

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A FULLY IMPLICIT ALGORITHM FOR

EXACT STATE MINIMIZATION

by

Timothy Kam, Tiziano Villa, Robert Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/79

19 November 1993

A FULLY IMPLICIT ALGORITHM FOR

EXACT STATE MINIMIZATION

by

Timothy Kam, Tiziano Villa, Robert Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/79

19 November 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A FULLY IMPLICIT ALGORITHM FOR

EXACT STATE MINIMIZATION

by

Timothy Kam, Tiziano Villa, Robert Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/79

19 November 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A Fully Implicit Algorithm for Exact State Minimization

Timothy Kam* Tiziano Villa* Robert Brayton Alberto Sangiovanni-Vincentelli

Abstract

Implicit computations of the solution set of optimization problems arising in logic synthesis hold
the promise of enlarging the size of input instances that can be solved exactly. The state minimization
problem for incompletely specified machines is an important step for sequential circuit optimization.
The problem is NP-hard. An exact algorithm consists of two steps: generation of sets of compatibles,
and solution of a binate covering problem. This paper presents an implicit algorithm for exact state
minimization of FSM's. There are various applicationsof logic synthesis that generate FSM's beyond
the reach of state-of-art state minimization tools. Therefore it is of practical importance to revisit exact
state minimization of ISFSM's and addressthe issue ofrepresentingimplicitly the solution space. In this
paper we show how to compute sets of maximal compatibles, compatibles and prime compatibles with
implicit techniques and demonstrate that in this way it is possible to handle examples exhibiting a number
of compatibles upto21200, a number outside thescope of programs based onexplicit enumeration [13].
We indicate also where such examples arise in practice. Then we address the final step of an implicit
exact stateminimization procedure,i.e. solving abinatetablecoveringproblem [24]. We presentthe first
published algorithm for fully implicit exactbinatecovering. We reportpreliminaryresults ofa prototype
implementation capable of reducing huge binate tables (up to 106 rows and columns) and of carrying on
the branch-and-boundprocedureon an implicit representation of the table. Exact solutions to problems
beyond the reach of traditional tools are so found.

1 Introduction

Seminal work by researchers at Bull [6] and improvements at UC Berkeley [26] produced powerful tech
niques for implicit enumeration of subsets of statesof a Finite State Machine (FSM). These techniques are
based on the idea to operate on large sets of states by their characteristic functions represented by Binary
Decision Diagrams (BDD's). In many cases of practical interest these sets have a regular structure that
translates into small-sized BDD's. Once the related BDD's can be constructed, the most common Boolean

operationson them (including satisfiability)have low complexity, andthis makes feasible to carry on com
putations otherwise impractical. Of course it may be the case that some BDD's cannot be constructed,
because of the intrinsic structureof the function to represent or because a good orderingof the variablesis
not found.

Work at Bull [8,19] showed how implicants, primes andessential primes ofatwo-valued or multi-valued
functioncan alsobe computed implicitly. Reportedexperiments show a suite ofexamples where all primes
couldbe computed, whereas explicit techniquesimplementedin espresso [2] failed to do so. Morerecently,
implicit algorithms were presented to reduce theunatetable ofthe Quine-McGuskey procedure to its cyclic
core ([7] and [12]). In this way an exact solution to some hard problems beyond the reach of espresso
could be found.

'Research supportby DARPAundercontract J-FBI90-073
fResearch supportbyNSF under contract MIP-8719546 and California State MICRO Program

It is important to investigate how far these techniques based on implicit computationscan be pushed
to solve the core problems of logic synthesis and verification. When exact solutions are sought, explicit
techniques run easily out of steam because too many elements of the solution space must be enumerated.
It appears that implicit techniquesoffer the most realistichope to increasethe size of problems that can be
solved exactly.

This paper presents an implicit algorithm for exact state minimization of FSM's. State minimization of
FSM's is a well-knownproblem [16]. State minimization of completely specified FSM's (CSFSM's) has
a complexity subquadratic in the number of states [14]. This makes it an easy problem when the starting
point is a two-leveldescription of an FSM, becausethe number of states is usually less than a few hundred.
The problem becomes difficult to manage when the starting point is an encoded sequential circuit with a
largenumberof latches (in the hundreds). In that case a traditionalmethodwouldrequirethe extractedstate
transition graph,withanumberofstatesexponential in thenumberof latches,andso it wouldbe impractical.
Recently it has been shown [20,18] how to bypass the extractionstep and compute equivalence classes of
statesimplicitly. Equivalence classesarebasicallyall thatis neededto minimizea completelyspecified state
machine. A compatible projectionoperatoruniquely selects a representative for each equivalence class.

State minimization of incompletely specified FSM's (ISFSM's) has been shown to be an NP-hard
problem [21]. Therefore even for problems represented with two-level descriptions involving a hundred
states,an exact algorithmmay consumetoomuchmemoryandtime. As it willbe shownin the experimental
sections of this paper, there are various applications of logic synthesis that generate FSM's beyond the
reach of state-of-art state minimization tools. Therefore it is of practical importance to revisit exact state
minimizationof ISFSM's and address the issue of representing implicitly the solution space.

We underline that besides the intrinsic interest of state minimization and its variants for sequential
synthesis,the implicit techniques reported in this papercan be appliedto other problems of logic synthesis
and combinatorialoptimization. For instancethe implicitcomputationof maximal compatiblesdescribedin
this paper can be easily converted into an implicit computation of prime encoding-dichotomies (see [25]).

In this paper we showhow to computesetsof maximalcompatibles,compatiblesand prime compatibles
with implicit techniques and demonstratethat in thiswayit ispossible to handle examples exhibitinga number
of compatibles up to 21200, a number outside the scope of programs based onexplicit enumeration [13].
We indicate also where such examples arise in practice. Then we address the final step of an implicit
exact state minimization procedure, i.e. solving a binate table covering problem [24]. We present the first
publishedalgorithm for fully implicit exact binate covering. We report preliminary results of a prototype
implementationcapable ofreducing huge binate tables (up to 106 rows and columns) and ofcarrying onthe
branch-and-bound procedure on an implicit representationof the table. Exact solutions to problems beyond
the reach of traditional tools are so found.

The remainder ofthe paper is organized as follows. Section 2 introduces representations ofFSM's based
on Binary Decision Diagrams (BDD's) [5,1]. Algorithmsfor implicit prime compatible computation are
presentedin Section 3. Section 4 presents somegeneralities on binate covering. Generation of the implicit
binate table is described in Section 5, implicit table reduction is described in Section 6, while implicit
column selection and other implicit computations are described in 7. Results on a variety of benchmarks are
reported and discussed in Sections 8 and 9. Conclusions and future work are summarized in Section 10.

2 Implicit Representations

AFinite-State Machineis represented byits State Transition Graph (STG). A STGis denotedby asextuple
{/, 0,5, IS, 6, A}, whereJ and O are the setsof inputs andoutputs, S is the set of states and IS is the set
of initial states. 6 (next state function) is a mappingfrom I x Sto S that given an input and a present state
definesa next state. A(output function) is a mappingfrom IxStoO that givenan input and a present state

defines an output. An STG where the next-state and output for every possible transition from every state are
defined corresponds to a completely specified machine. An incompletely specified machine is one where
at least one of the functions 6 and Aare partiallydefined, i.e. there is at least one pair (i, s) on which either
the next state function or the output function (or both) are not defined.

Many algorithms for sequential synthesis have been developed for STG's. However, large FSM's cannot
be stored and manipulated without prohibitively large memory usage and CPU time. A limitation of STG's
is the fact that they are a two-level form of representation where state transitions are stored explicitly, one
by one.

A binary decision diagram (BDD) [5,1] provides an alternative way of representing FSM's. BDD is
usually a more compact FSM representation than STG. A BDD is a rooted, directed acyclic graph (DAG)
where each node is associated with a Boolean variable. There are 2 outgoing arcs from each node. The
then arc corresponds to the case when the variable takes the value 1 and the else arc correspondsto the case
when the variable takes 1. The leaves of the graph are the terminal nodes 0 and 1. A path from the root to
a terminal 1 represents a satisfying assignment of variables on which the BDD evaluates to 1. Thus a BDD
can representany Boolean functionon any n Booleanvariables / : Bn -* B where B —{0,1}.

A rich set of BDD operators has been developed and published in the literature [5, 1], and their
definitions will not be repeatedhere. Wewilluse the notation3x (F) to denote the existentialquantification
of a function T over a set of variables x% and 3a; (/") to denoteuniversal quantification. For simplicityin
formulae, variable substitution will not be explicitly stated.

Any subset S in a Boolean space Bn can be represented by a unique Boolean function xs ' Bn -> B,
which is called its characteristic function, such that: xs(x) = 1 iff a: in 5. In the sequel, we'll not
distinguish the subset S from its characteristic function xs, and will use 5 to denote both.

