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Abstract

Fuel efficient designs for submersibles typically result in vehicles that exhibit

nonholonomic behavior. The purpose of this project is to develop an algorithm that

generates feasible trajectories for such vehicles.

A general model for underwater vehicles is first derived using kinematic

equations of motion. The resulting system is nonholonomic with drift. Vehicle per

formance is characterized by placing limits on the acceptable inputs.

An algorithm is then presentedthat takes as input a sequenceof "waypoints"

through which the vehicle should pass. In addition to the location of each point, the

user may specify time of arrival, heading, pitch angle, and/or velocity. The resulting

path satisfies the nonholonomic and performance constraints for the vehicle and is

near optimal in the sense of minimizing the pathlength.
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Chapter 1

Introduction

1.1 Background

Underwater vehicles, whether manned or unmanned, promise to become an

invaluable tool for the understanding and effective utilization of the ocean environ

ment. Applications include research in oceanography and marine biology, location

and recovery of submerged objects, bathymetric surveying, and subsea agriculture.

In addition to their militaryandscientific uses, mannedsubmersibles are becoming in

creasingly popular as a source of recreation at resort areas. Unmanned submersibles

are expected to play a growing role in industrial applications such as inspection,

cleaning, and maintenance of underwater structures including oil platforms and ship

hulls.

Due to the limited amount of fuel that can be carried on board, underwater

vehicles must be fuel efficient in order to maximize their range. Consequently, most

are equipped with a propulsion system and a hydrodynamic shape designed for effi

cient motion in one primary direction. Steering is accomplished through the use of

control surfaces which can be positioned to cause the vehicle to turn and/or pitch.

Such designs result in nonholonomic behavior. In other words, barring obstacles, the

vehicle can eventually reach any position and orientation in its environment, but it

may have to take a circuitous path to do so.



The movement of such a vehicle can be implemented as follows:

1. A sequence of "waypoints" through which the vehicle should pass is specified

by a high level planner. This planner can be human or automated. In addition

to the location of each point, it may be desirable to specify values for time of

arrival, heading, pitch angle, and/or velocity.

2. A motion planner takes as input the waypoints with associated parameters

and generates a trajectory. The trajectory must pass through these points

as specified and at the same time, satisfy the nonholonomic and performance

constraints for the vehicle. In addition, because there are generally many paths

that meet such a set of constraints, the motion planner should find paths that

are optimal in some sense.

3. A motion controller then adjusts the thrust and control surface angles as nec

essary to cause the vehicle track the given trajectory.

The development of automated systems for accomplishing the first of the

above three tasks is highly application specific and has been addressed by various ex

perts in the field of artificial intelligence. Muchworkhas alsobeen presentedregarding

the third problem — methods employed include sliding mode control, adaptive con

trol, neural networks, and fuzzy logic. This project addresses the second task, that

of developing a motion planner.



1.2 Overview

Underwater vehicles aretypicallydesigned to minimize the amount of sideslip

experienced during a maneuver. In addition, although some have active buoyancy

control systems, they are typically designed to operate at or near the point of neutral

buoyancy. Consequently, for the purposes of planning a path, it is reasonable to as

sume that the instantaneous motion of the vehicle is alwaysin the direction in which

it is pointed.

The dynamic equations describing the motion of underwater vehicles are

very complex. By making the above assumption, a model can be derived based on

the kinematic properties of the vehicle rather than the dynamics. Such a model is

used in the development of the motion planner presented here. The resulting system

is nonholonomic.

Furthermore, in order to ensure that the model vehicle has continuous veloc

ity, the kinematic equations are modified to include velocity as a state. The system

then exhibits drift as well as nonholonomy.

Vehicle performance is specified via constants that describe the turning rate,

pitching rate and acceleration capabilities of the vehicle. Due to the shape and

positioning of their control surfaces, most underwater vehicles can not be reliably

driven backwards. Consequently, the algorithm is formulated for vehicles that move

in the forward direction only.

In order to develop the algorithm, it is first shown that, because of the

way in which vehicleperformance is specified, the problem can be decoupled into (1)

determining the shape of the path, and (2) determining the velocity that the vehicle

should have as it follows that path.

In order to determine the shape of the path, one must first decide what

should be meant by an "optimal" path. Several different criteria can be used. Many

motion planing schemes attempt to maximize smoothness. The approach taken here is

to minimize pathlength. As a result the paths are continuously differentiable but with

discontinuities in curvature. The motivation behind this approach is that, although

the resulting paths can not be followed exactly by a real system (as is always the



case), they canbe closely approximated and willbe shorter than any smoother paths,

and hence better in terms of fuel usage and ability to meet time constraints.

