be used to
correct the design to meet specifications. A consequence of designing in the sequential domain is
that constraints on clock period, duty cycle, and clock event separation specified by the user need to
be satisfied. We call them external timing constraints; in contrast to the clocking constraints which

arise from the circuit.) -

5.1 Overview

The external timing constraintstranslate to a set of performance constraints on one or more
“pieces” of combinational logic. For circuits with single phase edge-triggered memory elements, it
has been shown by Malik et al. [38] that the pipeline performance optimization problem is equivalent
to a combinational performance problem; namely, the first problem has a solution if and only if the
second problem has a solution. Bartlett et al. [2] propose an approach based on approximating
level-sensitive latches by edge triggered flip-flops. This algorithm can handle arbitrary multi-phase
circuits. A slack based ﬂgoﬁthm is used to direct resynthesis and logic movement across memory
elements repeatedly to find the best clock period at which the circuit can operate. The slack based
approach algorithm is myopic in its optimization. To overcome this, simulated annealing is used to
direct the optimization. However this may result in much larger circuits than necessary, especially
when a target clock period is given.

Our approach differs from [2] in several ways.

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 85

1. We focus on the problem of satisfying a target clock period.

2. Only combinational regions are optimized, with no movement of logic across memory ele-
ments.

3. Flip-flops and latches are handled without any approximations.
4. We restrict the algorithm to acyclic pipeline circuits.

Section 5.2 provides some definitions that are specific to pipelines. In Section 5.3, we
examine necessary and sufficient conditions for a circuit to operate at a specified clock period. An
underlying theme of this research is to provide a means of directing traditional combinational delay
optimizers to achieve the required performance. This fs also termed combinational resynthesis since
the circuit structure is changed without affecting the functionality. The effects of combinational
resynthesis are studied in Section 5.4. In order to provide maximum flexibility for a combinational
delay optimizer, steps are taken to obtain a minimum “perturbation” solution. This forms the,,
contents of Section 5.5. We demonstrate how cycle stealing may be achieved in Section 5.6. The
results of our discussion are presented in Section 5.7; the proposed algorithm is demonstrated on
two simple examples in Section 5.7.1, and the implementation details are given in Section 5.7.2.

~

5.2 Definitions

We characterize a gate in our circuit with delays from an input pin to an output pin. This is
a fixed delay model (see Section 2.1.1 for details). A multi-phase pipeline (P) consists of n stages
of combinational logic separated by latches (see Figure 5.1). Each stage of combinational block
has inputs from the previous stage (i.e. from the latches) and perhaps some inputs from the external
world (called primary inputs). It has outputs feeding the next stage and outputs to the external world
(called primary outputs). To simplify the discussion we make the following restrictions:

1. Stage S} has primary inputs through latches.
2. Stage Sy, provides primary outputs from latches.

3. All other stages to have no primary inputs/outputs. The extension to handle primary in-
puts/outputs at intermediate stages is straightforward.

The u*® stage denoted by S, has its inputs latched by a bank of latches denoted by u and its outputs
latched by a bank of latches denoted by u + 1. The delay of each stage S, is characterized by two

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 86

Figure 5.1: Multi-phase pipeline circuit

parameters, the longest delay (Dyy+1 is the maximum sum of gate delays along a path from an
input of stage u to an output of stage u) and the shortest delay (dyy+1 is the minimum sum of gate
delays along a path from an input of stage u to an output of stage u) from an input to an output.
We assume an implicitmap IM : {1,2,---,n} — {1,2, .- -1} which maps an input of stage Sy to
the phase that the input is latched. Similarly OM : {1,2,---,n} — {1,2,---I} maps the output
of stage Sj to the phase that the output is latched. All inputs (outputs) of a stage are latched on the
same phase. Also note OM (k) = IM(k + 1).
The pipeline resynthesis problem for a target clock period can be stated as:

Given a pipeline P with n stages, using a clocking scheme with | phases, find an imple-
mentation that meets a given clock period constraint c.
The problem implicitly expects the rise and fall times for the phases to be determined consistent

with the clocking constraints and the external timing constraints.

5.3 Theoretical results

We are interested in necessary and sufficient conditions for correct clocking of an arbitrary
multi-phase circuit. The topological structure of a circuit and the distribution of delays within it
give rise to the clocking constraints. A more detailed discussion on these constraints can be found
in Chapter 4 (Section 4.2). The clocking constraints may be classified into two categories.

1. Long path constraints: Let p : u; ~ u, be a path with distinct latches uy, - - -u4 on it. Then
q-1
we require eg(u.) — S¢(u) = O (Dugurss — Kugungs €) + S. These are also called the set-up

. k=1
constraints.

2. Short path constraints: Forevery path p : u; — uy, with latches u;, 3 and only combinational

clements in between, wWe require eg(y,) = Sg(u;) < duyu, + (1 — Kuyu,)e — H. These are also
called the hold constraints.

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 87

The set of constraints can be put in the form (see Section 4.4)

zj — z; < —aj; + Pjic
z; — zj < v;i + bjic
0<z;<¢c

Y<zo(=€)=c.

These constraints can be represented as a constraint graph, which leads to an efficient algorithm
to compute the optimum clock period (c), given values to aji, Bji, ;i and §;;. In this chapter we
focus on the dual problem. We are given a target value of ¢; the problem is to determine bounds on
a’s (note that a bound on the a’s relates to bounds on D’s and d’s) for which the inequalities have
a solution. There is an implicit constraint hidden in this formulation, namely Dig41 > diy1-

Let us make the following assumptions for ease of presentation :

1. The longest path from an input of stage S; to an output of stage S;_1, j > i, has a delay™
j=1

Z(Dkkﬂ)

=t

2. All gates have identical rise and fall times.

3. The clock skew is negligible and all memory elements have identical set-up and identical hold
times.

4. The shortest path from an input of stage to an output of the same stage (say Sy) is larger
than the hold time H, i.e. dir41 > H. This is true because the hold time for most of the
latches in present day technology is 0. Arguably, even if the hold time is a finite value, the
combinational regions in most designs have short paths that satisfy this constraint.

5. The target clock period is greater than S + H.

The first assumption will be relaxed in section 5.6. The extension to include clock skew and different
set-up/hold times is easy and will not be detailed.

We now present a graph structure that combines the circuit structure and the clock events.
Recall that the latch graph G (Section 2.3.2) represents the paths between latches in a circuit. The
constraint graph G, (Section 4.4.2) captures the relevant constraints between clock events that arise
from the latch graph. To compute bounds on path delays, a graph that has properties of both— the

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 88

latch graph and the constraint graph, is needed. The construction of this graph, denoted by G, is
now outlined.

The graph G is a finite, edge-weighted, directed multi-graph G= (V, E). For every phase
1, there are two vertices s;, e; € V. Henceforth, whenever we say “add an edge of weight w from
u to v, we mean the following: if no edge exists from u to v create an edge with weight w; if
such an edge exists, append w to the list of weights on the edge. An edge weight can be either a
constant or a linear function of the clock period c. Stage Sy is split into two vertices O(k) and I(k)
and an edge from the former to the latter (called a long path edge) with weight —Dyr41 + Kir41c,
is added. There is an edge from eyonm(x)) to O(k) with weight —S and an edge from I(k) to
Sg(1m(k)) With weight 0. Place an edge (called a short path edge) from s4(1a1(x)) 10 €gonm(x))
with weight dyx41 — H + (1 — Kir41)c. In addition place edges of O weight from I(k + 1) to O(k)
(k=1,---,n — 1). To force the rise and fall times to be consistent with the clocking scheme, we
construct a zero vertex (2). An edge from z to ¢; (with weight ¢) and an edge from e; to z (with
weight —c) are added. Also edges from s;(i = 1,---l — 1) and ¢;(= 1.---,1 — 1) to z (with
weight 0) are added. Edges from e;to s; (i = 1,---,l)and from e;4) toe; ¢ = 1,---,1 — 1) with
weight 0 are added. A portion of the graph for the k*} stage is shown in Figure 5.2.

Theorem 5.3.1 The specified clock period c is feasible if and only if there is no negative cycle in G.

Proof The proof is similar to the proof of Theorem 4.4.1. The weight of an edge is defined as the
minimum of its list of weights evaluated at c.

1. <) The if part relics on the manner in which G was constructed. Each path from e;(or
;) to s;j(or e;) represents a separation constraint. If there are no negative cycles, then the
Bellman-Ford shortest path algorithm (with z initialized to 0), is guaranteed to converge to a
solution. The values assigned by the Bellman-Ford algorithm to the e;’s and s;'s will yield a
solution for the clocking scheme.

2. =) Conversely, if there is a negative cycle (of weight —W) in G, say through vertex ¢. This
implies we have a constraint of the form 0 < —W, implying an inconsistent set of inequalitics.

=

The condition for the non-existence of negative cycles leads to a set of linear inequalities
between the D’s, d’s and c. In fact this is equivalent to eliminating the z;'s (i.e. e;,s;) from the
system of inequalities that nced to be satisfied for correct clocking. Define a cycle to be a relevant

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 89

7~ ~
// AN
/ \
/ \
12 12 kk+1 kk+1 \ nn+1 nn+1
\
_4__ —_——)———
l
l
IM(k) OM(k) / OM(n)

frome; and s,

S~

Zero vertex
si si+1
0 0
i = ——— — — —— . ol . e e e v
0

Figure 5.2: Graph construction

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 90

if its weight can be negative. An edge is called a candidate if it has a negative weight in its list of
weights. Every relevant cycle must contain at least one candidate edge. Note that a short path edge
can never be a candidate edge’.

Lemma 5.3.2 For an n stage pipeline, there are O(n?) relevant cycles.

Proof The key to counting the number of cycles is realizing that there are two kinds of candidate
edges ; from O(u) to I(u) and from eg(y) to O(u). But any path containing a latter edge must
pass through one or more edges of the former type. Since there is a zero weight path from I(v) to
O(v - 1), all negative cycles must contain a path from O(u) to I(v) (v 2 v). Since we can choose
u,vin w ways there are O(n?) cycles that need to be considered. =

5.4 Resynthesis

To understand the implications of resynthesis on regions of the pipeline, we model the
algorithm for combinational delay optimization as follows. Let R denote the abstract algorithm
which operates as follows.

1. R takes as input, a picce of combinational logic C, with arrival times specified at the inputs
and required times specified at the outputs. The slack at each output is the difference between
the required and the arrival time. If the slack is positive for all outputs then C satisfies the
performance constraint. If the slack is negative for an output then it is a critical output.

2. The output of R, denoted by R(C), is a combinational circuit, logically equivalent to C. R
will never cause an output with positive slack in C to have a negative slack in R(C), i.e. it

does a careful restructuring to guarantee that non-critical paths do not become critical.

Assuming equal rise and fall times for gates in the library, we scek to understand the
effect of R on long and short paths of a combinational region. Let D and d be the long and short
paths in C. We denote the long and short paths after resynthesis by primes (refer to Figure 5.3).
The algorithm TR ensures that D’ < D. If d' > d, there is no cause for concem because all the
short path lengths appear as positive weights in G, so increasing d can only help eliminate negative
cycles. On the otherhand if d' < d, we could possibly be introducing negative cycles. We make the
assumption that delay insertion (by discrete amounts) is permitted so that the shortest path in C(C)

! Assumption 4 in section 5.3

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 91

;h_

2%

% d & loglc affecting late output

Inputs

%’ logic affecting early output
Resynthesis

% logic affecting early output

and late output

pad delay of (d - d’)
to short path.

Figure 5.3: Effect of combinational optimization on long/short paths

is just greater than d. The problem of delay insertion to satisfy lower bounds on paths is the topic
of concern in Chapter 6. However, this requires d < D’ to be consistent with our model. Note that
this requirement only simplifies the discussion, i.e. we assume that the d for each stage is fixed to
the value of the current implementation. We need to append the above constraint (D}, > dprq
for cach stage 5y 2 to the sct of constraints that force all cycles in G to have non-negative weight.
This implies that the target clock is never so small as to require speeding up short paths (if so we
must let the short path delays be variables).

We have the following set of constraints
1. those arising from cycles in G, and
2 D;:k-i-l > dpgyr,fork=1,--n.

This gives a polytope P in R™, which lies in the positive orthant, and represents all feasible
delay assignments that meet the target period. The given design is represented by the point
p = (Djg, D33, -+, Dy, 4p) (see Figure 5.4). If the design is feasible, then the point p € P; and
there is no resynthesis to be done. Since ¢ > S + H, we find that sctting D:-;-H = dijy1 152

feasible solution. This is a consequence of the fact that the feasible region is a cone with its vertex

2We can choose to let d}x41 be a variable rather than fix it to dki41, and add the constraint dy,, > H. After
combinational optimization we need to pad delays so that all short paths are greater than d;,, and less than Dj ;.

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 92

Level sots of objective
{unction (B = identity matrix).

D23

;ﬁ Feasible Region for given ¢

! \ D12

d23

Figure 5.4: Feasible region and current design

at (dy2,d23, - -+, dnnt1). Let us assume that there is an area penalty associated with each speedup,
which is directly proportional to the deviation from the current point p.

This suggests the formulation of the problem as an optimization problem. Let D =
(D12, -5 Dnny1) be a vector of known delays of the n stages. Let D' = (Djy,- -+, Dy,) be the
vector of unknown target delays. We choose to find a D’ which is a solution to

min(D’ — D)T(D' — D) y
subject to D'eP

This is an example of constrained optimization with a positive definite (convex) objective function
over a convex region P. There are well known algorithms to solve this problem. We develop an
algorithm tailored for our problem in Appendix B. Note that we could have chosen some other

objective function like —

min max |D},.., — Dy
D‘EPk:l,---n—ll ka1 = Diesr)|

n-1

min ft —) .
D,éPkZﬂIDM-H Dip1l

The reasons for choosing a quadratic objective function are twofold; such an objective function is

easy to minimize and a unique optimum is guaranteed if the problem is feasible. If we had chosen to

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 93

let d};, s be variables then they too must be entered in the objective function in a manner similar
tothe D}, . qs.

5.5 The optimization problem

The optimization problem that we need to solve is of the form

QOPT : min(z — z0)TB(z — zo)
Az < b.

The matrix B in the simplest form is the identity matrix. We may choose to weigh the combinational
resynthesis of each stage S with a positive factor bx. In such a case B is a diagonal matrix with
[B]kk = bk. We point out that if the set P is feasible, then the problem has a unique optimum.

Theorem 5.5.1 Any optimum solution to QO PT will have z° < zhfori=1,---,n.

Proof By contradiction. Assume that there exists an optimum solution such that for some ¢, that
z* > zf, ie. Di,y > Diy1. All constraints arising from the set of cycles in G are of the form
Ysiec_(Dii1) £ we-(c), where C_ is a cycle in G that could have negative weight, and we—(c)
is a linear function of ¢ with positive slope. Since Dj;41 > dii41, decreasing Dy, to Dy will
decrease the objective function, while maintaining feasibility.]

