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The Learning Problem for Discrete-Time Cellular Neural Networks
as a Combinatorial Optimization Problem

Holger Magnussen** and Josef A. Nossek* and Leon 0. Chua

December 17, 1993

Abstract

"Global" Learning algorithms for Discrete-Time Cellular Neural Networks (DTCNNs) are
a class of learning algorithms where the algorithm designs the trajectory of the network. For
binary input patterns, the global learning problem for DTCNNs is a combinatorial optimization
problem. Properties of the solution space can be deduced using the available theory on Linear
Threshold Logic. Results on the required accuracy of the network parameters are given. The
problem of deciding whether a given task can be learned for a DTCNN architecture (feasibility
problem) is conjectured to be NP-complete. A cost function is defined that is a measure of
the errors in the mapping process from a set of input images onto the desired output images.
Simulated Annealing methods are used to minimize this cost function. The algorithm is used to
find the parameters of a standard DTCNN architecture for a simple pattern recognition task.

1 Introduction

A Discrete-Time Cellular Neural Network (DTCNN) is a spin glass like architecture with parallel,
zero-temperature dynamics, translationally invariant weights and only local interconnections. The
DTCNN was introduced in [l] as a discrete-time version of the Cellular Neural Network (CNN) [2],
and it is related to the work by Walter Little [3].

The operation of the DTCNN is determined by a set of real-valued network parameters. Finding
these network parameters for a certain desired task is called learning. Two basically differing
approaches can be found in the literature.

In one kind of learning, the detailed operation of the network is designed step by step by the
designer. This is usually done by establishing local processing rules at cell level or by designing
stable and unstable local subpatterns at each cell. For this reason, this kind of learning will be
called local learning. Local learning algorithms find the network parameters that implement this
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desired, pre-designed behavior of the network, usually by maximizing a measure of robustness.
The disadvantage of local learning algorithms is that the complexity of the trajectory depends on
the ingenuity of the (human) designer. This might be tolerated if only simple tasks like image
preprocessing are executed, where the main objective is to use the projected high processing speed
of DTCNN architectures.

This work is entirely devoted to the second kind of learning algorithms, which is referred to as
global learning. The term "global" is used here, because the task, which has to be learned by the
network, is denned by a set of input images (input images of the whole network as opposed to local
input images of one cell) and the corresponding desired output images of the network. The global
learning algorithm is used to find the network parameters for this task, which implies that the
algorithm itself designs the trajectory. Thus much more complicated trajectories are obtainable,
and more complicated tasks can be implemented by the network. Unfortunately, global learning
algorithms are computationally expensive.

The behavior of the DTCNN depends on the functional mapping, which is implemented by each cell
of the network. For binary input images, the size of the solution space, i.e. the number of different
mappings, is fixed. Thus the global learning problem can be seen as a combinatorial optimization
problem. The theory on Linear Threshold Logic, which has been studied mainly in the mid Sixties,
contains some valuable results on the properties and the geometry of the solution space.

Before trying to find an efficient learning algorithm, it makes sense to have a look at the complexity
of the problem itself. Especially for problems from the class of NP-complete and NP-hard problems,
it has not been possible so far to come up with algorithms which solve the problem in a polynomially
bounded time. In this work, it is conjectured that the problem of deciding whether global learning
for DTCNNs is feasible or not is NP-complete.

A cost function is introduced, which measures how well the network maps a set of input images
onto the desired output images. Learning is thus achieved by minimizing the cost function. Since
exact, non-polynomial algorithms cannot be applied for reasons discussed later in this work, one
of the few remaining possibilities to solve the learning problem are algorithms of the Simulated
Annealing type.

Simulated Annealing was introduced ten years ago as a flexible tool for finding approximate solu
tions to large combinatorial optimization problems. Since then, it has been used successfully by
many researchers.

A Simulated Annealing algorithm is applied to the DTCNN learning problem, and the algorithm
was able to come up with relatively good solutions for a simple pattern recognition problem. In
this pattern recognition problem, a standard DTCNN is used to distinguish bitmap representations
of handwritten "A"s and "B"s. The philosophy behind this application is to show that relatively
complicated tasks can be done with an architecture as simple as a standard DTCNN, when the
full power of the recurrence of the network is utihzed. It should be kept in mind that chips with
a sufficient size for the desired applications (e.g. 500 X500 pixels for image processing tasks) will
only be feasible during the next few years, if the architecture is kept as simple as possible.

Section 2 contains a short introduction to DTCNNs. In Section 3, some results from the theory
on Linear Threshold Logic are used for a description of the solution space of the DTCNN learning



problem. The Learning Problem and the Feasibility Problem are formally introduced in Section 4,
and the Feasibility Problem for DTCNNs is conjectured to be NP-complete. Section 5 gives a short
introduction to Simulated Annealing algorithms, and Section 6 describes the results of applying
Simulated Annealing to the DTCNN learning problem. The conclusions of this work are presented
in Section 7.

2 Discrete-Time Cellular Neural Networks

The DTCNN is a first-order, discrete-time dynamical system consisting of M identical cells on a
(usually) one- or two-dimensional cell grid CQ. Its operation is described by a state equation, an
output equation, and the initial state:

state: xc(k) = £ a>d-cyd(k) + £ bd_cud(k) + i
deAf(c) detf(c)

output: yc(k) = SGN(&c(fc - 1))

(1)

-{
initial state: 2/c(0) = yc,o

1 for xc(k - 1) > 0
-1 for xc(k - 1) < 0

k is a non-negative integer corresponding to the time step, a = (au) and b = (bu) are the templates
(weighted connections), i is the cell bias. The network parameters a, b and i are translationally
invariant, i.e. they are identical for each cell in the network. The "*d_c"-notation is used in a
symbolical sense, since only the relative position of the two cells c and d with respect to each other,
not their absolute location on the cell grid, is important for the value of the template coefficient
*d-c- yc{k) is the output of cell c at time step k, uc(k) is the input signal from the input layer
corresponding to cell c at time step k. The input signals are taken from the input grid IQ, which
has the same dimensions as the cell grid CQ.

N(c) is the neighborhood of cell c. Fora r-neighborhood each template has the size (2r+1) X(2r+1).
If both the a- and b-template have the same neighborhood size r, each active cell of the network
has N = 2(2r + l)2 inputs plus a separate bias input. If both the a- and b-template exist, then
N will be even. The input signals are restricted to the interval uc(k) G [—1,1] or are assumed to
be binary-valued (uc(k) G {—1,1}). For some cells in the network, the neighborhood Af(c) would
contain cells outside the active cell grid. In order to satisfy the need for these additional cell output
values and input values, the grid of active cells is surrounded by a ring of dummy cells, which have a
constant output value e. Let Ca denote the set of indices of the active cells, and Cd the set of indices
of the dummy cells. Then y^k) = e and u^k) = e for \i 6 Cd (with e 6 [—1,1] or £ € {-1,1}) for
all times k.

It has to be noted that the DTCNN parameters have one degree of freedom: multiplying all template
coefficients and the bias with a positive constant will not affect the cell output. For this reason, a
norm of all network parameters is usually fixed.



Properties like stability, boundedness of states etc. can be proven by using the existing theory for
synchronously clocked Hopfield networks (see also [l]).

For the rest of this work we will make the following assumptions:

• binary and constant input signals, i.e. uc(k) = uc G {—1,1}.

• binary and constant dummy cells, i.e. iiM,yM G{—1,1} for \i GCd.

• fixed strategy for setting the initial state, i.e. yc{0) = uc or yc(0) = 1 or yc(0) = —1.

• fixed set of input patterns (training set).

3 Linear Threshold Logic Background

Under the above assumptions the operation of the network is completely determined by the way
in which each cell maps its N = 2 •(2r + l)2 (binary) input signals onto its binary output. The
cells are clocked Linear Threshold Elements (LTEs). A LTE with N binary inputs implements
a linearly separable Boolean function Tu : {—1,1} —• {—1,1}. A Boolean function F is called
linearly separable, if for N binary input signals (ei,...,ejv) G{-1,1}^ there are N parameters
(pi,... ,Pn) £ IRN an(l a threshold po GIR such that F can be written as

{N

+1 if Po + £ Pi/e„ > 0 . .
u=i (2)

—1 otherwise

Each of the possible 2"^ binary input vectors corresponds to a row in a truth table, and as well to
an inequality ofa form as in (2). Let yv G{—1,1}, v = 1,.. .,2^ denote the desired output value
of the r/th row of the truth table.

