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Abstract

^,ZZ,Z l- 7 ^ T ""* l^Kfmc'U>'a us*"* BWs-'» Ms method theJunction is mapped to anexendedspace which gives it special properties that can be exploited to compute thefunction Primes aJlllnteZ
The next step consutscfconceptually creating acovering table whose rows represent the minterms and whose™'
umns represent the primes. Weformulate conditionsfor row and column domiLce and remove donZldowsand
S£ZTJ»7I""""TT"S"*" bpwMt- TI*fi»°«"P consists offinding aminimum colZZer^rthe remaining cyclic core ofthe problem. Allfunctions are implemented using implicit BDD operations
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Introduction

Introduction

The objective of logic minimization is to create a representation for a given logic function which
requires a minimal number of logic devices for its implementation. This problem is Co-NP-hard and
hence no polynomial time algorithm is known to exist [3].

One particular physical implementation of the logic function is the Programmable Logic Array or
PLA. One of the major advantages of a PLA is the fact that the symbolic representation of the func
tion can be mapped to the physical representation in a very straightforward way.Thus there is a high
correlation between the size of the function representation and the size of the PLA used to represent
the function. If the logic function is represented in the so called Sum ofProducts (SOP)form, it may
be translated directly on to the PLA. The Sum ofProducts representation consists of a logical OR of a
series of product terms. Each product term consists of a logical AND of boolean variables or their

complements, which belong to the input of the function. The Physical Area of the PLA is a direct
function of the size of the Sum ofproducts representationchosen. Rows in the PLA corresponds to
products in the SOP representation and Columns to individualvariables in the input. By minimizing
the number rows and columns of the PLA the physical area is minimized. In order to do so, the prod
uct terms in the SOP representation are made as "large" as possible. This means that the products are
explicitly dependant on as few variables as possible. These "maximal" product terms are called
Primes. Our objective is to get a representation for the function as a minimum sized set of these max
imal product terms. It also important to note that products chosen to represent the function must com
pletely specify the original function. In order to do so the SOP must contain a basic set of terms which
must be in the function representation. Each product may actually contain more than one of these
terms. These terms are specified as products which have every variable of the input present exactly
once as either complemented or non-complemented form. Such products are called vertices and verti
ces which are used to specify the function are called Minterms. In order to check if a SOP representa
tion is complete, we need to check that every one of these minterms is contained within our
representation.

Since theSOPproductrepresentation involves the logical OR of a setof logicalANDS, thereareonly
two levels in the hierarchy of the logic. Thus this representationis called a two-level logic representa
tion. The PLA area minimizationproblem becomes the two-level logic minimization problem. There
are many algorithms to perform this minimization. The Quine-McCluskey procedure[6] is an exact
algorithm used for solving the problem of two level logic minimization; i.e. it minimizes the number
of rows used in a PLA implementation of thefunction. It important to keep in mindthatPLAimple
mentations are just one of a large class of problems for which two level logic minimization is used.
This problemhas a large spectrum of applications rangingfrom state-encoding to general logicopti-

An Exact Logic Minimizer Using Implicit Binary DecisionDiagram Based Methods



Introduction

mization. ThoughPLA'sprovide a convenient framework to understand the problem; they are not
even the most important application.

In brief the basic Quine-McCluskey tabularminimization proceeds as follows:

1) It finds all the Prime implicants (potentialrows of PLA) of the function
2) It constructs the Prime-implicant table, which relates Primes to Minterms (vertices which must be
included in the function representation).

3) It determines the rows and columns of the table, whose information is entirelycontained within
some other row or column and deletes them.

4) It repeats the previous step until no more reduction is possible.

Theremainder at this stageis calledthecyclic core of theproblem. Finallythe Quine-Mccluskey pro
cedure finds the minimumcolumn cover for the cycliccore of the problem using branch and bound
algorithms. This procedure may be carried out Explicitly or Implicitly. Explicit cases include those
implementationswhere each Prime or Minterm is handled individually. The converse holds true for
theImplicit implementations, where groups of Primes andMinterms are handled together as a single
entity.

* Though this algorithm may be used effectively for many examples, it fails in its explicit form for
somelarge examples with an exponential numberof primes.For example the espresso-exact algo
rithm!1] fails for the mish[%] example; even though the actual cover is quite small in comparison. An
effective solution to this problem lies in the Signature Cube methods, developed by Sanghaviet
al.[13], which does not enumerate all the primes and minterms of the function. However this method
has the intrinsic disadvantage that it cannot list all the primes and minterms of the function.

Recent work [5,6], provided us with a new implicitapproach to this problem. In those papers,O.
Coudert & J.C. Madre have developed a new method of representing primes of Boolean functions.
Through their techniques they have been able to arrive at a representation of the primes of the largest
and most difficult of the public benchmarkfunctions. We extend [9,10] the techniques of [5,6] to
exact minimization of booleanfunctions. The methodwe propose here relies on the following state
ment: Anyprecise set (e.g. Booleanfunction) can bephrasedas a propositional sentenceoverthe
appropriate boolean space.Thus the primes,minterms, as well as terms in the Quine-McCluskey
reduction may be formulated as propositional sentences.

Brieflythe primes and the minterms required and the covering table are represented implicitly, and
step (3) of the Quine-McCluskey procedureis represented as operations over this implicit representa-
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tion. We then arrive atthecyclic core in animplicit representation and derive theactual primes and
minterms implicitly for thiscyclic core; since the primes and minterms of thecyclic core are justa
fraction of thetotal primes and minterms we can solve some of those problems which have notyet
been solved by explicit methods[l,8], by applying branch and bound techniques to this remaining
problem.

A BDD [2] orabinary decision diagram is aDAG(Directed AcyclicGraph) data structure (defined in
the next section). Operations on this type of data structures are a function of the number of nodes in
theDAG, whereas the number of terms it represent are dependent onthe number of paths through the
DAG. It is possible to perform logic operations likeAND,OR,XOR, NOR etc. as well as logical
quantification by performing the basic BDD operations as given by Bryant's paper[2]. The BDD[2]
data structure lends itselfvery well to implicit operations. This is because operations on BDD's are
dependent onthe number of nodes in the BDD, however the terms it represents are determined bythe
numberof paths in the BDD andthe BDDrepresentation for complex combinatorial functions turn
out to be surprisingly compact in thenumber of nodes involved. BDD'sprovide an efficient means of
representing groups, rather than individual terms. The main disadvantage of using BDD'sis that
given a bad ordering for the input variables, it is highly likely thatthe size of the BDD becomes inor
dinately large. We have explored this problem extensively and arrived atwhat we think is a good
ordering for the input and output variables for a combinational function.

Given anylogical proposition(statement) overafinite boolean space, onecan find the solution set to
theproposition by a seriesofBDD operations onthe proposition; infact there is a direct correlation
between logical operations in the proposition and BDD operations. It turns out that the BDD repre
sentations of formidable propositions (i.e. those with averylarge explicit representation) are often
small, making this an attribute for the solution of boolean problems. It iseasy to see that it is possible
towrite the Quine-McCluskey procedure as asequence of BDD operations. In the case of BDD oper
ationsthe majorbottlenecks are quantification (defined in the next section). Thus it is essential for the
success of this approach to reduce theuseof quantifiers as much as possible. Thus theattempt will be
to reduce the use of quantifiers at each stage.

The rest of this thesis is devoted to thetranslation of theQuine-McCluskey algorithm to a series of
formulae over theappropriate boolean space and to their computations using implicit BDD tech
niques.

Definitions

Boolean space: A boolean space Bn or {0,1} nisaspace ofnvariables which may only take the val
ues 0 and 1.The rulesof booleanlogic within this space.
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LogicFunction: Let XvX2, Xz,...,Xn be variables on a Boolean space fln. Acompletely specified
logic function is amapping from Bn to B. An incompletely specified function consists of3parts;/, d
and r./is a completely specified function which iscalled the onset and consists of the points where
the function is 1,d is the don'tcare function and consists ofall thepoints where the value of the func
tion may beboth 0or 1and ris the offset and consists ofall the points where the function is0./, dand
r together form the incompletely specifiedfunction.

Literal: Aliteral isan ordered pair ofthe form (variable, value). By convention the pair (X,-,0) iswrit
ten a&lCj and the pair (X|fl) is written as Xt. Ifthe variable takes on the value 1then the literal Xt is
said tobe 1and Xt is said tobe0. If the variable takes onthe value 0 then the literal Xt is said to be 0
and the literalXt is said to be 1.

Multiple Outputfunction: Amultiple output function isa function which has more than one output
variable. These functions may bereduced tosingle output functions byadding a new input variable
for each multiple output and creating a new single output function using these variables and the origi
nal input variables (the exact construction is given in the section on multiple output functions). The
new input variables are called multi-output variables.

Vertex: Avertex isa single point in the subspace corresponding to the function input and multi-output
variables.

Minterm: A minterm of an incompletely specified function (f,d,r\ is a vertex of the space which is in
the onset of/.

Monotonicalty decreasingfunction: A monotonically decreasing function is a function such that
changing any (boolean) variable from value 0 tovalue 1causes thefunction value, if it changes, togo
from value 1 to value 0.

Cube: Acube isa subspace CY x C2 x ... x Cn ofBn where Ci isa subset of {0,1}. Itcan also be
written asa product of literals. Avertex (vvv2,...,vn) iscontained ina cube Cx x C2 x... x Cn iff
v,. € Ci forall i. Forconvenience a cube, written asa product of literals, i.e. C,- is a subset of {0,1},
e.g. the cube {0,1} x {0} x {1} over B3 is written as X2Xy AcubeD =Dx xD2 x... xDn is
said to be contained in a cube C = Cx x C2 x... x Cn if Dtc Ci for all i. Thesizeof a cube
Cj x C2 x... x Cn is given by \CX\ x |C2| x... x \Cn\. Avertex of the space can also bedefined as a
cube of size 1.

