

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

COMPUTING BOOLEAN EXPRESSIONS

WITH OBDDs

by

Thomas R. Shiple, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/84

10 December 1993

- -'

COMPUTING BOOLEAN EXPRESSIONS

WITH OBDDs

by

Thomas R. Shiple, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/84

10 December 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Computing Boolean Expressions with OBDDs

Thomas R. Shiple Robert K. Brayton
Alberto L. Sangiovanni-Vincentelli

Department of EECS, University of California, Berkeley, CA 94720

December 10, 1993

Abstract

We present a method to compute the bdd for an arbitrary Boolean expression, where the
operands are themselves BDDs. Such expressions are usually computed by the successiveapplica
tion of binary operators. However, cases exist where this method performs wasteful intermediate
computations and creates BDD nodes not used in the final result. In contrast, our method never
creates a BDD node unless it is present in the final result. We tested the new method on the
application of building BDDs for the nodes in a multi-level logic network. Although the new
method uses fewer BDD nodes, its runtime is much worse. By analyzing the reasons for this, we
further our understanding of BDD operations.

1 Introduction

A reduced ordered binary decision diagram (bdd) is a data structure used to store and manipulate
Boolean functions [2]. Researchers are applying bdds to a growing number of problems, such as
formal design verification, logic synthesis, and graph-theoretic problems. Forming new bdds by
applying Boolean operators to existing BDDs, is at the heart of most BDD-based applications, so
any technique to reduce the memory and time required for these operations will have an impact on
such applications.

Boolean operations on BDDs are performed by applying Shannon's expansion recursively. For
example, to compute f(x\,..., xn)'g(x\,..., xn), where x\ occursfirst in the bdd variable ordering,
In '9xi and fxT'9xTare recursively computed, and then combined byforming x\-fXl 'gXl -\-x~\-fxj'gxj.

In the bdd packages with which we are familiar, complicated Boolean expressions are formed
by successively applying binary operators (e.g. and, or, xor). The problem with this approach,
called the binary method, is that unnecessary runtime and memory may be consumed in building
intermediate expressions that are not explicitly used in the final result.1 For example, to construct
(/' 9) + ^>tne term / ♦ g is built first, and then combined with h using OR. In the case where h is

1The problem ofintermediate memory consumption issomewhat alleviated by the garbage collection ofdead BDD
nodes (see Section 4).

one (i.e. the constant one),2 the work in building / -g is obviously wasted, since the final result is
just ONE.

A second example illustrating the weakness of the binary method is the expression /i -/2*. • ••/*•
Since there are k operands, A: —1 binary AND operations are needed. However, the order in which
the operands are processed can drastically affect the runtime and memory consumption, since the
recursion on a binary and terminates as soon as one of the operands becomes zero. Thus, the
sooner a zero branch is found at some point in the bdd for one of the operands, the sooner it
is known that the corresponding branch need not be explored in any of the other operands. An
extreme case occurs when /,• is ZERO for some i\ obviously, it is best to discover this as early as
possible. Hence, when using just binary operators, we may be faced with the difficult problem of
ordering the operands to improve efficiency in time and space.

By exploiting implicit don't cares in an expression, the binary method can be extended to
overcome some of its limitations. For example, when computing (/ •g) + ft, each of / and g can be
simplified using ft as a don't care set.3 That is, for any minterm where ft is one, the final result
will be ONE on that minterm regardless of the value of / or g. Thus, we can use a heuristic, such
as restrict [3], to minimize each of / and g (with respect to the don't care set ft) before forming
their product. In the special case where ft is ONE, / and g will each be simplified to constants,
thus making their product trivial. However, cases exist where restrict actually increases the size of
/ and g, thus exacerbating the problem.

We propose a method, the multi-way method, to avoid unnecessary intermediate computations
and the problem of ordering operands. The method is motivated by the observation that binary
Boolean operators in BDD packages, by themselves, do not perform wasteful intermediate compu
tations nor create unnecessary nodes. We extend this feature to arbitrary Boolean expressions,
including cofactoring by a cube, by recursively applying Shannon's expansion to all the operands in
an expression. Therefore, the multi-way method does not create any intermediate nodes—a node
is created only if it is present in the final result.

To illustrate the multi-way method, again consider the example (/ • g) + ft. If x\ is the top
variable, then (fXl •gXl) + hXl and (fxj •g^) + ft^ are recursively computed and then combined to
form

xi((/n •gXl) + hXl) + ^T((/x7 •£xr) + hxj).

At any step in the recursion, if the third operand (the "ft" operand) becomes ONE, then the recursion
terminates and returns ONE from that step.4 In this case, / and g are not explored beyond this
point.

In Section 2, an overview of the algorithm is given, and then each part is discussed in detail.
We assume that the reader is already familiar with BDDs. Section 3 offers analysis and discussion
of the algorithm, and Section 4 provides some preliminary experimental results. Section 5 presents

2It may be unlikely that h is ONE at the top-level of recursion, but this can easily occur at some intermediate step
in the recursion.

3The full don't care set for / is g + h, and for g is /+ h. However, there is an ordering problem, since these don't
care sets cannot be used independently.

4Of course, there are other terminating conditions, as will be explained later.

conclusions and future work.

2 Algorithm

2.1 Overview

The input to the algorithm is a Boolean expression.

Definition 1 Boolean expression is defined inductively:

1. Any bdd /is a Boolean expression.

2. If /i and f2 are Boolean expressions, then not(/i), and(/i, /2), or(/i, /2), and xor(/i, f2)
are Boolean expressions.

3. If / is a Boolean expression, and bdd c is a cube, then COF(/, c) is a Boolean expression (/
cofactored by a cube).

A Boolean expression can be represented by a tree with internal nodes labeled by not, and, or,
xor, and cof. The leaves of the tree are operands.

The outline of our approach for computing the BDD for a Boolean expression follows:

1. Input processing

(a) Convert the user's input into a tree representing the Boolean expression to be computed.

(b) Create a new Boolean expression by substituting eachoperand in the original expression
by a new, auxiliary variable, and build the bdd for this new expression using standard
binary operators (cofactors are ignored at this point). This BDD is used to test for
terminating conditions in the recursion, as explained below.

(c) For each operand, record by which variables it is cofactored. This information is stored
with each operand, and is used when traversing the operand bdds to decide which
branches to follow.

2. Core routine

Recursively apply Shannon's expansion to all the operands of the expression. When an
operand becomes a constant during the recursion, evaluate its corresponding auxiliary variable
in the terminal condition bdd. When the variable support of the terminal condition bdd falls
to one or zero variables, this signifies a terminating condition of the recursion. Store the result
of each recursive step in a cache to avoid recomputing the same intermediate expression more
than once.

2.2 Input Processing

The user creates two arrays to represent a Boolean expression. The first, the "expression" array, is
an array of elements from the set {oprnd, and, or, not, xor, cof} representing the expression
in postfix notation. For example, the expression

(/i-/2)e(/3 + /i)/5

is represented by the array

[oprnd, not, oprnd, and, oprnd, oprnd, or, not, oprnd, cof, xor].

The second, the "operand" array, is an array of BDDs corresponding to the oprnd elements of the
expression array (e.g. [fi,f2,f3>f4,fs] for the above example). In general, we use k to denote the
length of the operands array. The operands belong to the principal BDD manager.

The first input processing step is to combine the information in the expression and operand
arrays into a single tree, where each node of the tree is an operator and each leaf is an operand.
Each operand is associated with an auxiliary variable in a new variable space.5 Thus, the leaf for
operand /,- contains two pieces of information: a pointer to the BDD for /j, and a pointer to the
BDD for the corresponding auxiliary variable, denoted by y{. Figure 2 shows the expression tree for
the expression ((/ •g)X2 + h)^.

The second step is to build the terminal condition BDD, working from the expression tree. This
bdd, denoted by tc, is defined over the auxiliary variables yi,...,yjfe. TC is built by the recursive
procedure build-terminal-condition, shown if Figure 1. Note that COF operations are ignored when
building TC—cofactor information is accounted for separately, as explained shortly. As an example,
tc for ((/ •g)X2 + ft)j7 is (yi • y2) + 3/4 (V3 corresponds to the operand x2, and y5 corresponds to
S4-).