It is convenient to write the state and the output equation (1) in a vector notation. To get rid of
the bias, a constant "+l"-element is prepended as the Oth element to each input vector. Let N
be the number of inputs of each cell. Then the indices of the elements of these augmented input
vectors e run from 0 to N. We define the sets

€ := {-1,1}N+1 with \£\ = 2N+1

So := {eG£|e0 = l} with |£0| = 2*

Let p GIR be a vector, which contains all template coefficients pT = (po,.. .,pjv) = (h(a>v),{K))
(in this order). The vector ej(fc) G £o collects a constant term for the bias, the cell output
signals, and the input signals (in this order) for cell c of the network at time k, i.e. ec(&) =
(l,(3/^(c)(fc)),(^Ar(c)))-



Then the cell output of cell c at time k + 1 can be written as

"•^D-lSSSff*0 (3)

Under the assumptions made at the end of the last section, the output pattern of a DTCNN can
now be viewed as a functional of a Unearly separable Boolean function Fia of N inputs. Thus
the operation of the DTCNN is defined on the set of all Unearly separable Boolean functions of
N inputs. The theory on Linear Threshold Logic can provide interesting properties of this search
space. A good introduction to Linear Threshold Theory are [4], [5], and [6].

3.1 Cardinality of the Search Space

It is important to note here that the number of all possible Unearly separable Boolean functions
of N inputs can be very large, but it is a finite number. Thus there is only a finite number of
different network behaviors, even if the real-valued parameter vector p suggests something else. The
problem of optimizing the output behavior of the DTCNN can therefore be seen as an combinatorial
optimization problem. We wiU elaborate on this fact in Sections 4 and 5.

A very coarse upper bound on the number of all Unearly separable Boolean functions is the number
of aU possible Boolean functions of N inputs, which is 22 . This bound is by far too pessimistic,
since especially for large N, the number of Unear separable Boolean functions is only a smaU fraction
of the number of all possible Boolean functions.

Different upper bounds on ifc£[, the number of Unearly separable Boolean functions of N inputs,
can be found in the Uterature. The classical result by Cover [7] on the number of dichotomies of m
vectors in IR does not apply here, because it requires, that the m vectors are in general position.
The tightest bound is due to Winder, and it can be found in the appendix of [4].

fc=0

Even for simple problems Uke DTCNNs with a 1-neighborhood in a- and b-template (N -f 1 = 19
network parameters), the number of Unearly separable Boolean functions is approximately 2 •1082,
and for a 2-neighborhood in a- and b-template (N -j-1 = 51 network parameters), this number is
approximately 3 •10688.

Hence thecardinality oftheproblem rises with the order 0(^r), which isworse than thecardinality
of many classical combinatorial optimization problems Uke for example the TraveUng Salesman
Problem [8].

>n"



3.2 Geometric Interpretation

Linearly separable Boolean functions of N inputs have a very figurative geometric interpretation.
In the parameter space approach, each parameter vector p corresponds to a point in IRN+1. Conse
quently, the 2^ equations eTp = 0 with e G£o define 2N hyperplanes through the origin ofIRN+1.
Each of the augmented input vectors e G So corresponds to the normal vector of a hyperplane.
The binary-valued response of the ceU to this specific input vector depends on which side of the
corresponding hyperplane the point p is located (either eTp > 0 or eTp < 0).

The space that is dual to the parameter space IRN+1 is the input space IRN+1'*. In this dual space,
hyperplanes in the primal space correspond to points in the dual space and vice versa (the nuU
vector is an exception). The 2N augmented input vectors e G So correspond to one half of the
vertices of a binary (N + l)-cube in IRN+1. The equation pTe = 0 defines a hyperplane through
the origin of the dual space, and the vector p is orthogonal to this hyperplane. The hyperplane
divides the set of vertices into two disjoint sets, one set, for which pTe > 0, and a set with pTe < 0.

Each of the 2^ hyperplanes through the origin of the parameter space divides IRN+1 into two half
spaces, both of them convex sets. The intersection of a finite number of (closed) half spaces is
called a convex cone Cp:

Definition 3.1 Let p GIRN+1 so that pTe^ 0 Ve GS. Then the convex cone Cp is defined by

Cp =[x GIRN+1 | eTp eTx >0Ve GS0}

The mapping from the set of all convex conesCp to the set of all possible Unearly separable Boolean
functions is injective, but the mapping from the parameter space IRN+1 onto the set of all possible
Unearly separable Boolean functions is not, since each Unearly separable Boolean function can be
realized by infinitely many parameter vectors p GCp.

The foUowing is easy to show:

Lemma 3.1 Assume K points x* GCp. Then every positive linear combination of the x* is in Cp:

K

XfcGCp, (* = l121...110=»(2>ibXfc)eCp VAfcGlR, Afc>0

Proof:
K K

eTP ' eT(Y; AfcXfc) = Y. A* eTp •eTxjb > 0 Ve GS0
fc=l k-\ >0 >0

Remark: Convexity can be confirmed by choosing K —2 and \\ = 7, A2 = (1 - 7),7 G [0,1].

D



Prom the geometrical interpretation it wiU be clear that not all of the possible convex cones are
Umited by the maximum number of2^ hyperplanes. In other words, only a reduced subset £J C So
wiU be necessary to define a Boolean mapping, and thus only a reduced set of inequalities wiU be
needed.

We introduce the reduced subset Sq and its complement Sq, so that Sq f~l Sq = 0 and SqU Sq = So-
To simpUfy the proof for the next theorem, we need the foUowing Lemma:

Lemma 3.2 (Farkas' Lemma): Let K be apositive integer, and letc, y, ai,..., aj<- GIRD, y^O
and c/0, then:

(yTa; > 0 => yTc > 0) <£=» c G{x GIRD | x = ^7r;a;, x; GIff, ^ > 0}

Proof: See for example [9]. •

Now we are ready to estabUsh a result on e G £j: ^et as before yM be the desired binary output
value of a ceU, when the input eM is appUed to the ceU inputs. Assuming that ejp ^ 0 for aU
eM GSo, we have 3/MeJp > 0. Then

Theorem 3.1

e„ GSq <=> 3XV GIR, A„ > 0 so that ev = J^ A/1yiyi/MeM VeM G£o\{e„}

Hence a hyperplane defined by its normal vector e„ is redundant, if it can be written as a positive
Unear combination of the vectors 3/i/yMeM, eM GSo\{eu}.

Proof: Using Lemma 3.2 and keeping in mind that p is such that eTp ^ 0 for all e GSo the proof
becomes really straightforward by substituting

y —• p, c —»3/^e^ with e„ G£o and a; —• yMeM with eM G £o\{eu}

D

A tight upper bound can be given for the size of the set Sq'.

Lemma 3.3

IQI < 2N

Proof: Since £J C £0 and |£0| = 2N, it is obvious that |£J| ? 2N.

Equality wiU by shown by providing an example for which €r = 0. Choose for example p =
(1,0,.. .,0)T. In this case, all vectors 3/MeM with eM GSq wiU have "+1" as their first component.
Any positive Unear combination of these vectors, i.e.



wiU give for the first component of the sum

2>M = 1

Since for any other element but the first element the summation wiU contain "+1"-entries as weU
as "—l"-entries, it is impossible to obtain a binary vector as the result of the summation, and thus
no element of {yMeM | e^ G £0} can be written as a Unear combination of the other elements. Thus
\Sq\ = 0 in this case, and since Sq and Sq are complementary with respect to So, \Sq\ = 2^.

It only has to be shown that there are cases in which Sq ^ 0. This wiU again be done by an
example. Choose p = (1.01,1,..., 1)T. Then {yMeM} is the set of all binary vectors with more
"+1" elements than "—1" elements plus all binary vectors vectors with an equal number of "+1"
and "—1" elements, where the first element is "+1". This set of vectors contains for N > 3 all
N + 1 vectors with N "+1" elements and one "-1" element. Adding these vectors and dividing
the sum by N - 2 wiU result in a vector consisting of only "+1" elements, which belongs to {y^e^}
as weU. Thus the vector e = (1,..., 1)T belongs to the set £J. It can be shown that \Sq\ is even
larger for N > 3.

This completes the proof of the theorem. •

Remark: It has been shown that a convex cone Cp can be Umited by a number of hyperplanes
which is exponential in N. It stiU remains an open problem whether there are cases in which
the number of hyperplanes is not exponential in N.

3.3 Accuracy

For any realization of a DTCNN, the actual (physical) network parameters wiU deviate from the
nominal parameters. Let p denote the nominal parameter vector, p the actual parameter vector,
and Ap = p - p the error. The correct operation of the network can only be guaranteed as long
as p GCp, where Cp is defined as in Subsection 3.2.

Due to the corrupted parameter vector p, the nominal ceU state xc(k) wiU become xc(k) = pTec(Ar).
Thus we have

p ^ Cp <£=> 3c,k so that ic(k) •xc(k) < 0

and in the Umiting case
3c, A; so that xc(k) = 0

3.3.1 Worst-Case Results

Assume that the network parameters {pn} can be realized with a guaranteed error Umit Ap™ax,
where |Ap„| < Ap^1**. Assume for simpUcity that Ap™ax = ai|pn| for all n = 0,...,JV and a
real-valued, positive accuracy ct\.