The shape of the path is thus derived using a result of L. E. Dubins [1] for

paths of minimal length in two dimensions. Through repeated application of this

result, the algorithm generates paths that are near optimal in three dimensions.

Waypoints given without regard to orientation create additional degrees of

freedom in selecting a path. Optimization must be carried out over these variables

as well. This optimization is accomplished via discretization of the associated space.

Once the shape of the path has been determined, a velocity profile must be

chosen to meet the given time and velocity constraints. In general, there are many

velocity profiles that satisfy a given set of constraints. The profiles generated by the

planner presented here are "trapezoidal", thereby maximizing the duration of the

steady velocity portion of the trajectories and at the same time allowing the vehicle

to operate at its performance limit when necessary.

Applications for the algorithm include motion planners for autonomous un

derwater vehicles (AUVs) and autopilots for manned submersibles. The algorithm

can also be used for other vehicles that operate in three dimensional environments,

namely aircraft.

1.3 Related Work

The work of L.E. Dubins [1] applies directly to generating paths of minimal

length for car-like robots that moveonly in the forward direction. His results play a

centra] roll in the algorithm presented here. Reeds and Shepp [14] develop a method

for finding paths of minimal length for cars that can reverse as well. Murray and

Sastry present a general method for steering nonholonomic systems using sinusoidal

inputs [11].

The presence of obstacles complicates planning for nonholonomic systems.

Jacobs and Canny [4] present a planner based on reducing the set of smooth tra

jectories to a set of canonical trajectories. Jacobs, Laumond and Taix [5] develop

a planner for an environment with obstacles that first finds a holonomic path that



avoids obstacles and then approximates this path with one satisfying the nonholo
nomic constraints. Mirtich and Canny [10] present an efficient planner that uses

"skeleton" paths of maximum clearance based on a metric derived from the paths
described by Reeds and Shepp.

Latombe gives a broad summary ofrobot motion planning in general in [8].
A compilation ofrecent research in nonholonomic motion planning is presented in [9],
edited by Li and Canny. Nonholonomic planning is also treated by Murray, Li and
Sastry in their upcoming textbook [13].
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Chapter 2

Underwater Vehicles

2.1 Configuration Space

The configuration of any rigid body consists of two parts: position and

orientation. But for the purpose of developing a kinematic model, one need not

characterize the orientation completely. An assumption will be made, namely that

the instantaneous motion of the vehicle is alwaysin the direction in which it is pointed.

Thus the roll angle of the vehicle has no bearing on the direction of motion, and need

not be considered.

The configuration of the vehicle can therefore be represented as:

X =

x

y

z

a

XeR3xS2

where a and 0 parameterize the unit sphere, S^. In keeping with nautical tradition,

a is chosen to represent the direction in which the vehicle is pointed projected into

the horizontal plane, and is referred to as the "heading". It is measured clockwise

from true north (the H-y-direction). The parameter P represents the the angle that
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Figure 2.1: The Vehicle

the vehicle makes relative to horizontal and is referred to as the "pitch angle" (see
figure 2.1).

2.2 Equations of Motion

2.2.1 Kinematics

For a typical underwater vehicle operating at or near the point of neutral

buoyancy and with a propulsion systemthat acts in one directiononly, it is reasonable

to assume that the instantaneous motion of the vehicle is in the direction in which

it is pointed. The kinematic equations of motion follow as a direct result of this

assumption.

Since motion is allowed in only one direction, there is a plane of disallowed

directions. Choosing two independent directions in this plane (see figure 2.2) gives:

m • v = 0 and n2 ♦ v = 0

where

ni =

cos a sin a sin /? X

— sin a fl2 = cos a sin ft V = y

0 —cos)0
•

z
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Figure 2.2: Constraints on the Motion of the Vehicle

These constraints can be summarized in matrix form as:

cos a —sin a 0 0 0

sin a sin f) cos a sin/? —cos/? 0 0

x

y

z

a

P

= 0

10

Taking the null space of the constraint matrix gives a set of vector fields describing

the allowable motions:

9i(X) =

o' 0

0 0

0 92(X) = 0

1 0

0 1

g3(X) =

The system can therefore be written as:

X = tii$i(X) + ti202(A") + u3g3(X)

sin a cos /?

cos a cos ft

sin/?