As a preview, TC is used in the core recursive procedure to detect terminal conditions of the
recursion. A copy of TC is made at each step of the recursion,6 and the copy is evaluated on those
auxiliary variables corresponding to operands which just became constants in the current step.
That is, if operand /,• becomes, say one, then TC is evaluated at y,- = 1. For example, if ft becomes
ONE in the expression (/ •g) + ft, then TC = (yi •y2)+ y$ evaluated at 3/3 = 1 yields tc = 1. This
is a terminal condition, and indicates that the value of the user's expression on this branch is just
one. The use of TC is further explained in Section 2.3.

The last step in processing the input is to gather the cofactor information. Figure 2 shows the
cofactor information for the expression ((/ •g)X2 + h)xj. For each operand, we record by which
literals to cofactor the operand. For example, in the above expression, both / and g are cofactored
by the cube x2 • X4. This is done by again traversing the expression tree: whenever a cof node is
reached, the literals present in the cofactor cube are noted. This information is recorded for every
operand within the scope of the cofactor. It is illegal to cofactor an operand by the same variable in

5The auxiliary variables are stored and manipulated in a separate BDD manager so that BDD operations on the
auxiliary variable space can be counted separately from those on the principal variable space.

6Copying is a constant time operation in a BDD package that uses a strong canonical form [1].

function build_terminal_condition(expression tree) {
switch (type of node) {
case OPRND:

return (auxiliary variable corresponding to operand);
case AND:

left = build_terminal_condition(left child of expression);
right = build_terminal_condition(right child of expression);
return (bdd_and(left, right));

case OR:

left = build_terminal_condition(left child of expression);
right = build_terminal.condition(right child of expression);
return (bdd_or(left, right));

case XOR:

left = build_terminal_condition(left child of expression);
right = build_terminal_condition(right child of expression);
return (bdd_xor(left, right));

case NOT:

return (bdd_not(build_terminal_case(child of expression));
case COF:

return (build_terminal_condition(child of expression being cofactored));
}

}

Figure 1: Procedure for building the terminal condition bdd.

opposite phases (e.g. x and x). Since the cofactor information may be identical for many operands
(such as for / and g above), only one copy of each distinct pattern of cofactor variables is stored.
The number of distinct patterns is bounded by the number of cof operators in the expression. An
array is used to store a pattern; the length is the number of variables in the principal BDD manager,
and the tth entry contains two bits encoding whether variable X{ is a cofactor variable, and if so,
in which phase.7

2.3 Core Routine

The bdd for a Boolean expression is computed by recursively applying Shannon's expansion to the
entire expression, taking into account the cofactor operations. The major steps of this recursive
routine are:

1. If a terminating condition is satisfied, then return the corresponding terminal value. The
terminal value will be either the constant ONE or zero, or a sub-BDD of one of the original
operands.

2. If the same expression is found in the cache, then return the previously computed result.

3. Get the then and else branches of the operands, subject to the cofactor information of each
operand.

4. Recursively build the bdd for the then operands and for the else operands.

5. Create a new bdd node to combine the results from step 4 using Shannon's expansion.

6. Insert the expression and result of step 5 into the cache. Return the result of step 5.

Each of these steps will be discussed in detail. Figure 3 shows the pseudo-code for the core
routine.

The core routine works by performing a simultaneous depth-first search (DFS) on all the
operands. At each step of the recursion, the user's expression must be computed using the sub-BDDs
at the current step as the operands of the expression (i.e. this process is just Shannon's expansion).
Two pieces of information are carried along and updated on the recursive descent. The first is a set
of flags indicating which operands have "fallen" to constants. The second is the TC BDD, evaluated
on those auxiliary variables corresponding to operands that have fallen to constants. For example,
if the ith operand is currently a constant, say ZERO, then TC is evaluated at y,- = 0.

Upon taking a recursive step, the first task of the core routine determines if a terminating
condition has been reached. This is done by evaluating the local copy of TC on the auxiliary
variables corresponding to those operands that just became constants on this recursive step (a
bdd-cofactor is used to perform this evaluation).

7Actually, it is not necessary to gather cofactor information and to assign an auxiliary variable for those operands
corresponding to the cofactoring cubes. As a minor improvement, the code should be changed to reflect this.

original expression: ((/ •g)X2 -f- ft)^

expression array: [OPRND, OPRND, AND, OPRND, COF, OPRND, OR, OPRND, COF]
operand array: [fig,x2yh,x^]
terminal condition TC: (yi • y2) + y4

operand array, w/o
cofactor cubes:

cofactor info array:

distinct cofactor
patterns:

present?

phase

f 9 h

0 0 0 1

0 0 0 0

X\ X2 £3 X4

0 1 0 1

0 1 0 0

expression

tree:
COF

left

right

OR OPRND

left BDDi^

right> BDDy5

COF OPRND

BDD ft

OPRND

BDDZ2

BDDy3

OPRND OPRND

BDD/ BDD g

BDD yi BDDy2

Figure 2: Expression tree and cofactor information for ({f-g)X2 + h)xj. Note that the functions /,
g, and ft are defined over x\, x2, £3, and £4.

bdd_node *

function compute_expression(operands, TC, cofactorJnfo, constant-flags)

{
/* update constant-flags and TC, based on the input operands arrary */

new_constant_flags = update_constant_flags(operands, constant_flags);
new_TC = update_TC(operands, new_constant_flags, TC);

/* Step 1: test for terminal conditions */
if (test_terminal_case(operands, cofactorJnfo, new_TC, &result)) {

return result;

}

/* Step 2: check if this operands array has already been seen */
if (cacheJookup(operands, &result)) {

return result;

}

/* Step 3: get the then and else branches of each operand, subject */
/* to the value of top_id and the cofactor info */

/* First, determine the minimum of the top variable IDs of the operands */
topJd = min,{top_var(operandt- —• id)};

/* Next, based on the value of top_id and the cofactorJLnfo, get the */
/* appropriate then and else branches for each node in the operands array */

get.branches(topJd, operands, &then_nodes, &else_nodes, cofactorJnfo);

/* Step 4: recursively compute the then and else results */
then_result = compute.expression(then_nodes, new_TC, cofactorJnfo, new.constantJlags);
else.result = compute_expression(else_nodes, new.TC, cofactorJnfo, new_constantJlags);

/* Step 5: combine the then and else results to create a node representing */
/* the function indicated by the input operands array */

result = ITE(topJd, then_result, else_result);

/* Step 6: insert the result into the cache and return the result */
cacheJnsert(operands, result);
return result;

Figure 3: Psuedo-code for the core routine.

If TC is a now a constant, then the value of the expression on this recursion path is just the
value of TC. If tc is not a constant, then the variable support of TC is determined.8 If only one
auxiliary variable remains in the support, then we simply return the corresponding operand in the
proper phase, as the value of the expression. (There is an exception to this: if that operand still
must be cofactored by variables not yet reached in the recursion, then we cannot terminate the
recursion.) If more than one variable remains in the support of TC, then a terminal condition has
not been reached yet. However, to improve efficiency, we further analyze the variable supportofTC.
If an auxiliary variable corresponding to a non-constant operand has dropped out of the support,
then that implies that that operand no longer has an effect on the value of the expression. We
replace such operands by a constant to avoid needlessly applying Shannon's expansion to them.
For example, if the expression is (fx - f2) + (/3 • /4) and fi becomes ZERO, then TC evaluated at
yi = 0 is y3 •y4. Thus, tc no longer depends on y2, indicating that it is no longer necessary to
recurse on f2.

This method of testing for terminal conditions misses some obvious terminal conditions. For
example, recursion does not terminate on the expression (/•/) + ft, because the TC function
is (yi • y2) + Vz, which does not satisfy any of the above conditions. As another example, the
expression / • / is missed, since TC is y\-y2. These sorts of checks could be added, although the
tradeoff is unknown between the time needed to perform the checks and the time saved in further
recursion. Note that it is not sufficient to detect these sorts of pathological cases in the original
user's expression, because they may occur at any step of the recursion.