Any relation 1Z between n of Boolean variables can also be represented by a characteristic function
71: Bn —• B as: 7Z(x\, a?2, •• •>̂ n) = 1 iff the n-tuple (x\, 2:2,..., xn) is in relation H.

2.1 Positional-set Representation

lb perform state minimization, one needs to represent and manipulate efficiently sets of states (such as
compatibles) and sets of sets of states (such as sets of compatibles). Our goal is to represent any set of sets
of states (i.e. set of state sets) implicitly as a single BDD, and manipulate such state sets symbolically all at
once. Different sets of sets of states can be stored as multiple roots with a single shared BDD.

Suppose a FSM has n states, there are 2n possible distinct subsets of states. In order to represent
collections of them it is not possible to encode the states using log2n Boolean variables. Instead, each
subset of states is represented in positional-set or positional-cube notation form, using a set of n Boolean
variables, x = x\x2.. .xn. The presence of a state s* in the set is denoted by the fact that variable Xk
takes the value 1 in the positional-set, whereas xk takes the value 0 if state sk is not a member of the set.
OneBoolean variable is needed for each statebecause the statecaneitherbe present or absent in the set1.
For example n = 6, the set with a single state 54 is represented by 000100 while the set of states s2s3S5 is
represented by 011010. The states si, 64,s6 which are not present correspond to 0's in the positional-set.

A set ofsets ofstates is represented as a set 5 ofpositional-sets by a characteristic function xs : Bn -+ B
as: xs(x) = 1 iff the set of statesrepresented by the positional-set x is in the set S. A BDDrepresenting
Xs{x) will contain minterms, each corresponding to a state set in S. The operators for manipulating
positional-sets and characteristic functions will be described in Section 2.2.

In the case of an ISFSM, some next states as well as the outputs may not be specified. So relations
instead of functions must be used to represent the transition and output information.

'Therepresentation ofprimes proposedbyCoudert etal. [8] needs 3values per variable todistinguish if the present literal isin
positive or negative phase or in both phases.

Definition 2.1 The transition relation is represented as:

T(i, p, n) = 1 iffn is the specified next state ofstate poninput i (i.e. n = 6(p, i)) (1)

An unspecified next state from a state p under input i can be represented either by an entry (i,p, n)
where the positional-set n is a vectorof all O's, or by not representing anyentry with i and p in the relation
at all. The latter is chosen for our implicit algorithm.

Definition 22 The output relation is represented as:

Q(i,p,o)= 1 iffo isa (possibly unspecified) output ofstate pon input i (i.e. o - A(p, i)) (2)

We represent all unspecified outputsin the relation Oy to ensure correctness of the outputcompatibles
computationdescribed in Section 3. An unspecified output in the STG corresponds to a set of minterms
carrying all possible output combinations.

2.2 Implicit Manipulation of Sets and Sets of Sets

We describe herehowto represent andmanipulate implicitly setsof objects.This theoryis especially useful
for applications where sets of sets of objects need to be constructed and manipulated,as it is often the case
in logic synthesis and combinatorial optimization.

2.2.1 Operations on a Pair of Positional-sets

With our definitions of relations and positional-set notation for representing set of states, useful relational
operators on sets can be derived. We propose a unified notational framework for set manipulation which
extendsthe notationused in [19]. In this section,operatorsacton two sets ofstates representedas positional-
setsx = x\x2... xn and y = y\yi... yn, and return 1iff (x, y) arein the particular relation. Alternatively,
they can also be viewed as constraints imposed on the possible pairs out of two sets of states, x and y. For
example, given twosetsof statesets X and Yy thestatesetpairs(x, y) where x contains y are given by the
product of X and Y and the containment constraint, X(x) •Y(y) • (x D y).

Theorem 2.1 The equality relation testsifthetwo setsofstatesrepresented bypositional-sets x and y are
identical, and can be computedas:

n

(x = y)=l[[xk&yk (3)
Jk=l

where Xk & yk = Xk-yk + -^fc •->#* designates theBoolean XNOR operation and -* designates theBoolean
NOT operation.

Ylk=\ xk <$ yk requires that for every state k, eitherboth positional-sets x and y contain it, or it is absent
from both. Therefore, x and y contains exactly the same set of states and thus are equal.

Theorem 12 The containment relation testsiftheset ofstatesrepresented by x contains theset ofstates
represented by y, and can be computed as:

n

(x 2 y) = JJ yk =$• xk (4)
*=i

where Xk => yk = "•£* + yk designates theBoolean implication operation.

Il?=i yk =*• ^k requiresthat for all states, if a state k is present in y (i.e. yk = 1), it must also be present in
x (xk = 1). Therefore set x contains all the states in y.

Theorem 2J The strict containment relation tests if the set of states represented by x strictly contains
theset ofstates represented by y, and can be computed as:

(xDy) = (xDy)-(x^ y) (5)

Equation 5 follows directly from the two previous theorems.

Theorem 2.4 Given an incompatiblepairofstates (y, z), aposition-set csatisfies ContainJJnion(y, z, c)
iffc contains both state y and state z. This constraint can be obtained by:

n

ContainJJnion(c, y,z)= JJ yk + Zk =>• Ck (6)
k=\

Contain.Union(y,z,c) performs bitwise OR on singletons y and z. If either of their k-bit is 1, the
corresponding c* bit is constrained to 1. Otherwise, c* can take any values (i.e. don't care). The outer
product n?=i requires that the above is true for each k. Thus, it generates all the positional-sets c which
contain the union of the positional-sets y and z.

222 Operations on Sets of Positional-sets

Theorem 2.5 Given thecharacteristicfunctionsxa andxb representing thesets A and B, set operationson
them suchas the union, intersection, sharp, and complementation can beperformedas logical operations
(+, •, •-!,-i) on their characteristicfunctions.

Theorem 2.6 Given the characteristic functions xa(%) and xb(x) representing two sets A and B (of
positional-sets), the set containment test is trueiffset A containsset B, and can be computed by:

Set.Containx(xA,XB) = Vzxb(x) =» xa(x) (7)

Theorem 2.7 The maximal ofa set F ofsets is the set containing sets in F not strictly containedby any
otherset in F, and can be computed as:

Maximalx(F) = F(x)- fly [(y D x) •F(y)] (8)

The term 3y [(y D x) •F(y)] is true iff there is a positional-set y in F such that y D x. In such a case, x
cannot be in the maximal set by definition, and can be taken away. What remains is exacdy the maximal set
ofstatessetinF(a:).

Theorem 2.8 Given a characteristicfunction xa(x) representing a set A ofpositional-sets, the set union
relation tests ifpositional-set y represents theunion ofall statesets in A, and can be computed by:

n

Set.Unionx(xA,y) =]\yk& [3s xa(x) •xk] (9)
fc=l

For each position k, the right hand expression sets yk to 1 iff there exists an x € xa such that its kthbit is a
1. This implies that the positional-set y will contain the kth element iff there exists a positional-set x in A
such that &is a member of x. Effectively, the right hand expressionperforms a multiple bitwise or over all
positional-sets of xa to form a single positional-set y which represents the union ofall such positional-sets.

2.2.3 Ar-out-of-n Positional-sets

Let n be the number of states. In subsequent computations, we will use extensively a suite of sets of state
sets, Tuplenfk(x), which contains all positional-sets x with exactly k states in them (i.e. \x\ = k). In
particular, the set of singleton states Tuplen>\(x\ the set of state pairs Tuplent2(x), the set of all states
Tuplen,n(x)y and the set of emptystate set Tuplenfi(x)are commonones.

Figure 1: BDD representing Tuple^^(x).

Such sets of fc-tuple state sets have nice BDD structures. Figure 1 represents a BDD of Tuples,2(x). Its
root represents the set Tuplest2(x), whilethe internal nodes represent the sets Tupleij(x) (i < 5, j < 2).
Foreaseofillustration, thevariableordering ischosensuchthatthetopvariablecorresponding to Tuples(x)
is x{. At that node, if we choose state i to be in the positional-set, X{ takes the value 1 and we follow the
right outgoing arc. In doing so, we still have i -1 states/variablesleft to be processed. As we have put state
i in the positional-set, we still have to add exactly j - 1 states into the positional-set. That is why the right
child of Tupleij(x) should be Tuplei-\j-\(x). Similarly, the left child is Tuplei-itj(x) because state i
has not been put in the positional-set and we have j - 1 states/variables left. Thus, the BDD for Tuples
can be constructed by the following algorithm:

Tuple(iJ){
if (j < 0) or (i < j) return0
if (i = j) and (i = 0) return1
if Tuple(i, j) in computed-table return result
T = Tuple(i-\,j-\)
E = Tuple(i-\J)
F = ITE(xi,T,E)
insert F in computed-table for Tuple(i, j)
return F

}

The total number of nonterminal vertices in the BDD of Tuplen^ is nk - k2 + n = 0(nk). With the
use of the computed table ([1]), the timecomplexity of the above algorithm is also 0(nk) as the BDD is
builtfrom bottomup and each vertex is builtonce and then re-used. Givenany n, the BDD for Tuples is
largestwhen A; = n/2.