0

0
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or equivalently,

x = tx3sinacos/?

y = M3 cos a cos /?

i = ti3sin0 (2.1)

a = «!

/? = u2

where t/i, u2, and u3 are the inputs. It can be seen from the equations in (2.1) that
the inputs have the following physical meanings:

«i - turning rate

t*2 - pitching rate

us - forward velocity

2.2.2 Nonholonomy

The nonholonomic nature of the system can be seen by analyzing the associ

ated vector fields, gi, g2i and g3. The span of these vector fields defines a distribution.

The distribution assigns a subspace of allowable motions to each point in the vehi

cle's configuration space. Given a distribution, A, the filtration of the distribution is

defined as the set of distributions generated by iteratively taking Lie brackets of its

elements as follows:

Gi = A

d = <7,--i + span{\g,h] : g€Gu h € G?,-i}

For the underwater vehicle, the filtration is given by

G\ = span{gi,g2,gs}

G2 = span{gug2>g3,g4,gs}

Gz = span{0i,02>03»<74»<75}



where g* and g5 are given by

cos a cos/? —sin a sin /?

—sin a cos/? —cos a sin/?

9a = \9u9z] = 0 05 = [02,03] = —C0&P

0 0

0 0
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Further analysis shows that:

rank G\ = 3

rankGi = 5 for t > 2, P^±ir/2

Because the filtration reaches full rank after one iteration of Lie bracketing, the system

is said to have degree of nonholonomy equal to one. The growth in rank of the

filtration is described using a relative growth vector which, in this case, is [3 2]. Chow's

Theoremstates that a system for which the filtration achieves full rank is controllable.

Hence, mathematics confirms the intuition that the vehicle can be driven to any point

in its configuration space. (See [9] or [13] for further information on nonholonomic

systems.)

2.2.3 Improving the Formulation

There is a practical problem with the kinematic formulation given by the

equations in (2.1) in that the velocity of the vehicle appears as an input. This leads

one to believe that it can be chosen arbitrarily as necessary to control the system.

Realistically, this is not the case since the velocity must always be continuous for a

real system.

We can modify the system to enforce this fact by making the velocity a state

and choosing u3 as its derivative:

x = t> sin a cos/?

y = v cos a cos p
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z = vsmP (2.2)

a = Ui

P = ti2

V = «3

Now the system has the form

X = f(X) + ul9l(X) + ti202(A-) + ti303(A-).

Note that because zero input no longer implies zeromotion, the system is now said to

have "drift", making it more difficult to control. Nevertheless, this formulation has

the advantage that, in addition to ensuring that v(t) is continuous, it allows v0 and

Vf to be specified with the initial and final conditions respectively. The input U3 now

corresponds to acceleration as opposed to velocity.

2.3 Characterizing Vehicle Performance

The performancelimitations of the vehicle can be characterized by restrict

ing the set of possible values for the inputs as follows:

Itii I < v/Rt

|«2| < v/Rp (2.3)

11*3 I < amax

where v = ||v|| and Rt, Rp, and amax are constants.

Note that Rt corresponds to the minimumturning circleradius of the vehicle,

and similarly, Rp corresponds to the minimum "pitching circle" radius. In choosing

these constraints as such, an implicit assumption has been made that the minimum

turning and pitching circle radii are independent of velocity. For real vehicles, this

is not the case. However, it is a reasonable approximation. Furthermore, since the

goal is to generate feasible paths, for any particular vehicle, Rt and Rp can always be

chosen as the maximum values they take on as a function of velocity.



Chapter 3

Planning Motion

14

3.1 Decoupling the Problem into Two Subproblems

The task of developing a motion planner for a vehicle described by (2.2) and

(2.3) can be greatly simplified by noting the following: the geometric shape of the

path can be derived first, without regard to vehicle velocity. This property stems from

the kinematic nature of the vehicle and the way in which its performance limits are

specified — the vehicle's ability to turn and pitch as a function of distance traveled

is not affected by its velocity.

This can be seen by reparameterizing the system in terms of pathlength.

