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Abstract

We present an exact method for minimizing logic functions using BDD's. In this method the Jfunction is mapped 10 an
extended space which gives it special properties that can be exploited to compute the function Primes and Minterms.
The next step consists of conceptually creating a covering table whose rows represent the minterms and whose col-
umns represent the primes. We formulate conditions Jor row and column dominance and remove dominated rows and
columns iteratively until no more reduction is possible. The final step consists of, finding a minimum column cover for
the remaining cyclic core of the problem. All functions are implemented using implicit BDD operations.
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‘ Introduction

introduction

The objective of logic minimization is to create a representation for a given logic function which
requires a minimal number of logic devices for its implementation. This problem is Co-NP-hard and
hence no polynomial time algorithm is known to exist [3].

One particular physical implementation of the logic function is the Programmable Logic Array or
PLA. One of the major advantages of a PLA is the fact that the symbolic representation of the func-
tion can be mapped to the physical representation in a very straightforward way. Thus there is a high
correlation between the size of the function representation and the size of the PLA used to represent
the function. If the logic function is represented in the so called Sum of Products (SOP) form, it may
be translated directly on to the PLA. The Sum of Products representation consists of a logical OR of a
series of product terms. Each product term consists of a logical AND of boolean variables or their
complements, which belong to the input of the function. The Physical Area of the PLA is a direct
function of the size of the Sum of products representation chosen. Rows in the PLA corresponds to

. products in the SOP representation and Columns to individual variables in the input. By minimizing

the number rows and columns of the PLA the physical area is minimized. In order to do so, the prod-
uct terms in the SOP representation are made as “large” as possible. This means that the products are
explicitly dependant on as few variables as possible. These “maximal” product terms are called
Primes. Our objective is to get a representation for the function as a minimum sized set of these max-
imal product terms. It also important to note that products chosen to represent the function must com-
pletely specify the original function. In order to do so the SOP must contain a basic set of terms which
must be in the function representation. Each product may actually contain more than one of these
terms. These terms are specified as products which have every variable of the input present exactly
once as either complemented or non-complemented form. Such products are called vertices and verti-
ces which are used to specify the function are called Minterms. In order to check if a SOP representa-
tion is complete, we need to check that every one of these minterms is contained within our
representation.

Since the SOP product representation involves the logical OR of a set of logical ANDS, there are only
two levels in the hierarchy of the logic. Thus this representation is called a two-level logic representa-
tion. The PLA area minimization problem becomes the two-level logic minimization problem. There
are many algorithms to perform this minimization. The Quine-McCluskey procedure[6] is an exact
algorithm used for solving the problem of two level logic minimization; i.e. it minimizes the number
of rows used in a PLA implementation of the function. It important to keep in mind that PLA imple-
mentations are just one of a large class of problems for which two level logic minimization is used.
This problem has a large spectrum of applications ranging from state-encoding to general logic opti-
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) Introduction

mization. Though PLA’s provide a convenient framework to understand the problem; they are not
even the most important application.

In brief the basic Quine-McCluskey tabular minimization proceeds as follows:

1) It finds all the Prime implicants (potential rows of PLA) of the function

2) It constructs the Prime-implicant table, which relates Primes to Minterms (vertices which must be
included in the function representation).

3) It determines the rows and columns of the table, whose information is entirely contained within
some other row or column and deletes them.

4) It repeats the previous step until no more reduction is possible.

The remainder at this stage is called the cyclic core of the problem. Finally the Quine-Mccluskey pro-
cedure finds the minimum column cover for the cyclic core of the problem using branch and bound
algorithms. This procedure may be carried out Explicitly or Implicitly. Explicit cases include those

- implementations where each Prime or Minterm is handled individually. The converse holds true for
the Implicit implementations, where groups of Primes and Minterms are handled together as a single
entity.

Though this algorithm may be used effectively for many examples, it fails in its explicit form for

* some large examples with an exponential number of primes. For example the espresso-exact algo-
rithm([1] fails for the mish[8] example; even though the actual cover is quite small in comparison. An
effective solution to this problem lies in the Signature Cube methods, developed by Sanghavi et
al.[13], which does not enumerate all the primes and minterms of the function. However this method
has the intrinsic disadvantage that it cannot list all the primes and minterms of the function.

Recent work [5, 6], provided us with a new implicit approach to this problem. In those papers, O.
Coudert & J.C. Madre have developed a new method of representing primes of Boolean functions.
Through their techniques they have been able to arrive at a representation of the primes of the largest
.and most difficult of the public benchmark functions. We extend [9,10] the techniques of [5, 6] to
exact minimization of boolean functions. The method we propose here relies on the following state-
ment: Any precise set (e.g. Boolean function) can be phrased as a propositional sentence over the
appropriate boolean space. Thus the primes, minterms, as well as terms in the Quine-McCluskey
reduction may be formulated as propositional sentences.

Briefly the primes and the minterms required and the covering table are represented implicitly, and
step (3) of the Quine-McCluskey procedure is represented as operations over this implicit representa-
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tion. We then arrive at the cyclic core in an implicit representation and derive the actual primes and
minterms implicitly for this cyclic core; since the primes and minterms of the cyclic core are just a
fraction of the total primes and minterms we can solve some of those problems which have not yet
been solved by explicit methods[1,8], by applying branch and bound techniques to this remaining
problem.

A BDD [2] or a binary decision diagram is a DAG (Directed Acyclic Graph) data structure (defined in
the next section). Operations on this type of data structures are a function of the number of nodes in
the DAG, whereas the number of terms it represent are dependent on the number of paths through the
DAG. 1t is possible to perform logic operations like AND, OR, XOR, NOR etc. as well as logical
quantification by performing the basic BDD operations as given by Bryant’s paper[2]. The BDD[2]
data structure lends itself very well to implicit operations. This is because operations on BDD’s are
dependent on the number of nodes in the BDD, however the terms it represents are determined by the
number of paths in the BDD and the BDD representation for complex combinatorial functions turn
out to be surprisingly compact in the number of nodes involved. BDD’s provide an efficient means of
representing groups, rather than individual terms. The main disadvantage of using BDD’s is that
given a bad ordering for the input variables, it is highly likely that the size of the BDD becomes inor-
dinately large. We have explored this problem extensively and arrived at what we think is a good
ordering for the input and output variables for a combinational function.

Given any logical proposition(statement) over a finite boolean space, one can find the solution set to
the proposition by a series of BDD operations on the proposition; in fact there is a direct correlation
between logical operations in the proposition and BDD operations. It turns out that the BDD repre-
sentations of formidable propositions (i.e. those with a very large explicit representation) are often
small, making this an attribute for the solution of boolean problems. It is easy to see that it is possible
to write the Quine-McCluskey procedure as a sequence of BDD operations. In the case of BDD oper-
ations the major bottlenecks are quantification (defined in the next section). Thus it is essential for the
success of this approach to reduce the use of quantifiers as much as possible. Thus the attempt will be
to reduce the use of quantifiers at each stage.

The rest of this thesis is devoted to the translation of the Quine-McCluskey algorithm to a series of
formulae over the appropriate boolean space and to their computations using implicit BDD tech-
niques.

Definitions

Boolean space: A boolean space B" or {0, 1} " is a space of n variables which may only take the val-
ues 0 and 1. The rules of boolean logic within this space.

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 5
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Logic Function: Let X, X,, X, ..., X, be variables on a Boolean space B”. A completely specified
logic function is a mapping from B” to B. An incompletely specified function consists of 3 parts; f, d
and r. fis a completely specified function which is called the onset and consists of the points where

- the function is 1, d is the don’t care function and consists of all the points where the value of the func-
tion may be both 0 or 1 and 7 is the offset and consists of all the points where the function is 0., d and
r together form the incompletely specified function.

Literal: A literal is an ordered pair of the form (variable, value). By convention the pair (X; »0) is writ-
ten asX and the pair (X;,1) is written as X;. If the variable takes on the value 1 then the literal X;is
said to be 1 andX is said to be 0. If the variable takes on the value O then the literal X; is said to be 0
and the literal X; is said to be 1.

Multiple Output function: A multiple output function is a function which has more than one output

- variable. These functions may be reduced to single output functions by adding a new input variable
for each multiple output and creating a new single output function using these variables and the origi-
nal input variables (the exact construction is given in the section on multiple output functions). The

- new input variables are called multi-output variables.

Vertex: A vertex is a single point in the subspace corresponding to the function input and multi-output
variables.

Minterm: A minterm of an incompletely specified function (f,d,r), is a vertex of the space which is in
the onset of f.

Monotonically decreasing function: A monotonically decreasing function is a function such that
changing any (boolean) variable from value 0 to value 1 causes the function value, if it changes, to go
from value 1 to value 0.

Cube: A cube is a subspace C; X C, X ... X C,, of B" where C; is a subset of {0,1). It can also be
written as a product of literals. A vertex (v, v,, ..., v,) is contained in a cube C,xCyx...xC, iff
v; € C, for all i. For convenience a cube, wnttcn as a product of literals, i.e. C; is a subset of {0, I },
e.g. the cube {0,1} x {0} x {1} over B? is written as X2X AcubeD=D;xD,x...xD, is
said to be containedinacube C=C; xC, x...xC, if D;c C for all i. The size of a cube
CyxCyx...xC,isgivenby |C)| X |Cy| X ... X |Cn|. A vertex of the space can also be defined as a
cube of size 1.