3 Implicit Generation of Compatibles

An exact algorithm for state minimization consists of two steps: generation of various sets of compatibles,
and solution of a binate covering problem. The generation step involves identification of sets of states
called compatibles which can potentially be merged into a single state in the minimized machine. Unlike
the case of CSFSM's, where state equivalence partitions the states, compatibles for incompletely specified
FSM may overlap. As a result, the number of compatibles can be exponential in the number of states, and
the generation of the whole set of compatibles can be a challenging task.

The covering step (described in Section 4) is to choose a minimum subset of compatibles satisfying
covering and closure conditions, i.e. to find a minimum closed cover. The covering conditions require that
every state is contained in at least one chosen compatible. The closure conditions guarantee that the states
in a chosen compatible are mapped by any input sequence to states contained in a chosen compatible.

In this section, we describe implicit computations to find sets of compatibles required for exact state
minimization. More details can be found in [15].

3.1 Output Incompatible Pairs

To generate compatibles, we must start with the given output and transition relations. Incompatibility
relations between pairs of states are derived first.

Definition 3.1 Two states are an output incompatible pair if, for some input, they cannot generate the
same output.

Theorem 3.1 The set ofoutput incompatiblepairs, OXCV(y, z), canbe computed as:

OXCV(y, z) = Tuplex(y) •Tuplex(z) •3t fio [0(i, y,o) •0(i, *, o)]

Although y and z are positional-sets, they are used to capture a pair of states in this computation. The
conditions Tuple\(y) •Tuple\(z) restrict them to representonly singleton states. The last term is true iff
for some input t, there is no output pattern that both state y and z can produce.

3.2 Incompatible Pairs

Definition 32 Twostates are an incompatible pair if

1. theyare output incompatible, or

2. on some input, their nextstates are incompatible.

This is a recursive definition and we can unroll it into a fixed point iteration that can be implemented
using BDD operations.

Theorem 32 The set of incompatiblepairs is theleastfixedpointofXCV(y,z) in theexpression:

ICV(y, z) = OXCV(y, z) + 3t, u, v [T(t, y, u) •T(i, z, v) •XCV(u, v)]

and can be computedby thefollowing iteration:

XCV0(y,z) = OXCV(y,z)

ICVk+i(y,z) = lCVk(y,z)+li,u,v[T(i,y,u)'T(i,z,v)-lCVk(u,v)}

Theiteration can terminate when XCVk+i - XCVk andXCV = XCVk.

The fixed point computation starts with the set of output incompatible pairs. After the k\h iteration,
XCVk+\(y, z) contains all the incompatible state pairs (y,z) that lead to anoutput incompatible pair in k
or less transitions. This set is obtained by adding statepairs (y, z) to the set XCVk(y, z), if an input takes
them into an already known incompatiblepair [u, v).

3.3 Incompatibles

So far weestablishedrelationships betweenpairsof states. The following definitionintroducessets of states
of arbitrary cardinality.

Definition 33 Aset ofstatesis an incompatible if it contains at leastoneincompatible pair.

Theorem 33 Theset ofincompatiblesis computedas:

XC(c) = 3y, z [XCV(y, z) •ContainJJnion(c, y, z)\

ContainJJnion(c, yt z) captures all state sets c each containing at leastan incompatible pairof singleton
states (y, z) eXCV.

3.4 Compatibles

Definition 3.4 A set ofstates is a compatible if it is notan incompatible.

Theorem 3.4 The set ofcompatibles, C(c), canbe computed as:

C(c) = -^Tuple0(c) • -.JC(c)

The set of compatibles simplycontainsall non-empty subsetsof states which are not incompatibles. The
empty set in positional-set notation is Tupleo(c) and all subsets which arenot incompatible are given by
-tfC(c).

3.5 Implied Classes of a Compatible

Tosetup thecoveringproblemweneed alsoto computetheclosureconditionsforeachcompatible. They are
capturedby the notion of class set of a compatible, related to the set of next states implied by a compatible.

Definition 3.5 A set ofstates d{ is an implied set ofa compatible cfor input i ifdi is the set ofnext states
from the states in c on input i.

Theorem 3.5 Theimpliedset (in singletonform) ofa compatiblecfor input i can be definedby the relation
T(c, i, n) which evaluates to 1 iffon input i, n is a next statefrom state p in compatible c.

?(c, i, n) = 3p \C(c) •(c D p) •T(i, p, n)]

In T(c, z,n), a compatible c e C(c)and an input i are associated withsingletonnext states n. Given c and
i, n is in relation7"(c, i, n) (i.e. state n is in the impliedset of compatible c under input i) iff the righthand
expression is true. i.e. if there is a present state pec such that n is the next state of p on input i.

Note that the impliednext states are represented here as singleton states in f(c, i, n). The singletons
n in relation with a compatible c and an input i can be combined into a single positional-set, for later
convenience. This positional-set representation of implied sets associates each compatible c with a set of
implied sets d.

8

Theorem 3.6 The impliedsets d (in positional-setform) ofa compatible cfor all inputs, CX(c, d), can be
computed as:

CX(c, d) = 3i \3n(T(c, i', n)) • Set-Unionn(T(c, i, ra), d)]

T(c,i,n) relates implied next states as singleton positional-sets to compatible c and input i and
Set-Uniorin^^, i, n), d) forms the union of these singletonsets by bitwise OR and produces a positional-
set d. The term 3n(.F(c, i,n)) is needed, to exclude invalid compatible input combinations. Finally the
implied sets of c over different inputs are obtained by an existential quantification of the inputs i.

3.6 Class Set of a Compatible

Definition 3.6 An implied set d ofa compatible c is in its class set iff

1. d has more than one element, and

2. dgc, and

3. d£d' ifd' e classset of c.

We can ignore any implied set which contains only a single state, because its closure condition is
automatically satisfied if the state is covered by some chosen compatible. Also if d C c, the closure
conditionis satisfiedby the choice of c. Finally,if the closureconditioncorrespondingto d' is strongerthan
that of d, the implied set d is not necessary.

Theorem 3.7 The class set ofa compatible c is captured by therelation CCS(c, d) which evaluates to 1 iff
the implied set d is in the class set ofcompatible c.

CCS(c,d) = -iTuplei(d) • (c g d) •Maximald(CX(c,d))

The singleton implied sets Tuple\(d) are first excluded according to condition 1 in definition 3.6. By
condition 2, we prune away implied sets d which are contained in their corresponding compatibles c. Finally
given a compatible c, Maximald(CX(c, d)) gives all its implied sets d which are not strictly contained by
any other implied sets in CCS(c,d).

3.7 Prime Compatibles

lb solve exactly the covering problem, it is sufficient to consider a subset of compatibles called prime
compatibles. It has been proved in [10] that at least one minimum closed cover consists entirely of prime
compatibles.

Definition 3.7.. A compatible c' dominates a compatiblec if

1. c' D c,and

2. class set ofc' C class set ofc.

i.e. a compatiblec' dominates a compatiblec if c'covers all statescovered by c, and the closureconditions
of c' are a subset of the closure conditions of c.

As a result,compatible c'expresses strictlyless stringentconditions than compatible c. Therefore c' is
always a better choice for a closed cover than c, thus c can be excluded from further consideration.

Theorem 3.8 Theprime dominance relation, Dominatefc' ,c), is definedby:

Dominate(c',c) = (c' D c) •Set.Containd(CCS(c1d),CCS(c\d))

The two terms on the right-hand expression state the two dominance conditions by which c' dominates
c according to definition 3.7. Since compatibles c and c' are represented as positional-sets, (c' D c)
is computed according to theorem 2.3. On the other hand, class sets are sets of sets of states and are
represented by their characteristic functions. Containmentbetween such sets of sets of states is computed
by Vrf CCS(c\ d) =* CCS(c, d), asdescribed by theorem 2.6.

Definition 3.8 A prime compatible is a compatible notdominated by anothercompatible.

Theorem 3.9 The set ofprime compatibles can be computedas:

VC(c) = C(c)- fie' [C(c') •Dominate(c',c)]

By definition 3.8, acompatible c is not a primecompatibleif it is dominated by anothercompatible c'. This
condition is captured by theexpression 3c'C(c') •Dominate(c',c). The setofprime compatibles is simply
given by the setof compatibles C(c)excluding those thatare dominated by othercompatibles.

4 Implicit Binate Covering

In this section we introduce the classical branch-and-bound algorithm for minimum-cost binate covering.
This techniquehasbeendescribed in [11,10,3,4] andimplementedby meansofefficientcomputerprograms
(espresso and stamina). The referred papers offer a thorough description of the algorithm. The branch-
and-bound solution of minimum binate covering is based on a recursive procedure shown in Fig. 2. In our
implicit formulation we keep the branch-and-boundscheme, but we replacethe traditionaldescription ofthe
table as amatrix (usually a sparsematrix) with an implicit representation, using BDD's for the characteristic
functions of the rows and columns of the table. Moreover, we have implicit versions of the computations
on the binate table required to implement the branch-and-bound scheme. In the following sections we are
going to describe the following:

• Implicit representation of the covering table

• Implicit reduction

• Implicit branching column selection

• Implicit computation of the lower bound.