Null Cube: A nullcube is a cubeof size0. Thenull cubespace is the subspace consisting of all the
null cubes of a given space. As a result of the way cubes have been defined, it is observed that there
are (4n-3n) null cubes.
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Implicant: An implicant of an incompletely specified function (f,d,r) is a cube C, such that no vertex
contained in this cube belongs to the offset r.

PrimeImplicant: A prime implicant is an implicant which is not contained in any other implicant of
the function.

Cofactors: The cofactorofafunction/with respect to aliteral (jc, i) , i.e. variablex in the ith value, is
the function obtained by evaluating the function/on the plane x=i. Conventionally the cofactor of/
with respect to (x,I) is written as fx and the cofactor of/with respect to (x,0) is written as/5.

Shannon Expansion: A function may be written in terms of its cofactors with respect to a variablejc,
i.e. as / = xfx+xfx. This leads to the concept of a Shannon cofactoring tree. If we recursively com
pute the value of the function using the aboveexpression andcomputing the cofactor with respect to a
new variablein the supportof the function at each stageof the recursion, eventuallythe remaining
function is either 0 or 1. This terminates the tree and we get an expandedfunction. If we represent
each level of this recursionby a unique nodewith the left and right branches of this node beingrepre
senting the two cofactors, then the resulting structure becomes a tree and is called a Shannon tree.
Each level of recursion represents a new level of the tree.

Figure 1. BDD for function F

Binary Decision Diagram: [2] The binary decision diagram fora function is thefolded form of the
Shannon tree for the function. Afunction graph isa rooted directed graph with a vertex set Vcontain
ing two types ofvertices; anon terminal vertex vhas as attributes an index (v) € {0,1...n- 1} and
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two children low(v) and high(v) belonging toV. A terminal vertex has asattribute
value (v) e {0,1} .A function graph is reduced ifitcontains no vertex v with low (v) = high (v)
and no distinct vertices v and v' such that the subgraphs rooted at them are isomorphic. A BDD, also
called aROBDD is then defined as areduced function graph. This tree has labelled internal nodes
corresponding to the variable with respect to which the function isexpanded at the given level.

This representation isacanonical form. The root node corresponds to the variable with respect to
which wecofactor and onebranch corresponds to the BDD for thecofactor of the function with
respect tox and the other branch corresponds to the BDD for the cofactor ofthe function with respect
to x. The example in Figure 1. illustrates the BDD for the function F= v0 •y^ +v0 •v2+y^ •y2

Covering Table: The covering table Mf offunction/ is used to solve the problem offinding the small
est prime irredundant cover of the function. The rows ofthis table correspond tothe minterms and the
columns correspond to the primes. Mf(i,j) = 1ifminterm i is contained in aprime./ and 0other
wise. A column cover ofthis table is aset ofcolumns ofthis table such that each row has a*1' entry
in at least one ofthe columns ofthe cover. Acolumn cover for this table corresponds to aprime cover
for the function it represents. A minimum prime cover corresponds tominimum column cover for this
table.

Row Dominance orMinterm Dominance: Arow (minterm) is said todominate another row (minterm)
if and onlyif any cover which covers the first row, automatically covers the second row. Thisoccurs
when all theprimes containing the first minterm (row) also contain the second minterm (row). Strict
Minterm Dominance is said tooccur when, inaddition, there exists aprime containing the second
minterm which does not contain the first.

Column Dominance or Prime Dominance: A column (prime) is said to dominate another column
(prime) if and only if any coverwhich contains the first column automatically contains the second
column. This occurs when all the minterms contained in the second prime (column) are alsocon
tained in the first prime (column). StrictColumn Dominance is saidto occurwhen, in addition, there
exists a minterm (row entry =1) which is contained in the first prime (column) but not in the second
prime (column).

Cyclic Core: The primes and minterms remaining in thecovering tableafteralldominated primes and
mintermsare removed, form the cyclic coreof theoriginal problem. There are no dominated primes
or minterms remaining in the cyclic core. In orderto get the final solution to the problem, branchand
bound methods have to applied to this cyclic core.

Quantification: There are two quantifiers, 3x andVx. The first is the Existential Quantifier. If there
exists a vertex x such that some logic function f(x) is 1, this is shown as 3x/(jc) = 1. The second
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quantifier is the Universal Quantifier. If forall cubes x some condition/(jc) is 1, this is written as
Vxf(x) = 1. Therelation between these operators is VxF(x) <*3x(F (x)) and
3xF(x) <=>VxF(x).

Support: The variablesupport of a function F orsupp(F) is the set of variables on whom the function
explicidy depends, i.e., changing the value of any variable (i.e. its complement too) within supp(F),
while keeping allother variables constant, changes the value of the function F. Forexample ifF= a
wherethe input spaceconsistsof variables {a,b}, thensupp(F) = {a}.

PropositionalFormulae: Apropositional formula isavalid boolean formula composed ofquantifiers,
boolean operands and variables. This formula can be used torepresent a set variables satisfying a log
ical proposition or statement.

Inaddition we will also define a set oftemporary variables zand u, which will be used during compu
tation. The purpose of these variables is temporary storage during intermediate computations.

The Quine-McCluskey procedure

TheQuine-McCluskey tabular minimization procedure follows the given steps.

1. Find all the prime implicants of the function.

2. Construct thecovering table. The rows in the covering table correspond to minterms of the onset of
the function, the columns ofthe covering table correspond tothe primes computed in step 1. An entry
in the table is 1if thecorresponding row minterm is contained in itscolumn prime, otherwise the
entry is0. Our problem is tofind a minimum column cover for all the rows. The essential primes are
represented bythose columns such that at least one of their row entries is not contained inany other
column.

3. Determine the dominatedrows and removethemfrom the table, next determine the dominated col
umns and remove them from the covering table

4.Repeat step 3until no further reduction ispossible. When no more reduction ispossible the remain
ing problem is called the cycliccore. There are no dominatedrows or dominatedcolumns in the
cyclic core.

5. At this point find aminimum column cover for the cyclic core. In general branch and bound algo
rithms are used for this step.
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Inpractice themain bottieneck inEspresso-Exact [8] is theproblem of prime explosion. The number
ofprimes for n input variables can potentially be as large as 3n//i and hence for larger examples the
number of primes may become toolarge toenumerate, even when thesize of thecyclic core is small.
Forexample, theEspresso-exact algorithm fails ontheexample circuit "mish"[8] because it has 10
primes but a cyclic core with just 82 primes[9,101.

14

The Extended space and the Implicant characteristic

Ourgoal is torepresent all the cubes over 2?" asterms insome space and the Quine-McCluskey algo
rithm as a series of propositional formulae on that space.

We must note that propositional formulae are sets ofpoints ina space but the Quine-McCluskey algo
rithm functions over cubes, which are sets ofcollections ofpoints. The first step is to map cubes onto
a space in which we canperform minimization algorithms byoperations on functions which implic
itly represent the set of implicants,minterms, primes etc.

Figure 2. The Coded Cube Space

Loo

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 10
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Consider an arbitrary cube C= CxxC2x... xCn. Each Cj is an arbitrary subset of {0,1}. Since
there are4 possible subsets of {0,1}, it follows there are 4n vertices ofany extended space; i.e. the
extended space ofBn is B2n. Before we begin let us clarify the notation used. We will represent the
variables in the original space as yf and the variables in the new extended space as Xij9 zy, uijt where
l<i£ntje {0,1} and (z,u) represent temporary variables. Assuming allvariables are binary val
ued in the original space, we choose the following extended space, using 2nvariables:

Pefipition 0 (C): Consider anycube Cx x C2 x... x Cn inthe original space. The
corresponding vertex In the higherorder space Is given by
0(C) = (X1QXn -X2Q-... Xnl), whereXy = 1Ifje Cx andXtj = 0Uje Cj, e.g. The
cube Y2 •y3 over S3 is represented as the vertex (1,1,1,0,0,1) =X10 •Xn X20 •X21 •X3Q X3l
over bF.

Theorem 1.1: The mapping 0 is 1-1.

Proof: By contradiction.

Assume the converse.

Assume there exists a cube Cx x C2 x ... x Cnwhich maps toat least 2 points a and b.
Consider some variable Xy in which a,b differ.
Xi} = Ofora.
Xtj = lfork

This is a contradiction since

<X0. = (>)<*(/«<:,)

and

(Xiy=l) *>(/€<:,.)

and for any cube ClxC2x...xCn each Ct is a unique set Ct q {0,1} .

This implies that the mapping is uniquefor all non-null points.

This space is also known as thepositional notation andis commonly used forrepresenting multi-val
ued functions. Tounderstand this refer toFigure 2. of the extended space, alsocalledthe coded cube
spact(ccs). Everycubehasa unique representation in this space. Thefigure shows the mapping of
points in a 2-dimensional space to the4-dimensional extended space. In thefigure shown theminterm

An Exact Logic Minhnizer UsingImplicit Binary Decision DiagramBased Methods 11



The Extended space and the Implicant characteristic

Fo^i translates to the point X0o^oi^iox11and me cube Y\ translates to the point X^^X^^ in
the extended space.

Definition yF (x) The characteristic of function Fin the extended space %F as amapping from
B2n to B such that

XF(x) = 1<=>jc = {B(C)\(Cecube(F))}

The characteristic function ofF in theextended space is also called the implicant characteristic.

Theorem: 1.2: The characteristic function of Finthe extended space satisfies the following
property.

FG F G
X = X• X

Proof: By constructionfrom thedefinition ofx (x)

XF(x) = liffjce {e(C)\(Cecube(F))}.

(XFC(jc)=1)~

xe {0(C)| (Ce cube(F))and(Ce cube(G))}

<=> (xe {0(C)| (Ce cube(G))})
and

jc€ {©(C)| (Ce cube(F))}

<=> (xe xF) *and* (xex°)
FC F C

This implies that % = X 'X

Theorem: 1.3: If every prime of F+Gis a prime of For a prime of G then the characteristic
functions of in the extended space satisfies the following property.

X(F+C)=XF+3tC

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 12
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Proof: By constructionfrom the definition ofxF 00.

