Copyright © 1993, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A FULLY IMPLICIT ALGORITHM FOR
EXACT STATE MINIMIZATION

by

Timothy Kam, Tiziano Villa, Robert Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/79

19 November 1993

A FULLY IMPLICIT ALGORITHM FOR
EXACT STATE MINIMIZATION

by

Timothy Kam, Tiziano Villa, Robert Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/79

19 November 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

A FULLY IMPLICIT ALGORITHM FOR
EXACT STATE MINIMIZATION

by

Timothy Kam, Tiziano Villa, Robert Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/79

19 November 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

A Fully Implicit Algorithm for Exact State Minimization

Timothy Kam* Tiziano Villa! Robert Brayton Alberto Sangiovanni-Vincentelli

Abstract

Implicit computations of the solution set of optimization problems arising in logic synthesis hold
the promise of enlarging the size of input instances that can be solved exactly. The state minimization
problem for incompletely specified machines is an important step for sequential circuit optimization.
The problem is NP-hard. An exact algorithm consists of two steps: generation of sets of compatibles,
and solution of a binate covering problem. This paper presents an implicit algorithm for exact state
minimization of FSM’s. There are various applications of logic synthesis that generate FSM’s beyond
the reach of state-of-art state minimization tools. Therefore it is of practical importance to revisit exact
state minimization of ISFSM’s and address the issue of representing implicitly the solution space. In this
paper we show how to compute sets of maximal compatibles, compatibles and prime compatibles with
implicit techniques and demonstrate that in this way it is possible to handle examples exhibiting a number
of compatibles up to 2!2%, a number outside the scope of programs based on explicit enumeration [13].
We indicate also where such examples arise in practice. Then we address the final step of an implicit
exact state minimization procedure, i.e. solving a binate table covering problem [24]. We present the first
published algorithm for fully implicit exact binate covering. We report preliminary results of a prototype
implementation capable of reducing huge binate tables (up to 10° rows and columns) and of carrying on
the branch-and-bound procedure on an implicit representation of the table. Exact solutions to problems
beyond the reach of traditional tools are so found.

1 Introduction

Seminal work by researchers at Bull [6] and improvements at UC Berkeley [26] produced powerful tech-
niques for implicit enumeration of subsets of states of a Finite State Machine (FSM). These techniques are
based on the idea to operate on large sets of states by their characteristic functions represented by Binary
Decision Diagrams (BDD’s). In many cases of practical interest these sets have a regular structure that
translates into small-sized BDD’s. Once the related BDD’s can be constructed, the most common Boolean
operations on them (including satisfiability) have low complexity, and this makes feasible to carry on com-
putations otherwise impractical. Of course it may be the case that some BDD’s cannot be constructed,
because of the intrinsic structure of the function to represent or because a good ordering of the variables is
not found.

Work at Bull [8, 19] showed how implicants, primes and essential primes of a two-valued or multi-valued
function can also be computed implicitly. Reported experiments show a suite of examples where all primes
could be computed, whereas explicit techniques implemented in ESPRESSO (2] failed to do so. More recently,
implicit algorithms were presented to reduce the unate table of the Quine-McCluskey procedure to its cyclic
core ([7] and [12]). In this way an exact solution to some hard problems beyond the reach of ESPRESSO
could be found.

*Research support by DARPA under contract J-FBI90-073
tResearch support by NSF under contract MIP-8719546 and California State MICRO Program

It is important to investigate how far these techniques based on implicit computations can be pushed
to solve the core problems of logic synthesis and verification. When exact solutions are sought, explicit
techniques run easily out of steam because too many elements of the solution space must be enumerated.
It appears that implicit techniques offer the most realistic hope to increase the size of problems that can be
solved exactly.

This paper presents an implicit algorithm for exact state minimization of FSM’s. State minimization of
FSM’s is a well-known problem [16]. State minimization of completely specified FSM’s (CSFSM’s) has
a complexity subquadratic in the number of states [14]). This makes it an easy problem when the starting
point is a two-level description of an FSM, because the number of states is usually less than a few hundred.
The problem becomes difficult to manage when the starting point is an encoded sequential circuit with a
large number of latches (in the hundreds). In that case a traditional method would require the extracted state
transition graph, with a number of states exponential in the number of latches, and so it would be impractical.
Recently it has been shown [20, 18] how to bypass the extraction step and compute equivalence classes of
states implicitly. Equivalence classes are basically all that is needed to minimize a completely specified state
machine. A compatible projection operator uniquely selects a representative for each equivalence class.

State minimization of incompletely specified FSM’s (ISFSM’s) has been shown to be an NP-hard
problem [21]. Therefore even for problems represented with two-level descriptions involving a hundred
states, an exact algorithm may consume too much memory and time. As it will be shown in the experimental
sections of this paper, there are various applications of logic synthesis that generate FSM’s beyond the
reach of state-of-art state minimization tools. Therefore it is of practical importance to revisit exact state
minimization of ISFSM’s and address the issue of representing implicitly the solution space.

We underline that besides the intrinsic interest of state minimization and its variants for sequential
synthesis, the implicit techniques reported in this paper can be applied to other problems of logic synthesis
and combinatorial optimization. For instance the implicit computation of maximal compatibles described in
this paper can be easily converted into an implicit computation of prime encoding-dichotomies (see [25]).

In this paper we show how to compute sets of maximal compatibles, compatibles and prime compatibles
withimplicit techniques and demonstrate that in this way it is possible to handle examples exhibiting anumber
of compatibles up to 2'2%, a number outside the scope of programs based on explicit enumeration [13].
We indicate also where such examples arise in practice. Then we address the final step of an implicit
exact state minimization procedure, i.e. solving a binate table covering problem [24]. We present the first
published algorithm for fully implicit exact binate covering. We report preliminary results of a prototype
implementation capable of reducing huge binate tables (up to 10° rows and columns) and of carrying on the
branch-and-bound procedure on an implicit representation of the table. Exact solutions to problems beyond
the reach of traditional tools are so found.

The remainder of the paper is organized as follows. Section 2 introduces representations of FSM’s based
on Binary Decision Diagrams (BDDs) [5, 1]. Algorithms for implicit prime compatible computation are
presented in Section 3. Section 4 presents some generalities on binate covering. Generation of the implicit
binate table is described in Section 5, implicit table reduction is described in Section 6, while implicit
column selection and other implicit computations are described in 7. Results on a variety of benchmarks are
reported and discussed in Sections 8 and 9. Conclusions and future work are summarized in Section 10.

2 Implicit Representations

A Finite-State Machine is represented by its State Transition Graph (STG). A STG is denoted by a sextuple
{1,0,5,1S,6,)}, where I and O are the sets of inputs and outputs, S is the set of states and IS is the set
of initial states. 6 (next state function) is a mapping from I x S to S that given an input and a present state
defines a next state. A (output function) is a mapping from I x S to O that given an input and a present state

2

defines an output. An STG where the next-state and output for every possible transition from every state are
defined corresponds to a completely specified machine. Anincompletely specified machine is one where
at least one of the functions é and A are partially defined, i.e. there is at least one pair (7, s) on which either
the next state function or the output function (or both) are not defined.

Many algorithms for sequential synthesis have been developed for STG’s. However, large FSM’s cannot
be stored and manipulated without prohibitively large memory usage and CPU time. A limitationof STG’s
is the fact that they are a two-level form of representation where state transitions are stored explicitly, one
by one.

A binary decision diagram (BDD) [5, 1] provides an altemative way of representing FSM’s. BDD is
usually a more compact FSM representation than STG. A BDD is a rooted, directed acyclic graph (DAG)
where each node is associated with a Boolean variable. There are 2 outgoing arcs from each node. The
then arc corresponds to the case when the variable takes the value 1 and the else arc corresponds to the case
when the variable takes 1. The leaves of the graph are the terminal nodes 0 and 1. A path from the root to
a terminal 1 represents a satisfying assignment of variables on which the BDD evaluates to 1. Thus a BDD
can represent any Boolean function on any n Boolean variables f : B® — B where B = {0,1}.

A rich set of BDD operators has been developed and published in the literature [S, 1], and their
definitions will not be repeated here. We will use the notation 3z (F) to denote the existential quantification
of a function F over a set of variables z, and 3z (F) to denote universal quantification. For simplicity in
formulae, variable substitution will not be explicitly stated.

Any subset .S in a Boolean space B™ can be represented by a unique Boolean function xs : B® — B,
which is called its characteristic function, such that: xs(z) = 1 iffzin S. In the sequel, we'll not
distinguish the subset .5 from its characteristic function xs, and will use .S to denote both.

Any relation R between n of Boolean variables can also be represented by a characteristic function
R : B™ — B as: R(z),22,...,%,) = 1 iff the n-tuple (z;, 23, ...,2,) is in relation R.