Since ds = v dt, (2.2) yields

dx = vsmacos pdt = sinacos/?<f$

dy = v cos a cos ftdt = cos a cos fids

dz = v sin pdt = sin fids

da = u\dt = Ui/vds

dP = u2dt = u2/vds

dv = uzdt = uz/vds

By choosing u[ = u\/v and u'2 = u2/v the system can be written as
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dx/ds = sin a cos p

dy/ds = coaaco8p

dz/ds = sin0 (3.1)

<for/<fo = u[

dPIds = tii

Note that because the dependence on v has been eliminated in the first five equations,
the sixth can be dropped. The vehicle performance constraints given in (2.3) become

Kl < I/A* (3.2)

Kl < 1/Rp

The equations given in (3.1) together with the restrictions on the inputs
given in (3.2) embody the nonholonomic and performance constraints on the motion

of vehicle. Any path that can be generated by (3.1) using choices of u[ and u2 that
meet the limits of (3.2) can be tracked by the vehicle. Note that (3.1) and (3.2) are
both independent of velocity.

The problem of finding a trajectory can therefore be divided intotwo parts:

1. Find the shape of the path.

2. Choose v(t) such that the vehicle arrives at each waypoint on time at with the

appropriate velocity (when specified).

3.2 Finding the Shape of the Path

3.2.1 The Basic Problem

Suppose that the steering ability of an underwater vehicle is described by

(3.1) and (3.2). In order to develop a path connecting a sequenceof waypoints with

associated constraints, one must first address the following basic problem:
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GIVEN:

• initial state Xq = [x0 j/o *o &o Po]T

• final state Xj = [xj yj zj ctj Pj]T

FIND:

a path {X(s): s € [0,£]} such that:

• A-(O) = X0 and A"(L) = */.

• X(s) is feasible.

The term "feasible" is used here in a broad sense — a feasible trajectory is

one that the vehicle is capable of reliably following. Thus the generated trajectory

must take into account the nonholonomic and performance constraints for the vehicle

and must have a positive velocity throughout.

Solutions to the problem as stated are not unique. Hence, the planner

should find paths that are optimal in some sense. Propulsion is generally much more

expensive than steering in terms of fuel usage. In addition, it is desirable to maximize

the range of the vehicle during a given period of time. Thus the planner presented

here optimizes on the basis of pathlength.

3.2.2 Curves of Minimal Length in Two Dimensions

At this point is useful to consider paths in the plane. Paths of minimal length

in the plane are characterized by a theorem proved by L. E. Dubins in 1957 [1]:

Theorem 1 (Dubins) A planar curve of minimal length with a constraint on av

erage curvature and with prescribed initial and terminal positions and tangents is

necessarily a continuously differentiate curve that is one of

1. an arc of a circle of radius R, followed by a line segment followed by an arc of
a circle of radius R; or

2. a sequence of three arcs of circles of radius R; or
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RSL LRL

Figure 3.1: examples of paths of minimal length in two dimensions

S. a subpath of a path of type 1 or 2

where R is the inverse of the limit on average curvature.

The limitation on "average curvature" as opposed to just acu^vatu^e,, is used to

permit paths that have discontinuities in curvature, and hence have points at which

curvature is undefined.

Theorem 1 implies that there are six types of paths of minimal length in

two dimensions. They can be described as RSR, RSL, LSR, LSL, RLR, and LRL,

where R corresponds to turningright at the maximum rate, L corresponds to turning

left at the maximumrate, and S corresponds to going straight (see figure 3.1). Given

two points and associated tangents, it is a matter of straight forward calculation to

determine each of the six associated paths. Then to find the path of minimal length,

one must only choose the shortest of the six.

Notice that this theorem applies directly to finding a feasible path for a

simple car-like vehicle that never shifts into reverse. The kinematic equations of

motion for such a vehicle can be derived in similar fashion to what was done for the

submersible. Reparameterizing these equations in terms of pathlength gives

dx/ds = sin a

dy/ds = cosa (3.3)

da jds = u
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and the associated limit on turning rate (curvature) becomes

M < l/R (3.4)

3.2.3 Extension to Curves in Three Dimensions

Unfortunately, no one has been able to extend Dubins' result to dimensions

greater than two. And even if such a theorem did exist, it would not apply directly

to the type of vehicle considered here since the vehicle has steering limits in the form

of bounds on turning rate and pitching rate rather than a single bound on curvature.

Theorem 1 has direct application to vehicles that operate in a planar environment.

As it turns out, it is also useful for path planning in three dimensions.

As an initial goal, we would like to solve the basic problem given in sec

tion 3.2.1. As it turns out, this can be accomplished by applying theorem 1 twice.