XF(x) =liffjc= {©(C)| (Cecube(F))}.

(XF+G(x) = l)<*

x = {0(C)| (Ce cube(F))or(Ce cube(G))}

Every prime ofF+G iseither aprime ofFor aprime ofG. If some cube is formed bycombining
cubes ofF and G, then it follows that there isaprime covering this cube, which is formed bycombin
ing cubes in F and G but is neither in F nor in G. This is a contradiction. Hence

<=> (*= {0(C)| (Ce cube(G))})
or

x = {0(C)| (Ce cube(F))}

ThusX(F+G)=x'+XG

Kev Theorem of implicant characteristic

Theorem 1.4:The characteristic of a function Fis given by

xF= (Xio^x7i)(xn=>xFri)
Proof: By case analysis on the implicantsoffunction F.

The above is equivalent to

/= (*io +XF0 (*/! +/'•)
We will prove this by induction. Let us consider the base case; i.e.

x° = o

and

An Exact Logic Minimizer Using Implicit Binary Decision DiagramBased Methods 13
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x' = i

Consider thecase when F is a function of a single variable. The arefour possibilities for thefunction
F.

F = Yi this gives xF = Xi0Xn = Xi0Xn +Xi(^n = Xi0 since the term xF = *,oX/iis anull cube.

F = ?i this gives x = Xi(pcn = XiQXn +Xi^Cn =Xn since the term xF = ^/o^nis anull cube.

F=0 and F=7 are covered by the base case.

The function F can be written as

F= YiFyi+?rF?+FYiF?!

which factors as

F = (F, +Fy.) • (K. +Fp)

hence translating the function to the extendedspaceand using theorem 1.2 we have

F Wi+F;) (Yi+Fr)
=>X =X ' -X

Using the fact that every prime of (Yt or Fp,) is either aprime of Yt or aprime ofF^ and asimilar
result for (7,- or FK)(excluding the null cube) and theorem 1.3 we have the following.

F Y ^v V Fy
=*X = (X' + X **)• (X' + X 0

=>xF= (^o+xF0(xn+xFyo

Lemma 1.1: LetCa, CPbe cubes of Bn, then

<?^d<*&(<?•) <©(cp)

where a < b if and only if there is no variable X:{, such that bY = 0 and av * 0

Proof: fly assuming one side ofthe given implication andproving the otherforboth directions ofthe
given implication

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 14
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<? =C^xC2x...xC^
Ca<zC*

=> (Vp)3k(kecl)(ketf)

=»VX..(((0((^))^) => ((0(C°))^))

=>0(C°)^0(CP)

Conversely 0 (C") £0 (CP)

=> Vfy (((0 (C*) )̂ => ((0 (Ca) )Xi))

=> (V/7)3*(*«CP)(*€C«)

=>CaGCP

Technical Functions over the CCS

The Null cube function and the Vertex function together, form the set of technical functions. Both
these functions do notdepend on theoriginal function in any way, butaremerely properties of the
extended space. The technical functions are functions of the Coded Cube Space alone.

The Null Cube space (<\> (x))

Theorem 1.5: The null cube set is given by

i

Proof:

Xi0 = 0=>0* Ct

Xn = 0 =» 1* Ci

An Exact LogicMinimizer Using Implicit BinaryDecision Diagram Based Methods 15
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(Oe CJandWe CJ =>Ct = 4

C, = <(>=> C = <|>

Conversely

C = <|> => 3/C,. = <|>

(C^^aOeC^anrfUeC,))

(1 € C^ => (Xn = 0) and (0 e C,) => (Xl0 = 0)

Adding the null cube to an expression does not add any vertices tothe function. However adding the
null cube toany function in this extended space makes the function monotonically decreasing inthis
space (Theorem 1.6) and hence gives it special properties which willbeexploited in order to calculate
the primes.

The Unateness Theorem

Theorem 1.6: For any function F,x + <J> is a monotonically decreasing function in the
extended space.

Proof: By using lemma I.I.

Consider any cube of the form Xi0 •Xn •A, Xi0, Xn e Supp (A)

Xi0 •Xais amember of the null space. Thus Xi0 •Xn •A = Xi0 •Xn •A+Xi0 •Xix.

In addition Xi0 •X^A QXi0 •Xn. Thus we have

•* io '^n' A = XiQ -Xil'A+ X/o •XixA +XiQ •Xn

= XiqA+Xiq-Xh

Thus XiQA is a cover for the cube.

Similarly XixA is acover for acube of the form Xi0 •XixA

Consider any cube of the form

•^iO '^n'A

An Exact Logic Minimizer Using Implicit Binary Decision DiagramBasedMethods 16
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This implies that Xj occurs inboth itscomplemented and itsnon-complemented form in the original
space. This implies that in the extendedspaceboth the cubes.

•*i0 *-^ii *^

*i0 Xn'A

occur. Hence if the null cubes are added to these expressions both the Xi0 and the Xn dependences
disappear.

Thus A is a cover for this cube.

We can repeat this sequence of operationson the cube A to remove all cubes which have a variable
present in thenon-complemented form and replace them with cubes in thecomplemented form alone.

It follows that each cube may bereplaced by another cube which depends only onthe complemented
literals.

Hence allcubes of the function may bereplaced by ones which have novariable in its non-comple
mented form. Hence there is a cover of thisfunction in the extended space which has only comple
mented variables [1].This implies that the function is monotonically decreasing in the extended
space.

The Vertex Function (x> (x))

Thevertex function is the extended space representation of all the vertices of the space Bn.

Theoremi .7:The vertices of the original function space in the new extended space are given
by

V(X) =Yl(Xi<rXi1+Xi0-Xil)
i

Proof: By construction using the observation that |q = 1for allvertex points.

The vertices of a function are those cubes C such that \C\ = 1.

ici = i <=> v/|q = i.

|q = 1<=>C,.= {0}.*r.C,= {1}

Iff |q = 1 then; e C^l -j* Ct
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The Minterm Imageand the Prime Image

Thus in the extended space for agiven i,the two C-'s of size 1are Xi0 •Xn and Xi0 •Xn. Hence
x> (X) isobtained by taking the product of all such q.

The Minterm Image and the Prime Image

Minterms (\i(x))

Theminterms for the function inthe extended space, are members of the vertex space which lie inthe
onset of the function. Thus for aterm tobeaminterm it must satisfy

xFm = 1

i.e. it belongs to theonsetof the function and it must belong to the vertex function.

v(X) = 1.

This results in the following expression for the minterms of theoriginal function, in theextended
space.

u(X) =XF(X)v(X)

Primes (n (x))

Inorder to calculate the primes of the function, in theextended space, theorems 1.8 and 1.9 are
required. We also needto understand theconcept of amaximal point.

Definition: x is a maximal point of the function F iff

Vz(ze F)(V/(z.ajc,.)).

Let Max(F) denote the maximalpoints of function F.

Theorem 1.8: Any cube pisa prime ofFiff ©(p) isamaximal point of xF

Proof:By construction using the definition of 0 (p)

If jc and z are cubes of a function

(Jt2z)=*(0(jc)£6(z))

(xe Prime(F)) <=>3z(zeF) (z*jc) (z2Jt)
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The Minterm Image and the Prime Image

From lemma 1.1 we have the following.

3z(zcF) (zsjc) «3z(0(z) £0(jt)).

The maximal points are those points such that 3z (0 (z) £ 0 (jc)).

Hence the primes of the function are the represented by the maximal points in the extendedspace.

The primes of the function are the represented by the maximalpoints in the extended space.

Theorem 1.9: Let Gbe any function, G monotonically decreasing in x, then

Max(Gx)^Max(Gx)

Proof:

G is monotonically decreasing in jc.

x-Ae G=>xAe G

where A is a cube, x e Supp (A). Thus

A e Gx=> A e G5

This implies

Max(Gx) ^Max(Gx)

Lemmal .2: Let G be any function, G monotonically decreasing, the maximum points of Gare
given by

Max (G) = x •Max (Gx) +x •Max (Gx) Gx

Proof: By contradiction.

I)

Max (G)^x- Max (Gx)+x> Max (Gx) Gx
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The Minterm Image and the Prime Image

a) (pe x-Max(Gx)) =>either(pe Max(G))p = xs when xe Supp (s) Or
3q((q = xr),r>s,qe Gx)

where xe Supp(r)

if (ptMax(G)) ihcn3q((q = xr),r>stqe Gx)

=* (re Gx)9r>s

=>se Max(Gx)

pex>Max(Gx)

a contradiction.

b)p e x •Gx •Max (G^) => either (p e Max (G)) p = xr where jc £ Supp (r)

Or3q(q>p) such that

1) either (q =xs),(s>r),(se G5) wherexe Supp (s)
this contradicts theassumption that r e Max (Gx)

2)Or (q = xs)y(s>r)

(s e Gx) =* (s e Gx) asG, c G5

Hence if (5>r) => (r g Majc (Gx) ) acontradiction

Orif (s = r) =» (r e Gx) a contradiction

=*Max(G) ^x-Max(Gx) +x-Max(Gx)Gx

ID

Max(G) QxMax(Gx) +x-Max(Gx)Gx

p e Max (G) =^either (p = xs) or(p= xs) where jc e Supp (s)

a) (/? = jcs) =>either(se Max(Gx))or(3r(re Gx) (r>s)) where jce Supp (r)
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The Minterm Image and the Prime Image

if se Max(Gx)then (3r(re Gx) (r>s))

=»jcr>/? =>pe Max(Gx)

a contradiction

b)Or (p=xs) =» (re G5)

if (re Gx) =^ (jcre G),(xr>p) => (p g Max(G)) a contradiction:

if(reMax(Gx)) => (3s(s>r),(se Gx)) =» (xs>p),(xse G) =» (pe Max(G))

a contradiction

=> Affljc (G) cjc •Max(Gx) + Jc •Majc (G^) Gx

hence proved.