2.1 Positional-set Representation

To perform state minimization, one needs to represent and manipulate efficiently sets of states (such as
compatibles) and sets of sets of states (such as sets of compatibles). Our goal is to represent any set of sets
of states (i.e. set of state sets) implicitly as a single BDD, and manipulate such state sets symbolically all at
once. Different sets of sets of states can be stored as multiple roots with a single shared BDD.

Suppose a FSM has n states, there are 2™ possible distinct subsets of states. In order to represent
collections of them it is not possible to encode the states using log;n Boolean variables. Instead, each
subset of states is represented in positional-set or positional-cube notation form, using a set of n Boolean
variables, ¢ =)73 ...z,. The presence of a state sx in the set is denoted by the fact that variable z
takes the value 1 in the positional-set, whereas z; takes the value 0 if state sy is not a member of the set.
One Boolean variable is needed for each state because the state can either be present or absent in the set!.
For example = = 6, the set with a single state s4 is represented by 000100 while the set of states s3s385 is
represented by 011010. The states s;, 84, S¢ Which are not present correspond to 0’s in the positional-set.

A set of sets of states is represented as a set S of positional-sets by a characteristic function xs : B* — B
as: xs(z) = 1 iff the set of states represented by the positional-set z is in the set S. A BDD representing
xs(z) will contain minterms, each corresponding to a state set in S. The operators for manipulating
positional-sets and characteristic functions will be described in Section 2.2.

In the case of an ISFSM, some next states as well as the outputs may not be specified. So relations
instead of functions must be used to represent the transition and output information.

!The representation of primes proposed by Coudert et al. [8] needs 3 values per variable to distinguish if the present literal is in
positive or negative phase or in both phases.

Definition 2.1 The transition relation is represented as:
- T(i,p,n) = 1 iff n is the specified next state of state p on input i (i.e.n = é(p, 1)))

An unspecified next state from a state p under input ¢ can be represented either by an entry (¢, p,n)
where the positional-set n is a vector of all 0’s, or by not representing any entry with ¢ and p in the relation
at all. The latter is chosen for our implicit algorithm.

Definition 2.2 The output relation is represented as:
O(i, p,0) = 1 iff o is a (possibly unspecified) output of state p on input i (i.e.o = X(p,i)) (2)

We represent all unspecified outputs in the relation O, to ensure correctness of the output compatibles
computation described in Section 3. An unspecified output in the STG corresponds to a set of minterms
carrying all possible output combinations.

2.2 Implicit Manipulation of Sets and Sets of Sets

We describe here how to represent and manipulate implicitly sets of objects. This theory is especially useful
for applications where sets of sets of objects need to be constructed and manipulated, as it is often the case
in logic synthesis and combinatorial optimization.

2.2.1 Operations on a Pair of Positional-sets

With our definitions of relations and positional-set notation for representing set of states, useful relational
operators on sets can be derived. We propose a unified notational framework for set manipulation which
extends the notation used in [19]. In this section, operators act on two sets of states represented as positional-
Sets T = 7122...2, and ¥ = Y13 . . . Yn, and retum 1 iff (z, y) are in the particular relation. Altematively,
they can also be viewed as constraints imposed on the possible pairs out of two sets of states, = and y. For
example, given two sets of state sets X and Y/, the state set pairs (z, y) where z contains y are given by the
product of X and Y and the containment constraint, X (z) - Y (y) - (z 2 y).

Theorem 2.1 The equality relation tests if the two sets of states represented by positional-sets = and y are
identical, and can be computed as:

(z=9)=]]=zr & w 3
k=1

where Ty <> Yr = T Yi + Tk - Yk designates the Boolean XNOR operation and - designates the Boolean
NOT operation.

[1i=1 zx © yx requires that for every state k, either both positional-sets z and y contain it, or it is absent
from both. Therefore, z and y contains exactly the same set of states and thus are equal.

Theorem 2.2 The containment relation tests if the set of states represented by x contains the set of states
represented by y, and can be computed as:

z2y)=J]w =2 @)
k=1

where T = yYr = T + Yi designates the Boolean implication operation.

4

ITi=; yx = z requires that for all states, if a state k is present in y (i.e. yx = 1), it must also be present in
z (z = 1). Therefore set z contains all the states in y.

Theorem 2.3 The strict containment relation tests if the set of states represented by x strictly contains
the set of states represented by y, and can be computed as:

(zDoy)=(z2y)-(z#y) ®)
Equation 5 follows directly from the two previous theorems.

Theorem 2.4 Given an incompatible pair of states (y, z), a position-set c satisfies Contain_Union(y, z, ¢)
iff ¢ contains both state y and state z. This constraint can be obtained by:

Contain_Union(c,y,z) = [[ve + 2 = & (6)
k=1

Contain_Union(y, z, c) performs bitwise OR on singletons y and 2. If either of their k-bit is 1, the
corresponding c; bit is constrained to 1. Otherwise, ¢; can take any values (i.e. don’t care). The outer
product [];—; requires that the above is true for each k. Thus, it generates all the positional-sets ¢ which
contain the union of the positional-sets y and z. '

22.2 Operations on Sets of Positional-sets

Theorem 2.5 Given the characteristic functions x 4 and x representing the sets A and B, set operations on
them such as the union, intersection, sharp, and complementation can be performed as logical operations
(4, +,*, =) on their characteristic functions.

Theorem 2.6 Given the characteristic functions xa(z) and xp(z) representing two sets A and B (of
positional-sets), the set containment test is true iff set A contains set B, and can be computed by:

Set_Contain,(xa,xB) = Ve xB(z) = xa(z) ¥))

Theorem 2.7 The maximal of a set F of sets is the set containing sets in F' not strictly contained by any
other set in F', and can be computed as:

Magimal,(F) = F(z)- By[(y > z) - F(y)] ®

The term 3y [(y D z) - F(y)) is true iff there is a positional-set y in F such that y D z. In such a case, =
cannot be in the maximal set by definition, and can be taken away. What remains is exactly the maximal set
of states set in F(z).

Theorem 2.8 Given a characteristic function x o(z) representing a set A of positional-sets, the set union
relation tests if positional-set y represents the union of all state sets in A, and can be computed by:

Set_Uniony(x4,y) = H Yk © [Fz xa(z) - 2])
k=1

For each position k, the right hand expression sets yx to 1 iff there exists an z € x4 such that its kth bit is a
1. This implies that the positional-set y will contain the kth element iff there exists a positional-set z in A
such that k is a member of z. Effectively, the right hand expression performs a multiple bitwise OR over all
positional-sets of x 4 to form a single positional-set y which represents the union of all such positional-sets.

223 k-out-o_f-n Positional-sets

Let n be the number of states. In subsequent computations, we will use extensively a suite of sets of state -
sets, Tuple, x(z), which contains all positional-sets z with exactly k states in them (ie. |z| = £). In
particular, the set of singleton states T'uple, 1(z), the set of state pairs Tuple, 2(z), the set of all states
Tuple, n(z), and the set of empty state set T'uple, o(z) are common ones.

Figure 1: BDD representing T'uples »(z).

Such sets of k-tuple state sets have nice BDD structures. Figure 1 represents a BDD of T'uples >(z). Its
root represents the set T'uples »(z), while the internal nodes represent the sets T'uple; j(z) (1 < 5,5 < 2).
Forease of illustration, the variable ordering is chosen such that the top variable corresponding to T uple; ;(z)
is z;. At that node, if we choose state ¢ to be in the positional-set, z; takes the value 1 and we follow the
right outgoing arc. In doing so, we still have ¢ — 1 states/variables left to be processed. As we have put state
i in the positional-set, we still have to add exactly j — 1 states into the positional-set. That is why the right
child of T'uple; j(x) should be T'uple;_y ;—1(x). Similarly, the left child is Tuple;_, ;(x) because state ¢
has not been put in the positional-set and we have j — 1 states/variables left. Thus, the BDD for T'uple; ;
can be constructed by the following algorithm:

Tuple(t, §) {
if (j < 0)or (i < 7) reumn 0
if (= j)and (: =0) retum 1
if Tuple(i,) in computed-table return result
T =Tuple(i—1,j—1)
E = Tuple(i - 1,3)
F =ITE(z;,T,FE)
insert F in computed-table for Tuple(s, 7)
retum F'
}

The total number of nonterminal vertices in the BDD of Tupley, i is nk — k* + n = O(nk). With the
use of the computed table ([1]), the time complexity of the above algorithm is also O(nk) as the BDD is
built from bottom up and each vertex is built once and then re-used. Given any =, the BDD for T'uple,, ;. is
largest when k& = n/2.

3 Implicit Generation of Compatibles

An exact algorithm for state minimization consists of two steps: generation of various sets of compatibles,
and solution of a binate covering problem. The generation step involves identification of sets of states
called compatibles which can potentially be merged into a single state in the minimized machine. Unlike
the case of CSFSM'’s, where state equivalence partitions the states, compatibles for incompletely specified
FSM may overlap. As a result, the number of compatibles can be exponential in the number of states, and
the generation of the whole set of compatibles can be a challenging task.