In the worst-case scenario, the network wiU stiU be performing correctly if

|*c(*) - *c(*)| < SCmin Vc,fc (4)

where

lmfa,:=£ig{leTp|} (5)

^min is the minimum absolute value for any ceU state at any time. It is Unked to dmim the
eucUdian distance of the parameter vector p from the nearest hyperplane in the parameter space,
by Xmin = VN + 1 ' dmin. Thus

\xc(k) - xc(k)\ =
N

E en(p„ - pn) + e0(p0 - Po)
n=l

N

N

< E |cn| ' \Pn ~ Pn\ + |e0| *|P0 " Pol <
n=l

< max{en} • £ \Pn ~ Pn\ = ||e||ec • E Ap-- = «i • |H|oo E \Pn\ =
n n=0 n=0 n=0

= Ol ' ||e||ee ' ||p||l

Hence a sufficient condition for the accuracy ct\ of the network parameters foUows from (4) as

^<MC%ii;=:r-(1,p) (6)
Note that in this last expression, 7*^(1, p) is exactly the (relative) robustness in weight space with
respect to the 1-norm as defined by Nachbar in [10]. In the case of binary inputs, Hejloo = 1.

3.3.2 Accuracy for Network Parameters with a Gaussian Distribution

The above paragraphs gave a worst-case analysis of the error. For a real-world fabrication process,
it is more realistic to assume that the network parameters are random variables with a Gaussian
probabiUty distribution.

Let Xoj- • ->XN be N + 1 mutually independent random variables with Gaussian probabiUty dis
tributions characterized by the expected values EXn = pn (the nominal network parameters) and
standard deviations oXn = an.

Let p(xoj- •->Xn) be the joint probabiUty density function of the random variables. Due to the
mutual independence of the random variables, we can write

P(Xo Xn)= n+1 e V '/ (7)
V 2tt Oq • ' ' &n

Now let Pok the probabiUty that the network is performing correctly. Then

Pok =J••JP(X0, •. ->Xn) dxo •"dxN



a) b) c)

Figure 1: Parameter Space for N + 1 = 2: a) convex cone; b) inscribed norm bodies AfBi(p,d)
(shaded circle) and A/7?2(p»«0 (shaded elUpsoid); c) optimum inscribed norm bodies

Fig. la shows the two-dimensional parameter space for the simple case N = 1. The shaded area
corresponds to the chosen convex cone. In practice, the integral is very difficult to evaluate,
because the number of hyperplanes defining the convex cone Cp can increase exponentially with N
(see Lemma 3.3). StiU, it is possible to give a lower bound on P0k« Let am&x := max{an} be the
maximum standard deviation. We introduce the norm bodies MB\{p,d) and AfB2(p,d)

MB^p,d) = UeiRN+1 EQ(Pn-Pn)2<d2\

AfB2{p,d) = \peIRN+l
N

E^^S^
n=0

AfBi(p,d) is a hypersphere and J\fB2{p,d) is a hyper-elUpsoid. AfB2(p,d) has to be introduced,
because a closed-form expression can be given for the integration of (7) over AfB2(p,d). It is
obvious that (with dnun = \/iV + 1 Xmin, the distance of of the nominal parameter vector p from
the nearest hyperplane)

Cp DMBX{p, dnun) DAfB2{p, dndn)

Fig. lb shows both norm bodies for d = (L;n. Therefore we have

Pok> /••• / p(Xo,-..,Xn) dxo-"dxN> j'-j p(Xo,--,Xn) dxo-'dxN (8)
ATBl(p,<imin) ArB2(p,rfmin)

The right integral in this last expression can be evaluated. The derivation is given in Appendix B.
We get

Omin 1

(2Tfl)
Pok>P^(^):=erf(-^)-7f.e-^2£-J^

Wmax/ W2crmaxJ V7T £j 1 •3 •. . . •

10

(9)



The "erf(*)"-function is the Gaussian error integral

e^-=7il<-'dt

0.8 -

0.6 -

0.4 •

0.2 •

Figure 2: ProbabiUty PN (J^)

For N= 0, expression (9) reduces to the standard Gaussian error integral. Fig. 2shows Pn (^Bi,L)
for values of N = 0 (standard Gaussian error integral), N = 18 (DTCNN with 1-neighborhood)
and N = 50 (2-neighborhood). Assuming that an = ct2 •|pn| and thus crmax = a2 • ||p||oo, we finally
get a lower bound on P0k, the probabiUty that the network is working:

Pok >Pn ( ^7" ) (10)
\0£2- Poo/

3.3.3 Finding the Nearest Hyperplane

In the results of the two previous subsections, both (6) and (10) require the knowledge of the
distance of the parameter vector p from the nearest hyperplane. Even the appearently simple
problem of determining the nearest hyperplane e^11 is difficult:

Theorem 3.2 The problem of determining whether there is a hyperplane ep G Sq for a given
parameter vector p with rational elements, which obeys

pTep < €

where e > 0 is a rational constant, is NP-complete.

11



For an explanation of the most essential terms regarding complexity theory, refer to Appendix A.

Note that in order to find out whether a certain hyperplane ep G So is the nearest hyperplane
from the parameter vector p, one has to decide whether there is another hyperplane with pTep <

DTe°lp P *

Proof: see Appendix C.

Note that the polynomial transformation that is given in Appendix C works both ways, i.e. the two
problems are polynomially equivalent. Thus it is possible to reduce the problem to an instance of
the Value-Independent Knapsack problem.

Even if Knapsack problems are NP-complete, there are pseudo-polynomial algorithms that work
quite weU in practice, e.g. the family of exact non-polynomial algorithms. Especially Branch-and-
Bound methods or Cutting-Plane algorithms (seefor example [8] or [11] for an overview) have been
used successfuUy. These algorithms seem to work quite weU, if the correlation between the weights
s(u) and the values v(u) (see Appendix C) is only weak.

In the case of Theorem 3.2 we are dealing with an instance of the Value-Independent Knapsack
problem (or Stickstacking Problem). Experimental results [12] suggest, that in this case the per
formance of traditional approaches to solve the problem breaks down completely. StiU, there are
attempts to solve this problem. The algorithm in [12] is claimed to reduce the effective problem
size from 2K to 2T.

If the DTCNN is simulated on a computer, it is fairly easy to determine the nearest hyperplane.
In this case, the ceU states have to be computed anyway, and it is computationally cheap to keep
track of the minimum of the absolute values of the ceU states.

In a usual setup, not all possible 2^ ceU input patterns wiU occur due to regularities in the training
set or the interconnection structure of the DTCNN. Let So C So denote the set of all ceU input
patterns e, that occur for any ceU at any time k for a specific training set (for the example in,.
Section 6 it turned out that only 7100 out of the 2^ = 262144 possible input patterns occurred at
aU). After a simulated run of the network on a computer, both So and Xmin are known.

3.3.4 A Lower Bound on dmjn

Using results from Linear Threshold Logic Theory, it is possible to come up with a lower bound on
dmin depending on N.

Assume that Xmin in (5) is strictly positive. Define

£:=-£- 1= 0,1,....JV

Then we have

eTp > 1

12



Using Muroga's terminology, this corresponds to the normalizedsystem of inequalities in a majority
expression (Definition 3.2.2 in [6]). For any positive, Boolean, Unearly separable function of N
variables, a bound on the sum of the weights can be given (Theorem 9.3.2.2 in [6]):

i=0 \ * /

Since any Unearly separable Boolean function can be converted into a positive Unearly separable
Boolean function by just flipping the sign of input variables, the above result is also true for the
general case. Thus we can write

E Iftl =IIpII. <2(JV +1) (^) (ii)

Plugging these results into (6), we get a lower bound on the relative robustness in weight space

,. >_ «min 1 > 1 (N +iyi*?) . .
M 'P; ~ ||e|U -Hplh - INMoo •NpIIi - 2(JV +1) V 4 ) { '

For all accuracies c*i < r,„(l,p), the network is guaranteed to perform correctly. Expression (12)
confirms that the number of bits required to store the weights is of the order 0(Nlog N) (see
also [13]). For a 1-neighborhood, 27 bits are needed to be able to reaUze any Unearly separable
Boolean function (worst-case results!).

Remark: Note that optimum robust solution for a given problem is unique. Therefore, the optimum
parameter vector is defined by N + 1 Unearly independent input patterns eu G So. Even if
the Boolean function, which has to be realized by the ceU, is not completely specified, the
worst-case accuracy requirements wiU occur, if all these N -f 1 patterns eu appear at any
time step and any ceU of the network. This can be achieved for example by setting the input
signals uc and the initial state yo(k) in a way that the desired patterns occur.

3.3.5 Practical Optimization of the Robustness

In the last three sections it became intuitively clear that the parameter vector popt in a convex
cone Cp has to be chosen in such a way that the nearest hyperplane is as far away as possible, while
a norm of the parameter vector is kept constant. This case is shown in fig. lc. The problem of
finding the popt GCp that maximizes

max \ min {|eTp0pt|rr and ||popt|| = 1 (13)
PoptGCp tegfo L J J

is the weU-known perceptron of optimum stability problem, and several authors have studied this
problem (see for example [14]). Since p (which defines the convex cone Cp) is known, the set of
vectors e^, GSo with desired output responses yM must be Unearly separable.
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Feeding the eM GS0 and yM into one of the algoritms solving (13), the optimal position of popt GCp
can be computed.