If a terminal condition has not been reached, then in the second step of the core routine, the
cache is checked to see if this expression has been previously computed. The cache maps an array
of operands to a BDD representing the value of the user's expression on these operands. Note that a
key of the cache is just an array ofoperands—there is noreference to the operators of the expression.
Thus, it is assumed that all entries in the cache correspond to the same user's expression. For this
reason, the cache must be flushed after the core routine finally returns and the user's expression
has been fully computed. This is in contrast to the ITE cache of a standard bdd package, which
persists between user's calls to ITE.

The cache is represented by an open hash table (i.e. each bucket contains at most one entry).
Given an array of operands (bdd pointers), the hash function sums the elements of the array,
after first shifting each element by a varying number ofbits.9 The operand array [/i, f2,..., //.] is
considered to match the array [gi,g2,•. .,#*], thus achieving a cache hit, only if /,• = y,-, for all i.
Note that this implies (/ •g) + ft and (g •/) -f ft do not match.

Assuming that the result wasnot found in the cache, the third step determines the appropriate
bdd branches of each operand for the succeeding recursive calls. First, we compute the topmost
bdd variable ID, topJd, of all the operands. For example, if the variables are ordered x\,.. .,a?„,
and there are three operands, with topmost variables x2lxs, and X4, respectively, then topJd is
2. Next, the then and else branches for each operand / are determined based on topJd and the

8To improve efficiency, we could implement a specialized cofactor routine that also returns the variable support
of the resulting BDD.

9It may be worth experimenting with different hash functions, as the performance ofthe overall algorithm strongly
depends on the cache hit rate.

cofactor information. Figure 4 shows the pseudo-code fragment for doing this.

fJd = get top variable ID of /;
V(fJd>top.id) {

/* f is below topJd, so don't split / yet */
then = /;
else = /;

} else { /* fJd == topJd */
if (/ cofactored by topJd) {

if (cofactor is in positive phase) {
/* follow the positive branch for both succeeding recursive calls */

then = ftop-id',
else = ftop-id',

}else { /* cofactor is in negative phase */
/* follow the negative branch for both succeeding recursive calls */

then = ftoJJd'
else = ftoTJX

}
} else { /* / not cofactored by topJd, so just split on top.id */

then = flops*',
else = ftoTJZ

}
} /* it's not possible that fJd<top.id */

Figure 4: Procedure for determining the then and else branches for recursion for operand /.

Thus, from the input operands array, we have created two new operand arrays representing the
then and else branches. The fourth step recursively builds the BDD for the expression represented
by each of these two arrays.

The fifth step creates a new node whose variable ID is topJd, and whose then and else pointers
are the results from the recursive calls in step 4. This node may already exist in the BDD manager,
and if so, it is used.

The sixth and last step simply creates a new entry for the cache, where the entry's key is the
array of operands in this recursive step, and the entry's value is the bdd node created in step 5.
Finally, the core routine returns the bdd node created in step 5, to be used at the previous level of
recursion to build up the bdd of the final result.

We illustrate the core routine on the expression (/' •g)X2 + ft (this is the same expression used
earlier, except that the cofactor by x~l has been dropped to make the computation more interesting).
Figure 5 gives the bdds for the operands /, flf, ft, and the result of the expression. Figure 6 shows the
recursive calls to the core routine. The first column shows which branch (of the Shannon cofactor

10

tree) was followed to reach a particular point in the recursion. The annotation "(*)" is a reminder
that the first and second operands are being cofactored by x2, so even though the recursion is
following the x2 = 0 branch, the x2 —1 branches are used for the first and second operands. The
second column shows the array of operands input to each recursive call. These arrays are laterally
shifted in the figure to indicate the depth of recursion. The third column shows the node returned
by the recursive call. The annotation "term, cond." indicates that a terminating condition was hit
on that call.

Theorem 1 The multi-way method never creates unnecessary intermediate bdd nodes. That is,
every node that is created in the principal bdd manager during the procedure belongs to the bdd
of the final result.

Proof The important observation is that the fifth step of the core routine is the only step that
creates nodes in the principal BDD manager. Thus, we must analyze the nodes created by the fifth
step; we do this by induction on the recursive calling structure of the core routine. In the base case,
the fifth step just returns the constant ZERO or one or a sub-BDD of one of the original operands, all
of which already exist in the principal bdd manager. By induction, the BDD nodes returned by the
then and else branches of the recursion must appear in the final result BDD. Now, the node created
in the fifth step combines the then and else results by calling lTE(topJd,then.result,else.result).
If the then and else results are identical, then the fifth step just returns thenjresult, which by
induction is needed in the final result. If they are not the same, then the final result needs a node
at the topJd level to distinguish the then and else results. •

The fact that a procedure can be created that has this property should not be surprising. This
follows since the value of an expression on a given minterm can be computed knowing just the value
of each operand on that minterm. Thus, a simplistic algorithm would perform a simultaneous DFS
on the operands, always recursing down to the point where all the operands are constants. Since
a BDD package with a strong canonical form is used, the final BDD is automatically reduced when
the recursion unwinds. What we have done beyond this simplistic algorithm is to avoid (in some
cases) having to recurse all the way down to constants, by using a cache of previous computations,
and by terminating the recursion as soon as only one non-constant operand remains.

2.4 Specialized Multi-way AND

We have specialized the general routine for building Boolean expressions to the case of multi-way
and (i.e. /i • f2 •... •/jt). Doing this greatly simplifies the procedure. First, there is no expression
array to parse—the input is simply an array of operands. Second, there is no cofactor information
to gather and process. Third, we take advantage of the commutativity of AND by sorting the array
of operands by their addresses; this increases the cache hit ratio (e.g. / •g • ft and g • / • ft are not
distinguished).

Last, and most important, the test for terminal conditions is hard-coded (there is no need for
the auxiliary variables or the BDD TC), and it is more sophisticated. Besides the cases which are
detected by the general routine operating on a multi-way and, namely:

11

s

1 0 0 1 1 0 0 1

Figure 5: bdds for the operands used to illustrate the core routine. The letter labeling each node
is for future reference. Complement edges are not used to simplify the example. The BDDs are not
drawn showing the sharing of nodes, but they are labeled to reflect sharing. Finally, the left edge
is the "0-edge" and the right edge is the "1-edge".

12

branch

followed

xi = 0

x2 = 0(*)

x3 = 0

x4 = 0

X4 = 1

Xz = 1

a?2 = 1

a?i = 1

x2 = 0(*)

£3 = 0

X4 — 0

14 = 1

X3 = 1

£2 = 1

ar3 = 0

£4 = 0

X4 — 1

x3 = 1

operands argument return node of
to core routine recursive call

top-level call - result

H

D

D

1 (term, cond.)

0 (term, cond.)

D (term, cond.)

1 (term, cond.)

N

M

D

1 (term, cond.)

0 (term, cond.)

C (term, cond.)

1

1

1 (term, cond.)

1 (term, cond.)

1 (term, cond.)

Figure 6: Illustration of the core routine operating on (/ •g)X2 + ft.

L^_h

A fi_H

E G D

D D D

1 1 1

0 0 0

0 1 D

E G 1

Elg L

E G I

D D 0

1 1 0

0 0 0

0 1 C

E G K

D D C

1 1 0

0 0 1

0 1 1

13

• one of the operands is ZERO,

• all of the operands are ONE, or

• there is only one non-constant,

the specialized code also detects the following conditions:

• two operands are complements of each other,10 or

• there is only one unique non-constant.

Also, at each step in the recursion, duplicate entries and constants are removed from the operands
array, so that the length of the array gradually decreases along each recursion path.11

A specialized multi-way or is implemented by applying DeMorgan's Law (bdd complement is
constant time) and invoking the specialized multi-way AND.

3 Analysis and Discussion

In this section, we briefly analyze the algorithm and make a few observations.

First, if there are k operands, then the terminal case bdd TC has the usual bound of 0(2*)
on its size. After building TC at the top-level, TC is only cofactored by cubes, so the size of TC
monotonically decreases with recursion depth.

Second, the number of recursive steps in the algorithm, and hence the size of the final bdd, is
bounded by the product of the sizes of the operands.12 This is a generalization of the result that
the complexity of a binary operation is the product of the sizes of the two operands. Hence, the
asymptotic behavior of the multi-way method is the same as the binary method.