Null Cube: A null cube is a cube of size 0. The null cube space is the subspace consisting of all the
null cubes of a given space. As a result of the way cubes have been defined, it is observed that there
are (4" -3™) null cubes.

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 6
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Implicant: An implicant of an incompletely specified function (f,d,r) is a cube C, such that no vertex
contained in this cube belongs to the offset r.

Prime Implicant: A prime implicant is an implicant which is not contained in any other implicant of
the function.

Cofactors: The cofactor of a function f with respect to a literal (x, i), i.e. variable x in the i value, is
the function obtained by evaluating the function f on the plane x=i. Conventionally the cofactor of f
with respect to (x,1) is written as f, and the cofactor of f with respect to (x,0) is written as f;.

Shannon Expansion: A function may be written in terms of its cofactors with respect to a variable x,
i.e. as f = xf;+ xf,. This leads to the concept of a Shannon cofactoring tree. If we recursively com-
pute the value of the function using the above expression and computing the cofactor with respect to a
new variable in the support of the function at each stage of the recursion, eventually the remaining
function is either O or 1. This terminates the tree and we get an expanded function. If we represent
each level of this recursion by a unique node with the left and right branches of this node being repre-
senting the two cofactors, then the resulting structure becomes a tree and is called a Shannon tree.
Each level of recursion represents a new level of the tree.

Figure 1. BDD for function F

Binary Decision Diagram: [2] The binary decision diagram for a function is the folded form of the
Shannon tree for the function. A function graph is a rooted directed graph with a vertex set V contain-
ing two types of vertices; a non terminal vertex v has as attributes an index (v)e {0,1...n—1} and

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 7
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- two children low(v) and high(v) belonging to V. A terminal vertex has as attribute
value (v) € {0, 1}.A function graph is reduced if it contains no vertex v with low (v) = high(v)
and no distinct vertices v and v* such that the subgraphs rooted at them are isomorphic. A BDD, also
called a ROBDD is then defined as a reduced function graph. This tree has labelled internal nodes
corresponding to the variable with respect to which the function is expanded at the given level.

This representation is a canonical form. The root node corresponds to the variable with respect to
‘which we cofactor and one branch corresponds to the BDD for the cofactor of the function with
respect to x and the other branch corresponds to the BDD for the cofactor of the function with respect
to x. The example in Figure 1. illustrates the BDD for the function F = y, - y; +¥p- ¥, +¥; - ¥,

Covering Table: The covering table M  of function f, is used to solve the problem of finding the small-
est prime irredundant cover of the function. The rows of this table correspond to the minterms and the
columns correspond to the primes. M,(i,j) = 1 if minterm { is contained in a prime j and 0 other-
wise. A column cover of this table is a set of columns of this table such that each row has a ‘1’ entry
in at least one of the columns of the cover. A column cover for this table corresponds to a prime cover
for the function it represents. A minimum prime cover corresponds to minimum column cover for this
table.

Row Dominance or Minterm Dominance: A row (minterm) is said to dominate another row (minterm)
if and only if any cover which covers the first row, automatically covers the second row. This occurs
when all the primes containing the first minterm (row) also contain the second minterm (row). Strict
Minterm Dominance is said to occur when, in addition, there exists a prime containing the second
minterm which does not contain the first.

Column Dominance or Prime Dominance: A column (prime) is said to dominate another column
(prime) if and only if any cover which contains the first column automatically contains the second
column. This occurs when all the minterms contained in the second prime (column) are also con-
tained in the first prime (column). Strict Column Dominance is said to occur when, in addition, there
exists a minterm (row entry =1) which is contained in the first prime (column) but not in the second
prime (column).

Cyclic Core: The primes and minterms remaining in the covering table after all dominated primes and
minterms are removed, form the cyclic core of the original problem. There are no dominated primes

or minterms remaining in the cyclic core. In order to get the final solution to the problem, branch and
bound methods have to applied to this cyclic core.

Quantification: There are two quantifiers, 3x and Vx. The first is the Existential Quantifier. If there
exists a vertex x such that some logic function f(x) is 1, this is shown as 3xf(x) = 1. The second

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 8



" The Quine-McCluskey procedure

quantifier is the Universal Quantifier. If for all cubes x some condition f(x) is 1, this is written as
Vxf(x) = 1. The relation between these operators is VxF (x) < 3x (F (x)) and
AxF (x) & VxF (x).

Support: The variable support of a function F or supp(F) is the set of variables on whom the function
explicitly depends, i.e., changing the value of any variable (i.e. its complement too) within supp(F),
while keeping all other variables constant, changes the value of the function F. For example if F= a
where the input space consists of variables {a,b}, then supp(F) = {a}.

Propositional Formulae: A propositional formula is a valid boolean formula composed of quantifiers,
boolean operands and variables. This formula can be used to represent a set variables satisfying a log-
ical proposition or statement.

In addition we will also define a set of temporary variables z and u, which will be used during compu-
tation. The purpose of these variables is temporary storage during intermediate computations.

The Quine-McCluskey procedure

The Quine-McCluskey tabular minimization procedure follows the given steps.
1. Find all the prime implicants of the function.

2. Construct the covering table. The rows in the covering table correspond to minterms of the onset of
the function, the columns of the covering table correspond to the primes computed in step 1. An entry
in the table is 1 if the corresponding row minterm is contained in its column prime, otherwise the
entry is 0. Our problem is to find a minimum column cover for all the rows. The essential primes are
represented by those columns such that at least one of their row entries is not contained in any other
column.

3. Determine the dominated rows and remove them from the table, next determine the dominated col-
umns and remove them from the covering table

4. Repeat step 3 until no further reduction is possible. When no more reduction is possible the remain-
ing problem is called the cyclic core. There are no dominated rows or dominated columns in the
cyclic core.

5. At this point find a minimum column cover for the cyclic core. In general branch and bound algo-
rithms are used for this step.

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 9



" The Extended space and the Implicant characteristic

In practice the main bottleneck in Espresso-Exact [8] is the problem of prime explosion. The number
of primes for » input variables can potentially be as large as 3"/n and hence for larger examples the
number of primes may become too large to enumerate, even when the size of the cyclic core is small.
For example, the Espresso-exact algorithm fails on the example circuit “mish” [8] because it has 10'*
primes but a cyclic core with just 82 primes[9,10].

The Extended space and the Implicant characteristic

Our goal is to represent all the cubes over B” as terms in some space and the Quine-McCluskey algo-
rithm as a series of propositional formulae on that space.

We must note that propositional formulae are sets of points in a space but the Quine-McCluskey algo-
rithm functions over cubes, which are sets of collections of points. The first step is to map cubes onto
a space in which we can perform minimization algorithms by operations on functions which implic-
itly represent the set of implicants, minterms, primes etc.

Figure 2. The Coded Cube Space

o L

Xoo

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 10



The Extended space and the Implicant characteristic

Consider an arbitrary cube C = C, xC, x ... xC,. Each C;is an arbitrary subset of {0,1}. Since
there are 4 possible subsets of {0,1}, it follows there are 4" vertices of any extended space; i.e. the
extended space of B" is B2". Before we begin let us clarify the notation used. We will represent the
variables in the original space as ¥; and the variables in the new extended space as X ij» Zij» W;j» where
1<isn,je {0,1} and (z,u) represent temporary variables. Assuming all variables are binary val-
ued in the original space, we choose the following extended space, using 2n variables:

Definition ® (C) : Consider any cube C, xC, X ... x C,, in the original space. The
corresponding vertex in the higher order space Is given by

©(C) = Xyo-X)3- X0+ ... Xp1) s whereX; = 1ifje C;andX;; = 0lfje C;,e.g. The
cube;’sz - ¥; over BY is represented as the vertex (1,1,1,0,0,1) = X 10° X131 - X209 - X21 - X390 X5,
over B°.

Theorem 1.1: The mapping © is 1-1.
Proof: By contradiction.
Assume the converse.

Assume there exists a cube C; X C, x ... x C,which maps to at least 2 points @ and b.
Consider some variable X;; in which a,b differ.

X;; = 0fora.

X, = 1forb.

This is a contradiction since
X;=0) e (jeC)
and
(X,.j= NDe (e ()
and for any cube C; x C, x ... x C, each C; is a unique set C; < {0, 1} .
This implies that the mapping is unique for all non-null points.

This space is also known as the positional notation and is commonly used for representing multi-val-
ued functions. To understand this refer to Figure 2. of the extended space, also called the coded cube
space(ccs). Every cube has a unique representation in this space. The figure shows the mapping of

points in a 2-dimensional space to the 4-dimensional extended space. In the figure shown the minterm

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 11
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The Extended space and the Implicant characteristic

YoY; translates to the point X oo XXX, and the cube ¥, translates to the point XX, X 10X, in
the extended space.

Definition xF (x) The characteristic of functionF in the extended space xF as a mapping from
B*" to B such that

o) =1lex= {©(C)| (Ce cube(F))}
The characteristic function of F in the extended space is also called the implicant characteristic.

Theorem: 1.2: The characteristic function of F in the extended space satisfies the following
property.

Proof: By construction from the definition of xF (x)

xF(x) = 1iff xe {©(C)| (Ce cube(F))}.
X =e

xe {©(C)| (Ce cube(F))and(Ce cube(G))}

< (xe {©(C)| (Ce cube(G))})
and
xe {©(C)| (Ce cube(F))}

& (xe xp) eande (xe xG)

This implies that x7¢ = xF - x€

Theorem: 1.3: If every prime of F+G is a prime of For a prime of G then the characteristic
functions of in the extended space satisfies the following property.

x(F+G) = xF+xG

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 12



" The Extended space and the Implicant characteristic

Proof: By construction from the definition of xF (x).