Remark 1: This strategy wiU only optimize the position of the parameter vector popt inside one
given convex cone. It is stiU possible, that there are other cones with low objective function
values, for which the robustness is higher. Due to the complexity of the problem of finding
these cones, no easy analytical approach seems possible. One way of incorporating robustness
into an objective function (c.f. Section 4.3) would be by adding a term o1(min{|eTp|}) to the
objective function, which punishes positions of p near hyperplanes. As said before, this term
can be obtained rather cheaply, if the system is simulated on a computer. The price which
has to be paid for this additional term is the introduction of many new local minima into the
objective function, which wiU further compUcate the optimization problem.

Remark 2: It has to be mentioned as weU that the value of the optimized minimum distance
from a hyperplane d^n depends on N as weU. In [13], the proposition is proved that for
an N input Unear threshold element, the number of bits needed to code the weights and the
threshold is of the order 0(Nlog N). This impUes that the accuracy requirements for the
weights wiU increase exponentially with N. This is a point where the DTCNN with its few
inputs compares favorably to the Hopfield network, where the number of inputs of each ceU
is at least an order of magnitude larger.

4 Learning for DTCNNs

In this section we wiU define the FeasibiUty Problem and the Learning Problem, using the terminol
ogy of Judd [15]. Let M be the number of active ceUs in the network. For the Supervised Learning
Paradigm, a number of input patterns u^ G[-1,1]^ (stimuli) are fed into the network. In some
cases, the stimuU are restricted to be binary-valued (uW G{-1,1}M). Each stimulus has exactly
one corresponding desired binary-valued output pattern d"J G{—1,*,1} (response), where don't
care values ("*") are possible. Each stimulus/response pair is called an item.

The objective of the network in the learning phase is to associate each stimulus, which is presented
during the training phase, with its response. After the training phase, the network ideally responds
to each stimulus with the corresponding desired response. A task is a set of L items that the
network has to learn, where usually L < 2M.

Let A define the architecture consisting of the ceU grid of active ceUs, the dummy ceUs at the border
of the active ceU grid, the interconnection structure (neighborhood), and the strategy of setting the
initial state.

Let T define the mapping T : [-1,1]* —> {-1,1} (or T : {-1,1}N —• {-1,1} in the binary
input case) that is performed by each ceU in the network at each time step.
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4.1 Feasibility Problem and Learning Problem

Using the above definitions, the mapping M? : [-l,l]M —• {-1,1}M describes the response of
the network. A network output M^(u^) (i.e. the response ofthe network, if stimulus u^ is appUed
to its input) agrees with the response 6r\ if all corresponding elements are the same (or a don't
care element appears in the response).

Then the Feasibility Problem can be defined as foUows:

Definition 4.1 : Feasibility Problem (FP):
INSTANCE: Given is a network architecture A.

QUESTION: Is there a mapping T so that M£{uW) agrees with dW for all I= 1,. ..,L?

The Learning Problem is defined by:

Definition 4.2 : Learning Problem (LP):
INSTANCE: Given is a network architecture A.

QUESTION: For which mapping T will M^(u^) agree with d^ for all I= 1,.. .,L?

Obviously, LP is harder than FP, because each solution of LP wiU by definition solve FP, but not
vice versa.

4.2 Complexity of Learning in Neural Networks

Before trying to find learning algorithms for the DTCNN problem, it makes sense to look at
the complexity of the problem. A good introduction to the terminology and related complexity
theoretical concepts is the weU-written book by Garey and Johnson [16]. The most important terms
are explained in Appendix A. The crucial question is, whether it is possible to find an algorithm
that wiU solve the Learning Problem in polynomial time (class P) or not.

Different authors have studied some special neural network architectures, and they were able to
come up with proofs of NP-completeness for these types of networks.

The most general result is due to Judd [17], where he claims that FP for the general case is NP-
complete. This impUes, that, unless P=NP, there is no polynomial-time algorithm that - given
any network architecture, node function set, and a task - wiU solve FP in this general case. This
is an important, but not very surprising fact. It stiU has to be studied, though, whether there
are networks with restricted architectures or restricted tasks, where FP and LP are solvable in
polynomial time. A few results on certain feedforward architectures can be found in the Uterature:

One of the first references is [18], where it was shown that FP for a multilayer perceptron, whose
Boolean mapping T is restricted to the class of SAFns (Single And Function), is NP-complete.
The class of SAFns are those Boolean functions which can be realized by one multi-input AND
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gate with optional inverters at its inputs and its output. The proof is done by a reduction of the
problem from the SAT (SATISFIABILITY) problem (see [16]).

Judd shows in [15], that FP is NP-complete for shallow (feedforward) networks. "Shallow" in this
respect means that the (depth of the network (number of layers) / FAN-IN of the ceUs / realizable
Boolean mappings) or a trade-off between these three quantities is bounded, while the width of the
network is unbounded.

In [19], the examined architecture consists of a feedforward network with two hidden layer nodes
and one output node. The two hidden layer nodes are connected to each of the n inputs, and the
output node is connected only to the output of each hidden layer node. Each node implements a
Linear Threshold Element (LTE), which reaUzes a Unearly separable Boolean function. It is shown
that the FP is NP-complete, even when the two hidden layer nodes have the same weights, but
different thresholds.

fc-cascade neural nets are examined in [20]. They have n (binary) inputs, and they consist of k'
LTEs, where the first LTE has n inputs, and the remaining LTEs have n + 1 inputs. The inputs
of the first LTE are connected to the n inputs of the network. The inputs of the second LTE are
connected to the n inputs of the network and to the output of the first LTE. The third LTE is
connected to the inputs and to the output of the second LTE, and so on. It is shown that the FP
for 2-cascade nets is NP-complete, even if the weight vector of the first ceU is the negative of the
weight vector (the part corresponding to the n inputs) of the second ceU. It is conjectured, that
FP for the k-cascade neural network architecture is NP-complete.

The result closest to a DTCNN architecture is the columnar grid architecture in [17]. It is shown
there that loading shallow architectures with grid SCI (Support Cone Interaction) graphs is NP-
complete. Note that this architecture consists of locally interconnected ceUs on a two-dimensional
grid, but it is stiU purely feedforward, and it admits different node functions for each ceU.

We wiU now focus our attention on the DTCNN, and we introduce the DTCNN Feasibility Problem
(DFP). Let as before N be the numberof inputs ofeach ceU, M the number of ceUs in the network,
and L the number of stimulus/response pairs. Then we define:

Definition 4.3 : DTCNN Feasibility Problem (DFP):
INSTANCE: Given is a DTCNN with binary, time-variant input signals.
QUESTION: Are there network parameters Po, •••,Pat so that the network response Mp(u\") agrees
with the desired response d^ for all I = 1,.. ,,L after not more than K time steps, where K is
bounded by a polynomial in (L,M,N), and the response of the network is stable?

There are no complexity-related results on FP or LP for binary recurrent architectures Uke DTC
NNs, Hopfield or Little models known to the authors of this report. But stiU, taking into account
the known results mentioned above, we claim

Conjecture 4.1 The DTCNN Feasibility Problem is NP-complete
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4.3 The Objective Function

At this point it becomes necessary to define the objective function. The objective function is a
measure of the errors, which the network makes during the recall phase of the training set. The
objective function has to be zero, if the network perfectly fulfiUs the learning task. The higher the
value of the objective function, the more the network deviates from the optimal behavior.

Learning is done by minimizing the objective function. The objective function can be defined as a
(multivariate) function of the N + 1 real-valued network parameters o : IRN+1 —> [0,1] or more
general as a functional o(^") of the Boolean mapping T, which is performed by each ceU. We wiU
use the first form, since in this case, the objective function can be written down as a closed-form
equation.

A frequently occuring phenomenon in DTCNNs are osciUations, i.e. the network does not reach a
fixed point, but it performs stable Umit cycles. This behavior is very undesirable, if the network is
used in an associative memory type appUcation. For this reason, osciUations have to be punished
by high values of the objective function.

Let y[jp(oo) = M.^(y^) denote the output of ceU c, when stimulus u™ was fed into the network,
and the network has reached a stable fixed point. Then, a distance measure for item I is

A[l], x_ J \ 2 uc •(yc,p(oo) - d[)2 for stable output patterns
**1 IP) — \ c=l

I 1 for stable Umit cycles

The uc G [0,1] are weighting factors, which obey

M

c=l

With these weighting factors, different importance can be attached to certain ceUs in the output
image. uc = 0 for certain ceUs means that their final state is ignored (don't care symbols in the
response), for example because the respective ceU is no output ceU. For binary patterns and uniform
weighting, the equation for the stable fixed point case corresponds to a normaUzed Hamming
distance. OsciUations are "bad" in terms of the objective function, and thus any optimization
algorithm wiU avoid areas of the parameter space, where osciUations are Ukely to occur. The
objective function o(p) is then defined as the weighted average of the distance measures

[i]

where again

oi(p) =Efl'M"(p)

£n, = i

The Qj G [0,1] are weighting factors for attaching different importance to item I.