At each call of the binate cover routine mincov, the binate table undergoes a reduction step and, if
termination conditions arenot met, a branchingcolumn is selected and mincov is called recursively twice,
once assuming the selected column in the solution set (on the table Rc,, CCi) and once out of the solution
set (on the table Rc--, Cc-). Some suboptimal solutionsarebounded away by computing a lower bound on
the current partial solution and comparingit with anupperbound U (best solution obtainedso far). A good
lower bound is based on the computation of a maximal independent set.

10

mincov(i2, C, U) {
(R,C) = Reduced, C,U)
if (terminalCase(i2,C)) {

if(cost(#,C)<£/){
U = cost(R,C)
return solution

}
else return no solution

}
L = LowerBound(i2, C)
if (X > U) return no solution
c, = ChooseColumn(.R, C)
Sl =mincov(i2Ci, CCi, U)
S°= mmcov(RcT,Cc-,U)
return BestSolution^1 U{c,}, 5°)

}

Figure 2: Branch-and-bound algorithm for binate covering

5 Implicit Covering Table Generation

lb keep with our stated objective, also the binate table is represented implicitly. We describe an implicit
representationof the covering table, that adroitly exploits how row and columns were implicitly computed.
We do not represent (even implicitly) the elements of the table, but we make use only of a set of row labels
and a set ofcolumn labels, each represented implicitly as a BDD. They are chosen so that the existence and
value of any table entry can be readily inferred by examining its corresponding row and column labels.

This choice allows us to define all table manipulations needed by the reduction algorithms in terms of
operations on rows and columns and to exploit all the special features of the binate covering problem set up
in the case of state minimization (for instance, each row has at most one 0). Even though it seems that we
are sacrifying generality, we point out that a similar technique could be applied to various binate covering
problems that arise in logic synthesis, with a suitable encoding of the rows and columns.

Definition 5.1 The setofcolumns C 2isobtainedfrom prime generation as:

C(p) = VC{p)

Beside distinguishing a row from another, each row label must also contain information regarding the
positions of l's and O's in the row. Each row is labelled by a pair (c, d) which represents two positional
sets. Positional set d relates to the 1entries in the row, while c is related to the 0 entry. Thesedefinitions are
motivated by the meaning of rows and columns in our application.

Definition 52 The table entryat the intersection of the column labelled by p € C and ofthe row labelled
by(cid)eRisliff(pDd).

The tableentry at theintersection of thecolumn labelled by p€C andoftherowlabelled by (c, d)e R
isOiff(p = c).

2C(p) isused to represent the set ofcolumns, and is different from C(c) which denotes the set ofcompatibles.

11

The columns of a table are labelled by prime compatibles p. Given a particular rowlabelled by (c, d), the
columns intersectingit in a 1 are labelledby the prime compatiblesp that contain d. Since there is at most
one 0 in the row labelled by (c, d), the label of the column p intersecting it in a 0 is recorded in the row
label by setting its c part to p. If there is no 0 in a row, c is set to the empty set, Tuple0(c). In this way,
the table can be manipulated without representing its entries. E.g., a column labelled p contains a 0 iff
3c, d [R(c,d)-(p = c)], i.e. iff 3d R(p, d).

Definition 53 Theset ofrow labels R is givenby:

R(c,d) = Rb(c, d) + Ru(c, d) = VC(c). CCS(cy d) + Tuple0(c) •Tuplex(d)

The closure conditions associated with a prime compatible p are that if p is included in a solution, each
impliedset d in its class setmustbe contained in atleast onechosen prime compatible. A binate clause of
the form (p+p\ +pi + •••+Pk) has tobesatisfied for each implied setof p,where p, is aprime compatible
containing the impliedset d for 1 < i < k. With ourinterpretation of the row andcolumnlabels, the labels
for binate rows are given succinctly by VC(c) •CCS(c, d). There is a row label for each (c,d) pair such
that c e VC is a prime compatible and d is one of itsimplied sets inCCS(c, d). This row label consistently
represents the binate clause because the 0 entry in the row is givenby the column labelled by the prime
compatiblec = p, andthe rowhas 1's in the columns labelled by p, whenever (p, D d).

The coveringconditionsrequire that each statebe contained by some prime compatiblein the solution.
For each state d,aunate clause has tobesatisfied which isof theform (p\+p2+—\- pj) where thep,'s are the
prime compatibles that contain the state d. By specifying theunate row labels to be Tuple0(c) •Tuple\(d\
we define a row label for each state in Tuple\(d). Since the row has no 0, its c part mustbe the empty
setTupleo(c). The 1entries are correctly positioned attheintersection withall columns labelled by prime
compatibles Pi which contain the singleton state d.

6 Implicit Reduction Techniques

Three fundamental operations constitute the essence of the reduction rules:

1. Selectionofacolumn. A columnmust be selectedif it is the only column that satisfies a given row. A
dual statementholds forcolumns that must not be part of the solutionin orderto satisfy a given row.

2. Eliminationof acolumn. A column Ct- can beeliminated if itseliminationdoes notpreclude obtaining
a minimalcover, i.e. if there exists another columnC3 that satisfies at leastall the rows satisfied by
Ci.

3. Elimination of a row. A row R{ canbe eliminated if there exists another row Rj thatexpresses the
same or a stronger constraint.

The order of the reductions affects the final results. Reductions areusually attemped in a given order,until
nothing changes any more (i.e. the covering matrix has been reduced to a cyclic core). Fig. 3 shows the
reductions and order implemented in our reduction algorithm. In the reduction there aretwo cases when no
solution is generated:

1. The added cardinality of the set of essential columns, ess-col, and of the partial solution computed
so far, Sol, is largeror equal than the upperbound U. In this case, a better solution is known than the
one that can be found from now on and so the currentcomputation branch can be bounded away.

12

Reduce^, C, Sol,U){
do{

Duplicated-Columns(C)
Column-Dominance(i2, C)
Essential-Column(i?, C)
if (card(Sol) + card(essjcol) >= U) retum(no solution)
Sol = Sol U ess-col

Unacceptable.Column(i2, C)
Unnecessary_Column(#, C)
if (C does not cover R) retum(no solution)
Duplicated_Rows(J?)
Row_Dominance(i2, C)

} while (R or C changed)
return (R, C)

}

Figure 3: Fixed-point reduction computation

2. After having eliminated essential, unacceptable and unnecessary columns and covered rows, it may
happen that the rest of the rows cannot be covered by the remaining columns. In this case, the current
partial solution cannot be extended to any full solution.

We are going to describe how the reduction operations are performed using the special table represen
tation described in the previous section.

6.1 Duplicated Rows and Columns

It is possible that, after some reductions, more than one column (row) label is associated with columns
(rows) that coincide element by element. We need to identify such duplicated columns (rows) and collapse
them into a single column (row)3. This can be seen as computing the equivalence relation of duplicated
columns (rows) and selecting one representative for each equivalence class.

Theorem 6.1 Duplicated columns can be detectedand collapsed into one by:

dup.col(p', p) = fid R(p'y dy fid R(p,d\ fie, d [R(c, d) -((p'2d)£(pD d))]
C(p) = C(pyfip'[C(p')-dup.col(p',p).(p'<p)]

The first equation says that column labelsp' and p are in relation dup-col iff they identify two columns
that agree element by element, i.e. they have the same O's and l's. Since each row has at most one 0,
two duplicatedcolumnscannot have 0 entries. This conditionis expressed by fid R(p\ d\ J3d R(p, d),
meaning that there is no row with a 0 in the columnlabelled by p' and there is no row with a 0 in the column
labelled by p. In order that two columns agreeon all entries to 1, there must not be a row (c, d) with a 1 in
the columnlabelledby p andnot in thecolumnlabelled byp\ or viceversa. This condition is expressed by
fic,d[R(c,d).((p'Dd)£(pDd))].

3This avoids theproblem of columns (rows) dominating each other when performing implicitly column (row) dominance.

13

Thesecond computationpicksa representative column labeloutof aset ofcolumns labels corresponding
to duplicated columns. A column label p is deleted from C iff there is a column label p' which has a smaller
binary valuethan p and both label duplicatedcolumns. Here we exploit the fact that any positional-setp can
be interpreted as a binarynumber. Therefore, a unique representative from a set can be selected by picking
the one with the smallestbinaryvalue. In alternative, one could haveused the cprojection BDD operator
introducedin [20], but the latter was not available in our BDD package.

So far we have tried hard to distinguish in the exposition a column (row) label from the column (row)
itself. From nowon, sometimes we willblurthedistinction to easethe write-up, but the context should say
clearly which one it is meant.