Once the optimization problem has been solved, we have z* < zj or z* = z§. We need
to resynthesize the the stages S; for which D;,, < Dj;41. We set the arrival times at the inputs
to stage S; to be 0, and the required times at all the outputs to be D;,,. Afier combinational
resynthesis, we pad delays if there are any short path violations. We can have = such resynthesis
steps (one for each stage). The resynthesized regions are mutually disjoint.

The simplest choice for B is the identity matrix. However, we may choose to weigh
different stages of the pipeline depending on their resynthesis “potential”. We define the potential
of a stage as a figure which represents the ease of resynthesizing a stage to meet an arbitrary target
delay. This number is cdmputcd as a heuristic function of the following,.

1. The difference between the longest and shortest paths of the stage. For a stage with small
difference, resynthesis for a target delay of the stage may cause all outputs to be critical.

2. The size of the stage. If the stage has a large size then the resynthesis algorithm has a better
chance of identifying nodes on critical cuts [66].

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 94

dld«»i- He “"Kldw\)c

Figure 5.5: Graph modified for cycle stealing

The actual function used to compute this figure will depend to a large extent on the algorithm used
for combinational resynthesis, and the factors that aid the particular algorithm. The resynthesis
algorithm in our implementation is the path restructuring approach presented in [66).

5.6 Cycle stealing

So far it was assumed that the longest path in the circuit from (an input of) stage S; to
(an output of) stage S;-1 (j > 7), was the sum of the longest paths in each of the stages. This nced
not be true, and in fact relaxing this assumption will permit resynthesis to take account of cycle
stealing across several latches. However, we must be willing to undertake a complicated resynthesis
procedure. Let D;; denote the longest path from an input of stage .S; to an output of stage S;_;.
Let d;; denote the shortest path from an input of stage S; to an output of stage S;_;. Note

j-1

dek+1 < d;j

k=i
The construction of the graph G is modificd as follows (Figure 5.5). Note that the edges
from I(k) to O(k — 1) are deleted. Instead of n variables previously, we now have i@{"—ll

variables. The objective function also changes appropriately, i.e., the vector z in QOPT is

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 95

(Di2: Di3s* -3 Dy - -5 Dy yy), Where § < k. We have additional constraints of the form

i=1,.--,n
D < Di+Dj;{ i+2<j<n+1 6.1
i+1<k<j-1
The number of edges in the graph increases but the number of cycles remains unchanged.
i=1
Lemma 5.6.1 D}; <> Dipyy,j>i+1.
k=i

Proof By inductionon j.

1. Base case: j = i + 2. Quite clearly D};,, < Di;,; + D!,,;,2, from Equation 5.1.

p—-1
2. Induction case: Assume the statement to be true for j = p, i.e. D!, < > Dj;4,. Now from

k=i
Equation 5.1 we have '

IA

D ip + D;’p-i-l
p—1
Y Dty + Dpp

k=:

P
> Dipyr-

k=i

'
ip+1

IN

'
= Dipy

!
= D

IN

]
In order to guarantee that short path dclays remain consistent after padding delays if any,
we need to add the constraints

i=1,...’n
D2 Dj+dij{ i+2<j<n+1 5.2)
it1<k<j-1

Diyy2diyr i=1,---,m (5.3)

The feasible region is a polytope in the positive orthant of the D;;’s, but it is no longer a cone, e.g.
consider the set of constraints—

di2 dy3 =02
3 > Di;+02,D1,+02

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 96

'
Dy

IA

Dia + Dis ‘
0.2
0.6
0.6.

v

' '
12: D23
diz

\%

!
13

If the last 2 constraints are ignored, we have a cone with the vertex at (D, = 0.2, D33 = 0.2, D{; =
0.4). In order to make the feasibility check easier we expand the feasible region as follows. Let
d;; ifj=i+1
dj={ T 7=t 5:4)
Yi—i drk41 otherwise

and replace the constraints in 5.2 by

Note that J.-j < d;;, so we have enlarged the feasible region to be a cone, with its vertex defined by
the point (le, das, .. ., 3,,,,4_1)- This serves the purpose as D}, . > dix41 in the simplified model.
As before, we could choose to let d;;’s be variables and add the constraints

d; > (J-)H

The resynthesis is now done for each stage with arrival and required times placed on its
inputs and outputs. The resynthesis is done in a “forward” manner, i.e. stage Sy is resynthesized
before stage Sk+1. Let Dy denote the longest path from an input of stage S; to an output of stage
§;j-1, after stage S;_ (and all stages S;, ¢ < j) has been resynthesized. We set the arrival times at
the inputs to stage Si to

a, =0 Vzellk) (5.5

Assume that stage Sy has a single output y. The extension to multiple outputs is easy and will be
shown at the Zand of this scction. We shall specify a pair of required times for each output; a hard
required time (r,’}) and a soft (ry) required time. The latter is less than the former. If the circuit is
to operate correctly it must meet the hard required time. However we would like the current output
of stage Si to attain the soft required time, in order to help the resynthesis of stages that follow it.
The required times at the output of stage k are st to

ry = min(D;ck-i-l!?liE(D:kH_Dﬁc)) (5.6)
j=1
rp = min(Di— 3 min(Diis1, Disya))) (5.7)

i=k+1

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 97

The hard required time is a function of
1. the maximum delay pemmitted through stage k (first term), and
2. the effect of the stages that have been resynthesized (second term)

The soft required time uses an as fast as possible heuristic to ease the resynthesis of future stages.
The required time to the delay optimizer is r;. The output of the optimizer is accepted if the hard
constraint is met. For the last stage S, rj is undefined, since there isno j > n+1 and consequently,
there are only hard constraints. This guarantees the following after resynthesis:

1. From the first term for r} we get Djf;,; < Dy

2. The second term in the required time constraint for r yields

Digs1 £ (Digyr — Dii) Vi<k
= Digp1 +Di < Dipy
" 2
= Dun £ Diygr-

3. The intuitive reason for defining rj is now explained. This term distributes slacks over the
regions that have not yet been resynthesized and hence is a heuristic. -

j=1
Diyy1 < (Di;— Y. min(Diiyr1,Diyy)), Vi>k+1
t=k+1
i1
Dl + 3 min(Disyr, Dgyr) < D
= D+ »_ min(Diyy,Diy) < Dy
t=k+1

The term Dj;4 in the min constraint is the longest path in stage S; for any path from an input of
stage Sy to an output of stage S;—1. If Diiy1 < D/, then this stage is not critical for the constraint
during the resynthesis of stage 5. We assume (optimistically) that resynthesis of stage S; will not
make it critical. Should it become critical later, the second term will reflect it. If D;,; < Diin
then the first term during resynthesis of stage S; will guarantee that its final delay is less than D; ;.
Dien + Dy < Dy
4
Di; < Di;.

We get the following proposition—

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 98

raquired times ated back from
Arrivel times sat 10 0 ——wn.: . 21«.;_ ?g': gfaogpaoﬂied forward

Figure 5.6: k*® resynthesis Region

Proposition 5.6.2 If the required time constraints (Equation 5.6 and Equation 5.7) are met for all
stages, then Di/; < Dj;and D} ., < Dy .y, forallk,j > k+1andi<k.

The resulting circuit (after resynthesis) will have a feasible clock period c. As a side
note, should the combinational re-synthesis fail at any stage, say S;, we can repeat the optimization
problem, giving the cost of resynthesizing stage S; a large weight. This ability to restart may be
used repeatedly to find a good final solution.

To extend the discussion above to stages with multiple outputs, we must take care to
ensure that D}; only includes the delay along paths from an input of previous stages S; that reach
the output of S in question. Similarly D;;4y must be interpreted as the longest path in stagé S;
from the output of S to an output of S;_;.

5.7 Results

5.7.1 An example

Let us consider an example shown in Figure 5.7. Set-up and hold times are assumed to
be zero. Let z and y be bounds for stage 1 and stage 2 respectively. All un-weighted edges have
a weight of 0 by default. Let the target clock period be 3. Enumerating all cycles that could have
negative weight we obtain

8
IA

<
IANIA
& o o w

z4+y

8
IA

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 99

stago 1 slago 2
~Co——(9
o, e, e,

® ZERO vertex

Figure 5.7: Pipeline example and associated graph

y < 4

The constraint D} > d; leads to

1
y 2 L

T

v

The objective function is min((z — 3)? + (y — 4)2). This problem can be graphically solved (see
Figure 5.8) to obtain a solution of z = 2.5,y = 3.5. If stage 1 has a cost which is twice the cost of
stage 2, the objective function gets modificd t0 min(2(z — 3)? + (y — 4)?). The minimum of this
function if obtained at z = §,y = 1.

To see the need for the extended model, consider the pipeline with multiple outputs (Lines
1 and 2) for each stage as shown in Figure 5.9. We introduce a new variable z (longest delay from
stage 1 to stage 2) and the constraint graph gets modified as shown in Figure 5.9. Note that Dj3
has a value 4 if we are along Line 2 and value 2 if we are along Line 1. Though we need to use
the value of 4 for the quadratic optimization, we must take care to use the correct value (of 2) when
we compute the required time at the output of Stage 1 in Line 1. If the current longest path from
stage 1to stage 2 is S (instead of 7, as in the simplified model), the constraints for a clock period of

3 become,

8
IN
w

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES

.
o

A

| <
|
|
X]
| /
l
S
/
|
|
AN
| 2
! g
2
=]
o,
&
[(e]
=1

o
@,
o
(7]
&
S
/ .
i}
H
| T
/\t\x\ﬂ'
\>\>
N\
aaop
Yz
//
g
3
ps |
£y
&
+ N
<
I
>
N

100

N (2.66, 3.33) target point for resynthesis
[/ \
o __Qaaﬁ _ N formin2(x-3)% (v - 4
y=1 | | T\'
} |] L1\l
| | N\
I : X N x+y=6
I |
X=1 Xx=3

(@)

Figure 5.9: Example for extended model

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 101

<
IA

8
IA

N
|
8
!
@ w
IN A
- O A A o

8
v

1

N @
v 1w

z+1.

The objective function is min((z ~ 3)* + (y — 4)? + (z — 5)%). The optimum value is 0 and the
solution pointis (3, 4, 5), i.e. the current design is feasible. For a circuit with the longest delay from
stage 1 to stage 2 less than the sum of the longest individual stage delays in the simplified model,
the target delays would have been unnecessarily computed. Let us use a target clock period of 2.5;
the constraints become

8
IA

2.5
5
S
35
35
0
1
1

N
!
8
|
@ B @ @ H @ N
vV IV IA IA A A A

N
v

z+1.

The optimum value is attained at z = 2.5,y = 3.5,z = 5. The arrival and required times for the
stages are shown in Table 5.1. So only the regions in Line 1 - Stage 1 and Line 2 - Stage 2 necd to
be resynthesized. In addition the regions in Line 1 - Stage 2 and Line 2 - Stage 1 can be optimized
for area since they can each be slowed by 0.5 units.

5.7.2 Experiments

The results of the resynthesis approach proposed in Section 5.6 are now described. Since
there are no pipeline benchmark circuits we designed a set of circuits described in Section 5.7.2.

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 102

stage# | Line | input output
arrival required

1 1 0| min(2.5,5-2)=25
2 0 [min(2.5,5-3.5)=15

2 1 0 | min(3.5,5-2.5)=25
2 0| min(3.5,5-1)=35

. Table 5.1: Armrival and required times for resynthesis

The results of the experiments are summarized in Section 5.7.2

Benchmarks

All circuits use level-sensitive memory eléments clocked using 2 phases. The outputs of
successive stages are clocked on altemate phases. The five pipeline circuits are

1. adder: A 10 bit adder with 1 stage.

2. mcnc: This is a 2 stage cascade of 2 benchmarks from the MCNC suite of examples. The
first stage is alu2 and the second stage is cm138.

3. parity: Computes the parity of a 8 bit input, the parity of the even inputs and the parity of the
odd inputs. It has 2 stages.

4. addT:: Described later in this section.
5. population: Counts the number of ones in a 32 bit input using 4 stages.

The table below summarizes some results of the algorithm to the pipeline circuits described above.
The circuit is first decomposed into 2 input and/or gates. The unit delay fanout model is used. The
optimal clock for these circuits (column 2 in Table 5.2)is computed using the algorithms described
in Chapter 4.

Experiments

The implementation is studied from three differing viewpoints. The area of each circuit
is measured in terms of the number of 2 input and and or gates and inverters.

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 103

1. In the first set of experiments, we seek to examine the effectiveness of the algorithm for
area-clock period trade-off. In Table 5.2 we resynthesisize each circuit for upto 4 target clock
periods (in decreasing order), until the resynthesis algorithm is unable to produce a faster
clock. Options to the combinational resynthesis algorithm are set to the default settings.
Column 1 lists the examples. The optimum clock period to the initial circuit and the area of
the initial circuit form the contents of column 2. Column 3 to 6 give the target clock period and
area for the corresponding circuit. A “-” means that the combinational resynthesis algorithm
failed to produce any improvement for lower target clock periods with the default settings.
The table demonstrates that the area overhead can be controlled by specifying a target clock
period. The only anomaly in the table is the circuit named parity (row 7), where setting a
faster target clock resulted in an area saving. We attribute this to the fact that decreasing
the target clock period increases the ¢ critical network (see [66] for details) which allows the
optimizer to explore a large space for delay optimization.

name initial target
(clock/area) (clock/area)
adder 21.4/103 | 20/104 | 19/104 | 18/123 | 17/127
addT1 10.0/26 9/28 8729 - -
addT2 12.1/89 | 11/95 | 10/101 | 9/101 .- -
addT3 21.3/226 | 20/238 - - -
addT4 26.2/511 | 25/551 | 24/563 | 22/569 -
mcenc 54.6/384 | 52/391 | 50/413 | 48/412 -
parity 16.0/39 | 15/54 | 14/45 - -
population 27.3/249 | 26/252 - - -

Table 5.2: Area-clock period trade-off

2. Itis possible to minimize the clock period by repeatedly decreasing the clock period and using
different options to the combinational resynthesis algorithm. These results are summarized
in Table 5.3. The target clock period given in column 3 is the best result after a few iterations.
Column 4 gives the results of using the optimal clock algorithm on the resynthesized pipeline.
Columns 5 and 6 give the initial and final area. Column 7 gives the total time taken by the
procedure to compute the best clock period. The last column gives the number of memory
elements in the circuit. For the first 6 circuits the algorithm is able to take advantage of cycle

stealing and a substantial reduction in the clock period is observed for a small area penalty.