The above objective function can be used for learning algorithms. Its main disadvantage is that the
mechanism to avoid osciUations imposes relatively severe restrictions on the values of the network
parameters.
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A common observation for DTCNNs is that if osciUations occur, usually only a few ceUs osciUate,
while the other ceUs stay constant [21]. In some appUcations (Uke for example the one in Section 6),
local osciUations may be tolerated, thereby gaining more flexibiUty and less restrictions for the
template parameters.

Therefore, it makes sense to define a second objective function 02(p). The idea is to integrate over
one period To of the stable Umit cycle in the case of nonconstant outputs, while the computation
of the distance measure remains the same for the case of stable output patterns.

A«(P) =

and again

M1V1 r.-i r.i

jSwc- (yc,p(°°) - <& )2 f°r stable output patterns
e=l

Ti+To-1 M m m
45£ S. E "' 'foSpW " dc) for stable limit cycles

e=Ti c=i

oa(p) =£;niA?(p) (14)
/=1

5 Combinatorial Optimization by Simulated Annealing

5.1 Combinatorial Optimization Problems

Combinatorial optimization problems are usually given as pairs (ft, o). fi is the finite solutionspace,
and o : fi —• IR+ is a cost function (also: objective function). An element s Gfi from the solution
space is usually called state. The goal of combinatorial optimization algorithms is to find

The state sopt Gfi is the state with the global minimum of the cost function, i.e. o(5opt) < o(s) V-s G
fi.

Since |fi|, the size of the solution space, can be very large, but finite, one way to solve combinatorial
optimization problems is by extensive search, i.e. by just evaluating the cost function for every 5 G fi
and keeping track of the minimum. Unfortunately, |fi| usually grows at least exponentially with
the problem size. For this reason, extensive search methods become infeasible in most practical
cases, even for moderate problem sizes.

For a number of problems (class P), algorithms have been found which can solve the problem in a
time, which is bounded by a polynomial in the problem size. A solution Uke this is usuaUy considered
to be satisfactory. WeU-known examples for these problems are for example finding the minimum
(maximum) of a set of N numbers, determining the shortest path or the shortest spanning tree of
weighted complete graphs, deciding whether a graph is planar, the Linear Programming problem,
and many more [8].
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For other classes of problems (£ P), no algorithms are known which can solve the problem in
polynomially bounded time. Using algorithms with exponentially bounded time requirements does
not make much sense, because in this case, extensive search methods are preferable.

Some ofthese difficult problems are "solved" in practice by exact non-polynomial algorithms. These
algorithms usually work weU, but they are not guaranteed to finish in polynomially bounded time.
Examples for these algorithms are Partial Enumeration Schemes (Uke Branch-and-Bound methods),
Polyhedral methods (Uke Cutting Plane algorithms) or the famous Simplex method for the Linear
Programming problem [9], [11], [8]. An essential prerequisite for Branch-and-Bound methods and
Cutting Plane methods is that there must exist a relaxation ofthe original problem, which provides
an efficient way of coming up with relatively tight lower bounds of* on the cost function for certain
subsets fit- of the solution space, i.e.

ojnf< inf {o(s)\

By using these bounds in an intelUgent way, large parts of the solution space can be discarded
without expUcitly evaluating the cost function for states in these parts of the solution space, thereby
significantly reducing the computational burden.

For many appUcations, it is not absolutely necessary to find the global optimum sopt, but a "good"
objective function value wiU suffice. This is the domain of non-exact algorithms, which can find
good approximations of the solution for many problems in finite time. These algorithms can
be classified into three groups: Greedy procedures, Local Improvement methods, and truncated
exponential schemes. Examples for these kind of algorithms are Steepest Descentmethods, Monte-
Carlo type methods, or Simulated Annealing (see [11], [8]).

5.2 Simulated Annealing Algorithms

Simulated Annealing (SA) methods have been introduced in 1983 in [22], and since then they have
been appUed quite successfuUy to many different practical optimization problems in various fields
(e.g. [23], [24], [22], [25], [26], [27], [28], [29], [30]). The core of the Simulated AnneaUng algorithm
is based on the MetropoUs algorithm [31].

Simulated Annealing is a last alternative for the solution of difficult combinatorial optimization
problems, where other algorithms cannot be appUed. The algorithm is very easy to implement,
and many researchers report that it almost constantly comes up with approximate solutions of
good quality. It must be mentioned, though, that if SA algorithms compete directly with other
algorithms, they are almost always worse in terms of execution time.

5.2.1 The Algorithm

The SA algorithm explores the solution space by the foUowing strategy: It begins the search from
an arbitrary initial state. Then, a new state is generated, and the objective function for this state is
evaluated. The new state replaces the current state or is rejected, according to a certain acceptance
rule, which depends on the objective function values of the current and the new state, and on a
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system parameter T, which is called (system) temperature in analogy to the cooUng of substances
in physics. Then a new state is generated from the current state, and the whole process is repeated.

The acceptance function has the property that if the system temperature T is high, then newly
generated states, which have a worse objective function than the current state, are accepted with
a high probabiUty, while at low values of T, worse states are accepted only with a low probabiUty.
States with a lower objective function are always accepted. The idea is now to slowly decrease the
system temperature according to a certain schedule (referred to as the cooling schedule), thereby
forcing the average of the objective function of the visited states to descend to lower values. Since
the SA algorithm can accept worsestates, the algorithm can escape from local minima under certain
conditions. Under certain assumptions on properties of the algorithm and the cooUng schedule, it
can be shown that the algorithm wiU reach the global optimum sopt with probabiUty one.

The problem is to set the system parameters and the cooUng schedule so that two effects are
avoided:

• adiabatic effect: The system temperature is lowered too abruptly, so the system ends up
in a local minimum too far away from the optimum ("quenching").

• super-cooling: The system temperature is lowered too slowly, so that the cooUng process
takes an unnecessary long time.

The SA algorithm is given in a PIDGIN ALGOL [9] description in fig. 3. The algorithm is specified
by three functions (generate_state, accept, and updateJT) and two loop termination criteria
(inner-loop criterion and outer-loop criterion). ThecooUng schedule comprises the accept
function and the two loop criteria.

begin Simulated-Annealing;
initialize_state(scur);

oCur = o(scur) »*
T = To; /* initial temperature */
do /* outer loop */
do /* METROPOLIS or inner loop */

^new = generate-stateCscur); /* generate new state */

"new = 0^newj»

if accept(onew,ocur,T)
then Scur = 5new» /* accept the new state */

"cur = "new»

endif;
until(inner-loop criterion false);
T = updateJT; /* set next temperature */

until(outer-loop criterion false);
end Simulated-Annealing;

Figure 3: PIDGIN ALGOL representation of the Simulated Annealing algorithm
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5.2.2 Cooling Schedules

Different authors have analyzed the theoretical properties of Simulated AnneaUng algorithms
(e.g. [32], [33], [34], [35], [36], [37], [38]). [39] contains a relatively recent review of SA theory
and cooUng schedules in terms of homogenous and inhomogenous Markov chains. In a Markov
chain, the next state only depends on the current state. The transition probabiUties from state s'
to state s can thus be described by a transition matrix with elements Psia(T).

The foUowing paragraphs describe guideUnes for the setting of the three characterizing functions
and the two stopping criteria. They basically use material contained in [39] and [30].

functions generate_state, accept:
The transition from one state to another state, which was generated by the generate_state func
tion, is called a move. The move set MS(s') is the set of all states s which can be reached from s'
in one move.

Let the Markov chain be homogenous, irreducible (Pa>a(T) > 0 W £ fi and s e MS(s')) and
aperiodic (3.s so that Paa ^ 0). Let r 6 [0,1] be a random number with a uniform probabiUty
distribution, and let the accept function according to Kirkpatrick [22] as

accept^.o^T) ={™UE *'_<£ r (J5)Qcnr—Onew

FALSE otherwise

then it can be shown that if an infinite number of steps is executed for a fixed temperature T, the
probabiUty distribution of the states reaches an equibUbrium distribution ?r5(T), which is indepen
dent of the initial state, and which is given as a Gibbs distribution

T.OT =
6 T

e t

This distribution impUes that in the Umit T -> 0 the probabiUty of the optimum state $opt wiU
approach one.

Unfortunately, it can be shownthat if the Markov chainis reversible (ira(T)Paa'(T) = *a'{T)Paia(T))
then there is no way (apart from degenerate cases) that the Markov chain wiU reach the equiUbrium
after a finite number of steps.