Theorem 62 Duplicated rows canbe detectedand collapsedintooneby:

dup.row(c', d', c,d) = (c' = c). fip [C(p) •((p Dd!) &(pD d))]
R(c,d) = R(c, d)- fic\ d! [R(c', d!) •dup.row(c\ d\ c,d) •(d' < d)]

Two rowlabelsdenote duplicated rows iff they have the sameentry to 0 (if any), (c' = c), and no column
P € C intersects one rowin a 1 iff theotherdoesn't. Selection of a representative from duplicated rows and
table updating are performed as in the case of duplicated columns.

6.2 Column Dominance

Definition 6.1 A column p' a-dominatesanother column p iffp' hasall the Vs ofp, andp'contains no 0.

Theorem 63 The set of a-dominated columns can be computed by:

a.dominated(p) = 3p' {C(p') •(p' # p). fie,d [R(c, d)-(pDd)> (p(%d)]- fid R(p\ d)}

The expression 3c, d [R(c,d)-(pDd)- (p' 2 d)] defines pairsof columns p andp' such that in somerow
(c,d) e R, p has a 1 while p'does not, i.e. p' doesn't dominates p. Suppose column p'has a 0, R(p', d)
would be true. Examining the whole equation, p is a a-dominated column iff there is another column p'
different from p such that none of the above two possibilities is true.

Theorem6.4 These computations delete a setofcolumns D(p)froma table andall rows intersecting them
in a 0.

C(p) = C(p).^D(p)

R(c,d) = R(c,d)--*D(c)

The first computation updates the set of columns C(p). The expression R(c, d) • ->D(c) defines all rows
not intersecting in a 0 the columnsin D. In fact the rows (c, d) intersecting the deletedcolumnsin a 0 have
their c parts equal to some column label in D.

Suppose thatD(p) = a-dominated(p). Thena-dominated columns aredeleted from thesetofcolumns,
and rows intersecting them in a 0 are deleted from the set of rows. The same computations can be used to
delete unacceptable and unnecessary columns.

14

6.3 Row Dominance

Definition 62 A row r' = (c', d')dominates another row r = (c,d) iffr hasall the l's and 0 ofr'.

Theorem 6.5 Reduction by rowdominance can computed by:

R(c,d) = R(c,dy fic\d'{R(c',d'y fip[C(Py(pDdfy(p 2 d)].[Tuple0(c')+(c' = c)K(c',d') ^ (c,cf))}

Since each row contains atmostone0, if r'dominates r, either r'hasno0 (i.e. thec'partis Tuple0(c')) or r'
and r have a0 entry in thesame column, (c' = c). Thus forthe0 entries, werequire [Tuple0(c') + (c1 = c)]
to be true. For the 1entries, theexpression fip [C(p) •(p 2 d')•(p 2 d)] requires that no column intersects
ina 1row (c',d') butnotrow (c,d). These two conditions together correspond tothedefinition of (c',d') as
a dominating row. The equation saysthat rows (c, d)dominated by another different row (c', d') aredeleted
from the table.

6.4 Essential and Unacceptable Columns

Definition63 A column p is essential iffthere is a row having a 1 incolumn p and2 everywhere else.

Theorem 6.6 Theset ofessential columnscan be computed by:

ess.col(p) = C(p) •3c,d [R(c, d) •Tuple0(c) •(p D d)- fip' (C(pf) • (p' D d) • (p' ± p))}

The right part of the equation expresses the condition that a column p is essential. For such a p, there must
be a row (c, d) € R which (1) doesn't contain any0 (i.e. Tupleo(c)), (2) contains a 1 in column p (i.e.
(p D d))t and (3) there is notanother column in therow with a 1 (i.e. fip' (C(p') • (p' D d) • (p' ^ p))).

Theorem 6.7 Essentialcolumns mustbe in thesolution. Each essentialcolumn mustthen be deletedfrom
the table together with all rows where it has 1's.

Theorem 6.8 Thesecomputations addessentialcolumns tothesolution,delete themfrom theset ofcolumns
and delete all rows in which they have l's:

solution(p) = solution(p)+ ess.col(p)

C(p) = C(p) - ->ess-col(p)

R(c,d) - [R(c,dy fip (ess.col(p) •(p D d)) •->ess.col(c)] + [3c(R(c,d) •ess.col(c)) •Tuple0(c)]

The first two equations move the essential columns from the column set to the solution set.
When essential columns are deleted, rows intersectingthem in a 1must be deleted, but rows intersecting

them in a 0 have only the 0 entry removed. This means that binate rows intersecting an essential column
in a 0 become unate and the row labels must be updated accordingly. In the last equation, the term
R(c,dy J3p (ess.col(p) • (p D d)) defines rows (c,d) that do not intersect any essential columnin a 1.
Rows intersecting an essential column in a 0 are removed (by the term ->ess.col(c)) and then are added back
(bythe term 3c (R(cy d) •ess.col(c)) •Titp/eo(c), where TupZeo(c) setsthe c part to the empty set).

Definition 6.4 A column p is an unacceptable column iff there is a row having a 0 in column p and 2
everywhere else.

15

Theorem 6.9 Theset ofunacceptable columns can be computed by:

unacceptable.col(p) = C(p) •3d[R(p,d)- fip' (C(p') •(p1 D d))]

The term R(p, d) asserts that there is a row (c,d) whith a 0 in column p, while J3p' (C(p') • (p' D d))
requires that no other column intersects that row in 1.

Definition 6.5 A column p is an unnecessary column iffit doesn'thaveany1 in it.

Theorem 6.10 The set ofunnecessary columns can be computed as:

unnecessary.col(p) - C(p)- fie, d [R(c,d)-(pD d)]

A column p is unnecessary iffno row(c, d) e R intersects it in a 1, i.e. fie, d [R(c,d)-(pD d)].

Theorem 6.11 Unacceptable andunnecessary columns should be eliminatedfrom the table, together with
all the rows in which such columns have O's.

Thetableis updated according toTheorem 6.4bysetting D(p) = unacceptable-col(p)+unnecessary_col(p).

7 Other Implicit Computations

To have a fully implicit binate covering algorithm, accordingto the scheme shown in Figure 2, we must also
compute implicitly a branching column and a lower bound. These computations usually require some form
of countingand comparisonof integers. Such operations are not availableas BDD primitiveoperations,as
they are not well-suited for two-terminal BDD's. In the sequel we will describe how we designed a new
family of BDD operations that select columns (or rows) that have a maximum (minimum) number of l's
(O's).

7.1 Implicit Selection of a Branching Column

Theselectionof abranching columnis akeyingredientof anefficient branch-and-bound covering algorithm.
A good choice reduces the number of recursive calls, by helpingto discover more quickly a good solution.
Usually theselectionof a branching columnis restricted tocolumns intersecting the rowsof the independent
set, because a unique column must eventuallybe selected from each row of the maximal independent set.
Among those rows, the selection strategy favors columns withlarge numberof l's and intersecting many
short rows. Short rows are considered difficult rows and choosing them first favors the creation of essential
columns.

Here we adopt a simplified criterion: select a column with a maximum number of ones. We show now
how a set ofcolumns with a maximum number of l's can be found implicitly.

7.2 Selection of a Column with Maximum Number of l's

Since we are interested only in the 1 entries of the table, we define the following relation:

F(p,c,d) = C(p)-R(c,d).(p2d)

A column p and a row (c,d) intersect in a 1 iff F(p, c,d) = 1. Define the pair of variables (c,d) as r, so
that F(p, c,d) = F(p, r). Note that F(p, r) can be decomposed as: F(p, r)= Y^Pi£C(P)(p = Pi) •F(Ph r\

16

LineMaxElem(F,top.r.index) {
v = bddJop.var(F)
if (index(v) >= topjr.index) {

return (l,bdd-count.onset(F))
} else { /* v is a p variable */

(T, countJT) = LineMaxElem(bddJ,hen(F),topjrJudex)
(E, count_E) = LineMaxElem(bdd-else(F),topjr-index)
count = max(count.T, count_£)
if (count = countJT = count.E)

C = ITE(v,T,E)
else if (count = T)

C = /T£(v,r,0)
else if (count = count.E)

C = ITE(vyO,E)
return (C, count)

}
}

Figure 4: Implicit computation of lines with maximum number of entries

Our original problem of finding the column with the maximum number of l's in the table reduces to
finding the p related to the maximum number of r's in the relation F(py r). A brute force method is to
cofactorthe BDD F(p, r) with respect to each pi € C(p), count the number of minterms in the onset of
each F(pi, r), and pick the column with the maximum count. The obvious disadvantage of this method is
that we are counting one BDD for each column in the table. We describe an algorithm, LineMaxElem, for
implicit countingwhich traverses eachnode of the BDD F(p, r) exactly once. Figure 4 shows anoutline of
LineMaxElem.