Lemma 1.3: The maximum points of G are also given by

Max (G) = jc •Max(Gx) + x •Max (Gx•G*)

Proof: By using lemmal 2

I) Max (Gf •G,) e A^* (G^) •Gx

if 3p(3cpe G) (pe Max(GxGx)),(pe Max(Gx) Gx) xe Supp(p)

then (3<7(<7 =;«) (te GxGx),(t>p)) and3q(q=xt) (te Gf) (te Gx),(t>p)

this is a contradiction.

II) Mfljc (G5•Gx) aMajc (G*) •Gx

X3p(xpeG) (pe Max(GxGx)),(pe Max(Gi) -Gx) xe Supp(p)

then since Gx £ G^ and Max (Gx) £ G5

we have the statement 3q (q =xr) (r e Max (Gx Gx))y(r> p)

=> (re Gx) => (re Gx) =* (re Max(Gx) •Gx)
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Forming & Solving the Covering Problem

a contradiction.

Using lemmal.2 and the above, lemma 1.3 isproved.

The primes of F+D, namely the onset plus the don't care set of the function are computed in order to
form the coveringtable.

*/r+z>W =Max(XF+D)

Forming & Solving the Covering Problem

The Covering table is atable used to solve the problem of finding the minimalprime irredundant
cover ofafunction. The rows ofthis table correspond to the minterms ofthe onset ofthe function to
be minimized and the columns of the table correspond to the primes of the onset plus the don't care
set ofthe function. The entries ofthe table are 1ifaminterm is contained in aprime and 0otherwise.
We are looking for aminimum column cover of this table. Having calculated the primes and the min
terms of the function, we now formulate the covering problem asfollows.

1.Formconditions for minterm dominance, a (jc, z)
2. Remove dominated minterms.

3. Form conditions for prime dominance. P (jc, z)
4. Removedominatedprimes
5. Repeat steps 1-4 until no change is observed.
6. Solvethe reduced covering problem.

It must be specified that in the case ofcompletely specified functions, at the start of this process no
prime will dominate another. However after the first round of removal of dominated minterms some
primes begin to dominate each other.

It is important to note that since we are in theextended space, when we talkabout cubecontainment,
we mean cube containment in theoriginal space. However cube containment in theoriginal space
translates to the notion of maximality in the extended space, as shown in Lemmal.1. Thus the con
tainment operator £ is replaced by the maximality operator < , in theextended space, when
ever cube containment is required in the originalspace.Recall, that a ^ b if and only if there is no
variable Xi{, such that bY = 0 and ay * 0.
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A Quantifier Free Formulation for solving the covering problem

Minterm Dominance

The formula for computing the reducedcover is basedon traversingand comparingtwo minterm
BDD's in parallel. It is essentiallya means of comparing each minterm with every other mintermin
the set, in order to evaluate whether it may be dominated or may co-dominate the other.

Consider two minterms (u., |T). If u.' dominates u,, then every primecovering U.' alsocovers u,. This
emerges from the fact that in such a situation a cover for u.* is automatically a cover for \i. Now con
sider any variable x>t 3 (jc,- an'), (jc,. 2 U.). Since x{ 2 n) =» (n^u. and that contradicts theassump
tion that u, dominates \i\ since we have founda primecovering p.' but not covering u.. It must follow
thatfor all primes n such that (n £ u.'), (xta n). Theprocedures are based on thisinsight.

The reasoning given above helps give a means to compute the set of dominated minterms a'.

In order to compute the subset of a set of minterms that are covered by a given set of primes, the
MCover relation is used. The following theorem indicateshow to compute this function.

Lemmal .4: The subset of a set of minterms j! that are covered by a given set of primes n is
given by

MCover (u., k) = Jc •MCover (^-,n-+ nx) + jc •MCover ([Lx, 7tx)

Termination Conditions:

1. if (p. = 1,7t = 1) then return 1
2. else return 0

Proof: lBy Induction on the covering property

The setof minterms from theset |i which arecovered by thesetof primes n can becomputed as fol
lows.

1. Ifany variable* =7 (i.e.^x * 0) inany minterm belonging tothe set, then this minterm can only be
coveredby cubes which havejc= 7 andcannotbe covered by cubeswhich havejc=0 (From thecon
tainment argument on the previous page using Lemma 1.1). Hence minterms with jc=7 can only be
contained within primes with jc =7 (i.e. nx * 0).This gives the second term inthe expansion of
MCover.

2. Ifany variable x=0 in any minterm belonging to the set, then this minterm can only be covered by
cubes which have eitherx=0 orx =7. Hence minterms with jc=0 can be covered by primes with either
jc=0 orx-I. This gives thefirst term in theexpansion of MCover.
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This formulation is required for the computation ofthe minterms that are strictly dominated and co-
dominated using theorems 1.10 and 1.11.

Theorem 1.10: Theset of mintermsof a given coveringtable C (u., n), which are dominated
by some other minterm of the table are given by a' ([i, [i,n,0) where the relation a' can be
computed by

a'([i,\i',n,X) =

x •a' (p.-, p.'-, tc-+%,, Xt) +x•a' (u.-, v'x, %x, X2)

+x• a* (\lx, U.'- •MCover (\l*-,11;), nx, X3)+x- a' (\ix, uV, %%i X4)

where the Xterms are integers that represent checks to ensure that we are not checking any minterm
against itself. If X= 0 then Xl = X4 = 0 and X2 = X3 = 1, otherwise if X* 0 then
A, = A~ = A-j = A^ = X.

Termination Conditions:

1. If Li = 1, LL* = 1,71 = \,X = 1 then return l.else
2. return 0 if |i= 1, |T = 1, JC = 1,X* 1
3. return 0 if any bdd tree is a zero(0) BDD

Proof: By Induction on the dominance property.

Our formula for dominated minterms minterms isa function of three arguments (p., fi.', tc) . [i is the
set of minterms, |i.' is the set ofminterms that dominate them and n is the set ofprimes such that they
cover every minterm in the dominatingset. Loosely, k is the set of primes that have not been shown
tofail to cover the dominating set. The formula for dominated minterms is in the form of a compari
son function between two minterms, \i and \i'. Ideally we would like to be able to conclude whether
(i is dominated by u,' based on whether theircofactors with respect to some variable in their support
dominate each other. There are four such pairs of cofactors which may be compared. These are as fol
lows:

1. ([lx, u.1 ): In this case, no statement can be made at this level of the recursion. All the terms in
([ix, [i'x) need to be examined further. In addition only primes within nx potentially cover minterms

within (!' and hence k represents the set of primes which require to be examined at a later stage.
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A Quantifier Free Formulation for solving the covering problem

2. (p-, p'-): No conclusive statement can be made at this level of the recursion. All minterms in
(p-, p.*-) need to be examined further. The set of primes which potentially cover p.'- include all

primes such that jc 2 tc orx 3 n. Hence nx + jc- is the setofprimes which need tobeexamined fur
ther.

3. (p-, \i'x): Inthis case too, no statement as to whether p' dominates p can asyet bemade. All min
terms in (U-jj, p'z) need tobefurther examined. The setofprimes which may potentially cover p'x
include all primes such that jc 3 tc and hence nx is the set ofprimes which need to beexamined fur
ther.

4. (\ix, p'-): In this case it can bedefinitely concluded that if there exists a prime tc such that
7C- > p'-, then since we know that this prime can never cover px, the minterms in p'- can never dom
inate minterms in px. Atthis stage only those minterms in pf- which are not covered by any prime in
tc- need to be examined further. It canbeconcluded from theprevious statement that nx represents
the set of primes which require to be examined at a later stage.

If p. = 1, p* = 1,tc = 1,X = 1 then we can safely conclude that minterm p* dominates p because
all primes covering p' (namely tc) cover p and p * p'. However if any one of the (p, p\ jc) BDD's
are a Zero(O) BDD we can safely conclude that minterm p' does not dominate p

In a similar manner we get the formulation for Co-dominators 8.

Theorem 1.11: The Co-dominating minterms of a given covering table C (p, tc) are given by
8 (p, p, tc, 0) where the relation 8 can be computed recursively as

8(p,p\TcA) =

x •8 (p^, p^, tcx, Xx) +x •8(py p'p tc- + nx, X4)

+x•8(p-•MCover (p-, tc^) , p'x, tcx, X2) +x•8(p^, p'-•MCover (p^, tc-) , tcx, X4)

where the Xterms represent checks toensure that we are not checking any minterm against itself. If
X= 0then Xt = XA = 0and X2 = X3 = 1, otherwise if X*0then X1 = X2 = X3 = X4 = X.

The termination conditions in this recursion are identical to the recursion for a'

Proof: ByInduction on thedominance property.
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As inthe previous case, there are four cofactors pairs to check.

L (My H'x): In this case, no statement can be made at this level ofthe recursion. All the terms in
(My V'x) need to be examined further to check for co-dominance. In addition only primes within %

potentially cover minterms within p'̂ and \i-t hence tcx represents the set ofprimes which require to
be examined at a later stage.

2. (Uy p'^): No conclusive statement can be made atthis level ofthe recursion. All minterms in
(Mj? M'jf) need to be examined further. The set of primes which potentially cover p'- and p- include

all primes such that x2 tc or x3 tc. tcx+tc- is the set of primes which need to be examined'further.

3. (u.i, p^): In this case it can be definitely concluded that ifthere exists aprime tc such that
tc- £p., then since this prime may never cover any minterm in the minterms in p' , p-can never Co-
dominate minterms in p'̂ . At this stage only those minterms in p^ which are not covered by any
prime in tc^ need to be examined further. From this we may conclude that the set ofprimes which
may potentially cover p'x and p- include all primes such that jc 3 tc and hence tcx is the set of primes
which need to be examined further.

4* (My M'jf) •In this case itcan be definitely concluded that ifthere exists aprime tc such that
tc- >p^, then the minterms in p'̂ can never Co-dominate minterms in p^. At this stage only those
minterms in p'- which are not covered by any prime in tc- need tobe examined further. It can be con
cluded from the previous statement that nx represents the set ofprimes which require to be examined
at a later stage.