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 104

name clock area time || latches
initial | target | final | initial | final | (sec.)
adder 214 | 1531152 103 | 135 6.0 45
addT1 10.0 72| 7.2 26| 29 1.1 10
addT2 12.1 82| 80 89| 106 205 25
addT3 213 192|192 226 | 240 | 109 56
addT4 262 2201220 5111 535 | 43.0 119
mcenc 546 | 477476 384 412 | 128 24
parity 16.0 13| 122 39| 54 6.7 11
population | 273 | 254|254 249 | 320 | 44.1 59

Table 5.3: Pipeline resynthesis for minimum clock period using unit fanout model

_ _ F .

ESN
S

CICIOXO

9, ¢

N
<

—
©

[\

Figure 5.10: addT3- a 3 stage pipeline

3. The complexity of the quadratic program grows as the number of stages. Recall that the
number of variables and the number of constraints for a pipeline grow as the square of the
number of stages. In order to study the efficiency of the quadratic program we constructed a
pipeline (addT=) with n stages as follows: the pipeline computes the sum of 2™ inputs (each
of width 3 bits). Stage S; has 2*~*+! inputs and 2"~ outputs. Each stage has 2"~ adders
which compute the sum in parallel. A 3 stage pipeline is shown in Figure 5.10.

The time taken by the algorithm to analyze the circuit and come up with the stage delays
(Djx41) is summarized in the table below. The second and third columns give the initial
and final clock periods. The next two columns give the time required to solve the quadratic
program (QP) and the time taken for resynthesis (RSY). The size of the quadratic program,
i.e. number of variables and number of constraints is shown alongside the entry in column

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 105

n clock time(sec.)
initial | target oP RSY
1] 10.00 72| 044(3,8) 0.6
211210 872 | 1.15(,20) | 7.8
3(2130| 192] 2.87(10,43) | 8.0
412620 220 11.44(15,76) | 31

Table 5.4: Pipeline resynthesis for addTn

QP in brackets. The quadratic program seems to display a behavior which is nearly cubic in
the number of stages.

5.8 Discussion

Phase separation and duty cycle constraints may be expressed in the form z; — z; <
0;; + 6;;¢c, where the z’s may be the rise or fall of phases: o;; is a real number representing a fixed
separation and §;; is areal € (—1, 1) representing the separation as a ratio of the target clock period.
The addition of edges representing these constraints increases the number of constraints that force
all cycles in G to have non-negative weight. ')

When we consider cyclic circuits, we need to add the following condition for all cycles
in the circuit. Let C be any simple cycle in the circuit. We need

Y D, <Y Kye, (5.8)

peC peC

where pis a combinational path from alatch to another, and D,, is the maximum delay along p. If we
have an exponential set of cycles in the circuit, we will have an exponential number of constraints.
If we are willing to restrict the regions to be resynthesized, the problem becomes more amenable
and the size of the constraint matrix A can be pruned. However the result is a set of constraints on
several interacting path 1engths. The resynthesis algorithm will have to optimize these paths so that
they simultaneously mect all the path constraints. The delay optimizer, in use currently, uses block
oriented constraints on arrival and required times and is unable to handle path based constraints
efficiently. Techniques that use path based delay optimization are still an issue of research.

The results obtained by Malik et al. [38] for pipeline circuits with FEDFFs, prompted
us to investigate pipelines with AHLSLs and multi-phase clocking schemes. The goal was to

CHAPTER 5. RESYNTHESIS OF MULTI-PHASE PIPELINES 106

relate the clock period constraints for a target clock period to performance constraints on regions
of combinational logic. The proposed approach gives a set of sufficient conditions for resynthesis,
which if satisfied guarantee the target clock period to be achievable.

107

Chapter 6

Delay Insertion for Short Paths

Sequential synthesis of circuits requires that output signals arrive in a specified interval.
During resynthesis of pipelines for a target clock period (see Chapter S) it is required that every
combinational path have a delay that lies between a maximum and a minimum value. Traditional
delay optimization approaches consider only a part of the problem; namely to ensure that the delay
of each path is less than the upper bound. This Chapter considers the problem of delaying outputs
to meet the lower bound without violating upper bounds that have been satisfied.

6.1 Overview

For the rest of this Chapter, we shall restrict attention to combinational circuits. Providing
a circuit that achieves the upper bound constraints at all outputs, given primary input arrival times,
has long been a focus of research. Singh et al. [66] present an algorithm that uses the movement of
critical signals closer to the output of a cone of logic to speed up circuits. Fishburn presents [16] an
approach to decrease the depth of a circuit and in [17] presents an iterative algorithm that combines
several known methods in a heuristic manner. We are concerned with the problem of satisfying
lower bounds on delays of paths. De Micheli et al. [81] in an effort conceming wave pipelining of
circuits, solve a problem which is related to the problem we describe in this Chapter.

The definitions of terms used in this Chapter are described in Section 6.2. Section 6.3
introduces the “padding™ problem and presents associated theoretical results (including a naive
approach to solve the problem). A linear programming technique for an optimum solution to the
problem is given in Section 6.4. Section 6.5 describes two extensions to the formulation. Section 6.6
deals with an application to wave pipelining of circuits. Experimental results form the contents of

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 108

a . a O~\\ e
-
b O// >C>\~90\\\
i h //=O|
¢ ¢ O~
-
] -
d 4 O~

Figure 6.1: Graph for a simple circuit

Section 6.7.

6.2 Definitions

A combinational circuit C is represented as a directed acyclic graph. The terms circuit
and graph are used interchangeably. A circuit is an interconnection of gates. Each gate has one
output pin and one or more input pins. For every pin in the circuit there is a vertex in C. The set
of vertices is denoted by V. There are two kinds of edges, internal and extenal. The edge sets
are denoted by ET and EF respectively. An internal edge is directed from an input pin of a gate
to its output pin. The external edges represent interconnections or wiring in the circuit. Every
connection from an output of a gate to an input of another gate is represented by an external edge.
Figure 6.1 shows a simple and-or circuit with external edges shown in bold and internal edges
shown in dashes. The circuit reads data through leads termed as primary inputs and provides data
on primary outputs. The sct of primary inputs/outputs is denoted by PI/PO. There is a vertex for
every primary input and every primary output.

An edge e;; from t to j is denoted by ¢ — j; i is called a fanin of j and j is called a
fanout of i. We use the notation FI(z) to denote the set of fanins of i and FO(3) to denote the
set of fanouts'of i. A vertex representing a primary input has no fanins and a vertex representing a
primary output has no fanouts. A weight w;; is associated with each edge e;; —

1. if e;; € EI, then the weight is the delay incurred by a signal propagating from the input
represented by 1 to the output of the gate, or

2. ife;j € EE then the weight is a variable whose value is to be determined.

Delays can be inserted only on external edges.

There are two arrival times associated with each vertex i —

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 109

1. an early arrival time a;, and '
2. alate arrival time A4;.
The arrival times at vertex i are computed as follows —

1. if ¢ is a primary input, then a; and A; are specified by the user or an algorithm at the higher
level (often a; = A; = 0), or

2. if ¢ is an input/output pin of a gate,

a; = jél‘lFlIrzi)(aj-l-wj;), 6.1)
= ’.g;?;gd(Aj + wji). 6.2)

A path pinthe graph is a sequence of vertices ¢, 12, . . ., t, Such that each vertex is a fanin
to the next vertex in the sequence. It is denoted by p : ¢; ~ i,. The delay of apath p :) ~» i, is
Y22 wisi;,, and is denoted by d(p).

At every primary output ¢, data is required to be available no earlier than r; and no later

than R;, namely r; < a; < A; < R;. All previous delay optimization techniques try to guarantee
A; < R; on termination of the algorithm. However no attempt is made to ensure a; > r; for each
primary output . Itis unclear whether a naive insertion of delays will suffice to meet this constraint,
because paths can interact one another. Consequently, inserting delay on é sub-path to slow an
early arriving signal can also slow some late arriving signals, offsetting any gain made by the delay
optimizer.

We say that a path p : i) ~ i,, ¢1 € Pl,i, € PO is a critical long path if V edges
€iyixy € P, We have A, = A;, + wiyi,,,, Where k£ = 1,...n — 1. The set of long paths P is
the set of all critical long paths which have A;, = R;,. We say that p is a critical short path if
a;, + d(p) < ri,. The short path set § is the set of all critical short paths.

We make the following assumptions —

1. Gates have a unique direction of signal propagation, namely from inputs to outputs.

2. The amount of delay that can be padded is continuous. In reality, only discrete amounts of
delay can be padded. We use the continuous padding problem as an approximation to the
discrete padding problem. We find an optimum solution to the relaxed problem, and derive a
discrete solution from the continuous solution.

3. We also assume that all gates provide the same input load.

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS ‘ 110

6.3 Is padding always possible?

The problem definition for the delay insertion problem is as follows:
Given a circuit C(V, EEJ E'), edge-weights on the internal edges, arrival times (early and late)
at all primary inputs and the required bounds (early and late) at all primary outputs (R; and r; at
primary output i) assign a set of delays (real numbers) to the external edges so that all paths meet
the required upper and lower bounds.

We shall call this the padding problem. We assume that all paths from a primary input to
a primary output respect (are <) the upper bound at the output. We shall insert delay on the external
edges to satisfy the lower bounds. The first issue we need to examine is whether it is possible (if
at all) to always insert delays to meet lower bounds, Without affecting upper bounds of paths. The
goal of this Section is to demonstrate that it is always possible to do so under mild conditions on
arrival and required times at the inputs and outputs.

The following Lemma gives simple bounds on early and late arrival times at a vertex.
Lemma 6.3.1 Let p: i) ~ i, be apath in the graph. Then

o A, 2 A +d(p).and

—_

e a;, < a; +d(p). : -

Proof By induction on the path.

¢ Base case: The path has one edge p : ¢} ~ 12. From 6.1 we get

>
v

A + wi,
A + d(P)'

4
>
v

¢ Induction case: Let p : ¢) ~» iy and assume that A;, > A;, + d(7; ~ ;). We need to
show that A;, ., > A;; + d(i; ~ ir41). We have from Equation 6.2

Aign 2 Ai +wig,
= Aipyy 2 Ay +d(i~ i) + wig,,
= Aiyyy 2 A +d(is~ igyr)
= Aiyyy 2 Ay +d(p).

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 111

The proof for a;, < a;; + d(p) proceeds along similar lines.]

The ensuing theorem gives necessary and sufficient conditions for the padding problem
to have a solution.

Theorem 6.3.2 In any circuit, let iy € PI, i, € PO, such that3 apath p : i) ~ i,. The padding
problem has a feasible solution if and only if A;, — a;; < R;, — 7,V such p.

Proof The proof is divided into two parts.

e =) We will first show the necessity of the condition. Let p be any path from i; € PI to
i, € PO. If the padding problem has a solution then we know that,

- the upper bound on path p is met, hence from Lemma 6.3.1
A; +d(p) < Ry, (6.3)

- the lower bound on path p is met, hence from Lemma 6.3.1
a;, +d(p) > ri,.. (6.4)

Subtracting Equation 6.4 from Equation 6.3, we get A;, — a;, < R;,, — 7i,.

¢ <) The sufficiency of the condition will be proved by a constructive argument. This will in
turn provide insight to a naive algorithm for padding delays. Let s be a critical short path, i.e.
s € S and s violates the lower bound on the path delay. Recall that P is the sct of critical
long paths. The following Lemma provides a property of a critical short path that is crucial
for the proof.

Lemma 6.3.3 Let s : i} ~ i, be a critical short path, namely s € S, and let A;, — a;; <

R;,—r;, then3anedge eon s,suchthat e does not lie on any critical long path (e &€ qNq € P).

Proof For sake of contradiction assume that cach edge e;,;,,, (denoted by ey for brevity 1y
of s is a part of some long path in P. Consider the construction described below.

k=1,...,n-1

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS | 112

- Construction C: Restrict attention to only those paths in P that contain an edge of s.
Without loss of generality replace P by this subset. Several edges of s (not necessarily
consecutive) may lie on the same ¢ € P. In addition each edge e of s may lie on
several long paths in P — denote this set by Q. Each edge e is given a label [;, and
every such label is assigned a path from P (denoted by @Q;,) as follows:

1, Qi1 =4q,9€ Q; ifk =1 (initialization)
=< I, ifexr € Qi,_, (6.5)
le-1+1, Qi =¢,q€ Qi otherwise.
Let L be the largest label so assigned. We now break s into a set of L disjoint sub-paths.
Each sub-path, denoted by sx, k = 1,..., L, is a set of successive edges with the same
label. Let h(si) be the vertex where si starts and #(sx) be the vertex where s; ends.
Note that h(si4+1) = t(sk). Note that all vertices representing input pins of gates have
a single fanin and a single fanout. Consequently an internal edge (a fanout edge from
an input pin) must have the same label as the fanin edge to the input pin. A change of
labels on s can take place only on an external edge. Each h(s;) (and #(sx)) can only be
an output pin of a gate. Let us divide each Q. into 3 parts
1. @} - from a primary input to A(s;) (inclusive) _ .
2. Q2 - s notincluding h(sy) but including ¢(s;) and
3. Q3 - restof Q.
The construction process yields a covering of the edges of the short path s with at most
L long paths from P. Let A(Q) denote the late arrival at the primary input on the path
Q&. Let R(Q) denote the upper bound on the delay to the primary output on path Q.

Now consider the following paths in the graph

- Qkrand

— the path obtained by the concatenation of Q} and Q3 _,
fork =2,...L — 1. Since Q € P (the set of long paths) we know (sce Figure 6.2)
A(Qx) +d(Qr) = R(Qx),

implying
A(Qi) +d(QF) + d(Q2) + d(Q}) = R(Qx). (6.6)

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS

Figure 6.2: Short and long path interactions

Consider the second path (Q1Q3_,):

A(Qx) +d(Qk) + d(Q3_y) < R(Qk-1)-

Subtracting Equation 6.7 from Equation 6.6 we get

d(Q}) + d(Q}) - d(Q1-)) > R(Qi) — R(Qk-1).

The terminal cases are now described.
- k = 1: Since Q] isempty and A(Q)) = A;,
Ay +d(@Q1) = R(Q),

implying
Ai +d(QY) +d(Q}) = R(Qv).

113

6.7)

6.8) =

6.9)

- k = L: Inthis case Q3 is empty and R(QL) = R;,. Consider the path Q, and the path

obtained by concatenating Q} and Q3 _,. For the first path we obtain

A(QL) + d(QL) + d(Q%) = Ry,

and for the second path we obtain

AQL) +d(Q}) + d(Q}-1) < R(QL-1)-

Subtracting Equation 6.11 from Equation 6.10 yiclds

d(Q1) - d(Q1-1) 2 Rin — Ro,y-

(6.10)

(6.11)

(6.12)

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 114

Summing Equation 6.8 for k = 2,..., L — 1 and Equations 6.9 and 6.12 we obtain

L
Ay +)_d(Q}) 2 Ri,. (6.13)

k=1

Note that the second term on the left hand side is nothing but d(s). But we know that s € S

implying
a;, +d(s) < r,. (6.14)
Subtracting 6.14 from 6.13 yields
Ay —a; > R.-,, - T, (6.15)
Contradiction!!