There are examples where the multi-way method requires more recursive steps than the binary
method. Consider the expression (xn -x^) + /(rr-i,...,xn), where xn is the last variable in the
ordering. The binary method requires two steps: the first to compute (xn • x~^) = zero, and the
second to compute zero + / = /. On the other hand, the multi-way method requires 0(|/|)
steps,13 since the first two operands remain unchanged until the recursion reaches the last variable.
As mentioned earlier, the terminal condition could be made more sophisticated to detect this case.

It also seems that the multi-way method is not able to fully exploit previous computations, due
to the coarse granularity of the cache entries. For example, suppose that we are computing the
AND of three functions, and during the recursion we first reach / • g • ft and somewhere later we

10Complemented operands are adjacent in the sorted array since their addresses differ by one.
11 This is not yet implemented, but may have a significant impact since much time is spent sorting the array.
12The bound on the number of steps assumes a closed hash table, where all previous computations are stored.
131/| denotes the number of nodes in the BDD for /.

14

reach / • g • e. Further suppose that / •g = zero, but / ^ g, so it is not trivial to realize that
/' •g 'h = f' -g ' e— zero. Using the binary method, the necessary recursion will be performed to
realize that / • g = zero. Then, when (/•</)• ft and (/ •g)-e are reached, it is trivially realized
that the result is zero.

On the other hand, for the multi-way method, the necessary recursion is performed on / •g -ft
to realize the result is ZERO, and this fact is stored in the cache. However, since ft ^ e, / •g • e
will not be found in the cache, and hence recursion must be performed on / •g • e to compute the
result. So, in summary, there are examples where the binary method has an inherent advantage
over the multi-way method, because the operations are done at a finer level of granularity, and
hence previous computations are more likely to be repeated and reused. Note that the specialized
multi-way and also suffers from this problem.

Although existential or universal quantification is not one of the basic operations of the multi-
way method, the multi-way method can be used to perform quantification. For example, the
expression 3WiZf can be rewritten as:

Jwz T Jwz T Jwz T Jwz

and hence can be computed using the multi-way method with no intermediate memory consumption
in the principal bdd manager. Of course,this translation is exponential in the number of quantifying
variables, so it is probably limited to 5-10 variables.

4 Experimental Results

The new methods are implemented in the Berkeley bdd package. We tested these methods on
the application of building the BDD for every node of a multi-level logic network, in terms of the
primary inputs. In particular, we experimented with logic networks in SIS [4], where the function
at every node is represented as a sum of products in terms of the node's immediate fanins. bdds
are built for the network by starting at the primary outputs and recursively building the bdd at
each node, always in terms of the primary inputs. Within this framework, we used four different
methods to build the bdd for the sum of products at each node:

Method 1. Binary: use binary and to build up each product term, and then binary or to conjunct each
product term as it is formed.

Method 2. Specialized multi-way and: use specialized multi-way and to construct each product term,
and then one application of specialized multi-way or (dual form of and) to form the sum.

Method 3. General multi-way and: same as 2, but use the general algorithm, rather than the specialized
code. (Thismethod serves as a control to see how much isgained by specializing the multi-way
method to multi-way AND.)

Method 4. Multi-way: build the BDD for the entire sum of products in one application of the multi-way
method.

15

Weran each of these methods on 41 benchmark circuits, after first applying the SIS commands
sweep and eliminate -1, to remove singlefanout and trivial nodes. The experiments were run on
a DEC 7000 Model 610 AXP with one gigabyte of memory. A time limit of 20000 CPU seconds
was used for each experiment. For each method, Table 1 lists the runtime (in CPU seconds) for
creating the bdds, the peak number of BDD nodes (in the principal BDD manager), and the number
of BDD garbage collections (GC) performed. 14 Table 1 shows that methods 2, 3 and 4 are roughly
2, 8 and 10 times slower, respectively, than method 1. However, there are examples where methods
2, 3 and 4 are more than 100 times slower, or do not complete at all due to an explosion in the
number of recursive steps. The runtimes will be explained later when analyzing Table 2.

The peaknumber of bdd nodes formethod 2 is consistently lower than method l.15 The biggest
percentage difference comes in example frgl: 601 for method 2 vs. 3206 for method 1. However,
there is one example, C499, where method 2 has a larger peak than method 1. This can happen
because in method 2, it is necessary to keep around all the product terms until the full, sum is
formed, whereas in method 1, the product terms can be freed as they are conjuncted to form the
partial sum.

As expected, when method 4 is able to complete, it always has a lower peak usage than method
1 (by construction, the peak usage for method 4 is exactly the number of nodes needed for the
final BDDs of the network). The largest absolute difference comes in example C3540: 196K vs.
297K nodes. This verifies the basic motivation behind the multi-way operations: unnecessary
intermediate computations can be avoided. However, there is a factor which undermines this
motivation: bdd nodes are garbage collected, so that nodes in intermediate BDDs that are no
longer needed can be reused. This means that the peak node usage for the binary method need not
be much larger than for the other methods. Indeed, in example C432, the binary method requires
a working space of only UK nodes above the 73K nodes that are needed for the final bdds. The
extra garbage collections needed by the binary method to keep the working space clean do not
greatly impact the overall runtime.

Table 2 lists the number of recursivesteps required for each method. For the binary method, this
is the number of ITE operations. For the other methods, this is the number of Boolean expression
(BE) operations (core routine calls, described in Section 2). In addition, for the last two methods,
we give the total number of recursive calls to ITE and cofactor associated with maintaining the
terminal condition bdd.

The examples broadly fall into two classes:

1. those where the number of recursive steps for methods 2, 3 and 4 is smaller than method 1,
and

liPeak node usage is measured as the greatest number of nodes in use at any point during the lifetime of the BDD
manager. Immediately after a garbage collection, all nodes in use are live. However, in general, "nodes in use" may
include both live and dead nodes. When a user "frees" a BDD, some of the nodes in that bdd may become dead
(depending on sharing with other BDDs), but they remain as "nodes in use" until the next garbage collection. Note
that for the Berkeley BDD package running on a 64-bit machine (e.g. DEC 7000 Model 610 AXP), the first garbage
collection is triggered when the number of nodes in use reaches 5110.

15Method 3 has the same peak as method 2 since the same intermediate BDDs are computed.

16

T
3Oa-
aoa

.2o0
)

•3oC
V

yX
i

t-i

C
V

r
QaO1=1

PPP
QC
V

r
O

O
o

o
o

o
o

r
-
i

o
©

o
o

•
*

•
o

•
o

,
o

o
r
H

o
C

O
O

O
C

O
C

O
o

o
<

o
o

o
o

t
-

C
O

C
O

C
O

C
O

O
O

O
i

C
O

O

>
»

O

„
*

8
I
O

0
0

O
i

1
-H

e
o

e
o

C
N

o
C

N
C

N
C

O
•

o
>

»
o

>
1

0
0

0
0

C
O

0
0

T
J<

O
i

•
*

r
H

C
N

t
~

C
N

'
"«<

IO
O

i
C

O
0

0
C

O
C

D
C

O
r
H

r
H

O
C

O
O

i
«J

n*
^
-
1

o
c
n

o
o

C
O

•*»•
C

D
«

o
fr

-
O

C
O

r
-
l

T
-
l

o
t
-

o
"9<

t
-

c
o

t
o

0
0

C
N

C
N

t
o

•*»•
O

i
C

N
0

0
0

0
rH

0
0

tO
IO

r
H

r
H

T
)<

£
V

*
o

r
H

r
H

<
N

o
i

0
0

0
0

o
>

lO
«

o
0

0
fr

-
r
-

C
O

•
#

I
O

c
o

C
N

""l*
t
-

0
0

C
N

C
O

C
O

O
i

C
N

O
O

*
»