In the case of inhomogenous Markovchains (and this is always the case in reality) it has been shown
that the SA algorithm wiU reach the optimum state with probabiUty one under certain stricter
conditions on the inhomogenous Markov chain, if a logarithmic cooUng schedule Tn = 7/ln(n + n0)
is used, even if only one step per temperature is executed. 7 and no are problem dependent
parameters, and under certain assumptions this logarithmic cooUng schedule can be shown to be
a sufficient and necessary condition for convergence to the global optimum. The problem with the
logarithmic cooUng schedule is that it also needs an infinite amount of time, and thus it is infeasible
in practice.
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initial temperature:
It has been derived that To = Ko^ with K w 20 and a^ the standard deviation of the cost function
at T —> oo (i.e. when each move is accepted) is a reasonable choice.

inner-loop criterion:
Different strategies have been used in the Uterature, and most of them are based on heuristics
instead of a theoretical derivation. Table 1 displays some frequently used strategies (see [30]).

strategy number of repetitions in inner loop
Single 1

Constant C (constant)
Geometric N(TMVI) = ct •N(Told) with a > 1
Energy repeat, until average cost of accepted states at one

temperature varies Uttle
Acceptances repeat until a certain number of moves have been

accepted

Table 1: Different inner-loop criteria

Adaptive strategies with a theoretical foundation are rare for the inner loop criterion. In [23], a
statistical model using the shifted 7-function is estabUshed, and the inner loop is terminated, if
certain system parameters are "close" to the predicted values.

updateJT:
Many different strategies are used how to decrease the temperature. For very high values of the
temperature, a quasi-equiUbrium is reached relatively fast. The idea is to decrease the temperature
only so much, that the quasi-equiUbrium for the new temperature is obtained quickly, since the
quasi-equiUbrium at the previous temperature is a good starting point for the new equiUbrium.
The most popular approaches are summarized in Table 2 (see [30], [39]).

Many researchers using SA methods have reported that the geometric strategy works weU in prac
tice, but actually, Hajek has shown that this cooUng schedule does not guarantee that the SA
process wiU converge to the global optimum for T -> 0 [40].

outer-loop criterion:
Outer-loop stopping criteria are used to avoid unnecessary computations, when a good value of oopt
has been reached and the probabiUty that the algorithm wiU find its way out of this local minimum
is very low. Some approaches are given in Table 3 (see [30], [39]).

5.2.3 Aggregate Functions

In their theoretical study of Simulated Annealing algorithms in terms of homogenous Markov
chains [32], Otten and van Ginneken introduce three aggregate functions and predict their behavior
as a function of the system temperature T (assuming that the system stays near the equiUbrium).
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strategy rule for updating T
Constant

Arithmetic

Geometric

Logarithmic

Aarts & Laarhoven

Lam & Delosme

Huang & al.

Otten & v.Ginneken

T = TC

-'new = -'old "7 ^

Tnew = a(T0id) •T0id (*(T) usually constant)
t — , y .n ln(no+n)
7> _ 3<r0,dT0id
inew ~~ 3<rold+ln(l+«)T0,d

where £ =const, and a0ld is the standard deviation
of the objective function at the old temperature T0id.

1 _ 1 , A<^a>T»H
••new 3oid <rojd

where < 6E2 > is the second moment of
the accepted energy changes

Tncw = Toid • e ^id

T —T u C'ToldJnew — -told _2

Table 2: Different temperature updating strategies

strategy stopping criterion for outer loop
Iterations fixed number of iterations

Temperature
Energy

T < Tend
< E > changes Uttle in several iterations

where < E > is the first moment of the cost

Acceptances
Romeo & al

number of accepted moves below a Umit
compare ^^(T) - omin(T)| with Ao(T) (in one

for accepted moves only; if equal, then stop
and perform one inner loop with T = 0.

move)

Otten & v.Ginneken °"oJd ^ r

where Eoo is the average cost at T —> oo

Table 3: Different outer-loop criteria
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These functions are the approximated expected value of the cost function E(T), the approximated
standard deviation of the cost tf(T), and the accessability H(T).

•CO

Si?) =77L 'E °» and *V) =
i(T)

i(TFi-£(fli-£(r))i

The summation is over all i(T) accepted states ot- = o(«i) at one temperature T.

The accessibiUty is given by

tf(rnew) = H(Told) - ^T«*)T-ff™)

S{oo) = ln|n|

where |fi| is the cardinality of the solution space.

Otten and van Ginneken identifiy a critical temperature Tcrit, a region of weak control (for T > Tcrit),
and a region of strong control (for 0 < T < Tcrit). Table 4 summarizes the results in [32] regarding
the predicted behavior of the aggregate functions.

function 0 < T < TCTit (weak control) r > Tcrit (strong control)

E(T) ^(~)+^Gfe-2) E{oo) ^1

o(T) oYoo) --J-r a(oo)

H(T) *<«•>+3? 0"(&H) *(oo)-*$?l

Table 4: Predicted behavior of the aggregate functions

6 Experiments

Since DTCNNs have a restricted architecture, it can be expected that DTCNNs wiU not be as
powerful and the areas of appUcation not as wide as for a fuUy-connected architecture with transla
tionally variant weights (e.g. the standard Hopfield network). Especially the fact that the DTCNN
only has a local interconnection structure suggests, that the input data should contain at least
some information contained in the ID or 2D neighborhood of each ceU. Image processing tasks
seem to be promising from this point of view. ActuaUy, several authors have used DTCNNs and
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CNNs for basic image processing tasks (see [41], [1], [29], [21], [42]). In all these cases, the network
parameters were determined by the use of /ocaHearning (design) algorithms. It has been reported,
that these tasks could also be learned by global learning algorithms [43].

A more demanding task are pattern recognition problems, which are too involved for local learning
algorithms. So far, no attempts have been made to do pattern recognition with an architecture
consisting exclusively of a standard DTCNNs (in [44], CNNs are used to preprocess the input data,
while the actual classification is done by conventional digital logic).

FuUy-connected, synchronous Hopfield networks are often used as an auto-associative or hetero-
associative memory. In these appUcations, patterns are "stored" in the network as stable fixed
points. Input patterns are appUed to the network, and they relax to the nearest stable state, thereby
mapping input patterns onto output patterns. Theoretical considerations suggest that the number
of patterns, which can be stored in the network, is Unked to the number of free (independent)
network parameters [45], [46], [47], [48], [49].

A fuUy-connected M-ceU Hopfield network with symmetric weights has exactly 0.5 • (M2 —M)
independent weights. Due to its local interconnection structure and the translational invariance of
the weights, a DTCNN has much fewer independent weights compared to the Hopfield network,
typically only 19 (1-neighborhood) or 51 (2-neighborhood) weights. This suggests that it might
not be possible to store many different patterns in a DTCNN. It is very difficult to stabiUze a large
number of output patterns, which are not correlated with the input patterns.

6.1 Description of the Problem

The problem treated here is a very simple one. The task of the network is to distinguish bitmap
representations of the letters "A" and "B". The input data is given as 30 instances of 10 x 10 binary
bitmaps of the "A"s and "B"s each. Black pixels are represented by a +1 value, white pixels by a
—1 value. The input patterns are surrounded by a ring of white dummy ceUs. Fig. 4 shows all 60
bitmaps.

The network is a standard DTCNN with a 1-neighborhood in a- and b-template, and a bias i.

The task, which the network has to perform, is very easy: The desired output patterns for the
"A"s are completely black ("+1") output patterns, and the desired output patterns for the "B"s
are completely white ("—1"). This easy strategy reflects the fact, that the number of patterns, which
can be stored in the network, is relatively small. At the same time, the translational invariance of
the desired output patterns is a logical consequence from the translational invariance of the network
parameters.

Since the objective function 02 (see (14)) imposes fewer restrictions, it is used instead oi,o\.

Remark 1: The idea that not a detailed binary output image, but only the Hamming distance
between the network output image and an all black or an all white image constitute the output
of the network, leads to the introduction of the Output Majority Decision mode (OMD) for
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Figure 4: Training Set

DTCNNs. In the OMD mode, the output signal y0MD is a scalar, which can only take on the
disrete values

„omd - J, .^^2 _M-4 M-^ M-2 1
y fcl ' M ' M '•"' M ' M ' J

The signal 3/0MD originates from summing up all binary ceU outputs yc and dividing it by the
number of ceUs M. It can be obtained relatively easy in a hardware realization, since only
one additional global summing wire is necessary.
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DTCNNs can operate at a high clock frequency. Results obtained from an experimental
DTCNN chip indicate that clock frequencies of 10 MHz are easily feasible [50]. Thus, once
the data is on the chip, the processing can be done relatively fast. The bottleneck of the
whole system wiU be the pattern data I/O, since for reasonable ceU grid sizes, data can only
be transferred sequentially (or row-wise). Using the signal y0MD instead of the whole output
pattern wiU get rid of the output data readout phase, and at the same time support the idea
of translational invariance.

If the input signals are stored on-chip, then it is straightforward to implement a mechanism
which can reset the initial state of the system, either to the input image or to an all black
or an all white pattern. Thus it is possible to apply different sets of templates to the same
input image, without reloading the input images onto the chip each time.

Remark 2: It has to be added that it is also possible to use continuously-valued input signals
uc(k) 6 [—1,1]. For the learning algorithm, it wiU be no difference whether it processes
binary-valued or continuously-valued input signals.

6.2 The Simulated Annealing Algorithm for the DTCNN Learning Problem

In Subsection 4.2 it was conjectured that the FeasibiUty Problem for DTCNNs (DFP) is NP-
complete. Since the LP is even harder, it does not make sense to look for an algorithm, that solves
the problems in polynomial time.