The resulting paths are generally not optimal in terms of minimizing pathlength, how

ever they are near optimal for paths with small pitch angles. The first application of

the theorem determines the x and y coordinates of the path. The second application

assigns values for z.

Consider the projection of a three dimensional path onto the x-y plane. Let

s' represent distance traveled along the projected path. Then s' is related to s by

ds' = dscos P (3.5)

The steering equations of (3.1) can be reparameterized in terms of sf by substituting

with equation (3.5). The first two equations in (3.1) then become

dx/ds' = sin a (3.6)

dy/ds' = cosa

and the associated limit on turning rate from (3.2) becomes

\da/ds'\<l/Rt cos p (3.7)
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Note that the P dependence hasbeenremoved in (3.6). These equations nowresemble

the kinematic equations for a car-like vehicle given by (3.3) and (3.4). In fact, by
tightening the restriction given by (3.7) as follows:

\da/ds'\ < I/Rt (3.8)

the behavior of (3.6) becomes identical to that of the car-like vehicle. Thus we can

apply theorem 1to the points (x0, yo) and (a?/, y/) with tangents ao and aj to generate
the x and y components of our three dimensional path. This effectively generates the

"shadow" (i.e. projection into the x-y plane) of the three dimensional path that we

ultimately wish to derive. These choices for x and y are optimal for the (excessive)
restriction of (3.8) but less than optimal for the true restriction onvehicle turning rate

given by (3.7). Hence, optimality has been sacrificed in favor of a straight forward

method for generating the paths. Note that as the pitch angle approaches zero, (3.7)
and (3.8) become the same, and hence the resulting path becomes optimal.

The next step is to somehow expand our (planar) curve into three dimen

sions. Consider the surface defined by taking the projected path and expanding it in

the ±z directions. This surface is homeomorphic to a subset of the plane, and can be

parameterized by sf and z as shown in figure 3.2. Suppose the length of the planar

path is given by V. We must find a path on this new surface from s1 = 0 and z —zq

with tangent specified by p0 to s' = V and z = zj with tangent specified by /?/. From

(3.5), (3.1), and (3.2) respectively,

da'Ids = cosP (3.9)

dz/ds = sin p

\dp/ds\ < 1/Rp (3.10)

With the exception of an inconsequential coordinate change, the system

defined by (3.9) and (3.10) is identical to the car-like vehicleof (3.3) and (3.4). Once

again, theorem 1 can be applied to find the shortest path on this surface that meets

the constraints. This time, however, there is no further loss of optimality. A set of

pairs (s\ z) is determined. The path found from the first application of the theorem
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z

*

Figure 3.2: parameterization of surface defined by expanding planar curve into the

±z directions

can be used to map each s' to a pair (x,y). The resulting set of triples (x,y,z)

completely determines the path.

It should be noted at this point that in some (rare) cases, shortest paths

on the s'-z surface of the RLR and LRL types will enter regions in which s' < 0 or

s' > V. In these regions, there are no previously generated (x, y) pairs to which to

assign a z value. This problem is easily solved by extending the x-y plane path at its

endpoints (in a straight line, for example) to obtain the necessary (2, y) pairs.

The algorithm can be summarized as follows:

step 1: Apply theorem 1 to points (x0,yo) and («/,y/) with tangents given by a0

and a/ to generate the x and y components of the path. Let V be the length
of this path.

step 2: Apply theorem 1 to points (0,20) and (£', Zf) with tangents given by #>
and pj to generate a set of pairs (s', z).

step 3: For each pair (s\ z), use the result ofstep 1 to map s' to a pair (x,y). The
resulting triples (x, y, z) fully determine the path.
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Figure 3.3: path planning with waypoints

3.2.4 Extension to Paths with Waypoints

The algorithm presented thus far generates a feasible three dimensional path
between two points with specified tangents. In addition, it may bedesirable to specify
intermediate "waypoints" through which the vehicle must pass as well (see fig 3.3).
In some cases, one may wish to specify a tangent direction associated with a point.
In other cases, the direction may be unimportant in which case the motion planner
should choose the direction so as to minimize the length of the overall path.

The more general problem can be stated as follows:

GIVEN:

• a sequence of points in R3: {p,}, t = l..n.

• a set of headings associated with a subset of the points:

{*;}, jeJc{l..n}

• a set of pitch angles associated with a subset of the points:

{Pkh * € K C {l..n}

FIND:

a path {X(s): s 6 [0, L]} such that:

• X(s) passes through all the points and with the required headings and

pitch angles when given.