The covering step (described in Section 4) is to choose a minimum subset of compatibles satisfying
covering and closure conditions, i.. to find a minimum closed cover. The covering conditions require that
every state is contained in at least one chosen compatible. The closure conditions guarantee that the states
in a chosen compatible are mapped by any input sequence to states contained in a chosen compatible.

In this section, we describe implicit computations to find sets of compatibles required for exact state
minimization. More details can be found in [15].

3.1 Output Incompatible Pairs

To generate compatibles, we must start with the given output and transition relations. Incompatibility
relations between pairs of states are derived first.

Definition 3.1 Two states are an output incompatible pair if, for some input, they cannot generate the
same output.

Theorem 3.1 The set of output incompatible pairs, OICP(y, z), can be computed as:

OICP(y,2) = Tuple\(y) - Tupley(z) - 3¢ Ao [O(i,y,0)- O(i, z,0)]
Although y and 2 are positional-sets, they are used to capture a pair of states in this computation. The
conditions T'uple;(y) - Tuple;(z) restrict them to represent only singleton states. The last term is true iff
for some input ¢, there is no output pattern that both state y and z can produce.
3.2 Incompatible Pairs
Definition 3.2 Two states are an incompatible pair if

1. they are output incompatible, or

2. on some input, their next states are incompatible.

This is a recursive definition and we can unroll it into a fixed point iteration that can be implemented
using BDD operations. '

Theorem 3.2 The set of incompatible pairs is the least fixed point of ICP(y, z) in the expression:
ICP(y,2) = OICP(y,z) + i, u,v [T (i, y,u) - T(, 2,v) - ZCP(u,v)]
and can be computed by the following iteration:

ICPo(y, 2) OICP(y,z)
ICPk+1(y, 2) = Icpk(ya z) + Hi, u,v [T(t, Y, u) : T(Z, z, v) ‘ Icpk(ua U)]

The iteration can terminate when ZCPyy1 = ZCP and ICP = ICP;.

7

The fixed point computation starts with the set of output incompatible pairs. After the kth iteration,
ICPr+1(y, z) contains all the incompatible state pairs (y, z) that lead to an output incompatible pair in &
or less transitions. This set is obtained by adding state pairs (y, z) to the set ZCPy(y, z), if an input takes
them into an already known incompatible pair (u, v).

3.3 Incompatibles

So far we established relationships between pairs of states. The following definition introduces sets of states
of arbitrary cardinality.

Definition 3.3 A set of states is an incompatible if it contains at least one incompatible pair.
Theorem 3.3 The set of incompatibles is computed as:
IC(c) = Iy, 2 [ICP(y, 2) - Contain_Union(c, y, z))
Contain_Union(c, y, z) captures all state sets ¢ each containing at least an incompatible pair of singleton
states (y, 2) € ICP.
3.4 Compatibles

Definition 3.4 A set of states is a compatible if it is not an incompatible.
Theorem 3.4 The set of compatibles, C(c), can be computed as:
C(c) = ~Tupleg(c) - =IC(c)

The set of compatibles simply contains all non-empty subsets of states which are not incompatibles. The
empty set in positional-set notation is T'upleo(c) and all subsets which are not incompatible are given by
-IC(c).

3.5 Implied Classes of a Compatible

To set up the covering problem we need also to compute the closure conditions for each compatible. They are
captured by the notion of class set of a compatible, related to the set of next states implied by a compatible.

Definition 3.5 A set of states d; is an implied set of a compatible c for input i if d; is the set of next states
Jrom the states in c on input i.

Theorem 3.5 The implied set (in singleton form) of a compatible c for input i can be defined by the relation
F(e¢,1,n)which evaluates to 1 iff on input i, n is a next state from state p in compatible c.

F(e,d,n) = 3p[C(c) - (¢ 2 p) - T(i, p,)]

In F(c,,n), a compatible ¢ € C(c) and an input ¢ are associated with singleton next states n. Given ¢ and
i, nis in relation F (¢, ¢, »)(i.e. state = is in the implied set of compatible ¢ under input ¢) iff the right hand
expression is true. i.e. if there is a present state p € ¢ such that n is the next state of p on input :.

Note that the implied next states are represented here as singleton states in F(c,i,n). The singletons
n in relation with a compatible ¢ and an input ¢ can be combined into a single positional-set, for later
convenience. This positional-set representation of implied sets associates each compatible ¢ with a set of
implied sets d.

Theorem 3.6 The implied sets d (in positional-set form) of a compatible c for all inputs, CZ(c,d), can be
computed as:
CI(c,d) = 3 [In(F(c,i,n))- Set-Union,(F(c,i,n),d)]

F(c,i,n) relates implied next states as singleton positional-sets to compatible ¢ and input ¢ and
Set_Union,(F(c,t,n),d) forms the union of these singleton sets by bitwise OR and produces a positional-
set d. The term 3n(F(c,,n)) is needed, to exclude invalid compatible input combinations. Finally the
implied sets of c over different inputs are obtained by an existential quantification of the inputs :.
3.6 Class Set of a Compatible
Definition 3.6 An implied set d of a compatible c is in its class set iff

1. d has more than one element, and

2. d¢Z c,and
3. dg difd € class setof c.

We can ignore any implied set which contains only a single state, because its closure condition is
automatically satisfied if the state is covered by some chosen compatible. Also if d C c, the closure
condition is satisfied by the choice of ¢. Finally, if the closure condition corresponding to d’ is stronger than
that of d, the implied set d is not necessary.

Theorem 3.7 The class set of a compatible c is captured by the relation CCS(c, d) which evaluates to 1 iff
the implied set d is in the class set of compatible c.

CCS(c,d) = ~Tupley(d) - (¢ 3 d) - Mazimaly(CL(c,d))

The singleton implied sets Tuple;(d) are first excluded according to condition 1 in definition 3.6. By
condition 2, we prune away implied sets d which are contained in their corresponding compatibles c. Finally
given a compatible ¢, Mazimals(CZ(c, d)) gives all its implied sets d which are not strictly contained by
any other implied sets in CCS(c, d).

3.7 Prime Compatibles

To solve exactly the covering problem, it is sufficient to consider a subset of compatibles called prime
compatibles. It has been proved in [10] that at least one minimum closed cover consists entirely of prime
compatibles.

Definition 3.7 . A compatible ¢/ dominates a compatible c if
1. ¢ Dec,and

2. class set of ¢’ C class set of c.

i.e. a compatible ¢’ dominates a compatible c if ¢’ covers all states covered by ¢, and the closure conditions
of ¢’ are a subset of the closure conditions of c.

As a result, compatible ¢’ expresses strictly less stringent conditions than compatible ¢. Therefore ¢’ is
always a better choice for a closed cover than c, thus c can be excluded from further consideration.

Theorem 3.8 The prime dominance relation, Dominate(c’ c), is defined by:
Dominate(c’,c) = (¢’ D c) - Set_-Containg(CCS(c,d),CCS(c', d))

The two terms on the right-hand expression state the two dominance conditions by which ¢ dominates
¢ according to definition 3.7. Since compatibles ¢ and ¢’ are represented as positional-sets, (¢! D ¢)
is computed according to theorem 2.3. On the other hand, class sets are sets of sets of states and are
represented by their characteristic functions. Containment between such sets of sets of states is computed
by Vd CCS(c', d) = CCS(c, d), as described by theorem 2.6.

Definition 3.8 A prime compatible is a compatible not dominated by another compatible.

Theorem 3.9 The set of prime compatibles can be computed as:
PC(c) = C(c)- Ac' [C(c") - Dominate(c, c))

By definition 3.8, a compaﬁble c is not a prime compatible if it is dominated by another compatible ¢’. This
condition is captured by the expression 3¢’ C(c’) - Dominate(c’, c). The set of prime compatibles is simply
given by the set of compatibles C(c) excluding those that are dominated by other compatibles.

4 Implicit Binate Covering

In this section we introduce the classical branch-and-bound algorithm for minimum-cost binate covering.
This technique has been described in [11, 10, 3, 4] and implemented by means of efficient computer programs
(ESPRESSO and STAMINA). The referred papers offer a thorough description of the algorithm. The branch-
and-bound solution of minimum binate covering is based on a recursive procedure shown in Fig. 2. In our
implicit formulation we keep the branch-and-bound scheme, but we replace the traditional description of the
table as a matrix (usually a sparse matrix) with an implicit representation, using BDD'’s for the characteristic
functions of the rows and columns of the table. Moreover, we have implicit versions of the computations
on the binate table required to implement the branch-and-bound scheme. In the following sections we are
going to describe the following:

¢ Implicit representation of the covering table
¢ Implicit reduction

¢ Implicit branching column selection

¢ Implicit computation of the lower bound.