It is easy to obtain an external edge that satisfies the criterion once such an e is found. If e
is an external edge then we are done. Suppose not, then e is an intemal edge and the source
of e is an input pin of a gate. Consequently the source of e has only one fanin and any path
containing the fanin edge must also contain e and vice versa. Hence the fanin edge does
not belong to any ¢ € P. An edge e that satisfies the criterion in Lemma 6.3.3 is called a
candidate edge.]

Corollary 6.3.4 In any circuit, if for every pair iy € PI and i, € PO, such that 3 a path
p: i) ~ iy itis known that A;, — a;, < R;, — r;,, then the padding problem can be solved.

Proof The proof is constructive and is the last piece to the sufficiency condition of the
Theorem. Start with any s € S. By lemma 6.3.3 3 e € ssuchthate ¢ q,Vg € P.
Consequently adding some delay on e does not affect the paths in P. However this might
lead to some paths containing e becoming critical long paths. As soon as this happens, we
add these new critical long paths to the set P and repeat the procedure to find a new candidate
edge. This is done until s meets the lower bound constraint. The procedure is repeated for
each pathin § aftér updating the early arrival times.]

Let us briefly summarize the proof for sufficiency. We first show that for any short path s € §, if
the sufficiency condition is met, then 3 an edge which can be padded with some delay. Note that
the sufficiency condition is independent of the delays of the gates and the padding. Corollary 6.3.4
gives a procedure for delay insertion, using Lemma 6.3.3 repeatedly and updating the set P. u

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 115

An intuitive explanation for the condition 4;, — a;, < R;, — i, is as follows. Interpret
the term A;, — a;, as the uncertainty interval of arrival (of the signal) at primary input #;. R;, —r;,
is the required uncertainty at output ¢,. Since the circuit is causal, it cannot make the uncertainty
interval at the output any narrower than the uncertainty interval at its input 2.

Corollary 6.3.5 If A;, = a;, then the padding problem always has a feasible solution.

Proof By observing the fact that r;, < R;, for paths p : {; ~ ,. Thus meeting the sufficiency

condition of Theorem 6.3.2. |

6.3.1 A naive algorithm

Let us examine the feasibility problem. Since we need to check A;, — a;; < R;, — 7.,
Vp : §y ~ 1i,, such that iy € PI, i, € PO, it is equivalent to a reachability analysis of the
graph. The complexity of this is O(|EE |J E|). The complexity of computing the arrival times is
O(IEE U E'tog|V]). "

Given below is the pseudo-code for an algorithm to pad delays, described in Corol-
lary 6.3.4.

Procedure 6.3.1 : -
Let

C = combinational circuit

P = set of long paths in C

S = set of short paths in C

while S # 0 {

e Pickse S

— while (s does not meet lower bound) {
+ Find a candidate edge e € s|e satisfies Lemma 6.3.3
Insert délay on e until one of the following is true
1. some path p containing e becomes a critical long path
P=PUp

continue

This is akin to the fact that a passive network cannot produce an output voltage that is larger than the source that
drives it

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 116

2. s meets lower bound
break (success in padding)

}

Delete s from S
}
There are several issues that need to be addressed.

o Enumeration of paths must be avoided since it can be exponential. In particular we need to
implicitly maintain P and S. ‘

o Finding an e € s that meets the conditions of Lemma 6.3.3 has also to be done implicitly.

e Detecting the amount of delay that can be inserted on a candidate edge before some other
path containing it becomes a critical long path is another issue.

We resort to the notion of slack. For each vertex ¢, define the required times as follows —

1. if is a primary output then r; and R; are specified by the user or an algorithm at the higher
level, or ‘ N

2. if i is an input/output pin of a gate

o= gg(i)("j - wij), (6.16)
= jer}l‘gl(i)(Rj - w,-,-). 6.17)
The slacks at each vertex ¢ are defined as
& = r;—a;, (6.18)
A; = R;- A, (6.19)

A primary output ¢ has a short path containing it, if §; > 0. This solves the problem of maintaining
a set of short paths. We simply keep track of the primary outputs which have strictly positive §’s at
any instant of the algorithm. Note that for all primary outputs A; > 0.

Lemma 6.3.6 Let i be a vertex such that §; > 0, then 3j € FO(3), such that §; > §; > 0

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 117

Proof Since §; > 0, = r; > a;. From the definition of the required time at i in Equation 6.16, we
know 35 € FO(3), such that r; — w;; = r;. Now a; < a; + w;;. Subtracting this from the previous
equality we get r; — a; 2 r; — a;. u

Corollary 6.3.7 Let i be a vertex such that é; > 0, then i belongs to some shortpathin S.

Proof By induction using Lemma 6.3.6 repeatedly. We know, 3j € FO(), such that §; > §; > 0.
Continue this process until we hit a primary output { with § > 0. This gives a path, say p'. Next
find a path p? : §) ~ i, i1 € PI suchthat a; = a;, + d(p?). The path p?p' is a short path. n

Lemma 6.3.8 For all vertices i, R; > A; (A; > 0).

Proof For sake of contradiction assume not, so 37, such that R; < A;. From Equation 6.17, .
3j € FO(i), such that R; — w;; = R;. Also Aj > A; + w;j. Consequently R; — A; < R; — A;.
Hence A; < A; < 0. Continue this process until we hit a primary output ! with A; < 0. Contradicts
the fact that all paths satisfy the upper bound. .

Corollary 6.3.9 Let i be a vertex such that A; = 0, then 3j € FO(3), such thatA; = 0.

Proof As a part of the proof to Lemma 6.3.8 we showed that 35 € FO(7), suchthat A; < A; = 0.
Also since A; > O for all 7, we conclude that A; = 0. =

Corollary 6.3.10 Let i be a vertex such that A; = 0, then i belongs to some long path in P.

Proof By induction using Corollary 6.3.9 repeatedly. We know, 3j € FO(i), suchthatA; = A; =
0. Continue this process until we hit a primary output / with A; = 0. This gives a path, say p'. Next
find a path p? : i) ~ 4, iy € PI suchthat A; = A;, + d(7?). The path p?p! is a long path. .

To maintain the set of long paths we keep track of all primary outputs 7 such that A; = 0.
To find a candidate edge that meets the conditions of Lemma 6.3.3, we maintain a list of external

edges e;; satisfying the following conditions:
1. a; = a; + w;j, 7; > a; and
2. Aj > Ai + wj;.

The maximum amount of delay that can be inserted on such an edge is R; — A; — w;;. Any more,
will result in some path p containing e;; becoming a critical long path. If r; — a; < R; — A; — w;;

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS) 118

then padding more than r; — a; does not aid the short path. So we insert an amount of delay d;;
equal to

d;; = min(R; — A; — w;ij, rj — a;) (6.20)
The implicit procedure may be described as follows:

Procedure 6.3.2

Let

C = combinational circuit

L = list of possible candidate edges for inserting delay

w; = list of primary outputs k reachable from vertex j such that §; > 0
while (3k € PO such that §; > 0) {

o Finde;;, eij € Lwithk € 7
Insert delay = d;;
Update a, A, 7, R,5,A and lists m in the graph
Update £

The choice of e is done in a heuristic manner, so as to minimize the amount of delay that
needs to be inserted. We assume that the area penalty is directly proportional to the delay inserted.
Hence we are seeking an area optimal solution. As a heuristic, with each vertex j we maintain a
list 7; of primary outputs that are reachable from j and violate the short path bounds. We choose
an edge e;; with the least value of]‘%"J{']; i.e. we choose the edge with the best delay gain per critical
output. A refinement to the above procedure is to find a cutset of external edges so that delays can
be inserted independently on each edge. A min-cut found using a flow algorithm as described in
[66] can be used to insert delays simultaneously on several edges without updating the values for
the slacks.

6.4 A linear programming approach

In this section we show that the minimum padding problem is equivalent to a linear
program obtained by relaxing Equations 6.1 and 6.2. Let the early (late) arrivals at a primary input
t be denoted by A; (A;). Consider the following optimization problem (O PT'1):

OPT1: min(¥,, ¢ gE wij)

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 119

A; = maxiepp;)(Ai + wi;)

a; = minerr)(ai + wij)

Ai < R Vi e PO
a 2 T Vi € PO
A; = A Vie PI
a; = A Vi€ PI.

Consider the relaxed linear program (P1) obtained by replacing the min and max operators

by appropriate inequalities:
P1: min(3_., .cgs wij)
Aj > Ai+w; Vie FIQ)
a; < a;+w; Vi€ FI(j)
A; < R; Vie PO
a 2> T Vi e PO
A, = A Vie PI
a; = X Vi e PI.

Theorem 6.4.1 Let (w*,A", a*) be an optimum solution to P1, then an optimum solution to O PT'1

can be constructed with the edge weights w*.

Proof The objective functions in the two optimization problems are the same. Since the feasible
region of P1 contains the feasible region of O PT'1 the following statements are true —

o if P1 is infeasible then so is O PT'1, and

o the value of the objective function in P1 at optimality is a lower bound on the value of the
objective function in O PT'1.

Given (w*, A*, a*), an optimum solution to P1, it is possible to construct a feasible solution to
O PT'1 with the same cost as the optimum solutionto P1. This implies that the values of w* are also
optimum to O PT'1. Recall that the values of A; and a; for all ¢ € PI, are fixed in both problems
to the same values. Let us construct a solution A4, & to O PT'1 recursively as follows:

Ai = A ViePI
G = N ViePI
A; = A; * therwi
j ; en}:%)(A, + wj;) otherwise
a@; = min (& + wj;) otherwise.

i€FI(j) J

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS . - 120

These equations need to be evaluated in topological order from the inputs. Since the circuit is
acyclic, this ensures that /ij (@;) for each j is computed before being computing the late (early)
arrival at its fanouts. Note that for all

1. A; < A, and

2.

[~y

i 2 af.

Since for i € PO, we have
1. A7 <R;and
2. a; 2y,

we conclude A; < R; and &; > r;; implying that (w*, 4, &) is a feasible solution to O PT1. Since
the value of the objective function of O PT1 at (w*, A, &) is equal to the lower bound given by the
minimum value of the objective function of P1, (w*, 4, &) is a point of optimality for OPT1. m

6.5 Refinements

6.5.1 Delay model

-

A main drawback of the delay model used so far is that the delay from an input pin to an
output pin of a gate is assigned a single value. However the delay may differ for an output rise and
for an output fall. Consequently each intemnal edge must be assigned a minimum and a maximum
delay (denoted by w1* and w}g‘"). Forapath p: i) ~ 1, let us define

n-1
D(p) = Y wlfz,
i=1

n—1 .
dp) = 3 wiin .
j=1
If we assume that the buffers are specially designed to have equal rise and fall times

Theorem 6.3.2 can be modified to read

Theorem 6.5.1 In any circuit, letiy € PI, i, € PO, such that3apathp : iy ~ i,. The padding
problem has a feasible solution if and only if A;, — a;, + D(p) — d(p) < R;, — i,V such p.

Note that the structure of the path is now relevant because of the term D(p) — d(p).

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 121

6.5.2 Discrete delay insertion

An issue of concem is that delay insertion in reality can only be done in discrete steps.
So far, we have assumed that an arbitrary amount of delay can be inserted on each edge. Instead let
B be the minimum delay that can be inserted. A problem arises if, for a short path s € S, and for
every edge e;; € s satisfying the requirements of Lemma 6.3.3, we have

Rj—- A; —w;; < B. 6.21)

We say an output has a short path violation if due to the discrete nature of gate delays,
we are unable to meet the lower bound on the output. We will now determine a bound on the short
path violation as a function of B. Once again, we will not tolerate any change in critical long paths.

Theorem 6.5.2 Let s € S, s : i) ~ i, and the following statements are true;
1. Ay —a;, < R;, —r;, and
2. Ve € s, €iipy, ik = k41, k = 1,---,n — 1, such that e;,;,,, € q.Vq € P, we have
Rik+1 - A - Wigipgr < B,

then a;, + d(p) 2 ri, — mB, where0 < m < |V| - 1.

-~

Proof For every edge e;,,,, : tx — ir41 (henceforth denoted by ey for brevity), k = 1,---n — 1
one of the following is truc -

1. ex belongs to one or more long paths (denoted by {g}) or

2. e is a candidate edge and R;,,, — A;, — Wi,i,,, < B. In this case, there must be one or
more paths ({gx}) containing ey such that A(gx) + d(gx) > R(qi) — B, i.e. the addition of
B units of delay on e, forces a violation of the upper bound requirement on g.

Use Construction C (as described in proof to Lemma 6.3.3) with the set P! = {J?Z1{g:} instead of
the set P. Let Q1,Q2,-+-Q be the covering of s found by the construction process. We can sce
thatfork=2,---L -1,

R(Qk) — R(Qk-1) if Q1 belongs to a long path

>
dQ)) +d(Q}) - d(Qi_N{ =)
(Qk) + d(@) - d(@h l){ > R(Qk)—- R(Qi-1)-B ifQy containscandidatcedges.(622)

The terminal cases are

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS - 122

e k=1:
> R if Q; belongs to a long path
Ai +d(Q}) +d(Q}) (@) . 9 ESfo 2 onER (6.23)
> R(Q;)- B if Q contains candidate edges.
e k=1L:
> R;, if @, belongs to a long path
d(Q3) - d(Q}_y) | epheonssioa R (6.24)
> R;, — B if QL contains candidate edges.

Summing up, we get 4;, + d(s) > R;, — mB, where m is the number of paths covering s
that have candidate edges. But A;, — a;, < R;, — r;,, namely R;, — A;, 2 ri, — a;,. Since
d(s)+ mB > R;, — A;,, we conclude d(s) + mB > r;, — a;,, implying a;;, + d(s) > r;, — mB.
So as B is decreased, we will be able to control the amount of short path violation. A naive upper
bound on mis |V| - 1.]

To solve the padding problem with discrete delay, we first solve the problem with the
continuous delay relaxation. We use the optimum solution to the continuous problem as a heuristic
to solving the discrete padding problem. Let B = {by,---b;} be a set of buffers available in the
library. Let d(b;) be the delay and a(b;) be the area of buffer b;. Two problems arise in discrete

padding. ‘ -

¢ Each edge e requires a delay of W, to be inserted on it. We need to find a set of buffers from
B that best approximates W,. We want the delay inserted to be as close as possible to W,
without exceeding it. Mathematically, we find a set B, consisting of elements from B, such
that (W, — "¢, d(b;)) is minimized, subject to 3" g, d(b;) < W.. Any ties are broken
by comparing the respective area penalties (3;¢ g, a(b;)). With d(b;) € Z+ for all 7, and
W, a positive number, the problem is equivalent to the subset-sum problem [19], which is
NP-complete.

e The problem above concentrates only on the best solution for an edge. A difficulty arises
when (see FigureA6.3) multiple fanouts from a gate require delay insertions. Dramatic area
gains are to be made if instead of buffering each fanout separately, a buffer tree is built. In
Figure 6.3, quite clearly the second buffer tree is superior in terms of area to the first buffer
tree. If we assume that elements from B can be always combined to give a delay of W,
exactly, the buffer tree construction is needed for area recovery. Let s be a gate with fanouts
{fi, f2s+ -+ fa}. Let the i** fanout edge from s to f;, require a delay of w; to be inserted.