-
t
o

o
o

C
O

©
C

O
t
-

C
N

C
O

O
i

©

O
i

o
c
n

1
-H

r
H

C
O

lO
T

f«
1—

1
C

N
c
o

C
O

C
N

C
O

C
N

T
«

C
N

C
O

r
-l

C
N

r
H

C
N

r
H

O
lO

IO
C

N
C

N
**3

7",
C

N
0

0
T

)4
T

-i
t
-

•**
r
H

>
*

C
O

r
H

O
i

IO

"32

t
~

r
H

r
H

V
0

0
fr

-
O

r
H

e
o

o
o

r
H

0
0

IO
r
#

i
O

'
•x

f
1

C
N

C
O

t
o

O
i

r
H

C
O

"<
*

C
O

T
*

o
t
o

'
n

»
c
o

X
*

O
T

^
T

P
©

t
-

O
i

O
i

N
*

C
N

0
0

3
V

i
-
i

o
c
n

1
-H

i
-
i

t
-

•*«
r
H

t
H

©
C

O
C

O
o

o
o

o
T

-
l

t
o

t
o

o
>

o
C

N
•«<

t
o

C
N

r
-l

C
N

o
t
o

fr
-

0
0

0
0

0
0

O
O

i
O

i
t
o

t
o

C
N

r
H

o
C

O
t
o

o
T

t«
T

-i
r
H

C
N

•X
}*

•xji
O

i
O

t
o

t-i
T

-
i

T
-
l

•X
J1

T
-
i

xj<
r
H

C
N

r
H

r
H

o
o

o
o

O
C

N
c
o

«
o

O
o

o
o

o
C

O
•

o
o

o
o

I
O

r
H

O
i

o
o

t«
-

t
-

r
H

O
C

O
o

o
O

O
C

O
C

N
tO

C
N

t-i
r
H

C
O

©
©

Q

T
-
i

r
H

T
-
l

i—
I

T
-
i

T
-l

T
-
l

T
-
l

T
-
l

•a
8

r
-

IO
o

>
i—

t
O

r»<
C

O
0

0
fr

-
©

C
O

t
-
l

O
•

o
>

o
>

o
o

I
O

O
>

*
r
jl

C
N

C
O

C
N

O
0

0
C

O
t
o

t
-

C
O

C
O

C
O

^
fr

-
tO

O
C

O
C

N
C

N
l
-

<
t
o

0
0

C
N

o
i—

t
i
-
h

•^
"
#

fr
-

C
O

O
i

O
T

-i
t
-

o
>

C
O

T
-
l

C
O

T
-
l

O
i

r
H

C
N

C
O

C
O

r
H

0
0

o
tO

t
o

T
-i

C
O

r
H

C
O

O
tO

O
i

^
0

0
fr-

C
N

«
T

J
o

>
t
o

c
n

a
*

r
^

r
-

C
O

C
O

0
0

C
O

t-
l

C
O

T
-
i

t
-

o
0

0
r
H

C
O

1
-*

C
N

O
i

r
^

t
-
i

•x
r

r
H

O
i

T
-l

t
o

0
0

*
«

-
o

t
-

C
O

C
N

C
O

O
r
-i

T
-i

C
O

fr
-

"3
O

h
U

c
n

T
-l

r
H

IO
fr

-
C

O
1

-1
C

N
i-1

C
N

t
o

T
-
l

T
^

t
~

t
o

C
O

C
N

C
O

•**
t
o

IO
r
H

t
-

T
-
l

C
O

O
i

I
O

^
r
t

t
*

^
t
-

n
^

V
,

C
O

O
i

I
O

r
-^

t
»

t
o

r
H

IO
t—

O
i

0
0

C
O

Mfi
V

0
0

r
H

C
N

V
IO

C
O

t—
t

C
N

tO
•^<

0
0

0
0

C
N

C
O

C
O

0
0

0
4

•
-9<

o
C

O
T

f
C

N
C

O
•*

t
o

O
i

o
C

O
0

0
o

fr
r
H

IO
r
-
i

O
i

•
*

0
0

r
H

©
©

tO
C

O
C

O
tO

fa
V

l-H
o

C
N

«
-h

C
N

fr
-

lO
o

i—
1

O
C

O
r
H

O
o

C
N

o
o

o
>

C
O

•
^

t
o

©
t
-

l»
-

t
o

e
e

o
r
H

r
H

O
C

O
C

O
o

0
0

O
i

C
O

C
O

t
-

t
-

C
O

H
C

O
•^

T
-^

C
N

r
H

c
o

r
H

C
O

O
i

C
O

o
o

t
-

C
O

©
O

i
t
o

•xjt
O

O
C

O
r
H

C
O

C
N

C
N

r
H

r
H

C
N

r
^

O
o

o
o

©
C

N
c
o

lO
o

o
o

o
O

C
O

o
o

o
o

o
t
o

r
H

O
i

o
o

t
-

r
-

r
H

©
C

O
o

o
o

O
c
o

C
N

IO
C

N
r
H

r
H

C
O

O
O

f-4
r
H

r
H

r
H

r
H

r
H

r
H

r
H

r
H

o

<
•a

8
t
-

I
O

O
i

t
-
i

O
*

*
C

O
0

0
t
-

O
C

O
T

^
o

t
o

o
>

o
>

o
o

t
o

O
"
*

^
C

N
C

O
C

N
O

0
0

C
O

t
o

t
-

C
O

C
O

C
O

"
^

t
-

IO
©

C
O

C
N

C
N

t"
-

IO
0

0
C

M
O

r
H

1
-
1

•^
^

fr
-

C
O

O
i

o
T

-i
lO

t
»

O
i

C
O

T
-l

C
O

r
H

O
i

T
-i

C
N

C
O

C
O

r
H

0
0

o
lO

t
o

r
-
i

C
O

r
-
l

C
O

O
tO

O
i

^
0

O
fr-

C
N

•
^

V
•
u

o
>

I
O

C
N

o
>

1—
1

r
-

C
O

C
O

0
0

C
O

r
H

C
O

r
H

t
-

t
-

o
0

0
T

-l
<

o
r
-
i

C
N

O
i

T
-
i

T
-i

">
*

T
^

O
i

r
H

IO
0

0
r
-

©
t
-

C
O

C
N

C
O

©
r
H

r
H

C
O

fr
-

v
n

.
o

c
n

i—
I

1
-
4

IO
t
-

C
O

t
-
l

C
N

r
H

C
N

tO
C

N
T

-i
r
H

t
-

t
o

C
O

C
N

C
O

T
*

t
o

t
o

r
H

t
-

r
^

e
o

O
i

IO
^

W
t
-

t
i

N
H

^

5
5

C
O

O
i

t
o

T
^

fr
t
o

r
H

IO
t
-

O
i

0
0

C
O

"3o

0
0

r
H

C
N

V
•X

*
C

N
t
o

c
o

0
0

o
t
-

C
N

C
O

C
N

C
O

C
O

O
C

N
r
H

l
-

T
-
l

l-
^

t
-

0
0

C
O

t
o

C
O

.
o

t
-

r
H

t
-

C
O

C
N

C
O

C
N

e
e

t
o

t
-

IO
rH

fr-
O

i
C

O
tO

O
i

C
O

to
o

o
o

©
O

C
N

l-H
o

o
o

a
>

r
H

C
N

C
N

C
N

C
N

o
o

o
o

C
N

o
I
O

r
H

O
C

O
r
H

•X}<
Or
-
i

o
t
o

C
O

o
o

r
H

O
t
o

C
N

r
H

C
N

<
N

r
l

T
jt

r
H

0
O

N
O

C
N

C
O

©
t
-

r
H

C
O

r
H

r
H

o
o

o
o

c
o

t
o

0
0

o
o

O
t
o

o
lO

T
-i

o
o

o
o

o
C

N
o

C
O

O
t
»

t
-

C
O

O
T

J<
o

o
O

O
0

0
C

O
0

0
C

O
O

i
C

O
O

i
C

N
C

N
•"9"

r
H

"
*

r
H

C
N

r
H

T
-l

r
H

r
H

r
H

r
H

r
H

-a
(
0

c
n

0
0

t
-
i

O
i

©
C

O
C

O
C

O
C

O
r
H

C
O

C
O

o
o

t
o

I
O

o
o

C
N

o
>

o
C

O
o

C
O

C
O

IO
C

O
T

}1
T

j«
•x»»