Variables in p are required to be ordered before variables in r. Define top.r.index as the smallest index
of the variables in r (corresponding to the highest variable in BDD). LineMaxElem takes the relation
F(p, r) and top jr.index as arguments and returnsthe BDD of the set of columns in p which are related to
the maximum number of r's in F, together with the count. Starting from the root of BDD F, the algorithm
traverses down the graph by recursively calling LineMaxElem on the then and else subgraphs. This
recursion stops when the top variable v of F is in the variable set r. In this case, the BDD rooted at v
corresponds to acofactor F(pi, r) for some pi. The mintermsin its onset are countedandreturned as count,
which is the number of r's that are related to pt- (i.e. the number of 1's in column p,).

Next we construct a new BDD in a bottom up fashion, representing the set of columns with maximum
count. The two recursive calls of LineMaxElem return the sets T and E of columns with maximum

count countJT and count.E for the then and the else subgraphs. The larger of the two counts, count =
max(count.T,countJE), is returned. If the two counts are the same, the columns in T and E are merged
by ITE(v, T, E). If countJT is larger, only T is retained asthe updated columnsofmaximum count. And
symmetrically for the other case.

lb guarantee that eachnode of the BDD F(p, r) is traversed once, two computed tables ([1]) must be
used, though they are not shown in the algorithm. Firstly, the bdd.count.onset() results must be saved
acrossdifferent calls of the routine. Secondly, the results of LineMaxElem must also be stored in another
computed table. Note that LineMax Element returns a set ofcolumns ofmaximum count Since we need

17

only one column, some heuristic is used to break the ties and to keep only one column.
One can compute the columns with minimum number of 1's, by replacing in LineMaxElem the

expression max(count.T, count.E) withmin(count.T, count.E). Moreover, if variables in r arerequired
to be ordered before variables in p one can compute the rows that maximize or minimize the number of
1's. Summing up, we have a family of procedures that can either maximize or minimize the number of 1's
of either the columns or of the rows (similarly, for O's in place of l's). An application where rows with
minimumnumber of l's are needed is the implicit computationofthe maximal independent set (Section7.3).

7.3 Implicit computation of a maximal independent set

Usually a lower bound is obtained by computing a maximum independent set ofthe unate rows. A maximum
independent set of rows is a (maximum) set of rows no two of which intersect the same column. Maximum
independent set is an NP-hard problem and an approximate one (only maximal) can be computed by a
greedy algorithm. Let R be the set of rowsout of which a maximal independent set must be found. While
R is non-empty, a row r of R is found that is disjoint from a maximum number of rows (i.e. the row of
minimum length in R). All rows having elements in common with rt- are then discarded from R. At the end
of the iteration, a set of pairwise disjoint rows (independent set) and their minimum covering cost is found.

An analogueof the previousgreedy procedurecan be reproduced in our implicit frame, noticing that we
showed already how to compute implicitly the rows with minimum number of 1's (Section 7.2). Since we
are interested only in the unate rows of the table, we define the following relation:

F(p,d) = 3cR(c, d).Tupleo(c).C(p).Contain(p, d)

A column p and a unate row (c, d) intersect in a 1 iff F(p, d) = 1. Rows here are labelled only by the
second half d of their complete label, because it is sufficient to distinguish them. Once a shortest row r(d)
is found, one can discard from F(p,d)the row r(d) together with all the other rows intersecting the same
columns by:

P(p,d) = F(p,d). fip{3d[r(d).Contain(p,d)].C(p).Contain(p,d)}.

8 Experimental Results for Computation of Compatibles

We report results on different suites of FSM's. They are:

1. The MCNC benchmark and other examples.

2. FSM's from asynchronous synthesis [17].

3. FSM's from learning I/O sequences [9].

4. FSM's from synthesis of interacting FSM's [27].

5. Constructed FSM's that exhibit a large number of maximal and prime compatibles.

6. Random FSM's.

We discuss features of the experiments and results in different subsections. Our program is called ism, an
acronym for implicit state minizer. Comparisons are made with stamina, a program that represents the
state-of-art for state minimization based on explicit techniques. The program stamina was run with the
option -P to compute all primes. All run times are reported in CPU secondson a DEC DS5900/260 with
440 Mbof memory. #N£VC denotes the number of nonessential prime compatibles.

18

8.1 Examples from MCNC Benchmark and Others

Table 1 reports the results of the most interesting examples (as far as state minimization is concerned) from
the MCNC benchmark and from other academic and industrial benchmarks available to us. Most examples
have a small number of prime compatibles, with the exception of ex2 and green. The running times of ism
are worse than those of stamina, especially in those cases where there are very few compatibles in the
number of states (squares is the most striking example). But when the number of primes is not negligible
as in ex2 and green, ism ran as fast or faster than stamina. This is consistent with our expectations, since
ISM manipulates relations having a number ofvariables linearly proportional to the number of states. When
very few compatibles need to be represented, the purpose of ism is defeated and its representation becomes
very inefficient.

#max # prime CPU time (sec)

machine # states compat. # compat. compat. #M£VC ISM STAMINA

ex2 19 36 2925 1366 1366 8 13

green 54 524 1234 524 524 90 125

squares 371 45 473 307 0 731 1

tbk 32 16 48 48 48 3 1

Table 1: Examples from the MCNC Benchmark and others.

8.2 Examples of FSM's from Asynchronous Synthesis

Table 2 reports the results of a benchmark of FSM's generated as intermediate steps of an asynchronous
synthesis procedure [17]. We notice that stamina ran out of memory on the examples vmebus.master.m,
isend,pe-rcv-ifcfc, pe-send-ifcfc, while ISM was able to complete them. These examples (with the exception
of vbe4a) have a number of primes below 1000. To explain the data reported in Table 2, we notice that in
order to compute the prime compatibles, the set ofcompatibles needs to be generated too. The compatibles
of the FSM's of this benchmark are usually of large cardinality and therefore their enumeration causes a
combinatorial explosion. So the huge size of the set of compatibles accounts for the large running times
and/or out-of-memory failures. About the behavior of ism, we underline that the running times track well
with the size of the set ofcompatibles and that in significantcases they are well below those ofstamina (pe-
rcv-ifcfc.m, pe-send-ifcfcm, vbe4a). Noticethat for asynchronous synthesisa more appropriateformulation
ofexact state minimization requires the computation of all compatibles or at least of prime compatibles and
a different set-up of the covering problem [17].

8.3 Examples of FSM's from Learning I/O Sequences

Table 3 shows the results of running a parametrizedset of FSM's constructed to be compatible with a given
collection of examples of input/output behavior [9]. From a sequence of n input/outputpairs, a machine is
generated with n + 1 states and n transitions, one for each input/output pair. These machines exhibitvery
large number ofcompatibles.

Here ism shows all its power compared to stamina, both in terms of number of computed primes and
runningtime, stamina runsout of memoryontheexamples from threer.35 onwardsand,whenit completes,
it takes close to two order of magnitude more time than ism.

19

#max # prime CPU time (sec)
machine # states compat. # compat. compat. M£VC ISM STAMINA

alexl 42 787 55928 787 787 26 16

inteljedge.dummy 28 120 9432 396 396 38 3

isend 40 128 22207 480 480 16 spaceout
pe-rcv-ifcfc 46 28 1.528ell 148 148 18 spaceout

pe-rcv-ifc.fcm 27 18 1.793e6 38 38 3 147

pe-send-ifcfc 70 39 5.071el7 506 506 571 spaceout
pe-send-ifcfcm 26 6 8.978e6 23 22 3 312

vbe4a 58 2072 1.756el2 2072 2072 112 167

vmebus.master.m 32 10 5.049e7 28 28 16 spaceout

Table 2: Asynchronous FSM benchmark.

prime CPU time (sec)
machine state compat. compat. ISM STAMINA

threer.10 11 671 112 0 0

threer.20 21 16829 3936 1 159

threer.30 31 97849 33064 50 1344

threer.40 41 1.456e6 529420 156 spaceout

threer.50 51 1.680e7 7.246e6 1142 spaceout

fourr.10 11 2047 1 0 0

fourr.20 21 42193 12762 2 217

fourr.30 31 1.346e6 542608 20 spaceout

fourr.40 41 5.266e9 2.388e9 105 spaceout

fourr.50 51 3.643e7 1.696e7 198 spaceout

fourr.60 61 1.052el0 5.021e9 6101 spaceout

fourr.70 71 9.621el0 4.524el0 22940 spaceout

Table 3: Learning I/O sequences benchmark.

20

8.4 Examples of FSM's from Synthesis of Interacting FSM's

It has been reported by Rho and Somenzi [22] that the exact state minimization of the driven machine of a
pair of cascaded FSM's is equivalentto the state minimizationof an ISFSM that requires the computation
of prime compatibles.

Recently Wang and Brayton [27] have implementeda program to optimize a FSM, exploiting the input
don't care sequences induced by a surroundingnetwork of FSM's. Their procedure produces FSM's that
requires a final step of state minimization and exhibit often large number of prime compatibles. We will
report on these experiments in a final version of the paper, when these examples will be availableto us.