2" (x) = 1iff x = {©(C)| (Ce cube(F))}.
X*Cw=ne
x = {©(C)| (Ce cube(F))or(Ce cube (G))}

Every prime of F+G is either a prime of F or a prime of G. If some cube is formed by combining
cubes of F and G, then it follows that there is a prime covering this cube, which is formed by combin-
ing cubes in F and G but is neither in F nor in G. This is a contradiction. Hence

& (x={©(C)| (Ce cube(G))})
or
x= {©(C)| (Ce cube(F))}

Thus x(F+G) - XF+XG
h implicant char isti
Theorem 1.4: The characteristic of a function F is given by

Fe F
X = X221 X2

Proof: By case analysis on the implicants of function F.

The above is equivalent to

¥ = X+ XF?‘) (X1 + XFY")

We will prove this by induction. Let us consider the base case; i.e.
2 =0

and

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 13



The Extended space and the Implicant characteristic

Consider the case when F is a function of a single variable. The are four possibilities for the function
F.

F = Y;thisgives x© = X;oX;, = X;oX;, +X;0X;; = X,o since the term % = X;oX;,is a null cube.
F = ¥ this gives x* = X;oX;1 = X;;X;; + X;oX;; = X, since the term xF = XX ;is a null cube.
F=0 and F=1 are covered by the base case.
The function F can be written as
F=Y;Fy+ ?"F?{"FY.-'F}",-
which factors as
F = (Y;+ Fy) - (Y,-+F7._)
hence translating the function to the extended space and using theorem 1.2 we have
- XF - x(Y.+F;.,) .x(f',~+r,,‘)

Using the fact that every prime of (Y; or Fy,) is either a prime of Y; or a prime of F 7, and a similar
result for (Y or Fy;)(excluding the null cube) and theorem 1.3 we have the following.

Y o I e LN
F S F?. = Fy
=% = Xp+x ) Xp+x )

Lemma 1.1 LetC®, CPbe cubes of B", then

c*ctooc™ <o

where a < b if and only if there is no variable X .., such that bxu = 0 and ax., 20

ij*

Proof: By assuming one side of the given implication and proving the other for both directions of the
given implication

An Exact Logic Minimizer Using Implicit Binary Decision Disgram Based Methods 14



Technical Functions over the CCS

o

c® = C?xch...xC“
c*ccP

= (Vp)3k (ke cﬁ) (ke CD)

= VX; (((®(C%))x) = ((8(C™))y))
=0(C") <o(c’)

Conversely © (Ca) <0 (CB)
= VX; (((©(CM))x) = ((8(C*))y,))

= (Vp)3k(ke c§) (ke CY)

=>Cu§CB

Technical Functions over the CCS

The Null cube function and the Vertex function together, form the set of technical functions. Both
these functions do not depend on the original function in any way, but are merely properties of the
extended space. The technical functions are functions of the Coded Cube Space alone.

The Null Cube space (¢ (x))

Theorem 1.5: The null cube set is given by

$X) = XX Xi
Proof:
Xo=0=>0e(C;

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 15



. Technical Functions over the CCS

(0e C)and(1e C) =C; = ¢
C,=¢=C=9¢

Conversely

C =¢=3iC; = ¢

(C;i=¢)=((0& C)and(1eC)))

(1€ C) = (X;=0) and (0¢ C,) = (X;3=0)

Adding the null cube to an expression does not add any vertices to the function. However adding the
null cube to any function in this extended space makes the function monotonically decreasing in this
space (Theorem 1.6) and hence gives it special properties which will be exploited in order to calculate
the primes.

The Unateness Theorem

JTheorem 1.6: For any function F, xF + ¢ is a monotonically decreasing function in the
extended space.

Proof: By using lemma 1.1.
Consider any cube of the form X;o - X;, - A, X0, X;; ¢ Supp (A)
Xio - X;yis a member of the null space. Thus X;o- X, - A = Xjo-X;, - A+ X;9- X;1.
In addition X; - X;;A4 < X;o - X;;. Thus we have
Xio Xi1- A =Xpo-X; - A+ X XA+ Xy X5
= XjoA +X;0- X
Thus X;oA is a cover for the cube.
Similarly X;;A is a cover for a cube of the form X, - X;;A
Consider any cube of the form

Xio-Xin-A

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 16



- Technical Functions over the CCS

This implies that X;; occurs in both its complemented and its non-complemented form in the original
space. This implies that in the extended space both the cubes.

X' X;1- A

occur. Hence if the null cubes are added to these expressions both the X, and the X, dependences
disappear.

Thus A is a cover for this cube.

We can repeat this sequence of operations on the cube A to remove all cubes which have a variable
present in the non-complemented form and replace them with cubes in the complemented form alone.

It follows that each cube may be replaced by another cube which depends only on the complemented
literals.

Hence all cubes of the function may be replaced by ones which have no variable in its non-comple-
mented form. Hence there is a cover of this function in the extended space which has only comple-
mented variables [1). This implies that the function is monotonically decreasing in the extended
space.

The Vertex Function (v (x))
The vertex function is the extended space representation of all the vertices of the space B".

Theorem1.7: The vertices of the original function space in the new extended space are given
by

v(X) = I;[(X'm-X,-l+Xm-f,-l)
Proof: By construction using the observation that |C{ = 1 for all vertex points.
The vertices of a function are those cubes C such that [C] = 1.
Il =1 & Vi|Cj=1.
|IC| =1&C; = {0}-0or-C; = {1}
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The Minterm Image and the Prime Image

Thus in the extended space for a given i, the two C;’s of size 1 are X, - X;; and X,,- X;;. Hence
¥ (X) is obtained by taking the product of all such C;.

The Minterm Image and the Prime Image

Minterms (u (x))

The minterms for the function in the extended space, are members of the vertex space which lie in the
onset of the function. Thus for a term to be a minterm it must satisfy

(X)) =1
i.e. it belongs to the onset of the function and it must belong to the vertex function.
v(X) = 1.

This results in the following expression for the minterms of the original function, in the extended
space.

pX) = xF@vX)
Primes (n(x))

In order to calculate the primes of the function, in the extended space, theorems 1.8 and 1.9 are
required. We also need to understand the concept of a maximal point.

Definition: x is a maximal point of the function F iff
Vz(ze F) (Vi(z;2x))).
Let Max(F) denote the maximal points of function F.
Theorem 1.8: Any cube p is a prime of F iff © (p) is a maximal point of xF
Proof: By construction using the definition of ® (p)
If x and z are cubes of a function

(x22) = (©(x) 20(2))

(xe Prime(F)) ©32(zCF) (z#x) (zox)
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"~ The Minterm Image and the Prime Image

From lemma 1.1 we have the following.

I(zcF) (zo2x) ©32(0(2) 20 (x)).

The maximal points are those points such that 3z (® (z) 20 (x)).
Hence the primes of the function are the represented by the maximal points in the extended space.
The primes of the function are the represented by the maximal points in the extended space.
Yheorem 1.9: Let G be any function, G monotonically decreasing in x, then
Max (G,) cMax (Gy)
Proof:
G is monotonically decreasing in x.
x-Ae G=>x-Ae G
where A is a cube, x e Supp (A) . Thus
Ae G,=Ae G;
This implies

Max (G,) cMax(Gy)

Lemma?1.2: Let G be any function, G monotonically decreasing, the maximum points of G are
given by

Max(G) = x-Max(G,) +%- Max (G;) G,
Proof: By contradiction.
I

Max(G) 2x-Max(G,) +x- Max (G;) G,
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The Minterm Image and the Prime Image

a) (pe x-Max(G,)) = either (p € Max(G)) p = xs where x & Supp (s) Or
3q9((g=xr),r>s,9€ G,)

where x ¢ Supp (r)
if (pe Max(G)) then3g((g=xr),r>s,q€ G,)
= (reG),r>s
=s& Max(G,)
pex-Max(G,)
a contradiction.
b)pe x-G,- Max(G;) = either (p € Max(G)) p = Xr where x & Supp (r)
Or 3¢ (g > p) such that

1) either (g = xs), (s>7r),(s € G;) where x & Supp (s)
this contradicts the assumption that r € Max (Gy)

2)Or (g=1xs), (s2r)
(se G,) = (se G;) asG,c G;
Hence if (s>r) = (r¢ Max(G;)) a contradiction

Orif (s=r) = (re G,) a contradiction

=>Max (G) 2x-Max(G,) +X-Max(G;) G,
In)
Max(G) cx-Max(G,) +x-Max(G;) G,
pe Max(G) = either(p=xs)or(p=2xs) wherex¢ Supp (s)

a) (p=xs) = either(se Max(G,))or(3r(re G,) (r>s)) where x& Supp (r)
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The Minterm Image and the Prime Image

if se¢ Max(G,)then (3r(re G,) (r>s))

=xr>p =pe¢ Max(G,)
a contradiction
b)Or (p=xs) = (re G;)
if (re G)) = (xre G),(xr>p) = (pe¢ Max(G)) acontradiction:
if(re Max(G;)) = (3s(s>r),(se€ G,)) = (xs>p),(xse€ G) = (pg Max(G))
a contradiction

= Max (G) cx-Max(G,) +X - Max (G;) G,
hence proved.
Lemma 1.3: The maximum points of G are also given by

Max(G) = x-Max(G,) +%- Max(G;- G,)

Proof: By using lemmal 2
I) Max (G;- G,) cMax(G;) - G,

if 3p(xpe G) (pe Max (G- G,)),(p e Max(G;) - G,) x¢ Supp (p)

then (3¢ (¢ =%1) (1€ G;-G,),(t>p)) andIq (g =X1) (te G;) (te G,),(1>p)
this is a contradiction.