• X(s) is feasible.
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Consider first paths of minimal length in the plane.

Proposition Suppose a planar path with a limit on average curvature passes through

a sequence of waypoints and is of minimal length. Then each subpath connecting

consecutive waypoints must satisfy the criteria of theorem 1.

Proof. By contradiction. Suppose path P is of minimal length and has subpath

P\ connecting two consecutive waypoints. Suppose Pi does not meet the criteria of

theorem 1. Then, by theorem 1, there exists a subpath P[ with the same initial and

terminal positions and tangents as Pi that is of minimal length. Since, by theorem 1,

Pi is not of minimal length, P[ must be shorter than Pi. Thus there exists path P'

formed by substituting P[ for Pi in P that passes through the same waypoints with

the same tangents as P and is shorter than P. Hence P is not of minimal length. •

Since each subpath meets the criteria of theorem 1, each subpath is a func

tion of its endpoint positions and tangents only. The endpoints are always given.

Therefore the only variables in choosing an overall path are the tangents directions

for those waypoints whose tangents are not already specified. Thus, for the two di

mensional case, the problem is one of optimization in which one must choose the the

unspecified tangent directions so as to minimize the overall length of the path.

The most straightforward way to accomplish this optimization is to dis-

cretize the space and choose the path of shortest length. Note that every sequence of

waypoints can be divided into subsequences such that each subsequence has endpoints

with specified tangents and interior waypoints with unspecified tangents. Each such

subsequence presents an independent problem. The complexity of the calculation

depends on the length of the largest such subsequence.

Supposed the unspecified tangent angles in such a subsequence are given

°y {0i}> * = !••*> ^d t^at each 0,- is discretized into N distinct values. Then a

naive algorithm that discretizes the waypoint tangent angles in sequential order to

find the shortest path has complexity 0(Nk). By always choosing to discretize a

central waypoint first, the complexity can be reduced to 0(JVlo*fc). Furthermore, by
precomputing a matrix of subpath lengths for every pair of adjacent points and then
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sequentially reducing them by vector-matrix "multiplication" to find the shortest

subpath as a function of endpoint tangent angles, the complexity is further reduced
to 0(kN2).

Once the machinery is in place for generating optimal paths with waypoints
in the plane, three dimensional paths that are near optimal can be generated in
exactly the same way as was done for the simple paths in section 3.2.3. The x and

y components are generated first. This curve is then used to define a surface by
extending it into the ±z directions. A second iteration then adds z coordinates to

the already determined path in x and y.

3.3 Finding the Velocity of the Vehicle

Once the shape of the path has been determined, and hence its length is
known, the problem reduces to finding asatisfactory v(t) tomeet thegiven constraints
on arrival time and velocity.

Consider a subpath connecting two consecutive waypoints. In order to de

termine an appropriate velocity profile for that subpath, the following problem must
be solved:

GIVEN:

• length of the subpath, L

• desired transit time, T

• initial and final velocities, vo and v/

FIND:

velocity {v(t) : t € [0,T]} such that:

• v(0) = vo and v(T) = «/.

• v(t) is continuous and positiveVi € [0, T]

• ffv(t)dt = L
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Figure 3.4: a "trapezoidal" velocity profile

In general, there are many choices of v(t) that will solve the above problem,

all of which are optimal using our criterion since the pathlength has already been de

termined. We chooseour velocity profiles to be at^apezoida^, as shown in figure (3.4).

A steady transit velocity, vu is maintained during the middle portion of the trajec

tory. The vehicle accelerates or decelerates at maximum rate near the endpoints in

order to meet the specified initial and final velocities. Note that because Un, v/, amas,

and T are all fixed, choosing vt completely determines v(t). Furthermore, there is a

monotonic one-to-one relationship between vt and L.