We do not need to add all the Co-dominating minterms ofatable; it suffices to have only one repre
sentative Co-dominator of each pair of Co-dominators. One must note that if minterm a Co-domi
nates another minterm b, minterm b Co-dominates minterm c and as a result a Co-dominates c, then
any one of the 3 minterms suffice torepresent the set. However since Co-dominance is apairwise
relationship, it is not possible to choose fromeach pair (a,b), (b,c), (a,c), a minterm to add. Instead
however it is alwayspossibleto choosea minterm to deletefrom eachpair,basedon sometie-break
ingcriteria; forexample choose to remove the minterm with thefirst complemented variable asper
the BDD variable ordering. Thus we could choose mintermb from (a,b),minterm c from (b,c) and it
must follow that we choose minterm c from (a,c) to delete from the set of all Co-dominators. This

leaves minterm a as the representative Co-dominator.

In order to compute this set of Co-dominators to delete we modify the algorithmfor the computation
of Co-dominators in order to take into account the tie-breaker. To compute the Co-dominators_to_de-
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lete 8' we easily incorporatethe following changes in theorem. Wechangethe choiceof Xas follows:
If X= 0 then Xl = X4 = 0 and X2 = 1, X3. = -1, otherwise if X* 0 then
A. j = X2 = X3 = A.4 = A,. This results in the choice ofone Co-dominator from each pair.

The final set of minterms to retain at each pass of the Quine-McCluskey algorithm include the strict
dominatorsplus some Co-dominators. In order to obtain the strictdominators we need to compute the
set of minterms which are dominated by some other minterm of the set and subtract these from the set
of all minterms in the covering table. We also need to add some subset of the Co-dominators to this
set of strict dominators to get a reduced cover for the function. The final expression for minterms to
keep at each pass of the reduction algorithm is obtained as follows.

Mn+i = Mn-a'(^^^0)+8(pn,pn,Tcn,0)-8'(pn,prt,Tcn,0)

Prime-dominance

The conditions for Prime dominance can be derived in a similar manner to Minterm dominance. Con

sider two primes (tc,tc') . If tc is dominated by tc1 , then every minterm covered by tc is also covered
by tc' . Nowconsiderany variable jc,- 3 (xt3 tc') , (jc- 3 rc) •Sincec,- 3 M>) => (tc'^u and that contra
dictsour assumption that tc is dominated by tc' ,it must follow thatfor all (p ^ tc) , (jc,- 3 u.). Thecon
ditions for prime dominance can be reasoned in a manner analogous to the conditions for minterm
dominance.

In order to compute the subset of primeswhichcover a given set of mintermsthe following lemmais
used. This lemma is used by theorems 1.12 and 1.13 to compute the set of Primes which are domi
nated and Co-dominated.

kejnma_1.5: The subset of a set of primes tc that cover a given set of minterms p is given by

PCover (p, tc) = x •PCover (p^, t^) +jc •PCover (p-+ px, tc^)
1. if (p = 1,TC= 1) then return 1
2. else return 0

Proof: lBy Induction on the covering property in the extended space.

1. If some prime within the set ofprimes tc has variable jc=0 (i.e. n-* 0), then this prime may only
cover those minterms which have jc=0. It can never contain a minterm with x-I. Thus primes with
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x=0may potentially cover only minterms with variablex=0. This results in the first term inthe
expansion PCover.

2. Ifsome prime has variablex=I (i.e %x *0), then this prime may cover minterms with either jc=0 or
jc=7. This returns the second term in the expansion ofPCover.

Theorem 1.12: The setofPrimes ofagiven covering table C(p, tc) that are Dominated by
some other primein the set, are given by p' (tc, tc, p,0)

P'(TC,TC\p,X) =

X•P' (TCp TC'-, p-, Xx) +X •p' (TC-, TC^, p,, X2)

+Up,(TCx.PC^r(px,Tcp,TC,x-,pjc,^)+a:.p'(Tcx,Tc'jc,p-+pjtA4))

where the Xterms represent checks to ensure that we are not checking any prime against itself. If
X=0then kx = X4 = 0and X2 = X3 = 1, otherwise if X*0then X1 = X2 = X3 = X4 = X.

Thetermination conditions and thecomputation of the Xvariables are identical to thecase of recur
sion a*

Proof: lBy Induction on the Dominance property.

Similarly we can compute the Co-dominators, A as follows.

Theorem 1.13: The set of Prime Co-dominators ofagiven covering table C(p, tc) are given by
A(tc, tc, p,0) where

A (tc, tc', p, X) =

x •A(tc-, tc'5, p-, Xx) +x •A(tc-, tc'j •PCover (\ix, n\), p^, X2)

+ (x-A (tcz, tc'̂ , p-+px, X4) +x•A(nx •PCover (Px,tcx), tc'-, px, A3))

The termination conditions and the computationof the Xvariables are identical to the case of recur
sion a*

Proof:JBy Induction on the Dominance property.
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As before X terms represent checks to ensure that we are not checking any prime against itself.The
termination conditions and the computation of the Xvariables are identical to the case of recursion a*

The computation of the prime Co-dominators to delete follows along the lines of the minterm analy
ses. Thus in order to compute the prime Co-dominatorsto delete A' (tc, tc, p, 0) we need only modify
the computation of Xas follows: If X= 0 then Xl = X4 = 0 and X2 = 1, A,3 = -1, otherwise if
X* 0 then Xx = X2 = X3 = X4 = X.

The set of primes remaining after each pass of the reduction are given as

*n+l = W«-P'(^^Mn,0) +A(TCn,TC„,Prt,0) -A'(TCn,TCB,Pn,0)

Non of the above formulations require quantifier operations. As in the case of most bdd traversal
based computations hashing is necessary in order to make this method efficient.

Partially Quantifier free formulation for the Dominance Relations

The conditions for Prime and Minterm Dominance can also be made partially quantifier free. The
advantage of this approach is that it avoids the excessively large number of recursions that the
approach in the previous section entails. On the other hand it bypasses the need to build the interme
diate BDD's in the equations for dominance (section 8), which tend to blow up in size.

Consider two minterms (p, p'). If p dominates p\ then every prime covering p also covers p\
Now consider anyvariable x-t 3 (Jc,- 3 p), (jc,- 3 p'). Since (jc,- 3 tc) => (TC^p') andthatcontradicts
the assumption that p' is dominated by p, it must follow that for all primes tc such that
(TC^p), (jc^tc).

Theorem 1.14: The condition for minterm dominance rj (jc, z) is given by
r\(\i(x),\x'(x)tn(x)) where

Ti(p,p\Tc) =

xz •ii (ppp^ it- +nx) +xz •ri (Pi•Cover (p?tc,-) , \l\, tcx) +xz-i\(p,,p'^ nx) +xz •r\ (px, p',, nx)

The termination conditions in this recursion arethefollowing

If = 1, p' = 1, tc = then return 1, else

return 0 if any bdd tree is a zero(0) BDD

An Exact Logic Minimizer Using Implicit Binary Decision Diagram Based Methods 33



Partially Quantifier free formulation for the Dominance Relations

jProof:By Induction on the dominance property in the extended space.

Our formula for minterm dominance is afunction of three arguments (p, p', tc) . p is the set of min
terms '̂ is the set of minterms that dominate them and tc is the set ofprimes such that they cover
every minterm in the dominating set. Loosely, tc is the set ofprimes that have not been shown to fail
to cover the dominating set. The formula for dominated minterms is in the form ofacomparison func
tion between two minterms, pand p'. Ideally we would like to be able to conclude whether pis
dominates p' based on whether their cofactors with respect to some variable in their support domi
nate each other. There are four such pairs ofcofactors which may be compared. These are as follows:

1. (M*, M'x): In this case, no statement can be made at this level ofthe recursion. All the terms in
(My M'x) need to be examined further. In addition only primes within tcx potentially cover minterms

within px and hence tcx represents the set of primes which require to be examined at alater stage.

2. (Py p^): No conclusive statement can be made at this level ofthe recursion. All minterms in
(Mi» M'jf) need to be examined further. The set ofprimes which potentially cover p-include all

primes such that x3 tc or x3 tc.Hence tcx +tc^ is the set ofprimes which need to be examined fur
ther.

3* (My M^) •' In this case itcan be definitely concluded that ifthere exists aprime tc such that
tc- £p-, then since we know that this prime can never cover p'̂ , hence the minterms in p5 can never
dominate minterms in p'x. At this stage only those minterms in p. which are not covered*by any
prime in tc- need to be examined further. It can be concluded from the previous statement that tc rep
resents the set ofprimes which require to be examined ata later stage.

4. (Pj, p'̂ ): In this case too, no statement as to whether p' dominates p can as yet be made. All min
terms in (p-, p'x) need to be further examined. The set ofprimes which may potentially cover p
include all primes such that or 3 tc and hence tcx is the set ofprimes which need to be examined fur
ther.

If p = 1, p' = 1,tc = 1,A.= 1 then we can safely conclude that minterm p' dominates p because
allprimes covering p' (namely tc) cover p and p * p'. However if any one of the (p, p', tc) BDD's
are a Zero(0) BDD we can safely conclude thatminterm p' doesnotdominate p

Consider two primes (tc,tc') . If tc dominates tc', then every minterm covered by tc' is also covered by
tc. Now consider any variable jc,- 3 (jc; 3 tc) , (jc- 3 tc') . Since (jcf 3 M) => (*c£p) and that contra
dicts ourassumption that tc dominates tc',it must follow that forall (p ^ tc') , {xl 3 p).