At each call of the binate cover routine mincov, the binate table undergoes a reduction step and, if
termination conditions are not met, a branching column is selected and mincov is called recursively twice,
once assuming the selected column in the solution set (on the table R, C,,) and once out of the solution
set (on the table Rz, C7;). Some suboptimal solutions are bounded away by computing a lower bound on
the current partial solution and comparing it with an upper bound U (best solution obtained so far). A good
lower bound is based on the computation of a maximal independent set.

10

mincov(R, C, U) {
(R,C)=Reduce(R,C,U)
if (terminalCase(R, C)) {
if (cost(R,C) < U) {
U =cost(R,C)
retum solution

}

else retumn no solution
}
L = LowerBound(R, C)
if (L > U) return no solution
¢; = ChooseColumn(R, C)
$! = mincov(R,,,C.,, U)
S9 = mincov(Rz, C, U)
return BestSolution(S! U {c;}, 5%

Figure 2: Branch-and-bound algorithm for binate covering

5 Implicit Covering Table Generation

To keep with our stated objective, also the binate table is represented implicitly. We describe an implicit
representation of the covering table, that adroitly exploits how row and columns were implicitly computed.
We do not represent (even implicitly) the elements of the table, but we make use only of a set of row labels
and a set of column labels, each represented implicitly as a BDD. They are chosen so that the existence and
value of any table entry can be readily inferred by examining its corresponding row and column labels.

This choice allows us to define all table manipulations needed by the reduction algorithms in terms of
operations on rows and columns and to exploit all the special features of the binate covering problem set up
in the case of state minimization (for instance, each row has at most one 0). Even though it seems that we
are sacrifying generality, we point out that a similar technique could be applied to various binate covering
problems that arise in logic synthesis, with a suitable encoding of the rows and columns.

Definition 5.1 The set of columns C 2 is obtained from prime generation as:
C(p) = PC(p)

Beside distinguishing a row from another, each row label must also contain information regarding the
positions of 1’s and 0’s in the row. Each row is labelled by a pair (¢, d) which represents two positional
sets. Positional set d relates to the 1 entries in the row, while c is related to the 0 entry. These definitions are
motivated by the meaning of rows and columns in our application.

Definition 5.2 The table entry at the intersection of the column labelled by p € C and of the row labelled
by (c,d) € Ris1iff (p 2 d).

The table entry at the intersection of the column labelled by p € C and of the row labelled by (¢,d) € R
isOiff(p=c).

2C(p) is used to represent the set of columns, and is different from C(c) which denotes the set of compatibles.

11

The columns of a table are labelled by prime compatibles p. Given a particular row labelled by (c, d), the
columns intersecting it in a 1 are labelled by the prime compatibles p that contain d. Since there is at most
one 0 in the row labelled by (c, d), the 1abel of the column p intersecting it in a 0 is recorded in the row
label by setting its ¢ part to p. If there is no 0 in a row, c is set to the empty set, Tupleg(c). In this way,
the table can be manipulated without representing its entries. E.g., a column labelled p contains a 0 iff
Je,d [R(c,d) - (p = ¢)),i.e. iff 3d R(p,d).

Definition 5.3 The set of row labels R is given by:
R(c,d) = Ry(c,d) + Ru(c,d) = PC(c)-CCS(c,d) + Tupleg(c) - Tuple;(d)

The closure conditions associated with a prime compatible p are that if p is included in a solution, each
implied set d in its class set must be contained in at least one chosen prime compatible. A binate clause of
the form (p+ p1 + p2 + - - - + &) has to be satisfied for each implied set of p, where p; is a prime compatible
containing the implied set d for 1 < 7 < k. With our interpretation of the row and column labels, the labels
for binate rows are given succinctly by PC(c) - CCS(¢c,d). There is a row label for each (¢, d) pair such
that ¢ € PC is a prime compatible and d is one of its implied sets in CCS(c, d). This row label consistently
represents the binate clause because the 0 entry in the row is given by the column labelled by the prime
compatible ¢ = p, and the row has 1’s in the columns labelled by p; whenever (p; 2 d).

The covering conditions require that each state be contained by some prime compatible in the solution.
For each state d, a unate clause has to be satisfied which is of the form (p; +p2+- - -+ p;) where the p;’s are the
prime compatibles that contain the state d. By specifying the unate row labels to be T'upleg(c) - Tuple; (d),
we define a row label for each state in T'uple;(d). Since the row has no 0, its ¢ part must be the empty
set Tupleg(c). The 1 entries are correctly positioned at the intersection with all columns labelled by prime
compatibles p; which contain the singleton state d.

6 Implicit Reduction Techniques

Three fundamental operations constitute the essence of the reduction rules:

1. Selection of a column. A column must be selected if it is the only column that satisfies a given row. A
dual statement holds for columns that must not be part of the solution in order to satisfy a given row.

2. Eliminationof a column. A column C; can be eliminated if its elimination does not preclude obtaining
a minimal cover, i.e. if there exists another column Cj that satisfies at least all the rows satisfied by
Ci.

3. Elimination of a row. A row R; can be eliminated if there exists another row R; that expresses the
same or a stronger constraint. '

The order of the reductions affects the final results. Reductions are usually attemped in a given order, until
nothing changes any more (i.e. the covering matrix has been reduced to a cyclic core). Fig. 3 shows the
reductions and order implemented in our reduction algorithm. In the reduction there are two cases when no
solution is generated:

1. The added cardinality of the set of essential columns, ess_col, and of the partial solution computed
so far, Sol, is larger or equal than the upperbound U. In this case, a better solution is known than the
one that can be found from now on and so the current computation branch can be bounded away.

12

Reduce(R, C, Sol,U) {
do {
Duplicated -Columns(C)
Column_Dominance(R, C)
Essential_.Column(R, C)
if (card(Sol) + card(ess_col) >= U) retum(no solution)
Sol = Sol U ess_col
Unacceptable_Column(R, C)
Unnecessary-Column(R, C)
if (C does not cover R) return(no solution)
Duplicated Rows(R)
Row_Dominance(R, C)
} while (R or C changed)
return (R, C)
}

Figure 3: Fixed-point reduction computation

2. After having eliminated essential, unacceptable and unnecessary columns and covered rows, it may
happen that the rest of the rows cannot be covered by the remaining columns. In this case, the current
partial solution cannot be extended to any full solution.

We are going to describe how the reduction operations are performed using the special table represen-
tation described in the previous section.

6.1 Duplicated Rows and Columns

It is possible that, after some reductions, more than one column (row) label is associated with columns
(rows) that coincide element by element. We need to identify such duplicated columns (rows) and collapse
them into a single column (row)®. This can be seen as computing the equivalence relation of duplicated
columns (rows) and selecting one representative for each equivalence class.

Theorem 6.1 Duplicated columns can be detected and collapsed into one by:

dup_col(p’,p) = JAdR(p',d)- Ad R(p,d)- Bc,d[R(c,d)-((p 2 d) # (p 2 d))]
C(p) C(p)- Ar' [C(') - dup_col(p',p)- (¢’ < p)]

The first equation says that column labels p’ and p are in relation dup_col iff they identify two columns
that agree element by element, i.e. they have the same 0’s and 1’s. Since each row has at most one 0,
two duplicated columns cannot have O entries. This condition is expressed by Ad R(p',d)- Ad R(p,d),
meaning that there is no row with a 0 in the column labelled by p’ and there is no row with a 0 in the column
labelled by p. In order that two columns agree on all entries to 1, there must not be a row (¢, d) witha 1 in
the column labelled by p and not in the column labelled by 2’, or vice versa. This condition is expressed by

Ac,d[R(c,d)- (' 2) # (p 2 d))).

This avoids the problem of columns (rows) dominating each other when performing implicitly column (row) dominance.

i

13

The second computation picks a representative column label out of a set of columns labels corresponding
to duplicated columns. A column label p is deleted from C iff there is a column label p’ which has a smaller
binary value than p and both label duplicated columns. Here we exploit the fact that any positional-set p can
be interpreted as a binary number. Therefore, a unique representative from a set can be selected by picking
the one with the smallest binary value. In altemative, one could have used the cprojection BDD operator
introduced in [20], but the latter was not available in our BDD package.

So far we have tried hard to distinguish in the exposition a column (row) label from the column (row)
itself. From now on, sometimes we will blur the distinction to ease the write-up, but the context should say
clearly which one it is meant.

Theorem 6.2 Duplicated rows can be detected and collapsed into one by:
dup_row(c’,d',c,d) = ('=¢) Bp[C(p)-(p2d) % (p 2 d))]
R(c,d) = R(c,d)- Ac,d'[R(c,d) - duprow(c’,d',c,d)- (d' < d))

Two row labels denote duplicated rows iff they have the same entry to O (if any), (¢’ = ¢), and no column
p € C intersects one row in a 1 iff the other doesn’t. Selection of a representative from duplicated rows and
table updating are performed as in the case of duplicated columns.