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 123

Library buffer1 buffer2 buffer3
area 3 15 1
delay 1 2 3
Araa
7
D §§ E :: § d
[~}
Trae 1
c
5.5
d
[-]
Tree 2

Figure 6.3: Area optimization during delay insertions

The problem is to construct a tree rooted at the output of s, whose vertices are elements of
B. The lcaves of the tree are inputs of the fanout gates of s. The conﬁtraint is that for each
root-to-j*# leaf path , say p; : s ~ fj, Ti,ep, d(bi) = w; and the objective is to minimize
Y a(b;). Quite clearly, if we can solve this problem, we can also solve the previous problem

by setting n = 1.

Thus finding the best approximation for delay insertion for a single fanout and the buffer
tree construction are difficult problems. It is known that the problem of inserting buffers to meet
upper bounds on arrival times with an area constraint and taking fanout loads into account, is
NP-complete [S, 73]. To solve the discrete delay problem, we first find the best approximation for
each fanout edge independently by a branch and bound procedure that enumerates the different sets
B.. Area recovery is then done by extracting buffers common to fanouts, in a greedy manner. Note
that buffer tree construction is further complicated by the fact that the delays of buffers change as
the fanouts change. During the greedy tree construction, attempts are made to take the load into
account. We recognize that this approach can be far from optimal, but as a first cut the heuristic
works fine. A reason for permitting a rough approximation at this stage of the design is that finc
delay tuning can be often achieved successfully by transistor sizing in MOS (resistor sizing in ECL)

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS : 124

Primary Primary
— inputs \ \ \ \ outputs —
Em—
et

——
———

i’

Flip-flops) Com;)ination;ll) Flip-flops
circuit
Clock

Figure 6.4: Wave pipelining

circuits.

6.6 Relation to wave pipelining

Wave pipelining is a design technique that allows multiple streams of data to flow in a
combinational region at a given instant of time. The clock period in a circuit (using flip-flops) is
determined by the longest combinational path in the circuit. In the case of wave pipelining, the
system is clocked at a faster rate. Consider the structure used for wave-pipelining as shown in
Figure 6.4. The flip-flops at the inputs and outputs are clocked at a rate faster than the standard rate
determined by the longest path. The primary inputs have equal early and late arrival times. Let T
denote the clock period. The clock period depends[81] on —

o the maximum difference between the longest and shortest delay (to any gate) from the inputs
(Tla)v

¢ the maximum clock skew (Tszew), and
¢ sct-up and hold times for the memory elements (7).

A first order approximation for T is Tj5 + 2 * Tsrew + Tsn. Wong et al. [81] focus on minimizing
the first term. We shall focus on inserting minimum delays to meet a target T3,. In the terminology
of Wong ez al. [81] this is called rough tuning. In order to prevent data from one wave colliding

with (corrupting) data in the previous wave we require

a; + T, > A; (6.25)

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 125

at every vertex i. So given T}, the minimum padding problem may be phrased as:

OPT2: min(3y-, .cge wij)
A; = max,-epl(,-)(A.' + w;;)
a; = Miep;)(ai +wij)
A; < R; Vi € PO
a 2 Ai-T, VieV
A =0 Vie PI
a =0 Vi e PI.

We still enforce A; < R; at each primary input. This is necessary because the number of “waves”
that simultaneously exist in the combinational circuit depend on T}, and the length of the longest
path. Removing this constraint helps the optimization problem but can result in a large number of
data “waves” in the circuit. Consider the relaxed LP:

P2 min(}_, e wij)
A; 2 Ai+wi; Vie FI(j)
a; < a;+w;; Vie FI(j)
A; < R; Vi € PO : -
a; 2 A;-T),, VieV
A =0 Vie PI
a; = 0 Vie PI.

It is easy to show (along similar lines to the proof of Theorem 6.4.1) that if (w®, A", a*) is an
optimum solution to P2, then we can construct an optimum solution to satisfy O PT2. Since the
feasible region of P2 contains the feasible region of O PT2, if P2 is infeasible then O PT?2 is also
infeasible. However, we are no longer guaranteed to have a feasible solution even if the discrete
padding requirement is waived. If we set Tj, = 0in O PT2, we obtain a; = A; for all . If we force
all primary outputs i to have A; = DM AX (where DM AX is a predefined value), it is equivalent
to the Balancing ProbleM defined by Wong et al. in [81].

6.7 Results

We present the results on a set of combinational multi-level examples. The first set of
experiments deals with the greedy algorithm (Procedure 6.3.2) and the linear programming approach

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS ' 126

(Section 6.4). We use the linear program solver Ip_solve - a sparse matrix implementation of the
simplex algorithm due to M. Berkelaar [4]. We hasten to point out that it is not known if these
combinational circuits were designed to operate in a sequential environment. Consequently the
delay inserted and the area penalty is quite large. The purpose of these experiments is to examine
the violation of the early arrival constraints due to the discrete nature of gates.

¢ Experiment 1: The circuits are unmapped and we use a unit delay fanout model. The circuits
are optimized using script.rugged provided with the SIS distribution. The early and late
arrivals at each primary input are set to 0. The late required time at each output is the longest
path from an input to the output in question. The early required time at each output is set
to be a fraction (0.3) of the longest path to it. The results are shown in Table 6.1. The area
of the circuit is given in column 2. The area is measured in terms of the number of 2 input
and/or gates and inverters. The area of an and/or gate is assigned to be unity and the area of
an inverter is assigned to be 0.5 units. Columns 3 and 4 give the amount of delay that needs
to be inserted to meet the delay constraints. A circuit with 200 gates typically gives rise to
a linear program with 500 variables and a thousand constraints. Columns 5 and 6 show the
time taken by the algorithms and columns 7 and 8 give the area penalty (area of the inserted
buffers). The last two columns give a measure of violation® of the short path bounds due to
the discrete nature of delay insertion. We compute the percentage of violation at each ou;put
to the early required time at the output. The worst violation amongst all outputs is reported.

¢ Experiment 2: The second set of experiments are carried out on the same examples described
above, but using an industrial standard cell library (see Table 6.2). The library has a sct of 4
buffers with different areas and delays. The second column lists the initial area of the circuit.
Columns 3 and 4 give the delay to be inserted for the relaxed problem. The next two columns
give the time taken and columns 7 and 8 give area penalty after packing. The last two columns
give a measure of violation.

e Experiment 3: This experiment deals with wave pipelining of circuits. Table 6.3 gives the
data on unmapped circuits, while table 6.4 presents the data for mapped circuits. Column 2
gives the value of T}, without any delay insertion. We dccrease the target T, by a factor of
0.3 in column 3. The time taken by the procedure is the content of column 4. The last colufnn
gives the arca penalty.

3Sce section 6.5.2

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS

name | Initial | delay padded time(sec.) Area Penalty % Violation
Area| G LpP G| LP G LpP G Lp
9symml | 221.00 0.00 000 03] 9.0 0.00 000 | 0.00| 0.00
C432 | 287.50 | 971.58 | 187.92 | 10.2 | 19.5 [22450 | 65.00 | 671 | 2.82
C499 | 398.00 | 323.84 | 32384 | 57344 | 6400 | 64.00| 3.07| 3.07
x4 305.00 | 882.02 | 430.78 | 189 | 31.1 | 197.00 | 145.50 | 12.53 | 12.53
i3 310.00 6.00 300 | 09| 124 2.00 1.00 | 11.11 | 11.11
count | 128.00 [23258 | 92.02 | 1.6| 47| 4650 | 28.00 | 13.67 | 13.67
frgl 196.00 | 30.68 824 | 05| 5.7 7.50 250 | 16.67 | 22.62
b9 13250 | 44.28 | 2640 | 0.8 | 4.1 9.00 7.00 | 35.19 | 16.67
x1 319.00 | 101.92 | 74.88 | 45249 | 2500| 2050 | 12.09 | 12.09
apex7 | 200.00 | 272.84 | 150.16 | 5.3 | 11.6 | 51.00| 4500 | 643 | 6.43
adder | 145.00 | 907.80 | 271.72 | 2.8 | 7.0 |237.00| 94.00| 442 | 6.81

G = Greedy procedure
LP = Linear Programming approach

Table 6.1: Delay insertion using unit delay fanout model

name Initial delay padded time(sec.) Area Penalty % Violation
Area G LP G| LP G LP G| LP

9symml | 278.00 | 10228 | 2548 | 1.0 | 2.8 | 109.00 | 34.00 | 1.48 | 1.48
C432 | 290.00 | 749.34 | 17508 | 4.8 | 5.0 1039.00 | 276.00 | 1.20 | 2.59
C499 | 689.00 | 310.54 | 309.64 | 44| 169 | 425.00 | 395.00 | 0.17 | 0.17
x4 518.00 | 1169.11 | 530.27 | 19.0 | 25.1 | 1573.00 | 879.00 | 0.78 | 0.78
i3 178.00 0.00 000(02| 09 0.00 0.00 | 0.00 | 0.00
count | 225.00 | 804.62 | 31526 | 34| 3.5| 1129.00 | 452.00 | 0.68 | 0.68
frgl 209.00 1600 1200| 03| 14 19.00 | 10.00 | 4.96 | 4.96
b9 182.00 46.04 | 29.04 | 08| 22 29.00 | 2200|278 | 2.78
x1 44700 | 203.66 | 11645 | 44 | 12.8 | 213.00 | 157.00 | 043 | 3.32
apex7 | 328.00 | 584.26 | 24020 | 6.7 | 85| 631.00] 337.00|0.79 | 0.79
adder |285.00 | 765.49 25453 | 44| 7.3|1191.00|371.00 | 1.11 | 1.11

G = Greedy procedure
LP = Linear Programming approach

Table 6.2: Delay insertion using library delay model

127

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS

name | initial | final | time Area
T, | Tis | (sec.) | penalty

9symml { 18.40 | 12.88 | 14.1 13.00
C432 | 6440|4508 | 218 | 73.00
C499 | 24.80 (1736 | 450 96.00
x4 2500|1750 | 19.7 7.00

i3 1.60 | 1.12 | 28.0 0.00

count | 24.20 | 16.94 49| 18.00
frgl 15.20 | 10.64 | 10.5 6.00

b9 1140 | 7.98 44 2.00

x1 1320 924 | 279 5.00

apex7 | 19.80 | 13.86 | 10.1 8.50
adder | 50.60 | 35.42 57| 5350

Table 6.3: Wave pipelining using unit delay fanout model

name | initial \ final | time Area
Tis | T | (sec.) | penalty

9symml | 35.50 | 24.85 35] 69.00
C432 | 67.60 | 47.32 5.3 | 304.00
C499 | 36.50 [25.55 | 219 | 527.00
x4 33902373 | 142 | 52.00
i3 0.00 | 0.00 14 0.00
count | 53.80 | 37.66 2.8 | 289.00
frgl 19.70 | 13.79 1.7] 15.00
b9 1340} 9.38 2.1 12.00
x1 1730 (12.11 | 115 | 31.00
apex7 | 29.70 | 20.79 60| 26.00
adder | 52.20 | 36.54 5.7 | 157.00

Table 6.4: Wave pipelining using library delay model

128

CHAPTER 6. DELAY INSERTION FOR SHORT PATHS 129

It was observed that constructing a buffer tree (albeit a greedy tree) leads to savings of area by a
factor of 2 to 3 in all the cases.

The experiments (1 and 2) show that the percentage violation depends to a large extent on
the nature of the circuit. It is important to come up with circuit restructuring techniques that prepare
the circuit for delay insertion. The large area penalties are due to outputs that have a small delay
from the inputs. In order to meet an early required time constraint, set to a fraction of the longest
delay, these outputs need to be buffered by a significant amount.

6.8 Discussion

The main motivation for this Chapter lies in the synthesis of sequential circuits (with level-
sensitive memory elements) to meet a target clock period [63]). We have introduced the minimum
padding problem in circuit synthesis. Under the pip-to-pin delay model, we give a theorem that
prescribes necessary and sufficient conditions to solve the padding problem. We present two
algorithms to solve the relaxed problem. For practical application of these algorithms, the approach
is extended to handle gates with discrete delays. We show how a solution to the continuous problem
can be used to approximate a solution to the discrete problem. We derive bounds on the amount of
violation possible. : -

130

Chapter 7

Conclusions

This thesis has sought to explore problems in VLSI design that arise due to the sequential
nature of synchronous circuits. As VLSI designs increase in size and complexity, it becomes
impossible for the human mind to trace signals though wires and gates to ensure that memory
elements “latch” correct values. Synthesis for improved performance is complicated by the fact that
changing regions of a circuit can affect behavior in rest of the circuit.

We start out by examining the constraints for correct clocking of synchronous circuits.
Chapter 3 presents a polynomial time algorithm for the verification of clock schedules. As a
consequence to clock schedule verification, the optimization of clock schedules is considered in
Chapter 4. An algorithm with complexity polynomial in the size of the circuit (exponential in
the number of phases) is described. Proposed algorithms for clock schedule verification and
optimization assume a pessimistic approach for data propagation; namely every path in the circuit is
decmed capable of propagating an event. We feel that the existence of false paths (due to unreachable
states) is more likely in sequential circuits than in purely combinational circuits. Using paths that
actually propagate events for purposes of clock schedule verification and optimization is the next
logical step. Efforts[56] are currently underway to approximate the optimum clock schedule which
includes only sensitizable paths. The problem of clock schedule analysis with multiple frequency
clock signals is another issue that merits investigation. Lastly, permitting arbitrary signals to control
memory elements remains largely unsolved. We have made some progress in this dircction using a
restricted form of qualified clocks[28].

Chapter 5 investigates the resynthesis of multi-phase pipeline circuits to meet target clock
periods. A novel approach using the notion of “minimal perturbation” is presented to solve the
problem. The problem of extending resynthesis to general cyclic circuits remains complicated. A

CHAPTER 7. CONCLUSIONS 131

reason is the lack of efficient path based delay optimization techniques.

Ensuring that short paths do not cause erroneous latching in sequential circuits leads to
the problem of satisfying minimum delay requirements on combinational paths. In Chapter 6 we
offer a technique to solve this problem using active delay insertion.

The effectiveness of the proposed algorithms has been demonstrated by experiments on
some benchmarks. The implementations mirror the theoretical efficiency indicated by the outlined
analyses.

All electronic designs, due to their sequential nature, require attention to some or all of
the problems that are described in this thesis. It is sincerely hoped that designers are able to take
advantage of the proposed automated synthesis and analysis techniques to speed the design process.