Theorem 1.15: The condition for prime dominance (jc, z can also be formulated as
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Y(tc(*),tc'(x),p(x)) where

Y(tc,tc',p) =

xz •Y(tc-, Tc*f, p-) +xz •Y(tc^, tc'z •Cover (\ix, tc'x), pf) +xz•Y(tcx, tc'-, p-) +xz. Y(tcx, tc'2, \ix+\ix)

The termination conditions in this recursion are the following

If tc = 1, tc* = 1 then return 1, else

return 0 if any bdd tree (tc, tc') is a zero(0) BDD

Proof:* By Induction on the dominance property

Our formula for prime dominance is a function of threearguments (tc, tc', p). tc is the set of
primes, tc' is the setof primes thataredominated by them and p is the setof minterms such that they
are covered by every prime in the dominating set. The formula for prime dominance is in the form of
a comparison function between primes, tc and tc'. Ideally we would like to be able to conclude
whether tc is dominates tc' basedon whether theircofactors with respect to somevariablein their
support dominate eachother. Thereare foursuch pairsof cofactors which may be compared. These
are as follows:

1. (tcx, tc'x) : In this case, no statement can bemade at this level of therecursion. All the terms in
(tcx, tc'x) need to beexamined further. The set of minterms which are potentially covered by tc

include all minterms such that x3 p orx3 p. Hence px + p- isthe set ofminterms which need to be
examined further

2. (tc-, n'-):No conclusive statement can be made atthis level ofthe recursion. All primes in
(nx*n'*) neec*to be examined further. In addition the set ofminterms which are potentially covered
by tc include minterms such thatx 3 M; i.e.weexamine p-

3. (tc-, tc'x) : In this case, ifthere exists aminterm p such that x3 p, then we definitely conclude that
tc does not dominate tc'. Thus we only examine further those primes oftc' which do not satisfy this
condition. We examine minterms such that Jc 3 M, i.e. minterms p-.

4. (tcx, tc'-) : In this case we can make no conclusive statement at this stage and hence need to exam
ine all primes ata successive level in the recursion. All minterms covered by tc are included in min
terms such thatx 3 M» i-e-weexamine minterms in the set p-.
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If tc = 1, tc' = 1,X = 1 then we can safely conclude that prime tc dominates tc' because there does
not exist a minterm covered by tc' but not by tc. However ifany one of the tc or tc' BDD's are a
Zero(O) BDD wecan safely conclude that prime tc does notdominate tc'.

Having computed these we can substitute the expressions back in the equations for Quine-McCluskey
reduction in order to solve the covering problem. The method remains the essentially same.

Handling Multiple Output Functions

In order to handle multiple output functions, we need to add additional bits ofdata corresponding to
the output part. We need one additional bit ofdata for each multiple output. Thus inthe extended
space afunction ofminputs and noutputs isrepresented by 2m+n bits. The occurrence ofthe/'1 out
put bit implies that the/* output part exists for the given input. This leads to complete representation
in the extended space as shown.

xF =THxoj=>xFj)
j

where Fj is they'* output and X0J-is the variable in the extended space which represents it.

The vertex space and the null cube need to modified inorder totake into account this output part A
point is a member of the null space iffit isa null initsinput or it is a null in itsoutput part. It is an out
putnull iffall the output variables are turned off, i.e. they are all in their complemented phase. This
would imply that nooutput part (function) ispresent. Hence thenull cube is given by

yfinal ~" youtput yinput

where thenull cube for the inputpart is as previously calculated and thenull cube for theoutput part
is given by

^output = II**;'
j

The new vertexfunction now includesboth an inputpart and an outputpart.The point is a point in the
vertex function if it is a point in the input vertexand the output vertex. It is a point in the output vertex
function iff exacdy one output variable is turnedon. This is given by

1) =1) • D
final output input

where the input vertex space is as calculated and the outputvertex space is given by
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^output ~* Zj^oji\Xoi

The remaining computations remain identical.

BDD Representation and Implementation of functions

All the functions discussed in this paper are handled as BDD's. The BDD for the onset plus the don't
care set and for the function alone are used as input. The characteristic BDD in the extended space /
max points is created by writing a recursive routine which evaluates the BDD in terms of the BDD
node and the BDD's for the characteristic for the left branch and the right branch at each BDD node.
A similar technique is used for prime computations. Thus at each stage the BDD of the results is the
merged result of the BDD's for the left and right branches. It can be shown by analysis that the sizes
of the null space and vertex space BDD's are essentially linear in the number of variables, thus if the
extended space representation is of manageable size, it follows that so are the prime and minterm
BDD's.

In order to make this calculation more efficient a memoization is used. At each node first a check is

made as to whether the node has been traversed; in that event it would have been stored in a look_up
table and a lookup of the table yields theanswer. In theothercase it is computed and the computed
BDD is inserted into the table using the BDD node as the key to insert the BDD. This method of hash
ing to avoid further computation is also used for the prime computation routine. Each node needs to
be computedjust once. This technique relies heavily on thefact that a BDD is a canonicalform and
as a result each node in the BDD is unique[2].

In order to implement themapping intotheextended space, theoriginal BDD is traversed recursively,
at each level the BDD of the extended function is written as a combination of the BDD's of the

extended representation of the left branch and the right branch. This is a recursive formulation for the
extended BDD in the form

extend (f) = (Xi0 + extend (f=)) (Xn + extend (fx))

This recursion terminates when the remaining BDD iseither a"0"BDD ora"1" BDD. The pseudo
code for the calculation of the extended BDD is as follows:

extendff)

if(look_up(f,value)) return value
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else if (terminal_yalue(f,value)) return value

else

Yj= top_variable(f)

f_nex = extend(leftjbranch(f))

fjex = extend(rightj>ranch(f))

.return ((xi0+fjex)(xu+fjiex))

Inorder todoprime computation we use the equation

Max (G) = jc •Max (Gx) +x •Max (Gx •~GX)

This formulation is recursive and based on computing the result for the left and right branches ofthe
BDD first. Again ahash table is used to hash the value of the result BDD with the node as key.

As a resultthepseudo-code for this computation becomes:

Max(G)

iflook_up(G,value) return value

else if (terminal_yalue(f,value)) return value

else

xij = topvariable(G)

maxnx = Max((left_branch(G)) andnot(right_branch(G))

maxjc = Max(right_branch(G))

return(bddjte(xij, maxjc, maxjtx))

Wetraverse the BDD node by node. At eachpoint we first check if the max point for a node has
already been calculated, in such an event we merely perform a lookup of the hash table. If however it
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has not been computed it is computed using the above equation and then the value is stored in the
hash table. This ensures that we compute the "Max" BDD at each node exacdy once.

The Quine-McCluskey algorithm uses the BDD AND,OR and SMOOTH operators to implement. It
is a straightforward implementation which essentially uses expressions given in section 7. to form and
segregate the minterm and prime dominators by using BDD AND for all logical ANDs, BDD OR for
all logical ORs and BDD-SMOOTH for all the existentialquantifiers,in the aforementionedequa
tions. Thus the pseudo-code for the algorithm becomes:

Quine-McCluskey-reduction(primes,minterm)

Whilefurther reductionpossible

minterms =bddjznd(minterms,bddjiot(minterms_dominated(minterm,primes)))

primes = bdd_and(primes,bdd_not(primesjtominated(minterm,primes)))

primesjtominatedfminterms,primes)

gammaJ=bMjiot(bMjindjmoothjNithjiyars(mintermsJ^
rs_in_z_vars))

gamma_x_dom_z = ba\ijand(primes_injKjvars,primesJn_z_vars,gamma_I)

gamma_z_domjc = bdd_swap_x_vars_z_vars(gamma_x_dom_z)

beta = bdd_and(gamma_dom_z, bdd_or(bdd_not(gamma_z_dom_x), x_yars_tie_z_vars))

return(beta)

minterms_dominated(minterms,primes)

eta_I=bdd_not(bdd_and_smoothjvith_uj>ars(minterrnsJnjt_varsM_varsJn_x^^^ i
n_z_yars))

eta_x_dom_z = bddjand(mintermsjn_xj>ars,minterms_in_z_vars,eta_I)
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eta_zjbm_x =bdd_swap_x_yars_z_vars(eta_x_dom_z)

alpha =bddjind(etajbm_z, bdd_or(bdd_not(eta_zJbm_x), x_yars_tie_z_vars))

return(alpha)

The Quantifier free dominance relations are computed using the formulae given in the relevant sec
tions. This formulation is recursive and based on computing the result for the left and right branches
of theinput BDD's first. Again a hash table is used to hash thevalue of theresult BDD with thenode
as key.

The pseudo code for Minterms dominated at asingle pass ofthe Quine-McCluskey algorithm is given
by thefollowing. Theotherterms cansimilarly derived.

MintermsJbminated p, p\ tc, X()

iflook_up((\L, p', tc, X),value) return value

else if (terminal_yalue((^ p*, tc, X),value)) return value

else

xij = top_variable((\i, \i',n))

mdjix=bdd_or(MintermsJbminated (p^ p'^ tc-+%x, Xx)tMintermsJbminated

mdjc =bdd_or(MintermsJbminated (px, p'f •MCover (p'-, tc-) , tcx, X3)MintermsJbminated

return(bddJte(Xij, md_x, mdjix))

Wetraverse the BDD's for primes and mintermsin parallel node by node. At each point we first check
if the dominancerelation for a set of nodes hasalready been calculated, in such an event we merely
perform a lookupof the hash table. If however it has not beencomputed it is computed usingthe
aboveequation and then the value is stored in the hashtable.
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Name Inputs Outputs
mT F IF

m4 3 16

markl 20 31

max1024 10

max128 24

max46

max512

misg 56 23

rnish**" M 43

misj 35 14

mp2d 14 14

newapla 12 10

newaplal 12

newapla2

newbyle 8

newcond 11

newcplal 16

newcpla2 10

newcwp

newill

newtag 3

newtpla 15

newtplal 10

newtpla2 10

nexcplal 23

opa 17 59

)82 14

K>pejom 48

rd53

rd73

rd84 I

rise I 31

ryy6 16

sex 14

sqn

il 21 23

[2 17 16

Primes

wr

570

208

1278

♦69

49

535

5499491840

1.124375E15

139103

♦69

113

31

I

72

170

38

23

11

3

40

23

191

477

48

593

51

211

533

46

112

99

75

15135

233

Minterms

nor

2134

7340912

3232

1616

52

1616

1.054609E18

4.4149420E29

2.561545E11

118544

10421

380

3

704

1317"