6.2 Column Dominance

Definition 6.1 A column p' a-dominates another column p iff p' has all the I's of p, and p' contains no 0.
Theorem 6.3 The set of a-dominated columns can be computed by:
a_dominated(p) = 3p' {C(p') - (¢’ # p)- Be,d[R(c,d)-(p2d)- (¢’ 2 d)]- Ad R(p',d)}

The expression 3¢, d [R(c,d)- (p 2 d) - (p' 2)] defines pairs of columns p and p’ such that in some row
(¢,d) € R, phas a 1 while p’ does not, i.e. p’ doesn’t dominates p. Suppose column p' has a 0, R(p', d)
would be true. Examining the whole equation, p is a a-dominated column iff there is another column p’
different from p such that none of the above two possibilities is true.

Theorem 6.4 These computations delete a set of columns D(p) from a table and all rows intersecting them

ina0.
C(p) = C(p)--~D(p)
R(c,d) = R(c,d)--D(c)

The first computation updates the set of columns C(p). The expression R(c,d) - ~D(c) defines all rows
not intersecting in a O the columns in D. In fact the rows (¢, d) intersecting the deleted columns in a 0 have
their ¢ parts equal to some column label in D.

Suppose that D(p) = a_dominated(p). Then a-dominated columns are deleted from the set of columns,
and rows intersecting them in a O are deleted from the set of rows. The same computations can be used to
delete unacceptable and unnecessary columns.

14

6.3 Row Dominance

Definition 6.2 A row ' = (c’, d’) dominates another row r = (¢, d) iff r has all the I's and 0 of 7'
Theorem 6.5 Reduction by row dominance can computed by:
R(c,d) = R(c,d)- Ac',d'{R(c',d')- Ap[C(p)-(p 2 d')-(p 2 d)}-[Tupleo(c')+(c' = e)]-((¢', d') # (c,d))}

Since each row contains at most one 0, if 7' dominates r, either ' has no 0 (i.e. the ¢’ partis Tupleg(c")) or 7/
and r have a 0 entry in the same column, (¢’ = c). Thus for the 0 entries, we require [Tupleg(c’) + (¢’ = ¢)]
to be true. For the 1 entries, the expression Ap [C(p)-(p 2 d')- (p 2 d)] requires that no column intersects
ina 1 row (¢’, d’) but not row (¢, d). These two conditions together correspond to the definition of (¢’, d') as
a dominating row. The equation says that rows (¢, d) dominated by another different row (c’, d’) are deleted
from the table.

6.4 Essential and Unacceptable Columns

Definition 6.3 A column p is essential iff there is a row having a 1 in column p and 2 everywhere else.

Theorem 6.6 The set of essential columns can be computed by:
ess_col(p) = C(p) - 3e,d [R(c,d) - Tupleo(c) - (p 2 d)- Ap' (C(p)- (#' 2 d)- (¢’ # p))]

The right part of the equation expresses the condition that a column p is essential. For such a p, there must
be a row (¢, d) € R which (1) doesn’t contain any 0 (i.e. Tupleg(c)), (2) contains a 1 in column p (i.e.
(p 2 d)), and (3) there is not another column in the row witha 1 (i.e. Ap’' (C(p)-(p' 2 d)- (¥’ # p))).

Theorem 6.7 Essential columns must be in the solution. Each essential column must then be deleted from
the table together with all rows where it has I's.

Theorem 6.8 These computations add essential columns to the solution, delete them from the set of columns
and delete all rows in which they have 1's:

solution(p) = solution(p) + ess_col(p)

C(p) = C(p) - ~ess_col(p)
R(c,d) = [R(c,d)- Bp (ess-col(p)- (p 2 d)) - ~ess_col(c)] + [Ac (R(c,d)- ess-col(c)) - Tupleg(c))

The first two equations move the essential columns from the column set to the solution set.

When essential columns are deleted, rows intersecting them in a 1 must be deleted, but rows intersecting
them in a O have only the 0 entry removed. This means that binate rows intersecting an essential column
in a 0 become unate and the row labels must be updated accordingly. In the last equation, the term
R(c,d)- Bp (ess_col(p) - (p 2 d)) defines rows (c,d) that do not intersect any essential column in a 1.
Rows intersecting an essential column in a 0 are removed (by the term —~ess_col(c)) and then are added back
(by the term 3¢ (R(c, d) - ess_col(c)) - Tupleo(c), where Tupleg(c) sets the ¢ part to the empty set).

Definition 6.4 A column p is an unacceptable column iff there is a row having a 0 in column p and 2
everywhere else.

15

Theorem 6.9 The set of unacceptable columns can be computed by:
unacceptable_col(p) = C(p) - 3d [R(p,d)- Bp’ (C(p') - (¢’ 2 d))]

The term R(p, d) asserts that there is a row (¢, d) whith a 0 in column p, while Bp’ (C(p) - (p’ 2 d))
requires that no other column intersects that row in 1.

Definition 6.5 A column p is an unnecessary column iff it doesn’t have any 1 in it.
Theorem 6.10 The set of unnecessary columns can be computed as:
unnecessary-col(p) = C(p)- Ac,d[R(c,d)-(p 2 d)]
A column p is unnecessary iff no row (c,d) € Rintersectsitina1,ie. Bec,d[R(c,d)- (p 2 d)].

Theorem 6.11 Unacceptable and unnecessary columns should be eliminated from the table, together with
all the rows in which such columns have 0’s.

The table is updated according to Theorem 6.4 by setting D(p) = unacceptable_col(p)+unnecessary_col(p).

7 Other Implicit Computations

To have a fully implicit binate covering algorithm, according to the scheme shown in Figure 2, we must also
compute implicitly a branching column and a lower bound. These computations usually require some form
of counting and comparison of integers. Such operations are not available as BDD primitive operations, as
they are not well-suited for two-terminal BDD’s. In the sequel we will describe how we designed a new
family of BDD operations that select columns (or rows) that have a maximum (minimum) number of 1’s
©’s).

7.1 TImplicit Selection of a Branching Column

The selection of a branching column is a key ingredient of an efficient branch-and-bound covering algorithm.
A good choice reduces the number of recursive calls, by helping to discover more quickly a good solution.
Usually the selection of a branching column is restricted to columns intersecting the rows of the independent
set, because a unique column must eventually be selected from each row of the maximal independent set.
Among those rows, the selection strategy favors columns with large number of 1’s and intersecting many
short rows. Short rows are considered difficult rows and choosing them first favors the creation of essential
columns. .

Here we adopt a simplified criterion: select a column with a maximum number of ones. We show now
how a set of columns with a maximum number of 1’s can be found implicitly.

7.2 Selection of a Column with Maximum Number of 1’s

Since we are interested only in the 1 entries of the gable, we define the following relation:
F(p,c,d)= C(p)- R(c,d)-(p 2 d)

A column p and a row (¢, d) intersect in a 1 iff F(p, ¢, d) = 1. Define the pair of variables (c,d) as r, so
that F(p, ¢,d) = F(p,r). Note that F(p, r) can be decomposed as: F(p,r) = 3,.ec(n)(P = i) - F(pi, 7).

16

LineMazElem(F,top-r_indez) {
v = bdd_top_var(F)
if (indexz(v) >= top_r_indez) {
retum (1, bdd_count_onset(F))
} else { /* v is a p variable */
(T, count.T) = LineMaz Elem(bdd then(F),top_r_index)
(E,count_E) = LineMaz Elem(bdd_else(F),top_r_index)
count = maz(count_T, count_F)
if (count = count_T = count_FE)
C =ITE(v»,T,E)
else if (count = T')
C = ITE(v,T,0)
else if (count = count_E)
C = ITE(v,0,FE)
return (C, count)

Figure 4: Implicit computation of lines with maximum number of entries

Our original problem of finding the column with the maximum number of 1°s in the table reduces to
finding the p related to the maximum number of 7’s in the relation F(p,r). A brute force method is to
cofactor the BDD F(p, r) with respect to each p; € C(p), count the number of minterms in the onset of
each F(p;,r), and pick the column with the maximum count. The obvious disadvantage of this method is
that we are counting one BDD for each column in the table. We describe an algorithm, Line M ax Elem, for
implicit counting which traverses each node of the BDD F(p, r) exactly once. Figure 4 shows an outline of
LineMaxzElem.

Variables in p are required to be ordered before variables in 7. Define top_r_index as the smallest index
of the variables in r (corresponding to the highest variable in BDD). LineMaz Elem takes the relation
F(p,r) and top_r_indez as arguments and returns the BDD of the set of columns in p which are related to
the maximum number of r’s in F', together with the count. Starting from the root of BDD F, the algorithm
traverses down the graph by recursively calling LineMax Elem on the then and else subgraphs. This
recursion stops when the top variable v of F is in the variable set 7. In this case, the BDD rooted at v
corresponds to a cofactor F'(p;,) for some p;. The minterms in its onset are counted and returned as count,
which is the number of r’s that are related to p; (i.e. the number of 1’s in column p;).