132

Appendix A

Optimality of the SmM Delay Model

In this Appendix, we seek to justify the use of the simplified min-max (SmM for short)
delay model for a gate in the optimal clock schedule computation. We re-formulate the optimal
clock schedule computation problem using the consistent min-max (CmM for short) delay model.
Conditions are described when the two models are equivalent and when they differ. We describe
a property which is a desired feature of clocking schemes in most designs, called the robustness
property. Under this requirement, we show the simplified model to be equivalent to the consistent

model. , -

A.1 Introduction

This section bricfly reviews the clocking constraints in Chapter 2. Let us focus on the
constraints for correct clocking using the SmM delay model and the CmM delay model. The min-max
delay model may be used in two styles—

1. simplified min-max delay model (SmM): A circuit operates correctly if the sum of the delays
along various paths satisfy certain linear inequalities. The delay of a gate in each inequality
is determined by a worst case assignment. A gate delay is assigned the upper (lower) bound
if it appears on the left (right) hand side of an < inequality with positive coefficients. So
the same gate may be assigned different delays in different inequalitics and sometimes in
the same inequality. This has been the model of choice for all the previous work on optimal
clocking [55, 69, 62).

APPENDIX A. OPTIMALITY OF THE sMM DELAY MODEL 133

2. consistent min-max delay model (CmM): In this case, the delay is determined as a part of the
optimization step for the clock period. The delay of a gate is permitted to take on any value
between the upper and lower bounds. The important thing is that each gate is forced to have
the same delay in all equations. It is akin to assuming a uniform probability distribution for
each gate and computing the minimum clock period at which the circuit will operate with
unit probability.

For ease of presentation, only level-sensitive memory elements (latches) are assumed to
be present in a circuit. The circuit is assumed to consist of two networks: a data network used for
computations and a clock distribution network (skew network) that is used for the distribution of
clock signals to the control inputs of memory elements. The data network is modeled by a directed
graph G(V, E), where each vertex 7 represents a latch i in the circuit. Every vertex 7 has a phase
#(#) associated with it. Let P; be the path associated with the skew to latch i. A combinational
path in the circuit consists of a sequence of gates, such that the output of each gate is an input to the
gate following it. A combinational cycle is a path whose first and last gates are the same. There are
no combinational cycles in a synchronous sequential circuit. Let pi; be a combinational path from
the output of latch i to the input of latch j. Each edge ¢ — j in G denotes the existence of a path
Dpij. A pathinthe graph s an altemnating sequence of vertices and edges, beginning and terminating
at a vertex; each edge being directed from the vertex preceding it to the vertéx succeeding it in the
sequence. A cycle in the graph is a path whose first and last vertices coincide. Each edge i — jin
the graph has a value for I{;; as defined in Equation 4.1. If p is a path in the circuit, then || denotes
the sum of the K’s along the path (Equation 4.3). Let P;"j denote the set of paths from vertex i to
vertex j with exactly |p| = k and containing no cycles. 'P?j denotes the set of combinational paths
from i to j. P; is used for the set |_JP¥.

Each gate g; has two neali numbers associated with it, D; and d;, the upper and lower
bounds on the delay of the gate. The actual delay of a gate g; is a variable §;, which lies in the
interval [d;, D;]. For sake of simplicity, we assume that the propagation delay through a latch in
zero!. The phase signal to each latch ¢ undergocs a skew along path P;. P; is part of the clock
distribution network of buffers/inverters and is disjoint from the data network. A clocking scheme
is said to be robust if the circuit will operate without any latching errors under the given clocking
scheme when every gate delay is within its specified bounds. Since gate delays cannot be accurately

! Any delay associated with the memory elements can be abstracted out and modeled by buffers at the data input/output
and clock input ports.

APPENDIX A. OPTIMALITY OF THE sMM DELAY MODEL : 134
predicted a priori to fabrication, most designs require a robust clocking scheme.

A.l.L1 CmM delay model
There are three types of constraints that arise in optimal clocking:

1. internal constraints— arising from the topological structure of the circuit and the distribution
of delays on gates,

2. model constraints— arising from the clock model, forcing the solution to obey certain as-
sumptions on the clock,

3. external constraints— arising due to environment constraints. The designer may constrain
the duty cycle or enforce the clock events to be separated by a specific amount of time.

For the time being, we shall ignore the external timing constraints. The intemal clocking constraints

may be divided into two categories:

1. long path constraints— these force a minimum separation between clock events and arise due
to the set-up constraint.

(a) Vi,jand Vp € P;; . -

esi) + (D 8k) 2 seiy + (D 6) + O 8k) — Iple + S. (A.1)
keP; kEP; kep

(b) Vcycles C : j — j, for correct operation we require (see Lemma 4.2.1)

c2> ____Ekec 8 .

IC] (A.2)

2. short path constraints— these force a maximum separation between clock events and arise

due to the hold constraint.
Vp € P},
esi) + (D0)+ H S spiy + (X 8) + O be) + (1= [pl)e (A3)
keP; keP; kep

Note that for all p € P%, |p| € {0,1}.

We briefly mention the model constraints. We require

2520 (A4)

APPENDIX A. OPTIMALITY OF THE sMM DELAY MODEL 135

and
eir12€ t=1,-...I—-lande =c (A.5)
To find the optimum clock period for a given assignment of gate delays, we solve a linear
program with the objective function min(c) and the constraints described above. Let us represent
the linear constraints as Ax > b(§), where § is a vector of gate delay assignments and x is a
vector consisting of clock events (variables) and b is a vector consisting of linear functions of §. A
clocking scheme thus computed, is not necessarily robust.

A.1l.2 SmM delay model

This formulation was suggested by Sakallah [55] and has been used by Szymanski [69]
and Shenoy [62]. This is a conservative approach. The intemal constraints translate as:

1. long path constraints-

(a) Vi,jand Vp € P;;

esi) + (D di) > sgiy + (X Di) + (3 D) = Iple + . (A.6)
kEPj k€eP; k€p
(b) Vcycles C : j — j inthe graph
2rec Dk .
c> ====—— A7)
IC] (

2. short path constraints- We need Vp € ’P?,-

eg() + (D D)+ H S syiny + (Y di) + (O die) + (1= [p])e (A8)
kEP; keP; kep

To find the optimum clock period using the SmM model, we solve a linear program. The
objective function of this linear program is to minimize the clock period ¢, subject to the clocking
constraints described above. Let us represent these constraints as Ax > b. Note that the right hand
side of the inequalities is a vector of constants (as opposed to a vector of linear functions of § in the
CmM case). Paths P; and P; may have a common sub-path. Gates on the common sub-path will be
assigned different delays in the same equation, e.g. in constraint A.6, a gate k common to P; and
P; is assigned a delay of d;; on the left hand side and a delay of Dy, on the right hand side of the
inequality. In the CmM model, the gate k is assigned the same delay on both sides and the constraint
is unaffected by the choice of the delay é;. Due to the conservative estimate, a clocking scheme
found using the SmM modcl is robust. We seck to examine whether assigning delays inconsistently

to the gates can cause an artificial increase of the clock period.

APPENDIX A. OPTIMALITY OF THE SMM DELAY MODEL - 136

(99—

¢1 $2
set-up=0 set-up=0
hold =0 hold =2

Figure A.1: Robust clocking: an example

A.2 Relating the two models

A.2.1 Preliminaries

Consider now, the optimal clocking problem using the CmM delay model. A lower bound
on the clock period is found for the worst possible delay assignment to the gates. This leads to a
min-max formulation described below. Intuitively, we consider the optimal clock computation to
be a game played by two players, A and B respectively. A chooses a delay assignment to the gates
consistent with the bounds, namely for each gate ¢ he picks a §; € [d;, D;]. His sole objective is to
obtain as large a clock period as possible. A is called the maximizing player (or the adversary). The
assignments to the gate delays are then made known to B, who uses a LP (using the constraints for
the CmM model) to find the minimum clock period at which the circuit will operate. B is called-the
minimizing player (and represents the algorithm). If there are g gates, A picks a point in a subspace
of R9 defined by [1{_,[di, Di] = Q. Mathematically, we are interested in solving the following
problem: min maxe, subject to Ax > b(é).

Let us briefly examine the notion of a robust clocking scheme in the context of the two
dclay models. Consider the example shown in Figure A.1. The gate has a max-delay of 4 and a

min-delay of 1. The constraints are (assuming e; < €3)

¢ SmM model:

al: e2 < s1+(1-2)+ ¢ short path constraint
a2: e 2 s1+4 long path constraint
a3: eg < e model constraint
a4: 51 < ¢ model constraint
as: s < e model constraint
ao6: e2 = ¢ model constraint

a7,a8: s;,s2 > 0. model constraint

Constraintsal anda2 imply, ¢ > 5. Soaclocking scheme withs; = 1,¢; = 2,5, = 3,e3 =5,
will work for all possible delays of the gate within the bound [1,4].

APPENDIX A. OPTIMALITY OF THE sMM DELAY MODEL 137

¢ CmM model: Let § be the delay of the gate.

bl: e2 < s +(6§—2)+c shortpathconstraint
b2: e 2 s1+6 long path constraint
b3: et < e model constraint
b4: 51 < ¢ model constraint
bSs: 2 £ e model constraint
b6: e = ¢ model constraint
b7,b8: 81,82 > 0. model constraint

From b1 and b6 we conclude s; > 2 — 4. Together with b7, we obtain s; > max(0,2 — §). This
leads to ¢ > max(é,2). Let us concentrate on the values for 81 and e;. They are—

St max(0,2 — §)

e2 = max(2,$).

The values of the rise/fall times of phases depend on the actual delay of the gate. The worst case
delay assignment using the CmM model gives a clock period of 4, but with the caveat that as the gate’:
delay changes, we are permitted to shift the rise of phase 1. This is a drawback, since we would like
a clocking scheme that is robust. Intuitively, it is clear that there can be a gap between the clock
periods found using the two models. The central question is whether the imposition of robustness
still maintains the gap. : -

A.2.2 Equivalence of the two models

For the rest of the discussion we will ignore the model constraints and external constraints
since they are the same in both models and affect the feasible regions in the same manner. Gates in
circuits can be divided into two groups;

1. Data: these are gates that appear on combinational paths from a latch to another latch, and
2. Skew: these are inverters/buffers that are used in the clock distribution.

The two groups are disjoint, hence no gate can ever appear along a data path, say p (p: i —) and
along a skew path, namely P; or P;. This implics that the delay of each data gate can appear as
a variable only once in each constraint. Before proceeding further, we need to modify the manner
in which SmM constraints are obtained. We know that each data gate can appear only once in
each constraint. The skew paths P; and P; may have a some gate/wires in common. Since the

delays will appear on opposite sides of the inequality, the common delay should be ignored in both

APPENDIX A. OPTIMALITY OF THE sMM DELAY MODEL 138

Figure A.2: Skew effect: an example

models. However the SmM model assigns each such gate, different delays in the same constraint.
We make a modification which ignores such gates. Henceforth each gate can appear only once in
each inequality in both models.

To observe the effect of assigning inconsistent delays to skew gates, consider the circuit
shown in Figure A.2. Let Py, P, be the paths from the clock to latches L;, L,. Let the clock rise at
s and fall at c. The control signal to L, rises in the interval [s + 1, s + 2] and falls in the interval
([c + 1,¢ + 2]modc). Similarly the control signal to L, rises in ([c + 2, ¢ + 4]modc) and falls in
[s +2,s + 4]. If the longest and shortest paths from clock to latch are constructed in a simple
manner as described in the SmM model, then the constraints (only long path) are

1: c 2 6 long path cycle constraint -
2: c+s+2 > s+242 longpath L; — L,
3: ¢c+1 > c¢+4+4—-c longpath L, — L.

The constraints imply ¢ > 7. If we make use of the fact that P, and P; have a common
gate Gy, the constraints become

1: c 2 6 long path cycle constraint
2: ¢+s+1 > s+4+2 longpath L; — L,
3; ¢ 2 c+2+4+4—-c longpathL; — Ly,

implying ¢ > 6. Thus the latter set gives a smaller clock period. Henceforth the SmM
model constraints will mean the constraints with no gate (data gate or skew gate) appearing more
that once in each constraint. This restriction forces the gate delay to be consistent in each constraint
but not necessarily consistent in all the constraints.

Let X'(6) denote the set of feasible clock schedules, under the CmM delay model, for a
delay assignment § € Q. Hence X(6) = {x|Ax > b(§)}.

Lemma A.2.1 The set A’(6) is closed.

APPENDIX A. OPTIMALITY OF THE sMM DELAY MODEL 139

Proof Let the {x,} denote a convergent sequence in X(§). The measure of distance (metric) we
shall use is the max metric. For any two points x; and x;, define the distance between them as

p(xi,x;) = Joax, [x:de = [x5]xl, (A9)

where [x;], is the k** component of x;. Let {x,} converge to x*. We need to show x* € X ().
Assume x* ¢ X'(6). Then there must be some constraint in Ax > b(§) which is violated at x*
by an amount 7. Let the constraint be denoted by ax > b(6), where a is the vector of coefficients
and b(6) is the corresponding component of b(§). We know ax* = b(8) — n, withn > 0. Let
be the coefficient with largest magnitude in a. Now {x,} — x*, implying Ve > 0, 3N, such that
p(xn,x*) < ,¥n > N. Sete = 2%~ Thus there must be some N for which p(x,,,x*) < 2 forall
n > N. Butax, = a(x*+x, —x*) = ax* +a(x, —x*). Implying ax,, = b(§)—n+a(x, — x*).
The largest positive value a(x* — x,,) can take is less than J. Thus ax, < b(§) - 7 = ax, < b(é)
and x,, is not a feasible clock schedule. Contradiction to the fact x, € X (9).]

Proposition A.2.2 If a clock schedule R is robust, then % € 1) X(6).
seq

The above proposition follows from the definition of robustness given in Section A.1. Note that
since each set A’(6) is closed, the intersection of a family of closed sets is closed and well defined.

Lemma A.2.3 Let X(6) = {x|Ax > b(6)}, then [X(6) = {x|Ax > max b(6)}, where the max
seQ
on a vector function b(8) is the vector of the component-wise maxima.

Proof The proof is divided into two parts.

o [X(6) C {x|]Ax > max b(6)}: Lety € [X(6). Consider any constraint, say ax >
seQ seQ
b(é). Now since y € [)X(6), we conclude ay > b(é) for all § € Q, implying ay >
seq
max b(6). As this is true for each constraint, the result holds for all the constraints.
€

o {x|Ax> max b(6)} C [X(8): If y isasolutionto Ax > max b(6), then Ay > b(é) for
€
5eQ
all 6 € Q. Thus y is feasible to the constraints of the CmM delay model. Hence it must be in

the intersection of all the X'(§)’s.

|
Let Y denote the set of feasible clock schedules under the SmM delay model. By definition
Y = {x]Ax > b}.