I) Max (Gz- G,) 2 Max (Gy) -G,

if 3p (xp e G) (p & Max(G;- G,)),(pe Max(G;) - G,) xe Supp (p)

then since G, ¢ G; and Max (G;) € G;

we have the statement g (¢ = Xr) (r € Max (G;- G,)),(r>p)

= (re G,) = (re G,) = (re& Max(G;) - G,)
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* Forming & Solving the Covering Problem

a contradiction.

Using lemmal.2 and the above, lemma 1.3 is proved.

The primes of F+D, namely the onset plus the don’t care set of the function are computed in order to
form the covering table.

e, p () = Max(x™*P)

Forming & Solving the Covering Problem

The Covering table is a table used to solve the problem of finding the minimal prime irredundant
cover of a function. The rows of this table correspond to the minterms of the onset of the function to
be minimized and the columns of the table correspond to the primes of the onset plus the don’t care
set of the function. The entries of the table are 1 if a minterm is contained in a prime and 0 otherwise.
We are looking for a minimum column cover of this table. Having calculated the primes and the min-
terms of the function, we now formulate the covering problem as follows.

1. Form conditions for minterm dominance. . (x, z)
2. Remove dominated minterms.

3. Form conditions for prime dominance. B (x, z)
4. Remove dominated primes

3. Repeat steps 1 - 4 until no change is observed.

6. Solve the reduced covering problem.

It must be specified that in the case of completely specified functions, at the start of this process no
prime will dominate another. However after the first round of removal of dominated minterms some
primes begin to dominate each other.

It is important to note that since we are in the extended space, when we talk about cube containment,
we mean cube containment in the original space. However cube containment in the original space
translates to the notion of maximality in the extended space, as shown in Lemmal.1. Thus the con-
tainment operator < is replaced by the maximality operator < , in the extended space, when-
ever cube containment is required in the original space. Recall, that a < b if and only if there is no

variable X ;, such that bX,-, = 0 and ay, * 0.
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A Quantifier Free Formulation for solving the covering problem

Minterm Dominance

The formula for computing the reduced cover is based on traversing and comparing two minterm
BDD’s in parallel. It is essentially a means of comparing each minterm with every other minterm in
the set, in order to evaluate whether it may be dominated or may co-dominate the other.

Consider two minterms (1, u') . If ' dominates ., then every prime covering ' also covers . This
emerges from the fact that in such a situation a cover for ' is automatically a cover for j.. Now con-
sider any variable x; 3 (X; 2 '), (x;2 1) . Since X; 2 ) = (n 2 W and that contradicts the assump-
tion that 1 dominates p', since we have found a prime covering [' but not covering p. It must follow
that for all primes & such that (x2u'), (x; 2 ) . The procedures are based on this insight.

The reasoning given above helps give a means to compute the set of dominated minterms o'.

In order to compute the subset of a set of minterms that are covered by a given set of primes, the
MCover relation is used. The following theorem indicates how to compute this function.

Lemma1.4: The subset of a set of minterms p that are covered by a given set of primes n is
given by

MCover (U, nt) = X-MCover (n

» Nzt X)) +x-MCover (M, ™)

Termination Conditions:

1. if (W=1,t=1) thenreumn 1
2. elsereturn 0

Proof: lBy Induction on the covering property

The set of minterms from the set u which are covered by the set of primes % can be computed as fol-
lows.

1. If any variable x =1 (i.e.p_# 0) in any minterm belonging to the set, then this minterm can only be
covered by cubes which have x= I and cannot be covered by cubes which have x=0 (From the con-
tainment argument on the previous page using Lemma 1.1). Hence minterms with x=17 can only be
contained within primes with x =1 (i.e. & # 0). This gives the second term in the expansion of
MCover. :

2. If any variable x=0 in any minterm belonging to the set, then this minterm can only be covered by
cubes which have either x=0 or x =1. Hence minterms with x=0 can be covered by primes with either
x=0 or x=1. This gives the first term in the expansion of MCover.
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This formulation is required for the computation of the minterms that are strictly dominated and co-
dominated using theorems 1.10 and 1.11.

Theorem 1.10: The set of minterms of a given covering table C (1, 7) , which are dominated
by some other minterm of the table are given by o' (1, jt, w, 0) where the relation o' can be
computed by

o' (K, P-', T, l) =

X0 (Hg s, T+ Tahy) +X: o' (g, W, m,A,)

+x-o (Hx, I-l'; ' MCOVG?’([J.‘E, TCE) ’ sz 1-3) +.%- 0 (I-lx, H'x, ﬂ:x’ 14)

where the A terms are integers that represent checks to ensure that we are not checking any minterm
against itself. If A = O then 7‘1 = 7\.4 = (0 and 12 = 13 = 1, otherwise if A # 0 then
A=k =k =2 =L

-Termination Conditions:

1. fpu=1 = 1,7 = 1,0 = 1 thenreturn 1, else
2. remOif u=1,u' =1, x = 1A =1
3. retumn 0 if any bdd tree is a zero(0) BDD

Proof: 1By Induction on the dominance property.

Our formula for dominated minterms minterms is a function of three arguments (i, W', T) . W is the
set of minterms, ' is the set of minterms that dominate them and 7 is the set of primes such that they
cover every minterm in the dominating set. Loosely, 7 is the set of primes that have not been shown
to fail to cover the dominating set. The formula for dominated minterms is in the form of a compari-
son function between two minterms, | and p'. Ideally we would like to be able to conclude whether
K is dominated by W' based on whether their cofactors with respect to some variable in their support
dominate each other. There are four such pairs of cofactors which may be compared. These are as fol-
lows:

1. (K, 1',) : In this case, no statement can be made at this level of the recursion. All the terms in
(K, 1',) need to be examined further. In addition only primes within 7 potentially cover minterms
within p', and hence m_ represents the set of primes which require to be examined at a later stage.
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T A Quantifier Free Formulation for solving the covering problem

. 2. (K5 W') : No conclusive statement can be made at this level of the recursion. All minterms in
(K W';) need to be examined further. The set of primes which potentially cover p'; include all
primes such that x D ©t or X 2 . Hence 7, + 7. is the set of primes which need to be examined fur-
ther.

3. (1p K')) : In this case too, no statement as to whether ' dominates | can as yet be made. All min-
terms in (W, W',) need to be further examined. The set of primes which may potentially cover p',
include all primes such that x 2 7 and hence &, is the set of primes which need to be examined fur-
ther.

4. (K, B';) : In this case it can be definitely concluded that if there exists a prime 7 such that

T 2 W', then since we know that this prime can never cover Jt_, the minterms in Q'; can never dom-
inate minterms in p_. At this stage only those minterms in p'; which are not covered by any prime in
7 need to be examined further. It can be concluded from the previous statement that %, represents
the set of primes which require to be examined at a later stage.

Ifu=1,n' = 1, = 1,A = 1 then we can safely conclude that minterm p' dominates y because
all primes covering ' (namely 1) cover t and U # ['. However if any one of the (i, u', t) BDD’s
are a Zero(0) BDD we can safely conclude that minterm p' does not dominate p

In a similar manner we get the formulation for Co-dominators 8.

Theorem 1.11: The Co-dominating minterms of a given covering table C (u, ®) are given by
d (4, 1, T, 0) where the relation & can be computed recursively as

5 (u’ u'9 (N 7\') =

XS (MW pnAy) +X-8(ky Wy Mo+, A))

+X-8 (1 - MCover (Rep ) W T Ay) +x- 8 (1, Wi MCover (W ®;), . Ay)

where the A terms represent checks to ensure that we are not checking any minterm against itself. If
A=0thenA, =i, =0and}, =2, = 1, otherwise if A # 0 then A, = A, = A, =4, =

The termination conditions in this recursion are identical to the recursion for o'

Proof: lBy Induction on the dominance property.
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As in the previous case, there are four cofactors pairs to check.

1. ( ux, ') : In this case, no statement can be made at this level of the recursion. All the terms in
(K, B',) need to be examined further to check for co-dominance. In addition only primes within T,

potennally cover minterms within W', and p_, hence T, represents the set of primes which require to
be examined at a later stage.

2. (K K'g) : No conclusive statement can be made at this level of the recursion. All minterms in
(K H';) need to be examined further. The set of primes which potentially cover W'; and P include
all primes such that x© & or X O x. T, + T, is the set of primes which need to be exammed further.

3. (B W) < In this case it can be definitely concluded that if there exists a prime ® such that

T; 2 U, then since this prime may never cover any minterm in the minterms in H',» Hscan never Co-
dommate minterms in p',. At this stage only those minterms in H; which are not covered by any
prime in % need to be exammed further. From this we may conclude that the set of primes which

may potennally cover j', and p. include all primes such that x 2 & and hence x_ is the set of primes
which need to be exammed further

4. (K, 1';) : In this case it can be definitely concluded that if there exists a prime 7 such that

Tz 2 W', then the minterms in 1';can never Co-dominate minterms in M, . At this stage only those
minterms in W'; which are not covcred by any prime in 7 need to be examined further. It can be con-
cluded from the previous statement that &, represents the set of primes which require to be examined
at a later stage.