Next we construct a new BDD in a bottom up fashion, representing the set of columns with maximum
count. The two recursive calls of LineMazElem retum the sets T and E of columns with maximum
count count_T and count_E for the then and the else subgraphs. The larger of the two counts, count =
maz(count_T, count_E), is retumned. If the two counts are the same, the columns in T and E are merged
by ITE(v,T, E). If count_T is larger, only T is retained as the updated columns of maximum count. And
symmetrically for the other case.

To guarantee that each node of the BDD F(p, r) is traversed once, two computed tables ([1]) must be
used, though they are not shown in the algorithm. Firstly, the ddd_count_onset() results must be saved
across different calls of the routine. Secondly, the results of Line M ez Elem must also be stored in another
computed table. Note that Line M az Element retums a set of columns of maximum count. Since we need

17

only one column, some heuristic is used to break the ties and to keep only one column.

One can compute the columns with minimum number of 1’s, by replacing in LineMaz Elem the
expression maz(count_T', count_E) with min(count_T, count_E). Moreover, if variables in r are required
to be ordered before variables in p one can compute the rows that maximize or minimize the number of
I’s. Summing up, we have a family of procedures that can either maximize or minimize the number of 1’s
of either the columns or of the rows (similarly, for 0’s in place of 1’s). An application where rows with
minimum number of 1’s are needed is the implicit computation of the maximal independent set (Section 7.3).

7.3 Implicit computation of a maximal independent set

Usually alower bound is obtained by computing a maximum independent set of the unate rows. A maximum
independent set of rows is a (maximum) set of rows no two of which intersect the same column. Maximum
independent set is an NP-hard problem and an approximate one (only maximal) can be computed by a
greedy algorithm. Let R be the set of rows out of which a maximal independent set must be found. While
R is non-empty, a row 7 of R is found that is disjoint from a maximum number of rows (i.e. the row of
minimum length in R). All rows having elements in common with r; are then discarded from R. At the end
of the iteration, a set of pairwise disjoint rows (independent set) and their minimum covering cost is found.

An analogue of the previous greedy procedure can be reproduced in our implicit frame, noticing that we
showed already how to compute implicitly the rows with minimum number of 1°s (Section 7.2). Since we
are interested only in the unate rows of the table, we define the following relation;

F(p,d) = 3cR(c, d).Tupley(c).C(p).Contain(p, d)

A column p and a unate row (¢, d) intersect in a 1 iff F(p,d) = 1. Rows here are labelled only by the
second half d of their complete label, because it is sufficient to distinguish them. Once a shortest row 7(d)
is found, one can discard from F'(p, d) the row (d) together with all the other rows intersecting the same
columns by:

F(p,d) = F(p,d). Bp{3d[r(d).Contain(p, d)].C(p).Contain(p,d)}.

8 Experimental Results for Computation of Compatibles

We report results on different suites of FSM’s. They are:
1. The MCNC benchmark and other examples.
2. FSM’s from asynchronous synthesis [17].
3. FSM’s from leaming 1/O sequences [9].
4. FSM'’s from synthesis of interacting FSM’s [27].
5. Constructed FSM’s that exhibit a large number of maximal and prime compatibles.
6. Random FSM'’s.

We discuss features of the experiments and results in different subsections. Our program is called I1SM, an
acronym for implicit state minizer. Comparisons are made with STAMINA, a program that represents the
state-of-art for state minimization based on explicit techniques. The program STAMINA was run with the
option -P to compute all primes. All run times are reported in CPU seconds on a DEC DS5900/260 with
440 Mb of memory. #N £PC denotes the number of nonessential prime compatibles.

18

8.1 Examples from MCNC Benchmark and Others

Table 1 reports the results of the most interesting examples (as far as state minimization is concemed) from
the MCNC benchmark and from other academic and industrial benchmarks available to us. Most examples
have a small number of prime compatibles, with the exception of ex2 and green. The running times of ISM
are worse than those of STAMINA, especially in those cases where there are very few compatibles in the
number of states (squares is the most striking example). But when the number of primes is not negligible
as in ex2 and green, ISM ran as fast or faster than STAMINA. This is consistent with our expectations, since
ISM manipulates relations having a number of variables linearly proportional to the number of states. When
very few compatibles need to be represented, the purpose of ISM is defeated and its representation becomes
very inefficient. '

max # prime CPU time (sec)

machine | #states | compat. | # compat. | compat. | #AVEPC | ISM | STAMINA
ex2 19 36 2925 1366 1366 8 13
green 54 524 1234 524 524§ 90 125
squares 371 45 473 307 01731 1
tbk 32 16 48 48 48 3 1

Table 1: Examples from the MCNC Benchmark and others.

8.2 Examples of FSM’s from Asynchronous Synthesis

Table 2 reports the results of a benchmark of FSM’s generated as intermediate steps of an asynchronous
synthesis procedure [17]. We notice that STAMINA ran out of memory on the examples vmebus.masterm,
isend, pe-rcv-ifc fc, pe-send-ifc fc, while 1SM was able to complete them. These examples (with the exception
of vbeda) have a number of primes below 1000. To explain the data reported in Table 2, we notice that in
order to compute the prime compatibles, the set of compatibles needs to be generated too. The compatibles
of the FSM’s of this benchmark are usually of large cardinality and therefore their enumeration causes a
combinatorial explosion. So the huge size of the set of compatibles accounts for the large running times
and/or out-of-memory failures. About the behavior of ISM, we underline that the running times track well
with the size of the set of compatibles and that in significant cases they are well below those of STAMINA (pe-
rev-ifc fe.m, pe-send-ifc fc.m, vbed4a). Notice that for asynchronous synthesis a more appropriate formulation
of exact state minimization requires the computation of all compatibles or at least of prime compatibles and
a different set-up of the covering problem [17].

8.3 Examples of FSM’s from Learning 1/0 Sequences

Table 3 shows the results of running a parametrized set of FSM’s constructed to be compatible with a given
collection of examples of input/output behavior [9]. From a sequence of » input/output pairs, a machine is
generated with n + 1 states and n transitions, one for each input/output pair. These machines exhibit very
large number of compatibles.

Here IsM shows all its power compared to STAMINA, both in terms of number of computed primes and
running time. STAMINA runs out of memory on the examples from threer.35 onwards and, when it completes,
it takes close to two order of magnitude more time than ISM.

19

Table 3: Leaming I/O sequences benchmark.

20

max # prime CPU time (sec)
machine # states | compat. | # compat. | compat. | #AEPC | I1SM | STAMINA
alex1 42 787 55928 787 787 | 26 16
intel_edge.dummy 28 120 9432 396 396 | 38 3
isend 40 128 22207 480 480 | 16 | spaceout
pe-rev-ifc.fc 46 28 | 1.528ell 148 148 | 18 | spaceout
pe-rev-ifc.fc.m 27 18 | 1.793e6 38 38 3 147
pe-send-ifc.fc 70 39 | 5.071e17 506 506 | 571 | spaceout
pe-send-ifc.fc.m 26 6| 8.978e6 23 22 3 312
vbeda 58 2072 | 1.756e12 2072 2072 | 112 167
vmebus.master.m 32 10 | 5.049¢7 28 28 | 16 | spaceout
Table 2: Asynchronous FSM benchmark.

| #prime | CPU time (sec)

machine | state | compat. | compat. ISM | STAMINA

threer.10 11 671 112 0 0

threer.20 | 21 16829 3936 1 159

threer.30 | 31 97849 33064 50 1344

threer40 | 41 | 1.456e6 | 529420 156 | spaceout

threer.50 | 51| 1.680e7 | 7.246e6 | 1142 | spaceout

fourr.10 11 2047 1 0 0

fourr.20 21 42193 12762 2 217

fourr.30 31 1.346e6 | 542608 20 | spaceout

fourr40 41 | 5.266e9 | 2.388¢9 105 | spaceout

fourr.50 51| 3.643e¢7 | 1.696e7 198 | spaceout

fourr.60 61 | 1.052e10 | 5.021¢9 | 6101 | spaceout

fourr.70 71 | 9.621e10 | 4.524e10 | 22940 | spaceout

8.4 Examples of FSM’s from Synthesis of Interacting FSM’s

It has been reported by Rho and Somenzi [22] that the exact state minimization of the driven machine of a
pair of cascaded FSM’s is equivalent to the state minimization of an ISFSM that requires the computation
of prime compatibles.

Recently Wang and Brayton [27] have implemented a program to optimize a FSM, exploiting the input
don’t care sequences induced by a surrounding network of FSM’s. Their procedure produces FSM’s that
requires a final step of state minimization and exhibit often large number of prime compatibles. We will
report on these experiments in a final version of the paper, when these examples will be available to us.

8.5 A Family of FSM’s with Exponentially Many Primes

We describe here a suite of FSM’s whose number of prime compatibles is exponential in the number of
states.