The pathlength L can be expressed as a function of vt as follows:

rT

L = / v(t)dt
Jo

= VtT + [\vt - Vo|(v0 - Vt) +\vt - Vf\(Vf - vt)] (3.11)

We wish to invert equation (3.11) so that vt can be expressed as a function of L. In

order to do so, the following values must be precomputed:

L

L max

mm — L \vtzzvmin

— L |vt=%M

Lvo — L J,,,—t/»=«o
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LVj = L |tft=v/

where vmtn and vmax are determined either by the limitations of the vehicle or by
the cases in which the vehicle must undergo continuous acceleration followed imme

diately by continuous deceleration or vice versa. Now v<, and therefore v(i), can be
determined as follows:

case 1: L < Lmin or L > Lmax

The trajectory can not be achieved due to the performance

limitations of the vehicle.

case 2: Lmin <L< min^^L^}

v0 + vj Tamas
Vt = —

2 2

+ g \lT2a2m** - 2r«w(v0 +V/) - (v0 - V/)* +41a,

case 3: minlL^yLy^} < L < maifl^,!^}

1 /2Lamax-\vl-v*\\
Vt 2\Tamax-\vo-vf\)

case 4: mas{£,*,.£,,,} < L < Lmax

vo + Vf Tamas
vt = ——- +

2 2

- \ \JT2amas +2Tamax(v0 +vs) - (v0 - t>/)2 - ALamax
There are two primary advantages to the "trapezoidal" form of the velocity

profiles presented here. First of all, it maximizes the duration of the trajectory in
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which the velocity is steady. In fact, for long distance transits, the path shape found

usingthe method presented in 3.2willhavea large segment in which the the heading

and pitch angle are constant as well. Thus a large portion of the transit will be at

a steady course and speed, thereby making the control problem much easier. The

second advantage of velocity profiles of this form is that it allows the motion planner

to take full advantage of the vehicle'scapabilities. For example, in order to maximize

the distance traveled in a given amount of time, the vehicle should accelerate at

maximum rate to its maximum velocity and then decelerate if necessary at the end

of the trajectory to reach a specified final velocity.

So far, this discussion has centered around the problem of determining the

velocity profile between a pair of consecutive waypoints with times and velocities

specified for each. The extension of this method to a series of points is straight

forward. In general, a velocity profile can be found for each pair of adjacent points

and the results can be concatenated to generate a velocity profile for the whole path.

A point specified without regard to time of arrival or velocity can be dealt with

by simply ignoring that point and deriving the velocity profile for a larger portion

of the path. For cases in which the velocity is not specified at one or both of the

endpoints, a profile can be found by substituting vt for v0 and/or vj in equation

(3.11) as appropriate and then inverting. For cases in which the time is not specified

for a given waypoint, a time should be chosen based on the times specified for the

preceding and following points and the relative distances to each.
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Examples of Paths
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The figures on the following pages show examples of paths generated using
the method presented in this paper. The paths were generated using MATLAB and
required approximately 250 lines of code.

In each case, the algorithm was given fully specified initial and final config
urations as shown. The limits on the vehicle's turning and pitching rates were set at

Rt = 20 and Rp = 20 respectively.
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Figure 4.1: path planning example
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Chapter 5

Conclusion

A general algorithm has been presented for planning trajectories for under

water vehicles. The trajectories satisfythe nonholonomic and performance constraints

on the motion of the vehicle. Given a set of waypoints and associated specifications

for time of arrival, heading, pitch angle, and/or velocity, the algorithm always returns

a feasible path. The trajectory can then be realized as long as the specified times

and velocities do not require the vehicle to exceed its limits on acceleration and/or
velocity.

Given any two points in the vehicle's configuration space, the algorithm

generates a path between them that is near optimal in the sense of minimizing the

pathlength. The problem of characterizing the optimal (shortest) path itself remains

open.

The paths are generated by expanding an optimal planar path into three

dimensions. Generated paths with small pitch angles are approximately planar and

hence near optimal. As it turns out, underwater vehicles typically operate at small

pitch angles most, if not all, of the time. Many vehicles are limited by operating

restrictionson the equipment on board. Manned vehicles arealsolimited by passenger

comfort and safety. Furthermore, regardlessof the limitations on the vehicle, for many

applications, large pitch angles are not needed — the ocean environment can often

be regarded as two and a half dimensional due to the limit on the vehicle's operating

depth. Hence, distances to be covered in x and y typically far exceed those to be
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covered in z.

Note that, in order to use this algorithm, the performance limitations of

the vehicle must be specified relative to a fixed inertia! frame. For a vehicle that

experiences a significant amount of roll, it would be more desirable to specify these

limits relative to a body frame. This would require a reformulation of the kinematic

model presented here such that the configuration space includes the roll angle as well

and hence becomes SE(2). Doing so makes the problem significantly more difficult.

In addition to its obvious applications for motion planners for AUVs and

autopilots for manned submarines, the algorithm can also be implemented for fixed-

wing aircraft.
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