8.5 A Family of FSM's with Exponentially Many Primes

We describe here a suite of FSM's whose number of prime compatibles is exponential in the number of
states.

Rubin gave in [23] a sharp upper bound for the number of maximal compatibles of an ISFSM. He
showed that M(n), the maximum numberof maximal compatibles over all ISFSM's with n > 1 states, is
given by M(n) = i.3m, if n = 3.ra •+• i. The proofof thiscounting statement is based on the construction
of a family of incompatibility graphs I(n) parametrized in the number of states4. Each I(n) is composed
canonically of a number of connected components. Each maximal compatible contains exactly one state
from each connected component of the graph. The number of such choices is shown to be M(n).

The proof of the theorem does not exhibit an FSM that has a canonical incompatibilitygraph. Based
on the construction of the incompatibility graphs given in the paper, we have built a family F(n)5 of
ISFSM's (parametrized in the number of states n) that have a number of maximal compatibles in the
order of 3^n^ and a number of prime compatibles in the order of2^2n^3\ F(n) has 1 input and n/3
outputs. Each machine F is derivedfrom a non-connected state transitiongraph whose components F{ are
defined on the sameinputand outputs. EachFSM Fi has 3 states {sto, $n, $&} and 3 specified transitions
{e,o = (sto>-s,i),e,i = (su,Si2),e{2 = (s;2,s,o)}. Each transition under theinput setto 1asserts alloutputs
to -, with the exception that e,o and en assert the i-thoutput to 0 and e,2 asserts the i-thoutput to 1. Under
the input set to 0 the transitions are left unspecified.

Table 4 shows the results of running increasingly larger FSM's of the family. While ISM is able to
generate sets ofprime compatibles ofcardinality upto21200 with reasonable running times, stamina,based
on an explicit enumerationruns out of memory soon (and where it completes, it takes much longer).

8.6 FSM's with Many Maximals

Table5 showsthe resultsof runningsome examplesfrom a set of FSM's constructedto have a large number
of maximalcompatibles. The examplesJac4,jc43,jc44,jc45,jc46,jc47 aredue to R. Jacobyand havebeen
kindlyprovided by J.-K.Rho of UCBoulder. The example lavagno is from asynchronous synthesisas those
reported in Section 8.2. For theseexamples the program stamina wasrun withthe option-M to compute
allmaximals. While ismcould complete on them in reasonable running times, stamina could notcomplete
onjac4 and completed the other ones with running times exceeding those of ism by one or two order of
magnitudes. Notice that ismcouldalsocompute the set of all compatibles even thoughthe computation of
prime compatibles cannot be carried to the end while stamina failed on both.

4The incompatibility graph of an ISFSM F is a graph whose nodes are the states of F, with an undirected arc between two
nodes s and t iff s and t are incompatible.

sCaUed rubin followed by n inthe table of results.

21

#max # prime • CPU time (sec)
machine # states compat. # compat. compat. #MSVC ISM STAMINA

rubinl2 12 34 28-l 2«-l 2«-i 0 4

rubinl8 18 36 212-1 212-1 2i2_i 1 751

rubin24 24 38 216-1 216-1 216-1 1 spaceout

rubin300 300 3100 2200-l 2200-l 2200.! 256 spaceout

rubin600 600 3200 2400-l 2400-l 2m-\ 1995 spaceout
mbin900 900 3300 2600-l 2600-l 2600_1. 6373 spaceout

rubinl200 1200 3400 2800- 1 2800- 1 2800- 1 17711 spaceout

rubinl500 1500 3500 2iooo_ j 2iooo_ | 2iooo_ 1 42674 spaceout

rubinl800 1800 3600 21200 _ j 21200 _ | 21200 _ j 78553 spaceout

Table 4: Constructed FSM's.

#max # prime CPU time (sec)
machine # states compat. # compat. compat. ISM STAMINA

jac4 65 3.859e6 4.159e7 ? 34 spaceout

jc43 45 82431 1.556e6 ? 13 7739

jc44 55 4785 7.584e9 ? 20 662

jc45 40 17323 480028 ? 10 1211

jc46 42 26086 1.153e6 ? 11 2076

jc47 51 397514 1.120e7 ? 19 41297

lavagno 65 47971 9.163e6 ? 163 40472

Table 5: FSM's with many maximals.

22

8.7 Randomly Generated FSM's

We investigated also whether randomly generated FSM's have a large number of prime compatibles. A
program was written togenerate random FSM's6. Asmall percentage oftherandomly generated FSM's were
found to exhibit this behavior. Table 6 shows the results of running ism and stamina on some interesting
examples with a large number of primes. Again only ism could complete the examples exhibiting a large
number of primes.

#max # prime CPU time (sec)
machine # states compat. # compat. compat. #Af£VC ISM STAMINA

fsml5.232 14 4 7679 360 360 2 23

fsml5.304 14 2 12287 954 954 1 85

fsml5.468 13 2 4607 772 772 1 16

fsml5.897 15 2 20479 617 616 0 50

ex2.271 19 2 393215 96383 96382 26 spaceout

ex2.285 19 2 393215 121501 121500 17 spaceout

ex2.304 19 2 393215 264079 264079 94 spaceout

ex2.423 19 4 204799 160494 160494 112 spaceout

ex2.680 19 2 327679 192803 192803 156 spaceout

Table 6: Random FSM's.

8.8 Summary of the Results

The results of Tables 2, 3, 4, 5 and 6 show that when the sets of compatibles needed for exact state
minimization are huge, an algorithm based on an explicit enumeration of those sets will be unable to
complete due to an out-of-memory condition.

The question now arises of how it is realistic to expect such examples in logic design applications. One
could object that the examples ofTable 1 show that hand-designed FSM's can be handled very well by an
existing state-of-art program like stamina. If this can be true for usual hand-designed FSM's, we argue that
there are FSM's produced in the process of logic synthesis of real design applications that generate large
sets ofcompatibles exceeding the capabilities of programs based on an explicit enumeration. The examples
ofTable 2 are such a case. They are FSM's produced as intermediate stages ofan asynchronous logic design
procedure and their minimization requires computing very large sets of compatibles. Another case is the
one reported in Table 3, referring to the synthesis of finite state machines consistent with a collection of I/O
learning examples.

9 Experimental Results of Binate Covering

hi this section we report preliminary results of an implementation of the implicit binate covering algorithm,
described in the previous sections. We use the benchmarks already introduced in Section 8 and concentrate
on the examples where prime compatibles are needed to find a minimum solution of the state minimization
problem 7. Here we provide data for a subset of them, sufficient to characterize the capabilities of our

Parameters: number of states, number of inputs, number of outputs, don't care output percentage, don't care target state
percentage.

7Otherwise, aminimum solution of maximal compatibles isclosed and therefore isaminimum solution.

23

prototype program. Since the following results arestill preliminary, the analysis of the experiments is not
final yet.

Comparisons are made with stamina. The binate covering step of stamina was run with alpha
dominance and norow consensus,becausebetadominance and row consensushave notyetbeen implemented
inourimplicit binate solver. Ourimplicit binate program currently lacks also routines fortable partitioning
and Gimpel's reduction rule, thatwere instead invoked intheversion ofstamina used forcomparison. This
might sometimesfavourstamina, but for simplicitywe will not elaboratefurther on this effect. In the near
future we will implement betadominance, row consensus and table partitioning in our package. All run
timesare reported in CPUsecondson a DECDS5900/260 with440 Mb of memory.

The following explanations refer to the tables of results:

• #Af£VC denotes the number of nonessential prime compatibles. Essential prime compatibles and
rows covered by them are not needed in the binate table.

• Under tablesizeweprovide the dimensions of theoriginal binate tableandof its cyclic core, i.e. the
dimensions of the table obtainedwhenthe first cycleof reductions converges.

• # mincov is the number of recursive calls of the binate cover routine.

• Dataare reported with a * in front, whenonly the first solutionwascomputed.

9.1 Minimizing Small and Medium Examples

Withthe exception of ex2, ex3, ex5, ex7, the examples from the MCNCand asynchronous benchmarks do
not require primes for exact state minimization and yield simple covering problems8. Table 7 reports the
few non-trivial examples. They were all run to full completion, with the exception of ex2. In the case of
ex2, we stoppedboth programsat the firstsolution. These experiments suggest that

• the number of recursive calls of the binate cover routine (mincov) of ISM and stamina is roughly
comparable (ism is surprisingly better in the examples green and alexl), showing that our implicit
branching selectionroutineis satisfactory. This is an important indication, becauseselectinga good
branching column is a more difficult task in the implicit frame.

• The running times are better for stamina in the small examples, but in the medium examples ism
recovers ground and it is sometimes much faster. This is to be expected because when the size of the
table is small the implicit approach has no special advantage, but it starts to pay off scaling up the
instances. Moreover, our implicit reduction computations have not yet been fully optimized.