Unfortunately, the functional relationship between the system state and the objective function as
given in (14) is rather compUcated. To evaluate the objective function at one state in the solution
space, the whole network actually has to be evaluated for each item of the training set. Since the
number of possible ceU input patterns e grows exponentially with N, the number of ceU inputs,
there does not seem to be a way of saving computational effort by careful bookkeeping. In addition,
no way of finding cheap and reasonable lower bounds on the objective function for subsets of the
solution space fi; seems obvious. For this reason, Branch-and-Bound methods and Cutting Plane
algorithms are not appUcable to the problem. Hence, Simulated Annealing seems to be the best
alternative.

For the accept function, the standard form (15) is chosen. The choice of a suited move set is
a difficult problem. In the DTCNN case, each of the convex cones in the parameter space (see
Section 3.2) corresponds to a state s in the solution space fi. Thus each state s corresponds to a
Unearly separable Boolean function jP.

Unfortunately, there is no easy way to parametrize Unear separable Boolean functions. One pos-
sibUlty is to use the N + 1 network parameters from the parameter vector p to describe a Unear
separable Boolean function. This approach makes sense, because the network parameters are needed
for the operation of the DTCNN to evaluate the objective function. The mapping from p onto the
system states (the set of all possible Unearly separable Boolean functions) is not injective. Taking
popt, the optimally robust parameter vector in a convex cone Cp, would change this, but there is
no cheap way to obtain popt from p, since a convex cone can be defined by exponentially many
hyperplanes (see Lemma 3.3).
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Linearly separable Boolean functions of N inputs can also be uniquely characterized by their N + 1
Dertouzos parameters or by their N + 1 Chow parameters [5], both of which are N + 1 integer
numbers, but there is no easy way to compute the network parameters p from these characterizing
parameters.

The first approach was used for the parametrization. The foUowing move set was chosen: Let prand
be a N + 1-dimensional random vector, whose elements p^ad G [—1,1] are mutually independent
and uniformly distributed. Then

MS(P) ={p6IRN+11 ||p-p||oo <P,pe IR+}
A new move is generated from p by p = p + p •prand. The constant p is clearly depending on
the problem. Experimental results indicated that p « 0.05 is a good value for a DTCNN with a
1-neighborhood (N = 19). Choosing p too large wiU result in a mere random search without any
neighborhood properties, and a too small value wiU result in p E Cp too many times.

6.3 Experimental Results

The Simulated Annealing algorithm was tested with different annealing schedules. In almost aU
runs, the algorithm found states with good objective function values. It turned out that the quaUty
of the final approximation is not extremely sensitive with respect to the cooUng schedule that is
used.

Fig. 5 shows the approximated expected value E of the objective function depending on the tem
perature. Each data point corresponds the average of 1000...2000 evaluations of the objective
function at the corresponding temperature. The temperature is displayed on the horizontal axis,
and it is scaled by a factor 1254. The region of strong control and the region of weak control can be
clearly identified. The critical Temperature T^t is at about 200/1224 = 0.02. The Unear behavior
in the weak control region and the hyperboUc behavior in the strong control region can clearly be
recognized. The final solutions Ue in the interval [0.02,0.08] for low temperature values.

In fig. 6 the approximate standard deviation of the objective function is displayed. Since the data
is very noisy, it has been smoothed using

Onew = 0.9 • CTold + 0*1 ' °new

These data points reflect the predicted behavior of the aggregate function only poorly. The pre
dicted constant behavior in the strong control region can be observed only for very high temper
atures (T > 2000/1E4 = 0.2). The value of a for T -> oo is at around 0.07. There is a broad
transition region between the strong control and the weak control regions. In the weak control
region, the predicted Unear behavior can be clearly observed. Interestingly, there seem to be two
different slopes. The lower "path" comes exclusively from runs using the Otten/van Ginneken
temperature update law. Three simulations were run with 1000 and 2000 iterations per tempera
ture each, and the results were similar every time. The upper slope stems from all other cooUng
schedules that were tried out.

Fig. 7 displays the dependence of the acceptance rate (i.e. the number of accepted moves divided by
the number of all moves) on the temperature T. The acceptance rate seems to be closely correlated
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Figure 5: Average E(T) of the objective function; T is scaled by factor IEA

with T. At high temperatures, close to 100% of the moves are accepted. At a sUghtly higher
temperature before the approximated expected value drops to lower values, the acceptance rate
decreases. For low temperatures the acceptance rate goes assymptotically against zero, thereby
signifying that most of the moves are in vain.

The initial temperature was first set according to the To = Ka^
K « 20 is too high. The algorithms performed better, when T0 ^
time is spend at lower temperature values.

rule. It turned out that choosing
2 .. .5, because in this case more

The following temperature update rules were tried: (Otten/van Ginneken), (Aarts/Laarhoven),
(Huang/Romeo), the geometric schedule, the arithmetic schedule, and a hand-designed schedule,
where many iterations were executed in that region where the slope of E(T) was steepest (this was
done to perform a particularly accurate search in the region, where the global sorting takes place).
It turned out that, as far as the final values of the objective function, i.e. the quality of the solution,
are concerned, there are no significant differences between these algorithms, when the total number
of iterations used for each algorithm was roughly the same. Since the geometric schedule is the
easiest to implement, it should be preferred. It turned out that the total number of iterations seems
to have a more important influence on the quality of the solution than the temperature update law.

In almost all experiments, the inner loop was executed for either 1000 or 2000 steps. While this
does not seem to matter so much as far as the quality of the final result is concerned, the aggregate
functions will become less smooth, if the inner loop is executed only 1000 times.
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Figure 6: Standard deviationa(T) of the objective function; T is scaled by factor 1E4

Three experiment were performed with a geometric cooUng schedule, where the inner MetropoUs
loop was executed exactly once for each temperature. In these cases, the algorithm performed
relatively bad.

Sometimes, the average of the cost function at T —• 0 is worse than the objective function of a
state, that was visited during the annealing algorithm. For this reason, it makes sense to check
after each evaluation of the objective function whether the new value is lower than the previous
optimum, and to store this value, if it is better.

It should be mentioned that due to the long running times (roughly 2 days on a workstation), the
number of inner loop steps is Umited. In these experiments, the algorithm was never run for more
than 1J55 steps. This is Uttle compared to the number of iterations that other authors (e.g. 200E6
steps in [24]) use. The results of the experiments suggest that by using more iterations, the quality
of the solutions could be improved further.

Simulated Annealing methods did not find a solution to the problem that was better than the best
solution found by the HYBRID algorithm [21], but they found good solutions more reUably than
the HYBRID algorithm and are therefore a more robust tool.

It is outside the scope of this work to study the behavior of the DTCNN when appUed to the
pattern recognition task. [21] contains a more detailed description of solution strategies used by
the network.
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Figure 7: Acceptance rate; T is scaled by factor 1E4

7 Conclusions

Assuming binary input patterns, fixed and binary-valued dummy ceUs and a fixed strategy to
set the initial state, the behavior of DTCNNs depends only on the Unearly separable Boolean
mapping, which is performed by each ceU of the network at each time step. Using results from
Linear Threshold Logic theory, the cardinality of the solution space is shown to be of the order of
0(2N*/N\), where N is the number ofinputs ofeach ceU ofthe network. The parameter space is
divided by 2N hyperplanes through the origin into a large number of convex cones. Each of these
cones corresponds to a Unearly separable Boolean function, and it can be defined by at most 2^
hyperplanes.

It is shown that the reUabiUty of the network (probabiUty of errors in a hardware realization)
depends on the distance of the network parameter vector from the nearest hyperplane. Even the
simple problem of determining the nearest hyperplane is NP-complete. A worst-case bound on the
required accuracy of the network parameters is given. In a simulation of a DTCNN on a computer,
the nearest hyperplane can be obtained during a regular run of the network. The problem of finding
the optimum position of the parameter vector in a convex cone is a standard "perceptron of optimal
stabiUty" problem.

The Feasibilty Problem and the Learning Problem for DTCNNs are formally defined. Results of
other authors on the complexity of the Learning Problem for certain network architectures are
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reviewed. The FeasibiUty Problem for DTCNNs is conjectured to be NP-complete, where it is
required that the network has to reach the solution after K time steps.

An objective function is defined, which attributes a cost to each state of the solution space. Learning
is achieved by minimizing this objective function as a function of the template parameters.

A short overview over Simulated Annealing algorithms is given, and different cooUng schedules are
reviewed. Simulated Annealing is then appUed to the problem of minimizing the objective function,
thereby finding an approximate solution to the learning problem. A standard DTCNN architecture
is used for a simple pattern recognition problem, where the DTCNN has to distinguish bitmap
representations of "A"s and "B"s. The Simulated Annealing algorithms constantly finds relatively
good approximate solutions. The quality of the solutions produced by the algorithms is robust with
respect to details of the cooUng schedule.