APPENDIX A. OPTIMALITY OF THE sMM DELAY MODEL 140
Theorem A.24 Y = (1) X(6).

seQ
Proof By virtue of previous lemma (Lemma A.2.3), we know ﬂ X(6) = {x|]Ax > max b(6)}.

seQ
Since ¥ = {x|Ax > b}. It remains to show that b = max b(§). Consider constraint A.1:

b(8) = D &+d -) +S

keP; kep keP;
:gxea&(b@) = Y Di+Y Di—) dr+S§
kep; kep keP;
= maxb(§) = b
5€Q
The same is true for constraints A.2 and A.3. |

Corollary A.2.5 The optimum robust clock schedules under the CmM delay model are identical to
the optimum clock schedules under the SmM delay model.

Proof Theorem A.2.4 proves that the feasible regions for the two problems are identical. So the
infimum of z7; in the feasible region for the two problems will be identical. Moreover, since the
feasible regions are closed, the infimum will be attained, so we can replace the infimum by the more
common minimum. Hence the set of clock schedules x with minimum value of z3; = ¢ (the clock
period) must also be the same. n

As a consequence, we conclude that if the clock period of a circuit is less than the value
given by the SmM model, then there must exist a consistent assignment of delays to gates (within their
respective bounds), for which at least one of the clocking constraints is violated. Said otherwise,
the adversary A can always select a consistent assignment to make the clock period be no less than
the value predicted by the SmM model.

141

Appendix B

Quadratic Optimization

A quadratic optimization problem (henceforth referred to as QO PT) is of the form

QOPT: min[(z — z0)TB(z — z9) = f(z)]
Az <b.

The matrix B is positive definite. A naive approach is to use a constrained quadratic optimization |
algorithm. This requires projecting the gradicnt onto tangent planes defined by the inequalities
with zero slack. Solving the primal problem in this manner would also require an initial feasible
point. Instead we use a variant of the gradient projection algorithm on the dual problem to QO PT.
The advantages of this approach are twofold; computational tractability, and choice of an arbitrary
starting point.

We shall first consider detecting infeasibility of the constraints. Note that the feasible
region is a cone in the positive orthant with its vertex at d (or at the point & = (H,2H, - (n -
1)H,H,---(n —2)H,---H) obtained by substituting d;;4+; = H in Equation 5.4 in the general
casc).

Lemma B.1.6 If the constraint region P is not empty then d € P.

Proof True by inspection of the constraints. []
If the region is infcasible then we need to extend the constraints with the d’s as variables.
The lemma now becomes:

Lemma B.1.7 If the extended constraint region is not empty then Il € P.

APPENDIX B. QUADRATIC OPTIMIZATION 142

Lemmas similar to Lemma B.1.6 and Lemma B.1.7 can be proven easily for the case
when assumption 1 in Section 5.3 is relaxed (Section 5.6). Hence we can detect infeasibility by
setting the variables to the appropriate values and checking if the constraints are satisfied. We shall
henceforth assume that P # .

Lemma B.1.8 Every local minimum of f(z) is a global minimum.

Proof A consequence of the fact that f(z)is a convex function of z and the feasible region Az < b
is a convex set.]
Let the Lagrangian £()) be defined as the unconstrained problem

L(\) = -ATb + mzin(%(z — 20)TB(z — o) + AT Az) ®.1)

forall z € R™ and A > 0. The variables denoted by A are known as the Lagrange multipliers.
Quite clearly

1
L) < min>(z— 20)7T B(z — o)

| T
=> If\lg.‘))c L(A) < Arg'gnbf(z — z0)" B(z - z0)

This is a restatement of the fact that the primal problem QO PT, has an optimum value greater than
or equal to the optimum of the dual {max,>o £(A)}. Given any A define

z)=z0— B~1ATA. (B.2)

It should be noted that given a A, the problem {m:cin%(:c - 20)TB(z — z0) + AAz} has a unique
solution given by z,. So we can write £()) as

L) = -aTh4 mgn(%(a: — 20)TB(z - z0) + AT Az)
=L(0) = -ATo¢ %(m - 20)TB(z) — z0) + AT Azy,
=LA = =ATo+ %(—B"'AT/\)TB(—B"ATA) + AT A(zg — B~1AT).
Simplifying results in
L) =-2Tp- %,\TAB"AT,\ + 2T Az (B.3)

Lemma B.1.9 L() is concave and continuous.

APPENDIX B. QUADRATIC OPTIMIZATION 143

Proof The Lagrangian is concave because its Hessian (— AB~! AT) is negative definite. Itis clearly
continuous. |
The Kuhn-Tucker conditions for optimality of the primal problem are

B(z* —z0)+ XA = 0 KT1
>0 KT2

A*(Az"-b) = 0 KT3

Az* b. KT4

IA

We now show that it is possible to construct an ascent algorithm to compute the maximum
of £(X). Let A be the optimum to the dual then, it is easy to show (z 5» A) satisfy the Kuhn-Tucker
conditions for optimality of the primal problem.

Lemma B.1.10 At any point A the dual has an ascent direction given by Az), —b.

Proof
L) = =ATp- %,\TAB-'AT,\ + AT Az
= VL) = -b-AB'AT) + Az .
= VL(A) = b+ A(zo—- B7147))
= VL(A) = —b+ Azy.

[|

We now present the algorithm in Procedure B.1.1, which is based on gradient projection.

The advantage of this procedure is that the gradient projection for the dual problem is a trivial
operation because of the non-negativity constraints. In the primal problem, the constraint matrix

can be fairly complex requiring a complicated projection operation.

Procedure B.1.1

Ao = initial guess (typically 0)

(i) z) = 20 — B~1AT),

(ii)[h); = { [VLOW: l:f[,\k]i >0
max{0,[VL(A)l} if[Mi=0

(iii) if hie # 0 {

APPENDIX B. QUADRATIC OPTIMIZATION 144

e oy =max{a: A+ ahy >0}
Ak41 = AZMAXo<agay (L(Ak + ahy))
increment k, go to (i)

} else {

o £=zx, A= A\ return

}

The vector h is called the gradient of the Lagrangian £ for a reason that will soon be clear. To find
« in each iteration we resort to a line search algorithm in the direction given by the gradient of £.
We need to show that X, z 4 are optimum to the primal problem. Note the following

Ar)i

e ay > 0: Assume Ax > 0. To ensure Axy) > O we need @ = max [—k]— If hy > 0,
itfhii<0[Ri)i

ay = +oo. If [Ax]; < O then [Ax); > 0, by definition. Hence oy > 0. This requires that the

initial guess Ag > 0.

o Ifh #0,3a: a1 2 a > 0: L(Ax+ahi) > L(Ak). Firstnote that V2L(A\) = —AB~1 AT,
a negative definite matrix. Since the Lagrangian is continuous, we can expand using the
Taylor’s series to obtain A -

Lk +ahg) = L)+ ahi VL) + ?hi(-AB~ AT)k,

Note that if hx # O, then k' V.L(Ax) > 0 from the definition of k. Since the last term arises
from the Hessian (the matrix of second derivatives of the objective function) — a negative
definite matrix, we conclude that for a sufficiently small a, hy is a direction of increase (and
hence hy is called the gradient).

¢ The objective function £() is monotone increasing
¢ hj = 0 implies the following must hold for each row of A, say i:

- [VL(A))i =0ie [A2-b); =0and [\); > Oor
- [VL()))i < Oie [AZ - b); < Oand [}); = 0.
This implies A2 < b, so £ is feasible. In addition we find Y;[A;[VL(X)]; = 0, hence we

conclude X(Ai: —b) = 0. The first Kuhn-Tucker condition (KT1) is satisficd at cach iteration
in step (i) of Procedure B.1.1. The second condition (KT2) is implicitly satisfied by the

APPENDIX B. QUADRATIC OPTIMIZATION 145

definition of a;. The third (KT3) and fourth (KT4) conditions are met by (£,), and thus £
is optimum to the primal problem.

As an example, consider the following quadratic problem taken from Section 5.7.1:

min(z — 3)? 4 (y — 4)2

z<3 constraint 1
z4+y<6 constraint 2
y<4 constraint 3.

Let A = (Ay, A2, A3) be the Lagrange multipliers associated with the constraints. From EquationB.2,
the following equations for z and y are obtained.

z=3-) - (B.4)

y=4-2- . | (B.5)

The Lagrangian function from Equation B.3 is

pY: pY;
LA)= X — ?' —Ad =22 - N - ?3 (B.6)
The gradient of the Lagrangian from Lemma B.1.10 is given by
VLA)=(z-3,z4+y-6,y—4). ®B.7)

L

0.25

I T T) a
0.5 1&

Figure B.1: Plot of £ versus o

The valucs of z, y and the Lagrange multipliers for each iteration are shown in Table B.1.

The optimum solution is obtained in two iterations. In the first iteration A = (0,0, 0) and the valucs

APPENDIX B. QUADRATIC OPTIMIZATION 146

iteration | z | y A h a | a
1 (0,0,0) | (0,1,0) [oo | O.5
2 25(351(0,05,0)| (0,0,0) | -

w
H

Table B.1: Iterations for quadratic programming

of z and y are calculated using Equation B.4 and Equation B.S respectively. The gradient of the
Lagrangian (from Equation B.7) is computed to be (0, 1,0). A feasible direction of ascent for the
dual () is (0, 1,0). It is easy to see that a; = oo. Substituting A + ah = (0, a,0) in Equation B.6,
we find £(\ +ah) = a—a?. A plotof £ versus a (Figure B.1) shows that the maximum is attained
at @ = 0.5. The Lagrange multipliers for the second iteration are (0,0.5,0). After updating the
values of z and y, we find that the new gradient of the Lagrangian is (—0.5,0, —0.5). Consequently
there is no feasible direction of ascent for the dual at z = 2.5,y = 3.5 — the point of optimality to
the problem.

147

Bibliography

[1] A.V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-Wesley,
Reading, MA, 1983.

(2] K. A. Bartlett, G. Boriello, and S. Raju. Timing optimization of multi-phase sequential logic.
IEEE Transactions on Computer-Aided Design, pages 51-62, 1991.

(3] H. Behnke et al., editor. Fundamentals of Mathematics, volume 1, The Real Number System
and Algebra. MIT Press, 1987.

(4] M.R.C.M. Berkelaar and J. A. G. Jess. Private communication. June, 1993.

[5] C.L. Berman, J. L. Carter, and K. FE. Day. The Fanout Problem: From Theory to Practice: In
Advanced Research in VLSI: Proceedings of the 1989 Decennial Caltech Conference, pages
69-99, 1989.

[6] T. M. Burks, K. Sakallah, and T. N. Mudge. Identification of Critical Paths in Circuits with
level-Sensitive Latches. In Proceedings of the International Conference on Computer-Aided
Design, pages 137-141. IEEE, 1992.

[7] T.-A.Chu. Synthesis of Hazard-free Control Circuits from Asynchronous Finite State Machine
Specifications. In Tau 92, 1992.

(8] M. R. Dagenais and N. C. Rumin. Automatic Determination of Optimal Clocking Parameters
in MOS VLSI Circuits. In Advanced Research in VLSI:Proc. of the 5th MIT Conference, pages
19-33, 1988.

[9] J. D. Darringer, D. Brand, W. H. Joyner, and L. Trevillyan. LSS: A System for Production
Logic Syntehsis. Technical report, IBM Joumnal of Research and Development, 1984,

BIBLIOGRAPHY 148

[10] G. De Micheli. Synchronous logic synthesis: Algorithms for cycle-time minimization. In
IEEE Transactions on Computer-Aided Design, pages 63-73, 1991.

(11] S. Dey, E. Brglez, and G. Kedem. Partitioning Sequential Circuits for Logic Optimization. In
Proceedings of the International Workshop on Logic Synthesis, 1991.

(12] S. Dey, M. Potkonjak, and S. G. Rothweiler. Performance Optimization of Sequential Circuits
by Eliminating Retiming Bottlenecks. In Proceedings of the International Conference on
Computer-Aided Design, pages 504-509, 1992.

[13] D. H. C. Dy, S. H. C. Yen, and S. Ghanta. On the General False Path Problem in Timing
Analysis. In Proceedings of the Design Automation Conference, pages 555-560. IEEE/ACM,
1989.

[14] E. B. Eichelberger and T. W. Williams. A Logic Design Structure for LSI Testability. In
Proceedings of the Design Automation Conference, pages 462-468, 1977.

[15] J. Fishbum. Clock Skew Optimization. AT&T Bell Laboratories, Murray Hill NJ 07974, 1981.

[16] J. P. Fishbun. A Depth-Decreasing Heuristic for Combinational Logic. In Proceedings of the
Design Automation Conference, pages 361-364, 1990. . -

(17] J. P. Fishburn. LATTIS: An Iterative Speedup Heuristic for Mapped Logic. In Proceedings of
the Design Automation Conference, pages 488-491, 1992.

(18] J.P. Fishbun and A. E. Dunlop. TILOS: A Posynomial Programming Approach to Transistor
Sizing. In Proceedings of the International Conference on Computer-Aided Design, pages
326-328, 1985.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

(20] D.Gregory, K. Bartlett, A. de Geus, and G. Hachtel. SOCRATES: A System for Automatically
Synthesizing and Optimizing Combinational Logic. In Proceedings of the Design Automation
Conference, pages 79-85. IEEE/ACM, 1986.

[21] R. B. Hitchcock. Timing Verification and Timing Analysis Program. In 25 Years of Electronic
Design Automation. IEEE/ACM, 1988.

BIBLIOGRAPHY 149

{22] R. B. Hitchcock, G. L. Smith, and D. D. Cheng. Timing Analysis of Computer Hardware.
Technical report, IBM, 1982.

[23] D. A.Hodges and H. G. Jackson. Analysis and Design of Digital Integrated Circuits. McGraw-
Hill Book Co., 2 edition, 1988.

[24] A. Ishii and C. E. Leiserson. A Timing Analysis of Level-Clocked Circuitry. In Advanced
Research in VLSI: Proc. of the 7th MIT Conference, 1990.

[25] A. Ishii, C. E. Leiserson, and M. C. Papacfthymiou. Optimizing Two-Phase Level-Clocked
Circuitry. In Advanced Research in VLSI, 1992,

[26] N.P. Jouppi. Timing Verification and Performance Improvement of MOS VLSI Designs . PhD
thesis, Stanford University, Stanford CA-94305, October 1984.

[27] R. Kamikawai, M. Yamada, T. Chiba, K. Furumaya, and Y. Tsuchiya. A Critical Path
Delay Check System. In Proceedings of the Design Automation Conference, pages 18-
123. IEEE/ACM, 1981.

[28] M. Kawarabayashi, N. Shenoy, and A. Sangiovanni-Vincentelli. A Verification Technique for
Gated Clock. In Proceedings of the Design Automation Conference. IEEE/ACM, 1993.