9.2 Minimizing Constructed Examples

Table 8 presents a few examples from the constructed benchmarks. They yield giant binate tables. The
experiments show that ism is capable of reducing those table and of producing a minimum solution or at
least a solution. This is beyond reach of an explicit technique and substantiates the claim that implicit
techniques advance decisively the size of instances that can be solved exactly.

8Moreover, in the case of the asynchronous benchmark a more appropriate formulation of state minimization requires all
compatibles and a different set-up of the covering problem.

24

table size (r x c) #imincov CPU time (sec)
machine states. *M£VC before red. after 1st red. ISM STAMINA ISM STAMINA

ex2 19 1366 4418x1366 3425 x 1352 *6 *6 *62 *116

ex3 10 91 243x91 151x84 217 160 85 0

ex5 9 38 81x38 47x31 11 23 4 0

ex7 10 57 137x57 62x44 34 31 9 0

green 54 524 53x524 51x524 5 2975 38 148

alexl 42 787 42x787 28x110 3 137 303 7

Table 7: Examples from the MCNC and asynchronous benchmarks

table size (r x c) # mincov CPU time (sec)
machine states #AT£VC before red. after 1st red. ISM STAMINA ISM STAMINA

ex2.271 19 96382 95323x96382 0x0 1 - 3 fails

ex2.285 19 121500 1x121500 0x0 1 - 0 fails

ex2.304 19 264079 1053189x264079 1052007x264079 2 - 554 fails

ex2.423 19 160494 637916x160494 636777x160494 *2 - *373 fails

ex2.680 19 192803 757755 x192803 756940x192803 2 - 868 fails

Table 8: Examples from the constructed benchmarks

9.3 Minimizing FSM's from Learning I/O Sequences

Examples in Table 8 demonstrate dramatically the capability of implicit techniques to build and solve
huge binate covering problems on suites of contrived examples. Do similar cases arise in real synthesis
applications? The examples reported in Table9 answerin the affirmative the question. They are the simplest
examples from the suite ofFSM's described in Section 8.3. It is not possible to build and solve these binate
tables with explicit techniques. Instead we can manipulate them with our implicit binate solver and find
a solution. In the example fourr.40, only the first table reduction was performed. Notice that these are
preliminary results. Experiments to finda minimumcost solution and to complete the benchmark are under
progress.

10 Conclusions

This paperhaspresented animplicitalgorithm for exactstate minimizationofincompletely specified FSM's
(ISFSM's), anNP-hard problem [21]. Ithasbeenshown intheexperimental sections thatvarious applications
of logic synthesis generate FSM's beyond the reach of state-of-art state mimmizers. We have shown how
to computesetsof maximalcompatibles, compatibles and prime compatibles with implicittechniques and
demonstrated that in this way it is possible to handle examples exhibiting a number of compatibles up
to 21200, anumber outside the scope of programs based on explicit enumeration [13]. The only explicit
dependence is on thenumber of states of the initial problem. Wehave also indicated where such examples
arise in practice. Thenwehave addressed the final step of an implicitexact state minimizationprocedure, i.e.
solving a binate table covering problem [24]. We presented the first published algorithm for fully implicit
exact binate covering. We report preliminary results of a prototype implementation capable of reducing

25

table size (rxc) # mincov CPU time (sec)
machine states M£VC before red. after 1st red. ISM STAMINA ISM STAMINA

threer.20 21 3936 6977x3936 6974x3936 *4 *3 *14 *1788
threer.25 26 17372 35690x17372 34707 x17016 *3 - *74 fails

threer.30 31 33064 68007x33064 64311x32614 *4
_ *554 fails

threer.35 36 82776 177124x82776 165967 x 82038 *8 - 2390? fails

threer.40 41 529420 1209783x529420 1148715x526753 *10 - *5054 fails

fourr.16 21 3266 6060x3266 5235x3162 *2 *2 *7 *1266
fourr.20 21 12762 26905 x12762 26904 x12762 *2 - *35 fails
fourr.30 31 542608 1396435x542608 1385809x542132 *2 - *1317 fails
fourr.40 41 2.388e9 6.783e9x2.388e9 6.783e9x2.388e9 tl - fl651 fails

Table 9: Learning I/O sequences benchmark.

huge binate tables (up to 106 rows and columns) and ofcarrying on the branch-and-bound procedure on an
implicitrepresentation of the table. Exactsolutions to problems beyondthe reach of traditional tools are so
found.

We underline that besides the intrinsic interest of state minimization and its variants for sequential
synthesis, the implicit techniques reported in this paper can be applied to other problems of logic synthesis
and combinatorial optimization. For instance the implicit computation of maximal compatibles given here
canbe easily converted into an implicit computation of primeencoding-dichotomies (see [25]).

References

[1] K. Brace, R. Rudell, andR. Bryant. Efficientimplementation of a BDD package. In The Proceedings
ofthe Design Automation Conference, pages 40-45,1990.

[2] R. Brayton, G.Hachtel, C.McMullen, and A. Sangiovanni-Vincentelli. LogicMinimizationAlgorithms
for VLSISynthesis. Kluwer Academic Publishers, 1984.

[3] R. Brayton, A. Sangiovanni-Vincentelli, G. Hachtel, and R. Rudell. Multi-level logic synthesis.
unpublished book, 1992.

[4] R. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In The Proceedings of the
International Conference on Computer-AidedDesign, November 1989.

[5] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions on
Computers, pages C-35(8):667-691,1986.

[6] O. Coudert, C. Berthet, and J. C. Madre. Verificationof sequential machines using functional Boolean
vectors. IFIP Conference, November 1989.

[7] O. Coudert, HJFraisse, and J.C. Madre. A breakthrough in two-level logic minimization. In The
Proceedings ofthe Design Automation Conference, June 1993.

[8] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential prime
implicants of boolean functions. In The Proceedings of the Design Automation Conference, pages
36-39,1992.

26

[9] S. Edwards and A. Oliveira. Synthesis ofminimal state machines from examples ofbehavior. EE290LS
Class Project Report, U.C. Berkeley, May 1993.

[10] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely
specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June
1965.

[11] A. Grasselli and F. Luccio. Some covering problems in switching theory. In Networks and Switching
Theory, pages 536-557. Academic Press, New York, 1968.

[12] G.Swamy, R.Brayton, and PMcGeer. A fully implicit Quine-McQuskey procedure using BDD's. In
Submittedfor Publication, 1993.

[13] G. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic algorithms for the minimization
of incompletely specified state machines. In The Proceedings of the European Design Automation
Conference, 1991.

[14] J.E. Hopcroft. n log n algorithm for minimizing states in finite automata. Tech. Report Stanford Univ.
CS 71/190,1971.

[15] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Implicit generation of compatibles for
exact state minimization. Tech. Report No. UCB/ERLM93/60, August 1993.

[16] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Book Company, New York, New
York, second edition, 1978.

[17] L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli. Solving the state assignment
problem for signal transition graphs. The Proceedings of the Design Automation Conference, June
1992.

[18] B.Lin. Synthesis of VLSI designs with symbolic techniques. Tech. Report No. UCB/ERL M911105,
November 1991.

[19] B. Lin, O. Coudert, and J.C. Madre. Symbolic prime generation for multiple-valued functions. In The
Proceedings ofthe Design Automation Conference, pages 40-44,1992.

[20] B. Lin and A.R. Newton. Implicit manipulation ofequivalence classes using binary decision diagrams.
In Proceedings ofthe International Conference on Computer Design, pages 81-85, September 1991.

[21] C.P. Pfleeger. State reduction in incompletely specified finite state machines. IEEE Transactions on
Computers, pages 1099-1102, October 1973.

[22] J.-K. Rho and F. Somenzi. The role of prime compatibles in the minimization of finite state machines.
In The Proceedings ofthe European Design Automation Conference, 1992.

[23] Frank Rubin. Worstcasebounds formaximalcompatible subsets. IEEE Transactions on Computers,
pages 830-831, August 1975.

[24] R. Rudell. Logic synthesis forVLSI design. Tech. Report No. UCB/ERL M89/49, April 1989.

[25] A. Saldanha, T. Villa,R. Brayton, and A. Sangiovanni-Vincentelli. A uniformframework for satisfying
input and output encoding constraints. The Proceedings of the DesignAutomation Conference, June
1991.

27

[26] H.Touati, H. Savoj,B. Lin, R. K. Brayton,andA. Sangiovanni-Vincentelli. Implicit state enumeration
of finite statemachinesusing BDD's. The Proceedings oftheInternational Conference on Computer-
Aided Design, pages 130-133, November 1990.

[27] Huey-Yih Wang andR. K. Brayton. Inputdon't care sequences in fsm networks. In The Proceedings
ofthe International Conference on Computer-Aided Design, November 1993.

28

	Copyright notice 1993
	ERL-93-79