Rubin gave in [23] a sharp upper bound for the number of maximal compatibles of an ISFSM. He
showed that M (), the maximum number of maximal compatibles over all ISFSM’s with n > 1 states, is
given by M(n) = i.3™, if n = 3.m + i. The proof of this counting statement is based on the construction
of a family of incompatibility graphs /(n) parametrized in the number of states*, Each I(n) is composed
canonically of a number of connected components. Each maximal compatible contains exactly one state
from each connected component of the graph. The number of such choices is shown to be M(n).

The proof of the theorem does not exhibit an FSM that has a canonical incompatibility graph. Based
on the construction of the incompatibility graphs given in the paper, we have built a family F(»)’ of
ISFSM’s (parametrized in the number of states n) that have a number of maximal compatibles in the
order of 3("/3) and a number of prime compatibles in the order of 2(2*/3), F(n) has 1 input and n/3
outputs. Each machine F is derived from a non-connected state transition graph whose components F; are
defined on the same input and outputs. Each FSM F; has 3 states {sio, si1, 3i2} and 3 specified transitions
{e,'o = (s,'o, Sil), €1 = (8,’1 , s,‘g), € = (8,‘2, 8.’0)}. Each transition under the input set to 1 asserts all outputs
to —, with the exception that e;o and e;; assert the :-th output to 0 and e;; asserts the ¢-th output to 1. Under
the input set to O the transitions are left unspecified.

Table 4 shows the results of running increasingly larger FSM’s of the family. While ISM is able to
generate sets of prime compatibles of cardinality up to 2!2% with reasonable running times, STAMINA, based
on an explicit enumeration runs out of memory soon (and where it completes, it takes much longer).

8.6 FSM’s with Many Maximals

Table 5 shows the results of running some examples from a set of FSM’s constructed to have a large number
of maximal compatibles. The examples jacd, jc43, jc44, jc45, jc46, jc47 are due to R. Jacoby and have been
kindly provided by J.-K. Rho of UC Boulder. The example lavagno is from asynchronous synthesis as those
reported in Section 8.2. For these examples the program STAMINA was run with the option -M to compute
all maximals. While IsM could complete on them in reasonable running times, STAMINA could not complete
on jac4 and completed the other ones with running times exceeding those of 1SM by one or two order of
magnitudes. Notice that ISM could also compute the set of all compatibles even though the computation of
prime compatibles cannot be carried to the end while STAMINA failed on both.

“The incompatibility graph of an ISFSM F is a graph whose nodes are the states of F, with an undirected arc between two
nodes s and ¢ iff s and ¢ are incompatible.
SCalled rubin followed by n in the table of results.

21

max # prime . CPU time (sec)
machine | #states | compat. | # compat. | compat. | #NEPC ISM | STAMINA
rubini2 12 34 28 -1 281 | 28-1 0 4
rubini8 18 36 221 | 2121 | 212 1 751
rubin24 24 38 2161 | 2161 | 216 1 | spaceout
rubin300 | 300 3100 | 2200 _q | 2200 | 2200 _ 256 | spaceout
rubin600 | 600 3200} 2400 _q [2400 _q [2400 _1 | 1995 | spaceout
rubin900 | 900 3300 | 2600 _q [2600_ 3 | 2600 _1 | 6373 | spaceout

rubinl1200 | 1200 | 3400 | 2800_q [2800 _ 4 | 2800 _ 1 | 17711 | spaceout
rubin1500 | 1500 3500 | 21000 _q | 21000 _ 1 [21000 _q | 42674 | spaceout
rubin1800 | 1800 3600 | 21200 _q [21200 _ g [21200 _q | 78553 | spaceout
Table 4: Constructed FSM’s.

max # prime | CPU time (sec)

machine | # states | compat. | # compat. | compat. | ISM | STAMINA

jac4 65 3.859¢6 | 4.159¢7 ? 34 | spaceout

jc43 45 82431 | 1.556e6 ? 13 7739

jo44 55 4785 | 17.584e9 ? 20 662

joas 40 17323 | 480028 ? 10 1211

jc46 42 26086 | 1.153e6 ? 11 2076

jca7 51 | 397514 | 1.120e7 ? 19 41297

lavagno | 65 47971 | 9.163¢6 ? 163 40472

Table 5: FSM’s with many maximals.

22

8.7 Randomly Generated FSM’s

We investigated also whether randomly generated FSM’s have a large number of prime compatibles. A
program was written to generate random FSM’s®. A small percentage of the randomly generated FSM’s were
found to exhibit this behavior. Table 6 shows the results of running ISM and STAMINA on some interesting
examples with a large number of primes. Again only ISM could complete the examples exhibiting a large
number of primes.

max # prime CPU time (sec)

machine | # states | compat. | # compat. | compat. | #NVEPC | ISM | STAMINA
fsm15.232 14 4 7679 360 360 2 23
fsm15.304 14 2 12287 954 954 1 85
fsm15.468 13 2 4607 772 772 1 16
fsm15.897 15 2 20479 617 616 O 50
ex2.271 19 2 393215 | 96383 96382 | 26 | spaceout
€x2.285 19 2 393215 | 121501 | 121500 | 17 | spaceout
ex2.304 19 2 393215 | 264079 | 264079 | 94 | spaceout
ex2.423 19 4 204799 | 160494 | 160494 | 112 | spaceout
€x2.680 19 2 327679 | 192803 | 192803 | 156 | spaceout

Table 6: Random FSM’s.

8.8 Summary of the Results

The results of Tables 2, 3, 4, 5 and 6 show that when the sets of compatibles needed for exact state
minimization are huge, an algorithm based on an explicit enumeration of those sets will be unable to
complete due to an out-of-memory condition.

The question now arises of how it is realistic to expect such examples in logic design applications. One
could object that the examples of Table 1 show that hand-designed FSM’s can be handled very well by an
existing state-of-art program like STAMINA. If this can be true for usual hand-designed FSM’s, we argue that
there are FSM’s produced in the process of logic synthesis of real design applications that generate large
sets of compatibles exceeding the capabilities of programs based on an explicit enumeration. The examples
of Table 2 are such a case. They are FSM’s produced as intermediate stages of an asynchronous logic design
procedure and their minimization requires computing very large sets of compatibles. Another case is the
one reported in Table 3, referring to the synthesis of finite state machines consistent with a collection of I/O
leamning examples.

9 Experimental Results of Binate Covering

In this section we report preliminary results of an implementation of the implicit binate covering algorithm,
described in the previous sections. We use the benchmarks already introduced in Section 8 and concentrate
on the examples where prime compatibles are needed to find a minimum solution of the state minimization
problem 7. Here we provide data for a subset of them, sufficient to characterize the capabilities of our

®Parameters: number of states, number of inputs, number of outputs, don't care output percentage, don’t care target state
percentage.
"Otherwise, a minimum solution of maximal compatibles is closed and therefore is a minimum solution.

23

prototype program. Since the following results are still preliminary, the analysis of the experiments is not
final yet.

Comparisons are made with STAMINA. The binate covering step of STAMINA was run with alpha
dominance and no row consensus, because beta dominance and row consensus have not yet been implemented
in our implicit binate solver. Our implicit binate program currently lacks also routines for table partitioning
and Gimpel'’s reduction rule, that were instead invoked in the version of STAMINA used for comparison. This
might sometimes favour STAMINA, but for simplicity we will not elaborate further on this effect. In the near
future we will implement beta dominance, row consensus and table partitioning in our package. All run
times are reported in CPU seconds on a DEC DS5900/260 with 440 Mb of memory.

The following explanations refer to the tables of results:

¢ #NEPC denotes the number of nonessential prime compatibles. Essential prime compatibles and
rows covered by them are not needed in the binate table.

¢ Under table size we provide the dimensions of the original binate table and of its cyclic core, i.e. the
dimensions of the table obtained when the first cycle of reductions converges.

¢ # mincov is the number of recursive calls of the binate cover routine.

e Data are reported with a « in front, when only the first solution was computed.

9.1 Minimizing Small and Medium Examples

With the exception of ex2, ex3, ex5, ex7, the examples from the MCNC and asynchronous benchmarks do
not require primes for exact state minimization and yield simple covering problems®. Table 7 reports the
few non-trivial examples. They were all run to full completion, with the exception of ex2. In the case of
ex2, we stopped both programs at the first solution. These experiments suggest that

e the number of recursive calls of the binate cover routine (mincov) of 1SM and STAMINA is roughly
comparable (ISM is surprisingly better in the examples green and alex!), showing that our implicit
branching selection routine is satisfactory. This is an important indication, because selecting a good
branching column is a more difficult task in the implicit frame.

¢ The running times are better for STAMINA in the small examples, but in the medium examples 1sM
recovers ground and it is sometimes much faster. This is to be expected because when the size of the
table is small the implicit approach has no special advantage, but it starts to pay off scaling up the
instances. Moreover, our implicit reduction computations have not yet been fully optimized.