We do not need to add all the Co-dominating minterms of a table; it suffices to have only one repre-
sentative Co-dominator of each pair of Co-dominators. One must note that if minterm a Co-domi-
nates another minterm b, minterm b Co-dominates minterm ¢ and as a result a Co-dominates c, then
any one of the 3 minterms suffice to represent the set. However since Co-dominance is a pairwise
relationship, it is not possible to choose from each pair (a,b), (b,c), (a,c), a minterm to add. Instead
however it is always possible to choose a minterm to delete from each pair, based on some tie-break-
ing criteria; for example choose to remove the minterm with the first complemented variable as per
the BDD variable ordering. Thus we could choose minterm b from (a,b), minterm ¢ from (b,c) and it
must follow that we choose minterm ¢ from (a,c) to delete from the set of all Co-dominators. This
leaves minterm a as the representative Co-dominator.

In order to compute this set of Co-dominators to delete we modify the algorithm for the computation
of Co-dominators in order to take into account the tie-breaker. To compute the Co-dominators_to_de-
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lete &' we easily incorporate the following changes in theorem. We change the choice of A as follows:
IfA=0then), = A, =0and A, = 1,A, = —1, otherwise if A # 0 then
A, = A, = A, = A, = A. This results in the choice of one Co-dominator from each pair.

The final set of minterms to retain at each pass of the Quine-McCluskey algorithm include the strict
dominators plus some Co-dominators. In order to obtain the strict dominators we need to compute the
set of minterms which are dominated by some other minterm of the set and subtract these from the set
of all minterms in the covering table. We also need to add some subset of the Co-dominators to this
set of strict dominators to get a reduced cover for the function. The final expression for minterms to
keep at each pass of the reduction algorithm is obtained as follows.

un... 1 = l*l‘n -o (um uns nn, 0) + 8 (I-l,,, un’ nnv 0) -9 (ll,,, P-,,, “n’ 0)

Prime-dominance

The conditions for Prime dominance can be derived in a similar manner to Minterm dominance. Con-
sider two primes (7;x') . If & is dominated by 7', then every minterm covered by = is also covered
by ©'. Now consider any variable x;3 (¥;2®'), (x;2%). Sincer; D ) = (' 2 pand that contra-
dicts our assumption that & is dominated by x',it must follow that for all (1 2 x), (x; 2 1) . The con-
ditions for prime dominance can be reasoned in a manner analogous to the conditions for minterm
dominance.

In order to compute the subset of primes which cover a given set of minterms the following lemma is
used. This lemma is used by theorems 1.12 and 1.13 to compute the set of Primes which are domi-
nated and Co-dominated.

Lemma1.5: The subset of a set of primes « that cover a given set of minterms p is given by

PCover (4, ®) = x-PCover (u; ®;) +x- PCover (U + HoT,)

1. if (W=1,t=1) thenremm 1
2. elsereturn 0

Proof: lBy Induction on the covering property in the extended space.

1. If some prime within the set of primes 7 has variable x=0 (i.e. 7_# 0), then this prime may only
cover those minterms which have x=0. It can never contain a minterm with x=1. Thus primes with
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x=0 may potentially cover only minterms with variable x=0. This results in the first term in the
expansion PCover.

2. If some prime has variable x=1 (i.e =, # 0), then this prime may cover minterms with either x=0 or
x=1. This returns the second term in the expansion of PCover.

Theorem 1.12: The set of Primes of a given covering table C (i, ©) that are Dominated by
some other prime in the set, are given by B' (=, x, i, 0)

Br(m, ' 1) =
X By mo A +X-B (R, w1, )
+ (- B (m, - PCover (W, ), W5 1y hy) +x- B (R, T, o+, Ay))

where the A terms represent checks to ensure that we are not checking any prime against itself. If
A=0theni, = A, = 0and A=Ay = 1,otherwiseif A= 0 then &, = A, = Ay =2, =A.

The termination conditions and the computation of the A variables are identical to the case of recur-
sion o'

Proof: lBy Induction on the Dominance property.
Similarly we can compute the Co-dominators, A as follows.

Theorem 1.13: The set of Prime Co-dominators of a given covering table C (n, ®) are given by
A(m, m, u, 0) where

A(m, ', 1w, A) =

X-A(mg, W5 HgA) +X-A(Rg, ' - PCover (M ') 5 My DY)

+ (XA, T, Mt By Ay) +x- AR, - PCover (W, ), T'; 1y Ag))

The termination conditions and the computation of the A variables are identical to the case of recur-
sion o'

Proof: 1 By Induction on the Dominance property.
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As before A terms represent checks to ensure that we are not checking any prime against itself. The
termination conditions and the computation of the A variables are identical to the case of recursion o'

The computation of the prime Co-dominators to delete follows along the lines of the minterm analy-
ses. Thus in order to compute the prime Co-dominators to delete A' (%, %, 1, 0) we need only modify
the computation of A as follows: f A = O then A, = A, = O and A, = 1,A, = -1, otherwise if
A#OthenAd, = A, =A%, =4, = A.

The set of primes remaining after each pass of the reduction are given as
T, =%,-B@®, %, 1,0 +A(n, %, 1,0 —-A(R,%,W1,0)

Non of the above formulations require quantifier operations. As in the case of most bdd traversal
based computations hashing is necessary in order to make this method efficient.

Partially Quantifier free formulation for the Dominance Relations

The conditions for Prime and Minterm Dominance can also be made partially quantifier free. The
advantage of this approach is that it avoids the excessively large number of recursions that the
approach in the previous section entails. On the other hand it bypasses the need to build the interme-
diate BDD’s in the equations for dominance (section 8), which tend to blow up in size.

Consider two minterms (p, p') . If 1 dominates ', then every prime covering {1 also covers .
Now consider any variable x; 3 (x;2 1), (x;2 }') . Since (Xx;27) = (r2 ') and that contradicts
the assumption that p' is dominated by W, it must follow that for all primes &t such that

(r2y), (x;27). '

Theorem 1.14: The condition for minterm dominance 1 (x, z) is given by
n (1 (x), 1 (x), n(x)) where

N, p,n) =

XZ-M (Mo Wp o+ ) + 321 (- Cover (Hp ), W', 1) +27- M (K, WpR) +22- M (R, W', 7,)
The termination conditions in this recursion are the following

If =1,y = 1, = then return 1, else

return 0 if any bdd tree is a zero(0) BDD
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Proof: By Induction on the dominance property in the extended space.

Our formula for minterm dominance is a function of three arguments (M, ', &) . W is the set of min-
terms, ' is the set of minterms that dominate them and 7 is the set of primes such that they cover
every minterm in the dominating set. Loosely, = is the set of primes that have not been shown to fail
to cover the dominating set. The formula for dominated minterms is in the form of a comparison func-
tion between two minterms, y and p'. Ideally we would like to be able to conclude whether U is
dominates p' based on whether their cofactors with respect to some variable in their support domi-
nate each other. There are four such pairs of cofactors which may be compared. These are as follows:

1. (R, W',) : In this case, no statement can be made at this level of the recursion. All the terms in
(K, 1',) need to be examined further. In addition only primes within ., potentially cover minterms
within pu_ and hence n, represents the set of primes which require to be examined at a later stage.

2. (ug W';) : No conclusive statement can be made at this level of the recursion. All minterms in

(ks 1';) need to be examined further. The set of primes which potentially cover H; include all
primes such that x 2 & or X o n. Hence =, + T; is the set of primes which need to be examined fur-
ther.

3. (ug W',) : In this case it can be definitely concluded that if there exists a prime w such that

T; 2 L., then since we know that this prime can never cover H',., hence the minterms in H; can never
dominate minterms in ', . At this stage only those minterms in H; which are not covered by any
prime in _ need to be examined further. It can be concluded from the previous statement that T rep-
resents the set of primes which require to be examined at a later stage.

4. (K, ' ;) : In this case too, no statement as to whether p' dominates M can as yet be made. All min-
terms in (L, 1',) need to be further examined. The set of primes which may potentially cover p_
include all primes such that x 2 %t and hence x is the set of primes which need to be examined fur-
ther.

Ifu=1,p" = 1,n = 1,A = 1 then we can safely conclude that minterm ' dominates p because
all primes covering p' (namely ©t) cover p and p # p'. However if any one of the (i, u', ®) BDD’s
are a Zero(0) BDD we can safely conclude that minterm p' does not dominate p

Consider two primes (%,n') . If © dominates «', then every minterm covered by #' is also covered by
n. Now consider any variable x;3 (X;27), (x;2®'). Since (x;2 1) = (T 2}) and that contra-
dicts our assumption that © dominates 7',it must follow that for all (n 2 #'), (X;2 ).