[29] K. Keutzer. DAGON: Technology Binding and Local Optimization by DAG Matching. In
Proceedings of the Design Automation Conference, pages 341-347. ACM/IEEE, 1987.

[30] T. L. Kirkpatrick and N. R. Clark. PERT as an Aid to Logic Design. Technical report, IBM
Journal of Research and Development, 1966.

{31] L. Lavagno, N. Shenoy, and A. Sangiovanni-Vincentelli. Linear Programming for Hazard
Elimination in Asynchronous Circuits. In Journal of VLSI Signal Processing, 1993.

[32] E. L. Lawler. Combinatorial Optimization: networks and Matroids. Holt, Rinehart and
Winston, 1976.

[33] C. E. Leiscrson and J. B. Saxe. Optimizing Synchronous Systems. In Journal of VLSI and
Computer Systems, pages 41-67, 1983.

[34] Y-M. Li and M. A. Jabri. A Zero-Skew Clock Routing Scheme for VLSI Circuits. In
Proceedings of the International Conference on Computer-Aided Design, pages 458-463,
1992.

BIBLIOGRAPHY 150

{35] B. Lockyear and C. Ebeling. Optimal Retiming of Multi-Phase Level-Clocked Circuits. In
Advanced Research in VLSI, 1992.

[36] F. Mailhot and G. De Micheli. Technology Mapping using Boolean Matching and Don’t care
Sets. In Proceedings of the European Design Automation Conference, 1990.

[37] S. Malik, E. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli. Retiming and Resyn-
thesis: Optimization of Sequential Networks with Combinational Techniques. In Proceedings
of the Hawaii International Conference on System Sciences, pages 397-406, January 1990.

[38] S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli. Performance optimiza-
tion of pipelined circuits. In Proceedings of the International Conference on Computer-Aided
Design, pages 410413, IEEE, 1990.

[39] D. Marple. Performance Optimization of Digital VLSI design. PhD thesis, Stanford University,
1986.

[40] P. C. McGeer. On the Interaction of Functional and Timing Behavior of Combinational
Circuits. PhD thesis, University of California, Berkeley, 1989.

[41] P.C. Mcgeer, A. Saldanha, P. R. Stephan, R. K. Brayton, and A. Sangiovanni- Vincentelli. Tim-
ing Analysis and Dclay-Fault Test Generation using Path-Recursive Functions. In Proceedings
of the International Conference on Computer-Aided Design, pages 180-183. IEEE, 1991.

{42] T. M. McWilliams and L. C. Widdoes Jr. SCALD: Structured Computer-Aided Logic Design.
In Proceedings of the Design Automation Conference, pages 271-277. IEEE/ACM, 1978.

[43] C. A. Mead and L. A. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.

[44] N. Megiddo. Towards a Genuinely Polynomial Algorithm for Linear Programming. In Society
Jor Industrial and Applied Mathematics, pages 347-353, 1983.

{45]) K. G. Munty. Linear Programming. John Wiley and Sons, 1983.

[46] L Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. Memorandum
No. UCB/ERL M85/90, Electronics Research Laboratory, College of Engincering, University
of Califomia, Berkelcy, CA 94720, November 1985.

BIBLIOGRAPHY 151

{47] S. M. Nowick and D. L. Dill. Exact Two-level Minimization of Hazard-free Logic with
Multiple-input Changes. In Proceedings of the International Conference on Computer-Aided
Design, pages 626-630. IEEE, 1992.

[48) J. K. Ousterhout. A Switch-Level Timing Verifier for Digital MOS VLSL. /EEE Transactions
on Computer-Aided Design, CAD-4(3):336-349, July 1985.

[49] P. G. Paulin and E. Poirot. Logic Decomposition Algorithms for the Timing Optimization
of Multi-Level Logic. In Proceedings of the International Conference on Computer Design,
pages 329-33, 1989.

[50] D. J.Pilling and H. B. Sun. Computer-Aided Prediction of Delays in LSI Logic Systems. In
Proceedings of the Design Automation Conference, pages 182-186. IEEE/ACM, 1973.

[51] E. Polak, R. Trahan, and D. Q. Mayne. Combined phase I - phase II Methods of Feasible
Directions. Mathematical Programming, 17(1):61-73, 1971.

[52] J. Rubinstein, P. Penfield, and M. A. Horowitz. Signal Delay in RC Tree Networks. In JEEE
Transactions on CAD, pages 119-127, July 1983.

[53] R. Rudell. Logic Synthesis for VLSI Design. PhD thesis, University of Califoria, Berkeley,
1989.

[54] K. Sakallah, T. Mudge, and O. A. Olukotun. Analysis and Design of Latch-Controlled
Synchronous Circuits. In Proceedings of the Design Automation Conference, pages 111-117.
IEEE/ACM, 1990.

[55] K. Sakallah, T. N. Mudge, and O. A. Olukotun. CheckT,. and minT.: Timing Verification
and Optimal Clocking of Synchronous Digital Circuits. In Proceedings of the International
Conference on Computer-Aided Design, pages 552-555. IEEE, 1990.

[56] A. Saldanha, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Approximating
Optimum Functional Clock Schedules. in preparation, July 1992.

[57] S. Sapatnekar. A Convex Programming Approach to Problems in VLS Design, PhD thesis,
University of Illinois, Urbana-Champaign, 1992.

BIBLIOGRAPHY 152

{58]) T. Sasaki, A. Yamada, T. Aoyama, K. Hasegawa, S. Kato, and S. Sato. Hierarchical Design
Verification for Large Digital Systems. In Proceedings of the Design Automation Conference,
pages 105-112. IEEE/ACM, 1981.

[59] R.B.Segal. BDSYN: Logic Description Translator; BDSIM: Switch Level Simulator. Master’s
thesis, University of California, Berkeley, May 1987. ERL Memo. M87/33.

[60] E. Sentovich et al. Sequential Circuit Design Using Synthesis and Optimization. In Proceed-
ings of the International Conference on Computer Design, 1992.

[61] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. A Pseudo-Polynomial Algorithm
for Verification of Clocking Schemes. In Tau 92, 1992.

[62] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Graph Algorithms for Efficient
Clock Schedule Optimization. In Proceedings of the International Conference on Computer-
Aided Design, 1992,

[63] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Resynthesis of Multi-Phase
Pipelines. In Proceedings of the Design Automation Conference, 1993.

[64] J. Shyu, J. P. Fishbum, A. E. Dunlop, and A. Sangiovanni-Vincentelli. Optimization-based
Transistor Sizing. IEEE Journal of Solid-State Circuits, pages 100-409, 1988.

[65] K. J. Singh and A. Sangiovanni-Vincentelli. A Heuristic Algorithm for the Fanout Problem.
In Proceedings of the Design Automation Conference, pages 357-360, 1990.

[66] K.J. Singh, A.R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Timing Optimization
of Combinational Logic. In Proceedings of the International Conference on Computer-Aided
Design, pages 282285, 1988.

[67] P.R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. Combinational Test Generation
using Satisfiability. Memo. No. UCB/ERL M92/12, 1992.

[68] T. G. Szymanski. LEADOUT: A Static Timing Analyzer for MOS Circuits. In Proceedings
of the International Conference on Computer-Aided Design, pages 130-133. IEEE, 1986.

[69] T. G. Szymanski. Computing Optimal Clock Schedules. In Proceedings of the Design
Automation Conference, 1992.

BIBLIOGRAPHY 153

[70] T.G. Szymanski. Private communication. January, 1992.
(71] T. G. Szymanski. Private communication. February, 1993.

[72] T. G. Szymanski and N. V. Shenoy. Verifying Clock Schedules. In Proceedings of the
International Conference on Computer-Aided Design, 1992.

[73] H. Touati. Performance-Oriented Technology mapping. PhD thesis, University of Califomia,
Berkeley, 1990.

[74] R. S. Tsay. Exact Zero Skew. In Proceedings of the International Conference on Computer-
Aided Design, 1991.

[75] S. H. Unger and C. J. Tan. Clocking Schemes for High-Speed Digital Systems. IEEE
Transactions on Computers, C-35(10):880-895, October 1986.

[76] P. M. Vaidya. A New Algorithm for Minimizing Convex Functions over Convex Sets. Pro-
ceedings of the IEEE Foundations of Computer Science, 1989.

[77] D. Wallace and C. H. Sequin. ATV: An Abstract Timing Verifier. In Proceedings of the Design
Automation Conference, pages 154-159. IEEE/ACM, 1988.

(78] N.Weinerand A. Sangiovanni-Vincentelli. Timing Analysis in a Logic Synthesis Environment.
In Proceedings of the Design Automation Conference, pages 655-661. IEEE/ACM, 1989.

[(79] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, 1985.

(80] M. A. Wold. Design verification and Performance Analysis. In Proceedings of the Design
Automation Conference, pages 264-270. IEEE/ACM, 1978.

(81] D. Wong, G. De Micheli, and M. Flynn. Inserting Active Delay Elements to Achieve Wave
Pipelining. In Proceedings of the International Conference on Computer-Aided Design, pages
270-273. IEEE, 1989.

[82] R. Zahir. Controller Synthesis for Application Specific Integrated Circuits. Hartung—Gorre
Verlag, Konstanz, Germany, 1991.

Index

active-high, 19
active-high level-sensitive latch, 19
acyclic graph

graph, 108
advantages of

synchronous circuit, 4
aggressive

clocking constraints, 56
AHLSL, see active-high level-sensitive latch
arrival at a memory element

early, 30

late, 30
arrival time, 21
arrival time at a gate

early, 109

late, 109
asynchronous circuit, 2

candidate
edge, 90, 114

circuit model, 16

clock
clock event, 2
clock verification problem, 35
optimal clock schedule computation, 55
pipeline resynthesis problem, 86
signal, 21

154

clock distribution
network, 133
clock event, 21
clock, 2
clock period, 2
lower bound, 64
clock schedule, 2, 27
clock skew, 3
clock verification problem
clock, 35
multiple solutions, 36, 42
unique solution, 43 .
unique solutions, 36
clocking constraints, 6, 31
aggressive, 56
conservative, 56
dominating, 71
external, 55, 134
intemal, 134
model, 134
clocking scheme, 26
precedence, 26
robust, 133
CmM, see consistent min-max delay
combinational
path, 133

conservative

INDEX

clocking constraints, 56
consistent min-max delay
Min-max delay, 17, 133
constraint graph, 67, 87
graph, 70
Construction C:, 112
continuous
padding, 109
covering, 112
critical long path
path, 109
critical path, 6
critical short path
path, 109
cycle, 28
negative weight cycle, 37
positive weight cycle, 37
relevant, 88
simple, 28
zero weight cycle, 37
cycle stealing, 24, 94

data
network, 133
signal, 21
delay
gate, 17
path, 109
delay insertion problem, 110
linear program, 118
depth
pipeline, 5
discrete

155

padding, 109, 121
dominating

clocking constraints, 71
drawbacks

synchronous circuit, 4
dual, 142
duty cycle, 2,55

maximum, 67

minimum, 69
dynamic

power dissipation, 4

timing analysis, 7, 22

early
arrival at a memory element, 30
arrival time at a gate, 109
equation set, 35
edge
candidate, 90, 114
external, 108
intemal, 108
weight, 28, 108
Edge-triggered memory element, 10, 19
equation set
early, 35
late, 35
external
clocking constraints, 55, 134
edge, 108

external timing constraints, 84

falling edge-triggered D flip-flop, 19
false path, 7, 23
fanin, 28, 108

INDEX

set, 28, 108
fanout, 28, 108
set, 28, 108
FEDFF, see Falling edge-triggered D flip-flop
Fixed Delay, 17
fixed point, 36
flip-flop, 10, 19

gate
delay, 17
gradient projection, 141
graph, 83
acyclic graph, 108
constraint graph, 70
latch graph, 28
modified, 94
hard
required time, 96
hazard, 3
hazard-free, 3
hold, 58, 86
hold constraint, 20, 31
hold time, 20
intemnal

clocking constraints, 134
edge, 108

Kuhn-Tucker conditions, 143

Lagrange multipliers, 142
Lagrangian, 142, 143, 144
latch, 10, 19

latch graph

graph, 28
late
arrival at a memory element, 30
arrival time at a gate, 109
equation set, 35
length
path, 6
level
pipeline, 5
Level-sensitive memory element, 10, 19
library delay, 17
linear delay, 17
linear program, 55
delay insertion problem, 118
optimal clock schedule computation, 66
long path, 58, 134
long path edge, 88
lower bound : -
clock period, 64

mapped, 5
matrix
positive definite, 92, 141
maximum
duty cycle, 67
Min-max delay, 17
consistent min-max delay, 17, 133
simplified min-max delay, 17, 132
minimum
duty cycle, 69
model
clocking constraints, 134
modified

INDEX

graph, 94
multiple solutions

clock verification problem, 36, 42

negative weight cycle
cycle, 37

network
clock distribution, 133
data, 133
skew, 133

optimal clock schedule computation
clock, S5

linear program, 66

padding, 110
continuous, 109
discrete, 109, 121
path, 28, 109
combinational, 133
critical long path, 109
critical shoit path, 109
delay, 109
length, 6
skew, 133
supporting path, 44
types, 56
phase shift operator, 26
phases, 1,21
pipeline, 4, 85
depth, 5
level, 5
pipeline resynthesis problem
clock, 86

157

positive definite ‘
matrix, ¥2, i41
positive weight cycle
cycle, 37
power dissipation, 4
dynamic, 4
quiescent, 4
precedence
clocking scheme, 26
primal, 142
primary input, 16, 108
primary output, 17, 108

quiescent

power dissipation, 4

relevant
cycle, 88
required time, 96 : -
hard, 96
soft, 96
resynthesis, 90
retardation, 24
Retimina 7 25
robust, 135, 136
clocking scheme, 133

sct
fanin, 28, 108
fanout, 28, 108
set-up, 58, 86
set-up constraint, 20, 31
set-up time, 20
short path, 58, 134

INDEX

short path edge, 88
shon path violation, 121
signal, 21
cleck, 21
data, 21
simple
cyrle, 28
simglified min-max delay
Min-max delay, 17, 132
skew
nctwork, 133
path, 133
skew network, 33
siack, 25, 84, 90
clacks 116
SmM, sce simplified min-max delay
soft
scqitired time, 96
static
timing analysis, 6, 22
Statistical delay, 18
supporting path
path, 44
synchronous circuit, 1
advantages of, 4
drawbacks, 4

Technology mapping, 5

timing analysis, 6
dynamic, 7, 22
static, 6, 22

types
path, 56

158

unique solution

clock verification problem, 43
unique solutions

clock verification problem, 36
unit delay, 17
unit delay ranout, i7
umuapjed, 3

wave pipelining, 124
weight
edge. 28, 108

zero weight cydle
cycle, 37

	Copyright notice 1993
	ERL-93-97 (1 of 2)
	ERL-93-97 (2 of 2)