9.2 Minimizing Constructed Examples

Table 8 presents a few examples from the constructed benchmarks. They yield giant binate tables. The
experiments show that ISM is capable of reducing those table and of producing a minimum solution or at
least a solution. This is beyond reach of an explicit technique and substantiates the claim that implicit
techniques advance decisively the size of instances that can be solved exactly.

8Moreover, in the case of the asynchronous benchmark a more appropriate formulation of state minimization requires all
compatibles and a different set-up of the covering problem.

24

table size (rx c) # mincov CPU time (sec)

machine | states.| #AVEPC | before red. | after Istred. | ISM | STAMINA | ISM | STAMINA

ex2 19 1366 | 4418 x 1366 | 3425x 1352 | *6 *6 | *62 *116

ex3 10 91 243 x 91 151x84 | 217 160 | 85 0

exs 9 38 81x38 47x 31 11 23 4 0

ex? 10 57 137 x 57 62 x 44 34 31 9 0

green 54 524 | 53x524 51x524 5 2975 | 38 148

alex1 42 787 | 42x787 28x 110 3 137 | 303 7

Table 7: Examples from the MCNC and asynchronous benchmarks

table size (rx c¢) # mincov CPU time (sec)
machine | states | #NVEPC before red. after 1st red. ISM | STAMINA | ISM | STAMINA
ex2.271 19 96382 | 95323 x 96382 0x0 1 - 3 fails
ex2.285 19 | 121500 1x 121500 0x0 1 - 0 fails
ex2.304 19 | 264079 | 1053189 x 264079 | 1052007 x 264079 2 -| 554 fails
ex2.423 19 | 160494 | 637916x 160494 | 636777 x 160494 | *2 - | *¥373 fails
€x2.680 19 | 192803 | 757755x 192803 | 756940 x 192803 2 -| 868 fails

Table 8: Examples from the constructed benchmarks

9.3 Minimizing FSM’s from Learning I/O Sequences

Examples in Table 8 demonstrate dramatically the capability of implicit techniques to build and solve
huge binate covering problems on suites of contrived examples. Do similar cases arise in real synthesis
applications? The examples reported in Table 9 answer in the affirmative the question. They are the simplest
examples from the suite of FSM’s described in Section 8.3. It is not possible to build and solve these binate
tables with explicit techniques. Instead we can manipulate them with our implicit binate solver and find
a solution. In the example fourr40, only the first table reduction was performed. Notice that these are
preliminary results. Experiments to find a minimum cost solution and to complete the benchmark are under
progress.

10 Conclusions

This paper has presented an implicit algorithm for exact state minimization of incompletely specified FSM’s
(ISFSM'’s), an NP-hard problem [21]. It has been shown in the experimental sections that various applications
of logic synthesis generate FSM’s beyond the reach of state-of-art state minimizers. We have shown how
to compute sets of maximal compatibles, compatibles and prime compatibles with implicit techniques and
demonstrated that in this way it is possible to handle examples exhibiting a number of compatibles up
to 2'2%, a number outside the scope of programs based on explicit enumeration [13]. The only explicit
dependence is on the number of states of the initial problem. We have also indicated where such examples
arise in practice. Then we have addressed the final step of an implicit exact state minimization procedure, i.e.
solving a binate table covering problem [24]. We presented the first-published algorithm for fully implicit
exact binate covering. We report preliminary results of a prototype implementation capable of reducing

25

table size (rx c) # mincov CPU time (sec)
machine | states | NEPC before red. after 1stred. ISM | STAMINA ISM | STAMINA
threer.20 21 3936 6977 x 3936 6974 x 3936 *4 *3 *14 *1788
threer.25 26 | 17372 | 35690x 17372 34707 x 17016 *3 - *74 fails
threer.30 31| 33064 | 68007 x 33064 64311 x 32614 *4 -| *554 fails
threer.35 36 | 82776 | 177124 x 82776 165967 x 82038 *8 - | 2390? fails
threer.40 41 | 529420 | 1209783 x 529420 | 1148715 x 526753 | *10 - | *5054 fails
fourr.16 21 3266 6060 x 3266 . 5235x3162 *2 *2 *7 *1266
fourr.20 21 12762 | 26905 x 12762 26904 x 12762 *2 - *35 fails
fourr.30 31 | 542608 | 1396435 x 542608 | 1385809 x 542132 | *2 - | *1317 fails
fourr.40 41 | 2.388e9 | 6.783€9 x 2.388¢9 | 6.783e¢9 x 2.388¢9 | 11 - | 11651 fails

Table 9: Leamning I/O sequences benchmark.

huge binate tables (up to 10° rows and columns) and of carrying on the branch-and-bound procedure on an
implicit representation of the table. Exact solutions to problems beyond the reach of traditional tools are so
found.

We underline that besides the intrinsic interest of state minimization and its variants for sequential
synthesis, the implicit techniques reported in this paper can be applied to other problems of logic synthesis
and combinatorial optimization. For instance the implicit computation of maximal compatibles given here
can be easily converted into an implicit computation of prime encoding-dichotomies (see [25]).

References

[1] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In The Proceedings
of the Design Automation Conference, pages 40-45, 1990.

[2] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni- Vincentelli. Logic Minimization Algorithms
Jor VLSI Synthesis. Kluwer Academic Publishers, 1984,

[3] R. Brayton, A. Sangiovanni-Vincentelli, G. Hachtel, and R. Rudell. Multi-level logic synthesis.
unpublished book, 1992.

[4] R. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In The Proceedings of the -
International Conference on Computer-Aided Design, November 1989.

[5] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions on
Computers, pages C-35(8):667-691, 1986. '

[6] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using functional Boolean
vectors. IFIP Conference, November 1989.

[7] O. Coudert, H.Fraisse, and J.C. Madre. A breakthrough in two-level logic minimization. In The
Proceedings of the Design Automation Conference, June 1993,

[8] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential prime
implicants of boolean functions. In The Proceedings of the Design Automation Conference, pages
36-39, 1992.

26

[9] S.Edwards and A. Oliveira. Synthesis of minimal state machines from examples of behavior. EE290LS
Class Project Report, U.C. Berkeley, May 1993.

[10) A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely
specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June
1965.

[11] A. Grasselli and FE. Luccio. Some covering problems in switching theory. In Networks and Switching
Theory, pages 536—-557. Academic Press, New York, 1968.

[12] G.Swamy, R.Brayton, and PMcGeer. A fully implicit Quine-McCluskey procedure using BDD’s. In
Submitted for Publication, 1993.

[13] G. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic algorithms for the minimization
of incompletely specified state machines. In The Proceedings of the European Design Automation
Conference, 1991.

[14] J.E. Hopcroft. n log n algorithm for minimizing states in finite automata. Tech. Report Stanford Univ.
CS 711190, 1971.

[15] T.Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Implicit generation of compatibles for
exact state minimization. Tech. Report No. UCB/ERL M93/60, August 1993.

[16] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Book Company, New York, New
York, second edition, 1978.

[17] L.Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli. Solving the state assignment
problem for signal transition graphs. The Proceedings of the Design Automation Conference, June
1992.

[18] B. Lin. Synthesis of VLSI designs with symbolic techniques. Tech. Report No. UCB/ERL M91/105,
November 1991.

[19] B.Lin, O. Coudert, and J.C. Madre. Symbolic prime generation for multiple-valued functions. In The
Proceedings of the Design Automation Conference, pages 40-44, 1992,

[20] B.Linand A.R. Newton. Implicit manipulation of equivalence classes using binary decision diagrams.
In Proceedings of the International Conference on Computer Design, pages 81-85, September 1991.

{21] C.P. Pfleceger. State reduction in incompletely specified finite state machines. /EEE Transactions on
Computers, pages 1099-1102, October 1973.

[22] J.-K. Rho and F. Somenzi. The role of prime compatibles in the minimization of finite state machines.
In The Proceedings of the European Design Automation Conference, 1992.

[23] Frank Rubin. Worst case bounds for maximal compatible subsets. JEEE Transactions on Computers,
pages 830-831, August 1975.

[24] R. Rudell. Logic synthesis for VLSI design. Tech. Report No. UCB/ERL M89/49, April 1989,

[25] A.Saldanha, T. Villa, R. Brayton, and A. Sangiovanni- Vincentelli. A uniform framework for satisfying

input and output encoding constraints. The Proceedings of the Design Automation Conference, June
1991.

27

[26] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state enumeration
of finite state machines using BDD’s. The Proceedings of the International Conference on Computer-
Aided Design, pages 130-133, November 1990.

[27] Huey-Yih Wang and R. K. Brayton. Input don’t care sequences in fsm networks. In The Proceedings
of the International Conference on Computer-Aided Design, November 1993,

28

	Copyright notice 1993
	ERL-93-79