-T
il

•xji
O

i
0

0
C

N
0

0
0

0
O

C
O

O
i

r
H

O

sr
0

)
IO

o
fr

<
o

r
H

fr
-

•*!•
o

0
0

O
i

O
i

o
T

-i
T

*
C

O
lO

0
0

C
O

C
O

r
H

r
H

r
H

t
o

O
0

0
C

N
o

t
o

0
0

o
C

O
t
-

t
o

C
N

T
P

0
0

C
N

r
H

r
H

C
N

r
H

V
•
o

5
o

e
e

t
o

1
-
1

1—
1

C
O

•
*

o
r
-
t

r
-
i

C
N

T
-i

T
-i

0
0

o
<

J>
C

O
t
o

r
H

r
-

r
H

C
N

O
0

0
t
o

0
0

r
H

O
i

-
^

n
«

C
O

t
-

T
-
i

O
i

r
H

0
0

t
-

'X
J*

lO
r
H

0
.

o
c
n

n
<

•X
*

t
o

0
0

C
O

C
N

T
»<

C
N

C
N

C
O

t
o

t
o

C
N

C
N

7
-^

o
o

IO
r
H

t
o

^
C

O
t
-

t
o

<
4<

t
-

C
O

•
*

•X
)*

C
O

C
N

IO
IO

C
N

IO
b

-
IO

IO

.s
fc

C
O

OT
-*

I
O

T
^

0
0

t
o

r
H

IO
0

0
O

i
O

i
C

O
r
H

C
N

C
Q

T
-*

V
e
N

•
H

c
n

e
N

e
o

fr
-

I
-
I

^
C

N
r
-i

0
0

C
N

0
0

C
O

r
H

r
H

r
H

T
-
l

C
O

•<
*

r
H

C
O

r
H

C
N

t
o

-»»«
C

N
C

O
r
H

C
N

C
N

C
N

C
N

•«*
C

N
•**

©
C

O
r
H

IO
IO

h
<

y
O

O
o

O
o

o
r
H

o
o

o
o

>
o

o
o

o
O

O
o

r
H

o
O

o
©

C
O

C
N

T
-i

©
xj<

O
O

O
©

C
N

C
O

r
l

»
*

C
O

r
t

^
O

H
o

T
-
l

r
-i

C
N

C
O

C
N

V
u

i—
1

*G
M

*
•

t
o

>
»

C
N

C
O

*
.$

T
-
i

C
N

C
N

C
O

•**
C

O
h

-
0

0
O

i
o

C
N

M
t-l

■
♦
*

T
-i

T
-l

«U
C

N
a

T
-i

C
O

C
N

O
i

o
t
o

o
o

©
©

to
•**

Ez

^
•^

>
»

C
N

C
OdU

36fi

1

9i
3

X
bO

B
O

.-,
*

-
4

•
•
H

r
H

,
*

rS
O

.

g

u
0

0

*
»

oo

S
"V

X
X

c
o

O
i

0
0

IO
O

fr-
T

*
rH

a
C

O
(0

to
J

X
-3

*
*

X
J<

•*»
>

^
•
x
j
i
o

o
c
o

o
i
e
o

i
o

e
o

'
-
j

0
0

0
*

-
"
'-

«
«

n
c
,'i

'5
« S

s0dc
v

a
,

aa

C
O

a
e
o

I
O

O
i

C
N

1
-H

0
0

e
o

•xl*
O

i
O

i
C

O
1

o
1

0
0

,
tO

C
O

C
N

•X
J*

r
H

C
N

r
-
1

t
o

i—
i

0
0

0
0

1
fr

-
•xl*

0
0

O
i

IO
C

N
O

i
©

fr
-

C
O

tO
O

i
C

O
r
H

fr
-

tO
o

0
0

o
c
o

O
c
o

tO
1—

1
O

i
C

O
fr

-
fr

-
C

N
o

fr
-

I
O

O
"
X

T
O

i
e
o

I
O

N
^

r
H

x
*

o
T

-
l

O
O

1
—

1
©

O
i

fr
-

O
i

1-H
C

O
o

r
H

fr
-

c
o

J
c
*

"X
I*

r
H

0
0

1
-H

e
o

o
C

N
e
o

fr
-

O
i

O
i

e
o

r
H

C
O

•X
l*

C
O

O
i

O
i

O
i

C
O

•xH
I
O

C
O

C
N

fr
-

O
i

I
O

0
0

e
o

C
N

T
^

0
0

Xfi

0
0

0
0

fr
-

C
O

C
D

fr
0

0
0

0
C

N
c
o

C
O

o
0

0
I
O

fr
-

fr
-

C
O

r
H

•X
f

C
O

fr
-

r
H

O
i

o
fr

-
I
O

O
i

O
i

C
O

e
o

O
i

r
H

C
N

c
s

o
1-H

T
»*

"fi

IO
r
H

O
i

•xt*
r
H

i
C

O
•xl*

C
O

r
H

IO
0

0
r
H

C
N

fr
-

•xl*
e
o

e
o

fr
-

•X
T

C
N

O
i

I
O

0
0

C
O

C
O

•xl»
o

o
I
O

C
O

t
o

0
0

•xl*
-xl*

e
s

T
-
l

C
O

0
0

C
O

C
O

C
N

C
N

o
O

i
C

O
•
x
f

C
O

o
t
o

r
H

I
O

0
0

0
0

•xl*
C

O
C

N

<
T

-
l

e
o

r
H

C
N

r
H

I
f

1
-H

O
i

•xj»
r
H

e
o

C
N

e
o

•xl*

C
O

C
N

fr
-

T
-
i

fr
-

C
N

•X
}!

o
t
o

fr
-

0
0

IO
1

O
i

1
o

o
,

e
o

•X
I*

C
D

IO
C

N
I
O

o
•xl*

0
0

C
O

e
o

1
O

i
T

^
C

D
O

i
r
H

C
O

t
o

•xj*
O

t
o

r
-
l

e
o

c
o

2
O

i
O

i
r
H

C
N

I
O

O
C

O
e
o

T
J*

l-H
C

O
t
o

xj«
t
o

T
-i

C
O

r
H

•X
l*

t
o

0
0

0
0

fr
-

IO
t
o

fr
-

C
O

fr
-

o
t
o

C
O

©
O

i
O

i
IO

fr
-

O
i

e
o

t
h

O
T

-l
•Xl*

fr
-

•xl*
1

-H
r
H

0
0

O
i

T
-l

©
•xl*

•xj*
•X

J*
fr

-
fr

-
C

N
o

0
O

C
N

C
O

fr
-

O
i

o
fr

-
o

0
0

C
O

fr-
I
O

fr
-

r
H

C
N

fr
-

c
o

C
O

1-H
0

0

«
fr

-
C

O
•xj*

C
O

0
0

O
i

r
H

1
-H

e
o

C
N

O
i

C
N

C
N

IO
r
H

O
i

1
-H

fr
-

o
r
H

lO
e
o

C
O

C
O

C
N

C
O

lO
•x}*

r
H

c
o

C
O

O
i

I
O

O
i

r
H

f
^

o
•**

C
O

t
o

tO
o

e
o

fr
-

C
N

C
N

IO
C

O
C

O
•x)<

o
e
o

O
i

IO

m
C

N
•xj*

C
N

T
-i

r
H

C
O

c
o

C
O

t
o

C
O

0
0

C
N

C
N

t
-
^

I
O

s
•Xj*

0
0

•xl*
IO

O
i

C
N

C
O

t
o

o
o

O
i

0
0

e
o

O
i

1
C

N
0

0
e
o

fr
-

C
N

O
i

O
i

t
o

O
i

O
C

O
t
o

l-
H

C
O

C
O

IO
r
H

C
O

r
H

fr
-

©
O

i
0

0
0

0
•xl*

e
o

t
o

o
,

fr
-

•xl*
•*»*

c
o

o
"
*

0
0

I
O

O
i

C
O

o
o

C
O

C
O

C
N

e
o

C
N

o
•Xl*

O
i

C
O

C
N

•X
T

•X
T

•xti
r
H

fr
-

t
o

1
-H

I
O

fr
-

O
i

•x
*

o
o

O
i

O
i

tO
O

i
C

N
t
-

fr
-

o
fr-

r
H

t
o

tO
lO

C
N

r
H

r
H

C
O

o
O

i
•xl*

o
C

O
t
-

C
O

fr
-

fr
-

fr
-

C
N

c
o

r
H

0
0

0
0

fr
-

o
o

o
1

-H
•xji

tO
0

0
IO

tO
fr

-
C

N
fr

-
r
H

IO
O

1-H

Q
Xfi

t
o

r
H

t
-

C
D

C
D

O
i

r
H

t
o

r
H

•X}*
e
o

C
N

C
O

e
o

0
0

e
o

0
0

O
O

i
1

-H
C

N
T

-
l

O
i

fr-
C

O
O

i
C

N
C

O
t
o

e
o

fr
-

C
O

fr
-

0
0

O
O

IO
o

•xl*
e
o

c
n

S5
C

O
1

-H
O

i
*J»