Theorem 1.15: The condition for prime dominance ' (x, z can also be formulated as
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Y (n(x), " (x), n(x)) where

Y(mx, ') =

xz- Y (T, ™' 1g) +Xz- Y (n;, ', - Cover (W, W), Wg) +XZ- Y (R, W'z W) +x2- T (M, @, o+ i)

The termination conditions in this recursion are the following
Ift=1,%n" = 1 thenreturn 1, else

return 0 if any bdd tree (&, ©t') is a zero(0) BDD

Proof: ! By Induction on the dominance property

Our formula for prime dominance is a function of three arguments (=, ', L) . 7@ is the set of
primes,®' is the set of primes that are dominated by them and p is the set of minterms such that they
are covered by every prime in the dominating set. The formula for prime dominance is in the form of
a comparison function between primes, ® and t'. Ideally we would like to be able to conclude
whether 7 is dominates ©' based on whether their cofactors with respect to some variable in their
support dominate each other. There are four such pairs of cofactors which may be compared. These
are as follows:

1. (=, ') : In this case, no statement can be made at this level of the recursion. All the terms in
(., ®',) need to be examined further. The set of minterms which are potentially covered by =
include all minterms such that x 2 p or x 2 lt. Hence H, + H; is the set of minterms which need to be
examined further

2. (m, m';) : No conclusive statement can be made at this level of the recursion. All primes in
(m;, 7';) need to be examined further. In addition the set of minterms which are potentially covered
by = include minterms such that X D ; i.e. we examine My

3. (m;, 7',) : In this case, if there exists a minterm  such that X o ., then we definitely conclude that
T does not dominate #t'. Thus we only examine further those primes of ©t' which do not satisfy this
condition. We examine minterms such that X 2 W, i.e. minterms H;.

4. (7, m'2) : In this case we can make no conclusive statement at this stage and hence need to exam-
ine all primes at a successive level in the recursion. All minterms covered by = are included in min-
terms such that x D u, i.e. we examine minterms in the set H;.
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Ifn=1, n' = 1,A = 1 then we can safely conclude that prime © dominates 7' because there does
not exist a minterm covered by &' but not by . However if any one of the  or &' BDD’s are a
Zero(0) BDD we can safely conclude that prime ©t does not dominate &'.

Having computed these we can substitute the expressions back in the equations for Quine-McCluskey
reduction in order to solve the covering problem. The method remains the essentially same.

Handling Multiple Output Functions

In order to handle multiple output functions, we need to add additional bits of data corresponding to
the output part. We need one additional bit of data for each multiple output. Thus in the extended
space a function of m inputs and » outputs is represented by 2m-+n bits. The occurrence of the j* out-
put bit implies that the j*# output part exists for the given input. This leads to complete representation
- in the extended space as shown.

F
¥ =[1&,;=x"
J
where Fjis the j‘h output and X ; is the variable in the extended space which represents it.

The vertex space and the null cube need to modified in order to take into account this output part. A
point is a member of the null space iff it is a null in its input or it is a null in its output part. It is an out-
put null iff all the output variables are turned off, i.e. they are all in their complemented phase. This
would imply that no output part (function) is present. Hence the null cube is given by

¢final = ¢ourput + ¢inpul

where the null cube for the input part is as previously calculated and the null cube for the output part
is given by

¢o:mtput = onj
J

The new vertex function now includes both an input part and an output part. The point is a point in the
vertex function if it is a point in the input vertex and the output vertex. It is a point in the output verrex
JSunction iff exactly one output variable is turned on. This is given by

uﬁnal = ‘Doutput ) uinput

where the input vertex space is as calculated and the output vertex space is given by
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Uoutput = szojni oi

i#)

The remaining computations remain identical.

BDD Representation and Implementation of functions

All the functions discussed in this paper are handled as BDD’s. The BDD for the onset plus the don’t
care set and for the function alone are used as input. The characteristic BDD in the extended space /
max points is created by writing a recursive routine which evaluates the BDD in terms of the BDD
node and the BDD’s for the characteristic for the left branch and the right branch at each BDD node.
A similar technique is used for prime computations. Thus at each stage the BDD of the results is the
merged result of the BDD’s for the left and right branches. It can be shown by analysis that the sizes
of the null space and vertex space BDD’s are essentially linear in the number of variables, thus if the
extended space representation is of manageable size, it follows that so are the prime and minterm
BDD’s.

In order to make this calculation more efficient a memoization is used. At each node first a check is
made as to whether the node has been traversed; in that event it would have been stored in a look_up
table and a lookup of the table yields the answer. In the other case it is computed and the computed
BDD is inserted into the table using the BDD node as the key to insert the BDD. This method of hash-
ing to avoid further computation is also used for the prime computation routine. Each node needs to
be computed just once. This technique relies heavily on the fact that a BDD is a canonical form and
as a result each node in the BDD is unique[2].

In order to implement the mapping into the extended space, the original BDD is traversed recursively,
at each level the BDD of the extended function is written as a combination of the BDD’s of the
extended representation of the left branch and the right branch. This is a recursive formulation for the
extended BDD in the form

extend (f) = (X;o+extend (7)) (X;, + extend )

This recursion terminates when the remaining BDD is either a “0” BDD or a “1”” BDD. The pseudo-
code for the calculation of the extended BDD is as follows:

extend(f)

if (look_up(f,value)) return value
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else if (terminal_value(f,value)) return value
else

Y;= top_variable(f)

J_nex = extend(left_branch(f))

f_ex = extend(right_branch(f))

_return (xjp+f_ex)(X;;+ f_nex))

In order to do prime computation we use the equation
Max(G) = x-Max(G,) +X- Max(G;-G,)

This formulation is recursive and based on computing the result for the left and right branches of the
BDD first. Again a hash table is used to hash the value of the result BDD with the node as key.

As a result the pseudo-code for this computation becomes:
Max(G)
if look_up(G ,value) return value
else if (terminal_value(f,value)) return value
else
x;j= top_variable(G)
max_nx = Max((left_branch(G)) and not(right_branch(G))
max_x = Max(right_branch(G))
retum(bdd_ite(x,-j, max_x, max_nx))

We traverse the BDD node by node. At each point we first check if the max point for a node has
already been calculated, in such an event we merely perform a lookup of the hash table. If however it
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has not been computed it is computed using the above equation and then the value is stored in the
hash table. This ensures that we compute the “Max” BDD at each node exactly once.

The Quine-McCluskey algorithm uses the BDD AND,OR and SMOOTH operators to implement. It
is a straightforward implementation which essentially uses expressions given in section 7. to form and
segregate the minterm and prime dominators by using BDD AND for all logical ANDs, BDD OR for
all logical ORs and BDD-SMOOTH for all the existential quantifiers, in the aforementioned equa-
tions. Thus the pseudo-code for the algorithm becomes:

Quine-McCluskey-reduction(primes,minterm)
While further reduction possible
minterms =bdd_and(minterms,bdd_not(minterms_dominated(minterm,primes)))

primes = bdd_and(primes,bdd_not(primes_dominated(minterm,primes)))

primes_dominated(minterms,primes)

gamma_l=bdd_not(bdd_and_smooth_with_u_vars(minterms_in_u_vars,u_vars_not_in_x_vars,u_va
rs_in_z vars))

gamma_x_dom_z = bdd_and(primes_in_x_vars,primes_in_z_vars,gamma_1)
gamma_z_dom_x = bdd_swap_x_vars_z_vars(gamma_x_dom_z)
beta = bdd_and(gamma_dom_z, bdd_or(bdd_not(gamma_z_dom_x), x_vars_tie_z_vars))

return(beta)

minterms_dominated(minterms,primes)

eta_l =bdd_not(bdd_and_smooth_with_u_vars(mintenns_in_u__vars,u__vars_in_x_vars,u vars_not_i
n_z_vars))

eta_x_dom_z = bdd_and(minterms_in_x_vars,minterms_in_z_vars.eta_1)

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 39



BDD Representation and Implementation of functions

eta_z_dom_x = bdd_swap_x_vars_z_vars(eta_x_dom _z)
alpha = bdd_and(eta_dom_z, bdd_or(bdd_not(eta_z_dom_x), x_vars_tie_z_vars))
return(alpha)

The Quantifier free dominance relations are computed using the formulae given in the relevant sec-
tions. This formulation is recursive and based on computing the result for the left and right branches

of the input BDD’s first. Again a hash table is used to hash the value of the result BDD with the node
as key.

The pseudo code for Minterms dominated at a single pass of the Quine-McCluskey algorithm is given
by the following. The other terms can similarly derived.

Minterms_dominated p, ', 7, A()
if look_up((1, W', &, A ),value) return value
else if (terminal_value((y, W', &, A),value)) return value
else
x;j= top_variable((y, ', 1))

md_nx = bdd_or(Minterms_dominated (W, W', Ttz + T, A, ),Minterms_dominated
(B W' W5 A0))

md_x = bdd_or(Minterms_dominated (1, W'z - MCover (W';, ®;), T, Ay ).Minterms_dominated
(R W, T, A,))

return(bdd_ite(x;;, md_x, md_nx))