Solving the Learning Problem for DTCNNs by Simulated Annealing is a computationaUy expensive
method, but due to the difficulty of the problem, it seems to be the only feasible method.
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A Introduction to Terminology of Complexity Theory

This section gives a short introduction to the terminology of complexity theory. For further infor
mation, the book by Garey and Johnson [16], from which most of the definitions and problems in
this section are taken, is highly recommendable.

A problem is a general question to be answered. Usually, a problem has several parameters or
variables. A problem is given by a general description of the variables and the conditions, which
the solution of the problem has to satisfy.

An instance of the problem is obtained by setting the variables of the problem to specific values.

An algorithm is a general, step-by-step procedure for solving a problem. An algorithm solves a
problem, if it finds a solution for any instance of a problem.

The cost of an algorithm is usually measured in terms of execution time or in terms of required
storage space. Both quantities depend on the size of the instance of the problem, i.e. the number
of variables of the instance of the problem.

A very famous example is the Traveling Salesman Problem, where a set of N cities c1} C2,..., c//
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is given, and distances d(ci,cj) between all cities. The problem is to find the shortest tour for a
salesman, who starts from one city, visits each city exactly once, and finally returns to the starting
point. In this example, the size of an instance of the problem is N, the number of cities.

Most practical problems have a corresponding decision problem. A decision problem is a problem
where the answer is either "yes" or "no". In the case of the TraveUng Salesman Problem, the
corresponding decision problem would be: "Is there a tour with a tour length shorter than a given
total distance d?". Decision problems are usually easier than the corresponding "fuU" problems.

The interesting question is how the execution time of an algorithm solving a problem scales with
the size of the instance of the problem. In general, it is desirable that the execution time is bounded
by a polynomial in the size of the instance. AU those problems for which algorithms exist, which
can solve the problem in polynomial time (i.e. time bounded by a polynomial in the size of the
instance) are said to belong to class P.

In other cases, the execution time can only be bounded by a function which depends exponentiaUy
on the size of the instance. This case is highly undesirable, since in this case, only small instances
of the problem can be solved in practice due to the fast growth of execution time. Problems, for
which no polynomial time algorithm exists, are called intractable.

The class NP contains all those problems that can be solved in polynomial time by a nondeter
ministic algorithm ("NP" stands for "nondeterministic polynomial"). These algorithms consist of
a guessing stage (this stage has built-in intuition, i.e. the capabiUty of an oracle) and a checking
stage. If a problem is in NP, then this impUes that, given a correct solution by an oracle, it can be
figured out in polynomial time whether the solution is indeed correct or not.

The relationship between classes P and NP is stiU not completely determined. For sure, PCNP,
but it is stiU an unresolved problem whether P=NP or not. It is strongly assumed, but stiU an
unproved conjecture, that P^NP.

Based on this conjecture, the class of NP-complete problems is introduced. This is an equivalence
class of problems, for which, assuming the validity of the P^NP conjecture, no polynomial time
algorithm can be found. Membership in this class is shown by polynomial transformation. A poly
nomial transformation of problem 1 to problem 2 is a polynomial time algorithm, which transforms
any instance of problem 1 to an instance of problem 2.

To show that a certain problem belongs to the class of NP-complete problems, two steps have to
be taken:

• Show that the problem belongs to the class NP, i.e. that a correct solution can be veryfied in
polynomial time.

• Show that a polynomial transformation from a problem, which is known to belong to the class
of NP-complete problems, to the problem in question exists. This impUes that, assuming that
a polynomial time algorithm for the desired problem exists, then any instance of the known
NP-complete problem could be solved in polynomial time as weU, using this polynomial
transformation. This is a contradiction, and thus the problem is equivalent to the known
NP-complete problem.
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The TraveUng Salesman problem is one of the most famous NP-complete problems.

In addition, another class of problems is introduced, i.e. the class of NP-hardproblems. A problem
belongs to this class, if it is not in NP and there exists a polynomial transformation from a problem
known to be NP-complete. The class is called "NP-hard", because problems belonging to this class
are at least as hard as NP-complete problems.

The foundations for the theory of NP-completeness were laid by Stephen Cook in [51].

B Evaluation of the Error Integral

The right integral in expression (8) can be evaluated. We introduce the (N + l)-dimensional
elUptical coordinates

Xo = p-ao cos<fo
Xi = P'<*\ sin 0i cos 02
X2 = P •02 sin <f>i sin 02 cos 03

XJV-i

XN

= p • 0"at_i sin 0i sin 02 • • • sin 0jv-i cos 0jv
= p • Off sin 0i sin 02 • • • sin 0;y-i sin 0#

where p > 0, (f>N € [0,27r], and 0n G[0, ^] for n = 1,..., N —1. Evaluating the expression

<*Xo ••-dxN = det ( n/ V'"' *!\ ) dp dfa •--d<f>N

leads to

dxo •••dxN = [pN ' o-q •--(Tn) '(sin^-1 0i •sinN~2 02 ••-sin 0w-i) •dp d<j>i •••dfa (16)

The expression Di'*?''"'x?K is the Jacobian determinant of the functions (xo> •••} Xn)- Since

N /.. \2

m- p2

-1 .
max*we get from combining (7), (8), (16), and using /? := dmin •a:

jr.--42ir ir 7r )9 -2

Pok> / J "J J ^J=nTT' (sinN~1(f>i-^N~2 <t>2 •••sm<l>N-1)(dpd<f>1--d<f>N) (17)
^=0 0 0o=0 ^

$N-\ —4>i.
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AU these integrals can now be evaluated independently from each other. The definite integrals over
the trigonometric functions can be found in a mathematical reference book [52]:

Combining two terms gives

/ sin2m xdx
o

_ l-3...-(2m-l)
~ V ' 24-...(2m)

/*,**« »fa = 2.^fei,

/ / sin x\ -sm + 2*2 dxidx2 = r
J J 2m + 1
o o

Since we know that N is even (c.f. Section 2), we can combine the above terms and get

V2t"

0 0 0

it is tit /o~~

/ sinN_1 0i d0i •... • / sin 0w_i d0^_i • / d<f>N = 2• _ -—-

For the term depending on p we use the recursion

& 0
N-l -£-1 xe 2JpN •e-'rdp =(N - 1) / pN~2 •e-^dp - (3

o p=0

(18)

(19)

Since N is even, we can reduce the integration involving p to an expression containing the Gaussian
error integral plus a sum of other terms. Applying (19) y times, wefinally arrive at the expression

?2Z+1

(2/ + 1)
JpN-e-£tdp=l-3.....(N-l). Je-^dp-e-^^rJ-P- (20)

Since the sum is finite, the expression wiU converge for all @due to the influence of the exponential
function. Putting together (17), (18), and (20), we get

Q21+1

(2J+1)*> jw) ~.*(£)-£•.-»'|,T^
This is equal to (9). The "erf(*)"-function is the Gaussian error integral

erfW:=A/e" dt
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C Proof of Theorem 3.2

In order to prove Theorem 3.2, we first have to introduce the Knapsack Problem (also called 0-1
Knapsack problem, see for example the Appendix of [16]):

Definition C.l (Knapsack):
INSTANCE: Finite set U, for each u E U a size s(u) E Z+, a value v(u) E Z+, and positive
integers B and K.
QUESTION: Is there a subset U' C U such that

]£ s(u) <B and £ v(u) ^ K ?

The Knapsack problem is NP-complete [16], even if s(u) = v(u) for all u E U (Value-Independent
Knapsack problem). It can be solved in pseudo-polynomial time.

Proof of Theorem 3.2: It is obvious that the problem in Theorem 3.2 is in NP, since if we are given
a correct guess epor by an oracle machine, we canfigure out in O(N) by just evaluating the scalar
product, that |pTepor| is indeed smaller or equal than e.

Secondly, we wiU give a polynomial reduction from the Value-Independent Knapsack problem. Let
N = \U\. Introduce the binary variables ev E {—1,1} with v —0,1,..., N. Let eo = 1 and

[+1 ifm,6j7' 1/=12 N
1—1 otherwise ' ' '

Let pv = s(uw) for v —1,2,..., N, let e = (B - K), and

N

Po = Yl 5(u") ~ K ~ B
u=l

This transformation is polynomial in N. We now claim that the Value-Independent Knapsack
problem has a solution if and only if the problem of finding ev E {-1,1} with v —1,2,..., N so
that

N

J] evpv < e
v=0

|eTp| =

has a solution. This is our original problem from Theorem 3.2. The fact that the pu in the original
problem are rational is not a restriction, since it it possible to multiply all pv with one positive
integer, so that then all pv become integers.

Using
1 N

uei/' v=i
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and thus
2K < 2 £ s(u) < 2B

u£U'
N

<=> 2K - B - K < £ (eu + 1) •s(uu) - B - K <2B - B - K
N N

«=> -(B -K)< Ee,- s(u„) + 1 • £ *(**) - ^ - K < (B - K)
i/=i i/=i

N

<=> -€< J2 eu ' Pv + Co *PO < C
i/=l

v=0

This proves the claim, and thus we have polynomially reduced the Knapsack problem to the problem
of Theorem 3.2. This completes the proof. D
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