C
N

o
C

N
C

N
C

O
1

-H
fr

O
l-H

r
H

1
-H

C
N

0
0

O
i

I
O

t
-
i

l-H
fr

-
0

0
0

0
0

0
e
o

IO
C

O
r
H

t
o

t
-

C
N

•«**
r
H

e
o

•X
I*

IO
o

C
N

r
H

e
e

fr
-

C
O

C
O

C
N

T
-
i

C
N

O
i

C
N

o
T

-l
O

i
l-H

r
H

C
O

fr
-

r
H

fr
-

IO
•xl*

C
N

I
O

1-H

•<
<

T
-
l

•xl*
•*

T
-
l

•xji
C

O
T

-
l

r
H

•xl*
C

O
e
o

T
3Mfi

t
o

1
-H

O
i

•X}*

C
O

0
0

O
O

C
N

C
N

C
N

O
i

IO
I
O

t
-

©
•xj*

C
N

e
o

1
©

C
D

o
c
o

fr
-

C
O

o
O

O
O

O
O

i
C

O
I
O

r
H

©
O

i
•xl<

c
o

r
H

•xl«
•xj*

C
O

o
•xl*

fr
-

e
o

lO
©

O
,

o
C

N
C

D
O

O
C

N
I
O

C
O

O
i

•xj*
C

O
•X|<

t
o

t
o

r
H

•xl*
o

o
t
-

I
O

fr
-

o
C

N
^
*

0
0

1
-H

O
i

0
0

t
-

fr
-

fr
-

fr
-

C
O

C
N

C
N

C
O

o
o

fr
-

C
O

•xl*
fr

-
O

i
O

O
i

O
i

O
i

IO
r
H

fr
-

C
O

0
0

•xl*
O

i
I
O

O
i

o
o

t
o

C
N

fr
-

C
N

fr
-

fr
-

r
H

0
0

•xl*
I
O

"xji
fr

C
O

C
D

a
o

fr
-

c
o

C
N

r
H

•xl*
•xH

•X
I*

r
H

C
D

•X
T

c
o

e
o

W
0

0
C

O
"X

l*
C

O
O

C
N

•xl*
•XI*

fr
-

e
o

r
H

C
O

C
O

r
H

r
H

1
-H

C
N

•
V

o
>

O
O

o
C

D
C

O
•x

*
e
e

fr
-

IO
IO

•x
f

fr
-

O
O

i
C

N
C

N
1

-H
C

N
o

fr
-

t
o

©
C

N
x
*

C
O

I
O

"X
I*

t
o

O
i

IO
r
H

C
O

1
-H

fr
-

O
i

r
H

C
N

fr
-

C
D

C
N

1
-H

•xj*
I
O

C
N

C
O

fr
-

lO
O

C
N

«
C

O
0

0
I
O

•XI*
1

-H
r
H

fr
-

t
o

I
O

t
o

e
o

•X
I*

C
N

0
0

r
H

•xj*
tO

Q
S

C
O

©
«J*

e
o

C
N

C
O

r
H

r
H

fr
-

C
N

C
N

C
O

•xl*
O

i
C

N
•xl*

•XI*
C

O
fr

-
I
O

©
C

N
©

r
H

fr
-

fr
-

fr
e
o

fr
-

C
N

O
i

fr
-

C
O

•xl*
©

O
O

o
C

O
1

-H
t
o

C
O

c
u

c
o

o
C

N
t
o

0
0

o
C

O
1"H

r
H

O
e
o

C
N

0
0

T
-
l

O
•xl*

fr
-

fr
-

e
o

0
0

•xl*
C

O
C

O
0

0
C

N
•xji

e
e

T
-
i

C
N

O
i

fr-
lO

c
o

C
N

C
O

0
0

©
O

i
C

N
T

-l
fr

-
o

C
O

0
0

tO
C

N
O

i
*

*
•X

J*
fr

-
T

-
l

O
i

C
O

fr
-

O
i

"
*

t
o

t
o

fr
-

C
N

C
D

0
0

C
O

0
0

•xl*
1

-H
O

i
r
H

C
N

fr
O

O
C

O
t
o

C
O

fr
-

l-
H

C
O

fr
-

1
-H

C
N

I
O

©

<
w

0
0

e
o

•xl*
C

O
O

i
C

N
•X

I*
•xj*

fr
-

C
O

1
-H

0
0

O
i

e
o

r
H

O
i

1
-H

C
N

•xi*
C

O
o

O
i

C
O

r
H

O
i

C
O

O
e
e

t
o

•x
*

O
i

o
•x»<

I
O

1
—

1
fr

-
O

i
o

•xl*
O

i
O

i
r
H

x
*

C
O

•X
l*

1J*
C

O
O

i
I
O

f
^

o
fr

-
fr

-
fr

-
r
H

e
o

1
-H

o
C

O
t
o

o
C

O
C

N
C

O
•xj*

r
H

.
P

Q
C

O
r
H

C
N

r
H

r
-^

t
o

tO
t
o

e
o

O
i

fr
-

C
O

up
,

C
O

•xl*
r
H

1
—

1

fi

w
o

r
H

O
i

I
O

•xl*
0

0
0

0
•X

I*
fr

-
C

O
e
o

fr-
0

0
e
o

C
O

0
0

r
H

O
0

0
I
O

C
O

0
0

C
O

C
O

l-
H

O
i

C
N

C
N

e
o

C
O

o
e
o

o
0

0
fr

-
C

N
fr

-
O

i
0

0
C

O
O

o<
C

O
C

O
0

0
C

O
1

-H
o

•XI*
•X

l*
"X

|*
O

i
O

i
fr

-
1

-H
•X

*
e
o

C
O

e
o

o
»

—
1

e
o

t
o

e
o

r
H

C
O

IO
o

O
O

i
e
o

C
O

•xji
e
o

O
i

t
o

fr
-

0
0

•xl*
0

0
C

O
•xl*

C
O

o
o

•X}*
•XI*

O
i

fr
-

0
0

e
o

C
O

O
i

0
0

C
O

C
N

C
O

r
H

e
o

•X
I*

e
o

1
-H

fr
-

C
O

O
i

c
o

C
D

C
D

0
0

C
O

fr
-

©
e
o

C
O

C
O

©
o

0
0

©
C

O
«J*

r
H

t
o

O
i

C
O

w
r
H

•X
J*

C
N

1
-H

l-
H

C
O

0
0

fr
-

0
0

"X
l*

fr
-

C
O

o
C

N
t
o

t
o

C
N

C
O

o
C

N
C

N
r
H

0
0

o
e
o

O
i

tO
t—

i
e
o

O
i

x
jl

C
N

o
IO

o
0

0
O

•<
»•

1
-H

•Xj*
C

O
r
H

r
H

T
-
i

C
N

x
*

t
•**

O
i

r
H

I
O

C
N

0
0

C
O

C
N

c
o

fr
-

t
o

O
i

1
-H

C
O

r
H

r
-
l

0
0

O
i

fr
-

O
i

fr
-

r
H

o
C

O
C

O

s
IO

oO
i

r
H

T
^

e
o

C
O

C
O

C
O

0
0

fr
-

r
H

C
O

1
-H

C
N

V
C

J
r
H

«
*

4
uC

O

M
•X

J*
I
O

r»»
C

N
e
o

fr
-

M
1

-H
C

N
C

N
C

O
•X

I*
C

O
fr

-
o

o
O

i
o

C
N

fa
i

IH
-
»