282

42

284

234

4484

12

508

3506

732072

$1

1614

42

192

411

m

39420

1848

144

13956096

167920

Primes After Minterms

Reduction

(Cyclic Core)jtion
ST

246

126

954

131

46

297

59

32

35

180

17

10

J

31

40

19

11

11

I

23

39

150

21

130

31

127

255

28

112

21

38

226

52

Time

(in sec)

using

old

Order

Time

using

Aziz's

Order

after Reduc-

Primes

Espre

sso

Mini-

mum

3T SF ragr I22T

240 101 413.6 446.6

1646 19 5514.4

966 261 1046.5 1179.0

126 78 336.5 450.5

46 46 1.8 1.9

304 133 315.5 279.6

59 66.8 164.2

$2 912.1 986.0

35 13.7 14.4

290 30 74.2 96.2

17 17 5.1 12.5

10 10 1.1 1.1

0.2 0.2

J 8 02 0.2

31 31 7.4 7.4

40 38 26.6 25.3

19 19 4.0 4.2

11 11 0.7 0.8

11 S 0.5 0.5

3 8 0.2 0.3

23 23 2.8 3.4

).5 0.3

1.5 1.4

39 39 29.1 40.5

150 77 791.4 1048

21 21 5.7 5.0

121 59 1202 1232

31 31 ).5 3.5

127 127 1.8 1.6

255 255 2.6 2.6

28 28 10.8 11.1

112 112 ).5 3.5

21 21 13.1 18.6

38 38 5.6 7.1

261

52

100 2073.4

52 52.4

2073.4
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Same Inputs Outputs Primes Vlinterms

Primes After Minterms

Reduction after Reduc-

(Cyclic Core) tion

Primes

Espre

sso

Mini

mum

Time

(in sec)

using

Did

Order

Time

using

Aziz's

Order
t3 12 i M 40% 53 33 33 U 7.5
14 12 8 174 982 16 16 16 24.2 30.5
tms 3 16 162 790 34 34 30 29.5 28.4
vg2 25 I 1188 51570752 110 110 110 55.8 239.2
vtxl 27 5 1220 133035072 110 110 110 227 172.9
wim 4 7 25 51 12 12 9 1.3 2.0
xldn 27 5 1220 133035072 110 110 110 229.4 285.5
x6dn 39 5 916 567727953920 84 34 {1 2260.4 2349.3
x9dn 27 7 1272 133041984 120 120 120 193.4 371.6

•• refers to <aneofes]E>resso's 20 hard problems.

b."computed" implies the minterms could notbecounted as they exceeded thefloat size limitation.

As reported earlier the problem size isvery much a function ofthe ordering technique used. The next
table (table 2.)reports the sizes of the BDD's forthe extended space representation, the Prime BDD
and the minterm BDD, as well as the number of inputs and Outputs. Forany BDD based method it is
these numbers which are most representative of the complexity of theproblem.

Malik's "level" heuristics [14] wereoriginally used to order the variables to build the BDD's in the
original space. Inthe extended space the new input variables are ordered according tothe order ofthe
corresponding variables in the original space. The x,u and zvariables are interleaved. The output vari
ables were ordered first. Thus theordering in the extended space puts theoutput variables first and
then the input variables. All x,u and zvariables are interleaved. After further experimentation we
found that amuch better ordering was achieved by ordering the support ofeach output part according
to the aforementioned level heuristics and ordering each support set by its size. The output variables
were ordered after their supports. This isessentially anapplication of [11] forordering combinatorial
circuits. All x,u and zvariables were again interleaved. The Last ordering technique tried out was an
adaptation of the technique described in [12]. This method isbased onchoosing an ordering such that
the partition induced reduces communication complexity and is referred toasAziz's Ordering[12].
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TABLE 2.Sizes of ExtendedSpace, Prime and Minterm BDD's

Name Inputs Outputs

Nodes in

extended

BDD (F+D)

Nodes in

extended

BDD (F)

Sizeof

Prime Bdd

Sizeof Min

term Bdd

al'2 16 47 1432 1432 919 877
alcom 15 38 733 733 619 568

alul 12 8 543 543 742 509

alu2 10 8 3345 6035 1761 1291

alu3 10 8 4480 6745 2057 1544

amd 14 24 4272 4272 3288 1171

apla 10 12 791 548 645 311

blO 15 11 25678 18093 3693 1589

bll 8 31 663 705 616 489

bl2 15 9 777 777 969 513

b2 16 17 12416 12416 11050 2256

b3 32 20 31459 25476 9890 3415

b4 33 23 64474 39404 10601 39404

b7 8 31 663 705 616 489

b9 16 5 2369 2369 1756 796

bcO 26 11 55242 55242 22388 2712

bca 26 46 17276 17893 5541 4128

bcb 26 39 9698 9597 3572 2802

bcc 26 45 10282 9114 4348 3202

bed 26 38 11680 9277 3192 2684

brl 12 8 632 632 398 339

br2 12 8 269 269 271 242

chkn 29 7 6866 6966 2862 1583

clpl 11 5 41 41 70 89

cps 24 109 47524 47524 31111 9530

del 4 7 119 119 130 82

dc2 8 7 536 536 484 348

dekoder 4 7 90 118 145 86

dkl7 10 11 594 500 527 238

dk27 9 9 217 226 304 156

dk48 15 17 766 785 821 446

exl01O*-a 10 10 63490 * 12693 40559 2620

ex4«" 128 28 3518 3518 2772 2495

ex5 8 63 61216 61216 60118 2847

ex7 16 5 2369 2369 1756 796

exep 29 63 153884 153884 6016 11128
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Name Inputs Outputs

Nodes in

extended

BDD(F+D)

Nodes in

extended

BDD(F)

Size of

Prime Bdd

SizeofMin

term Bdd

exp 8 18 2416 1753 1594 677

exps 8 38 12220 9870 7278 2887

gary 15 11 7503 7503 3840 1647

ibm«* 48 17 8101 8101 16053 4937

inO 15 11 4690 4690 4304 1711

inl 16 17 12416 12416 11050 2256

in2 19 10 4225 4225 3698 - 1912

in3 35 29 12133 12133 10441 3699

in4 32 20 21071 21071 9763 3580

in5 24 14 11121 11121 6772 2905

in6 33 23 6687 6687 4237 1675

in7 26 10 6217 6217 4096 1402

inc 7 9 657 553 675 277

intb 15 7 50404 50404 10845 3042

jbp«- 36 57 706942 706942 78955 26237

lin.rom 7 36 15894 15894 11070 1987

luc 8 27 1920 1920 2045 782

ml 6 12 380 380 339 196

m2 8 16 1257 1257 1430 585

m3 8 16 2456 2456 1694 686

m4 8 16 3419 3419 4139 1181

markl 20 31 1441 984 1872 775

max1024 10 6 4430 4430 3484 1324

max128 7 24 3549 3549 3796 1034

max46 9 1 398 398 202 199

max512 9 6 2448 2448 2090 840

misg«* 56 23 432 432 784 930

mish** 94 43 13749 13749 8808 6577

misj** 35 14 364 364 503 605

mp2d - 14 14 441 441 610 326

newapla 12 10 243 243 302 235

newaplal 12 7 98 98 103 109

newapla2 6 7 63 63 £0 60

newbyte 5 8 79 79 70 70

newcond 11 2 348 348 246 188

newcplal 9 16 1198 1198 777 462

newcpla2 7 10 301 301 282 197

newcwp 4 5 51 51 66 56

newill 8 1 58 58 56 55
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Name Inputs Outputs

Nodes in

extended

BDD (F+D)

Nodes in

extended

BDD(F)

Size of

Prime Bdd

SizeofMin

term Bdd

newtag 8 1 23 23 35 45

newtpla 15 5 342 342 262 210

newtplal 10 2 126 126 94 80

newtpla2 10 4 306 306 153 118

newxeplal 9 23 989 989 883 407

opa 17 69 10784 10784 9285 4129

p82 5 14 639 639 438 292

pope.rom 6 48 6890 6890 7551 1573

proml 9 40 113079 113079 49680 10192

prom2 9 21 33929 33929 20309 4869

rd53 5 3 80 80 74 55

rd73 7 3 161 161 151 96

rd84 8 4 247 247 228 125

rise 8 31 723 723 646 506

ryy6 16 1 58 58 66 80

sex 9 14 560 560 623 404

shift** 19 16 7548 7548 22740 6808

signet** 39 8 933361 933361 228543 57093

soar.pla*" 83 94 59478 59478 37854 7702

spla 16 23 38136 38345 19494 11319

sqn 7 3 386 386 297 195

tl 21 23 16037 16037 11352 2641

t2 17 16 1647 1307 1419 969

t3 12 8 655 655 430 280

t4 12 8 598 699 740 386

U«* 47 72 194965 194965 79477 24612

tms 8 16 860 860 1083 407

tslO** 22 16 18757 18757 46031 46139

vg2 25 8 1079 1079 582 484

vtxl 27 6 4098 4098 1398 883

wim 4 7 83 92 129 80

xldn 27 6 4098 4098 1398 883

x2dn**- 82 56 23889 23889 18843 7885

x6dn 39 5 2184 2184 5219 2717

x7dn«* 66 15 1084457 1084457

x9dn 27 7 4214 4214 1410 888

xparc** 41 73 475670 475670 133084 36437
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a. **refersto oneof espresso's 20 hard problems.
b."computed" implies theminterms could notbecounted as they exceeded thefloat size
limitation.

Forcompleteness we alsoreport thenext table. This table (table 3.)gives thenumber of Primes and
Minterm computed foreach example, as well asthe time taken for their computation.