We traverse the BDD'’s for primes and minterms in parallel node by node. At each point we first check
if the dominance relation for a set of nodes has already been calculated, in such an event we merely
perform a lookup of the hash table. If however it has not been computed it is computed using the
above equation and then the value is stored in the h.ash table.
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imes [Time
pre- Kin sec) [Time
imes After Minterms ing ing
eduction pfter Reduc- Mini- jold ziz’s
ame nputs Outputs Primes interms Cyclic Core)gion um rder der
jmé 3 16 570 134 6 P40 101 P136 W466
fark1 0 P1 08 1340912 126 1646 19 5514.4
max1024 |10 3 1278 3232 54 P66 61  [1046.5 [1179.0
max128 p4 | 553 “i616 131 [i26 Es B365 505
max46 P 1 29 52 6 Eg T3 1.8 |19
max512° P 6 35 1616 97 04 133 Jﬁs.s 2796 |
misg® |56 3 5499491840  [1.054609E18 59 69 o 8 (1642
mishe 04 B3 [.124375E15 |.4149420E29 82 82 o %?2.1 086.0
pisje  B5 |4 [r39103 S561545E11 PS5 5 137 144
mp2d 14 14 k69 118544 180 90 0 %42 06.2
pewapla |12 10 fi13 [10421 17 17 17 5.1 12.5
newaplal |12 31 380 IlO 10 10 1.1 1.1
newapla2 B ;F 7 7 7 7 0.2 0.2
newbyte |5 8 8 8 8 8 0.2 0.2
pewcond |11 E 72 o4 B1 B1 Bt 4 4
pewcplal P f16 170 317 o po 38 6.6 Eﬁ!
* pewcpla2 |7 Jg B8 P82 19 19 19  |o 2
pewcwp K 23 2 11 i1 11 0.7 .8
newill 0 i 11 E84 11 11 3 0.5 .5
pewiag B ] R34 E B 8 02 3
hewtpla  [15 ) 484 3 D3 3 P8 PB4
pewtplal |10 b 12 % D.5 0.3
newtpla2 |10 3 'p08 D D 1.5 1.4
pexcplal % o1 B506 B9 B9 B9 P91 P03
bpa 17 B9 W77 [132072 150 150 j? 7914 [1048
p82 5 14 k8 81 7 D1 1 57 6.0
poperom |6 K8 93 1614 130 121 59 1202 [1232
53 5 El k2 1 B1 B1 P5 P35
Fd73 7 E 11 192 27 27 127 1.8 gis
rds4 8 633 p11 %55 5 P55 p6 6
Fisc 8 % ke gu ps 8§ o8 |
Fyy6 16 |i n2 9420 112 112 J;l2 D5 PS5
kex 0 14 09 1848 1 1 1 131 [186
kan 75 144 38 BS 38 6.6 g.l
7] D1 Es 15135 [13956096 026 D61 100 P073.4 R0734 |
2 17 16 |233 [167920 2 2 2 524 P55
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] 61570752 110
vix] 7 P 1220 [[33035072 |10 110 7 1729
fwim p 7 5 51 2 13 PO
kidn ﬁg}'/ b 1220 133035072 110 110 ?4 855
héam 5 b Pi6 5671271953920 A 81 P2604 3493
kOdn 27 [ 1272 133041984 120 120 1934 B716

_ wr refers to one of espresso’s 20 hard problems.
_b. “computed” implies the minterms could not be counted as they exceeded the float size limitation.

As reported earlier the problem size is very much a function of the ordering technique used. The next
table (table 2.) reports the sizes of the BDD’s for the extended space representation, the Prime BDD
and the minterm BDD, as well as the number of inputs and Outputs. For any BDD based method it is
these numbers which are most representative of the complexity of the problem.

Malik’s “level” heuristics [14] were originally used to order the variables to build the BDD’s in the
original space. In the extended space the new input variables are ordered according to the order of the
corresponding variables in the original space. The x,u and z variables are interleaved. The output vari-
ables were ordered first. Thus the ordering in the extended space puts the output variables first and
 then the input variables. All x,u and z variables are interleaved. After further experimentation we

found that a much better ordering was achieved by ordering the support of each output part according
to the aforementioned level heuristics and ordering each support set by its size. The output variables
were ordered after their supports. This is essentially an application of [11] for ordering combinatorial
circuits. All x,u and z variables were again interleaved. The Last ordering technique tried out was an
adaptation of the technique described in [12]. This method is based on choosing an ordering such that
the partition induced reduces communication complexity and is referred to as Aziz’s Ordering[12).
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TABLE 2.Sizes of Extended Space, Prime and Minterm BDD’s
e —

Nodesin |Nodes in
extended |extended |Size of Size of Min+

Name Inputs |Outputs {BDD (F+D)|BDD (F) {Prime Bdd [term Bdd
alcom 15 38 733 733 619 568
alul 12 8 543 543 742 509
alu2 10 8 3345 6035 1761 1291
alu3 10 8 4480 6745 2057 1544
amd 14 24 4272 4272 3288 1171
apla 10 12 791 548 645 311
b10 15 11 25678 18093 3693 1589
bll 8 31 663 705 616 489
b12 15 9 777 77 969 513
b2 16 17 12416 12416 11050 2256
b3 32 20 31459 25476 9890 3415
b4 33 23 64474 39404 10601 39404
b7 8 31 663 705 616 489
b9 16 5 2369 2369 1756 79
bcO 26 11 55242 55242 22388 2712
bca 26 46 17276 17893 5541 4128
beb 26 39 9698 9597 3572 2802
bee 26 45 10282 9114 4348 3202
bed 26 38 11680 9277 3192 2684
brl 12 8 632 632 308 339
br2 12 8 269 269 271 242
chkn 29 7 6866 6966 2862 1583
cipl 11 5 41 41 70 89
cps 24 109 47524 47524 31111 9530
dcl 4 7 119 119 130 82
dc2 8 7 536 536 484 348
dekoder |4 7 90 118 145 86
dk17 10 11 594 500 527 238
[daT 9 9 217 226 304 156
dk48 15 17 766 785 821 446
ex1010%" [10 10 63490 12693 40559 2620
exdwr 128 |28 3518 3518 2772 2495
ex5 8 63 61216 61216 60118 2847
ex7 16 5 2369 2369 1756 796
exep 29 63 153884 153884 6016 11128
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Nodesin |Nodes in

extended |extended |Size of Size of Min-
Name Inputs |Outputs |BDD (F+D)|BDD (F) |Prime Bdd {term Bdd
exp
exps 8 38 12220 9870 7278 2887
gary 15 11 7503 7503 3840 1647
ibme- 48 17 8101 8101 16053 4937
in0 15 11 4690 4690 4304 1711
inl 16 17 12416 12416 11050 2256
in2 19 10 4225 4225 3698 - - [1912
in3 35 29 12133 12133 10441 3699
ind 32 20 21071 21071 9763 3580
in5 24 14 11121 11121 6772 2905
in6 33 23 6687 6687 4237 1675
in7 26 10 6217 6217 4096 1402
inc 7 9 657 553 675 277
intb 15 7 50404 50404 10845 3042
jbpe 36 57 706942 706942 [78955 26237
linrom |7 36 15894 15894 11070 1987
Tuc 8 27 1920 1920 2045 782
ml 6 12 380 380 339 196
m2 8 16 1257 1257 1430 585
m3 8 16 2456 2456 1694 686
mé 8 16 3419 3419 4139 1181
mark1 20 31 1441 984 1872 775
max1024 (10 6 4430 4430 3484 1324
max128 |7 24 3549 3549 3796 1034
max46 |9 1 398 308 202 199
max512 |9 6 2448 2448 2090 840
misg® |56 23 432 432 784 930
mishe |94 43 13749 13749 8808 6577
misj® |35 14 364 364 503 605
mp2d - |14 14 441 441 610 326
newapla |12 10 243 243 302 235
newaplal |12 7 98 98 103 109
newapla2 |6 7 63 63 60 60
newbyte |5 8 79 79 70 70
newcond |11 2 348 348 246 188
newcplal |9 16 1198 1198 777 462
newcpla2 |7 10 301 301 282 197
newcwp |4 ) 51 51 66 56
newill 8 1 58 58 56 55
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e —— e ————

Nodesin [Nodes in

extended |extended |Size of Size of Min-
Name Inputs |Outputs {BDD (F+D)|BDD (F) [Prime Bdd [term Bdd
newtag
newtpla |15 5 342 342 262 210
newtplal [10 2 126 126 94 80
newtpla2 |10 4 306 306 153 118
newxcplal [9 23 989 989 883 407
opa 17 69 10784 10784 9285 4129
P32 5 14 639 639 438 292
poperom |6 48 6890 6890 7551 1573
prom1 9 40 113079 113079 49680 10192
prom2 9 21 33929 33929 20309 4869
rd53 5 3 80 80 74 55
rd73 7 3 161 161 151 9
1d84 8 4 247 247 228 125
risc 8 31 723 723 646 506
ryy6 16 1 58 58 66 80
sex 9 14 560 560 623 404
shifye 19 16 7548 7548 22740 6808
signet® |39 8 933361 933361 228543 57093
soar.plae |83 93 59478 59478 37854 7702
spla 16 23 38136 38345 19494 11319
sqn 7 3 386 386 297 195
] 21 23 16037 16037 11352 2641
2 17 16 1647 1307 1419 969
3 12 8 655 655 430 280
4 12 8 598 699 740 386
e 47 72 194965 194965 79477 24612
tns 8 16 860 860 1083 407
510w 22 16 18757 18757 46031 46139
vg2 25 8 1079 1079 582 484
vix1 27 6 4008 4098 1398 883
wim 4 7 83 92 129 80
x1dn 27 6 4098 4098 1398 883
x2dne [82 56 23889 23889 18843 7885
x6dn 39 5 2184 2184 5219 2717
x7dne |66 15 1084457  [1084457
x9dn 27 7 4214 4214 1410 888
xparce |41 73 475670  |475670 133084 36437
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a. " refers to one of espresso’s 20 hard problems.

b. “computed” implies the minterms could not be counted as they exceeded the float size

limitation.

For completeness we also report the next table. This table (table 3.)gives the number of Primes and

Minterm computed for each example, as well as the time taken for their computation.