1
-H

V
C

N
(0

r
H

C
O

C
N

O
i

©
I
O

o
o

©
o

tO
"X

J«

iS5

-D
*9<

>
»

C
N

C
OdrOC
J

sfi

•1

&
s

X
X

C
U

0
0

0
0

T
-
i

^
0

)
•aa

.

o
o

o
E

0
0

*
>

~
o

X
X

C
O

O
i

0
0

t
o

o
fr

-
•xj*

r
-i

3
C

O
e
oto

C
O

J<
!

n
C

tf
C

O

8-
~

o
£

*S

>
>

5

M
-x

*
h

i

"oo

•*
*

>
T

*
^

O
O

o
o

o
c
o

O
i

e
e

t
o

e
o

«
-»

i-h
i-h

c
n

e
o

to
w

O
O

O
O

O

d«
-i

c
v

o

13ao

T
3Ir
<C

O

OrC
S

•r»C
V

ao%r
—

t

C
V

HOr
CC

V

ar<
=

,
uac
v

t-i

eS
.C
V

CO
X

j

2
rl

M
CO

cv
cu

•
-
^

to
a

3
g

CV
•>

£
>

•
»H

-I
C

-i
O

C
j

**
B

<
y

*
3

^
•̂*-»

C
N

G

C
V

r-Z
CO

rQ
a

rd
O

o
o

2. those where the number is much greater, or did not complete.

Those in the first class satisfy the expectation that grouping multiple binary operations into a
single expression reduces the total number of operations, since "global" terminating conditions are
discovered earlier. However, even though the number of operations is smaller, the runtimes are
larger due to the extra overhead of processing general expressions. For example, method 2 spends
significant time sorting the array of operands, and methods 3 and 4 spend much time evaluating
the terminal condition bdd.

The more fundamental problem lies in the second class. The explosion in the number of BE
operations is thought to be due to:

• poor cache performance, due to the coarse granularity of computations, and to the fact that
the operations are not cached across top-level expressions, and

• not identifying expressions which differ by a permutation of symmetric operands, and not
detecting some terminal cases (excluding method 2).

The difference in granularity between methods 1 and 2 is demonstrated in example frgl, which
has two small network nodes, and one big node with 25 fanins, 112 cubes, and 780 literals. Method
2 requires a reasonable 1400 operations to form the 112 product terms of the big node. However,
forming the OR of these terms requires 47K operations, as compared to a total of 13K operations
with method 1.

It is interesting to compare the specialized multi-way and method to the general multi-way AND
method. For those examples where the number of BE operations is similar, the general method is
roughly four times slower. This is due to the enormous overhead of building and maintaining the
terminal condition bdd. Indeed, for the general method the number of operations performed in the
auxiliary variable space is significantly greater than the number of BE operations: on average, each
BE step induces many operations to evaluate the terminal condition BDD. The specialized code
avoids these operations by efficiently hardcoding the terminal condition for a multi-way and. This
overhead is present also in the multi-way method, and hence partly explains why the multi-way
method is slower than the binary method.

Continuing the comparison between methods 2 and 3, in the other examples the number of
BE operations is much greater in method 3 than in method 2. For example, method 3 requires
847K operations for frgl, whereas method 2 requires only 49K. This is because the specialized
method sorts the operands before caching them, thus increasing the cache hit ratio, and because
the terminal cases are detected where two operands are complements of each other or where there
is exactly one unique non-constant operand. The difference in BE operations in examples like these
emphasizes the importance of developing techniques to terminate the recursion as early as possible.

We did not perform any experiments comparing the multi-way method with the binary method
extended to use implicit don't cares (hereafter, the binary DC method). Nor do we have a conjecture
as to the outcome of such experiments. However, it seems that any advantage that the binary DC
method may have over the multi-way method would stem from the binary DC method's finer

19

granularity of computation, rather than its use of don't cares. To see this, again consider the
example (f-g) + h. Using ft as a don't care to simplify / (using the restrict operator, / and ft must
be traversed simultaneously to the point where ft is ONE, in order to realize how / can be modified.
In contrast, the multi-way method may alsoneed to traverse to the point, however, once it reaches
there, it knows that the final answer on this branch is ONE (since ft is one), and hence can simply
return. In summary, it seems that the work performed by the binary DC method to discover how
the don't cares can be exploited, can just as well be used to compute the final answer.

5 Conclusions and Future Work

We havedeveloped a new method for computingthe bdd for a general Boolean expression, where the
operands arethemselves BDDs. The method is able to avoid unnecessary intermediate computations,
and it never creates a new bdd node unless that node appears in the final BDD for the expression.
We also specialized the general algorithm to the case of a multi-way AND.

We tested the new methods on the application of building BDDs for nodes in a multi-level
logic network. The new methods take much longer than the binary method due to the coarse
granularity of computation, the less sophisticated caching and terminal case checking, and the
overhead incurred by allowing more general Boolean expressions. Also, although the new methods
use fewer BDD nodes, this gain is mitigated by the presence of a garbage collected working space
in the BDD package.

Nonetheless, there is some cause for optimism. On many examples, the new methods require
fewer recursive steps. Thus, the challenge is to reduce the time spent on each step. We saw that
by specializing the general multi-way code to the case of multi-way and, the speed decreased by
a factor of four. There may be further optimizations possible in the specialized multi-way and,
making it more competitive in runtime with the binary method.

The problem of explosion in the number of BE operations needs to be addressed. An explosion
seems to occur when there are many operands present in the expression (say, more than 100).
Possibly by splitting such expressions into smaller pieces, we can avoid explosion due to coarse
granularity, while still enjoying a reduced number of recursive steps, relative to the binary method.

We have experimented with only one application so far, and the new methods did not perform
well. However, it is easy to devise examples which cannot be completed using the binary method.
Suppose |/ • 171 = 0(|/| |</|), where |/|, \g\ = 10000. Then the binary method would not be able to
compute (/ •g) + ONE. Hence, maybe special applications can be identified where it is clear that
the multi-way method wins.

Besides trying to make the new algorithms more efficient, there are two avenues for further
research. The first is to create a multi-way AN D-smooth, that is, to compute 3xi,..., xp(fi,..., fk).
Whatever improvements are made to multi-way and can be directly used in a multi-way and-
smooth.

The second avenue is to incorporate BDD minimization using don't cares into building bdds for

20

Boolean expressions. The bdd minimization problem for a single incompletely specified function is
to find a cover of the function with a small bdd [5]. We could extend the input to the multi-way
method to allow a don't care function for each operand in the expression. Then the goal would be
to use the don't cares present in each operand to make the final BDD for the expression as small as
possible. We have already outlined an algorithm to do this.

Acknowledgements

We wish to thank Rick McGeer and Alex Saldanha for their helpful comments. This work was sup
ported by SRC grant 93-DC-008, and by an equipment grant from Digital Equipment Corporation.
In addition, the first author was supported by an SRC Fellowship.

References

[1] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of a BDD
package. In Proc. 27th Design Automat. Conf, pages 40-45, June 1990.

[2] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans,
on Computers, C-35(8):677-691, August 1986.

[3] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification of synchronous
sequential machines based on symbolic execution. In J. Sifakis, editor, Proceedings of the
Workshop on Automatic Verification Methods for Finite State Systems, volume 407 of Lecture
Notes in Computer Science, pages 365-373. Springer-Verlag, June 1989.

[4] Ellen M. Sentovich, Kanwar Jit Singh, Cho Moon, Hamid Savoj, Robert K. Brayton, and
Alberto Sangiovanni-Vincentelli. Sequential circuit design using synthesis and optimization. In
Proc. Int'l Conf. on Computer Design, October 1992.

[5] Thomas R. Shiple, Ramin Hojati, Alberto L. Sangiovanni-Vincentelli, and Robert K. Brayton.
Heuristic minimization of BDDs using don't cares. Technical Report UCB/ERL M93/58, Elec
tronics Research Laboratory, College of Engineering, University of California, Berkeley, July
1993.

21

	Copyright notice 1993
	ERL-93-84