TABLE 3.Primes and Minterms

Name Primes Minterms

Time to

compute

ai2 9179 191296 2.7

alcom 4657 88064 1.6

alul 780 15872 0.6

alu2 434 7422 3.5

alu3 540 3903 3.7

amd 457 35072 5.1

apla 201 157 1.8

blO 938 72912 20.5

bll 44 836 1.9

bl2 1490 163072 0.9

b2 928 328488 18.3

b3 3056 1.3076E10 54.3

b4 6455 4.9942E10 78.7

b7 44 836 1.9

b9 3002 133704 1.8

bcO 6596 284933120 112.6

bca 305 2778112 61.3

bcb 255 2417664 31.9

bee 237 2477056 88.2

bed 172 1699840 31.1

brl 29 114 0.6

br2 27 125 0.4

bw 108 281 7.6

chkn 671 788036864 5.3

clpl 143 6713 0.1

cps 2487 124362704 69.8

del 22 47 0.1

dc2 173 442 0.5

dekoder 26 49 0.3

dkl7 111 61 1.5
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Name Primes Minterms

Time to

compute

dk27 82 20 0.8

dk48 157 42 5.0

duke2 1044 8464768 20.9

e64 65 36893488E20 11.3

exlOlO ** 25888 1471 207.0

ex4«* 1.8348E14 computed 10.3

ex5 2532 7620 108.0

ex7 3002 133704 1.8

exep 219 211536128 180.4

exp 238 297 5.5

exps 852 1623 32.6

gary 706 84196 5.9

ibm«* 1047948736 1.5523729E15 17.5

inO 706 84196 5.5

inl 928 328488 18.2

in2 666 686336 4.9

in3 1114 1.7485E11 23.2

in4 3076 1.3295E10 28.6

in5 1067 24912896 11.9

in6 6174 4.9950E10 7.0

in7 2112 220769280 5.1

me 124 281 1.1

intb 6522 101720 28.7

jbp«- 2496809 8.O095268E11 888

linjom 1087 2306 21.2

luc 190 2198 2.5

ml 59 218 0.4

m2 243 831 1.5

m3 344 1105 2.3

m4 670 2134 4.4

markl 208 2098128 15.8

maxl024 1278 3232 5.1

max128 469 1616 4.1

max46 49 62 0.4

max512 535 1616 2.3

rnisg** 6499491840 1.054609E18 1.9

misj«»* 139103 2.561545E11 0.8

mish«** 1.1243753E154.1494202E29 17.5

mp2d 469 118544 1.3

newapla 113 10421 0.3
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Name Primes Minterms

Time to

compute

newaplal 31 380 0.2
newapla2 7 7 0.1

newbyte 8 8 0.1

newcond 72 704 0.3

newcplal 170 1317 1.0

newcpla2 38 282 0.3

newcwp 23 42 0.1

newill 11 142 0.1

newtag 8 234 0.0

newtpla 40 4484 0.3

newtplal 6 12 0.1

newtpla2 23 608 0.3

newxeplal 191 3506 1.2

opa 477 732072 23.4

p82 48 81 0.5

popejom 593 1614 12.3

proml 9326 8306 170.6

prom2 2635 3027 39.1

rd53 51 42 0.2

rd73 211 192 0.7

rd84 633 411 1.3

nsc 46 844 1.2

ryy6 112 19710 0.1

sao2 184 747 1.2

seq 7457 9.8390465E12 983.8

sex 99 1848 0.6

signet •»• 78735 1.83009529E12 301.1

shift** 165133 4194304 35.4

soar.pla •* 3.3047729E14 1.7458651E26 239.6

sqn 75 144 0.3

spla 4972 122736 101.0

square5 71 85 0.7

tl 15135 13956096 23.8

t2 233 167920 4.5

t3 42 4096 0.5

t4 174 982 7.6

1481 481 42016 2.2

table3 539 11467 50.8

table5 462 119523 77.3

ti** 836287 4.136440E14 455.4
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Name Primes Minterms

Time to

compute

tms 162 790 1.2

tslO«* 524280 4194304 49.1

vg2 1188 61570752 1.3

vtxl 1220 133035072 3.2

wun 25 51 0.3

xldn 1220 133035072 3.3

x2dn«* 1.1488762E16 8.849739E25 53.2

x6dn 916 6.6772795E11 6.5

x9dn 1272 133041984 3.8

xor5 16 16 0.1

xparc<»* 15039 1.0865220E13 584.3

••* refers to oneof espresso's20 hardproblems.
b. "computed" implies theminterms could notbecounted as they exceeded thefloat sizelimitation.

Our method compares very favorably to Espresso [1]; we are able to solve problems which Espresso
cannot. These results have been reported in the results table. In addition we are also able to solve
nearly all problems Espresso can solve, some ofthem with times which are faster than Espresso's
reported times.

Ingeneral the Signature Cube methods [13] tend tobe faster than our methods asthey do not compute
all the primes and minterms. There are, however examples whereour methods tend to be faster. In
addition signature cube methods can never list all the primes ofa function, whereas our application
candoso. It is important tonote that Espresso-Signature solves many examples that we cannot. Table
2. shows a comparison of times reported by these programs and ours, ona few representative exam
ples. Time-outs were set to 5000 cpu seconds forall runsof ourprogram.

TABLE 4.Comparison ofthe times onOur program, Espresso andEspresso-Signature

Name

Time (in

sec)

using old

Order

Time

using
Aziz's

Order

Time
using
Espresso

Time
using
Espresso
Signature

al2 22.3 33.5 349 324.8

alcom 11.3 10.7 97 160.09

bl2 82.0 198.4 32 8.16

b9 328.3 361.9 27 7.93

bca 350.0 258.8 267 308.62
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TABLE 4.Comparison ofthetimes on Our program, Espresso and Espresso-Signature

Name

Time (in

sec)

using old
Order

Time

using

Aziz's

Order

Time
using
Espresso

Time
using
Espresso
Signature

bcb 140.7 146.5 79 69.07

bee 214.0 205.3 168 123

bed 145.5 109.6 56 49.2

ex4** 570.2 640.1 •* 163.2

ex7 328.3 331.1 31 7.88

ibm*- 3291.3 * m- 1.6

misg«»* 66.8 164.2 m- 13.9

mish««* 912.1 986.0 w 49.2

misj»»* 13.7 14.4 m- 2.1

mp2d 74.2 96.2 16 27

referstooneof espresso's20 hardproblems.

We found that the quantifier method worked well in some examples, giving an answer equal tothe
minimum obtained from Espresso-exact, however in some oflarger examples it failed at the quantifi
ers. The quantifier free expressions had very poor results in terms ofcpu. time required. Their major
drawback seems to be the presence oftoo many recursive calls. The best results were given by the
partial quantifier methods. Table 5. reports thenumber of primes andminterms before andafter
reduction. It also reports the number ofrecursive calls to the dominance functions inthe quantifier
free method. Recall that the quantifier free methodsare formulated as recursive BDD functions. In
addition it reports the total number of applications (passes) of theQM procedure and thetimes used
bythequantifier free and quantifier only methods forthe corresponding examples. The results for the
partial quantifiermethod have already beenreported in table 1. Recall that we had stated that the best
results were given by the partial-quantifier technique.
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TABLE 5.Comparison of Full Quantifierand Quantifier free forms

Name Primes Minterms
Primes after
Reduction

Minterms
after

Reduction

Max number
of

recursions
of fns/pass

Total
number of

passes

Time using
Quantifier

free
formulation

(in sec)

Time using
formulation

with
quantifier
(in sec)

brl 29 114 iy 19 12079 3 8765 H7.2

br2 27 125 13 13 13825 5 12220. 58.4

conl 24 156 9 9 13462 4 1344. 4.0

del 22 47 13 13 1723 5 500 5.9

dekoder 26 49 12 12 2488 4 631 5.7

Conclusions

In conclusion we havedesigned and implemented amethod for implicit bddbased two level logic
minimization. We have called this program Implicitjnini. This program (Implicitjnini) wasrunon
115 of the 117 PLA test examples Espresso couldsolve. We wereable to buildthe primes and min
terms for all 115 examples and form the cyclic core (and solve)93 of these. In addition we ran implic
itjnini on 18 examples that Espresso could neither form the primes for, nor solve and were able to
compute the primes (and minterms) for 14of these and the cyclic core for 5 of these examples. As a
result, we have been ableto solve 5 of the 18 hard Espresso problems tried; namelythe examples
misj,misg, mish, ibmand ex4 and build the prime and mintermBDD's forexIOlO, ibmj'bp, misg,
misj, mish, shift,soarpla, ti,tsI0, x2dn, x7dn, andxparc. These are referenced in the tables by the •*
symbol.

We have, as a courseofour research experimentedwith variousbdd-ordering heuristicsandevaluated
their performance. We have arrived at a set of efficient heuristics, which give the best results (small
BDD sizes) for combinational multiple output functions. We have experimented with removal of
quantifiers from logical formalisms as part of this research. This removal of quantifiers has been
shown to have very impressive results on the speed of BDD computations. We have also derived
totally quantifier free expressions for dominance relations. Though this result is not important in
itself, it may provide a starting point for the development of quantifier free methods for BDD's.

It is also important to keep in mind while comparing our results with those of Espresso that there are
different criterion for evaluatingthe complexity of an example when solved by implicit vs. explicit
techniques. Those problems that Espresso finds difficult do not necessarily form large BDD's and
conversely problemsthat form large BDD's may be solvedby Espresso with ease. In a senseimplicit
and explicit methods are symbiotic and neither is complete in itself.
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A similar implicit technique wasdeveloped and implemented by O. Coudert and J. Madre atBull
research. The essential difference in the two methods lies intheir choice of extended space represen
tation and thevarious bdd minimization methods employed by them. For the former, it can be shown
that there isadirect one toone correspondence between the extended space of [6] and our extended
space. However the use of suppressed-zero BDD's, which is atechnique for reducing BDD sizes, in
[6], might account for the differences inour results. In general the BDD's generated bythe Bull meth
odsare consistendy smaller than ourBDD's for the same example.

However our method are very easily extendable tomulti-valued niiriimization. Our extended space is
identical tothe socalled "positional" space used for multi-valued function representation. This makes
its easy toapply tovast collection of already available methods which use the positional space repre
sentation.

In conclusion we have presented Implicitjnini; an efficient BDD based two-level logic minimizer.
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