TABLE 3.Primes and Minterms

e ————
Time to

Name Primes Minterms compute
W
alcom 4657 88064 16
alul 780 15872 06
alu2 434 7422 35
alu3 540 3903 37
amd 457 35072 5.1
apla 201 157 1.8
b10 938 72912 20.5
bil a4 836 1.9
b12 1490 163072 0.9
b2 928 328488 183
b3 3056 1.3076E10 543
b4 6455 4.9942E10 78.7
b7 44 836 19
b9 3002 133704 18
bcO 6596 284933120 112.6
bca 305 2778112 61.3
beb 255 2417664 31.9
bee 237 2477056 88.2
bed 172 1699840 31.1
brl 29 114 0.6
br2 27 125 04
bw 108 281 76
chkn 671 788036864 53
clpl 143 6713 0.1
cps 2487 124362704 69.8
dcl 22 47 0.1
dc2 173 442 0.5
dekoder 26 49 03
&7 111 61 15
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Minterms
k48 157 42 5.0
duke2 1044 8464768 20.9
e64 65 36803488E20 (113
ex1010 » 25888 1471 207.0
exd w 1.8348E14  |computed 10.3
exs 2532 7620 108.0
ex7 3002 133704 1.8
exep 219 211536128 180.4
exp 238 297 55
exps 852 1623 326
gary 706 84196 59
ibm & 1047948736 |1.5523729E15 [17.5
in0 706 84196 55
inl 928 328488 18.2
in2 666 686336 49
in3 1114 1.7485E11 232
ind 3076 1.3205E10 28.6
in5 1067 24912896 11.9
in6 6174 4.9950E10 70
in7 2112 220769280 5.1
inc 124 281 1.1
intb 6522 101720 28.7
jbp = 2496809 8.0095268E11 |888
lin.rom 1087 2306 21.2
luc 190 2198 25
ml 59 218 04
m2 243 831 1.5
m3 344 1105 23
md 670 2134 44
mark]1 208 2098128 15.8
max1024 1278 3232 5.1
max128 469 1616 4.1
max46 49 62 04
max512 535 1616 23
misg & 6499491840 |[1.054609E18 |19
misj w 139103 2.561545E11 0.8
mish & 1.1243753E154.1494202E29 |17.5
mp2d 469 118544 13
newapla 113 10421 0.3
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Time to
Name Primes Minterms compute
newap .
newapla2 7 7 0.1
newbyte 8 8 0.1
newcond 72 704 0.3
newcplal 170 1317 1.0
newcpla2 38 282 03
newcwp 23 42 0.1
newill 11 142 0.1
newtag 8 234 0.0
newtpla 40 4484 03
newtplal 6 12 0.1
newtpla2 23 608 0.3
newxcplal 191 3506 12
opa 477 732072 234
p82 48 81 0.5
pope.rom 593 1614 12.3
prom1 9326 8306 170.6
prom2 2635 3027 39.1
rds3 51 42 02
rd73 211 192 0.7
rd84 633 411 1.3
risc 46 84 12
ryy6 112 19710 0.1
sao2 184 747 1.2
seq 7457 9.8390465E12 [983.8
sex 99 1848 0.6
signet w 78735 1.83009529E12 [301.1
shift w 165133 4194304 354
soar.pla & 3.3047729E14]1.7458651E26 [239.6
sqn 75 144 |03
spla 4972 122736 101.0
square5 n 85 {0.7
tl 15135 13956096 23.8
2 233 167920 4.5
3 42 4096 0.5
t4 174 082 7.6
1481 481 42016 22
table3 539 11467 50.8
table5 462 119523 77.3
iw 836287 4.136440E14  [4554
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_— _eee————
Time to

Name Primes Minterms compute
tms .
510w 524280 4194304 49.1

vg2 1188 61570752 13

vixl 1220 133035072 32

wim 25 51 0.3

x1dn 1220 133035072 33

xX2dn » 1.1488762E16{8.849739E25  |53.2
x6dn 916 6.6772795E11 |65

x9dn 1272 133041984 38

xor5 16 16 0.1

xparc @ 15039 1.0865220E13 |584.3

- refers to one of espresso’s 20 hard problems.
b. “computed” implies the minterms could not be counted as they exceeded the float size limitation.

Our method compares very favorably to Espresso [1]; we are able to solve problems which Espresso
cannot. These results have been reported in the results table. In addition we are also able to solve
nearly all problems Espresso can solve, some of them with times which are faster than Espresso’s
reported times.

In general the Signature Cube methods [13] tend to be faster than our methods as they do not compute
all the primes and minterms. There are, however examples where our methods tend to be faster. In
addition signature cube methods can never list all the primes of a function, whereas our application
can do so. It is important to note that Espresso-Signature solves many examples that we cannot. Table
2. shows a comparison of times reported by these programs and ours, on a few representative exam-
ples. Time-outs were set to 5000 cpu seconds for all runs of our program.

TABLE 4.Comparison of the times on Our program, Espresso and Espresso-Signature

—- |
Time (in | Time Ti
sec) using Time usilmn§
using old | Aziz’s using Espresso
Name Order Order Espresso | Signature
[a2 |23 |35 |39 |3248 |
alcom 113 10.7 97 160.09
bl12 82.0 198.4 32 8.16
b9 3283 3619 27 7.93
bca 350.0 258.8 267 308.62

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 51



——

Results

TABLE 4.Comparison of the times on Our program, Espresso and Espresso-Signature

%

Time (in | Time
set.:) using Time Isimg
usingold | Aziz’s using Espresso

Name Order Order Espresso | Signature

beb 140.7 146.5 79 69.07

bee 2140 205.3 168 123

bed 145.5 109.6 56 492

exdwr 570.2 640.1 - 163.2

ex7 3283 331.1 31 7.88

ibm & 32913 * - 1.6

misg w- 66.8 164.2 - 139

mish & 912.1 986.0 - 492

misj w 13.7 144 - 2.1

mp2d 74.2 96.2 16 27

w refers to one of espresso’s 20 hard problems.

‘We found that the quantifier method worked well in some examples, giving an answer equal to the
minimum obtained from Espresso-exact, however in some of larger examples it failed at the quantifi-
ers. The quantifier free expressions had very poor results in terms of cpu. time required. Their major
drawback seems to be the presence of too many recursive calls. The best results were given by the
partial quantifier methods. Table 5. reports the number of primes and minterms before and after
reduction. It also reports the number of recursive calls to the dominance functions in the quantifier
free method. Recall that the quantifier free methods are formulated as recursive BDD functions. In
addition it reports the total number of applications (passes) of the QM procedure and the times used
by the quantifier free and quantifier only methods for the corresponding examples. The results for the
partial quantifier method have already been reported in table 1. Recall that we had stated that the best
results were given by the partial-quantifier technique.
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TABLE 5.Comparison of Full Quantifier and Quantifier free forms

—_ — "
Time using | Time using
' Max number Quantifier | formulation
Minterms of Total free with
Primes after after recursions | number of | formulation | quantifier
Name Primes Minterms | Reduction | Reduction | of fns/pass passes (in sec) (in sec)
br2 27 125 13 13 13825 5 12220. 584
conl 24 156 9 9 13462 4 1344. 40
dcl 22 47 13 13 1723 5 500 59
dekoder 26 49 12 12 2488 4 631 57
Conclusions

In conclusion we have designed and implemented a method for implicit bdd based two level logic
minimization. We have called this program Implicit_mini. This program (Implicit_mini) was run on
115 of the 117 PLA test examples Espresso could solve. We were able to build the primes and min-
terms for all 115 examples and form the cyclic core (and solve) 93 of these. In addition we ran implic-
it_mini on 18 examples that Espresso could neither form the primes for, nor solve and were able to
compute the primes (and minterms) for 14 of these and the cyclic core for 5 of these examples. As a
result, we have been able to solve 5 of the 18 hard Espresso problems tried; namely the examples
misj, misg, mish, ibm and ex4 and build the prime and minterm BDD’s for ex1010, ibm, jbp, misg,
misj, mish, shift,soarpla, ti,ts10, x2dn, x7dn, and xparc. These are referenced in the tables by the »
symbol.

We have, as a course of our research experimented with various bdd-ordering heuristics and evaluated
their performance. We have arrived at a set of efficient heuristics, which give the best results (small
BDD sizes) for combinational multiple output functions. We have experimented with removal of
quantifiers from logical formalisms as part of this research. This removal of quantifiers has been
shown to have very impressive results on the speed of BDD computations. We have also derived
totally quantifier free expressions for dominance relations. Though this result is not important in
itself, it may provide a starting point for the development of quantifier free methods for BDD’s.

It is also important to keep in mind while comparing our results with those of Espresso that there are
different criterion for evaluating the complexity of an example when solved by implicit vs. explicit
techniques. Those problems that Espresso finds difficult do not necessarily form large BDD’s and
conversely problems that form large BDD’s may be solved by Espresso with ease. In a sense implicit
and explicit methods are symbiotic and neither is complete in itself.
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A similar implicit technique was developed and implemented by O. Coudert and J. Madre at Bull
research. The essential difference in the two methods lies in their choice of extended space represen-
tation and the various bdd minimization methods employed by them. For the former, it can be shown
that there is a direct one to one correspondence between the extended space of [6] and our extended
space. However the use of suppressed-zero BDD’s, which is a technique for reducing BDD sizes, in
[6], might account for the differences in our results. In general the BDD’s generated by the Bull meth-
ods are consistently smaller than our BDD’s for the same example.

However our method are very easily extendable to multi-valued minimization. Om_’ extended space is
identical to the so called “positional” space used for multi-valued function representation. This makes
its easy to apply to vast collection of already available methods which use the positional space repre-
sentation.

In conclusion we have presented Implicit_mini; an efficient BDD based two-level logic minimizer.
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